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ABSTRACT

An efficient implementation of the generalized method of cells micromechanics model is presented

that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing
thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that

relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell
tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equa-

tions in terms of the stresses and then imposing the traction continuity conditions directly. The result is a
mixed formulation wherein the unknown interfacial subcell traction components are related to the

macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise
uniform, the imposition of traction continuity conditions directly in the displacement continuity equa-

tions, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and
stress) components, and thus the size of the system of equations that must be solved. Further reduction in
the size of the system of continuity equations is obtained by separating the normal and shear traction

equations in those instances where the individual subcells are, at most, orthotropic. The reformulated ver-
sion facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the

response of multi-phased unidirectional composites with and without evolving damage. Comparison of
execution times obtained with the original and reformulated versions of the generalized method of cells

demonstrates the new version's efficiency.

INTRODUCTION

The two-dimensional generalized method of cells is a micromechanics model developed by Paley

and Aboudi (1992) and Aboudi (1993) for predicting the response of unidirectional metal matrix compo-

sites with periodic microstructures. A continuously reinforced composite is modeled as a doubly periodic

assemblage of fibers embedded in a matrix phase, Fig. 1. The periodic character of the assemblage allows

one to identify a repeating unit cell that is the building block for the entire composite. The properties of

this repeating unit cell are thus representative of the properties of the entire assemblage. The repeating

unit cell consists of N_xN. t subcells. Each of these subcells is assumed to be occupied, in general, by a

material that exhibits inelastic behavior. The subcell material's inelastic behavior can be modeled by a

variety of constitutive theories, including linear viscoelasticity, classical incremental plasticity, or unified

viscoplasticity theories. Thus the repeating unit cell consists of N_xN_, different inelastic materials, i.e., it

represents a multi-phased, inelastic composite.

The generalized method of cells allows approximate micromechanical analysis of fairly complicated

periodic arrays, including:



• thermomechanicalresponseof multi-phased, metal matrix composites

• modeling of variable fiber shapes

• analysis of different fiber arrays

• modeling of porosities and damage

• modeling of interfacial regions around inclusions, including interfacial degradation

The effective or average stress-strain equations for the composite are constructed through an

approximate deformation analysis in each subceU of the repeating unit cell based on a linear representa-

tion of the displacement field in terms of local subcell coordinates. Using this approach, the governing

field equations within each subcell are satisfied identically in a volumetric sense, while the traction and

displacement continuity conditions between adjacent subcells are imposed in an average sense together

with an homogenization condition that ensures that the response of a given repeating unit cell is indistin-

guishable from that of its neighbors. The above analysis establishes the so-called Hill's strain concentra-

tion matrix relationships between the average subcell strains and the imposed average or composite

strains, that are used in the construction of the composite stress-strain equations (Hill, 1963). The size of

the strain concentration matrix is 6Nf_N. t x 6N_N. t since there are six unknown subcell strains in each of

the N_N. t subcells. This matrix must be inverted once if an isothermal mechanical analysis is conducted,

and many times if a nonisothermal thermomechanical analysis is conducted with temperature-dependent

constitutive properties in the individual subcells. Consequently, this imposes limits on the level of

discretization of the repeating unit ceil. Practically, the analysis of repeating unit cells larger than 10 x 10

may become computationally inefficient, particularly if the micromechanical analysis is part of a larger

structural analysis.

To enhance the computational efficiency of the generalized method of cells, Orozco (1997) took

advantage of the sparse features of the strain concentration matrix in inverting it. The sparse implementa-

tion of the generalized method of cells made possible the elastic analysis of periodic fiber arrays charac-

terized by repeating unit cells containing thousands of subcells. Examples were presented for the calcula-

tion of the effective properties of unidirectional composites containing up to 100 x 100 subcells in the

repeating unit cell.

Herein, another approach is presented for the efficient implementation of the generalized method of

cells. This approach involves reformulating the displacement continuity equations in terms of the interfa-

cial subcell traction components as the basic unknowns in place of the subcell strain components. This

reformulation, together with the piece-wise uniform character of the stress field throughout the repeating

unit cell and direct imposition of the interfacial traction continuity conditions between the individual sub-

cells, substantially reduces the size of the matrix that must be inverted to express the unknown interfacial

subcell tractions (and thus subcell stress components) in terms of the macroscopic strains. This matrix

consists of diagonal submatrices and fully-populated off-diagonal submatrices, thereby lending itself to

further computational efficiency enhancement through Orozco's sparse implementation approach.



STANDARD FORMULATION OF THE GENERALIZED METHOD OF CELLS

Since the reformulation of the generalized method of cells requires the use of the original equations,

we begin by providing a brief outline of the original formulation. We proceed to outline the original

micromechanical analysis by first def'ming the relationships between the average composite and the aver-

age subcell stress and strain quantities.

The volume-averaged subcell stress _(1_') is defined in the usual way,

+ha/2+It/2
_Ov) 1 t t (_v) ,-(1_)r-('O- .- / j o"_ax 2 ax3

(I)

(where V[_t = h_l,t). Thus the average composite stress _ is obtained from a weighted sum of the subcell

average stresses taken over all the subcells,

N_ Nr -(1_)

"" _=Iv=I

(2)

where h and I are the dimensions of the repeating unit cell, Fig. 1. Similarly, the volume-averaged subcell

strain _'t) is given by,

+h _,"2 +lrI2

_'t) 1 -(l_'t) ,-(l_) ,-('t)-- I I E ax 2 ax 3 (3)
V[_ -h_ -t/2

and the average composite strain g is obtained from a sweighted sum of the subcell average strains taken

over all the subcells,

NI _ Nr - ..... ..-t[_,_
g = --£7Z )J,n_tvv-

"" 1_=13'= 1

(4)

The relationship between average subcell stresses and strains is obtained by volume averaging the

constitutive equations used to describe the material behavior in the subcell ([37),

(5)

where E°(_') is the average plastic subcell strain, C Or) is the elastic stiffness matrix, ct ([_'t)are the coeffi-

cients of thermal expansion, and AT is the temperature deviation. The above description of the material

behavior is sufficiently general to admit any inelastic constitutive model for the plastic strain E°([_v) in the

subcell (13Y).Herein, the classical incremental plasticity theory, reformulated in terms of strains (Mendel-

son, 1983; Williams and Pindera, 1997) is used to model the inelastic effects.
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Theeffectiveor averagestress-strainequationsfor thecompositeareconstructedfromthedef'mition
of thevolume-averagedcompositestresses,eqn(2), by first expressingthevolume-averagedsubcell
stresses,eqn (1), in termsof the volume-averagedsubcellstrainsusingeqn(5). Then,the volume-
averagedsubcellstrainsareexpressedin termsof thecompositestrainsthroughtheuseof Hill's strain
concentrationmatrixrelationsobtainedfromtheapproximatedeformationanalysisof the individualsub-
cells.Thisproducestheeffectivestress-strainequationsfor thecompositein theform:

= c* - a'aT) (6)

where E° is the average composite plastic strain, C* is the effective elastic stiffness matrix, and a* is the

effective thermal expansion coefficient vector.

