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1. Abstract

Performance Seeking Control attempts to find the

operating condition that will generate optimal perfor-
mance and control the plant at that operating condition. In

this paper a nonlinear multivariable Adaptive Perfor-

mance Seeldng Control (APSC) methodology will be

developed and it will be demonstrated on a nonlinear

system. The APSC is comprised of the Positive Grandient

Control (PGC) and the Fuzzy Model Reference Learning

Control (FMRLC). The PGC computes the positive gradi-

ents of the desired performance function with respect to

the control inputs in order to drive the plant set points to

the operating point that will produce optimal perfor-

mance. The PGC approach will be derived in this paper.
The feedback control of the plant is performed by the

FMRLC. For the FMRLC, the conventional fuzzy model

reference learning control methodology is utilized, with

guidelines generated here for the effective tuning of the
FMRLC controller.

2. Introduction

Control techniques utilized to drive the plant to pro-

duce optimal performance are found in an area that is
called Performance Seeking Control (PSC). (1-7) Conven-

tional PSC control approaches compute the optimal per-

formance off-line utilizing some control algorithm like

linear programming, a gradient, or some neural net method.

The optimal operating point or trajectory is then passed to
an on-line feedback controller for the control of the

process. The APSC structure proposed in this paper,

Fig. 1, is in essence a PSC approach, but because the com-

putations are entirely performed on-line, in a closed loop
control fashion, it is more appropriately classified here as

an adaptive control approach.
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In this paper it will be shown that an on-line APSC has

been realized through the computation of the positive

gradients, (for a desiredperformance function) with respect

to the plant control inputs. These gradients are used to

drive the plant set points in a closed loop fashion. When

this optimal operating condition is reached the gradients

of the performance function with respect to the control

inputs will all be zero, and the control will stop driving the

process set points any further. In this work, the combined

effect of PGC and FMRLC with its ability to perform

nonlinear control, with fast on-line learning of the control

law, will be exploited.

During the past several years, fuzzy control has

emerged as one of the most active and promising control

areas, especially because of the ability of fuzzy control in

controlling highly nonlinear, time variant, and ill-defined

systems. The works of Mamdani and his colleagues on
fuzzy control (12-15) was motivated by Zadeh's work on

the theory of fuzzy sets, (16-19) and its application to

linguistics and systems analysis. The work of Procyk and

Mamdami on the linguistic self-organizing controller (2°)

as well as refinements to this algorithm made by others,

was later modified and extended by Layne to what it is
called FMRLC. (21) The FMRLC structure, Fig. 2, has

learning capabilities and differs conceptually from adap-
tive control primarily by its ability to memorize learned

experiences. The FMRLC algorithm will be utilized here
for nonlinear, multivariable feedback control, and some

guidelines will be generated for the effective tuning of the
FMRLC controller. In this paper the PGC and FMRLC
controllers will be combined to form the new on-line

APSC structure shown in Fig. 1.

3.0 Adaptive Performance Seeking Control

The APSC structure proposed in this paper is shown

in Fig. 1. The feedback control of the state variables is

performed by the FMRLC in a nonlinear multivariable
control structure shown in more detail in Fig. 2. The APS C

is initialized with a switch in the open position, and the set

points, r i , are controlled remotely. When the switch is
closed, the control of the set points is automatically
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updatedby theAPSC.It shouldbenotedthatin this
operatingmodetheremoteportionofthesetpointscan
stillbeupdatedasinatrimcontrolfashion.TheAPSC
remainscontinuouslyactiveevenwhenthemaximum
performancehasbeenreachedbypreventingthegradient
fromfallingexactlytozero.Thisisshownbythelimit
bandsbuiltaroundzeroinFig.1.Thelimitbandofthe
controlderivativesischosenlargerthanthecorrespond-
inglimitbandof theperformancefunctioninorderto
preventlargegradientexcursionsforverysmallchanges
in thecontrolinputs.Inaddition,thelimitbandsaround
zerowill preventthemaximumpointdueto a certain
gradientdirectionfrombeingapproachedin thelimit
sense.Thiswill providefortheestablishmentof anew
gradientdirectiontowardsthemaximumperformance
point.ThedashedlineblocksinFig.1arederivative
approximations.

