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I. INTRODUCTION

Environmental signals such as light and gravity control many aspects of plant growth and develop-
ment. In higher plants, the directional growth of an organ in response to stimuli such as gravity
and light is considered a tropic movement. Such movement could be either positive or nega-
tive with respect to a specific stimulus. In general, stems show a positive response to light and
negative response to gravity. In contrast, most roots show a positive response to gravity and a negative
response to light.

Investigations on plant tropism date back a century when Darwin studied the phototropic responses
of maize seedlings (Darwin, 1880). Although the precise mechanism of signal perception and
transduction in roots is not understood, Darwin recognized over I00 years ago that the root cap is the
probable site of signal perception. He discovered that the removal of the root cap eliminates the ability
of roots to respond to gravity. Other investigators have since confirmed Darwin's observation

(Konings, 1968; Evans et al., 1986). In recent years, especially with the advent of the U.S. Space
Program, there has been a renewed interest in understanding how plants respond to extraceUular
signals such as gravity (Halstead and Dutcher, 1987). Studies on the mechanisms involved in

perception and transduction of gravity signal by roots would ultimately help us to better understand
gravitropism and also to grow plants under microgravity conditions as in space.

In this chapter, we restrict ourselves to the role of calcium in transduction of the gravity signal.
In doing so, emphasis is given to the role of calcium-modulated proteins and their role in signal
transduction in gravitropism. Detailed reviews on various other aspects of gravitropism (Scott, 1972;
Torrey, 1976; Pilet 1979, 1983; Wilkins, 1979; Fire and Digby, 1980; Feldman, 1985; Pickard,
1985a,1985b; Moore and Evans, 1986; Halstead and Dutcher, 1987; Poovaiah et al., 1987) and on
the role of calcium as a messenger in signal transduction in general have been published (Helper and
Wayne, 1985; Poovaiah and Reddy, 1987, 1993; Roberts and Harmon, 1992; Bowler and Chua, 1994;
Gilroy and Trewavas, 1994).

Plant roots have been widely used to study the transduction of gravity and light signals (Poovaiah
et al., 1987a; Roux and Serlin, 1987). Most roots show positive gravitropic response in either dark
or light. However, roots of some varieties of plants (e.g., Zea mays L., cv Merit, and Zea mays L.,
cv Golden Cross Bantam 70) show positive gravitropic response only in light (Feldman, 1983;
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Miyazaki et al., 1986). Investigations from various laboratories indicate that calcium acts as a

messenger in transducing gravity and light signals in plant roots (Pickard, 1985a,1985b; Evans et al.,

1986, Poovaiah et al., 1987a).

II. MESSENGER ROLE OF CALCIUM IN GRAVITY SIGNAL

PERCEPTION AND TRANSDUCTION

Free calcium is the most common signal transduction element in both plant and animal cells

(Poovaiah and Reddy 1993; Clapham, 1995). Calcium is essential for survival, yet prolonged

high intracellular calcium levels can kill the cell. Hence, cells stringently control intracellular

calcium levels through numerous binding proteins. Several reviews have appeared on this topic

(Poovaiah and Reddy, 1993; Gilroy and Trewavas, 1994; Bowler and Chua, 1994; Reddy, 1994).

The realization that changes in cytoplasmic calcium could mediate diverse plant responses, coupled

with the development of fluorescent and luminescent indicators to monitor changes in free calcium

in living fells, has led calcium to become one of the best-characterized second messengers in plants

(Poovaiah and Reddy, 1993; Gilroy and Trewavas, 1994). A number of studies in recent years have

demonstrated that many environmental and hormonal signals cause an elevation of cytosolic calcium

concentration. The increase in cytosolic calcium is believed to initiate a cascade of biochemical events

that are discussed below. Several studies have shown that calcium is important in gravity signal

perception and transduction.
The gravitropic response is separated into three phases: signal perception, transduction, and

response. The primary event that takes place in roots subjected to gravity is the initial perception of

the signal. This initial perception take place in the root cap. The root cap is composed of short-lived

parenchymalike cells, and new cells are continuously being added to it. Hence, the root cap persists

throughout the growing life of the root. The events that take place between stimulus perception and

final growth response are grouped under the term transduction. The third phase is the final response

of altered growth pattern in the elongation zone of the roots, which leads to curvature.

