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Geotail measurements compared with the motions of

high-latitude auroral boundaries during two substorms
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S. Kokubun, 6 T. Yamamoto, r B. Jacobsen, s A. Egetand, s J. C. Samson, g

D. 1_. Weimer, 1 G. D. Reeves, l° and H. L6hr ll,12

Abstract. Geotail plasma and field measurements at -95 RE are compared
with extensive _ound-based, near-Earth, and geo_ynchronous measurements to
study relationships between auroral activity and magnetotail dynamics during
the expansion phases of two suhstorms. The studied intervals are representative
of intermittent, moderute activity. The behavior of the aurora and the observed
effects at Geotail for both events are harmonized by the concept of the activation

of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of
one or more plasmoids down the magnetotail. The plasmoid_ must be viewed as
three-dimensional structures which are spatially Limited in the dawn-dusk direction.

ALso, recormection at the NEXL must proceed at variable rates on closed magnetic
field lines for significant times before be_nmng to reconnect lobe flux. This implies
that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison
with an embedded current sheet and that both the NEXL and distant X line can

be active simultaneously. Until recomaection at the N'EXL engages lobe flux, the
distant X line maintains control of the poleward auroral boundary. [f the NE,V_

remains active after reaching the lobe, the aurora[ boundary can move poleward

explosively. The dynamics of high-latitude aurora in the midmght re, on thus
provides a means for monitoring these processes and indicating when significant
lobe flux reconnects at the NE_Y_L.
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Introduction

Variations of the high-lar2tude ionosphere are reg-

ularly monitored by sensors at ground facilities and

on satellites in tow-Earth orbit rather than at their

source regions in the magnetosphere. Thus it is useful

to develop remote sensing techniques that improve un-
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derstanding of magnetospheric processes ;hrough their

ionospheric signatures. Such techniques have been de-

veloped and utilized to expand understanding of the

dayside magnetosphere [Newel/, et a£, 1991; Sandholt

et aL, 1990] and of sutmtorm onset; [McPherrvn et aL,

1973; Elphinstone et aL, 1995]. This study concerns

the dynamics of the night.side, poleward boundary of

the auroral oval. It is based on simultaneous ground

and space measurements taken on January 14, [994,

during two subs_rrrm extending from 0600 to 0730 and

from 1900 to 2200 LIT. Throughout this day _he Geotail

satellite was in or near the distant plasma sheet where

it observed substorm effects. Ground-based instrumen-

tation of the Canadian Auroral Network for the OPEN

Program Unified Study (CANOPUS) and International

Monitor for Auroral Geomagnetic Effecr-_ (IMAGE) sys-

terlm were operating in _he midnight sector dunng the

first and second subsr_rms, respectively. Auxiliary mea-

surements were also acquired by Defense Meteorological

Satellite Program (DMSP) satellites in _he ionosphere

and Los Alamos National Laboratory (LANL) satellites

a_ geosynchronous altitude.

The poleward boundary of the auroral oval lies at or

near the boundary between open and closed magnetic

field lines. Under conditions of steady convection the

locations of this boundary should vary smoothly with

the potential imposed across the polar cap by the solar
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wind [S/scoe, 1982]. The basic assumption underlying

this pedagogical model, namely, that steady convection

is possible in a stably configured magnetosphere, may

be incorrect [S/scoe and Cummings, 1969; Erickson and

Wolf, 1980_. In ways still not fully understood, this de-

viation from stable equilibrium gives rise to magneto-

spheric substorms. Figure 1 of Akasofu [1964} illustrates

the phenomenology of substorms in the nightside auro-

ral oval. The onsets of substorms are marked by the

brightening of the equatorwardmost auroral arc. This

is followed by a rapid polewaxd expansion of the ac-

tive region and the development of a bulge in the mid-

night sector. Thus the poleward boundary, of auroral
luminosity expands to high magnetic latitudes during

the expansion phases and retreats equatorward during

the recovery phases of substorms [Craven am/Fra_

1987].The poleward boundary isalsomarked by a pair

of oppositely directed sheet_ of field-alignedcurrents.

The more poleward current sheet isdirected into the

ionosphere [Fujiiet al.,1994].Opticaltechniqueshave

been developed to monitor the locationsand motions of

the poleward boundary ofthe auroraloval [de laBeau-

jerdidre et al., 1994]. From these the magnetotafl re-
connection rates have been estimated [B/anchard el aL,

19961.
The causal linkage between the magne_sphere and

the high-latitude ionosphere during substorms has been

a subject of long and fruitful research leading to the de-

velopment of a model whose general features are widely

accepted. Controversial detailsthat continue to be de-

bated have been reviewed by Erickson [1995]. After

southward turnings ofthe interplanetarymagnetic field

(IMF), merging with the Earth'sfieldisenhanced along

the dayside magnetopause. Magnetic fluxistransferred

from the dayside magnetosphere to the nightsidemag-

netotail.During the substorm growth phase, intensified

and reconfiguredmagnetotail currentscause the shapes

of fieldlinesin the nightside,inner magnetosphere to

stretchfrom dipolarto taillike[Kaufinann, 1987;Baker

and McPh_rro_ 1990].Onset occurs on magnetic field

linesthat connect the inner edge of the plasma sheet

with the ionosphere [Maynard etaL, 1996]and are fre-

quently associatedwith northward turnings ofthe IMF

[Ca_n et aL, 1975; Lyons, 1995].They are marked by

rapid dipolarizationof near-Earth magnetic fieldlines

and the development of westward electrojets spanning

a few hours of local time in the midnight sector [Singer

et aL, 1983]. This results from the partial diversion

of cross-tail currents through the auroral ionosphere by
means of filamentary field-aligned currents [Mc.Ph_v'rvn

et aL, 1973].

Hones [1977] outlined a global model of substorm dy-

namics that considers the consequences of a near-Earth

X line (NEXL) forming as substorm activity expands. A
byproduct magnetic O-type neutrallinealsoforms and

is expelled down the magnetotail as a plasrnoi& Sup-

portive evidence for the existenceof substorm-related

plasmoids in the magnetotail,as travelingcompression

regions,has been observed by IMP 8 [Slamn etaL, 1990]

and LSEE 3 [Slm_n etaL, 1993}.There isa nearlyone-

to-one correspondence between plasmoids observed in

the fartailby ISEE 3 and earlierground onser_ [Mold-

urinand Hughes, 19931. Since the launch of Geot_ila

number ofparticleand fielddetectionsof plasmoid sig-

natures have been reported [Prank et aL, 1994; Kawano

et aL, 1994; Mac/mia et aL, 1994; Nagai et aL, 1994;
Nishida et aL, 1994a, b]. Of particular interest for in-

terpreting Geocail data in this paper are the heuristic

model of M_ et aL [1994] for satellite encounters

with tallward propagating plasmoids and the classifica-

tion of variations in the magnetotail Bz aftex substorm

onsets developed by Naga£ et aL [1994]. The concept of

a quasi-stagnant plasrnoid introduced by Nishida et ai.

