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ABSTRACT

An efficient implementation of the generalized method of cells micromechanics model is presented
that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing
thousands of subcells. The original formulation, given in terms of Hill’s strain concentration matrices that
relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell
tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equa-
tions in terms of the stresses and then imposing the traction continuity conditions directly. The result is a
mixed formulation wherein the unknown interfacial subcell traction components are related to the
macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise
uniform, the imposition of traction continuity conditions directly in the displacement continuity equa-
tions, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and
stress) components, and thus the size of the system of equations that must be solved. Further reduction in
the size of the system of continuity equations is obtained by separating the normal and shear traction
equations in those instances where the individual subcells are, at most, orthotropic. The reformulated ver-
sion facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the
response of multi-phased unidirectional composites with and without evolving damage. Comparison of
execution times obtained with the original and reformulated versions of the generalized method of cells
demonstrates the new version’s efficiency.

INTRODUCTION

The two-dimensional generalized method of cells is a micromechanics model developed by Paley
and Aboudi (1992) and Aboudi (1993) for predicting the response of unidirectional metal matrix compo-
sites with periodic microstructures. A continuously reinforced composite is modeled as a doubly periodic
assemblage of fibers embedded in a matrix phase, Fig. 1. The periodic character of the assemblage allows
one to identify a repeating unit cell that is the building block for the entire composite. The properties of
this repeating unit cell are thus representative of the properties of the entire assemblage. The repeating
unit cell consists of NgxN, subcells. Each of these subcells is assumed to be occupied, in general, by a
material that exhibits inelastic behavior. The subcell material’s inelastic behavior can be modeled by a
variety of constitutive theories, including linear viscoelasticity, classical incremental plasticity, or unified
viscoplasticity theories. Thus the repeating unit cell consists of N>y different inelastic materials, i.e., it

represents a multi-phased, inelastic composite.

The generalized method of cells allows approximate micromechanical analysis of fairly complicated

periodic arrays, including:



e thermomechanical response of multi-phased, metal matrix composites
e modeling of variable fiber shapes

e analysis of different fiber arrays

e modeling of porosities and damage

e modeling of interfacial regions around inclusions, including interfacial degradation

The effective or average stress-strain equations for the composite are constructed through an
approximate deformation analysis in each subcell of the repeating unit cell based on a linear representa-
tion of the displacement field in terms of local subcell coordinates. Using this approach, the governing
field equations within each subcell are satisfied identically in a volumetric sense, while the traction and
displacement continuity conditions between adjacent subcells are imposed in an average sense together
with an homogenization condition that ensures that the response of a given repeating unit cell is indistin-
guishable from that of its neighbors. The above analysis establishes the so-called Hill’s strain concentra-
tion matrix relationships between the average subcell strains and the imposed average or composite
strains, that are used in the construction of the composite stress-strain equations (Hill, 1963). The size of
the strain concentration matrix is 6NgN, X 6NgN, since there are six unknown subcell strains in each of
the NgN, subcells. This matrix must be inverted once if an isothermal mechanical analysis is conducted,
and many times if a nonisothermal thermomechanical analysis is conducted with temperature-dependent
constitutive properties in the individual subcells. Consequently, this imposes limits on the level of
discretization of the repeating unit cell. Practically, the analysis of repeating unit cells larger than 10 x 10
may become computationally inefficient, particularly if the micromechanical analysis is part of a larger
structural analysis.

To enhance the computational efficiency of the generalized method of cells, Orozco (1997) took
advantage of the sparse features of the strain concentration matrix in inverting it. The sparse implementa-
tion of the generalized method of cells made possible the elastic analysis of periodic fiber arrays charac-
terized by repeating unit cells containing thousands of subcells. Examples were presented for the calcula-
tion of the effective properties of unidirectional composites containing up to 100 x 100 subcells in the

repeating unit cell.

Herein, another approach is presented for the efficient implementation of the generalized method of
cells. This approach involves reformulating the displacement continuity equations in terms of the interfa-
cial subcell traction components as the basic unknowns in place of the subcell strain components. This
reformulation, together with the piece-wise uniform character of the stress field throughout the repeating
unit cell and direct imposition of the interfacial traction continuity conditions between the individual sub-
cells, substantially reduces the size of the matrix that must be inverted to express the unknown interfacial
subcell tractions (and thus subcell stress components) in terms of the macroscopic strains. This matrix
consists of diagonal submatrices and fully-populated off-diagonal submatrices, thereby lending itself to
further computational efficiency enhancement through Orozco’s sparse implementation approach.



STANDARD FORMULATION OF THE GENERALIZED METHOD OF CELLS

Since the reformulation of the generalized method of cells requires the use of the original equations,
we begin by providing a brief outline of the original formulation. We proceed to outline the original
micromechanical analysis by first defining the relationships between the average composite and the aver-

age subcell stress and strain quantities.