The relationship between the volume-averaged subcell and composite strains, necessary to generate

eqn (6), is obtained through an approximate analysis of the deformation fields in each subcell of the

repeating unit cell. Towards this end, the displacement field in the individual subcells modeling a con-

tinuously reinforced composite is approximated in terms of a linear expansion in the local coordinates
__) __,)
x2 , x3 centered at the mid-point of a given subcell,

u 13r =co +x2 + (7)

where i = 1, 2, or 3; _ = 1..... N_; _/= 1..... N.¢; and co!_t) are the displacement components at the center

of each subcell (13y), def'med at discrete points in the x2-x3 plane but treated as continuous functions of

the axial coordinate x 1 aligned with the fiber direction. Using the local strain-displacement equations for

each subcell, one can easily show that the microvariables #!_r) and _}_') are related to the subcell strains

£I_ ). It follows then, that the subcell strains, and therefore stresses, are piece-wise uniform throughout the

repeating unit cell. Thus we obtain the following relations between the microvariables #!_) and _I _'_ and

the volume-averaged subcell strains gl_ 9,

 cot
Ell_ _XXl' E2 2 =_J]ef), E3 3 =llf_]_10

(8a)

__) 1 _t_v) 3co_ ) -_t) 1 Vt_) 3co_ _t) __) 1 _v)= = ---), ) (8b)El2 "_- ( q" _X 1 )' El3 "_" ( "_ _X 1

Since the subcell stresses and strains are piece-wise uniform throughout the repeating unit cell, the

governing field equations are satisfied identically. The piece-wise uniform character of the stress and

strain fields, however, requires that the interfacial traction and displacement continuity between the indi-

vidual subcells within the repeating unit cell, as well as between the given repeating unit cell and the sur-

rounding cells, be imposed in an average sense. Imposing these displacement continuity conditions and
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applyinganhomogenizationconditionthatensuresthatthegivencell deformsin anindistinguishable
mannerfromitsneighbors,weobtain:

N_ 0co!13_>
_hl3dp_lh')=h_ ; T=l ..... N v
_=! 0X2

(9a)

_lvv_ I_v)= l 0°')l13_t)
_l -0x3 ; 13= 1..... NI_

(9b)

where it can be shown that (Brayshaw, 1994)

&o}_r) Ooi
D

Oxj Oxj
(10)

for all the subcells. Use of the above relations in the definitions for the average composite strains given in

terms of the volume-averaged subcell strains, eqn (4), together with eqns (8) and (9) yields the relations,

1 00_i 0{oj

=7(- -xj
(11)

Thus the uniform axial deformation constraint and the interfacial displacement continuity conditions pro-

vide the following relations between the volume-averaged subcell strains and the composite strains,

Ell =El1 ,

/'/13E22 = hg22 ,

I_-1

_h -(1_}
1_812 = hEl2 ,

_=!

13,£33 =/g33 ,

3,=1

N__, _(13y)
__,l._el3 =/El3 ,

y=l

N_) Ny .. ,
-(PY)

T__ h_I_E23= hI_23

[3=1 ..... NI_; y=l ..... N v (12a)

y= 1..... N.¢ (12b)

y= 1..... Nr (12c)

= 1..... N_ (12d)

13= 1..... NI_ (12e)

(12f)



Thissystemof equationscanbewrittenin thematrixform,

AGEs = JE (13)

The matrix AG contains terms that describe the internal geometry of the repeating unit cell. The vector

Es = (_11), ..., _NoN,) ) with dimension 6Nf_N_t contains the six volume-averaged strain components for

each of the NfiNr subcells. The matrix J contains the overall cell dimensions.

The displacement continuity conditions, eqns (13), provide 2(NI_ +N_)+Nf_N_,+ 1 equations

involving the 6N_Nr unknown subcell strains. The imposition of the inteffacial traction continuity pro-

vides the remaining 5Nf_NT - 2(N_ + Nv) - 1 equations for the determination of the unknown subcell

strains in terms of the macroscopic strains,

-(l_'t) (2_,)_2i =_ • _1=13+1 when 13<NI3 and _=1 when _l=N_, )'=1 ..... N v (14a)

_(13v) _.(1_5')
(_3i ="°3i "_[='_"1-1 when T<N v and _'=1 when y=Nv, ]3=1 ..... NI3 (14b)

for i=1,2,3. These traction continuity equations can be expressed in matrix form in terms of volume-

averaged total, plastic and thermal subcell strains upon use of the volume-averaged subcell constitutive

relations, eqn (5),

-Es)=0 (15)

_T g(ll), f (NI3NY)), are the plastic strain and thermal strain vec-where _ = ( E/' (1 I) ._0 (NaN ,) ), _s = (
, ..-, ...,

tors, respectively, for all the subcells, __T(_) = ct(_.t)AT' and the matrix AM contains the elastic constants of

the materials in the individual subcells.

Combining eqns (13) and (15), the system of equations relating the subcell strains to the uniformly

applied composite strains, obtained from the imposition of the continuity conditions, can be written in

compact matrix notation as follows,

+es ) (16)

where

,:/o  :Eoj (17)

The above equations can be solved in order to express the subcell strains in terms of the average strains:
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E's=AE+D(_s _7"+ _s ) (18)

where A =/[-1K and D = ,4-1b. The matrix A, in fact, is the resulting Hill's concentration matrix which

relates the microstrains to macrostrains. It follows from eqn (18) that the average subcell strains can be

expressed in terms of the macroscopic strains and average plastic and thermal subcell strains as follows:

(19)

so that the average subcell stresses become:

_r __(lY_)= C(_)[A(I_)_ + D(13T)( _s + _;s ) + (20)

Using these expressions in the definitions for the macroscopic stresses given in terms of the average sub-

cells stresses, eqn (2), we obtain the following constitutive equation for the composite response,

1 N, N_ D(13_')(E_s _r (-_(13T) _-T(13_'))]
_= --_.h_ITC(_T)[A(_)E+ +es ) - + (21)

_IV=l

Comparison of eqns (21) and (6) yields the following expressions for the macroscopic stiffness matrix C*

given in terms of the subcell stiffness matrices C OT) and the subcell strain concentrations matrices A (_v),