3.1 Plant Description

To facilitate the development of this control method-

ology the following nonlinear system is presented and

analyzed:

jc1 = -2XlX 2 + 3x 2 + u1

jc2 = x 2 _ x 3 + u2

(1)

where (Xl,X2), (Ul,U a) are the states of the system and the
control inputs respectively.

The process in (1) is chosen to be nonlinear, stable,

with stror_g cross coupling of the control inputs to the

controlled variables. Further, a performance function is
selected to demonstrate this control structure which is a

function of the states and with the properties of continuity,

convexity, and quadratic, where:

f(xl,x2)=-(Xl-Cl)2-(x2-c2) 2 +c 2 (2)

This function describes an elliptic paraboloid, with a

maximum easily determined by inspection to be equal to

c 2 at (Xl,X2) = (cl,c2), where c 1, c 2, c3 are constants. The

performance function in (2) could have also been extracted
from a corresponding performance index as the argument

in side the integral of the performance index, except for the
fact that the desire here is to maximize this function

instead of minimizing it. In addition atypical performance

index could contain a penalty function for control expen-

diture, but this portion of the control development will not

be carried out in this paper.

The process itself (i.e. with zero control input) is
determined to be stable by using the Liapunov Direct

method, with the Liapunov function: V(Xl,X 2) = ax? m

+ bx 2n. With the choices ofm = 1, n = 1, a = 1, b = 2, which

simplifies V(x), V(Xl,X2) = X 2 + 2X7 which is positive

definite. (Z(x)= VV(x(t))Tg(k(t)), and with no control

input, I;"(Xl,X2) = -4x 4 + 6XlX2 which is negative semi-
definite as long as the inequality 2x23> 3xlis satisfied.

Section 3 will cover the development of the APSC

control structure shown in Fig. 1, with the derivation of
the PGC and the discussion of the FMRLC control

approach. In section 4 the simulation results for the APSC
structure will be presented. Section 5 will cover the

conclusion.

3.2 Positive Gradient Control

Based on the process in Eq. (1) and the performance

function in Eq. (2): letf be a function of two variables

x I and x 2. Also, for simplicity let x 1 be a function of an
independent variable u 1 and x 2 be a function of an

independent variable u2. It is desired to find the point

(x_', x2*), wherefassumes its maximum value,f(x_', x2*).
A necessary condition for (x_', x2*) to be a point wheref
has a relative maximum is that the differential off vanish

at (x_', x2*), that is,

g Of dxl l * ,,1

x:;)-- tx,

+ L& 2 du 2 t IJ

(3)

(x* Au = 0

3flOu is the gradient off with repect to u. Since u 1 and u2
are independent, the components of Au are independently

arbitrary and (3) implies

3f (x *) = 0. (4)

In Fig. 1, instead of using the gradient 3f]3u i to

control the set points of the states, the derivative expression

j;/h i is utilized. To use the gradient expression would
required the knowledge of an analytic function
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f(Xl,X 2..... Xn,Ul,U 2 ..... Urn) defined at every point

(x li,x2j,...,xnk ). The substitution of the derivative expression
in place of the gradient off necessitates an analysis to

compare their behavior, in order to determine whether the

derivative expression will produce the desirable

results. For simplicity, lets assume thatfis a function of

two variables, u 1 and u2, which are in turn a function of
t. The derivative expression of

( af af du2g= I/dul 11at au2 dt)/ dt
(5)

can be expanded in the limit sense as:

je = I f(ul + aul' u2 )- f("l' U2) ZI"I +

ftl L Au 1 At

f(ul,U2+Au2)-f(ul,u2) A"21/A"I

7, j�7;-"
(6)

After some cancellation of terms Eq. (6) reduces to:

)b _ f(.l+ AUl, u2 )--f(ul, u2) F

ti1 Au 1

f(ul, U2 + Au 2 )- f(Ul,u2 )

Au 1
(7)

Similarly the gradient of f with respect to U 1 can be

expressed as:

Of _ f(ul+ AUl,u2)- f(ul, u2)

au 1 AUl
(8)

