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GLOSSARY

Algorithm

A mathematical rule or procedure for solving a problem.

Central Composite Design (CCD)

Central composite designs are first order fractional factorial designs augmented by

additional points which allow the estimation of a quadratic surface model.

Complex Systems

Complex systems consist of a number of subsystems, each embodied by a particular set

of components. Each component has its own working principle.

The compromise Decision Support Problem

A multiobjective decision model which is a hybrid formulation, incorporating concepts

from Mathematical Programming and Goal Programming.

Concurrent Engineering

A systematic approach to the integrated, concurrent design of products and their related

processes, including manufacture and support. This approach is intended to cause the

developers, from the outset, to consider all elements of the product life cycle from

conception through disposal, including quality, cost, schedule, and user requirements.

Control Variables

Variables which a designer has direct control over. A designer's control vector consists

of the design and state variables of a particular subsystem.

Decision-Based Design (DBD)

The fundamental paradigm for designing and creating design methods, rooted in the

notions that the principal role of a designer, in the design of an artifact, is to make

decisions.

xxi



Decision Support Problem (DSP)

A formalization of a type of a decision made by a designer.

support problems exist, namely, selection and compromise.

Two types of decision

Decision Support Problem Technique

An implementation of Decision-Based Design. It is a technique to support human

judgment in designing systems which can be manufactured and maintained through the

solution of Decision Support Problems.

Design

A process of converting information that characterizes the needs and requirements for a

product into knowledge about a product.

Design of Experiments

The formal techniques of planning an experiment so that appropriate data can be

collected and analyzed by statistical methods, resulting in valid and objective

conclusions.

Design Methodology

Includes the study of how designers work and think, the establishment of appropriate

structures for a design process, the development and application of new design methods,

techniques and procedures, and the reflection on the nature and extent of design

knowledge and its application to design problems.

Design Variable

Independent variables which a designer must determine values for.

Discipline

A branch of knowledge or teaching. In the context of complex systems, a discipline is a

subsystem that is governed by similar physical phenomena.

Efficiency

A measure of the swiftness with which information and design knowledge can be used by

a designer.
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Effectiveness

Represented by the correctness, completeness, and comprehensiveness of design

decisions.

Game

In a general sense, a game is a set of rules completely specifying a competition, including

the permissible actions of, and information available to each participant, the criteria for

termination of the competition, and the distribution of payoffs. From a systems

perspective, a game consists of multiple decision-makers who each control a specified

subset of system variables and who each seek to minimize their own cost functions

subject to their individual constraints.

Game Protocols

The relationships that exist among a group of players. The protocol dictates the

interactions between and information available to each player in a game.

Game Theory

The study of the strategic interactions among players in a game.

Global Sensitivity Equations

A set of equations relating the local partial derivatives and the global full derivatives of

the state variables with respect to the design variables using the chain rule.

Lexicon

A stock of terms used in a particular subject, style, or profession.

Mixed Discrete/Continuous Optimization

The modeling and solution of problems which contain both discrete/integer (only a finite

number of possible values) and continuous (any real value) design variables.

Multidisciplinary Design Optimization

A methodology for the design of complex engineering systems that are governed by

mutually interacting physical phenomena and made up of distinct interacting subsystems.

°°°
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Players in a game

Classically, players may be people, groups of people or more abstract entities like

computer programs or "nature". In design, a player is a disciplinary designer or design

team and their associated analysis and synthesis design tools.

Rational Reaction Set (RRS)

Conceptually, the RRS is an embodiment of the decision making strategy of a player as a

function of the decisions of another player.

Response Surface Methods (RSM)

A collection of statistical techniques for empirical model building and model

exploitation. RSM seeks to relate a response to a number of predictors that affect it.

Satisficing

The idea that a solution is "good enough", but not necessarily the best.

State Variables

Dependent behavior variables which are functions of the design variables.

controls the state variables indirectly through the design variables.

A designer

Subsystem

A part of the system which may be a system itself, such as the propulsion system of an

aircraft. A subsystem is considered to be a group of elements governed by the same

physical phenomena. In other words, in this dissertation, a subsystem is considered to be

discipline-defined.

System

A functionally related group of elements.

Tabu Search

An iterative improvement procedure which starts from an initial solution and attempts to

determine a better solution by applying a greatest-descent procedure, subject to short and

long term memory criteria.

Taxonomy

The science, laws, or principles of classification.
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NOMENCLATURE

ALP

CCD

CE

DBD

DOE

DSIDES®

DSP

FALP

GA

NAND

NASA

NORMAN®

RRS

RSE

RSM

SAND

SA

S

TQM

TS

X

X

Z

Adaptive Linear Programming

Central Composite Design

Concurrent Engineering

Decision-Based Design

Design of Experiments

Decision Support in the Design of Engineering

software)

Decision Support Problem

Foraging-directed Adaptive Linear Programming

Genetic Algorithms

Nested Analysis and Design

National Aeronautics and Space Administration

Simulation experiment sequencing system

Rational Reaction Set

Response Surface Equation

Response Surface Methodology

Simultaneous Analysis and Design

Simulated Annealing

State variable vector

Total Quality Management

Tabu Search

Design variable vector

The control vector of a designer, X = {x,s}

Deviation function in a compromise DSP

Systems (computer
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SUMMARY

Consider the statement, "A system has two coupled subsystems, one of

which dominates the design process. Each subsystem consists

of discrete and continuous variables, and is solved using

sequential analysis and solution." To addressthistype of statementinthe

design of complex systems, three steps are required, namely, the embodiment of the

statement in terms of entities on a computer, the mathematical formulation of subsystem

models, and the resulting solution and system synthesis.

In complex system decomposition, the subsystems are not isolated, self-supporting

entities. Information such as constraints, goals, and design variables may be shared

between entities. But many times in engineering problems, full communication and

cooperation does not exist, information is incomplete, or one subsystem may dominate

the design. In addition, these engineering problems give rise to mathematical models

involving nonlinear functions of both discrete and continuous design variables.

In this dissertation an algorithm is developed to handle these types of scenarios for the

domain-independent integration of subsystem embodiment, coordination, and system

synthesis using constructs from Decision-Based Design, Game Theory, and

Multidisciplinary Design Optimization. Implementation of the concepts in this

dissertation involves testing of the hypotheses using example problems and a motivating

case study involving the design of a subsonic passenger aircraft.
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CHAPTER 1

FOUNDATIONS FOR INTEGRATED SUBSYSTEM

EMBODIMENT AND SYSTEM SYNTHESIS

In this dissertation the principal goal is to:

Develop a framework for the decision support of formulating a
multidisciplinary design problem, decomposing the problem into
disciplinary subproblems, modeling the resulting interactions according to
realistic assumptions, and solving and coordinating the disciplinary
mathematical models.

To establish some context, the following terms are defined:

• System - a functionally related group of elements or components.

• Subsystem - a part of the system which may be a system itself, such as the

propulsion system of an aircraft.

• Complex system - a system composed of a number of subsystems where

each subsystem is embodied by a particular set of components. Each

component has its own working principle. In designing complex systems, it is

difficult to make tradeoffs without understanding the complete relationships

between all of the components that constitute a subsystem and all of the

subsystems that constitute the system.

• Design team - a group of designers who work on the design of a particular

subsystem of a complex system and their associated analysis and synthesis

computer tools.

• Embodiment - to represent in concrete form. Concrete form could be

mathematical, geometrical, or prototypical, for instance. Embodiment in this

work means to represent numerically.



This chapter begins with the motivation and background for the dissertation. In Section

I. 1, the overall context of this work is presented which includes discussion of three topics,

namely, interactions in design, classification systems, and solution of design models. As a

frame of reference, in Section 1.2, background material on Decision-Based Design, the

compromise DSP, the ALP Algorithm, and Game Theory is presented. The principal goal

of this work is summarized in Section 1.3. Included in Section 1.3 are the fundamental

questions to be addressed. Associated with the implementation strategy for achieving the

principal goal, the major tasks are identified, the research hypotheses are introduced, and

the verification strategy for the dissertation is presented. In Section 1.4, the contributions

of this work are justified by summarizing the deliverables and establishing the scientific

relevance of this dissertation. The organization of the chapters and appendices of this

dissertation are given in Section 1.5.



1.1 MOTIVATION AND BACKGROUND

The fundamental contributions of this dissertation are:

• techniques for implementing game theoretical protocols in the design of

complex systems characterized by multiple disciplinary design teams.

Developing and integrating game theoretical constructs in the design of complex

systems is a primary contribution.

• an effective solution scheme for mixed discrete/continuous design problems.

The analogy and constructs that guide the behavior of the scheme are a primary

contribution.

Associated with the fundamental contributions, the secondary contributions of this

dissertation are:

• a three-level lexicon for the classification of the design of complex systems and

their associated design processes. In this contribution, a representation of the

product and process is abstracted using linguistic entities.

• a formal proof of the characteristics of a transformation function, as a technical

criticism. Nonlinear optimization theory is used in a proof by induction that

addresses convex transformations.

To establish the motivation and background for these contributions, consider the statement,

"A system has two coupled subsystems, one of which dominates

the design process. Each subsystem consists of discrete and

continuous variables, and are solved using sequential

analysis and solution." In order to address this type of statement in the design of

complex systems, three steps are required, namely, (1) the embodiment of the statement in

terms of entities on a computer, (2) the mathematical formulation of the coupled

subsystems problems, and (3) the resulting solution and coordination at the subsystem and

system levels. Developing an algorithm to integrate these three domain-independent steps
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in complex systems design is the fundamental motivation for this dissertation. In Figure

1.1, the fundamental research areas of this dissertation, which correspond to the three

required steps to address the previous statement, are given in the context of the title. In the

top, left corner of Figure 1.1, the foundation for the algorithm is developed through the

classification of the problem and process. In the top, right comer, the mathematical

formulation of the coupled subsystem models is developed (corresponding to the

"integrated subsystem" part of the title). On the bottom row, the capabilities to solve the

subsystem problems, while coordinating them into an functional system are developed

(corresponding to "embodiment and system synthesis" part of the title). The corresponding

section numbers, where each area is discussed are given in Figure 1.1. Figure I. 1 is used

throughout Section 1. I as a frame of reference.

J Problem and process [_ Subsystem formulation _classification J Communication channels [i!
Section 1.1.1 1! Sections 1.1.2 and 1.1.3 }ii!i

An  j22: l for Integrated Subsyst¢m
Embodiment and System Synthesis

4.

I Solution of mixed models liNonconvexity [i

....................Se_ion 1_1.4.........................[!
Resolution of subsystem interactionMaintain system integrity

Sections 1.1.2 and 1.1.3 _!!

@
Figure 1.1. Areas of Focus in this Dissertation



The fundamental, big picture umbrella under which this dissertation can be classified is

Complex Systems, as shown in Figure 1.2. The focus under complex systems is

developing tools and techniques for subsystem embodiment and system synthesis. The

research areas of interest are product and process classification, subsystem interactions in

design, and the solution of complex design models, precisely the three steps mentioned

earlier. These research areas are introduced in the context of design, engineering, and

science in Section 1.1. The fourth secondary research area, a generic mathematical

decision-making construct is addressed in Section 1.2.1. Literature reviews of these areas

are provided in Chapter 2. The various tools relating to each research area axe introduced in

Figure 1.2 and are presented in detail in Chapter 3.

I Complex Systems 1Big Picture s_tio_sl.l.l _d l.l.2

Focus S_uonI.I

Research
Areas

Tools Used

./ / \
II_ Classification / Approximation Models [ Construct /

Section 1.1.1 _ Sections l.l.2and 1.113 Section 1.1.4 _ Sectio_ 1.2.1 ,)

MDO Classifications Game Theory

DSPT Response Surface Methodology ALP Algorithm

Game Theory Taylor's Theorem Tabu Search Compromise DSP

Global Sensitivity Equations

Figure 1.2. The Structure of the Literature Background Review

1.1.1 Engineering Design Processes and the Design of Complex Systems

Design is quite unlike invention in that there is

some type of rational methodology to solving

problems. Invention involves repeated trial-

and-error experimentation whose succes
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sometimes even depends upon luck. In design, there is a need to plan the process of

designing. This planning takes the form of meta-design (Mistree, et al., 1990b, Rogan and

Cralley, 1990) where the product and process are partitioned and planned. Meta-design is

defined as "the design of the design process" (Mistree, et al., 1990b). Various theories and

methodologies have been developed in the engineering design community for describing

and improving engineering design processes. Although models of design processes vary

significantly for different streams of research, there are some models that are widely

acceptable and make intuitive sense to many designers. An example is the four major

design phases identified by Pahl and Beitz (Pahl and Beitz, 1984):

• Clarification of the task - collection of information about the requirements to be

embodied in the solution and also about the constraints.

• Conceptual design - establishment of function structures, the search for suitable

solution principles and their combination into concept variants.

• Embodiment design- starting from the concept, a designer determines the

layout and forms, and develops a technical product or system in accordance

with technical and economic considerations. Embodiment design is sometimes

called preliminary design.

• Detail design - all the details of the final design are specified and manufacturing

drawings and documentation are produced.

The design of complex systems follows similar phases. Using aircraft design as an

example, in Figure 1.3, the aircraft design process is roughly divided into four major

phases, i.e., conceptual, preliminary, detail design, and production and support (Schrage,

1992). In Figure 1.3, the flow between different phases and the major tasks implemented

in each phase are illustrated. The focus of this dissertation is on the first two stages of

Figure 1.3, conceptual and preliminary design. Although, the techniques developed herein

can be applied at any point along a design timeline using the appropriate assumptions, the



primary areas of application are when distinct subsystems can be identified and are

accounted for in development of a system configuration. More detailed descriptions of the

decisions made in each phase and the disciplines involved in aircraft design are provided by

Bond and Ricci (Bond and Ricci, 1992) and Raymer (Raymer, 1989).