By

The volume-averaged subcell stress G is defined in the usual way,

1 +hpa +lﬁ.
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(where Vg, = hgly). Thus the average composite stress G is obtained from a weighted sum of the subcell
average stresses taken over all the subcells,

G= —ZZhsl )

where h and [ are the dimensions of the repeating unit cell, Fig. 1. Similarly, the volume-averaged subcell

strain ?-:'(BY) is given by,
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and the average composite strain € is obtained from a sweighted sum of the subcell average strains taken
over all the subcells,
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The relationship between average subcell stresses and strains is obtained by volume averaging the
constitutive equations used to describe the material behavior in the subcell By,

6(137) - C(By) [E(BY) _EP(ﬁY) — B AT] (5)

where 'ép ®v

is the average plastic subcell strain, C®Y is the elastic stiffness matrix, o®? are the coeffi-
cients of thermal expansion, and AT is the temperature deviation. The above description of the material
PGV .

in the

subcell (By). Herein, the classical incremental plasticity theory, reformulated in terms of strains (Mendel-

behavior is sufficiently general to admit any inelastic constitutive model for the plastic strain &

son, 1983; Williams and Pindera, 1997) is used to model the inelastic effects.



The effective or average stress-strain equations for the composite are constructed from the definition
of the volume-averaged composite stresses, eqn (2), by first expressing the volume-averaged subcell
stresses, eqn (1), in terms of the volume-averaged subcell strains using eqn (5). Then, the volume-
averaged subcell strains are expressed in terms of the composite strains through the use of Hill’s strain
concentration matrix relations obtained from the approximate deformation analysis of the individual sub-
cells. This produces the effective stress-strain equations for the composite in the form:

6=C"E~-F -a’AT) (6)

where € is the average composite plastic strain, C" is the effective elastic stiffness matrix, and " is the
effective thermal expansion coefficient vector.

The relationship between the volume-averaged subcell and composite strains, necessary to generate
eqn (6), is obtained through an approximate analysis of the deformation fields in each subcell of the
repeating unit cell. Towards this end, the displacement field in the individual subcells modeling a con-
tinuously reinforced composite is approximated in terms of a linear expansion in the local coordinates

;(25), I(3Y) centered at the mid-point of a given subcell,
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wherei=1,2,0r3;B=1, .., Npg;Y=1, .., Ny and cofﬁ“’) are the displacement components at the center
of each subcell (By), defined at discrete points in the x,—x3 plane but treated as continuous functions of
the axial coordinate x; aligned with the fiber direction. Using the local strain-displacement equations for
each subcell, one can easily show that the microvariables ¢{*” and y{®? are related to the subcell strains
ef}w. It follows then, that the subcell strains, and therefore stresses, are piece-wise uniform throughout the
repeating unit cell. Thus we obtain the following relations between the microvariables ¢{*¥ and y{*? and

(b7
the volume-averaged subcell strains € ,jﬁy ,

_ am(IBY) _ _
e = . En =0, &5 =yf? (8a)
i awgB'Y)
=By _ 1 @y doff! =6y _ 1 @y g _1 ) V)
ey =5 (=), B =g (P, BT =S (P ef7) aab)

Since the subcell stresses and strains are piece-wise uniform throughout the repeating unit cell, the
governing field equations are satisfied identically. The piece-wise uniform character of the stress and
strain fields, however, requires that the interfacial traction and displacement continuity between the indi-
vidual subcells within the repeating unit cell, as well as between the given repeating unit cell and the sur-
rounding cells, be imposed in an average sense. Imposing these displacement continuity conditions and



applying an homogenization condition that ensures that the given cell deforms in an indistinguishable

manner from its neighbors, we obtain:

Np owPY
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X3
where it can be shown that (Brayshaw, 1994)
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for all the subcells. Use of the above relations in the definitions for the average composite strains given in
terms of the volume-averaged subcell strains, eqn (4), together with eqns (8) and (9) yields the relations,
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Thus the uniform axial deformation constraint and the interfacial displacement continuity conditions pro-
vide the following relations between the volume-averaged subcell strains and the composite strains,
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This system of equations can be written in the matrix form,
AGE, =Je (13)

The matrix A; contains terms that describe the internal geometry of the repeating unit cell. The vector

g o (2D g

g=(g ,.. ) with dimension 6NN, contains the six volume-averaged strain components for

each of the N BN ¥ subcells. The matrix J contains the overall cell dimensions.

The displacement continuity conditions, eqns (13), provide 2(N g+ NY) +NpgN,+1 equations
involving the 6NN, unknown subcell strains. The imposition of the interfacial traction continuity pro-
vides the remaining SNgN, —2(Ng +Ny) — 1 equations for the determination of the unknown subcell

strains in terms of the macroscopic strains,

5;?7)=6(2?'Y): [3=[3+1 when B <Npg and [§=l when B=Ng, y=1,., N, (14a)

6e"=68" . §=y+1 when y<N, and y=1 when y=N,, B=1.,Ng  (14b)

for i=1,2,3. These traction continuity equations can be expressed in matrix form in terms of volume-
averaged total, plastic and thermal subcell strains upon use of the volume-averaged subcell constitutive
relations, eqn (5),

_T
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an NgNy) . T _T(1)  _T(NgN,)
where € = (& ,...,Ep("*))s =(g ,.,€ 7
By

, €5 ), are the plastic strain and thermal strain vec-

tors, respectively, for all the subcells, € = a®VAT, and the matrix Ay contains the elastic constants of

the materials in the individual subcells.