Evidence for the importance of calcium in gravitropism is obtained by simple but elegant exper-

iments using calcium chelators (e.g., ethylene glycol bis[[]-aminoethylether] N, N'-tetraacetic acid

[EGTA]) and calcium ionophores (e.g., A23187). Manipulation of calcium gradients in the root cap

can change the gravitropic response (Lee et al., 1983b). Depletion of calcium in the root cap, using
calcium chelators, results in the loss of gravisensitivity (Fig. IA1), and subsequent replenishment of

calcium to depleted roots restores gravisensitivity (Fig. 1A2). Furthermore, root curvature can also

be induced by creating calcium gradients across the root cap using calcium or calcium chelators such

as EGTA (Fig. 1A3 and IA4). Studies have shown that the root tip contains four times more

calmodulin than the root base (Poovaiah et al., 1987). Amyloplasts in the columella cells of the root

cap are known to contain a high concentration of calcium (Chandra et al., 1982) and large quantities

of calmodulin (Dauwalder et al., 1986). Calmodulin inhibitors inhibit gravitropism without inhibiting

the growth rate of the roots (Biro et ai., 1982). Inhibitory effects of KN-93, an inhibitor of calcium

calmodulin-dependent protein kinase II on light-regulated maize root gravitropism have also been

observed (Lu and Feldman, 1993). Moreover, calmodulin antagonists inhibit polar transport of

calcium in roots (Stinemetz and Evans, 1986), suggesting that establishment of the calcium gradient,

which is essential for gravitropism, is a calmodulin-dependent process. Gehring et al. (1990)

demonstrated that gravity induces a rapid increase in cytosolic calcium in the elongating cells on the

growing side of gravistimulated maize coleoptiles.

Primary roots of a mutant maize (cv Merit) do not exhibit gravitropism in the dark but become

gravisensitive only after brief exposure to light (Fig. 1B). Roots of maize (cv Merit) that were depleted

of calcium by EGTA and A23187 (calcium ionophore) prior to light treatment did not show

gravitropic curvature (Reddy et al., 1987b). However, replenishment of calcium to depleted roots

restored sensitivity to gravity. Perdue and Leopold (1988) reported that treatments such as heat shock

and cold shock that cause an influx of calcium can substitute for light, causing positive gravitropism

in the dark. Furthermore, the calcium channel blocker, verapamil, was found to inhibit the light

response. Calmodulin antagonists such as calmidazolium and compound 48/80 were shown to inhibit
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Figure 1 Diagrammatic representation of the effect of calcium on gravitropic response in maize roots.
(A) Effect of calcium or EGTA applied in agar blocks on gravitropism: (1) EGTA applied to the root

cap prevents gravitropic response; (2) Calcium application following EGTA pretreatxnent restores gravi-

tropic response; (3) Calcium application to one side of the cap causes bending towards the calcium;

(4) EGTA application to one side of the cap causes bending away from EGTA. (Adapted from Lee

et al., 1983b.) (B) Effect of calcium manipulation on light-induced gravitropic response in maize roots

(cv Merit): (1) dark-grown roots nonresponsive to gravity; (2) dark-grown roots exposed to light; (3)

dark-grown roots treated with EGTA + A23187 (calcium ionophore) prior to light exposure; (4) dark-

grown roots treated with EGTA + A23187 and transferred to calcium + A23187 prior to light exposure.

(From Poovaiah et al., 1987a.)

light-induced gravitropism in maize (cv Merit) roots (Bjorkman and Leopold, 1987). Recent reports
have also indicated an increase in the level of calmodulin and its activity in maize (cv Merit) roots

exposed to light (Stinemetz et al., 1987). These studies suggest that the effects of calcium could be

mediated through calmodulin. The discovery of various components of the calcium messenger system

in roots such as calmodulin and calcium-regulated protein kinases, and the observation of an increase

in cytosolic calcium in response to gravity, has led researchers to propose a messenger role for calcium

in gravitropic bending.

A. Calcium-Modulated Proteins

Elevation of cytosolic calcium initiates a cascade of events resulting in a physiological response. The

changes in cytosolic calcium are sensed by a group of calcium-modulated proteins that are believed to

be involved in cellular regulation. These binding proteins have a structural feature called the EF-hand

which is present in multiple copies and binds calcium with high affinity (Heizmann and Hunziker,

1991). Many calcium-binding proteins have been identified and characterized in animals and several

in plants (Moncrief et al., 1990; Heizmann and Hunziker, 1991, Roberts and Harmon, 1992).