Mission

Requirements

Conceptual Conceptual
Baseline

• General arrangement & performance
• Representative configurations

• General internal layout

AllocatedBaseline

+
PreliminaryDesign

I

• System specifications
• Detailed subsystems

• Internal arrangements
• Process design

Detailed ProductionDesign Baseline

Production& Support

Figure 1.3. Four Phases in Aircraft Design (Schrage, 1992)

In aerospace engineering, FLOPS, the FLight OPtimization System (McCullers, 1993)

and ACSYNT (ACSYNT Institute, 1992), the AirCraft SYNThesis programs are the two

most popular programs for the conceptual design of aircraft. Both of them employ a

number of discipline specific modules to perform aircraft analysis and synthesis.

However, the modules are all contained within the same computer simulation program. In

the later stages of design, when domain-dependent codes and tools are used by different

design teams who may be separated by geography, by computer platforms, or by

organizational structure, the luxury of having one encompassing analysis code is not



available. Different design teams may prescribe to using different design methodologies,

analysis routines, and synthesis tools. The task of partitioning and planning the processes

to design a complex system, being performed by multiple design teams is a difficult task.

Each subsystem team may perform its own form of meta-design, but at the system level,

meta-design or process design is rarely established. In (Bailing and Sobieski, 1994,

Cramer, et al., 1994), process classification schemes for complex, multidisciplinary

systems are described. This is one of the primary capabilities of Section 1.1 which is

necessary in the design of complex systems. Within each subsystem, a form of the

linguistic design processes described in Figures 1.2 and 1.3 may certainly be employed,

but at the system level, a common linguistic form of classification, communication, and

comparison is needed (Balling and Sobieski, 1994, Cramer, et al., 1994). It is among the

interests in this dissertation to expand these forms of classification from a decision-based

perspective. Foundational to these interests is the motivation to develop domain-

independent methods and tools that can facilitate the use of domain-dependent

analysis/synthesis codes for the design of complex systems.

Broadening the scope to the product realization processes, in Figure 1.4 a typical product

realization process is shown. The process flows from left to right along the x-axis, from

conceptual design to preliminary design to support and beyond. It is recognized that

conceptual design is not the origin of this process. Needs recognition, problem definition,

etc. must occur before conceptual design. At some point in the process, distinct

disciplinary subsystems can be identified (y-axis in Figure 1.4). Design teams for each

subsystem must embody their subsystem which requires the solution of a disciplinary

design model (z-axis in Figure 1.4). The focus of this dissertation is on the y and z-axes of

Figure 1.4. In other words, the focus is on a snapshot in time during a design process.

Certainly at different times in a design process, relationships and model characteristics may



change, but one of the advantages of the algorithm developed in this dissertation is its lack

of dependence on time. Therefore, as long as a system can be represented mathematically

on a computer, the algorithm can be utilized, even though the relationships among

disciplines/subsystems and the types of decision support tools may change.

Dm

k2

[ Sequential design process 

Figure 1.4. A Typical Product Realization Process

Support

Decomposing a problem into smaller problems is a common approach in the sciences. In

(Simon, 1982) it is asserted that the design of a complex system can be facilitated through

the use of decomposition and coordination techniques.

To design such a complex structure, one powerful technique is to discover viable

ways of decomposing it into semi-independent components corresponding to its

many functional parts. The design of each component can then be carried out with



some degree of independence of the design of others, since each will affect the

others largely through its function.

Consider the typical approach in chemistry to such a problem:

Often, the only possible course is to decompose a large system into smaller ones

and to analyze each subsystem in semi-isolation with simplifying assumptions.

Surrounding processes ... are held in a fixed state (Courtois, 1985).

In design, however, there is no such thing as a "fixed state." Design teams are constantly

making decisions that affect not only their own subsystems but affect the other subsystems

as well. Assuming the other sub-problems are in a "fixed state" while working on one sub-

problem is very limiting. Therefore, modeling interactions in design mandates accounting

for changing states of the other subsystems. However, many times the requirements and

objectives of the design teams are in conflict with each other. Concurrent and mutual

satisfaction of multiple design teams is difficult and rare. The nature of conflict in design is

discussed in the next section.

1.1.2 The Nature of Conflict in Design

Specialization and generalization are two

concepts diametrically opposed, in theory. In

practice, however, the two concepts are

struggling to find identities in the same

An Algorithm for Inte_rrated Subsystem
Embodiment and System Synthesis

marketplace. Companies preach customization of their product and processes, but also

emphasize the broad applications of their practices, processes, and engineers. At an

engineering level, specialization must occur. In the design of complex systems, such as

aircraft, the system must be decomposed into smaller sub-problems which can be handled

by groups of specialists in specific disciplines. On the other hand, the disciplinary
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informationmustbecoordinatedto producea functional system.This taskbecomesone

for the companymanagementwhich seesthe broader,moregeneral,big picture issues.

However, what happenswhen disciplinary specialistsareeachgovernedby their own

"generalist"who prescribesa set of local objectives for the group to meet? Or, what

happenswhen the disciplinary groupsareseparatedgeographically,informationally, or

organizationally? The general,systemlevel objectivesmayget lost in thedetails. Each

disciplinarygroup typically resortsto fulfilling their own requirementswhile leavingthe

considerationof nonlocal requirementsto othergroups. Although, this approachmay be

advantageouslocally, when a generalview of the systemis taken, the individually

motivateddecisionsof the groupsmany timesarenot advantageousfor the systemas a

whole.

FromDeBono (DeBono, 1985),whorefersto conflicts in design,

We find a genuine clash of interests. The parties want things which are

incompatible ... A basic design technique is move away from the obvious clash

point and to explore benefits and values in various modifications of the situation.

The separation between the disciplinary design teams is made wider because of the different

approaches to analysis, synthesis, and optimization each group may employ. Uniting each

local approach under a global conceptual umbrella is a difficult task. The distinct nature of

each subsystem necessitates the capability of a design framework to handle a wide variety

of methods and approaches to similar problems. This capability must stretch across a

design process, from the meta-design stage to the conceptual design stage, to the detailed

and embodiment stages.
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In light of thepreviousdiscussions,thisdissertationis motivatedby theneedto understand

andmodel the interactionsin the designof complexsystemsin order to developdesign

methodsand tools which can assistdecision makersin makingdecisionsthroughouta

designprocess. Specifically, the primary interest in this dissertationis to develop an

algorithmcapable of handling the domain independent tasks of classifying approaches to a

complex design problem, modeling realistic interactions among disciplinary subsystems,

and resolving embodiment and coordination problems. In addition, this dissertation

represents an effort to integrate concepts from Concurrent Engineering, Game Theory, and

Decision-Based Design with the research issues of Multidisciplinary Design Optimization.

Although cooperation in design is ideally the best scenario, in practice, it is not the most

common. The nature of cooperation and communication in design, and the implications

and difficulties therein are explored in the next section.

1.1.3 Cooperation and Communication: The Ideal Cases

The principles of give and take pervade our society.

In Descent of Man (Darwin), Charles Darwin was

aware of the role of cooperation in human evolution,

writing, "the small strength and speed of man, his

want of natural weapons are more than

counterbalanced by his ... social qualities, which

An Algorithm/:or Intefrated Subsystem

Embodiment and System Sunthesis

4.

lead him to give and receive aid from his fellow men." The notions of cooperation and

mutual help are further explored in societal and cultural environments in (Nowak, et al.,

1995). It is asserted that cooperation has assisted the processes of evolution in everything

from humans to small organisms. Isolated factions of noncooperation may exist but it is

the innate cooperative drive of society and nature that pervades. These principles can be
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mappedto theprocessesof design. Sinceengineeringdesignis a human-centeredactivity

usually performedby multiple designers,opportunitiesfor cooperationexist from the

personallevel to theanalysislevel. Engineeringdesign,becauseof itsinherentrelianceon

cooperationamongdesignersanddesignteams,iscertainlynotaforum for noncooperation

to flourishatany levelof detail.

In theearly stagesof complexsystemdesign,systemlevel approachesandtools canbe

used(e.g.,FLOPSandACSYNT in aircraftdesign). Cooperationandcommunicationare

not aproblemsincethedesignersatthesystemlevelareeachfocusedon thesameproblem

andareusingthesamedesigntools. But at somepoint, thesystemlevelproblembecomes

too complexandit mustbedecomposedinto smallerproblems. With referenceto Figure

1.4,this typically occursin the conceptualor preliminary stages.When subsystemsare

identified, designteamsassigned,andvariousmethodsand tools areemployedby each

group, ensuring cooperation and communication becomes a significant hurdle.

Researchersaddressingtheissuesof cooperationhavetakenadistinctly differentapproach

to the problem than what is observedand practicedin industry. Previousresearchin

modeling the interactionsamongdisciplineshasassumedsomesort of cooperationand

communication,eitherimplicit or explicit (Bloebaum,et al., 1992,RenaudandGabriele,

1993, Sobieszczanski-Sobieski, 1988), but in industry practice has experienced a

somewhatdifferentenvironment.From (Duffey, et al., 1996)for example,it is found that

the leadersof two designteamsdesigningaircraft in the samecompanyfor severalyears

had never met face to face until only recently. The cooperationand communication

modeledin academicresearchis usuallynot applicablein industrial contexts. More times

than not, designprocessesare still largely sequential(Sobieszczanski-Sobieski,et al.,

1984),andmanytimesthedesigngroupsdo not even communicate (Duffey, et al., 1996).

Furthermore, there exists computational difficulties in ensuring cooperation and

13



communication in an industrial context. The gap between the research perspective and the

industrial perspective of a multidisciplinary design problem is shown in Figure 1.5.

Capabilities to:
• model and predict design results in

cooperation,
noncooperation,
sequential, and
concurrent design processes

• develop technk

I i i I i i i I i l l I i liI i I

Boeing'sdesign of the
777

ues to facilitate best practice

This t

Figure 1.5. Bridge Between Practice and Research in Multidisciplinary
Design Problems

To bridge the gap between research and practice from the industrial side, companies such

as the Boeing Aircraft Company are making significant strides. In their recently publicized

design of the 777 aircraft, Boeing has had great success revamping their design processes

to facilitate cooperation and communication among the various disciplinary design teams.

Principles from Concurrent Engineering (CE) (Kusiak, 1993) and Total Quality

Management (Brassard, 1989) were successfully applied at the personal/organizational

level and to a lesser extent at the computational/mathematical level. Extension of CE
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principlesfrom thepersonallevel to themathematicallevel is notatrivial conceptualjump.

It is partof themotivationof thisdissertationto providemathematicaltechniquesandtools

for applying principlesof CEand SystemsEngineering. While theseefforts arepaying

greatdividends(Duffey, et al., 1996),therestill existsagapbetweenresearchandpractice

in modelinginteractionsin complexsystemsdesign. A contributionof this dissertationis

to helpbridge thisgapfrom anacademicresearchperspective.A major pointof departure

in thisdissertationis developingmethodsandtechniquesto notonly modelcooperationin

complex systemsdesign,but also model sequentialprocessesand processeswhere the

designteamsdo not communicateor cooperate. Ideally, the keystoneof this bridge, as

shownin Figure 1.5, would bedecision supporttools with the capability to model and

predict results in cooperation, noncooperation, sequential, and concurrent design

processes,and techniquesto facilitate and implement best practice strategies. Full

constructionof sucha bridgerequiresfurtherwork both from theindustrialandacademic

perspectivesintegratedwith theconceptof organizational or enterprise design where the

structure of corporations are determined based on design product and process issues. Of

course, developing the capability of modeling different interaction protocols means

developing the means to solve the models. In the next section, hurdles in the solution of

the models are discussed in the context of complex systems.

1.1.4 Mathematical Hurdles to System Embodiment

In the discussion in Sections 1.1.1 and 1.1.2,

analysis and synthesis tools are referred to in

the third person. That is, they exist, and the

effectiveness of them is left up to the

An Algorithm for Integrated Subs_Istem
Embodiment and Stlstem Synthesis

disciplinary designers. From the title of this

dissertation, the phrase "subsystem embodiment and system synthesis" connotes ideas of
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solving multiple design models. In order to complete to the "algorithm" of this

dissertation, a solution scheme is developed to help designers solve the disciplinary

models. Two characteristics of complex design problems are addressed in the solution

scheme, mixed discrete/continuous problems and nonconvex functions.

In complex systems, the design variables, for the most part, can be set to any real value. In

other words, the design variables are continuous. There are, however, times when

variables exist which can only take on certain values. For instance, the number of engines

in an aircraft can only be an integer, and the number of teeth on a gear can only be an

integer. Moreover, when existing components are selected "off the shelf," there are only a

finite number of possible values. For instance, gears usually come in standard discrete

sizes. Bolts and springs usually come in similar standard sizes. Analyzing functions of

these types of variables, integer and discrete, presents mathematical challenges, since the

derivatives of the functions with respect to the integer or discrete variables do not exist.

Therefore, any kind of approximation or optimization technique which requires derivatives

can not be used. In fact, the solution of these mixed problems is identified in

(Papalambros, 1995) as being "one of the most daunting problems in design optimization."

Analytical functions that describe the behavior of a complex system are rarely simple, linear

functions. They typically are complex, nonlinear, nth-order equations of multiple

variables. Optimization algorithms have difficulty handling functions of this type, which

are neither convex or concave, even in small regions. But highly nonlinear equations in

complex systems design are a fact of life. Therefore, techniques for handling nonconvexity

are necessary for effective and reliable solutions for design models of complex systems.