Combining eqns (13) and (15), the system of equations relating the subcell strains to the uniformly
applied composite strains, obtained from the imposition of the continuity conditions, can be written in

compact matrix notation as follows,

AT, =Ke+D(E +E) (16)
where
- |Ay| = |AM{ = [0
A=), —{o . k=9 an

The above equations can be solved in order to express the subcell strains in terms of the average strains:



£ =AE+D(E +E) (18)

~-1 =-1= . . . . . . . .
where A=A Kand D =A D. The matrix A, in fact, is the resulting Hill’s concentration matrix which
relates the microstrains to macrostrains. It follows from eqn (18) that the average subcell strains can be
expressed in terms of the macroscopic strains and average plastic and thermal subcell strains as follows:

By - =T

so that the average subcell stresses become:
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Using these expressions in the definitions for the macroscopic stresses given in terms of the average sub-
cells stresses, eqn (2), we obtain the following constitutive equation for the composite response,
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Comparison of eqns (21) and (6) yields the following expressions for the macroscopic stiffness matrix c’
given in terms of the subcell stiffness matrices C B and the subcell strain concentrations matrices A Y,

C:u:_}%_z thI CcBDaBY (22)
p=t y=1

and for the macroscopic plastic and thermal strains € and € given in terms of the average subcell plastic

and thermal strains & ®» and ET(BY) and the plastic strain concentration matrices D®Y,
> 1 g2 —» 2BV
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Since the evolution of subcell plastic strains depends on the deformation history of the composite, these
strains must be determined in an incremental fashion dependent on the particular form of the employed
inelastic model for the matrix phase. A detailed presentation of the two-dimensional generalized method
of cells analysis can be found in Paley and Aboudi (1992) and Aboudi (1993).



EFFICIENT REFORMULATION OF THE GENERALIZED METHOD OF CELLS

The core of the computational effort in the original formulation of the generalized method of cells
lies in evaluating the strain concentration matrices A and D in eqn (18), i.e., solving the 6NgN, X 6NgN,
system of equations given in eqn (16). The computational effort can be tremendously reduced by express-
ing the displacement continuity relations, eqns (12b)-(12f), in terms of subcell stresses using the strain-
stress equations,

0 _sBn P g ® | 46w AT 25)

and then imposing the interfacial traction continuity conditions directly in the reformulated interfacial
displacement continuity equations. Further reduction can be achieved by separating the relationships
between the subcell normal tractions and macroscopic normal strains from the relationships between the
subcell shear tractions and macroscopic shear strains. When the subcells are, at most, orthotropic (as is
the case here), this separation is possible because of the absence of shear-normal coupling owing to the
use of a first order displacement expansion and the imposition of the interfacial continuity conditions in
an average sense. The relations between subcell normal tractions and macroscopic normal strains are
given first, followed by the corresponding shear relationships.

Relations between subcell normal tractions and macroscopic normal strains

We express eqns (12b) and (12d) in terms of the three subcell normal stresses using eqn (25). The
axial normal subcell stress 6(37) is then expressed in terms of the common macroscopic strain €;; and the
transverse normal subcell stresses 6(2%7) and 62@” using the uniform axial deformation constraint, eqn
(12a), and the first of the strain-stress equations (see the Appendix). Defining the common interfacial nor-
mal traction TS for a fixed column of subcells (1Y),..., (N Y) and TS%) for a fixed row of subcells

(B1) ,..., (BN,) dictated by the interfacial traction continuity conditions,

(1 (2 —(N
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the reformulated interfacial displacement continuity conditions become,
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Equations (28) and (29) can be cast in the matrix form given below,

(s J-{ofeee{afeo-{ofen o)

where A, B, B and D are Ny X Ny, Ny X N, Ng X N, and N X N matrices, respectively, whose struc-
7‘2’;’"] and T =[T% ..., 7(3};/")] contain the Ny and Ng

unknown normal tractions in the individual columns and rows of the unit cell, respectively; H and L are
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ture and elements are given below; T, = 7 ...,

Nyx1and Ng x 1 vectors whose elements are the cell dimensions k and /, respectively; and the vectors
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Equation (30) forms the core of the computational effort in the reformulated generalized method of

cells. The system of equations to be solved contains Ng + N,y unknowns in place of the 6N gN, unknowns



in the original version. Additional relations between subcell shear tractions and macroscopic shear strains
do remain to be established to complete the reformulation. However, the computational effort involved in
calculating the subcell shear tractions in terms of the macroscopic shear strains is minimal due to the
absence of shear-normal and shear-shear coupling as illustrated next. Furthermore, we note that eqn (30)
can be further reduced by expressing it either in terms of T, or T3. However, as will be illustrated in the
next section, this reduction is offset by a greater number of matrix operations necessary to calculate the
effective composite response, thus leading to increased efficiency only in certain circumstances.