Calcium-binding proteins are inactive in the absence of bound calcium, but when the concentration

of cytosolic calcium increases, the calcium-binding proteins such as calmodulin (CAM) and calcium-

dependent protein kinases bind to calcium and become active. Once bound to calcium, these proteins

become active and interact with other proteins in the cell and alter their activity. Fig. 2 shows a

schematic diagram illustrating how elevated levels of cytosolic calcium affect various enzymes and

proteins in the cell. Hence, in this chain of events, calcium acts as a simple on-off switch that conveys

the signal from cell surface to the metabolic machinery, eventually resulting in a physiological

response. So far, two calcium-modulated proteins, CaM and calcium-dependent protein kinase, have
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Figure 2 Schematic illustration of the proposed events involving calcium, CaM, and CBP in signal

transduction. Signals induce changes in cytosolic calcium and these changes in cytosolic calcium are

transmitted to the metabolic machinery through CBP. (From Poovaiah and Reddy, 1993.)

been well characterized in plants. In addition, a chimeric calcium/CaM-dependent protein kinase has

recently been cloned from plants (Patil, et al., 1995). There are indications for the presence of

CaM-like proteins and additional calcium-binding proteins that could be involved in sensing cytosolic

calcium changes and mediating calcium action in plants (Krause, et al., 1989; Braam and Davis, 1990;

Zielinski, 1990; Clark et al., 1992; Poovaiah and Reddy, 1993). In addition, calcium-dependent

proteinase activity was also detected recently in Arabidopsis root cultures (Reddy et al., 1994).

1. Calmodulin

CaM is a highly conserved protein and is considered to be a multifunctional Fotein because of its

ability to interact and regulate the activity of a number of other proteins (Roberts et al., 1986;

Poovaiah and Reddy, 1987). The properties of plant CaM are very similar to animal CaM. In recent

years, there has been considerable progress in studying CaM gene expression and the organization of

CaM genes in plants.

cDNAs or genomic clones that code for CaM were isolated from a number of plant systems

(Roberts and Harmon, 1992; Poovaiah and Reddy, 1993). Analysis and cDNA and genomic clones

suggest the presence of multiple calmodulin genes in plants (Ling et al., 1991; Perera and Zielinski,

1992; Takezawa et al., 1995). Recent studies have shown that CaM and CaM-related genes are highly

responsive to signals. Various physical and chemical signals have been shown to induce mRNA

corresponding to CaM and CaM-related genes. Exposure of dark-grown Merit corn root tips to light

increased the CaM mRNA level (Jena et al., 1989). In Arabidopsis, Braam and Davis (1990) have

shown rapid (10-30 man) induction of mRNAs corresponding to four cDNAs (TCH 1, TCH 2, TCH

3, and TCH 4) in response to a variety of stimuli such as touch, wind, rain, and wounding. Of these

four genes, TCH 1 is identified as CaM and TCH 2 and TCH 3 are identified as CaM-related genes.
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Other studies have confirmed the induction of calmodulin genes by touch stimuli (Perera and

Zielinski, 1992; Watillon et al., 1992). These studies suggest that physical and chemical signals induce

the expression of CaM. By manipulating cytosolic calcium the expression of some of the touch genes

is found to be regulated by calcium (Braam, 1992). Studies have shown that touch and wind signals

elevate cytosolic calcium (Knight et al., 1991, 1992). Hence, the probable sequence of events in touch

signal transduction is elevation of cytosolic calcium, which in turn regulates the expression of the

specific genes, including those that code for its own receptor. The availability of CaM genomic clones

from Arabidopsis (Perera and Zielinski, 1992), rice (Y. J. Choi, B. W. Poovaiah, and G. An,

unpublished results), apple (Watillon et aI., 1992), and potato (Takezawa et al., 1995) will help in

identifying regulatory elements in CaM promoters. In addition to CaM, there are reports of CaM-

related genes in plants (Braam and Davis, 1990; Zielinski et al., 1990). In Arabidopsis, a cDNA for

a CaM-like protein (p21) that shares 65% amino acid similarity with the higher plant CaM sequences

has been isolated (Zielinski et al., 1990; Ling and Zielinski, 1993). From the same system, Braam

and Davis (1990) isolated two partial cDNAs, TCH 2 and TCH 3, that code for CaM-related proteins.