[1986] provides a context for slower moving plasmoids

propagating tailward inside a distant X line. This has

recently been expanded to deduce simultaneously active

near-Earth and distant X lines [see N/skuta at a/., 1996;

Hoshino et aL, 1996; Kawano et aL, 1996}.
In the following sections we first briefly describe the

ground- and spac_based instrumentation which provide

the data sources for our study and then present de-

tailed descriptions of measurements taken on January

14, 1994, during two intervals of moderate substorm

activity. In the discussion section we first compare
the Geotail measurements in these weak-to-moderate

events with predictions of the substorm plasrnoid model

[Hones, 1977]. The sequence of plasma flow directions

observed during the first event indicates that Geotail

exited a tallward moving plasmoid before its 0 line

reached XGSM = --95 R.E and entered a part of the
magnetotall that was largely unaffected by substorm

activity. Geotail returned to the plasmoid after its 0

line passed. The width of the plasmoid is limited in

the YCSM direction. In the second substorm period,

Geetail encountered signatures of a plasmoid with three

embedded 0 lines. It was only after a third electrojet

activation of this substorm that all previously closed

field lines in the magnetotail were pinched off at the

near-Earth neutral line_ Subsequently, open flux from

the lobe rapidly reconnected and then, as activity, de-

creased, the X line moved tailward past Ceotail. Pole-

ward expansion of the auroral boundary occurs when
open flux reconnects at a rate faster than steady state.

Significant reconnection must have occurred on closed

magnetic field lines within the plasma sheet prior to en-

gaging reconnection of lobe field lines in the near-Earth

region. When this new X line passed tailwaxd of Geo-

tail, the aurora had already begun to retreat equator-

ward, indicating that the period of rapid reconnection
had ended.

Data Sources

January 14, 1994, was the fourth most disturbed day

of the month, with Kp ranging from 3+ to 5. It was the

continuation of an extended period of magnetic activity
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Figure 1. Three components of the interplanetary
field, ifi geocentric solar-magnetospheric (GSM) coor-
didates, measured by IMP 8 during the last 8 hours of
January 14, 1994.

that sZarted in the middle of January 11 [Nishida et aL,

1995]. IMF data from _;he IMP 8 satellite have a gap

during the first substorm interval. It is probable that

IMF By was negative, since it had that polarity both

before and a_ter the data gap. Figure i shows [MF

measurements acquired during the last eight hours of

the day. All three components were highly variable.

This is characteristic of the entire day, including times

prior to the first sub, otto.

Ground-based and satellite measurements of the high-

latitude ionosphere are correlated with observations in

the magnetotail from the C-eo_;ail spacecraft near XCSM

of --96 RE. During the interval of the first subs_orm,

ground magnetometer data and optical measurements

came from CANOPUS stations in central Canada [Ros-

toker et aL, 1994]. Meridian scanning photometers were

located at three CANOPUS stations along the mag-

netic meridian passing through Pinawa, Gillam, and

Ranldn mitt. They are presented in a stacked-plot for-

mat to provide a him:ory o{ _:he onset: and po/eward

expansion of the subszorm. Magnetometer measm'e-

ments, taken along the same meridian, help identify the

time of onset and locate the electrojet currents. During

i the second interval, ground data came from the [M-

AGE magnetometer chain [Lfihr et aL, 19841, which

exr, ends from the Svalbard archipelagonorzh of Nor-

way into central Finland and from Trorn_ in northern

Norway. Meridian-scanning photometer and a/l-sky im-

ager measurements were available from Ny ,_esund at

Svalbard. The names and the geographic/geomagnetic

locations of ground stal;ions used in our s_udy of the

first and second subs_orm are _ven in Tables I and

2, respectively. In addition, supportive information is

provided by energetic particle precipitation [Hardy et

aL, 1984} and ion drift measurements [Green et aL,

1986] from the DMSP F8, F10, and Fll satdlites flying

in circular, Sun-synchronous orbits at an altitude of 840

kin. White-light optical images acquired by DMSP F10

have also been examined. Energetic ions and electrons

from the LANL geosyaaehronous satellites 1990-095 and

1991-080 [Belian et aL, 19921 provided information on

inner magnetosphere particle injections and constrained
substorm onset definition.

The Geotail spacecragt is spin stabilized, completing

20 revolutions per minute. Its spin axis is maintained

within 5° of perpendicular to the ecliptic plane. On

January 14, 1994, Geotail was at apogee in the mag-

netotail near XCSM = --96 RE, YGSM = 9 R_, and a

few R.¢ south of the GSM equatorial plane..Mlowing

for the 4° aberration angle of the solar wind, Geotail

was slightly to the eveningside of magnetic midnight

during the periods of interest. Data from the magnetic

field fiuxgate (MGF) instrument [Kokubun et al., 1994],
the electric field detector (EFD) [Tsuruda et al., 1994],

and the low-energy par'title (LEP) experiment [Mukai et

aL, 1994] are used in this study. There are _o triaxial

fluxgate magnetometers on Ceota_il. They are located

on a nonconducting mast as diat, anees of 5.12 and 7.15

rn from the spacecraft. Measurements for each compo-
nent were made with 15 bit resolution in one of seven

dynamic ranges from 4-16 nT to 4-65,536 nT at rares

of 16 s -t. These were averaged to produce one vec-

tor every 3 s. EFD measurements come from a double

probe thag uses spherical sensors. Each sphere is at-

tached to and separated from the spacecraft body by a
50 m wire depioyer. Data axe sampled as rates of 32

or 64 s-t. To avoid spurious effects due to asymmetric

photoelectron currents, only data, axxtuired while the

probes point in the ranges 60° to 120° and 240 ° to 300 °

with respect to the Sun, are used. These da_a are ;hen

fit to sinusoids to produce one measurement of the elec-

tric field components in the spin plane every 3 s. The

LEP has three sensor components. Within the magne-

tosphere the energy-p_r-mharge element is mtxv¢. ,,_ful.
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Plate I. Magnetic and optical measurements from CANOPUS stations along the Kaakin-Pinawa
magnetic meridian between 0530 and 0730 UT on January 14, 1994. The 630.0 nm emissions
were measured by three meridional scanning photometers a¢ the Rankin Inlet, Gillam, and Pin_wa
stations. The intensity versus magnetic latitude spectrogram was compiled assuming an emis-
sion altitude of 230 krm The solid, dashed-dotteM and dashed lines beneath the rnagnet_grarns
represent different Bz and Vx configurations encountered at Geot.ail and are described in the
text.

It consists of two nested quadraspherical electrostatic

analyzers. Directional differential fluxes for electrons

and ions are sampled simultaneously in 32 energy steps

and at seven spacecraft elevation angles. Electron ener-

$ies are sampled from 8 eV to 38 keV. Ion energies per

charge are measured from 32 eV/Q to 39 keV/Q.