Relations between subcell shear tractions and macroscopic shear strains

To obtain the axial shear relations, we express eqns (12c) and (12e) in terms of the subcell axial
shear stresses using eqn (25). Owing to the absence of normal-shear and shear-shear coupling in orthotro-
pic materials, these relations involve only the subcell shear stress and macroscopic shear strain quantities
in the respective planes (see the Appendix). Defining the common interfacial shear traction T for a
fixed column of subcells (1) ,..., (Npy) and 7§B|) for a fixed row of subcells (B1),..., (BN,) dictated by
the interfacial traction continuity conditions, and utilizing the symmetry of the stress tensor,

— -2 —(N
o =G == =T =T, Y=L Ny (32)

_ _ B2 SO
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the reformulated interfacial displacement continuity conditions become,
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Thus the solution for the subcell interfacial shear tractions 71} and T is readily obtained in terms of the
respective macroscopic shear strains and subcell plastic shear strains with minimum computational effort.

To obtain the remaining transverse shear relation, we express eqn (12f) in terms of the subcell
transverse shear stresses using eqn (25). Owing to the absence of normal-shear and shear-shear coupling
in orthotropic materials, this relation involves only the subcell shear stress and macroscopic shear strain
quantities in the transverse plane (see the Appendix). Defining the common interfacial shear traction TN
for a fixed column of subcells (1Y) ,..., (NpY) and 7@%) for a fixed row of subcells (B1) ,..., (BN ) dictated
by the interfacial traction continuity conditions,

10
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and utilizing the stress tensor’s symmetry, i.e., 0(2[?) = 0327), so that T5) = Tﬁ%’ = T,3 for all combinations

of =1,..,Ngandy=1,...,Ny, the reformulated interfacial displacement continuity condition becomes,
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Macroscopic constitutive equations

The macroscopic constitutive equations for the composite are readily determined in the form of eqn
(6) by first solving eqns (30), (34), (35), and (38) for the unknown interfacial subcell tractions (and thus
subcell stresses), and then using the resulting expressions for the subcell stresses given in terms of the
macroscopic strains and subcell plastic strains in the definitions for the macroscopic stresses, eqn (2). To
determine the explicit expressions for the effective stiffness moduli, plastic and thermal strains in terms
of the individual subcell moduli, plastic strains, thermal expansion coefficients and geometry based on
the reformulated approach, we start with the solution of eqn (30). The solutions for 75§ and Tgﬁ), and thus

_(Bv) —BY

and Gs; (see interfacial traction continuity equations (26) and (27)), are obtained in terms of the

inverse of the ABB’ D matrix elements appearing on the left hand side of eqn (30), denoted by m, and ele-
ments of the vectors on the right hand side of eqn (30). The knowledge of these average subcell stresses

Bn

provides the solution for Gj; as well. The resulting relations between the average subcell normal

stresses, the macroscopic strains and plastic and thermal subcell strains are,
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where
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Substituting eqns (39)-(41) in the definitions for the average subcell normal stresses given by the
first three of eqns (2), we obtain the macroscopic normal constitutive equations of the form given by eqn
(6). The elements of the macroscopic elastic stiffness matrix C*, the macroscopic thermal expansion
coefficient vector @” and the macroscopic plastic strain &, are explicitly given below in terms of the sub-
cell material and geometric parameters and subcell plastic strains. It is easily verified through numerical
experiments that, despite appearance to the contrary, the stiffness matrix C* is symmetric.

Ny Ny
z S hglyaff? —z Zhal b 3, Thglyclf?
y—l B=1 v=1 B—l

Cii Ci2 Ci3
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033 C3 Cxn Ci L M ) & C3 Cxn Cy | Mo
—h-ﬁz:]hﬁrgﬁ L) —;B%hﬁ(bgp)

Similarly, the relations between the average subcell shear stresses, plastic strains and macroscopic
strains are obtained from eqns (34), (35) and (38) in a straightforward fashion in the form (taking into
account the interfacial traction continuity conditions (32), (33) and (36), (37)),

12
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Substituting eqns (47)-(49) in the definitions for the average subcell shear stresses given by the last
three of eqns (2), we obtain the macroscopic shear constitutive equations of the form given by eqn (6).

The elements of the macroscopic elastic stiffness matrix C * and the macroscopic plastic strain € are

explicitly given in terms of the subcell material and geometric parameters, and plastic strains as follows,
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NUMERICAL RESULTS

We begin this section by comparing the times required by the original and reformulated versions of
the generalized method of cells to generate the thermal heat-up response of a unidirectional silicon
carbide/titanium aluminide (SiC/TiAl) composite. In the presence of temperature-dependent thermoelas-
tic properties of the individual constituents, as is the case here, this is the most computationally demand-
ing case since the solutions to the continuity equations in the original and reformulated versions, eqns
(16) and (30) respectively, have to be generated at each thermal load increment. The temperature-
dependent material parameters of the constituents are given in Table 1. The SiC fiber is treated as elastic
while the titanium aluminide matrix is treated as elastic-plastic with bilinear hardening. The fiber volume
fraction of 0.25 was employed in the calculations and the unit cell was composed of a square fiber
embedded in a square array. The thermal heat-up response was generated for several unit cells with a pro-
gressively greater number of subcells without changing the actual cell geometry. This was accomplished
by subdividing each of the four subcells in the original repeating unit cell into increasingly greater
numbers of subcells. Therefore, the thermal heat-up response obtained from repeating unit cells with dif-
ferent subcell discretization levels was expected to remain the same for both versions of the generalized
method of cells, which provided a check on the generated results. This is illustrated in Fig. 2.