These showed 44% and 70% amino acid identities, respectively, with CaM. p21 has several unique

structural features including a 45-amino acid carboxyterminal extension with no homology to any

known proteins. Another CaM-related cDNA was isolated from petunia which contained an extra

domain of 35 amino acids at the carboxyterminal end. Forty percent of the amino acid residues in the

extra domain of petunia CaM-like protein are positively charged (H. Fromm, E. Carlenor, and

N. H. Chua, data obtained from Genbank). The significance and function of these CaM-like proteins

are not known at this time.

2. Calcium- and Calcium/Calmodulin-Regulated Enzymes

Calcium either directly or through calmoduIin regulates the activity of a number of enzymes and the

function of structural proteins that play a key role in cellular regulation (Klee, 1991; Meader et al.,

1992). A number of proteins that interact with calcium/CaM have been isolated, characterized, and

identified in animals (Bachs and Carafoli, 1987; Bachs et al., 1990; Colbran and Soderling, 1990;

Klee, 1991). These include protein kinases, protein phosphatase (calcineurin), nitric oxide synthase,

calcium ATPase, IP3 kinase, and several structural proteins (Colbran and Soderling, 1990; Klee,

1991). Identification of these proteins has greatly increased our understanding of how calcium and

CaM regulate various biochemical and molecular processes that eventually lead to a physiological

response in animal ceils. Very little is known about the number, localization, and identity of

CaM-binding proteins in plants, although enzymes such as NAD kinase, calcium ATPase, nuclear

NTPases, and protein kinases are known to be activated by CaM (Poovaiah and Reddy, 1987; Roberts

and Harmon, 1992). The lack of information on calmodulin-binding proteins and their identities has

been a major limitation in elucidating the calcium-mediated signal transduction mechanisms in plants.

a. Protein Kinases. Protein phosphorylation, which is catalyzed by protein kinases, is one of

the major mechanisms of signal integration in eukaryotic ceils. Protein kinases play a pivotal role in

the majority of the signal transduction pathways (Ranjeva and Boudet, 1987; Nishizuka, 1988; Cohen,

1990, 1992; Poovaiah and Reddy, 1990; Asaoka et al., 1992). Extracellular signals, either directly or

through second messengers, regulate the activity of protein kinases, which in turn regulate the activity

of their substrates by phosphorylation. The diverse actions of various signals and amplification of

signals are largely achieved through protein kinases (Cohen, 1992). Extensive studies in animal

systems indicate that CaM-dependent protein kinases are central to calcium-mediated signal trans-

duction pathways (Colbran and Soderling, 1990).

Calcium-Dependent and Calmodulin-lndependent Protein Kinases. Calcium-dependent protein
kinases are one of the best characterized and widely distributed protein kinases in plants. Since the

discovery of a calcium-dependent and calmodulin-independent protein kinase (CDF'K) in soybean,

such protein kinases have been purified and characterized from a number of plant systems (Harmon

et al., 1987; Putnam-Evans et al., 1990; Roberts and Harmon, 1992). CDPK is activated by

micromolar concentration of calcium and is not dependent on CaM for its activity. The CDPK showed

calcium-dependent mobility shift as well as calcium-binding.
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Harper et al. (1991) isolated a cDNA (SK5) from soybean that codes for a CDPK. The deduced

amino acid sequence of soybean CDPK contains a catalytic domain and a CaM-like region with four

calcium-binding domains at the carboxyterminal end. The presence of these calcium-binding domains

explains direct calcium activation of CDPK. The kinase domain showed highest homology (39%)

with the catalytic domain of the u-subunit of CaM KII. So far, this new type of protein kinase, where

the kinase domain is fused to a CaM-like region, has been found only in plants. However, in the case

of calpain, a calcium-activated protease, the catalytic domain is fused to CaM-like regulatory domain

(Suzuki and Ohno, 1990). Isolation of a partial cDNA (SK2) which codes for a protein that shows

70% identity with CDPK and the observation that SK5 hybridizes to multiple fragments on Southern

blots indicate the presence of multiple CDPK isoforms in soybean. Using a variety of approaches,

the presence of CDPK-like enzymes have been shown in a number of plants, indicating the

ubiquitous nature of these enzymes in plants (Harmon and McCurdy, 1990; Polya and Chandra, 1990;

Roux et al., 1990; Li et al., 1991; Roberts and Harmon, 1992). Partial cDNAs that code for CDPK

have been isolated from carrot (Choi and Suen, 1991) and corn root tip (A. Bhatia, S. Patil, and

B. W. Poovaiah, unpublished results). Alignment of the deduced amino acid sequences of the CDPKs

of soybean, carrot, and corn root tip is shown in Fig. 3.