Techniques are well established for finding solutions to convex problems. However, with
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nonconvex problems, often heuristic approachesare used, yielding mixed results

(Papalambros,1995).

It is among the contributions of this dissertation to develop a solution scheme to handle

mixed discrete/integer/continuous design models characterized by highly nonlinear analysis

equations. Foundational to this dissertation, a mindset of description is taken as opposed

to prescription. A primary benefit of using the algorithm developed in this work is the

capability to describe the results and ramifications of various complex product and process

structures through the classification, modeling, and solution of design problems. The

descriptive opportunities of the algorithm are presented in the next section.

1.1.5 Opportunities: A Descriptive Approach

In Sections 1.1.1 through 1.1.4 different aspects of the design of complex systems are

described as a means to establish the context of the dissertation. The areas of focus are the

classification of design product and process, interactions in design, and the solution of

design models. These are the areas identified in Section 1.1 as being paramount to

formulating, modeling, and solving complex design problems. These three areas map one-

to-one to the three steps of the algorithm for subsystem embodiment and system synthesis

presented in Chapter 3. In Webster's (1984), "algorithm" is defined as

A mathematical rule orprocedurefor solving a problem.

The term "procedure" connotes a sense of prescription. In other words, an algorithm

prescribes a set of steps to solve a problem. In a sense, the algorithm in this dissertation is

prescriptive, but more importantly, it provides a framework to explore formulating,

modeling, and solving a complex design problem. However, the true benefit of the

algorithm is its descriptive power. The algorithm provides a dynamic framework, and

when exercised, can describe the results of different design scenarios when multiple design
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teamsareinvolved. Therefore,themindsetfor this dissertationis moredescriptive than

prescriptive. The results are meant to describe the various resulting product and process

implications when a certain prescriptive approach to design is taken. In order to address

the issues raised in Section 1.1, several hypotheses are formed in Section 1.3. These

hypotheses are constructed based upon a solid technology foundation, rooted in Decision-

Based Design and Game Theory. The necessary background for the foundational areas is

presented in the next section.

1.2 FRAME OF REFERENCE

In this section, the necessary technology base for the dissertation is given. Detailed

presentations of the foundations for the developments of this work are presented in Chapter

3. Three fundamental starting points are offered in this section, the Compromise DSP (and

more generally, Decision-Based Design), the Adaptive Linear Programming Algorithm,

and Game Theory.

1.2.1 Decision-Based Design and the Compromise DSP

There have been several reviews of design literature (Andreasen, 1987, Cross, 1989, De

Boer, 1989, Finger and Dixon, 1989a, Finger and Dixon, 1989b, Hubka and

Schregenberger, 1987, Pahl and Beitz, 1984). Although these reviews focus on different

aspects of design literature, such as the evolution of design theory, state of the art methods,

and research trends, one common characteristic of these reviews is that they all aim at

supplying the missing elements for making design more "scientific". It is asserted that, as

an emerging science-based discipline, design is still in its pre-theory stage; a lot of

experimental studies are still needed. There are various ways to approach design in the
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current design researchcommunity, for example, prescriptive approachesto design

(Hubka, 1982,Pahl and Beitz, 1984),axiomatic approaches(Suh, 1990,Takala, 1987,

Tomiyama and Yoshikawa, 1987),decision-baseddesignapproaches(De Boer, 1989,

Mistree, et al., 1990b, Ostrofsky, 1977), and mathematical-oriented optimization

approaches (Hubka, et al., 1988, Vanderplaats, 1984). Moreover, in recent years there

has been a growth of artificial intelligence (AI) principles being applied to design (Brown,

1985, Brown and Chandrasekaran, 1986). Independently of the approaches or methods

used to plan, establish goals and model systems, designers are and will continue to be

involved in two primary activities, namely, processing symbols and making decisions.

Therefore, it is asserted that the process of design, in its most basic sense, is a series of

decisions. By focusing upon decisions, a description of the processes can be written in a

common "language" for teams from the various disciplines -- a language that can be used in

the process of designing. It is this language of decisions that is used to build the lexicon

addressed in Section 1.1.1 that can be used to classify processes in complex systems

design.

A definition of the term designing is as follows (Kamal, et al., 1987, Mistree, et al.,

1989):

Designing is a process of converting information that characterizes the needs and

requirements for a product into knowledge about a product.

In this dissertation, Decision-Based Design (DBD) (Mistree, et al., 1990b, Shupe, 1988), a

term coined to emphasize a different perspective from which to develop methods for

design, is used as the design paradigm. The paradigm is based on the premise that the

principal role of a designer is to make decisions (Mistree, et al., 1990b). This seemingly
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limited role is usefulin providinga startingpoint for developingdesignmethodsbasedon

paradigmsthatspringfrom theperspectiveof decisionsbeingmadeby designers(who may

usecomputers)asopposedto designthatis assistedby theuseof computers,optimization

methods(computer-aideddesignoptimization), or methodswhich evolve from specific

analysistoolssuchasfinite elementanalysis.

It is recognizedthatthe implementationof DBD cantakemanyforms. Theimplementation

form usedin thisdissertationis theDecisionSupportProblem(DSP)Technique(Mistree,

et al., 1993c,Muster andMistree, 1988),which is developedasa techniquethat supports

humanjudgment in designingsystemswhich canbemanufacturedandmaintained. In a

computer assistedenvironment, support for the designeris provided in the form of

solutions to Decision Support Problems. Formulationand solution of DSPsprovide a

meansfor makingthefollowing typesof decisions:

Selection - the indication of a preference, based on multiple attributes, for one

among several feasible alternatives (Kuppuraju, et al., 1985b, Mistree, et al.,

1994, Mistree, et al., 1988).

Compromise - the improvement of a feasible alternative through modification

(Bras and Mistree, 1993, Chen, et al., 1994b, Karandikar, et al., 1990,

Mistree, et al., 1988).

Coupled or hierarchical - decisions that are linked together - selection/selection,

compromise/compromise and selection/compromise decisions may be coupled.

(Bascaran, 1990, Bascaran, et al., 1989, Karandikar, 1989).

These types of decisions may also be implemented in an uncertain or conditional

environment where decisions account for the risk and uncertainty of the outcome (Allen, et

al., 1992, Allen, et al., 1989, Bhattacharya, 1990, Zhou, et al., 1992), or by a rule- based

or heuristic approach where reasoning and rules of thumb are used (Kamal, et al., 1992).
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Applications of DSPs include the design of ships, damage tolerant structural and

mechanicalsystems,thedesignof aircraft, mechanisms,thermalenergysystems,design

usingcompositematerialsand datacompression. A detailedsetof referencesto these

applicationsis presentedin (Mistree,et al., 1990a). The softwarefor implementing the

DSP Technique is called DSIDES (Decision Support in the Design of Engineering

Systems)(Mistree, et al., 1993a). As a generalframework for solving multiobjective,

nonlinearoptimization problems,acompromiseDSPcanbe usedto model eachof the

aforementioneddecisions. The compromiseDSP is used in this dissertation as the

fundamentalmathematicalconstructfor modelingdisciplinary-dependentproblemsandthe

strategicinteractionsamongthem. Thegeneralword formulationof acompromiseDSPis

givenasfollows.

Given
An alternativeto beimprovedthroughmodification.
Domainanalysisinformation

Find
Systemdesign variables
Deviation variables associated with the system goals

Satisfy
System constraints
System goals
Bounds on the system variables

Minimize

Deviation Function

In a compromise DSP, the design variables and deviation variables (which measure the

deviation between the achievement and target values of the system goals) are found subject

to satisfying system constraints, goals, and variable bounds. The objective in a

compromise DSP is to minimize the deviation function, which quantifies the "goodness" of

a design. A mathematical overview of the compromise DSP is provided in Section 3.4.4.

As part of DSIDES, the solution algorithm for solving compromise DSPs with continuous

variables is called the Adaptive Linear Programming Algorithm (Mistree, et al., 1993a). A
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brief introductionanddiscussionof the features of the ALP Algorithm are given in the next

section, Section 1.2.2, and detailed discussions are reserved for Sections 3.4.4 and 6.2.2.

1.2.2 The Adaptive Linear Programming Algorithm and the G-function

Solutions to the compromise DSPs can be found using different optimization methods

(Mistree, et al., 1993a). The choice of the optimization method depends, to a certain

extent, on the problem. Solution algorithms fall into two categories, namely,

• those that solve the exact problem approximately, and

• those that solve an approximation of the problem exactly.

Gradient-based methods, pattern search methods, and penalty function methods fall into the

first category whereas methods involving sequential linearization fall into the second

category. The ALP Algorithm is based on the sequential linearization of a nonlinear

problem. At each stage the solution of the linear programming problem is obtained by a

Multiplex algorithm based on (Ignizio, 1985b). Three important features contribute to the

success of the ALP algorithm, namely,

• the use of second-order terms in linearization,

• the normalization of the constraints and goals and their transformation into

generally well-behaved convex functions in the region of interest, and

• an "intelligent" constraint suppression and accumulation scheme.

These features are described in detail in (Mistree, et al., 1993a) and briefly described in

Section 6.2.2. Nonconvex functions in optimization problems are difficult to handle and

can cause solutions schemes to find inferior solutions or diverge. However, it is asserted

in (Mistree, et al., 1993a) that the ALP algorithm does not have problems dealing with
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nonconvexconstraintswhich invariablyoccur in thereal-worldengineeringdesign. The

effectivenessof the function that is usedin the ALP Algorithm to transformnonconvex

equations in well-behavedconvex equationsis investigatedin this dissertation. To

introduce this transformation,if Ci(X) andDi(X) representthe capability and demand

placedonasystemin modei, then,asystemconstraintis

Ci(X) > Di(X) or Ci(X ) - Di(X ) > 0

In the normalized, dimensionless form (Mistree, et al., 1993a) the preceding equation

becomes

(Ci(X)

and hence

- Di(X))/(Ci(X) + Di(X)) > 0

gi(X) = (Ci(X) Di(X))/(Ci(X) + Di(X)).

If ri(X) = Ci(X)/Di(X) for a system constraint, then

gi(X) = (ri(X) 1)/(ri(X) + 1) .

In a compromise DSP, a nonlinear system constraint is represented as

(ri(X) 1)/(ri(X) + 1) > 0

or,

gi(X) > 0.

(1.1)

(1.2)

Similar derivations of the g-function are given in (Mistree, et al., 1993a) for system goals.

The function gi(X) is normalized and is therefore nondimensional. This simplifies the task

of solving a compromise DSP with constraints expressed in different physical units. The

preceding is asserted to be the second important feature of the algorithm. In this

dissertation a proof of contradicting this assertion is formalized in Section 3.5.
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The ALP Algorithm is usedas a fundamentalstartingpoint in this dissertationfor the

developmentof a solutionalgorithmfor mixed discrete/continuousdesignproblems. The

final startingpoint isgametheory,introducedin thenextsection.

1.2.3 Game Theory as a Decision Support Tool

In a general sense, a "game" is a set of rules completely specifying a competition, including

the permissible actions of, and information available to each participant, the criteria for

termination of the competition, and the distribution of payoffs (Websters, 1984). From

more of a systems perspective, a "game" is defined as follows:

Definition 1.I. A game consists of multiple decision-makers who each

control a specified subset of system variables and who each seek to

minimize their own cost functions subject to their individual constraints

(Myerson, 1991).

In this dissertation, a designer is considered a decision-maker. Therefore, the definition of

a game can be applied directly to a design process characterized by multiple designers who

each try to minimize their own cost functions (or maximize performance functions) subject

to local constraints. Game Theory is the study of the strategic interactions of such games

(Von Neumann and Morgenstern, 1944). It is asserted in this dissertation that principles

from game theory can be applied to design situations to understand and model the complex

relationships among subsystems in the design of complex systems. Game theory has

typically been used extensively in economics, business, and military applications. In these

applications, the players in the game are large companies, industries, or national military

forces. Classically, players may be people, groups of people or more abstract entities like

computer programs or "nature". In design a player is defined as follows:
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Definition 1.2. A player in design is a disciplinary designer or design team and their

associated analysis and synthesis design tools.

In Def. 1.2, again the synergy between a human and computer is found. This concept is

introduced in Section 1.2.1, where computer capabilities enhance the designer's abilities to

make decisions. In design, since the player is the decision-maker, in order for players to

cooperate, cooperation is required at the personal level (designer level) and at the

mathematical level (analysis and synthesis levels). In this dissertation, cooperation from a

mathematical perspective is explored in the context of game theory.

In game theory, a fundamental assumption is the inherent rationality of the players in the

game, but as pointed out in (Bertalanffy, 1968), "human behavior ... falls far short of the

principle of rationality." By asserting that the players in design are not only the decision-

makers, but their associated analysis and synthesis tools as well, this principle of rationality

is satisfied to some extent. The rationality is embodied within the analysis that describes

the behavior of the system in terms of physical and mathematical laws. Rationality from a

human perspective can be disputed, but from a perspective based on the laws of nature,

physics, and mathematics, rationality cannot be disputed, e.g., if the physics of an aircraft

problem predicts that an aircraft will not fly, it is safe and rational to assume that it will not

fly. Although, analysis is only a support tool for the designer whose responsibility it is to

make the final decision, rationality can not be guaranteed, but it is assumed in this

dissertation that rationality exists beyond a reasonable doubt.