The comparison of the CPU times required by the two versions of the generalized method of cells to
simulate the thermal heat up of the SiC/TiAl composite from 24°C to 815°C is provided in Table 2. These
results were generated on an IBM RISC System/6000, Machine Type 7012 (Model 39H). The CPU times
obtained using the original version of the generalized method of cells are given for unit cells containing
up to 12 x 12 subcells. The CPU times for unit cells containing more than this number of subcells were
not generated due to excessively long execution times required for their analysis. Alternatively, CPU
times obtained using the reformulated generalized method of cells were easily determined for unit cells
with as many as 100 x 100 subcells. In addition to the dramatic reduction in the computational time evi-
dent in the results generated by the reformulated version, it must be pointed out that the size of the unit
cell that can be analyzed using the original version is limited by the storage capacity of the employed
machine. Thus while unit cells consisting of 100 x 100 subcells can readily be analyzed using the refor-
mulated version, the maximum number of subcells employed in the original version is not nearly as large.
This can be easily understood by recalling that while the size of the matrix that must be inverted in the
original version is 6NgN, X 6NgN,, the size of the corresponding matrix in the reformulated version is
only (Ng +Ny) X (Ng + N,). Thus the difference in the size of the matrices that must be inverted in the
two versions increases rapidly with increasing number of subcells. It must be mentioned that further
reduction in the size of the strain concentration matrix in the original version could be attained by expli-
citly taking into account the commonality of the axial strain in all the subcells, and by separating the nor-
mal and shear contributions. However, this would not change the NgN, X NgN, order of magnitude of
the size of the strain concentration matrix in the original version.

We note that under certain circumstances, a further improvement in computational efficiency can be
attained by expressing the system of equations (30) either in terms of T, or T3. In this case, the
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calculation of the effective properties and thermal and plastic strains must be reformulated (the details of
which are not included here). However, as mentioned previously, the reduction in the size of eqn (30)
offered by this is offset by an increased number of matrix operations. For instance, for the thermal heat-up
problem considered above, the execution times obtained using the system of equations (30) and its
reduced counterpart are approximately the same for unit cells with up to 100 X 100 subcells. Increasing
the number of subcells to 300 x 300 does result in an increased efficiency of the reduced system of equa-
tions by over a factor of two (55,556 vs. 22,229 CPU seconds for the unreduced and reduced system of
equations (30), respectively). However, this increase is obtained only for unit cells containing a suffi-
ciently large number of subcells when the system of equations (30) is solved at every load increment, as
in the case of temperature-dependent elastic properties of the constituent phases. When the coefficients
appearing on the left side of eqn (30) remain constant during the loading history, as in the case of isother-
mal mechanical loading, reducing the system of equations (30) further offers no advantage. In fact, for the
boron/aluminum composite considered next, transverse loading of a unit cell with a square fiber contain-
ing 300 x 300 subcells required 6,521 and 31,306 CPU seconds using the unreduced and reduced system
of equations, respectively, almost a five-fold deterioration in the computations efficiency.

Next, we present numerical examples that illustrate the capability of the reformulated generalized
method of cells to efficiently model the response of unidirectional metal matrix composites with detailed
fiber geometries. In particular, we consider circular, elliptical (with an aspect ratio of 2.5), hexagonal,
diamond and square fibers embedded in square arrays (i.., square repeating unit cells). To obtain true
cross-sectional shapes of these fibers, unit cells containing 120 x 120, 68 x 68, 102 x102, 102 x 102, and
4 x 4 subcells were constructed for the circular, elliptical, hexagonal, diamond, and square fibers, respec-
tively, Fig. 3. The properties of the fiber and matrix phases were those of an elastic boron fiber and an
elastic-plastic aluminum matrix with bilinear hardening given in Table 3. Two hardening slopes for the
aluminum matrix were employed in the calculations, whose magnitudes were 1/10,000 and 1/5 of the
elastic Young’s modulus. The smaller hardening slope produces a response which is nearly elastic-
perfectly plastic, with practically no apparent strain hardening. Figure 4 presents the stress-strain curves
of the constituent phases employed in the calculations to generate the composite stress-strain response of
the different repeating unit cells under transverse normal loading. Transverse normal loading was chosen
because previous investigations have revealed that differences in the response of composites with dif-

ferent fiber shapes are most dramatic under this manner of loading (Arnold, et al., 1996).

Figure 5 presents the transverse response of unit cells containing 0.25 volume fraction of the five
differently-shaped fibers embedded in the aluminum matrix with the low and the high rates of strain har-
dening. In the case of the hexagonal and elliptical fibers, the transverse loading was applied in both of the
principal material directions x, and x3 due to the cross-sectional differences along these directions. When
the aluminum matrix exhibits no hardening, Fig. 5a, the effect of the fiber cross-section shape on the
transverse response is only evident, and to a very limited extent, in the elastic and the initial yielding
regions, with virtually no differences observed when the matrix is fully yielded. In the elastic region, the

transverse response of the unit cell with the elliptical fiber is somewhat stiffer in the x3 direction than the
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response of the remaining unit cells, however once yielding initiates this difference vanishes. The stiffer
response is expected since the major axis of the elliptical fiber lies along the x5 direction. Alternatively,
when the aluminum matrix strain hardens, Fig. 5b, the fiber shape has a more pronounced effect on the
transverse response in the plastic region. Substantial differences are now observed in the x, and x; direc-
tion responses of the unit cell with the elliptical fiber. The response of this unit cell in both directions is
stiffer than the responses of the remaining unit cells. Among the remaining unit cells, the one with the
square fiber exhibits the stiffest response which is slightly higher than the rest. No discernible differences
are observed among the responses of the unit cells with diamond, hexagonal and circular fibers.