First Substorm Interval: 0600 - 0730

UT

Plate 1 displays data from CANOPUS acquired dur-

ing the first substorm event of January 14, 1994. The

upper pane/s present the X component magnetic fields
measured along the CANOPUS meridian chain (Table

1). To assist the reader in comparing ground measure-

ment.s with those at Geotail, we have placed markings
beneath the magnetograms of Plate 1, giving the rela-

tive polarities of the earthward-tailward Vx component

of plasma flow and the north-4outh Bz component of

the magnetic field. Solid lines indicate periods when Bz

> 0 (northward) and Vx < 0 (tailward). Dotted-dashed

lines indicate times when Bz < 0 and V x < 0; dashed

lines indicate times when Bz > 0 and Vx > 0. While
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Table 1. Coordinates ofCANOPUS Stations

S_ation Abbreviation GLAT GLONG [LAT IV[LONG

RanRin Inlet RANK 62.8 ° 267.9 ° 73.5 ° 328.9 °
Eskimo Point ESKI 61.1 ° -065.9° 71.8 ° 336.5 °
Forz Churchill FCHU 58.8 ° 265.9 ° 69.5 ° 336.7"

GiUam GILL 56.@ 265.@ 67.2° 336.2"
IslandLake ISLL 53.9° 265.3° 64.7_ 336-4°

Phaawa PINA 50.2 ° 263. 9° 6I.0° 335. i°

the instances Bz < 0 and Vx > 0 have been observed

by Geotail [Nishida st aL, 19951, they were not found

during the periods of interes_ on January 14, 1994.

Substorm onset occurred at 0629 UT, jus_ south of

the Gillam station. It is marked by the star_ of negative

bays at GILL and ISLL. This onset is also clearly seen as

an intensification of 630.0 nm emissions, commencing at

0629 UT near 65 ° magne_-ic latitude (MLAT) then grad-

ually stepping poleward. A significant enhancement of

optical em/ssions occurred over Fort Churchill near 0636

UT. A decrease in the magnetic field X component also

began simultaneously at that s_ation. Optical activ-

ity progressed poleward to between 73° and 76 ° near
0641 UT. Note that after the initial activity the anapli-

_udes of the magnetic deflections and the intensity of

auroral emissions decreased slightly at the highex lati-

tudes. However, opuica[ and magnetic activity contin-

ued along the tow-latitude border of the aurora near

65 °. An intensification in the aurora aear 75 ° occurred

at 0650 UT. Shortly a_ter 0710 UT the intensity of op-

tical emissions a_ 74 ° dropped to background levels,

characteristic of the polar cap. This indicates that the

photometer scan crossed the open/closed field Line and

auroral oval/polar cap boundaries [de la Beau}ardiere et

al., 1994; Blar_chard et ai, 1996]. We conclude that the

auroral brightening at 0641 UT (2340 magn_ic local

time (MLT)) marks the polar cap boundary as being
neax 79 ° MLAT, the northern mos_ _ of optical

• ..... ,3dK L I 
ION L0 j 0mu. ion

0.I

IHI

90

-90
gr 05:_0 06:00 06:20 06:_0 07:'30 if/:?.0

P late 2..Measurements _om the LEP instrument on Geotail spanning the firm substorm interval
in an energy-versus-_ime color spectrogram format. The top two plots give the omnidirectional,
differential flux of electrons and ions. The lower spectrogram panes, f_om top to bosom give
_he directional differential flux of ions moving tailward, dawnward, earthward, and duskward,
respectively. The magnitude of B and the polar (theta) and azimuthal (phi) angles of B are
provided for reference in the bottom two line graphs.
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Table 2. Coordinates of IMACE Stations

Station Abbreviation GLAT GLONG MLAT MI, ONG

Ny Alesund NAL ,-8.9° [1.9° 74.9° [14.3°
LonKyeaxbyn LYR 78.2° [5.3° 73.8° [15.3°
Hornesuad HOP_ 77.0 ° L5.6° 72.8 ° L13.1 °

Hooch Island HOP 76.5 ° 25.0 ° 71.4 ° [07.0 °
S6r6ya SO[:_ 70.5 ° 22.2 ° 66.1 ° t10.3 °
Masi MAS 69.5 ° 23.7 ° 64.9 ° LI0.6 °

Muonio M-UO 68.0 ° 23.5 ° 63.5 ° 109.4 °
Pello PEL 66.9 ° 24.1 ° 62.4 ° 109.1 °

Ouluj_-'vi OUJ 64.5 ° 27.20 59.7 ° [10.2 °

coverage. The boundary retrea_ed equatorward in the

subsequent minutes. The data in Plate 1 indicate that

at ..-0720 UT another activation of the substorm cycle

initiated and la._ed beyond the limits of our study.

A dawn-dusk pass of the DMSP F8 spacecraft (not

• shown), near the time of s-uhstorm onset, crossed the
high-la:itude, auroral boundary at _78 ° MLAT and

1800 MLT. l_apid, antisunward plasma flows were de-

tected just poleward of that boundary at 0631:30 UT.

The boundary transition was sharp, with no particle

precipitation on i_ poleward side. The polar cap po-

tential measured during this pass was ---50 kV. The

DMSP Fll spacecraft crossed nightside, southern high

latitudes at 0656 UT. However, it did no_ fully enter

the polar cap, detecting intense auroral precipitation

up to its mo_t poleward excursion of-73.l°MLAT at

2336 MLT. The [ocar.ion of the polar cap boundary and

the most poieward precipitation observed by DMSP are
consistent with _he boundary of 630.0 nm emissions
shown in Place [ for that time. We also note that the

LASqL satellite 1990-095 was near 0300 LT..__t 0632 UT

it de_cted an energy-dispersed electron injection, indi-
cating that the sateifite was [oca_ed to the eas_ of the

substorrn-activated region.
Figure 2 displays magnetic and electric field as well as

as ion bulk flow components measured by Geo'tail dur-

ing the first substorm event as functions of UT and the
GSM locations of the satellite. Figure 2a shows the Bx

component (GEM) of the magnetic field and the total

magnitude of the magnetic field (dotted line). Figures

2b and 2c show Bz and the YGSM component of the

electric field, Ey, respectively. Figures 2d - 2g show the

vetociD, in the XGSM direction Vx, the component of

velocity parallel to the magnetic field (positive toward

the Earth), as well as the XcsM and Y_SM components
of the ion velocity perpendicular to the magnetic field,

respectively. Subs_orm onset was at 0629 UT as de_er-

mined from g-round measurements. Note that at this

time, and for most of the previous hour, the ion flow

was earthward at Geotail and Bz was positive. Plate 2

provides LEP mea._urement_ for the same period in an

energy-versus-time spectrogram format. The top plot

gives the omnidirectional, differential flux of electrons

with energies beVween 8 eV and 38 keV. The lower plo_

represent directional differential fluxes of ions with en-

ergies per charge between 32 eV/Q and 39 keV/Q. As

indicated on the plate, the look directions were selected

to sample ions _reaming in the ta/lward, dawnward,
earthward, and dusk'ward directions. With _he excep-

tion of a brief excursion into the plasma sheet boundary

layer (PSBL) at ---0540 UT, the spacecral% was in the

plasma shee_ prior to substorm onset, as indicated by

low magnetic fields and elevated levels of particle fluxes.