Application of game theory classically has had two goals. The first goal is a descriptive

goal of understanding why the players behave as they do. This includes describing the

results of a certain game structure. The second goal is a more practical goal of being able to
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advisetheplayersof thegameasto thebestway to play,or thebeststrategyto take. For

instance, two players could strike a mutually profitable compromise,but each could

possiblygainstill moreby withholdingits contributionsandinformationandexploitingthe

otherplayer. In design,disciplinarydesignteams,working for the same company, should

be working towards a common goal: designing a product that meets the customer

requirements as closely as possible. Therefore, competitive notions that are present in

games such as chess, poker, bridge, baseball, and so on, are not present (or at least should

not be present) in design. This is the fundamental difference between classical games

studied in game theory and design:

The competitive behavior of players in classical games occurs because of the

dichotomy of goals. One player wants to win or maximize his profit, and the other

player also wants to win or maximize his profit. Simultaneous satisfaction of both

players' goals cannot occur. Whereas in design, although disciplines may have

their own goals, the disciplines are linked by the same encompassing goal under the

umbrella of a company's profit strategy. Therefore, disciplinary design teams

theoretically should always cooperate.

There are many conceptual similarities between design and game theory which provide

motivation for this work. The purpose of this dissertation is not to develop methods to

ensure reciprocal altruism among designers, but to describe the results when cooperation,

exploitation, or noncooperation exists.

Mathematical modeling of strategic behavior, where one decision-maker's action depends

on decisions by others, is well-established in wide-ranging applications from economics, to

business and military applications (Aubin, 1979, Dresher, 1981, Fudenberg and Tirole,

1991, Mesterton-Gibbons, 1992). If the use of multi-player strategic models in these non-

engineering applications is so compelling, it is natural to ask what role such models have in

the design of complex engineering systems. After all, design is often a collaborative
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activity, with differentdecision-makersresponsiblefor differentsubsystemsor evendesign

stages (e.g., design, manufacturing, and retirement of a product). Developing the

capability to model and understand the role of collaboration, cooperation, and

noncooperation in design would benefit anyone who makes decisions in a design process,

from management to engineering. Certain protocols lend themselves nicely to modeling

interactions in design, namely the cooperative or Pareto formulation when the players

cooperate, the Nash or noncooperative formulation when the players act in their own self-

interest, and the Stackelberg or leader/follower formulation when one player dominates

another. These protocols are described and discussed in Sections 3.3 and 5.5.

1.3 GOALS, FOCUS, AND STRATEGY FOR IMPLEMENTATION

1.3.1 The Principal Goal and Fundamental Questions

Given the inherent complexity at various levels of the design of complex systems, the

principal goal of this dissertation is to:

Develop a framework for the decision support of formulating a
multidisciplinary design problem, decomposing the problem into
disciplinary subproblems, modeling the resulting interactions according to
realistic assumptions, and solving and coordinating the disciplinary
mathematical models.

To achieve this goal several fundamental constructs are integrated into a conceptual

framework centered around the Decision Support Problem Technique and the compromise

DSP. The compromise DSP is used as a generic decision model to incorporate discrete and

continuous design variables with notions of cooperation, exploitation, and noncooperation

within a multiobjective, nonlinear decision construct. As shown in Figure 1.6, the

principles and tools are derived from Game Theory, Response Surface Methodology,
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Multidisciplinary DesignOptimization,andtheTabuSearch.Theseprinciplesandtoolsare

describedin Chapter3.

Algorithm for Integrated Subsystem Embodiment and System Synthesis I

Figure 1.6. Integration of Principles, Tools, and the Framework

During the development of the framework and associated techniques, the following

fundamental questions are addressed. After each question the corresponding sections

where the motivation and/or technology base for the question is given. These sections

correspond to the sections and areas identified in Figures 1.1 and 1.2.

• Question 1" How can complex system design problems and processes be described

and classified using an intuitive decision support lexicon? (Sections 1.1.1 and

1.2.1)
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• Question 2: How can realistic interactions among design teams and their associated

analysis and synthesis tools be modeled and incorporated into a design process?

(Sections 1.1.2, 1.1.3, and 1.2.3)

• Question 3: How can mathematical models which consist of continuous, discrete,

and integer variables be solved and coordinated? (Sections 1.1.4 and 1.2.2)

• Question 4: Is the g-function of the ALP Algorithm a good transformation of

nonconvex functions into well-behaved convex functions? (Section 1.2.2)

The answers to these questions will help bridge some of the gaps found in blind integration

of Concurrent Engineering principles at a mathematical level (see Section 1. 1.3), and will

also help designers to accurately model actual products and processes and solve the

resulting models. In the next section, the strategy for answering these questions and

verifying the answers is described.

1.3.2 Strategy for Implementation and Verification/Validation

The implementation of this dissertation consists of three phases: 1) identification of the

needs and research opportunities in multidisciplinary design, 2) testing the research

hypotheses, and 3) further development and verification of the framework using an

integrated case study. The following tasks are identified as being necessary to the

fulfillment of the three phases.

Phase I: Identification of the needs and research opportunities in

multidisciplinary design

Task I: The first task is identifying the ideal aspects of an algorithm for the integrated

design (formulation, decomposition, solution, and coordination) of complex systems that

may consist of discrete and/or continuous variables. The design of complex systems first
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involves problem and processformulation (meta-design),thenembodimentof coupled

subsystems,and finally systemsynthesis.Therefore,the idealaspectsof eachstageare

identified in Section1.1,reviewedin Chapter2,anddetailedin Section3.1.

Task_." Based on the ideal aspects of such an algorithm, the second task is to identify the

research needs and opportunities in the current state-of-the-art technology base. The

various research and application areas are covered in Chapter 2.

Phase II: Testing the hypotheses

Task 3: Based on the research opportunities identified, the third task is to identify the

research hypotheses for the development of the algorithm for integrated subsystem

embodiment and system synthesis. The hypotheses are considered the theoretical

foundations for the approach and developments in this dissertation. Ramifications and

verification guidelines must be provided for each hypothesis. This is covered in Chapter 3.

Task 4: The fourth task is to test the hypotheses using example problems. These example

problems are less complex than the motivating example but are used to illustrate the

developments associated with each hypothesis. This work is presented in Chapters 4, 5,

and 6.

Phase llh Further development and verification of the framework

Task 5: Having tested and illustrated the hypotheses on less complex examples, the fifth

task is to use the motivating study, the design of a passenger aircraft, to further

demonstrate and verify the algorithm and its associated techniques. This is presented in

Chapter 7.

Tasl_._." The final task is to summarize the achievements, critically evaluate the work, and

discuss future issues and open questions. This is covered in Chapter 8.
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Fourhypothesesaretestedin thedevelopmentof thealgorithm,namely:

Hypothesis I: Classification of problem and process in multidisciplinary design can be

facilitated by integrating constructs from Decision-Based Design, Game Theory, and

Multidisciplinary Design Optimization. (Answering Question 1)

Hypothesis H: Game theoretic principles can be applied to accurately model and

describe the interactions in complex systems design. (Answering Questions 1 and 2)

Hypothesis III: The notion of foraging of wild animals is a natural analogy for

optimization and can be used as an effective search technique in the solution of mixed

discrete/continuous models. (Answering Questions 2 and 3)

Hypothesis IV: The G-function is a useful transformation of nonconvex functions into

well-behaved convex functions. (Answering Question 4)

There are a total of 11 posits which support or help verify these hypotheses. A detailed

presentation of the hypotheses and posits is given in Section 3.1.3. Various mechanical

examples are used in Chapters 4-6 to verify the hypotheses. Once the hypotheses are

tested, the algorithm and its associated techniques are further developed and verified for the

design of a complex system using the design of a subsonic transport aircraft as a case study

in Chapter 7.

Each question is answered in the following chapters with the following developments.

1) How can complex system design problems and processes be described and classified

using an intuitive decision support lexicon ?

• Using entities from the Decision Support Problem Technique, a domain-

independent classification lexicon is established for multidisciplinary design

optimization problems (Sections 3.2.3 and 4.2).
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• GameTheoryentitiescanbe usedto extendproblemandprocessformulation in

multidisciplinarydesign(Section4.2).

2) How can realistic interactions among design teams and their associated analysis and

synthesis tools be modeled and incorporated into a design process ?

• Design processes are abstracted as a series of games where the players are the

disciplinary design teams and their associated analysis and synthesis tools (Sections

3.3.2 and 5.2).

• Appropriate definitions are given for the application and development of game

theory constructs in Decision-Based Design (Section 5.3).

• Approximate cooperation is modeled using the Global Sensitivity Equations and

first order Taylor series to approximate nonlocal information (Sections 3.3.4,

5.5.1, and 7.4.1).

• The decision-making strategy of a player in a game is approximated using a second

order response surface scheme to construct approximate rational reaction sets

(Sections 3.3.4, 5.5.2, 5.6.2, and 7.4.2).

• Leader/Follower and noncooperative solution strategies are developed for complex

design problems characterized by multiple disciplinary models (Sections 3.3.3,

3.3.4, 5.5.3, 5.6.3, and 7.4.3).

3) How can mathematical models which consist of continuous, discrete, and integer

variables be solved and coordinated?

• Empirical observations of animals are used to develop a foraging heuristic, which

borrows notions from the Tabu Search, Genetic Algorithms, and Simulated

Annealing (Sections 3.4.2, 3.4.2, 6.2).

• An effective solution scheme for mixed discrete/continuous design problems is

developed by integrating a foraging heuristic and the ALP Algorithm (Sections

3.4.4, 6.3, and 6.4).

32



4) Is the g-function of the ALP Algorithm a good transformation of nonconvex functions

into well-behaved convex functions ?

• A formal proof of the g-function and its properties is demonstrated (Section 3.5).

1.4 CONTRIBUTION AND SCIENTIFIC RELEVANCE

The contributions are presented by summarizing the deliverables and establishing the

scientific and engineering relevance.

1.4.1 Deliverables - A Summary of the Algorithm

Corresponding to the principal goal of this dissertation,

development of

the major deliverable is the

an algorithmic framework for the domain-independent formulation, modeling,

solution, and coordination of complex systems characterized by multiple

subsystems which each consists of discrete and continuous variables.

Associated with the use of the algorithm, the other deliverables are:

• a three-level lexicon for the classification of the design of complex systems and

their associated design processes,

• techniques for implementing game theoretical protocols in the design of

complex systems characterized by multiple disciplinary design teams,

• an effective solution algorithm for mixed discrete/continuous design problems.

• a formalized proof by induction of the transformation characteristics of the g-

function.

These are considered to be the fundamental contributions of this dissertation.
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The Algorithm for Integrated Subsystem Embodiment and System Synthesis
. An Overview

An algorithm is developed that consists of three primary steps as shown in Figure 1.7. The

correspondence of the algorithm steps with the four research hypotheses introduced in

Section 1.3.2 and the associated techniques and deliverables introduced in this section is

shown in Figure 1.7.

Techniaues

3-Level
Lexicon

(Section 4.2)

Techniques for
implementing game

formulations

(Section 5.5)

Solution scheme for
different classes of

problems
(Section 5.5)

Algorithm Steps Hypotheses

l Stepl [ / Hypothesis l I

Figure 1.7. Steps, Hypotheses, and Techniques

In general, given a complex system and its associated disciplines, Step 1 of the algorithm is

used to classify the process and product using a three-level lexicon. In level 1 of the

lexicon, the modeling scheme is classified as being either a single-level or multi-level

approach. If a multi-level approach is used, the role of the subsystems in the realization

process are identified. In levels 2 and 3 of the lexicon, specific process-based entities are

used to further classify the product and process based on the decisions being made and the

computer-based tools employed to support these decisions.
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In Step2 of thealgorithm,dependingupontheclassificationidentified in Step1,acertain

game protocol is used to model the relationship between the disciplines and

analysis/synthesisprograms (players). Each discipline's local subsystemmodel is

formulatedbasedon theirrole in thedesignprocess.In Step3of thealgorithm,themodels

for eachplayer aresolvedaccordingto the appropriateprotocol of the game. Various

techniquesaredevelopedto facilitatethesolutionof thedifferentprotocolsdependingupon

the information available to each disciplines. It is inherent, by using game theory

constructs, that when the disciplinary models are solved, the problem of coordinating the

coupled disciplinary models is also-resolved. This is part of the elegance of game theory

(see Chapters 3 and 7) and the motivation behind the phrase "integrated subsystem

embodiment and system synthesis" used in the dissertation rifle.

The Computer Infrastructure for Implementing the Algorithm

Ideally, the use of the algorithm would be automated on a computer system. Certain

aspects of the algorithm have been implemented in a computing framework, while others

are only conceptual in nature. Integration into a computing framework such as a Design

Guidance System (Bras, et al., 1990) or IMAGE (Intelligent Multidisciplinary Aircraft

Generation Environment) (Hale, et al., 1996) would be a natural extension of this

dissertation. The major components of the existing computer infrastructure shown in

Figure 1.8 include four processors (a nonlocal approximation processor, module A, a

design of experiments/response surface/rational reaction set processor, module B, and a

solution processor, module D), each centered about the primary processor, the compromise

DSP, module C.
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Figure 1.8. Existing Computer Infrastructure of the Algorithm

Each of the other processors is linked to the compromise DSP through a computing

interface. Within the compromise DSP lies the domain dependent analyses for the various

disciplinary design problems. Given a certain protocol, different processors are used. For

the full cooperative protocol, the compromise DSP is the only processor used as shown in

Figure 1.8. For the approximate cooperative protocol, the nonlocal approximation

processor (module A) is used along with the compromise DSP. For both the

leader/follower and noncooperative protocols, the design of experiments processor (module

B) is used, coupled with the compromise DSP as shown in Figure 1.8. Each protocol uses

some sort of solution method (module D) depending upon the protocol. In this

dissertation, NORMAN® (Cartuyvels and Dupas, 1993) is used as the design of

experiments processor (module B), and different solution techniques from DSIDES® and

Mathematica® are used as the solution processors (module D). A detailed description of

the of the computer infrastructure is provided in Section 3.1.2.