Increasing the fiber volume fraction further accentuates the differences in the composite’s
transverse response due to the fiber’s cross-sectional shape. Figure 6 shows the results corresponding to
those provided in Fig. 5 when the fiber volume fraction is increased to 0.30. This fiber volume fraction is
close to the maximum allowable for the unit cell with the elliptical fiber, which is limited by the contact
of fibers along the major axis in two adjacent cells. This contact occurs when the fiber volume fraction is
0.31 in the case of fibers with an aspect ratio of 2.5, which is the present situation. When the aluminum
matrix exhibits no hardening, Fig. 6a, the effect of the fiber cross-sectional shape on the transverse
response in the plastic region becomes discernible, with the square and elliptical fibers being the most
effective in increasing the flow stress of the composite, and the diamond, hexagonal and circular fibers
the least effective. When the aluminum matrix strain hardens, Fig. 6b, the nearly touching elliptical fibers
produce the stiffest overall transverse response, with a substantially greater difference in the x, and x;
directions than that observed at the lower fiber volume fraction, Fig. 5b. The responses of the unit cells
with the remaining fibers are substantially lower, and the differences due to the fiber cross-sectional
shape somewhat more pronounced than in the 0.25 fiber volume fraction cases. Among these responses,
the stiffest response is observed for the unit cell with the square fiber and the most compliant response for

the unit cell with the circular fiber.

Figure 7 presents the results that correspond to those shown in the preceding two figures when the
fiber volume fraction is further increased to 0.40. This fiber volume fraction exceeds the maximum allow-
able volume fraction for the employed elliptical fibers, and thus the results are limited to unit cells with
square, diamond, hexagonal and circular fibers. In the case of the aluminum matrix with no hardening,
Fig. 7a, a substantial difference between the unit cell with the square fiber and the remaining unit cells is
now apparent in the plastic region. The square fiber provides a 50% increase in the transverse flow stress
of the composite relative to that of the diamond and circular fibers. The transverse response of the unit
cell with the hexagonal fiber is essentially the same for both directions of loading and lies above the
response of the unit cells with the diamond and circular fibers. It is characterized by slight strain harden-
ing which produces a transverse stress at the strain of 1% that is approximately 18% higher than the flow
stress of the unit cells with the diamond and circular fibers. When the aluminum matrix strain hardens,
Fig. 7b, increasing the fiber volume fraction from 0.30 to 0.40 also increases the differences in the plastic
regime due to the fiber cross-sectional shape. As in the preceding cases, the square fiber produces the stif-
fest response, while the circular fiber the most compliant. The response of the unit cell with the diamond
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fiber falls below that of the unit cell with the square fiber, while the response of the unit cell with the hex-
agonal fiber lies just above that of the unit cell with the circular fiber for both loading directions.

The effects of fiber shape on the transverse response of the unidirectional boron/aluminum compo-
site illustrated herein are consistent with those reported by previous investigators that were recently sum-
marized by Amold, et al. (1996). In particular, the effect of fiber shape at low fiber volume fractions is
small and increases with increasing fiber content. Square fibers provide the stiffest overall response
(when the matrix strain hardens) and the highest flow stress (when the matrix does not strain harden)
while circular fibers provide the most compliant response and the lowest flow stress. This is due to the
square fiber’s ability to provide a higher magnitude of hydrostatic stress in the matrix phase relative to the
circular fiber, thereby delaying localized yielding and providing constraint on the expansion of the plastic
zone throughout the matrix phase. Hexagonal fibers generate an intermediate response. It must be men-
tioned that the results reported in the literature addressing the effect of fiber shape on the response of
MMCs are typically limited in scope, with a limited number of fiber shapes and typically a single strain
hardening rate for the matrix phase. This is due to the computationally intensive finite-element approach
typically employed to investigate these effects. Alternatively, the results generated with the reformulated
version of the generalized method of cells that have been presented herein provide for the first time an
exhaustive comparison of the fiber shape impact on the MMCs’ transverse response as a function of the
fiber volume fraction and the matrix phase’s strain hardening capability. Similarly, the influence of the
fiber arrangement on the response of MMCs, which has a reportedly greater impact than the fiber shape,

can now be efficiently investigated.