Thus the spacecraft was located in a region of closed

magnetic field lines, with the disr.anc X line ;ailward of

its position during the _ow_h and the early expansion

phases of the substorm.

The ion flow turned tailward at 0637 UT (8 rain after

onset), becoming _ronger and more energetic at 0642
UT. After a decrease a second enhancemen_ was ob-

served at about 0655 UT. During the period of strong

tailward flow, Bz was, with a few minor exceptions,

northward. Ey was negative, except when Bz briefly

changed sign, consistent with relatively steady tailward
flow that lasted more than 20 rain. The positive 8z in-
dicates that the satellite must have been on closed field

lines while experiencing this tailward flow or was ;all-

,yard of the O line within a plasmoid s_ruc_ure. No_e

that the beginning of the tailward flow at (3eo_ail oc-

curred "-8 min after mb_orrn onset, approximately the

time of auroral expansion to 70 ° MLAT (Plate l). The
increases in speed and intensity at 0642 and 0655 UT

coincided with brightenings of the aurora in the vicinity
of 75 ° M:LAT.

At 0659 UT the ion flow turned sunward and field

aligned as the spacecraft entered the PSBL. At this

point, Ev and Bz were both positive, consis_en_ with
the observed earthward ion flow. The flow turned tail-

ward as Bz briefly reversed sign and then returned

earthward with positive Bz. During the second period

of earthward flow, the plasma velocity in the XCSM di-
rection was field aligned. From about 0710 to 0720 UT,

Bz turned negative, and the plasma velocity became

strongly eailward; Ey remained positive. In this in-

terval of Bz polarity changes, Vy was significant and

positive (dawn- to-dusk}.

Second Substorm Interval: 1900 - 2200

UT

The second event did not have a clean onset. Figure

1 shows that after a period of primarily northward IMF,

Bz turned southward near 1815 UT. Large-amplitude
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Fi&,ure 2. Magnetic field, electric field and ion drift velocities'measured by the magnetic field
fluxgate (MGF), dectric field dete_or, (EFD), and low energy particle (LEP) instruments on
Geotail between 0530 and 0730 UT on January 14, 1994. GSM components of vectors are
presented- (a) The X and (b) Z of the magnetic field in nanoTeslas. (c) The dawn-dusk
componet of the electric field in milliVolts/mer_r. (d) The earthward velocity component in
kilometers per second. (e) The velocity components parallel to the Earth's magnetic field and
(f) the earthward and (g) dawnward velocity components perpendicular co the magnetic field.

oscillations with periods between 27 and 31 rain fol-

lowed. Figure 3 gives the variations of the X compo-

nent of the Earth's magnetic fidd observed done the

IMAGE meridian chainofmagnetometers. Activityini-

tiatednear the S_rSya (SOR) and Masi (MAS) stations

in northern Finland st -_1858UT. Itwas alsodetected

at Troms_ (not shown). Activity spread poleward, with
a second imtiation at 1925 UT. Table 2 indicates that

there is a 5.3 ° magnetic latitude difference between the

SOR and Hopen Island (HOP) stations. The station at

Bear Island (BJN) which usually bridges that gap was

not operational on that day. A third intensification be-
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Figure 3, Variations of the X component of the Earth's magnetic field measured at stations

along the IMAGE magnetometer chain during the second substorrn interval

gan near [950 UT at the SOR and MAS stations and

2002" UT at HOP. A comparison with data in Figure l

shows that that these activations occurred at_er north-

ward turnings a.ssociated with the large oscillations of

IMF Bz. Exact relationships between solar wind/IMF

variations and the substorm activations shown in Figure

3 are well outside the scope of this report.

Stack plots from the meridian scanning photometer

measurements at Ny ]klesund of 557.7 nm emissions are

presented in Figure 4. At 1925 UT the aurora appeared

on the southern horizon of Ny /ldesund and gradually

intensified, moving slightly poleward: After retreating

near 1942 UT it continued poleward, expanding rapidly

after 1955 UT. It crossed zenith at about 2000 UT and

expanded to cover the visible sky with aurora until 2005

UT, ,_l-sky images show that the decrease in the inten-

sity of the emissions, observed bevween 2010 and 2020

UT in Figure 4, reflects a reduction m optical emis-

sions over the entire sky. This occurred while IMF

Sz was northward for more than I0 rain. At 2025

UT the aurora began to retreat southward, reaching

and remaining near the horizon until 2140 UT when

there was a brief, poleward excursion. We have also

examined the meridian scanning photometer data from

Long:yearbyen located --_[00 km south of Ny _lesund

(R. Smith, private communication, [996), confirming

the sequence of events a_ Ny /Tdesund which are de-

scribed above. To help in comparing ground and Geo-

tail data, we have introduced the same symbolic mark-

ings that appear in Plate i beneath the magnetograrns

in Figure 3 and beside the photometer scans in Figure

4. The only additions are heavy lines to indicate times

when, as discussed below, s_rong earthward enhance-

ments of plasma flow were detected by Ceotail.

Optical and particle data (not shown) reveal that

DMSP F10 crns_ed the boundary of the polar cap into

the auroral oval a_; 2028 UT (TW M'LAT, 21.4 MLT).

The satellite passed to the west of Ny/_.lesund between

Svalbard and Greenland. These DMSP measurements

are consistent with our interpretation that the poleward

auroral boundary at Ny/_desund reflects the location of

the open/closed boundary [B/anehard et aL, 1996]. Po-

lar cap potentials measured by the DMSP satellites in

this time interval were in the 50 to 70 kV range. The

LANL satellite [991-080 was in the midnight sector. It

detected numerous, weak ion injections, the larges_ of

which were at 1852, [858, 1904, and 1909 UT. The most

pronounced etececron injections were detected at _ [927,

[941, 1951, and 2008 UT.

Figure 5 displays the Geotail data for this event in
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the same format as Figure 2. Omnidirectional electron

fluxes and quadrature flows of ions are shown in Plate 3.

To relate events at Geotafl to ground observations and

substorm phenomenology, we divide the Oeotail data

into four se_m'nents: (t) 1830 to 1925 UT, (2) 1925 to

2000 UT, (3) 2000 to 202! UT, and (4) 2021 to 2150

UT.

In segment I, Geotail entered the plasma sheet from

the southern lobe at 1830 UT. The flow was weak and

variable in direction until 1915 UT, when the plasma

flow velocity increased to ---250 km s-t and became

predominantly in the --XGsM direction. Bz remained

positive, indicative of closed field lines, and Ey became

slightly negative (dusk to dawn). This initial effect at

Geotail, relatable to ground activity, occurred -,, t7 rain

after the first electrojet activation when the average en-

er_es of electrons and ions rose to a few hundred eV

and a few keV, respectively. These values are consis-

tent with Ceotail measurements in the plasma sheet.