N¥

(22)

and for the macroscopic plastic and thermal strains Ep and _ given in terms of the average subcell plastic

and thermal strains E°(13_')and __r(D) and the plastic strain concentration matrices D C_'_),

NI_ Nr
1 ..... 1 _(l_r))

_4, =--_-(C ) E _-,h_lr C(_)(D(_)_s -

_..T 1 C* -1 NI_ N.¢ T E--.T(_y))
e = --_( ) Z Zh_l_ 'C(_T)(D(_q)Es -

(23)

(24)

Since the evolution of subcell plastic strains depends on the deformation history of the composite, these

strains must be determined in an incremental fashion dependent on the particular form of the employed

inelastic model for the matrix phase. A detailed presentation of the two-dimensional generalized method

of cells analysis can be found in Paley and Aboudi (1992) and Aboudi (1993).
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EFFICIENT REFORMULATION OF THE GENERALIZEDMETHOD OF CELLS

Thecore of the computational effort in the original formulation of the generalized method of cells

lies in evaluating the strain concentration matrices A and D in eqn (18), i.e., solving the 6N_N-f x 6N_N-f

system of equations given in eqn (16). The computational effort can be tremendously reduced by express-

ing the displacement continuity relations, eqns (12b)-(12f), in terms of subcell stresses using the strain-

stress equations,

_l_-f) = SCfl_,) _(tYt)+ _(_) + a(_) AT (25)

and then imposing the interfacial traction continuity conditions directly in the reformulated interfacial

displacement continuity equations. Further reduction can be achieved by separating the relationships

between the subcell normal tractions and macroscopic normal stratus from the relationships between the

subcell shear tractions and macroscopic shear strains. When the subcells are, at most, orthotropic (as is

the case here), this separation is possible because of the absence of shear-normal coupling owing to the

use of a first order displacement expansion and the imposition of the interracial continuity conditions in

an average sense. The relations between subcell normal tractions and macroscopic normal strains are

given first, followed by the corresponding shear relationships.

Relations between subcell normal tractions and macroscopic normal strains

We express eqns (12b) and (12d) in terms of the three subcell normal stresses using eqn (25). The
-(_)

axial normal subcell stress _I! is then expressed in terms of the common macroscopic strain Ell and the
-(Ih') -(l_-f)

transverse normal subcell stresses G22 arid G33 using the uniform axial deformation constraint, eqn

(12a), and the first of the strain-stress equations (see the Appendix). Defining the common interracial nor-

mal traction T_2_ for a fixed column of subcells (1T) ..... (N_y) and T_3) for a fixed row of subcells

([31) ..... (13N-f) dictated by the interracial traction continuity conditions,

_(l-f) _(2-f) _(Np-f)
_22 = (_22 .... = (r22 = T_2"_, Y = 1..... N-f (26)

_(131) _(132) - (I_N,,)
G33 ---- C$33 --... -- G33 -----T_3) , 13= 1..... NI_ (27)

the reformulated interfacial displacement continuity conditions become,

N_

A-fT_ + _h_BffyT_3 ) = hE22 - CTEI1 + d.fAT +pt Y) ,

Ny

El-fB_-fT_ + DI_T_3 ) =/E33 - el_Ell + fl_ AT + P_),

-lF=l

_,= 1..... N-f (28)

13= 1..... NI3 (29)
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Equations(28)and(29)canbecastin thematrixformgivenbelow,

(30)

whereA, B, B" and D are N. t x N, t, N. t x NI_, N[_ x N, t, and N_ x N[_ matrices, respectively, whose struc-

ture and elements are given below; T2 = [T_ ) ..... _s2') ] and T3 = [T_) ..... _)] contain the N_, and NI_

unknown normal tractions in the individual columns and rows of the unit cell, respectively; H and L are

N_ x 1 and N[_ x 1 vectors whose elements are the cell dimensions h and l, respectively; and the vectors

c=[cl ..... CN,], d=[dl ..... dN_], e=[el ..... e/%], f=[fl ..... fi%], P1 =[Pt |) ..... p_N,)],

P2 = [p_l) ..... p_JV_)] contain elements also provided below.

A

"Al 0 0

0 AE 0

0 0 AN.

n

hlB, h2B2, hu_BN_l

hlB,: h2B22 hN_BN_2

h,B Is_ h2B2u_ hN_Bu_Ny

r

llBll 12B12 l_ B,u_ _

l,B:t lzB22 IN_Bz_,

l 1BND lzBN_ 2 INBN_Nr

D

D_ 0 0

0 D2 0

0 0 DN_

_" st_)_ s_ s_st_ _, st__)_= £1_(s_) -
A_, Eh_(S_2 "t) Sty) ), B[_= _ , Dfl= --_lV) ) (31a)

"/=1[3=1

[_---I

N_ N_ S_:) ..-P(_Y)
dr: y.h - , : "-"h "-_./_)

_:! a_ St_ ) _ _=_ orl:

N, S(_7) N v _-Y)
- Vl ' °r3 tx@0 - Ix_ r)) p_) l " St3 _-p(_t) -p(_r).

"siC"" ' " -

(31b)

(31c)

Equation (30) forms the core of the computational effort in the reformulated generalized method of

cells. The system of equations to be solved contains N_ + Nv unknowns in place of the 6N_N. t unknowns
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in theoriginalversion.Additionalrelationsbetweensubcellsheartractionsandmacroscopicshearstrains
do remainto beestablishedtocompletethereformulation.However,thecomputationaleffortinvolvedin
calculatingthesubcellsheartractionsin termsof themacroscopicshearstrainsis minimaldueto the
absenceof shear-normalandshear-shearcouplingasillustratednext.Furthermore,wenotethateqn(30)
canbefurtherreducedbyexpressingit eitherin termsof T2 or T 3. However, as will be illustrated in the

next section, this reduction is offset by a greater number of matrix operations necessary to calculate the

effective composite response, thus leading to increased efficiency only in certain circumstances.