The last set of results addresses the important question of the extent to which a given fiber shape
should be approximated (the discretization level of the repeating unit cell) in order to obtain sufficiently
accurate results for that shape. In particular, we consider increasing levels of cell discretization for a cir-
cular fiber to determine the level of microstructural refinement at which convergence to the "true” solu-
tion obtained from a highly discretized unit cell is achieved. The "true” solution is based on the previ-
ously employed unit cell containing a highly refined circular fiber shape generated using 120 x 120 sub-
cells. The unit cells employed in this convergence study are shown in Fig. 8. In addition to the unit cells
with the square fiber and the highly refined circular fiber, unit cells with a fiber in the shape of a cross
containing 6 x 6 subcells and circular fibers approximated by 8 X 8 and 18 x 18 subcells were considered.
The results for the transverse response of these unit cells containing the previously employed boron fiber
and aluminum matrix are presented in Fig. 9 based on a fiber volume fraction of 0.40 and no strain har-
dening of the aluminum matrix. As observed previously, the response of the unit cell containing the
highly refined circular fiber cannot be approximated in the plastic region by that containing the square
fiber at this fiber volume fraction. Despite the fact that the elastic responses are virtually the same, the
substantial strain hardening produced by the square fiber leads to the macroscopic flow stress for the
composite which is more than 50% greater than that due to the circular fiber. The cross-shaped fiber pro-
duces a flow stress which is 20% higher than that due to the highly refined circular fiber. This difference
reduces to 10% and 5% for the circular fibers approximated by 8 x 8 and 18 x 18 subcells, respectively.
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CONCLUSIONS AND FUTURE PERSPECTIVES

The efficient implementation of the generalized method of cells outlined herein greatly facilitates
analysis of unidirectional composites whose microstructures require a highly detailed geometric represen-
tation. This was accomplished by first reformulating the displacement continuity equations in the original
formulation of the generalized method of cells in terms of subcell stress components and then directly
incorporating the traction continuity conditions into these equations. This effectively replaces the subcell
strains by the subcell interfacial tractions as the basic unknown microvariables, which in turn substan-
tially reduces the size of the system of equations for the determination of these microvariables. This sub-
stantial reduction in the size of the system of equations for the unknown microvariables makes possible
the inelastic analysis of repeating unit cells containing thousands of subcells which could not be analyzed
previously. Consequently, repeating unit cells with highly detailed fiber shapes can now be analyzed effi-
ciently in the presence of matrix plasticity as demonstrated herein. Comparison of CPU times required by
the original and reformulated versions of the generalized method of cells to simulate the thermal heat-up
response of a SiC/TiAl composite with temperature-dependent thermoelastoplastic constituent properties
demonstrated a dramatic reduction in the execution times as a function of the number of subcells in the
repeating unit cell due to the reformulation. Further, while the thermal analysis of repeating unit cells
containing more than 100 subcells proved to be impractical using the original formulation, such analysis
was perfomed efficiently using the new formulation in a fraction of the time required of the original for-
mulation. This opens up the possibility of using the new formulation in conjunction with large-scale
structural analyses to investigate the response of composite structures with microstructures that require
detailed geometrical representations.

The examples presented herein were limited to the analysis of the transverse response of unidirec-
tional metal matrix composites with highly refined elliptical, circular, diamond, and hexagonal fibers.
The effect of the fiber cross section on the transverse response predicted by the reformulated generalized
method of cells was consistent with the results reported in the literature. An additional study into the
effect of different levels of circular fiber shape approximation on the transverse response of a undirec-
tional composite revealed that a unit cell discretized into 18 x 18 subcells closely approximated the
response obtained with a 120 x 120 subcell unit cell. The utility of the reformulated generalized method
of cells, however, should become even more apparent when investigating the response of unidirectional
composites with more than one type of fiber and with different fiber arrangements or arrays. The impact
of the fiber array architecture on composite response is known to be substantially greater than that of the
fiber shape. However, the impact of multi-phase fibers on composite response remains to be fully charac-
terized. This can now easily be performed using the reformulated generalized method of cells. In addition,
modeling of mechanisms that require detailed cell discretization, such as progressive damage accummula-
tion due to crack growth or progressive interfacial debonding can also be efficiently realized.

The outlined reformulation of the generalized method of cells in terms of subcell interfacial trac-
tions is expected to result in an even greater computational capability enhancement when applied to the
three-dimensional version of the generalized method of cells developed by Aboudi (1995) for modeling
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the response of inelastic multi-phase, short-fiber composites. This version has been employed by Herako-
vich and Baxter (1997) to investigate the effect of pore geometry on the inelastic response of porous
media. The three-dimensional generalized method of cells has also been employed to model the mechani-
cal response of woven graphite/copper composites by Bednarcyk, et al. (1997) using an embedded
micromechanics-within-micromechanics model approach. In this approach, the instantaneous response of
the individual fiber yarns, which occupy specified subcells in the three-dimensional representation of the
woven composite, is determined at each point along the loading path using the original method of cells
(Aboudi, 1991) and then subsequently used in the global three-dimensional generalized method of cells
analysis. However, the three-dimensional discretization of the repeating unit cell substantially increases
the number of unknown microvariables that must be determined, thereby placing a limit on the level of
microstructural refinement of the weave geometry. In order to be able to model three-dimensional woven
composites using a sufficiently detailed representation of the weave geometry, the three-dimensional gen-
eralized method of cells has recently been reformulated along similar lines presented herein for the two-
dimensional version. The details of this reformulation and the comparison of the analytical predictions
with experimental data will be reported in the future.