In segment 2, By increased in magnitude in the nega-

tive direction, becoming the dominant component. Be-

_veen 1932 and t938 UT, Bx became strongly nega-

tive, and the flow decreased to near zero as the satellite

approached the southern PSBL. The primary flow was

toward dusk but with regions of nearly isotropic fluxes

(Plate 3). At 1938 LIT t;he polarities of Bz, Ey, and

V,r, reversed, Bx returned to near zero, and the plasma

flow again became strongly tailward. By was large,

negative, and dominant in the next 3 min, after which

it returned to near zero. This reversal in Bz is differ-

ent from the one in the previous substorm in that Ey

changed from negative to positive. It was positive on

both sides of the Bz reversal in the previous substorm

period. There was no evidence of significant earthward

flow. Between 1950 and 1955 UT, Vx peaked at > lO00

km s -t, and Ey and Bz also maximized. At 1955 UT

these quantities quickly decreased with the flow return-

ing to a nearly constant 500 km s- t which was observed

through most of segment 3.

In segment 3, BX became large and positive, indi-

cating that Ceotail was in or near the northern PSBL.

Since ion temperatures and densities remained high, the

satellite did not enter the lobe. Data displayed in Plate

3 show that both the flow speed and the thermal spread

of the ions decreased. Attention is directed to the Bz

and Ey measurements in Figure 5 taken between 2000

and 2020 UT. For the first half of _his period Bz was

positive and became negative for the second half. The
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polarity of E-¢ also changed from negative to positive
consistent with continued tailward convection. These

characteristics are similar to the polarity reversal at
1939 LIT. Recall also that it was in this interval that the

most poleward excursion of the aurora was observed at
Ny ]_lesund.

For segment 4, betnveen 2021 UT and 2030 UT, Bz
was almost exclusively positive, and after a brief neg-

ative excursion Ey remained positive. From 2028 UT
until 2139 UT the dominant flow was earthward ex-

cept for near-zero-velocity episodes when the satellite
crossed into the southern lobe between 2031 and 2043

UT. Earthward flowing plasma and positive Bz indi-

cate that the satellite was again on closed field lines.

Upon reentering the plasma sheet at 2043 LIT, the ion

fluxes detected by Geotail were variable. A series of

earthward-flow intensifications appeared at 5 to 8 min

intervals. The most severe velocity decreases occurred

during brief excursions into the lobe from the PSBL.

Thus, while the flow appears highly variable at the lo-

cation of Geotail, it probably did not turn off between
observations of fast flows. The several reversals of Bx

during this period indicate that the tail was flapping

with the satellite alternately in both the northern and

southern PSBLs. The peaks in Vx,_ occurred when the

satellite was crossing the center of the plasma sheet.
These flow enhancements continued until 2140 UT when

the flow turned tailward for _10 min. This time Bz did

not reverse, indicating that the tailward plasma ftow oc-

curved on dosed magnetic field lines and was caused by

processes happening nearer to the Earth than Geotail.

Discussion

Data presented in the previous sections can be used

to study interactions of the magnetotail with the pole-

ward portion of the auroral oval during substorms. In

both cases the development of activity was measured by

magnetometers arrayed along magnetic meridians in the

midnight sector. In neither instance, however, did we

observe an isolated substorrn that developed steadily

from a clear onset, through expansion, to maximum

epoch and recovery. Multiple a_'tivations occurred in

both periods. Given the variability of the IMF on Jan-

uary 14, 1994, this is not surprising. The activities did

produce auroraJ substorrn signatures, including rapid

poleward expansions of aurora in the midnight sector,

both within the auroral zone and at its poleward bound-

ary. To uncover relationships between auroral activa-

tions and expansions and magnetospheric phenomena,

it is useful to place the Geotail measurements in appro-

priate contexts of substorm-related events in the magne-

totail and then ch_k the consistency of interpretations
against auroral signatures.

Most suhstorm models explain the observed growth-

phase stretching of field lines as caused by intensified,

plasma sheet currents and convection resulting from the

enhanced transfer of flux from the day to the nightside

of the magnetosphere until the start of the substorm

expansion phase. Hones [1977] proposed that substorm

expansion begins with the formation of a NEXL where

magnetic reconnection proceeds on closed field lines,

quickly cutting through to the lobes. This magnetic

topology requires that neutral lines in the near tall form

in pairs. Because of the configuration of nearby field

lines, neutral lines where merging occurs are called X

lines. Tallward of the X line, is a closed structure with

an O-type neutral line near its center. Plasma trapped

in the O configuration constitutes a plasmoid which con-
vects down the tail away from the Earth. In the case

illustrated by Hones [1977] all of the closed magnetic

flux initially extending tailward of the NEXL becomes

pinched off, and initially open field lines in the lobes

of the tail reconnect at the NEXL. The rapid inclusion

of newly reconnected flux in the magnetotail causes the

closed field line region, and with it the NEXL, to expand
tailward. After this the NEXL becomes the "distant"

X line until the next substorm cycle.
For a satellite such as Geotail located in the distant

plasma sheet, the signatures predicted by the NEXL

model during a strong, isolated substorm are clear. (1)

Some time after substorm onset, tailward plasma con-

vection should be detected in a region with Bz > 0 and

Ey < 0. (2) As the center of a plasmoid approaches the

spacecraft, the polarities of Bz and E}, should reverse.

(3) For a brief period after the X line passes the sate]-

lite, Bz > 0 and Ey < 0 should be detected. (4) As

the magnetotail approaches equilibrium, both Bz and

Ey should be positive as plasma convects earthward.

Another characteristic of plasma dynamics implicit
in the NEXL model relates to the directions of field-

aligned flows in the PSBL. Schindler and Birn [1987 I

showed that conservation of momentum requires flows
of plasma along magnetic field lines near the separa-

trices associated with magnetic X lines. Thus, if an

X line is located earthward/tailward of the observ-

ing spacecraft, plasma flow should be field-aligned and

tailward/earthward in the boundary layer between the

lobes and the plasma sheet [Machida et at, 1994].

The presence of flux ropes make signatures of 0 line

crossings more complex than in the simple picture of

item 2. The relationship between plasmoids and flux

ropes in the magnet_tail is a much-discussed subject

[Slavin et al, 1995, and raferences therein}. Flux ropes

result from field-aligned (force-free) currents that pro-

duce helical magnetic structures around high-field cores.

Slavin et at [1995] found that during ISEE 3 encounters

with plasmoids, flux ropes were almost invariably em-

bedded within the cores. The only possible encounter

with the core of a plasmoid in the period studied here

occurred near 1938 UT when Bz reversed sign. An ex-

amination of By measurements (not shown) atthis time

indicates that flux-rope signatures are indeed present.

Flux-rope field lines connected at both ends to the

Earth experience a drag from the ionosphere that might



MAYNARD ET AL.: GEOTAIL MEASUREMENTS AND AURORAL BOUNDARIES 9565

explain the relatively slow speeds with which some large

plasmoids are observed to propagate down the magne-

totail [Hughes and Sibeck, 1987].

Nagai et aL [19941 examined Bz responses in the

magnetotall a_ter 89 well-documented substorm onsets.

They identify six categories. Bipolar responses indicate

clear Oeotail encounters with plasmoids in the plasma

sheet. They are the mos_ commonly observed signature

in the range -70 > XGSM > --I.00 RS. The bipolar re-

sponse in Bz has an initial increase, a sharp reversal to

a large negative peak, then a recovery to lesser negative
values. The average duration between peaks was 4 rain.