Inspection of Eqs. (7) and (8) shows that the two

differ by the second term in Eq. (7) which is absent in

Eq. (8). Now lets examine how the control is expected to

behave with the substitution of (7) for (8). The gradient of

the performance function with respect to the control input

u 1 in Eq. (8) represents the desirable direction of control

adjustment of the state x I set point which maximizes the
functionf. When the first term of Eq. (7) is much greater

than its second term, Eq. (7) reduces to Eq. (8). In the

worst case, when the second term in Eq. (7) is much larger

than its first term, the state x 1 is adjusted primarily due to

the change off relative to the control input u2 instead of

u1. If the second term in Eq. (7) is positive greater than the
first term, and the state x I still needs to move in a positive

direction in order to maximize the functionfi then the state

x 1is commanded to move in the right direction. If the state

xlis already at or past the point that would maximize the
function f, then a positive second term in Eq. (7) would

move the state in the wrong direction. However, moving

the state in the wrong direction relative to maximizing the

functionf will cause the numerator sign of the second term

in Eq. (7) to become negative, thereby forcing the state to

move back in the right direction.

The gradient vector is normal to the elevation contours

and at each point it has the direction of maximum increase

of the function f. The vector representing the derivative

approximation to the gradient will not be exactly normal

to the elevation contours off, nevertheless, the derivative

vector establishes a certain positive ascending direction

towards maximizing f. This approximate PGC method-

ology can also be thought as providing a series of excitations
to the control system, with each excitation forcing the

states closer to the optimum performance point.

Based on the above, controlling the process in the

positive gradient direction will essentially follow an

ascending path on the performance surface described by

the performance function in (2), much like a hill climbing

problem. When a positive direction path is established the

control will follow this trajectory to the point where

climbing stops. At this point a new positive gradient
direction is established and climbing towards the maxi-

mum point resumes. This process is repeated until finally

the maximum performance point is reached. When this

maximum performance point is reached the gradient Of/Ou

in (4) will be zero and the control will cease to update the

process set point, thereby allowing the process to settle on

this operating point. With the limit bands built around the

zero points shown in Fig. 1, the control will be making

small excursions around this maximum performance point

in order to continuously hunt for this maximum. In this

proposed control structure the plant model is not needed

for the actual control of the process. However, for the

fuzzy controller, a rather simple fuzzy model of the plant
is constructed. This will be discussed in the next section.

3.3 Fuzzy Model Reference Learning Control

Fuzzy control theory will not be covered in depth in

this paper. For more detail discussions in these areas see

Refs. 11 to 22. The FMRLC structure (Ref. 20), shown in

Fig. 2, employs an inverse fuzzy model of the process and
modifies the knowledge base through the knowledge base

modifier mechanism in order for the process output y(kt)

to match the reference model output ym(kt). In this section

the basic design procedure of the FMRLC for the process

in Eq. (I) will be discussed.
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FortheMIMOsystemdiscussedin thispapertwo
decoupledFMRLCcontrollersareconstructed.Acoupled
FMRLCcontrollercouldbeutilizedinstead,however,the
dimensionsoftheknowledgebaseswouldhaveincreased
equivalentto thenumberof theinputsto thefuzzy
controller.In additionto thebasicFMRLCstructure
showninFig.2,apoleatzerofrequencywasplacedatthe
outputof eachdecoupledcontroller.Thisisneededfor
zerosteadystateerror.EachdecoupledFMRLCcontroller
contains6adjustablegains.Therefore,somediscussionin
thissectionwillbedevotedtoestablishingsomeguidelines
fortheeffectivetuningofthecontrolgains.Typicalinputs
tothefuzzycontrolleraretheerrore(kT) and the error

derivative c(kT), but other types of inputs can be chosen

such as integration of the error. The membership functions

for all the inputs to the fuzzy controllers and the inverse

models have been chosen with triangular shape,

normalized, and uniformly distributed in each Universe of

Discourse, as shown in Fig. 3. In Fig. 3, E j signifies a

membership function or linguistic value associated with a

specific input to the fuzzy controller, where Ix gives the

certainty that an element of that particular input may be
classified heuristically as EJ. Figure 4 shows the rule base

constructed for the inverse fuzzy models. From this rule

base it can be deduced that the Consequent membership

functions corresponding to the inverse model output

variable yj(kT) have similar distribution to the membership

functions shown in Fig. 3. The knowledge base (rule

base) contains the centers of the membership functions

which are triangular shaped for this problem, with a base
width of 0.4 as seen in Fig. 3. One of the important

consideration in the construction oftheinverse knowledge

base is that the inverse fuzzy model exhibits the proper

directionality associated with the controlled process• The

knowledge base associated with the fuzzy controllers

initially contains all zeros, which reflects no knowledge

of how to control the process. This knowledge base is

updated automatically as the FMRLC controller learns

how to control the process.