What are the Design Applications of the Algorithm?

The primary purpose of the algorithm is to provide decision support in the design of

complex systems that are characterized by multiple design teams who each have their own
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analysisand synthesisroutines. Someof the developmentsin this dissertationcould

certainly beusedfor small designproblems. The examplesusedin Chapters4, 5, and6

are simple examples. But as a whole, the algorithm'sprimary use is for the designof

complexsystems,someof which areillustrated in Figure 1.9. An aircraft is usedin this

dissertationasthemotivatingstudy,but from theobservationsin (Duffey, et al., 1996),it

is apparentthat the automotiveandship building industriescould also benefit from the

developmentsof this dissertation. Although, the systemsshown in Figure 1.9 are all

forms of transportationsystems,the developmentsof this dissertationcanbeapplied to

various other forms of complex systems. Succinctly, any system which can be

decomposedinto interactingsubsystems,which areindependentlyanalysis-driven,could

benefit from the techniquesdevelopedaspart of this dissertation. Many systemscanbe

broken down evenfurther into sub-subsystems,facilitating the useof the algorithm at

multiplelevelsof detail.

Figure 1.9. Examples of Design Applications

1.4.2 Engineering and Scientific Relevance of This Work

The engineering and scientific relevance of this work is established by establishing three

levels of relevance, 1) science and engineering in general, 2) the field of design, and 3) the

design of complex, multidisciplinary systems.
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Relevance to Science and Engineering

This dissertation is concerned with the study of systems in science and engineering. The

developments could be applied to a large number of systems in general, but are specified

and developed for engineering systems in particular. In Simon (Simon, 1982), the

increasing study of such systems is addressed:

In science and engineering the study of "systems" is an increasingly popular

activity. Its popularity is more a response to a pressing need for synthesizing and

analyzing complexity than it is to any large development of a body of knowledge

and technique for dealing with complexity. If this popularity is to be more than a

fad, necessity will have to mother invention and provide substance to go with the

name.

The motivation for this dissertation is to provide a piece of this "substance" to support the

study of complex systems as a body of cohesive knowledge and theory. Although

engineering systems are the focus here, the concepts, ideas, and theory could be used in

any large-scale system that can be represented mathematically. This could include the

design of an organization, an industrial consortium, a city strategic plan, or various

examples in biological and behavioral sciences. These situations represent

...problems of organized complexity, i.e., interaction of a large but not infinite

number of variables, [which] are popping up everywhere and demand new

conceptual tools (Bertalanffy, 1968).

In this dissertation, conceptual, decision-support tools are developed to assist designers in

a computer-based design environment. These conceptual tools include the capability to:
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• classify and formulate different product and process models of the same

system.

• model the interactions in complex systems based on levels of cooperation,

information availability, and process structure.

• identify sets of solutions of complex systems, based on product, process, and

organizational preferences and structure.

Relevance to Design

Although design's existence as a science or an art is a debate that may never end, design in

this dissertation is viewed as a science of the artificial (Simon, 1982). Unlike a scientist, a

designer is not simply an observer of objects and processes, but is a controller of objects

and processes. In (Cross, 1993), the science of design refers to

that body of work which attempts to improve our understanding of design through

"scientific" (i. e., systematic, reliable) methods of investigation.

In other words, the science of design is the study of design. In many communities, the

study of design implies developing design methodologies, based on formal language and

theories. According to Cross,

DESIGN METHODOLOGY

includes the study of how designers work and think, the establishment of

appropriate structures for the design process, the development and application of

new design methods, techniques and procedures, and the reflection on the nature

and extent of design knowledge and its application to design problems (Cross,

1993).

Currently two major streams of research activities for developing the science of design

through design methodologies exist, namely:

(1) the development of computer-based design tools to aid designers, and

(2) the pursuit of a definitive theory of design.
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In this dissertation,contributions in both areasareestablished. In the first area, the

algorithmdevelopedin thisdissertationis basedon theinherentassumptionthatdesigners

areusingcomputersto assistin decision-making.Therefore,computercapabilitieshave

beendevelopedto

• usemathematical implementationsof game theoretical protocols to model

strategicinteractionsamongdesigners,

• produce effective decision-making information in the form of numerical

solutionsandgeometricrepresentationsto describethedesignof asystem,and

• heuristicallysearchadiscretedesignspaceto find areasof promisingsolutions
incomplexmodels.

In the secondarea,i.e., thepursuit of a definitive theoryof design,anattemptis madeto

formulate,model,andsolvecomplexdesignproblemsbasedon thefundamentalparadigm

thattheprincipalrole of a designeris to makedecisions.ThecompromiseDSPisusedasa

genericdecisionmodelto incorporategametheoreticalconstructswithin amultiobjective,

nonlineardecisionconstruct. Many designproduct andprocessstructures,different in

conceptand implementation,havebeenstudiedeachusing the compromiseDSPas the

fundamentalmathematicalconstruct. The work of this dissertationaddssupportto the

claim in (Bras, 1992, Mistree, et al., 1993a)that the compromiseDSP is a domain-

independent,genericdecisionsupportconstructwhich canbeusedto supportdesignersin

thedesignof products,processes,andsystems.

Relevance to Complex Systems Design

Multidisciplinary Design Optimization (MDO) is described as a methodology for the design

of systems where the interaction between several disciplines must be considered, and
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wherethe designeris free to significantly affect systemperformancein more than one

discipline (Sobieszczanski-Sobieski,1993). Using the definition of complex systems

introduced at the beginning of Chapter 1, it is obvious that research in MDO focuses on the

design of complex systems which are characterized by interacting disciplines. This is

precisely the focus of this dissertation as well. Some of the primary developments in this

dissertation can aid designers in the design of single disciplined systems, but the true

benefit occurs when multi-disciplinary systems are designed. Certainly, the

interdisciplinary coupling inherent in MDO tends to present additional challenges beyond

those encountered in single-discipline optimization (Sobieszczanski-Sobieski, 1993,

Sobieszczanski-Sobieski and Chopra, 1991). This is one of the primary focuses of this

dissertation: handling the interdisciplinary coupling in design situations when cooperation

may or may not exist among the disciplines and their analysis and synthesis tools. The

contributions of this dissertation to MDO include the capability to:

• rapidly explore different product and process structures,

• quantify the disciplinary interactions as functions of design and state variables,

• use effective approximation techniques to increase analysis efficiency, and

• solve mixed discrete/continuous design problems which often occur in MDO.

1.5 ORGANIZATION AND OVERVIEW OF THE DISSERTATION

In Section 1.3.3, the three major phases of establishing, implementing and verifying the

developments of this dissertation are presented. In Figure 1.10, a guide to the dissertation

and the three phases is given. Chapters 1 and 2 belong to Phase I - identification of the

motivation, needs and research opportunities. Chapters 3, 4, 5, and 6 belong to Phase II -

development and testing of the research hypotheses. Chapters 7 and 8 belong to Phase III-
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further developmentand verification of the algorithm, along with a summary of the

achievements.

Phase I: Foundations and

Opportunites

_ I I i i I _ I i i n i i i i i i i

I CHAPTER 3

The overall

algorithm and
research hypotheses

CHAPTER 1 1
Foundations and

Motivations

f CHAPTER 2

| Literature Review l

l i and Research |

Opportunites J
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Phase II: Development and

Testing of the Hypotheses

Lexicon for Game Theory in
Multidisciplinary Design: Modeling

Design Interactions

Mixed
Discrete/Continuous

Solution Scheme

Phase III: Further

Development and
Achievements

CHAPTER 7 1
Exercising the --,-
algorithm for a ]"_

passenger aircraft )

I CHAPTER 8 1
Achievements and
Recommendations

Figure 1.10. Organization of this Dissertation
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In Chapter1,thefoundationsof thedissertationarelaid. Themotivationfor the work in

thecontextof thedesignof complexsystemsisgiven. Theprincipalgoalandfundamental

questionsarepresented.The researchhypothesesandstrategyfor verification aregiven

alongwith thecontributionsandscientificrelevanceof thedissertation.

In Chapter 2, a comprehensive literature review is presented. The review focuses on the

research areas established in Chapter 1 which are fundamental to the work, but also covers

related research areas in multidisciplinary design optimization and complex systems design.

The needs and research opportunities are identified throughout the review.

In Chapter 3, the overall algorithm and its techniques are presented. The posits to support

the four hypotheses are presented. For each hypothesis, ramifications and verification

guidelines are presented including the approach of applying them in the algorithm. For

Hypothesis I, the nature of classifications in design, and the need for multi-levels and

domain and time independence is established. For Hypothesis II, design is abstracted as a

game, and the game theory protocols applicable to design are presented conceptually and

mathematically. For Hypothesis III, the characteristics of design space search in a discrete

domain are presented along with the foundation for a mixed discrete/continuous solver.

Hypothesis IV is disproven in this chapter using a formal proof from nonlinear

optimization theory.

In Chapter 4, the development and testing of Hypothesis I is undertaken. A previous

classification system is presented and then expanded to three levels using domain

independent terms and entities from the Decision Support Problem Technique and game

theory. Various examples are classified and mapped to the previous scheme to illustrate the

continuity of the approach to previous work.
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In Chapter5, the foundationsof gametheoryin design(HypothesisII) areestablished.A

designgameis formally defined,anddistinctionsbetweendiscrete,continuous,andmixed

gamesareshown. Theprotocolsintroducedin Chapter3 areexpandedanddevelopedin

thecontextof Decision-BasedDesign. A verificationstudyusingthedesignof a pressure

vesselis performedusingthedevelopmentsfrom thechapter.

In Chapter6, the mixed discrete/continuoussolution schemeis presentedand verified

(HypothesisIII). Theforagingheuristicis developedbasedonempirical observationsof

animals foraging for food. Details of the continuous solver, the ALP Algorithm, is

presented. Integrationof foragingandALP to produceaneffective solution schemefor

mixed discrete/continuousdesignproblemsis detailedandtestedusingtwo examples,the

designof acompressionspringanda pressurevessel.

In Chapter7, themotivatingcasestudy,thedesignof a subsonicpassengeraircraft,is used

to further develop,understand,andverify thecontributionsof this dissertation.The work

in this chapterfurther verifies HypothesesI-III. The aircraftstudy involves two distinct

disciplines,theaerodynamicsandweightsdisciplines. Variousgamesareconductedbased

on different protocols between the players. The resulting designsare explored and

implications to modem design processesand products are presented. Although the

algorithmis illustratedonly for a 2-disciplineproblem,it isdevelopedwith thecapabilityto

handledesignproblemscomposedof n-disciplines.

In Chapter 8, the dissertation is summarized, a critical evaluation is presented and areas of

future work are identified.
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In Figure 1.11, the running icon of this dissertation is shown. In this icon the roles and

relationships of the eight chapters in the development, verification, and implementation of

this dissertation are summarized. The similarities between Figure 1.10 and 1.11 are

apparent. The three phases of the verification strategy are shown as being phases of

construction of Figure 1.11. The chapters in Phase I provide the foundation and

motivations. The chapters of Phase II provide the construction and testing of the algorithm

and associated hypotheses. Sitting atop the algorithm and foundation is an aircraft, which

is the motivating case study of the dissertation, and the primary verification study in Phase

III.

(Chapter

(Chapter 3)- -(Chapter 5

Chapter 6

Phase Ih Testing the
Research Hypotheses

Figure 1.11. Running Icon

Phase IIh Exercising and
Verifying the Algorithm

(Chapter 7)

Phase h Foundations and
Motivations

 L-- O.ap,er11

In Figure 1.12, the separate pieces, Figure 1.11 is dismantled and the individual pieces are

shown. Throughout the dissertation, the pieces of Figure I. 12 are combined one-by-one
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andFigure 1.12is eventuallybuilt at theendof Chapter8. This constructionactsasan

inventoryof theprogressandflameof referenceof thedissertation.

System Level
Problem

Coupled Subsystem Level
Problems

Complex ._ =.,-_._-_-,-
System Design

Application Disciplinary
Problems

i] i-'_ Solved a_ndCoordinated
• Subsystem Models

Supporting Product and
Process Framework

Literature Review

Foundations and Motivations

Figure 1.12. Individual Pieces of the Dissertation

The first piece of Figure 1.12, established in this chapter is the foundation blocks. These

blocks are constructed and arranged in Figure 1.13 to provide the foundation for the

remainder of the dissertation. In the following chapters, the remaining pieces will be

combined on top of the foundation and motivations.

ons/Moti'

Figure 1.13. Frame of Reference: Chapter 1
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In Figure 1.14, the structure of the Appendices corresponding to the appropriate chapter are

shown. It is assumed throughout this dissertation that the protagonists are female in even-

numbered chapters and male in odd-numbered chapters. This is to avoid the continual use

of "his or her" and "he or she" in place of epicene pronouns.