Relations between subcell shear tractions and macroscopic shear strains

To obtain the axial shear relations, we express eqns (12c) and (12e) in terms of the subcell axial

shear stresses using eqn (25). Owing to the absence of normal-shear and shear-shear coupling in orthotro-

pic materials, these relations involve only the subcell shear stress and macroscopic shear strain quantities

in the respective planes (see the Appendix). Defining the common interfacial shear traction T_2_) for a

fixed column of subcells (1y) ..... (Nl_Y) and T_l ) for a fixed row of subcells ([31) ..... (13N_,) dictated by

the interfacial traction continuity conditions, and utilizing the symmetry of the stress tensor,

_17) _(2_) _ 7(N_,)= (521 --.-- - '-'21 = T_ff = T_ , )'= 1..... N, t (32)

-(l_l) -(1$2) - (13N,) = T_3 )(531 = (531 "'" (531 = T_1) , _i= 1..... N[_ (33)

the reformulated interfacial displacement continuity conditions become,

N_ N_

l (_._h_S_._))T_._ = h-_l2 Eh -p(ih')-- 15E12 ,

+ (_ l ,tS_, ) )T_ ) N_
=/E13- I v_ll _[h') ,

7=1

), = 1..... Nv (34)

[3= 1..... NI_ (35)

Thus the solution for the subcell interfacial shear tractions T_'_ and T_ ) is readily obtained in terms of the

respective macroscopic shear strains and subcell plastic shear strains with minimum computational effort.

To obtain the remaining transverse shear relation, we express eqn (12f) in terms of the subcell

transverse shear stresses using eqn (25). Owing to the absence of normal-shear and shear-shear coupling

in orthotropic materials, this relation involves only the subcell shear stress and macroscopic shear strain

quantities in the transverse plane (see the Appendix). Defining the common interfacial shear traction Tl2_

for a fixed column of subcells (1"/) ..... (N_'/) and T_2) for a fixed row of subcells (131) ..... (I3N_,) dictated

by the interfacial traction continuity conditions,
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_(l'r) _(2"r) ;(N_t)
(Y23 --(Y23 ='"--v23 =T(2"_ ,

_([_1) _(132) _(_Nr)
(332 ----(332 =... =(332 =Z_2 ) ,

7 = 1..... Nv (36)

= 1..... N_ (37)

-(BY) -Ov)
and utilizing the stress tensor's symmetry, i.e., (323 = 03z , so that T_ = T_2) = Tz3 for all combinations

of [3= 1.... ,N_ and 7= 1..... N_t, the reformulated interfacial displacement continuity condition becomes,

N_ N r NI_ Ny

zz( hf_l_,S_ ) )T23 = hl-£23 - _._ Ln1_17£23
13=l_=l

(38)

Macroscopic constitutive equations

The macroscopic constitutive equations for the composite are readily determined in the form of eqn

(6) by first solving eqns (30), (34), (35), and (38) for the unknown interfacial subcell tractions (and thus

subcell stresses), and then using the resulting expressions for the subcell stresses given in terms of the

macroscopic strains and subcell plastic strains in the definitions for the macroscopic stresses, eqn (2). To

determine the explicit expressions for the effective stiffness moduli, plastic and thermal strains in terms

of the individual subcell moduli, plastic strains, thermal expansion coefficients and geometry based on

the reformulated approach, we start with the solution of eqn (30). The solutions for T_'_ and T_3), and thus
_(13_,) _(13_,)
_22 and (333 (see interfacial traction continuity equations (26) and (27)), are obtained in terms of the

inverse oftheABB'D matrix elements appearing on the left hand side of eqn (30), denoted by m, and ele-

ments of the vectors on the right hand side of eqn (30). The knowledge of these average subcell stresses
-(l_r)

provides the solution for (311 as well. The resulting relations between the average subcell normal

stresses, the macroscopic strains and plastic and thermal subcell strains are,

where

Oll = atl_V)gll + billY)g22 + c_'/)g33 + FII_r)AT + _t 15r)

-(l_r) = air)El022 1 + b_7) g22 + c_Y) g33 + F_v)AT + (I)_v)

O33-([_¢)= a_)£11 + b_)£22 + c¢)E33 + C )Ar + *_)

atl3_,) 1 += S-_[1 - S_2_')a_'t)_ St_')a_B)], btD) =- [stg% v)+ StgVb_ )1

(39)

(40)

(41)

ct, )=_ + ] (42a)

stl]I._)t 11 + StI_ ') + St_'/)I"_)], S_) t_l, + St_')_ "/)+ St_'/)_ 3)] (42b)
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N r N_

a[r) =- Em(r,a)ca- ]_m(V,N,+mea,
N r Np

b[r) = h Zm<v,a ) , c[r) = lZm<v,N,+a )
ot=l o,=1

N r Np N.¢ Np

F_) = _,m(.i, md a + ___m(T,N,+mfa, @_Y)= Em(v,a)p] a) + Em(y,N,+a)p_ a)
ot,=l o_-! _.=.1 a=l

N v Np N. t Np

a_ ) = - Em(Nv+_,a)Ca -- ___m(Nr+_,Nv+a)e a , b_ ) = h E m(Nr-_,a) , C_ ) = lE m(Nv+f_,N,+a)
a=! o_l a=l ot=l

Nr Np N r Np

F_ )= Y_m(Nr+_,a)d a + Em(Nr+_,Nr+a)fa, (I)_)= Em(N,+_,a)p] a) + Em(Nv+[kN,+a)p_ a)
a=l _=1 o_=1 o(=I

(43a)

(43b)

(44a)

(44b)

Substituting eqns (39)-(41) in the definitions for the average subcell normal stresses given by the

first three of eqns (2), we obtain the macroscopic normal constitutive equations of the form given by eqn

(6). The elements of the macroscopic elastic stiffness matrix C*, the macroscopic thermal expansion

coefficient vector a* and the macroscopic plastic strain _-P, are explicitly given below in terms of the sub-

cell material and geometric parameters and subcell plastic strains. It is easily verified through numerical

experiments that, despite appearance to the contrary, the stiffness matrix C* is symmetric.

c;, ch ch1

C;1 C;2 C;3J

.

1 N_ N_ 1 _ N_ 1 _ Np

-_ _1 _=l_h _l ra tP'_) -_-'1 _=l]_h p l'tb t_) --_- "1_.!_-"h pl'tc t_')

1 NT 1 N, 1 N_

1N_ l_h_b_) lf_=lh_C_)-h _-I h_a_) h _-I

(45)

O_ * 11 * * --

I
L..j LC;l c; J

]_hpl.tFt pr)
- _1

N 7

4
l _=l

h _=l

_1111 If;1 C;2 C;31-'

I
_31 Lc;1 ch chJ

N v Np ]

Z _hpl'tdP?v) I

1 _l_,(1)_, , ,_ (46)

l _=]
Np

et I_I
.)