The Sz reversals are consistent with Geotail crossing

0 lines at the centers of plasmoids. The piasmoid may

contain _t flux rope at the center [n which case By and

IBI maximize. VVhen Geotail was in the lobe of the
magnetotall, the passage of a plasmoid was marked by

traveling compression re_ons (type T). Less common

responses included fluctuating Bz (.type F), often as-

sociated with multiple onset substorrns, and situations

when BZ remained northward (type N) for extended

periods after substorm onsets.

It is seen that the Ceotail measurements reported

here do not fit eamly ingo the simple pictures of the

Hones [1977] model. We contend that phenomenolog-

[rally during the 0600 - 0730 UT interval Geotail en-

countered a type N _ructure. In the [900 - 2200 UT

interval, Ceotall detected one _rpe F and two modified

bipolar signatures. In reality, the region of substorm

engagement is finite in the YCSM direction [Singer et

aL, [9831. Also, not all substorms are isolated, strong,
or even continuous. Moderate to weak events with mul-

tiple activations provide different perspectives for un-

derstanding substorm processes. In the following para-

_aphs we arg-ue that the observed signatures reported

herein are consistent with the basic concepts of Hones

[1977] if we expand the picture to three dimensions and

allow for a significant period of reconnect[on on closed

magnet;c field lines before the lobes are engaged at the

NEXL. This implies a thick plasma sheet in the near-

Earth region, perhaps with an embedded thin current

sheet [see Sergeev et aL, 1993 I. It also means _hat

the distant X line can a_ively add flux to the cto_ed

field line region until reconnect[on at the NEXL breaks

through to the lobes. This concept is implicit in the

quasi-stagnant plasmoid observations of Nishida et aL

[1996] and Hoshino et at [1996] where _wo X lines can

be active simultaneously.

Comparing Geotail data with auroral observations is

difficult since it is impossible to know exactly which re-

gions are magnetically conjugate. We submit the follow-

ing postulates to constrain the interpretation of evenm

at both locations. (1) Field lines in the nights[de auro-

ral oval with optical emissions are closed. (2) Electrons
are accelerated near active X lines. Those with direct

access to the ionosphere produce auroral emissions. (3)

Merging of closed flux at a NEXL proceeds for a finite

interval before engaging lobe field lines. (4) Until a

N-EX_L engages lobe field lines, the motion of the pole-

ward boundary of the auroral zone is controlled by the

distant X line. (5) Activity at a N'EXL does not neces-

sarily correlate with the activity of a di_ant X line. (6)

Onset brightening of the equatorwardmost arc is not

directly caused by a NF__X_L.

Although the second disturbed interval appears phe-

nomenologically more complex, it i_ easier to reconcile

with predictions of the plasmoid model. We thns con-

sider it before discussing _he significance of measure-
ments taken between 0600 and 0730 UT. The relation-

ship between the observed auroral motions and intensi-

fications with magnetotail dynamics are then explored.

Second Substorm Interval

Observations from the second substorm interval are

quite complex. To help the reader _asp them as a

whole, Figure 6 provides a summary timeline. Begin-

ning at £858 UT, gTound magnetometers detected an
activation and three distinct intensifications of the au-

roral electrojet. At the time of the first observed elec-

trojet activation the LA_NL satellite 1991-080 at geos_a-

_ionary altitude in the midnight sector detected a small
ion injection (the second in a series of small changes).

The etectrojet intensifications at 1925, i950, and 2002

UT were followed by electron injections detected by the

LANL satellite. In a previous s_udy a few minutes de-

lay was observed between dipo[arization/_ound onset

and the arrival of injected particles at the altitude of

the Combined Release/Radiation Effects Satellite (CR-

KES) (in the vicinity o£ oo_eostationary altitude) [May-

nard et aL, [996 t. We suggest that. as conditions pro-

gTessed from the initial _ound activity at 1858 UT. a

reconnection site developed. The relaxation of the elec-

rzojet at -,,1909 UT indicates tha_ reconnection at the

newly created NEXL either slowed or _opped at this
time. As a result of this activation, some field lines

with 0 topologies are introduced into the magnetotai].

These field lines and their associated plasma, plasmoid

1, should migrate tailward. This is consistent with the

detection of _ailward flowing plasma by Geotall with

Bz > 0 ai%er 1915 UT and the reduction of flow _t

1932 UT. The second intensification of the electrojet

and particle injection corresponds _o a reactivation of
the re,connection site. This activity created more O-

type field lines and plasmoid 2. Note that ptasmoid 2

encompasses plasmoid [ since no lobe field lines have

yet reconnected. Plasmoid 2 is marked by the passage
of an 0 line at 1938 UT and the reduction in flow at

1955 UT. Once more, however, reconnect[on then either

slowed or stopped. It was only during the third acti-

vation, beginning at ---1950 UT, that reconnect[on at a

NEXL engaged previously open flux. This was followed

•by the passage of the O Iine of plasmoid .3 at 2006 UT

and the X line at 2021 UT. We return to this point in
the d_ion of auroral boundary dynamics.

Figure 7 sketches the cycle of event_ as a sequence of
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Figure 6. Summary timeline of observations during the second substorm int_srval of January 14,
1994.

magnetotail "states" during the four segments of this

substorm interval. Prior to 1900 UT, convection in the

plasma sheet near -96 RE is earthward under the influ-
ence of a distant X line. Soon after this time a small

pla.smoid forms and moves tailward. The first sign of

its existence appears at 96 RE in the form of a reversal

of Vx and Ey, with Bz remaining northward. In the

second segment the ion flow remained tailward as the

enlarged plasmoid 2 approached and moved past Geo-
tail. The a_ociated O line crossed the location of Geo-

_ail at 1938 UT. In segment 3 aU of the initially closed

field lines become pinched off, and the reconnection of

open flux proceeds. As this third pl_moid, 3, convected
downtail, Geotail moved into the PSBL where it could

not fully encounter the O line typology. It did, however,

detect the telltale signature of its passage in the bipolar

responses of Bz and Ev. The reduction in velocity near

2025 UT marked the passage of the plasmoid. Geotail
then moved into the southern lobe of the tail. When it

reentered the plasma sheet, Bz, Ey, and Vx were again

positive, consistent with the X line being rmilward of its
location. The enhancements in the earthward flow of

energetic ions after this time are consistent with an ac-

tive X line being located tailward of the satellite.

First Substorm Interval

Figure 8 gives a timeline overview of gound and

space observatio_ during the first substorm interval.

Onset at 0629 LIT was marked by an activation of

the electrojet and a brightening of aurora at 65° in-

variant latitude (ILAT). The LANL satellite 1990-095,

_-3 hours to the east of midnight, observed an ener_v-

dispersed electron injection beginning at -_0632 UT.
These data indicate that a dipolarization of the Earth's

magnetic field occurred in the midnight secvar.