Calcium-Regulated Protein Phosphorylation in Roots. In vivo protein phosphorylation studies

have shown calcium-dependent protein phosphorylation in roots (Raghothama et al., 1987). To study

the role of calcium-dependent protein phosphorylation in light-dependent gravitropism in corn root

tips, we have performed in vivo protein phosphorylation studies in dark-grown and light-treated roots

by manipulating tissue calcium levels (McFadden and Poovaiah, 1988). Exposure of dark-grown roots

to 7 min of light resulted in the promotion of phosphorylation of specific polypeptides corresponding

to 94,000, 92,000, and 48,000 D (Fig. 4). In later studies, we were able to detect the light-dependent

changes in protein phosphorylatin within 1 min. Interestingly, the light-dependent changes in protein

phosphorylation were observed only in the root tips, which are considered to be the site of light and

gravity signal perception. No effect of light on the phosphorprotein pattern was observed in the root

base, suggesting the specificity of light-dependent changes and the physiological significance of these

changes in light-induced gravitropism. Depletion of calcium by addition of EGTA and the calcium

ionophore A23187 prior to light treatment decreased light-induced promotion of the phosphorylation

of these polypeptides. Replenishment of calcium to depleted root tips restored the light effect on

protein phosphorylation. These results strongly suggest that light induces rapid and specific changes

in protein phosphorylation and that these changes are mediated by calcium.

Calcium/calmodulin-dependent protein kinases. Five types of calcium/CaM-dependent protein

kinases (CaM kinase I, CaM kinase II, CaM kinase III, phosphorylase kinase, and myosin light

chain kinase) have been well characterized in mammalian systems, although there are other CaM-

dependent kinases in animals (Colbran and Soderling, 1990; Fujisawa, 1990; Klee, 1991). All of.these

CaM-dependent protein kinases, except CaM KII, have limited substrate specificity. CaM KII

phosphorylates a wide range of substrates, and it is therefore considered to be a multifuncitonal

protein kinase. CaM KII is present in different species of vertebrates, invertebrates, yeast, and other
fungi (Colbran and Soderling, 1990; Pausch et al., 1991). cDNAs that code for five different

polypeptides of CaM KII have been isolated and characterized (Tobimatsu and Fujisawa, 1989).

Because of the important role played by CaM kinases in animals, plant scientists have attempted to

identify CaM-dependent protein kinases. Several reports have indicated the presence of CaM-

dependent protein kinases (reviewed in Roberts et al., 1986; Poovaiah and Reddy, 1987). A majority

of these studies have been performed with crude protein preparations and conclusions drawn are

based on inhibition of calcium-stimulated protein phosphorylation by CaM inhibitors or stimulation

of phosphorylation by exogenous CaM. Many of these studies are considered inconclusive because

of: (1) the nonspecific effects of CaM inhibitors which are known to inhibit CaM-independent

enzymes, and (2) the high concentration of CaM required to stimulate phosphorylation. Although

purification of CaM-dependent protein kinase is needed to establish unequivocally the presence of

CaM-dependent enzymes, some of the rc_'cnt results coupled with earlier reports (Veluthambi and

Poovaiah, 1984a, 1984b; Blowers et al.. 1985; Echevarria et al., 1988; Blowers and Trewavas, 1989;

Trewavas and Blowers, 1990) suggest the presence of CaM-dependent protein kinases in plants.
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Figure 3 Alignment of amino acid sequence of calcium-dependent and CaM-independent protein kinase

from soybean, carrot, and corn root tip. Arrow indicates the beginning of calmodulin-like domain;

calcium-binding sites are underlined. (From Poovaiah and Reddy, 1993.)
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Figure 4 Rapid changes in protein phosphorylation associated with gravity perception in roots of maize
(cv Merit). Apical segments of dark-grown roots were preloaded with 32p for 1 h and, then washed in buffer.