Similarly, the relations between the average subcell shear stresses, plastic strains and macroscopic

strains are obtained from eqns (34), (35) and (38) in a straightforward fashion in the form (taking into

account the interfacial traction continuity conditions (32), (33) and (36), (37)),
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where

-0_') _ -1312 = [hEI2-PI'_]

1 -

-(N) _--_-[/e,3 - pt_)]
(Y13 =

_{[3V) +_23 = [h/g23 -- P 23 ]

2u" _h _,l_

F_ = 1 ]_irS_sV) , pt_3) = 2. v 13
Z "WI "W 1

1N_ 1 N_h_l.tS_4? ) N v N_
, P23 = ]_ ]_h " --p(I_)

G = _- _ _=1 y=l I_1 [_/TE23

(47)

(48)

(49)

(5O)

(51)

(52)

Substituting eqns (47)-(49) in the definitions for the average subcell shear stresses given by the last

three of eqns (2), we obtain the macroscopic shear constitutive equations of the form given by eqn (6).

The elements of the macroscopic elastic stiffness matrix C* and the macroscopic plastic strain E° are

explicitly given in terms of the subcell material and geometric parameters, and plastic strains as follows,

ch o o]

; c;, orj=o c;

1 hl
0

2G

1 lN_h_

o
0 0

0

0

1 h u' I____.]

(53)

1 P23

" / 2C_4 G

J
• _ LL, "_a PI3

I
I 6t5 7=1 7

(54)
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NUMERICAL RESULTS

Webeginthissectionbycomparingthetimesrequiredbytheoriginalandreformulatedversionsof
thegeneralizedmethodof cells to generatethethermalheat-upresponseof a unidirectionalsilicon
carbide/titaniumaluminide(SiC/TiA1)composite.In thepresenceof temperature-dependentthermoelas-
tic propertiesof theindividualconstituents,asis thecasehere,this is themostcomputationallydemand-
ing casesincethesolutionsto thecontinuityequationsin theoriginalandreformulatedversions,eqns
(16)and (30) respectively,haveto begeneratedat eachthermalloadincrement.The temperature-
dependentmaterialparametersof theconstituentsaregiveninTable1.TheSiCfiberis treatedaselastic
whilethetitaniumaluminidematrixis treatedaselastic-plasticwithbilinearhardening.Thefibervolume
fractionof 0.25wasemployedin the calculationsandtheunit cell wascomposedof a squarefiber
embeddedina squarearray.Thethermalheat-upresponsewasgeneratedfor severalunitcellswithapro-
gressivelygreaternumberof subcellswithoutchangingtheactualcellgeometry.Thiswasaccomplished
by subdividingeachof thefour subcellsin theoriginal repeatingunit cell into increasinglygreater
numbersof subcells.Therefore,thethermalheat-upresponseobtainedfromrepeatingunit cellswithdif-
ferentsubcelldiscretizationlevelswasexpectedto remainthesamefor bothversionsof thegeneralized
methodofcells,whichprovidedacheckonthegeneratedresults.Thisis illustratedinFig.2.

Thecomparisonof theCPUtimesrequiredbythetwoversionsof thegeneralizedmethodof cellsto
simulatethethermalheatupoftheSiC/TiAIcompositefrom24°Cto 815°CisprovidedinTable2.These
resultsweregeneratedonanIBM RISCSystem/6000,MachineType7012(Model39H).TheCPUtimes
obtainedusingtheoriginalversionof thegeneralizedmethodof cellsaregivenfor unit cellscontaining
up to 12x 12subcells.TheCPUtimesfor unit cellscontainingmorethanthisnumberof subcellswere
not generateddueto excessivelylongexecutiontimesrequiredfor theiranalysis.Alternatively,CPU
timesobtainedusingthereformulatedgeneralizedmethodof cellswereeasilydeterminedfor unit cells
with asmanyas100x 100subcells.In additionto thedramaticreductionin thecomputationaltimeevi-
dentin theresultsgeneratedby thereformulatedversion,it mustbepointedoutthatthesizeof theunit
cell that canbeanalyzedusingtheoriginalversionis limitedby thestoragecapacityof theemployed
machine.Thuswhileunit cellsconsistingof 100x 100subcellscanreadilybeanalyzedusingtherefor-
mulatedversion,themaximumnumberof subcellsemployedin theoriginalversionisnotnearlyaslarge.
Thiscanbeeasilyunderstoodby recallingthatwhilethesizeof thematrixthatmustbeinvertedin the

originalversionis 6NfiNv× 6Nf_N_,,thesizeof thecorrespondingmatrixin thereformulatedversionis
only (NI_+ N.t) x (N_ + N;,). Thus the difference in the size of the matrices that must be inverted in the

two versions increases rapidly with increasing number of subcells. It must be mentioned that further

reduction in the size of the strain concentration matrix in the original version could be attained by expli-

citly taking into account the commonality of the axial strain in all the subcells, and by separating the nor-

mal and shear contributions. However, this would not change the N_N. t × N_N, t order of magnitude of

the size of the strain concentration matrix in the original version.

We note that under certain circumstances, a further improvement in computational efficiency can be

attained by expressing the system of equations (30) either in terms of T 2 or T 3. In this case, the
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calculationof theeffectivepropertiesandthermalandplasticstrainsmustbereformulated(thedetailsof
whicharenot includedhere).However,asmentionedpreviously,thereductionin thesizeof eqn(30)

offeredbythisisoffsetbyanincreasednumberof matrixoperations.Forinstance,for thethermalheat-up
problemconsideredabove,the executiontimesobtainedusingthe systemof equations(30) andits
reducedcounterpartareapproximatelythesamefor unit cellswithup to 100× 100subcells.Increasing
thenumberof subcellsto 300x 300doesresultin anincreasedefficiencyof thereducedsystemof equa-

tionsbyoverafactorof two(55,556vs.22,229CPUsecondsfor theunreducedandreducedsystemof
equations(30),respectively).However,this increaseis obtainedonly for unit cellscontaininga suffi-
cientlylargenumberof subcellswhenthesystemof equations(30)is solvedateveryloadincrement,as
in thecaseof temperature-dependentelasticpropertiesof theconstituentphases.Whenthecoefficients
appearingontheleft sideof eqn(30)remainconstantduringtheloadinghistory,asin thecaseof isother-
malmechanicalloading,reducingthesystemofequations(30)furtheroffersnoadvantage.Infact,for the
boron/aluminumcompositeconsiderednext,transverseloadingof aunit cellwitha squarefiber contain-
ing 300x 300subcellsrequired6,521and31,306CPUsecondsusingtheunreducedandreducedsystem
ofequations,respectively,almostafive-folddeteriorationin thecomputationsefficiency.