The question arises regarding when a NEXL formed

and a plasmoid propagatmd down the magnetotail. A

schematic representation of a scenario that reconciles

NEXL model predictions with Geot_il observations is

given in Figure 9. Figure 9a shows an equatorial-plane

projection of the quiet time rnagnetotail with a distant

X line. Convection is earthward/tailwaxd on the earth-

ward/tailward sides of the X line. Figure 9b indicates
the changed situation after the Ume of onset when the

NEXL Xj forrn_ Figure 9c shows a plasmoid with a fi-

nite size in the YcsM direction after it has propagated to

the vicinity of Geotail. The model predicra that Geo-

tail should first detect tailward flowing,, plasma sheet
ions with Bz > 0. From about 0638 to 0700 UT _his
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Figure 7. Schematic representation of magnetotail dynamics during the second substorm interval
of January 14, 1994. The various diagrams show meridional cuts of the magnetotail appropriate
['or the different time segments defined in the text.

was true. However, instead of observing a reversal in
the polarity of Bz, Oeo_ail moved into a portion o[ the

PSBL with earthward ion flow. At 0711 UT, Vx became

strongly tailward and Bz < 0. At 0718 UT, Bz turned

northward, but the flow of plasma remained tailward.

Despite apparent difficulties the Geotail meazure_

ments are not inconsisten_ with NEXL generated plas-

mold predictions of the Hones [1977] model. Critical

for this interpretation is the observation of earthward

flowing ions in the PSBL after 0700 UT. This can only

mean that Ceotail was temporarily on field lines whose

dynamics were controlled by remnants of the distant X

line. Recall that Singer et al. [1983] found that outside

of a limited region in local time, field tines remained
taillike after substorm onset. Thus a NEXL and its as-

sociated piasmoid are of limited YCSM extent. We also

note that Kivelson et al. [19931 and Angelopouios et aL

[1996] postulated that plasmoids must have limited ex-

tent in the dawn-dusk direction in order to explain the

lack o[" observation of a plasmoid _rom specific identified

substorms. This case provides observational evidence of

those conjectures.

As suggested by the Ceotail "trajectory" in Figure 9c,

the satellite exited a tailward moving plasmoid across

its dawnside border. At a distance of 96 R.¢ the magne-

totail moves by ---[.5 R._ ['or every 1° change in the solar

wind direction. When Geotail returned to a region of

plasma sheet fl-xxes at 0711 UT, both Bz and Vx were

negative. There are only two possible interpretations
of this observation. Geotail either crossed the distant

X line or reentered _he plasmoid on the earthward side
og its 0 line. Particle measurements sho_'n in Pla_e_

2 and 3 suggest tha_ the latter interpretation is more
plausible. [n Plate 2 the earthward flowing ions in the

PSBL (0700 - 0705 UT) had energies centered a_ a few

hundred eV. During the Bz < 0 interval the central en-

exgies of the tailward moving ions were > [0 keY. They

_rongly resemble ehe ion fluxes detected from 1940 to

[952 UT (Plate 3) in the southward Bz portion of pins-

mold 2, discussed above. For the first interpretation

to be correct it is necessary to po6tulate that the dis-
cant X line underwent a sudden activation and moved

earthward. However, Plate [ shows neither enhanced

emissions nor new magnetic deflections near the auro-

ral oval's poleward boundary _ that time. Rather, the

polarity reversal of Bz a_ 0718 UT, with Bx > 0, indi-

cates that Geotail returned to the plasmoid earthw£rd

of the O line. The X line passed the satellite near 0720

UT when Bz again turned positive. The persistence of

tailward flow after the passage of _he X line suggests

that a second, near-Earth X lineX2 ['orrnednear the

time of the second activation(0720 LIT) ofthe electro-
jet at Churchill.

Auroral Boundary Dynamics

The Geotail measurements provide clues for under-

_anding auroral signatures during substorms just as

those auroral signatures constrain our interpretation o[

Oeotail signatures. The observed magnetotail dynamics

seen at Geotail have been interpreted within the context
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Figure 8. Summary timeline of observations during the first substorm interval of January 14,
1994.

of NEXL-generated plasmoids. We have deduced that

during the second substorm interval, closed flux did not

completely pinch off at the NEXL until the third elec-

trojet activation. Afterward, open flux reconnected at
the NF_DCL, activity diminished, and the X line eventu-

ally passed tailward of GeotaiL In the first substorm

case, Geotail moved outside and then back into a plas-
moid that was spatially limited in the YCSM direction.

The poleward boundary moved equatorward during this
whole process. The following harmonizes these conclu-
sions with the auroral observations.

Consider first some consequences in the auroral iono-

sphere of merging of lobe flux at an X line. We assume

that the energized electrons responsible for the observed

auroral emissions move along dosed magnetic field fines.
In the midnight sector at high latitudes the electric field
causes the feet of these field lines to oonvect with an

equatorward component of drift. A typical magnitude
for this component is _1 km s-1. In steady state flow

the boundary between open and closed field lines in

the auroral ionosphere should be stationary. Reconnec-

tion proceeds at a rate such that the inflow of open

field lines to the boundary exactly matches the outflow

of newly closed field lines. If a NEXL becomes active

on closed magnetic field lines, the particles accelerated

there produce auroral signatures. Until the last closed
field line pinches off, auroral emissions axe confined to

latitudes equatorward of the mapping of the distant X

line. As merging of closed flux at the NEXL proceeds,

then electrons accelerated in the process acquire access

to the auroral ionosphere at progressively higher lati-
tudes. During this time, however, the distant X line still

controls the motion of the poleward auroral boundary,

and closed flux can be added or not as indicated by the

boundary motion. Rapid poteward movement of bright

aurora inside the poteward boundary indicates rapid re-

connection at the NEXL. Rapid poleward movement of

the poleward boundary indicatesrapid reconnection of

lobe flux, most likely at the NEXL.

Plate 1 shows that auroral emissions brightened at

65 ° at the time of onset (0629 UT). In the following
12 rain the bright aurora expanded to 76 °, a distance

of _1200 kin, and approached the poleward boundary
of the oval. We believe that the 0636 UT auroral en-

hancement at Churchill (69.5 ° ) was related to the acti-
vation of NEXL 1. Note that there are no emissions at

this latitude prior to that activation, including the time
of substorm onset, which places NEXL activation after
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Figure 9. Schematic representation of magnetotaii dynamics during the first substorm interval of
January [4, [994. Equatorial plane projections of the magnetotail appropriate for (a) presubstorm
period, (b) substorm onset, (c) the period near 0700 UT when Ceotail entered the plasma _heet
boundary layer, and (d) the la_ etec_rojet activation of the interval are shown. The polarities of
Bz in the different re$ons are indicated.

onset as determined by ground magnetogran_ and en-

hanced aurora at the lower border. During the expan-

sion phase the poleward boundary steadily retreated
equatorward while the active aurora expanded pole-

ward. This poleward expanding auroral acZiv/ty was

totally on the closed field lines. Note that the pole-

ward auroral boundary retreated equaCorward through-

out she expansion phase, indicating that She di_ant X
line controlled lobe flux reconnection, but recoanection

was at a slower rate than flux transport from the day-

side. On the basis of the poleward migration of the

active aurora to the poleward boundary we conclude

that reconnection progressed to the lobe magnetic field

lines but did not engage the lobe until after 0720 UT

when the poleward boundary started moving poleward.
The lack of an enhancement in auroral emissions as

the poleward boundary moved equatorward near 0711
UT ks cormmten_ wiLh our s'uggestion that the di_ant

X line did not move earthward; rather, Geotail exited

and reentered a piasmoid that was spa_ial|y restricted
in local time.