(A) Roots were left in buffer for 15 min in the dark (control). (B) Roots were exposed to light for 7 min

after 8 min of dark incubation. (C) Light treatment was the same as in (B) but EGTA + A23187 were

present for 15 min. Proteins were extracted and separated by two-dimensional gel electrophoresis as

described earlier (Raghothama et al., 1987). Arrows indicate the phosphoproteins that are affected by light.

(From McFadden and Poovaiah, 1988.)
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Antipeptide antibodies produced against the t_-subunit of rat brain CaM KII were found to detect

one or two bands (54-56 kD) in soluble proteins (Reddy et al., 1991; Poovaiah et al., 1992). The

molecular weight of the cross-reacting proteins was similar to the mammalian CaM KII. indicating

that plants may have a homologue of CaM KII. Watillon et al. (1992a) isolated a cDNA (CBI) clone

by screening an expression library with 125I-labeled CaM. The deduced amino acid sequence of this

CaM-binding protein showed sequence similarities with rat brain CaM KII isoforms. The similarities

include a CaM-binding domain and domain XI of protein kinase, suggesting that the plant CaM-bind-

ing protein could be CaM kinase. The missing 3' and 5" ends of the CB 1 were isolated bv polymerase

chain reaction and sequenced. The deduced amino acid sequence of the full-length CBI has a

CaM-binding domain with all the conserved domain of protein kinase and showed homology with

mammalian CaM KII (Watillon et al., 1993). These results provide further evidence indicating the

existence of CaM-dependent protein kinases in plants. Northern analysis indicated that CBI repre-

sents a rare mRNA, which is probably one of the reasons why it was not represented in the pool of

various protein kinases isolated by using oligoprobes made to the conserved domain of protein

kinases. If the mRNA level is the indication of protein level, one would expect very low levels of

this CaM-kinase which may have contributed to problems in purifying this enzyme. Southern analysis

of genomic DNA from Arabidopsis, chicory, and tomato with the CB 1 insert (which mostly contains

the CaM-binding region) under low-stringency conditions showed a small number of major hybrid-

izing bands suggesting the presence of similar genes in other plants. More recently, a chimeric

calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding

domain and a visininlike calcium-binding domain was cloned and characterized from lily anther

(Patil et al., 1995). Plants, unlike animal systems, seem to have both calcium-dependent protein

kinases (CDPK) and calcium/CaM-dependent protein kinases. Having these two different types of

protein kinases would explain how calcium might regulate diverse physiological processes in plants.

3. Other Calrnodulin Target Proteins

Gel overlay assay was used to detect the number and distribution of CaM-binding proteins in plants.

In Fucus, Brawley and Roberts (1989) have demonstrated changes in CaM-binding proteins during

development. Oh et al. (1992) detected several CaM-binding proteins in the carrot embryo extract.

Some of these CaM-binding proteins were found to change during carrot embryogenesis and germi-

nation. A 54 -kD CaM-binding protein markedly increased during embryo germination. In different

tissues of Viciafaba and guard cell protoplasts, CaM-binding proteins were analyzed by gel overlay

assay (Ling and Assmann, 1992). Several CaM-binding proteins that are specific to metabolically
active plant parts have been detected (Ling and Assmarm, 1992). These studies indicate that there are

several CaM-binding proteins in plants and some of them are specific to a particular tissue or cell

type. To better understand the mode of calcium/CaM action, it is essential to identify and characterize

all CaM-binding proteins in plants. Characterization of various CaM-binding proteins from animal

systems has revealed a CaM-binding domain containing a basic amphiphilic alpha helix (O'Neii and

DeGrado, 1990). However, there is no amino acid sequence conservation in the CaM-binding domain

among different CaM-binding proteins. Hence, it has not been possible to design oligonucleotide

probes to clone CaM-binding proteins. Sikela and Hahn (1987) developed a method to isolate

CaM-binding proteins from a cDNA expression library using 125I-labeled CaM. Usin_ this method,

Watillon et ai. (1992a) isolated a cDNA for a CaM-binding protein which was iclentified as a

CaM-dependent protein kinase based on sequence similarity. In recent years, this method has been

improved by using 35S_labeled CaM (Asselin et al., 1989; Widada et al., 1989; Fromm and Chua,

1992). Nonradioactive methods to isolate calmodulin-target proteins have also been described

(Fordham-Skelton et al., 1994; Stirling et al., 1994). Two cDNAs (CBP-! and CBP-5) that code for