Appendix A

Computer implementations
of the game theory protocols I CHAPTER5 1

Game Theory in
Design: Modeling

Interactions

Appendix B

•Foraging code/DSIDES
updates

• Detailed solution output of
spring and pressure vessel
examples

Appendix C

Full results from each

protocol and scenario for
the aircraft study

Figure 1.14. A Guide to

I CHAPTER 6 1

Mixed
Discrete/Continuous

Solution Scheme

I CHAPTER 7 1

Exercising the
algorithm for a

passenger aircraft

the Appendices
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CHAPTER 2

REALIZING MULTIDISCIPLINARY SYSTEMS - RELEVANT

LITERATURE

In this chapter, implementations of Tasks 1 and 2 identified in Section 1.3.2 are

discussed. For Task 1, the ideal aspects of an algorithm for the integrated design

(formulation, decomposition, solution, and coordination) of complex systems are

identified, in a broad sense, as problem and process formulation, embodiment of coupled

subsystems, and system synthesis. In Figure 2.1, these three aspects are shown to be the

primary stages of system realization, supporting the algorithm. In this chapter the

relevant work in these areas is reviewed, establishing the context and foundation of this

dissertation. Reviews in secondary areas such as approximation and multiobjective

design, supporting the primary areas as shown in Figure 2.1, are also presented. To help

provide context and completeness, related areas, namely, the human factor of design,

computational costs, robust/quality methods, and decomposition, are reviewed. The

corresponding sections for each subject axe given in Figure 2.1. For Task 2, the research

needs and opportunities in the appropriate areas are identified, throughout this chapter.
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Figure 2.1. Aspects of Algorithm: An Overview of Chapter 2

As defined in Section 1.4.2, the work of this dissertation, in a specific sense, belongs to

the field of Multidisciplinary Design Optimization (MDO). The literature review

presented in this chapter is discussed from an MDO perspective.
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2.1 CHANGE OF PERSPECTIVE IN MULTIDISCIPLINARY DESIGN

OPTIMIZATION (MDO)

In the past several years, there has been a shift in the interest and application of the MDO

community from mainly aerospace applications, which stemmed from MDO's origins in

the field of structures, to fields including mechanical, civil, and electrical engineering,

operations research, and materials science. In each of these fields, there are indeed

multidisciplinary research issues in the design, development, production, and support of

complex systems. Recently, the multidisciplinary research and development in each field

are merging into fundamental approaches to complex system design problems. Also,

with the advent of systems thinking and doing "more with less," issues usually reserved

for the later stages of a design process are brought forward into the initial stages, MDO

technology and research is moving from the detailed analysis design stages to the

conceptual stages where multidisciplinary system tradeoffs can be rapidly explored

effectively and efficiently. This shift parallels a similar shift from traditional calculus

based optimization algorithms, where precise mathematical models and couplings are

known, to more imprecise techniques where laws of uncertainty guide mathematical

models and their interactions. The former certainly has its place in the later stages of

design, but in the early stages, the information about a multidisciplinary, complex system

may not be fully known and many times is unstructured. This gives rise to the

requirement of imprecise techniques for decomposing, analyzing and synthesizing a

system model. Thus, the study of complex systems moves into a new age of research and

technology, one characterized by both precise and imprecise models, and exact

mathematics and fuzzy heuristics.
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It is within this "new age"of researchandtechnologythat this chapteris motivated. In

this chapter,both primary and secondaryliterature backgroundsarepresented. In the

primary backgrounds,the foundation for the main researchfocusesof this work are

given. Theprimarybackgroundaddressestheissuesof problemandprocessformulation,

embodimentof coupledsubsystems,andsystemsynthesis.Thesecorrespondto thethree

hypothesesintroducedin Section1.3.2andarelabeledasPRIMARY areasin Table 2.i.

In thesecondarybackgrounds,the foundationfor the supporting issuesof this work is

givenin thecontextof multidisciplinarydesignoptimizationof complexsystems.These

are labeledas SUPPORTINGareasin Table 2.1. Also reviewed are related areasin

MDO that provideaddedsupportand completenessto this work. Theseare labeledas

RELATED areasin Table2.1.

Table 2.1. Various Areas of Literature Background

PRIMARY: Primary research focuses of this work

• Mixed Discrete/Continuous Optimization (Heuristics)

• Strategic Interactions

• Problem and Process Classification

SUPPORTING: Secondary focuses of this work

• Approximation

• Multiple objectives

RELATED: Not explicitly addressed in this work, but help define the context and

arena of application.

• The Human Factor

• Decomposition

• Quality Design Methods

• Information Storage and Transfer

51



In Figure 2.2, thespecific conceptscoveredin this chapterunder the umbrellaof MDO

areshown. In Section2.2, the trendsin MDO are identified by evaluatingthe distinct

areasof researchin MDO, namely its three linguistic components,multidisciplinary,

design, and optimization. In Section 2.3, the research and application issues under the

umbrellas of each research area are surveyed and summarized. As shown in Figure 2.2,

these issues overlap beneath the research areas, as they are motivated by questions from

more than one area. This is part of the difficulty researchers in MDO face, as the

integration of various fields and disciplines poses complex problems. In Figure 2.2, the

three primary areas of focus, interactions (under multidisciplinary and design), heuristics

(under design and optimization), and classification (under all three), are highlighted. The

supporting areas of review in this chapter are given beneath the primary areas in Figure

2.2. The work presented here includes government, industry and academic contributions

to this emerging area of research and practical application.

disci

, Q Interactions [3 Heuristics ,
, 17 Decomposition Q Multiobjectives i
I I
= [3 Approximation [3 Human Factor ,
I I
, g Classification ,
' [3 Information Storage i
I I

[3 Robust/Quality Principles i

Figure 2.2. Roadmap to Chapter
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2.2 MDO: AN INTERNAL DECOMPOSITION

System decomposition is a valuable and many times necessary approach in solving

complex systems. The method used to decompose a system, however, is another issue,

addressed in Section 2.3.2. Capitalizing on the advantages of decomposition, the field of

MDO is investigated in this chapter by applying a linguistic decomposition approach to

the term "MDO". This stems from the simple approach used to determine the meaning of

"complicated" compound words such as schoolbus, where combining the meanings of the

root words "school" and "bus" result in the connotation of the compound word.

Decomposing "MDO", the root words "multidisciplinary", "design", and "optimization"

are discovered. Each area calls on certain capabilities from the others to perform its

required duties. These calls and demands among the areas are illustrated in Figure 2.3.

Each of these terms and the demands each makes on MDO as a whole is investigated in

this section.

Information Storage

Classification

Robust�Quality Principles

Multidisciplinary Optimization

Interactions

Decomposition

Approximation
Design

Multiobjectives

Human-centered

Heuristics

Figure 2.3. Couplings of M, D, and O

53



Multidisciplinary

The term "multidisciplinary" plays an important role in the complexity of system

problems. Individual disciplines have developed mature methods to analyze disciplinary

problems. However, when two or more disciplines and their analyses are combined, such

as Computational Fluid Dynamics (CFD) in aerodynamics and Finite Element

Methodology (FEM) in structures, the problem becomes well beyond what even the most

powerful computer of next year can handle. Therefore, some sort of decomposition

method is necessary for most multidisciplinary problems to establish less complex,

disciplinary-level problems. Many decomposed problems are still too complex to

effectively analyze because of the size of the analysis routines. Consequently, a form of

approximation may be necessary to replace the exact analysis. It has been shown that the

fidelity of an approximate model can decrease and still maintain acceptable analysis

accuracy (Chen, 1995a, Malone and Mason, 1991). But, how approximate can a model

be and still maintain accuracy, is another research issue in complex systems design.

Approximation can take many forms, from using approximate models within a discipline

to using approximations to represent the effect of one discipline upon another. However,

the key notion here is that each discipline plays an important role in the function of the

entire system.

In a given discipline, there may exist system variables which are continuous, integer,

discrete, or Boolean. Examples of these are wing span, number of engines, gear

diameter, or control variables, respectively. Integer, discrete, and Boolean variables will

be referred to as discrete variables in the remainder of this dissertation. There are well

established methods for solving either purely continuous problems, or purely discrete

problems. Continuous methods are largely calculus based, while discrete methods range

from integer programming methods to heuristic search methods. Yet, it is the
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developmentof robustmethodsto supportthedecisionmakingof designersin problems

with mixed continuous/discretevariables that the presenceof multiple disciplines

demands.

Design

The term "design" mandates the investigation of other issues, including multiobjective

system formulations. Practical systems are not single objective in nature. In vessel

design, minimizing resistance is similar to minimizing weight in aerospace design, but

there are many other design objectives a designer may want to consider. A naval

designer may want to minimize the vessel powering and keep seakeeping at acceptable

levels for various seastates. Complex systems are frequently multiobjective, but these

objectives may have different priorities, according to system requirements and designers'

preferences.

Process and human designer issues are also brought in with the term "design". In

Decision-Based Design, design is accomplished using the abilities of a designer and the

capabilities of a computer. The principal role of the designer, and not the computer, is to

make the design decisions. Design, in addition, consists of a series of decisions made by

a designer or design team along a timeline. Designers and design teams repeatedly use

their decision-making ability together with the computer's decision support capability to

make decisions regarding various system and subsystem tradeoffs. Hence, the notion of a

designer interface and human-centered design is inherent in any design process. The

sense of time, past and present, in a process requires some way of storing and retrieving

information to expedite future decisions. Hence, some type of database that links the

information from all disciplines for efficient retrieval throughout a design process is

necessary.
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Optimization

The term "optimization" acts as a dependent and independent variable in MDO.

Regardless of decomposition, there is a need for the determination of system variables

based on system constraints, variable bounds, and with respect to system objectives. This

is the independent nature of the term "optimization". Independent of the modeling

approach taken or domain of application, optimization techniques are required to solve

decision models and support the decision making abilities of a designer.

The link between "optimization" and MDO is where "optimization" plays a dependent

role. Previously, researchers in MDO established optimization techniques depending on

the problem formulation. Moreover, "optimization" has even sometimes assumed the

role of a synthesizer, where a number of subsystems are optimized or coordinated into a

system level "optimum". However, this process became inefficient as the needs of MDO

began to require more than what "optimization" had bargained for. Consequently,

"optimization" has now become an integral part of the decision support of MDO, as

researchers have embraced the issues inherent in multidisciplinary design optimization.

"Optimization" now acts as the bearer of good or bad news for the issues and

requirements from the "multidisciplinary" and "design" areas. These two areas demand

optimization techniques for multiobjectives, mixed continuous/integer systems, designer

interfaces, robust global solutions, and post-solution analysis, among others. Researchers

have addressed one or more of these various issues, but there does not presently exist a

single algorithm to encompass all the needs of MDO in a decision-based environment.

This may be a problem too great to handle at present, but certainly is a research issue.

There has been extensive work in single objective optimization, but since the term

"multidisciplinary" implies multiple objectives, issues in multiple objective modeling,

solution, and decision support are the focus of this dissertation.
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In this section,the innate issuesin MDO areexaminedby simple decompositionand

analysisamongthe components. The harmoniouscoordinationof theseissuesis the

basic task in MDO. Issues in all three areas are addressedin this dissertation,

multidisciplines, design, andoptimization. In the next section,the developmentsand

fundamentalsof eachissueareinvestigated,including the specificresearchopportunities

thatconstitutethebasisof thisdissertation.

2.3 ISSUES IN MDO

Researchers, when addressing the areas of research in Section 2.2, must keep the inherent

issues of MDO in mind. Some researchers in MDO have addressed some of these issues

by themselves, while others have looked at a combination of a few. Any development in

MDO must keep these issues in mind, as it will add to the integrity, broaden the

acceptance, and establish the value of MDO.

2.3.1 Lexicon Development

With several individual research directions, a framework for research and application is

needed. In most pure science fields, such as chemistry and biology, there is a standard

framework and lexicon which are used now and forever. In order for MDO to continue to

evolve and establish itself as a distinct field, a framework, including a common lexicon

for researchers and industries, is necessary for synergistic communication. This

framework must be applicable to the entire MDO process from concept generation to

detail design. The most promising attempts at these have come in two forms. First, in

(Bailing and Sobieski, 1994, Cramer, et al., 1994), lexicons and classifications of
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approachesto MDO problemformulationandsolutionarepresented(seeSection4.1.I).

Thesetypesof classificationgive thefield a form of commoncommunicationuponwhich

to basefuture developmentsand research. If a commonlexicon were established,the

various work in academia,industry, and governmentcould be easily classified and

compared.

Second, in the Framework for InterDisciplinary Optimization (FIDO) program

(Townsend,et al., 1994),acomputerframeworkfor MDO is beinggenerated.This type

of framework has been shown to be an excellent interface for multidisciplinary design

issues among distanced design teams throughout a design process. It is uncertain where

the present research in MDO could fit into computer frameworks of this type. Computer

frameworks may become simply the housing for MDO research, where developments are

integrated into the "guts" of the framework at the system or discipline level. This would

allow for future developments, and would permit a design team to design and analyze a

system without having to know about the inner workings of the algorithms, schemes, and

routines. Also, unclear is how the evolution of the design process from concept design to

detailed component design would be accommodated in a computer framework.

Research Opportunities

The primary research opportunity in this area is to further develop these lexicons,

establishing common baseline linguistics. The baseline used is the notion of a decision

and its supporting entities in the Decision Support Problem Technique (Mistree, et al.,

1993a, Mistree, et al., 1988, Mistree, et al., 1990b) and Game Theory (Von Neumann and

Morgenstern, 1944). The domain-independence and time-independence of such a lexicon

are paramount to ensure effective application across disciplines and over an entire,

58



evolving design process. This is a primary thrust of this work and the focus of

HypothesisI (Sections1.3.1and3.2) andChapter4.

2.3.2 Decomposition: Friend or Foe?

The decomposition or partitioning of large systems has long been viewed as being

beneficial to the efficient solution of the system. Although breaking a system up into

smaller, less complex subsystems may allow for the effective solution at the subsystem

level, decomposition makes the system design problem more complicated by requiring

the coordination of subsystem solutions into a harmonious system solution. A mirror can

be broken apart, the pieces reassembled, and in no way function as a mirror again. This

problem in analyzing and synthesizing various subsystems poses a difficult problem in

MDO. So why not simply analyze systems at one level, the system level? This creates

analysis problems, as complex system models may become too large to handle. When do

systems become too large for single-level analysis and require decomposition and

multilevel analysis? The answer may lie in the amount and quality of information in a

system model at any point in a design process. Both single-level and multilevel

approaches are being developed as fundamental approaches to a MDO problem. General

decomposition approaches have been developed for generic problems which include

information overlap among various tasks, events, or disciplines by Rogers (Rogers, 1989)

and Kusiak (Kusiak and Larson, 1995, Kusiak and Wang, 1993). A general

decomposition procedure based on the hypergraph representation of known mathematical

analysis models is presented in (Michelena, et al., 1995). More specific decomposition

and coordination approaches for MDO problems are explored below.