The selection of the FMRLC gains is an important

step in the design process, as the ability of the controller

to track the reference model will heavily depend on the

particular choices of the gains. The gains ge and g. are
• Ye

chosen so that the ranges of these inputs are mapped to

a normalized universe of discourse in the range of [- 1,1 ].

For instance an appropriate choice for the value of the

gain ge would be 1�range (e(kt)). A good choice for the

value of the gain gc is found to be approximately equal to

lO/(range (e(kt))/T),which is equal to 10/(max change

(r(kt))/T), where r(kt) is the set point and T is the sampling
time. The smaller the choice for the values of the gains

ge and gc, the more the control action is concentrated
towards the center region of the rule base, resulting in

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 +0.2 +0.4 +0.6 +0.8 +1.0

Figure 3.mMembership functions.
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Figure 4.--Inverse fuzzy model rule base.
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bettercontroltrackingattheexpenseof anincreased
controlrateofthecontrolvariableu(kT). The gain, g_,

effects the damping of the process response: If it's to_

small the response will be oscillatory, if it's too large, the

process will be unable to keep up with the reference

model. A good choice for the value of the gain, g. , is
found to lie somewhere in the range of [1/(4ton), 1/(2_n)],

where, ton , is the natural frequency of the process. The

output gains, gu andgf, are chosen so that the corresponding
Normalized Universe of Discourse maps to the range of

the output variables of the fuzzy controller. For instance,

both gu and gfare selected to be equal to the range of the
control input variable, u(kT). This choice for the output

gains allows both u(kT) and yj(kT) to take on values as
large as the largest control input.

The selection of the reference model shown in Fig. 2,

represents the desired performance of the FMRLC feedback

control system. The reference model is selected here to

have a natural frequency, tom' equal to the process natural

frequency, ton' with a relatively low step value for the open
loop response. With the process being nonlinear, its

response time can strongly depend on the magnitude of the

control input. Therefore, it may not be desirable to select

a reference model significantly faster than the process

response time relative to a low control input value, or else

we may be asking for relatively large control rates. A first
order model for the selection of the reference model has

been found to be adequate.

tom

GRM -- (9)
s -k to m

4.0 APSC Simulation

The APSC simulation consists of two parts. The first

part is the simulation of the FMRLC and the correspond-

ing tuning of its gains as discussed in section 3.3. The

second part is the simulation of the overall APSC control-
ler shown in Fig. 1 with the combined FMRLC and PGC

control structure.

4.1 FMRLC Control Simulation

Based on the discussion in section 3.3, the control

parameters for the two decoupled FMRLC controllers

have been selected with the following values:

gel gYel gcl gYcl gul g fl (Oml 1gel gYe2 gc2 gYc2 gu2 g f2 O)m2J
i

0, 1021
L0.25 0.25 O.l 0.125 10 10 2j

The defuzzification approach used in this simulation

is the so called "Center of Gravity." Figure 5 shows the

response of the decoupled FMRLC controller with simul-

taneous step set point changes. This response shows the

tracking capabilities of the FMRLC. The set point track-

ing response was used to tune the controller as was
discussed in section 3.3. The knowledge base of the fuzzy

controller started with all zero entries, reflecting that

initially there was no knowledge of how to control the

system. The learning rate is quite fast as is evident from the

responses of the states and control inputs in Fig. 5. The

resulting knowledge base of the decoupled controller

corresponding to the state x 2 (that was learned from the
simulation in Fig. 5) is shown in Fig. 6. The zero elements

associated with this knowledge base is an indication that

the controller, for this particular simulation, has not had

the opportunity to venture into these areas of its knowl-

edge space.
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Figure 5.mFMRLC close loop step response.
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•000 .000-.396 -.802 .913 .974 .128 .000 .000 .134 .134

•000 .000 -.037 .100 .939 1.000 .000 .000 .000 .000 .000

•000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

•000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Figure 6.--Automatically generated rule base for state x2.