Next,wepresentnumericalexamplesthatillustratethecapabilityof thereformulatedgeneralized
methodof cellsto efficientlymodeltheresponseof unidirectionalmetalmatrixcompositeswithdetailed
fibergeometries.In particular,weconsidercircular,elliptical (withanaspectratioof 2.5),hexagonal,
diamondandsquarefibersembeddedin squarearrays(i.e.,squarerepeatingunit ceils).To obtaintrue
cross-sectionalshapesof thesefibers,unit cellscontaining120× 120,68× 68,102x102,102x 102,and
4 x 4 subcellswereconstructedfor thecircular,elliptical,hexagonal,diamond,andsquarefibers,respec-
tively,Fig.3. Thepropertiesof thefiberandmatrixphaseswerethoseof anelasticboronfiberandan
elastic-plasticaluminummatrixwithbilinearhardeninggivenin Table3. Twohardeningslopesfor the
aluminummatrixwereemployedin thecalculations,whosemagnitudeswere1/10,000and 1/5of the
elasticYoung'smodulus.The smallerhardeningslopeproducesa responsewhich is nearlyelastic-
perfectlyplastic,withpracticallynoapparentstrainhardening.Figure4 presentsthestress-straincurves
of theconstituentphasesemployedin thecalculationsto generatethecompositestress-strainresponseof
thedifferentrepeatingunitcellsundertransversenormalloading.Transversenormalloadingwaschosen
becausepreviousinvestigationshaverevealedthatdifferencesin theresponseof compositeswith dif-
ferentfibershapesaremostdramaticunderthismannerof loading(Arnold,etal.,1996).

Figure5 presentsthetransverseresponseof unit cellscontaining0.25volumefractionof thefive
differently-shapedfibersembeddedin thealuminummatrixwith thelowandthehighratesof strainhar-
dening.In thecaseof thehexagonalandellipticalfibers,thetransverseloadingwasappliedinbothof the
principalmaterialdirectionsx2 and x3 due to the cross-sectional differences along these directions. When

the aluminum matrix exhibits no hardening, Fig. 5a, the effect of the fiber cross-section shape on the

transverse response is only evident, and to a very limited extent, in the elastic and the initial yielding

regions, with virtually no differences observed when the matrix is fully yielded. In the elastic region, the

transverse response of the unit cell with the elliptical fiber is somewhat stiffer in the x3 direction than the

15



responseof theremainingunitcells,howeveronceyieldinginitiatesthisdifferencevanishes.The stiffer

response is expected since the major axis of the elliptical fiber lies along the x3 direction. Alternatively,

when the aluminum matrix strain hardens, Fig. 5b, the fiber shape has a more pronounced effect on the

transverse response in the plastic region. Substantial differences are now observed in the x2 and x3 direc-

tion responses of the unit cell with the elliptical fiber. The response of this unit cell in both directions is

stiffer than the responses of the remaining unit cells. Among the remaining unit cells, the one with the

square fiber exhibits the stiffest response which is slightly higher than the rest. No discernible differences

are observed among the responses of the unit cells with diamond, hexagonal and circular fibers.

Increasing the fiber volume fraction further accentuates the differences in the composite's

transverse response due to the fiber's cross-sectional shape. Figure 6 shows the results corresponding to

those provided in Fig. 5 when the fiber volume fraction is increased to 0.30. This fiber volume fraction is

close to the maximum allowable for the unit cell with the elliptical fiber, which is limited by the contact

of fibers along the major axis in two adjacent cells. This contact occurs when the fiber volume fraction is

0.31 in the case of fibers with an aspect ratio of 2.5, which is the present situation. When the aluminum

matrix exhibits no hardening, Fig. 6a, the effect of the fiber cross-sectional shape on the transverse

response in the plastic region becomes discernible, with the square and elliptical fibers being the most

effective in increasing the flow stress of the composite, and the diamond, hexagonal and circular fibers

the least effective. When the aluminum matrix strain hardens, Fig. 6b, the nearly touching elliptical fibers

produce the stiffest overall transverse response, with a substantially greater difference in the x2 and x3

directions than that observed at the lower fiber volume fraction, Fig. 5b. The responses of the unit cells

with the remaining fibers are substantially lower, and the differences due to the fiber cross-sectional

shape somewhat more pronounced than in the 0.25 fiber volume fraction cases. Among these responses,

the stiffest response is observed for the unit cell with the square fiber and the most compliant response for

the unit cell with the circular fiber.

Figure 7 presents the results that correspond to those shown in the preceding two figures when the

fiber volume fraction is further increased to 0.40. This fiber volume fraction exceeds the maximum allow-

able volume fraction for the employed elliptical fibers, and thus the results are limited to unit cells with

square, diamond, hexagonal and circular fibers. In the case of the aluminum matrix with no hardening,

Fig. 7a, a substantial difference between the unit cell with the square fiber and the remaining unit ceils is

now apparent in the plastic region. The square fiber provides a 50% increase in the transverse flow stress

of the composite relative to that of the diamond and circular fibers. The transverse response of the unit

cell with the hexagonal fiber is essentially the same for both directions of loading and lies above the

response of the unit cells with the diamond and circular fibers. It is characterized by slight strain harden-

ing which produces a transverse stress at the strain of 1% that is approximately 18% higher than the flow

stress of the unit cells with the diamond and circular fibers. When the aluminum matrix strain hardens,

Fig. 7b, increasing the fiber volume fraction from 0.30 to 0.40 also increases the differences in the plastic

regime due to the fiber cross-sectional shape. As in the preceding cases, the square fiber produces the stif-

fest response, while the circular fiber the most compliant. The response of the unit cell with the diamond
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fiberfallsbelowthatof theunit cellwiththesquarefiber,whiletheresponseof theunit cell withthehex-
agonalfiberliesjustabovethatof theunitcellwiththecircularfiberfor bothloadingdirections.

Theeffectsof fibershapeonthetransverseresponseof theunidirectionalboron/aluminumcompo-
siteillustratedhereinareconsistentwith thosereportedbypreviousinvestigatorsthatwererecentlysum-
marizedby Arnold,et al. (1996).In particular,theeffectof fibershapeat low fiber volumefractionsis
small andincreaseswith increasingfiber content.Squarefibersprovidethe stiffestoverallresponse
(whenthematrixstrainhardens)andthehighestflow stress(whenthematrixdoesnot strainharden)
whilecircularfibersprovidethemostcompliantresponseandthelowestflow stress.This is dueto the
squarefiber'sabilityto provideahighermagnitudeofhydrostaticstressin thematrixphaserelativetothe
circularfiber,therebydelayinglocalizedyieldingandprovidingconstraintontheexpansionof theplastic
zonethroughoutthematrixphase.Hexagonalfibersgenerateanintermediateresponse.It mustbemen-
tionedthattheresultsreportedin the literatureaddressingtheeffectof fiber shapeon theresponseof
MMCsaretypicallylimitedin scope,witha limitednumberof fibershapesandtypicallya singlestrain
hardeningratefor thematrixphase.Thisis dueto thecomputationallyintensivefinite-elementapproach
typicallyemployedto investigatetheseeffects.Alternatively,theresultsgeneratedwith thereformulated
versionof thegeneralizedmethodof ceilsthathavebeenpresentedhereinprovidefor thefirst timean
exhaustivecomparisonof thefiber shapeimpacton theMMCs'transverseresponseasafunctionof the
fibervolumefractionandthematrixphase'sstrainhardeningcapability.Similarly,the influenceof the
fiberarrangementontheresponseof MMCs,whichhasareportedlygreaterimpactthanthefiber shape,
cannowbeefficientlyinvestigated.