Decomposition schemes initially were hierarchical in nature. An excellent review of

hierarchical decomposition is presented in Renaud (Renaud, 1992). On the other hand,

59



manysystemslendthemselvesto nonhierarchicaldecompositionsinsteadof hierarchical

ones. The developmentof nonhierarchicaldecompositionschemesis relatively new

compared to hierarchical ones. A review of the early work in nonhierarchical

decomposition is also presented in Renaud (Renaud, 1992). Implementations of

decomposing larger, more complex problems into smaller, temporarily decoupled

disciplinary problemshavebeenstudied(Beltracchi, 1990,Korngold,et al., 1992,Olds,

1992,Rohl andSchrage,1992). Variousdecompositionandcoordinationstrategieshave

been developed and implemented basedon the Global Sensitivity Equation (GSE)

(Sobieszczanski-Sobieski,1988) approachto couple the nonhierarchical subsystems

(Bailing andSobieski,1994,Bloebaum,et al., 1992,Ford andBloebaum,1993,Renaud

and Gabriele, 1991,Renaudand Gabriele, 1993, Renaud,et al., 1994). In Bloebaum

(Bloebaum and Chi, 1994) the GSE method is extended into handling discrete and

continuousvariablesby decomposingthesystemaccordingto variabletype, resulting in

discretesubsystemsand continuoussubsystems.In (Bloebaumand Chi, 1994),neural

networksare includedto avoidthe expenseof continuousre-analysiswithin thediscrete

subspace. Typically in MDO, identifiable subsystemsexist with both discrete and

continuousvariables,but this work is a stepin this direction. As pointedout, cumulative

constraints are difficult to use with discrete variables, adding to the complexity of

handlingdiscretevariables.

In relatedwork on thedecompositionandresolutionof nonhierarchical system models, in

Renaud (Renaud and Gabriele, 1991), a first order approximation using the GSE method

for system approximation is used. In Renaud (Renaud and Gabriele, 1993, Renaud and

Gabriele, 1994) a second order approximation, using second order GSE's, is used to

improve the accuracy of cumulative constraint approximation and improve solution

convergence. In (Renaud, 1993) the algorithm is further extended to include non-disjoint
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decomposition of design variables that allows greater latitude in design subspace

optimizations. In (Renaud,et al., 1994),the algorithm is extendedto handle mixed

discrete/continuousproblems. The solution schemeusesneural network to model the

designspaceanda successivesimulatedannealingalgorithmfor solution. Thecasestudy

containsfive discreteandonecontinuousvariable. The simulatedannealingalgorithm

includes successivediscretizing of the continuousdomain until a solution is reached.

With more than one continuousvariable, this algorithm may not be computationally

practical. In addition, "sufficiently" accuratetrainingof the neuralnetwork seemsto be

problemdependentanddifficult to quantify.

In Bailing (Bailing andSobieski,1994),anapproachto thenonhierarchicdecomposition

problem is developedwhosecoordinationprocedurefocuseson theminimization of the

norm of the coupling constraint and designconstraint violation (called a discrepancy

function). A solution schemethat incorporatesa cutting-plane algorithm and a move-

limit strategy is used to solve the complex discrepancyfunction. Application of the

algorithmto truly multidisciplinarysystemsis yet to bedemonstrated.

In Kroo (Kroo, et al., 1994), compatibility constraints are used at the system and

subsystemlevels to accountfor thecouplingbetweenlevels. At the systemlevel a single

objective is used(aircraft rangein thecasestudy)andthe systemconstraintsensurethat

the coupling among the subsystemsis maintained. At the subsystem level, the

discrepancybetweenthe systemvariablesandtheir targetvaluesis minimized. System

variables may overlap amongsubsystems,creating the coupling among subsystems.

Variousdiscrepancyfunctionsareinvestigated,similar to the investigationof discrepancy

function norm formulations in Bailing (Bailing and Sobieski, 1994). Application to
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mixed discrete/continuous systems and handling of multiobjectives is not explicitly

addressed.

The decomposition approaches in this section have focused on two primary areas:

• hierarchical modeling where bilevel models are present

• nonhierarchical modeling where some form of cooperation is modeled

mathematically

Realistically, these models are not always applicable. First, because of informational or

geographical barriers, a model that incorporates noncooperative notions may simulate

actual processes better. Second, it is common for certain disciplines to lead or dominate a

design process and for others to follow their lead of decision-making (Hazelrigg, 1996).

This type of process would demand a model that incorporates sequential relationships

among decision makers. The leader/follower formulation is a special case of a bilevel

model. In the next section, strategic interactions are addressed.

2.3.3 Strategic Interactions

The design of multidisciplinary systems requires a series of decisions which are made by

multiple decision makers, design teams, or organizations. Implementation of Concurrent

Engineering principles have made certain strides to facilitating this integrated decision

making process at a personal interaction level. However, at the analysis and synthesis

levels, a seamless computer infrastructure among the disciplinary software is rare. That

is, cooperation at the analysis and synthesis levels does not occur even though the

majority of the research in this area has assumed cooperation (see Section 2.3.2). When

cooperation is not present, game theory principles of noncooperation and multilevel

processes can be beneficial to the modeling of the system and process. In (Rao, et al.,

1996, Rao and Mistree, 1995), different game theory formulations are exercised for
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simple engineeringexamplesusing two simulateddesigners.The formulations studied

are the cooperative(communicationexists),noncooperative(no communicationexists),

leader/follower (one player dominates),and conservative (playersassurea minimum

gain)protocols. Eachdesignerwantsto meettheir own objective,butevenin thesimple

examplesused in (Rao, et al., 1996,Rao and Mistree, 1995),theseobjectives are in

conflict with eachother. Therefore,dependingupon theprotocolexercisedbetweenthe

players, significantly different solutionsare found. Rich insights are gained into the

relationshipsbetweentheplayersandtheprocessby which thedesignis performed. The

mathematicalfoundationfor thecooperative,noncooperative,andleader/followermodels

aregivenin Section3.3.3.

Research Opportunities

The design of multidisciplinary systems requires a series of decisions that are made by

multiple decision makers, design teams, or organizations. Concurrent Engineering

principles have made certain strides to facilitating this integrated decision making process

at a personal interaction level. In this dissertation, game theory is being used to make

similar strides, but at the level of the interactions of mathematical models, analysis

packages, and/or synthesis and optimization routines. The use of game theory to model

multidisciplinary design processes where cooperation may or may not exist among

decision makers in engineering design is of relatively recent origin (Hazelrigg, 1996,

Rao, et al., 1996, Rao and Mistree, t995); its usefulness in many other decision-making

sectors such as economics, politics, and strategic warfare is well-established (Axelrod,

1984, Owen, 1995). Game theory was explicitly proposed as a design tool originally in

(Vincent, 1983). But the notion of game theory in engineering design and optimization

has since been limited (Badhrinath and Rao, 1995, Dhingra and Rao, 1995, Hazelrigg,

1996, Pakala and Rao, 1996, Rao and Chidambaram, 1993, Rao, 1987, Rao and Freiheit,
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1991). In thesestudies,small,simplified problemsareusedto illustratetheconcepts.As

a result, there are rich researchand implementationopportunities in developing and

applyinggametheoreticprinciplesto complexproblemsencounteredin MDO. Modeling

the strategicinteractionsin MDO asa gameis a novel pursuit, and one of the primary

contributionsof this work. The work of this dissertationin this areasupportHypothesis

II introduced in Section 1.3.2 and discussed in Section 3.3 and Chapter 5. The

development and application of game-theoretic principles to complex systems design are

presented in Sections 5.5, Sections 5.6, and 7.4. This is one of the main contributions of

this dissertation.

By using system level analysis many issues involved in decomposition strategies can be

avoided and Pareto solutions can be found, but system analyses may be too complex to

handle computationally. One issue brought on by decomposition strategies is

approximation on many levels, from the approximation at the system level to

approximation of nonlocal information at the subsystem level. In the next section, the

use of approximation in MDO is presented.

2.3.4 Approximation

In a perfect world, approximation would not be needed, as the actual analysis routines

across a multidisciplinary system could be used without concern for the computational

cost or time constraints. However, until computers become "perfect", approximation is

necessary at some level in a MDO process. This approximation may take many forms.

The first and most developed area is the approximation of the derivatives, both global and

local, of the state variables of the system with respect to other state variables, fixed

parameters, and design variables. Optimization routines have been used approximate
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derivativesto determinesearchdirectionsandmagnitudesfor decades.Ideally, for annth

orderequation,nthorder derivativescouldbe calculated and used in the optimization of

the system. Designers however must make a tradeoff between accuracy and efficiency.

Much of the derivative approximation work has concentrated on developing schemes to

efficiently approximate first order derivatives of a system. A system, however, may

consists of many subsystems, each with their own derivatives. In Barthelemy

(Barthelemy and Sobieszczanski-Sobieski, 1983), the derivatives of the optimal objective

with respect to fixed parameters are calculated directly from the Lagrange multipliers and

disciplinary sensitivities. As a method of calculating the global derivatives with respect

to the design variables using the local derivatives of the subsystems, the Global

Sensitivity Equation (GSE) was proposed in Sobieszczanski-Sobieski (Sobieszczanski-

Sobieski, 1988). The GSE method allows for the local derivatives to be calculated using

any method. Various studies have been conducted concerning the accuracy of using GSE

approximate first-order system derivatives including (Bloebaum, et al., 1992, Korngold,

et al., 1992). Further investigations have explored the accuracy vs. efficiency tradeoff by

using second-order derivatives in the GSE method (Renaud and Gabriele, 1993, Renaud

and Gabriele, 1994). It is an open issue as to when a designer can, with confidence, use

the nth-order derivatives and still maintain acceptable efficiency. This may be a function

of computer capabilities, but the answer may lie in deeper explanations, such as

information theory, which asks 'when is the amount of information enough to make

appropriate decision along a design timeline?'

Derivative approximations may become obsolete with the emergence of Automatic

Differentiation in FORTRAN (ADIFOR) (Bischof, et al., 1992). In ADIFOR the exact

derivatives of a FORTRAN code are calculated analytically by using the numerical

entities at a given design point, and employing the chain rule to find total local and global
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derivatives. Having theexactderivativeswith acceptableefficiency is a major step in

numerical analysis and approximation, and may pave the way for further major

developments.

The next areaof researchin approximationis approximationof thedesignspace,locally,

nonlocally and globally. From a global or systemsperspective,lessdetailedanalytical

models have effectively beenused to approximatethe behavior of an aircraft system

(Chen, 1995a,Chen, 1996,MaloneandMason,1991). Theuseof low fidelity modelsis

useful in theearly stagesof design,but it may sacrificeaccuracyin moredetaileddesign

stages.High fidelity approximationmodelshaveeffectively beenusedin moredetailed

design, but aremore computationallyexpensive. Livne andcoworkers (Livne, et al.,

1993)accomplishedcomprehensivewing optimizationincludingstructural,aerodynamic,

and active control requirementsusing realistic approximationsalong with nonlinear

programmingtechniques. So the questionbecomes,when doesa designer"switch" or

evolvefrom lessdetailedmodelsto morerealisticor very detailedmodels?Or whencan

approximatemodelsbeusedin placeof full analyticalmodels?

Typically in multidisciplinary systems,the behavior is quite nonlinearand difficult to

simulate directly because of the complexity of the local behavior equations. Therefore,

methods to approximate the behavior or design space are needed, but again must meet the

same accuracy vs. efficiency tradeoffs. In (Chen, 1995a, Engelund, et al., 1993, Unal, et

al., 1994), response surface methodology is shown to be both effective and efficient in

design space approximation. Response surface methodology fits a surface to a given set

of design points according to a prescribed surface fit equation. To account for nonlinear

effects, the fit equation must be at least of order two. In Figure 2.4, a second order

response surface and its corresponding equation are shown. Response surfaces allow for
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rapid approximationof a designspacebasedon simulateddesignsat certainsettingsof

thedesignvariables.

It

Y= _O+ .EI3ixi+ ._13iixi2+.E.J]ijxixj
1 1 l<.J

Figure 2.4. Second Order Response Surface (Box and Draper, 1978)

Another common approximation method is Neural Nets (NN) which "learn" about the

behavior of the system from training data. NN's have been shown to produce effective

approximations of the design space (Batill and Swift, 1993). Yet, with any method, poor

fidelity may lead to poor approximation. Using the above methods, a surface fit equation

of too low an order, or not enough training data may easily lead to erroneous and

unacceptable results. On the other hand, with higher order fits and more training data

comes more computation time. The balance of these issues has long been resolved

through trial-and-error and has been problem dependent. Therefore the development of

rigorous approximation strategies based on higher level concepts such as information or

even deterministic heuristics that are domain independent would be invaluable.

The issues in approximating local design spaces also hold true for approximating

nonlocal design spaces in hierarchical or nonhierarchical design optimization. Designers

of one subsystem must account for the effects upon other subsystems. Therefore, the
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ability for a givensubsystemto "see"whathow it is affectingandbeingaffectedby other

subsystemsis vital. However, seeing the effects on actual behavior is not realistic.