CaM-binding proteins have been isolated from a corn tip cDNA library using 35S-labeled calmodulin

(Reddy et al., 1993). Comparison of the deduced amino acid sequence of CBP-I and CBP-5 clones

showed an overall 50% identity. However, 100% conservation of the 34-amino acid stretch at their

carboxyterminal end was observed in other regions of amino acid sequence. Hence, this conserved

region could be a potential CaM-binding domain. The highly conserved 34-amino acid stretch
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contained putative CaM-binding domain, a basic amphiphilic alpha helix. The i',:_utive CaM-binding

domain has a cluster of basic residues (hydrophilic region) facing hydrophobic ,uuino acids. The fact

that the 34--amino acid stretch is highly conserved between two different CBt' clones and forms an

amphiphilic alpha helix strongly suggest that it is a CaM-binding domain in CBP- 1 and CBP-5. How-

ever, further studies to confirm the CaM-binding domain by deletion analysis or by competition ex-

periments using synthetic peptides are needed. A computer search of nucleotide and protein databases

with both nucleotide and deduced amino acid sequences of CBP- 1 and CBP-5 has not revealed any

significant homology between CBP sequences and known nucleic acid and pn,tcin sequences.

Different CaM-binding proteins isolated form animals indicate that there is no amino acid

sequence conservation. However, CBPs that belong to a particular class, for instance, different

isozymes of CaM-dependent protein kinases, have the same amino acid sequence in the CaM-binding

domain (Tobimatsu and Fujisawa, 1989). Hence, the highly conserved amino acid region in the

putative CaM-binding region of CBP-I and CBP-5 suggests that these two proteins may be related

or perform similar functions. The genes corresponding to CBP-1 and CBP-5 are expressed in all the

parts tested, although there was a difference in the extent of expression. CBP-5 is expressed almost

equally in all the parts tested, whereas CBP-1 mRNA was found to be differentially expressed in

different parts with very low levels in the root elongation zone. The fact that the CBP-1 and CBP-5

are expressed in all the parts tested indicates a broader role for these proteins. Southern analysis

indicates that CBP-1 and CBP-5 are coded most likely by one or two genes.

a. Calcium Asymmetry and Differential Growth. Bode (1959) showed that the gravistimulation

of sunflower hypocotyls leads to asymmetrical redistribution of calcium, in these tissues. Since then,

calcium asymmetry in gravistimulated roots has been reported by several investigators using different

systems (Goswami and Audus, 1976; Roux and Serlin, 1987). In gravistimulated roots, calcium was

shown to accumulate preferentially on the lower side, which is slower growing. Studies have shown

that calcium redistribution occurs prior to gravicurvature, suggesting that asymrnetrical distribution

of calcium could participate in the development of differential growth (Roux and Serlin, 1987). Using

45Ca, it has been shown that calcium moves from the upper to the lower side of horizontally oriented

maize roots (Lee et at., 1983a). Measurements of calcium levels in gravistimulated and light-

stimulated maize roots, using proton-induced x-ray emission, showed higher levels of calcium in the

lower half as compared with the upper half both in root caps and in the elongation zone (Miyazaki

et at., 1986). In both stems and roots, curvature is toward the side with higher calcium levels.

Exogenous calcium application can reduce the growth rate rapidly (Cleland anti Rayle, 1977), and

cell walt extension is greatly affected by apoplastic calcium (Cleland and Rayk', 1977; Slocum and

Roux, 1983). Furthermore, Sakai-Wada and Yagi (1993) have observed changes in the calcium

localization in the dividing cells of the maize root tip.

The sequence of biochemical events that could occur in gravitropism are illu,trated in a schematic

diagram (Fig. 5). According to this model, the initial event in gravity perception is the localized

increase in cytosolic calcium in root cap cells. Although the mechanism by which gravity induces the
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increase in cytosolic calcium is unclear, it is likely that phosphoinositide hydrolysis could be involved

in light-induced gravity response. Increases in cytosolic calcium activate calmodulin, leading to

stimulation of calcium-dependent and calcium/CaM-dependent enzymes such as Ca-ATPase and

protein kinases, ultimately leading to creation of both intra- and extracellular calcium gradients. This

asymmetrical calcium distribution could differentially modify cytoskeletal proteins, microtubule

orientation, and cell wall synthesis and deposition. As a result, growth gradient is created with more

growth on the nonstimulated side resulting in bending.
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