Thelastsetof resultsaddressestheimportan(questionof theextentto whicha givenfiber shape
shouldbeapproximated(thediscretizationlevelof therepeatingunitcell) in orderto obtainsufficiently
accurateresultsfor thatshape.In particular,weconsiderincreasinglevelsof cell discretizationfor acir-
cularfiber to determinethelevelof microstructurairefinementatwhichconvergenceto the"true"solu-
tionobtainedfroma highlydiscretizedunit cell is achieved. The "true" solution is based on the previ-

ously employed unit cell containing a highly refined circular fiber shape generated using 120 × 120 sub-

cells. The unit cells employed in this convergence study are shown in Fig. 8. In addition to the unit cells

with the square fiber and the highly refined circular fiber, unit cells with a fiber in the shape of a cross

containing 6 x 6 subcells and circular fibers approximated by 8 x 8 and 18 x 18 subcells were considered.

The results for the transverse response of these unit cells containing the previously employed boron fiber

and aluminum matrix are presented in Fig. 9 based on a fiber volume fraction of 0.40 and no strain har-

dening of the aluminum matrix. As observed previously, the response of the unit cell containing the

highly refined circular fiber cannot be approximated in the plastic region by that containing the square

fiber at this fiber volume fraction. Despite the fact that the elastic responses are virtually the same, the

substantial strain hardening produced by the square fiber leads to the macroscopic flow stress for the

composite which is more than 50% greater than that due to the circular fiber. The cross-shaped fiber pro-

duces a flow stress which is 20% higher than that due to the highly refined circular fiber. This difference

reduces to 10% and 5% for the circular fibers approximated by 8 x 8 and 18 x 18 subcells, respectively.
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CONCLUSIONSAND FUTURE PERSPECTIVES

The efficient implementation of the generalized method of cells outlined herein greatly facilitates

analysis of unidirectional composites whose microstructures require a highly detailed geometric represen-

tation. This was accomplished by f'trst reformulating the displacement continuity equations in the original

formulation of the generalized method of cells in terms of subcell stress components and then directly

incorporating the traction continuity conditions into these equations. This effectively replaces the subcell

strains by the subcell interfacial tractions as the basic unknown microvariables, which in turn substan-

tially reduces the size of the system of equations for the determination of these microvariables. This sub-

stantial reduction in the size of the system of equations for the unknown microvariables makes possible

the inelastic analysis of repeating unit cells containing thousands of subcells which could not be analyzed

previously. Consequently, repeating unit cells with highly detailed fiber shapes can now be analyzed effi-

ciently in the presence of matrix plasticity as demonstrated herein. Comparison of CPU times required by

the original and reformulated versions of the generalized method of cells to simulate the thermal heat-up

response of a SiC/TiAI composite with temperature-dependent thermoelastoplastic constituent properties

demonstrated a dramatic reduction in the execution times as a function of the number of subcells in the

repeating unit cell due to the reformulation. Further, while the thermal analysis of repeating unit cells

containing more than 100 subcells proved to be impractical using the original formulation, such analysis

was perfomed efficiently using the new formulation in a fraction of the time required of the original for-

mulation. This opens up the possibility of using the new formulation in conjunction with large-scale

structural analyses to investigate the response of composite structures with microstructures that require

detailed geometrical representations.

The examples presented herein were limited to the analysis of the transverse response of unidirec-

tional metal matrix composites with highly refined elliptical, circular, diamond, and hexagonal fibers.

The effect of the fiber cross section on the transverse response predicted by the reformulated generalized

method of cells was consistent with the results reported in the literature. An additional study into the

effect of different levels of circular fiber shape approximation on the transverse response of a undirec-

tional composite revealed that a unit cell discretized into 18 x 18 subcells closely approximated the

response obtained with a 120 x 120 subcell unit cell. The utility of the reformulated generalized method

of cells, however, should become even more apparent when investigating the response of unidirectional

composites with more than one type of fiber and with different fiber arrangements or arrays. The impact

of the fiber array architecture on composite response is known to be substantially greater than that of the

fiber shape. However, the impact of multi-phase fibers on composite response remains to be fully charac-

terized. This can now easily be performed using the reformulated generalized method of cells. In addition,

modeling of mechanisms that require detailed cell discretization, such as progressive damage accummula-

tion due to crack growth or progressive interfacial debonding can also be efficiently realized.

The outlined reformulation of the generalized method of cells in terms of subcell interfacial trac-

tions is expected to result in an even greater computational capability enhancement when applied to the

three-dimensional version of the generalized method of cells developed by Aboudi (1995) for modeling
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theresponseof inelasticmulti-phase,short-fibercomposites.ThisversionhasbeenemployedbyHerako-
vich andBaxter(1997)to investigatetheeffectof poregeometryon theinelasticresponseof porous
media.Thethree-dimensionalgeneralizedmethodof cellshasalsobeenemployedto modelthemechani-
cal responseof wovengraphite/coppercompositesby Bednarcyk,et al. (1997)usingan embedded
micromechanics-within-micromechanicsmodelapproach.In thisapproach,theinstantaneousresponseof
theindividualfiberyarns,whichoccupyspecifiedsubcelisin thethree-dimensionalrepresentationof the
wovencomposite,is determinedateachpointalongtheloadingpathusingtheoriginalmethodof cells
(Aboudi,1991)andthensubsequentlyusedin theglobalthree-dimensionalgeneralizedmethodof cells
analysis.However,thethree-dimensionaldiscretizationof therepeatingunit cell substantiallyincreases
thenumberof unknownmicrovariablesthatmustbedetermined,therebyplacingalimit on thelevelof
microstructuralrefinementof theweavegeometry.In orderto beableto modelthree-dimensionalwoven
compositesusingasufficientlydetailedrepresentationof theweavegeometry,thethree-dimensionalgen-
eralizedmethodof cellshasrecentlybeenreformulatedalongsimilarlinespresentedhereinfor thetwo-
dimensionalversion.Thedetailsof thisreformulationandthecomparisonof theanalyticalpredictions
withexperimentaldatawill bereportedin thefuture.