Finally, the reformulation of the displacement continuity equations in terms of the interfacial sub-
cell tractions as the unknown microvariables produces a system of equations characterized by a matrix
that consists of two diagonal submatrices and two fully-populated off-diagonal submatrices in the case of
the two-dimensional generalized method of cells. In the case of the three-dimensional generalized method
of cells, on the other hand, the matrix consists of thirty-six submatrices of which only twelve are fully-
populated. Therefore, further computational efficiency enhancement can be accomplished for both ver-
sions of the generalized method of cells through Orozco’s sparse implementation approach.
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APPENDIX

Relations between subcell normal tractions and macroscopic normal strains

To develop the relations between subcell normal tractions and macroscopic normal strains, we first
express the subcell normal strains in terms of the subcell normal stresses, and plastic and thermal strains

using eqn (25).
80 _sprs® L 5@ + ST + ofAT +EN (Al)
-('Z” =S 6(37) +SPY 6(227) S$y G(BY) +afPAT + E?,;BY) (A2)
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Using the constraint on the axial deformation in all subcells, E‘F;{) =%;;, in eqn (Al), the axial subcell
stress 6(37) is expressed as follows,
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The above expression is then used in eqns (A2) and (A3) to eliminate the axial subcell stress o(ﬁ from
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Equations (AS5) and (A6) are subsequently used in the interfacial displacement continuity conditions (12b)

—(Bn
and (12d) in order to express them in terms of the normal subcell stresses 0(22 and 3[? ,
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Use of the interfacial traction continuity conditions (26) and (27) in the above expresions yields eqns (28)
and (29).

Relations between subcell shear tractions and macroscopic shear strains

To develop the relations between subcell shear tractions and macroscopic shear strains, we first
express the subcell shear strains in terms of the subcell shear stresses, and plastic and thermal strains
using eqn (25).
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Equations (A9) through (A11) are subsequently used in the interfacial displacement continuity conditions

(12¢), (12¢) and (12f) in order to express them in terms of the subcell shear stresses o,% , 6'(1?), and —(2%7),

®
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Use of the interfacial traction continuity conditions (32), (33), (36) and (37) in the above expresions
yields eqns (34), (35) and (38).
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Table 1. Material properties of SiC fiber and titanium aluminide matrix.

Material properties 24°C  200°C 425°C 600°C 650°C 815°C

SiC fiber

o (x 107 c/em/ °C) 3.53 3.62 3.87 4.19 4.28 4.5
Young’s modulus (GPa) 4000  400.0 400.0 400.0 400.0 400.0
Poisson’s ratio 0.25 0.25 0.25 0.25 0.25 0.25

Ti-24Al-11Nb matrix

o (x 107 cr/em/ °C) 9.0 9.36 10.26 10.53 10.62 11.07
Young’s modulus (GPa)  110.3 100.0 75.8 86.2 68.2 11.2
Poisson’s ratio 0.26 0.26 0.26 0.26 0.26 0.26
Yield stress (MPa) 371.5 406.7 370.2 290.9 269.5 165.5

Hardening slope (GPa) 22.98 3.04 222 1.29 0.67 0.00

Table 2. Comparison of CPU times required by the original and reformulated versions of the generalized
method of cells to generate a thermal heat-up response of a SiC/TiAl unidirectional composite.

GMC version CPU times (seconds) as a function of the number of subcells

2x2  4x4 6x6 8x8 10x10  12x12  20x20  100x100

original 0.87 19 182 508 8,679 43,781 - -
reformulated 0.18 0.25 0.5 0.9 1.5 2.3 8.3 796

Table 3. Material properties of the boron fiber and aluminum matrix.

Material Young’s modulus (GPa)  Poisson’s ratio Hardening slope (GPa)
Boron fiber 414.0 0.20 N/A
Aluminum matrix 55.2 0.30 E/10,000 and E/S

Note: The hardening slope is the secondary slope in a bilinear stress-strain representation of the matrix

phase’s elastic-plastic response.
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Figure 1. A unidirectional composite modeled by the generalized method of cells as a doubly-periodic
array of fibers (top), and the details of the repeating unit cell discretization (bottom).
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Figure 2. Thermal response of a unidirectional SiC/TiAl composite predicted by the original and

reformulated versions of the generalized method of cells: (a) longitudinal; (b) transverse.
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Figure 3. Repeating unit cells with circular and elliptical fibers discretized into 120x120 and 68x68
subcells, respectively.
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Figure 3 (cont’d). Repeating unit cell with a square fiber discretized into 4x4 subcells.
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Figure 4. Stress-strain response of the constituent phases in the B/Al composite.
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Figure 5. Transverse response of a unidirectional B/Al composite with differently-shaped fibers

containing 0.25 fiber volume fraction: (a) H = E/10,000; (b) H = E/S.
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Figure 6. Transverse response of a unidirectional B/Al composite with differently-shaped fibers
containing 0.30 fiber volume fraction: (a) H = E/10,000; (b) H = E/5.
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Figure 7. Transverse response of a unidirectional B/Al composite with differently-shaped fibers

containing 0.40 fiber volume fraction: (a) H = E/10,000; (b) H = E/5.
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Figure 8. Repeating unit cells containing fibers with increasingly refined circular fiber shape.
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Figure 9. Transverse response of repeating unit cells containing fibers with increasingly refined circular
fiber shape.
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