4.2 APSC Control Simulation

5.0

The objective of this control simulation is to drive the

states in (1) to the operating point that will maximize the 4.5

performance function in (2) starting from some arbitrary ,-. 4.0
initial conditions (x 1(0), x2(0), u1(0), u2(0)). The resulting
state trajectory will not be optimal since this approach o 3.5

employs an adaptive control structure and no classical

optimization techniques likelinearprogramming, or steep- _: 3.0
est descent gradients are used here.

_- 2.5

Additional control parameter values used in this

simulation as depicted in Fig. 1 are: K i = 0.5, x = 0.25.

The switch shown in Fig. 1 is closed at t = 1.0 sec.
Before the switch closes the set points are preset to the

values (rp r2) = (1.0,1.0) to start the simulation. After the
switch closes the setpoints are updated automatically. The
control moves the states towards the positive gradient of

the performance function with respect to the control inputs

in order to find the operating point that will maximize the

performance function. For this simulation the constants of

the performance function in (2) have been set to (c 1,c2,c3)
= (2.5, 2.0, _.O) which causes the optimal performance

value to be f* = 5.0 at (Xl*, xf) = (2.5, 2.0).

Figure 7 shows the performance function as it moves

to its maximum obtained value, and Fig. 8 shows the two

states as they transition to the operating point correspond-

ing to the performance function in Fig. 7. It is evident from

Fig. 8 that this transition to the optimal operating point

occurs as a series of responses that more closely resemble

first order type system responses. Figure 9 shows the input

control response for the same simulation. Figure 10 shows

the combined state trajectory on the three-dimensional

performance surface of Eq. (2). Figure 11 shows a contour

map depicting elevation contours of the performance

Adaptive performance seeking control

--I

L I I

2.0 --/

1.5 I I I I I I
0 5 10 15 20 25 30

Time, sec

Figure 7.--Performance function.
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Figure 10.mCombined state trajectory assent.

function in Eq. (2), and the combined state trajectory to

the highest elevation point. It is evident from Fig. 11 that
the ascent to the top of the performance surface follows a

series of ascenting paths, where a certain path ends and a

new path is established when climbing ceases in that

particular direction. This type of assent is the direct result

of following a positive gradient path, where the rate of

assent is proportional to the magnitude of the gradients at
each time instant. Figure 12 shows different state trajecto-

ries starting from various initial conditions and all con-

verging to the highest elevation point on the performance

elevation contour map.

For these simulations, the knowledge bases of the two

decoupled FMRLC controllers were also initialized with

zeros, but the resulting knowledge bases from the simula-

tion in Fig. 6 could have been used as the starting point.

Adaptive performance seeking control

I/I/1// \ ,\,\\1
. / . /

/,I 'i

1.5 "!/I

.
1.0 .5 2.0 2.5 3.0 3.5 4.0

State xl

Figure 11 ._Combined state trajectory assent
through elevation contours.

Adaptive performance seeking control

1.0 1.5 2.0 2.5 3.0 3.5 4.0

State xl

Figure 12._Assent of multiple state trajectories.

2.0

¢n 1.5

5.0 Conclusion

In this paper a nonlinear process was used to help

develop an Adaptive Performance Seeking Control meth-

odology. This methodology utilize the Fuzzy Model Ref-

erence Learning Control method and an approximate

Positive Gradient Control approach which was developed

in this paper. The simulation results presented in this paper
showed that the FMRLC, with the discussed tuning guide-

lines, provides for an effective way to control nonlinear

and tightly coupled processes. The results also show that

the approximate Positive Gradient Controller within the

closed loop Adaptive Performance Seeking Control struc-

ture effectively drives the process to operate at the point

that generates maximum performance.
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Sinceamathematicalmodelof theplantwasnot

used in the control structure described in this paper, and

since relative to the plant only its natural frequency
information was utilized to tune the controller, it would be

expected that this control structure would be adaptive to

changes in the plant dynamics to the extent that there are

no large variations to the plant natural frequency. In
addition, since the APSC controller continuously hunts

for the operating condition that generates maximum per-
formance, it may become feasible to perform engine

control without the need of extensive testing to derive

engine control schedules.

For future work it would be important to study

adaptiveness of this control methodology to plant model

variations, stability, convergence, and robustness in more

detail. Further, experimental validation of this method

would be needed, with processes that exhibit more com-

plex system dynamics.
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