Finally,thereformulationof thedisplacementcontinuityequationsin termsof the interfacialsub-
cell tractionsastheunknownmicrovariablesproducesa systemof equationscharacterizedby amatrix
thatconsistsof twodiagonalsubmatricesandtwofully-populatedoff-diagonalsubmatricesin thecaseof
thetwo-dimensionalgeneralizedmethodof cells.In thecaseof thethree-dimensionalgeneralizedmethod
of cells,on theotherhand,thematrixconsistsof thirty-sixsubmatricesof whichonlytwelvearefully-
populated.Therefore,furthercomputationalefficiencyenhancementcanbeaccomplishedfor bothver-
sionsofthegeneralizedmethodof cellsthroughOrozco'ssparseimplementationapproach.
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APPENDIX

Relations between subcell normal tractions and macroscopic normal strains

To develop the relations between subcell normal tractions and macroscopic normal strains, we first

express the subcell normal strains in terms of the subcell normal stresses, and plastic and thermal strains

using eqn (25).

(A1)

(A2)

(A3)

-(_'t)
Using the constraint on the axial deformation in all subcells, Ell =_11, in eqn (A1), the axial subcell

stress (_11 is expressed as follows,

- -- - st_ ¢,= - st_"a__'] (A4)

The above expression is then used in eqns (A2) and (A3) to eliminate the axial subcell stress Cll from
_ . -O't) . -(1_,)

the expressions for the subcell normal strmns E22 anO E33 ,

_,,_ st_'_ sg"_._(_,_

S t_IT) Ell

sg'_st¢'_._(_
siq.,_ _ +(=g')- __

)2 S]_3v)
Si_')Si_3't) ._(l_t) SIR¥ .-(1_') ((x_3-t) C_i_,))AT +

(A5)

(A6)

Equations (A5) and (A6) are subsequently used in the interfacial displacement continuity conditions (12b)
_ -(_t) -(t_'_)

and (12d) in order to express them in terms of the normal subcell stresses (_22 and 033 ,
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Use of the interfacial traction continuity conditions (26) and (27) in the above expresions yields eqns (28)

and (29).

Relations between subcell shear tractions and macroscopic shear strains

To develop the relations between subcell shear tractions and macroscopic shear strains, we first

express the subcell shear strains in terms of the subcell shear stresses, and plastic and thermal strains

using eqn (25).

El 2 = -_b_ OI 2 , El 3 = 7b_ O13 , E23 = "_-,3_ O23 (A9)-(All)

Equations (A9) through (A11) are subsequently used in the interfacial displacement continuity conditions

(12c), (12e) and (120 in order to express them in terms of the subcell shear stresses 012 , 0_3 , and 023 ,

N_
1 _ h _'a_)-(D) _" -P(_r)

-_-2_ 1_'3_'6 O12 =hg12-2-_nl_812 '

" _=1 _=1

Nr N_

"7 EIrS_sV) o_3 = IE13 --

"" 7=1 y=l

y= 1..... N_, (A12)

= 1..... NI_ (A13)

, N_ N v NI_ N___ . ---P(I_')
__ _ __,hfllyS_4.t) O23--(l_'t)= hl-_23 - _ Ln 1_/7E23 (A14)

Use of the interfacial traction continuity conditions (32), (33), (36) and (37) in the above expresions

yields eqns (34), (35) and (38).
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Table1.Materialpropertiesof SiCfiberandtitaniumaluminidematrix.

Materialproperties 24°C 200 °C 425 °C 600 °C 650 °C 815 °C

SiC fiber

(x 10--6 crn/cm/°C) 3.53 3.62 3.87 4.19 4.28 4.5

Young's modulus (GPa) 400.0 400.0 400.0 400.0 400.0 400.0

Poisson's ratio 0.25 0.25 0.25 0.25 0.25 0.25

ri-24Al- 11Nb matrix

¢x(x 10-6 cm/cm/°C) 9.0 9.36 10.26 10.53 10.62 11.07

Young's modulus (GPa) 110.3 100.0 75.8 86.2 68.2 11.2

Poisson's ratio 0.26 0.26 0.26 0.26 0.26 0.26

Yield stress (MPa) 371.5 406.7 370.2 290.9 269.5 165.5

Hardening slope (GPa) 22.98 3.04 2.22 1.29 0.67 0.00

Table 2. Comparison of CPU times required by the original and reformulated versions of the generalized

method of cells to generate a thermal heat-up response of a SiC/TiA1 unidirectional composite.

GMC version CPU times(seconds)asafunction ofthe numberofsubcells

2x2 4x4 6x6 8x8 10xl0 12x12 20x20 100xl00

0.87 19 182 508 8,679 43,781

0.18 0.25 0.5 0.9 1.5 2.3 8.3 796

original

reformulated

Table 3. Material properties of the boron fiber and aluminum matrix.

Material Young's modulus (GPa) Poisson's ratio Hardening slope (GPa)

Boron fiber 414.0 0.20 N/A

Aluminum matrix 55.2 0.30 E/10,000 and E/5

Note: The hardening slope is the secondary slope in a bilinear stress-strain representation of the matrix

phase's elastic-plastic response.
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Figure 1. A unidirectional composite modeled by the generalized method of cells as a doubly-periodic

array of fibers (top), and the details of the repeating unit cell discretization (bottom).
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Figure 2. Thermal response of a unidirectional SiC/TiAI composite predicted by the original and

reformulated versions of the generalized method of cells: (a) longitudinal; (b) transverse.
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Figure 3. Repeating unit cells with circular and elliptical fibers discretized into 120x 120 and 68x68

subcells, respectively.
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Figure 3 (cont'd). Repeating unit cells with diamond and hexagonal fibers discretized into 102x 102
subcells.
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Figure3(cont'd).Repeatingunitcellwithasquarefiberdiscretizedinto4x4subcells.
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Figure 4. Stress-strain response of the constituent phases in the B/Ai composite.
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Figure 5. Transverse response of a unidirectional B/AI composite with differently-shaped fibers

containing 0.25 fiber volume fraction: (a) H = E/10,000; (b) H = E/5.
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Figure 6. Transverse response of a unidirectional B/AI composite with differently-shaped fibers

containing 0.30 fiber volume fraction: (a) H = E/10,000; (b) H = E/5.
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Figure 7. Transverse response of a unidirectional B/AI composite with differently-shaped fibers

containing 0.40 fiber volume fraction: (a) H = E/10,000; (b) H = E/5.
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Figure 8. Repeating unit cells containing fibers with increasingly refined circular fiber shape.
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Figure 9. Transverse response of repeating unit cells containing fibers with increasingly refined circular

fiber shape.
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