The second interval was marked by three electro jet
intensifications at 1858, 1925, and 1950 UT. The fir_

produced no optical emissions in the Ny fldesund field

of view and only a very small emission at the edge of

the field of view 100 km to the south (at Long:year-

byen). The second intensification was accompanied by

--,i kR emissions from near the southern horizon at Ny

AJesund. Only after the intensification of 1950 UT did

the aurora rapidly expand poleward across the sky. We

associate the poleward movement _rith rapid reeonnec-
tion of lobe field lines at the NEXL. As the ra_e of re-

connection slowed, the NEXL moved down the tail, and

the poleward auroral boundary retreated equatorward.

Open flux was being added faster on the dayside than it

was being reconnected on the nightside. That the X line

continued to be active after its passage beyond Ceo_ail

is evidenced by enhanced earthward flows. Brighten-

ings in the aurora are seen at the poleward boundary

during the equaLorward retrea_. Some of these produce

equatorward moving auroral forms. It is not possible

to correlate zhese events directly with individual en-

hancemenr_ of earthward flows at Geotail; however, we

believe that these phenomena may be related, although
not on a one-to-one basis. The flow enhancements are

both spatially and temporally variable.

Our two evenr,s are examples of magnetotaiis with

multiple, active X lines. Hoshino et aL [1996] reached
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asimilarconclusionforaneventoccurring 3 days after

our events. The concept of a quasi-stagnant plasmoid

[Nishida et ai, 19861 was originally postulated for slowly

moving plasmoids, and it was described as a preexpan-

sion phenomena. The slow moving plasmoid was of-

ten followed by a fast moving plasmoid associated with

a substorm expansion phase. Our events occur after

the onset of ionospheric substorm activity. The quasi-

stagnant event seen by Kawano el al. [19961 was also

after a ground onset, and it was also followed by a fast

moving plasmoid associated with a later onset. Our re-

sults, complemented by those of Hoshino et al. [1996]

and Kawano et al. [1996], show that moderate and vari-

able substorm activity can create slow tailward moving

plasmoids that are within closed field lines being added

by an active distant X line.

Energization from the Reconnection Process

During the first event and the first two activations of

the second event, tailward velocities observed at Geo-

tail increased with time. This may reflect the location
of the NEXL relative to the lobe. The outflow from the

X line occurs at some fraction of the Alfven velocity

in the inflow re, on {Vasyliunas, 1975]. The Alfvdn ve-

locity is smallest in the center of the plasma sheet and

increases toward the PSBL. Thus we expect to detect

increasing velocities outflowing from reconnection sites

as merging progresses toward the lobes. If merging is
intermittent, if the distance to lobe magnetic field lines

in the near tail is large, and/or if closed field lines are

being added by the distant X line almost as fast as field

lines are merged by the NEXL, that velocivy increase

could be over a significant interval of time (e.g., Fig-

ure 5 between 1915 and 1955 UT). Consistent with our

interpretation that lobe flux reconnected at the NEXL

during the third activation (-,-1950 UT), the velocity
measured by Geotail during the encounter with plas-
mold 3 remained constant with time. We note a sim-

ilar increasing trend in Vx in Figure 1 of Hoshino et

al. 11996]. They deduced that two X lines were simul-

taneously a_ive for that event, although they did not
comment on the trend or the cause.

A related effect has been found by Baumjohann et al.

[1996] in a superposed epoch analysis of substorm effects

between "10 and 19 RE inside the NEXL region. For sub-

szorrns which are not magnetic storm associated, the

average earthward ion bulk speed gradually increases

for the first 45 min after onset, while for storm associ-

ated substorms, it peaks much more quickly. They con-
clude that it is unlikely that lobe magnetic field lines

arereconnected in the nonstorm case, and since the av-

erage ion temperature is similar in each category, the

heating of plasma sheet ions is governed by reconnec-

tion on closed plasma sheet lines rather than open lobe
field lines in the storm-related substorms. Our results

suggest that the dynamics of the night,side aurora, es-

pecially at and near the poleward boundary, provide a

means to monitor if, how quickly, and to what extent

the reconnection process engages the lobes.

Conclusions

Activity observed in these two events provides insight

into the behavior of substorms and the magnetotail un-

der variably driven conditions. These may be more rep-

resentative of day-to-day routine occurrences than com-

monly studied isolated or large events. On the basis of

the data comparisons and the premises for interpreta-

tion stated above, we conclude the following:
1. Reconnection of closed flux at a NEXL can occur

either continuously or intermittently for significant time

intervals. During the first event near-Earth reconnec-
tion reached the lobes in about 15 min. In the second

event it took three activations and more than 40 min to

engage lobe field fines.

2. Plasmoids are three-dimensional structures, which

are spatially limited in the YGsM direction. This is nec-

essary to explain Geotail magnetic field and ion flow

measurements during the first event. It is also con-

sistent with near-Earth observations showing that the

region of dipolarization is confined to a few hours in

magnetic local time [Singer et al., 1983].

3. Since the poleward boundary of the aurora delin-
eates the last closed field line between the lobe and the

PSBL, its'motions are controlled by balances between

the rates of flux transport from the dayside and recon-

nection in the magnetotail. Rapid poleward motions of

that boundary, as observed a2ter the third activation of

event 2, indicate high rates of reconnection of lobe flux,

most likely at a NEXL.

4. Fxluatorward motions of the poleward, auroral

boundary during periods of increased magnetic activ-

ity are consistentwith residuallobe-fluxrecormection

by the distantX line. Photometer measuremen_ in

Plate 1 indicatethat at such times, NEXL activityis

on closedmagnetic fieldlines.

5. Multiple activationsof a near-Earth reconnection

sitecan resultin multiple NEXLs before redonnecting

lobe flux.Reconnection at the distantX linecan con-

tinue to supply energy and closed fluxto the system

and prolong the time requiredbeforethe NEXL begins

reconnecting lobe flux.

6. The long duration of NEXL activation on cl_ed

magnetic field lines su_ests that the plasma sheet was
relatively thick. It mav have had embedded within it a

thin current sheet usually associated with NEXL acti-
vation.

7. Optical and Geotail observations during event 1

provide evidence that the onset of the reconnection at

the NEXL occurs after the beginning of activity de-

zected by ground magnetometers.

This study suggests that ionospheric variations can

be used to monitor activity in the magnetotail. The

motions of the auroral oval's polewaxd boundary in the

midnight sector reflect the dynamic balance between

flux transport from the dayside and reconnection in the

magnetotaiL They also serve as proxies for indicating
when near Earth neutral lines assume control of lobe

flux reconnection.
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