Subsystemsonly canseeeffectsonapproximatebehaviors.Variousstrategieshavebeen

implementedto approximatenonlocalstates(Balling andSobieski,1994,Diaz, Renaud

and Gabriele, 1991). Inherent in theseapproachesis accommodatingthe approximate

coupling betweensubsystemsvia objective functions, constraints,or additionaldesign

variables.

Many times the level of approximationthat is neededor effective is basedon heuristic

insight or rules. Heuristics play a largerole in the designof complex systemsfrom a

humandecision-makingstandpointto a computer-basedAI standpoint. There is a need

for somesort of heuristics to accountfor the inevitable uncertaintyin any given design

process. Heuristics many times take the form of solution algorithm "facelifts" where

certainad-hocrules,basedon thedesigner'sexperienceor naturallyoccurringphenomena

help solution algorithms becomemoreeffective or efficient. In the next section the

spectrumof heuristicsin MDO ispresented.

2.3.5 Heuristics: From Designer to Computer

Heuristics, or rules based on intuition, experience, or natural phenomena, have been used

from a designer's point of view in various stages of a design process to "smooth" over

rough spots where insufficient or unstructured information is present. In Bloebaum

(Bloebaum, 1991), heuristic rules are employed to allocate variables to subsystems,

determine the most appropriate move limits, and assign coordination coefficients during

system synthesis. In (Kamal, et al., 1992, Peplinski, et al., 1996a, Peplinski, et al.,

1996b), heuristic Decision Support Problems are formulated based on sets of evaluation

criteria and rules. These evaluation criteria are based on uncertain information in the
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concepts.Thebestconceptis selectedbasedon multiple measures of merit. These rules

are based on designers' experience with the design of complex systems and are used when

the mathematical information to make these decisions is not fully defined or, in other

words, uncertain. These types of heuristics are shown originating from the human in

Figure 2.5.
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Figure 2.5. Heuristics Across the Design Spectrum:

From Human to Computer

Heuristics are also being incorporated from the other end of the human-computer

interface, the computer, primarily to aid in the solution of discrete and mixed models.

These types of heuristics are inherent parts of the computer in Figure 2.5. In Figure 2.5,

the synergy between the human and the computer, and the heuristics employed by each is

illustrated. This synergy is also found in Decision-Based Design, a design paradigm that

provides the foundation for this dissertation (see Section 1.2.1).

Glover (Glover, 1986) postulates that integer programming methods and artificial

intelligence based methods, both stemming from a common origin, are now reuniting and

creating a new class of algorithms capable of solving a large class of problems. In MDO,
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integer programming or calculusbasedmethods have beenused as the optimization

techniquesto solvedesignproblems. But, multidisciplinary problemsinherentlyconsist

of both discrete and continuous variables which require other solution methodsthan

calculusbasedones. Unlike its continuouscounterpart,optimality criteria suchas the

Karush-Kuhn-Tuckerconditionsfor discreteproblemsdonot exist. Recently,researchers

areusinga classof algorithms,whichGlovercalls "artificial intelligence"(Glover, 1986),

to solve problemssuchas mixed discrete/continuousdesignproblems. Theseartificial

intelligencemethodsarebasedon variousheuristicbasedsearchesor patternmoves. A

brief reviewof the most recent advancements with these algorithms follows.

In Renaud (Renaud, et al., 1994), the simulated annealing (SA) algorithm, which is based

on the heating and cooling schedule in an annealing process, is used to solve mixed

discrete/continuous problems. This algorithm involved sequential discretizing of the

continuous domain and then solving the problem using the SA algorithm. They refer to

the algorithm as successive simulated annealing (SSA) as the continuous variables are

successively discretized, using a finer and finer mesh as a design process progresses. The

algorithm was tested with a system with five discrete and one continuous variable with

good results. However, the computational expense of discretizing more continuous

variables explodes quickly. Therefore, a better method of approximating the continuous

domains or using fewer intervals may be improvements to the algorithm. In Sellar

(Sellar, et al., 1994) neural networks are used to simulate the continuous and discrete

design space. The benefits of neural networks in domain specific applications are

evident, but across domains, neural networks must continuously be re-trained according

to the problem specific information. For problems that may not change much over long

periods of time, neural networks are beneficial, but for systems that are continuously

undergoing improvements and changes, neural networks are limited.
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In Zhang(ZhangandWang, 1993)a SA algorithm is developed which modifies the step

sizes and neighborhood move strategy based on i) discrete or continuous variables and 2)

optimization process stage. Step sizes are set by the designer based on variable types.

Combined moves, where two or more variables can change, are used in the early stages of

the process to traverse open spaces quickly, while orthogonal moves, where only one

variable changes, are utilized in the later stages of the process. The drawbacks to this

approach are the computational expense of the algorithm, the definition of the penalty

function in constraint handling, and the sensitivity of the algorithm to cooling schedule

parameters which vary with application. Future work included seeking modifications to

reduce the computational expense.

In 1982, Glover introduced the tabu search, a heuristic algorithm based on hiding certain

moves to prevent cycling and then searching in a given neighborhood for improving

designs (Glover, 1989a). The term "tabu" implies that certain moves are not allowed for

a certain time frame according to current visit status. In Bland (Bland and Dawson,

1989a, Bland and Dawson, 1989b), the tabu search has been shown to be an effective

method to solve discrete problems such as ordering or placement problems. In Ford

(Ford and Bloebaum, 1993), the tabu search is used as the discrete solver in the discrete

subspace optirnizations. One caveat of the tabu search is that it is an unassuming

algorithm; that is, it does not know when an optimum or satisfactory solution has been

reached. It will continue to search until a maximum iteration is reached. Certainly in a

MDO environment where computational efficiency is paramount, stopping criteria must

be adequately defined for a given problem. Applications to mixed discrete/continuous

problems have not been developed.
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Zabinsky (Zabinsky,et al., 1993)hasdevelopedImproved-Hit-and-Run,arandomsearch

algorithm that at each iteration generatesa candidate point for improvement that is

uniformly distributedalongarandomlychosendirectionwithin thefeasibleregion. This

algorithm combinespureadaptivesearch,which producesan improving point with each

iteration, with Hit-and-Run methods,which generatea sequenceof randompoints by

providing a random direction and then providing a uniform random point in that

direction. The algorithm, largely basedon notions in operationsresearch,hasbeen

effectively used in composite laminate design (Zabinsky, et al., 1992). It hasbeen

demonstratedto beeffective in problemswith only continuousor only discretevariables,

but has the capability to handle both. Its effectivenessin an MDO environment is

unknown,butseemspromisingbasedonpreviousresults.

Geneticalgorithms,which arebasedon thenaturalprocessesof evolution,mutation,and

selectionbasedon fitness levels, have shownpromise in schedulingand optimization

problemsin MDO. In Hajela (Hajela andShih, 1989),geneticalgorithmsareshownto

be an alternative to solving nonconvexoptimization problemsand in Hajela (Hajela,

1995),geneticalgorithms areusedin the multidisciplinary designof rotor blades. In

McCulley (McCulley andBloebaum,1994)geneticalgorithms(GA) areusedto orderthe

tasks in a multidisciplinary design process. Limited successwas found for design

problemsmadeup of relatively few tasks. With a largenumberof tasksor a very large

multidisciplinary designproblem,thecomputationalexpenseof GA's is often too high.

Other work is being conducted to reduceintelligently the number of evaluations in

geneticalgorithmswithout sacrificingsolutioneffectiveness.

Other attemptsto solve mixed discrete/continuousproblemswithout theuseof heuristic

algorithmshavehad limited success.Cuttingplanealgorithmsin generalrequirea large
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number of cuts to produce an integer solution. Branch and bound techniques in

nonconvexproblemsmay fathom nodesthat arenot feasibleand also require a large

numberof function evaluations.In Loh andPapalambros(Loh and Papalambros,199I),

a sequential linearization techniqueis used. This technique begins by assumingall

variablescontinuousandsolvingusingacontinuoussolver. Then thesolution is rounded

to the nearestinteger solutionand the objective function and constraintsare linearized

aboutthatpoint. Theproblemis thensolvedusinganLP solverandthelinearizationand

LP solutionprocessis repeateduntil nochangein the solutionis apparent.Convergence

to the global optimum is only guaranteedif the objective is pseudoconvexand the

constraintsarelinearor convex. Theauthorstalk aboutconstraintformsandsuggestions

to obtainbetterformsof theconstraintsfor theoptimization. Many timesin engineering,

objective functions and constraintsare non-convex. A techniqueis neededto handle

thesetypesof functions.

In Fu (Fu,et al., 1991),a strict penalty function is usedto enforceintegervalues. The

continuousproblem is solvedfirst, thenthe penaltyfunction is usedto further constrain

the integer variables. Different startingvectorsareusedto ensurethe robustnessof a

solution. An appropriatepenalty function may be problem dependentand difficult to

identify. Also, thealgorithmshowedgreatsensitivityto startingvectorsand initial input

factors.

These types of algorithms, whether calculus based or heuristic in nature, and the

advantagesanddisadvantagesof eacharepresentedasbeingparallel developmentsthat

MDO researcherscanutilize. Algorithms to solve mixed discrete/continuousproblems

are necessaryin MDO whether it be at the subsystemlevel or at the system level.

Systemsinvariably consistof discreteandcontinuousvariablesand the developmentof
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robustalgorithmsto handlethepitfalls involved in continuous,discrete,and non-convex

optimization arenecessaryto thepracticalevolutionof MDO.

Research Opportunities

The ALP Algorithm (see Section 1.2.2) has been used extensively in design problems that

consist of continuous or Boolean variables. It is been shown to solve a wide class of

problems with great success. The primary opportunity is to expand the ALP Algorithm to

handle discrete and integer variables by developing a heuristic search engine for the ALP.

This is one of the primary contributions of this work, supporting Hypothesis III in

Sections 1.3.2 and 3.4 and Chapter 6.

A fundamental notion in design, many times overlooked, is the presence of multiple

objectives in a design problem. Developing the mathematical capabilities to handle

multiple objectives to study tradeoff scenarios in complex systems design is necessary to

facilitate satisfying the various customer requirements in an effective manner. In the next

section, methods to model and handle multiobjectives in design are presented.

2.3.6 Muitiobjectives

Multiobjective algorithms and approaches have largely been developed outside the

aerospace field, but are now becoming more accepted based on their successful

application in fields such as marine design and structures. Many multiple objective or

attribute approaches have been developed for application in MDO. A general approach,

proposed in Sen (Sen and Yang, 1993) calls for the analysis of design concepts based on

multiple criteria (attributes or objectives) without clarifying distinct disciplinary

boundaries. Attributes are used to make a selection from a set of choices, and objectives

are used in the synthesis of a concept. In Sen's approach, both objective and subjective
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factorscanbeusedin adesignprocess.Senusesananalyticalhierarchyprocess(Saaty,

1980)to combinethedifferent criteriafrom different levels.

In order to analyzea systembasedonmultiobjectives,a solution schememustbe based

on a rankingof theseobjectives. If preciseweightingsareknown (thepreferenceof one

objective over another is precisely known), a single objective formulation can be

constructed based on relative weights. However, if a designer only knows the

preferences(and not by how much one is preferred over another) a priority ranking

schememustbeused. In Messac(MessacandHattis, 1995),"physicalprogramming"is

usedto captureadesigner'spreferencesin amathematicallyconsistentmannerin orderto

avoidneedlessiterationsto determinetheobjectiveweightings. In Hajela(Hajela, 1990),

abranchandboundalgorithmis usedto incorporateintegeranddiscretedesignvariables

in multiobjective problems. In Matsumoto (Matsumoto, et al., 1993), a fuzzy logic

schemewhereobjectivesarerankedasbeingeither "soft" or "hard" is used. Then,once

the systemis solved using the "hard" objectives, the "soft" objectivesare used. If no

improvementcan be gained from the design basedon the "hard" objectives, then a

designer may sacrifice someof the "hard" objective in order to improve the "soft"

objective. For instance,in Figure 2.6, therearethreeobjectives,one hard andtwo soft.

Basedon thedesigner'sobjectivetargets,theshadedregionABC is the areasatisfyingall

threepriorities. Within this region,a designer'spreferencesandallowabledeviationscan

beexplored. At thedesignpoint x1,thehardobjectiveF1is fully satisfied,but F2andF3

aresub-optimal. If a designermakesa decision to allow somedeviation, F1 + A2 and

makeF3 moreimportantthanF2,the designpoint x2could be reachedwhereF3is fully

satisfied. Likewise,adecisionto allowF1+ AI andmakeF2more importantthan I::3,the

designpoint x3couldbe reached.
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The authors also present objective categories for which the labels "soft" and "hard" apply.

For instance, those objectives concerned with the protection of the environment should be

"hard" while those concerned with comfort should be "soft". This approach is very

similar to the fuzzy priority scheme implemented in (Zhou, 1988).

In (Lewis, et al., 1994), multiobjective designs are analyzed based on the lexicographic

minimum concept. This concept is defined as follows (Ignizio, 1985a).

LEXICOGRAPHIC MINIMUM Given an ordered array f = (fl, f2.... , fn) of

nonnegative elements fk's, the solution given by f(1) is preferred to f(2) iff

fk(1)<fk (2)

and fi (1) = fi (2) for i = 1..... k-1; that is all higher-order elements are equal. If no

other solution is preferred to f, then f is the lexico[raphic minimum.
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The lexicographicminimum conceptis alsosimilar to theapproachdeveloped by Stadler

(Stadler, 1988) who stresses the history and importance of multiobjective approaches in

all types of design. To illustrate the lexicographic minimum concept, consider the design

of aircraft that is multiobjective. Say that there are three goals,

• Take-off Weight

• Landing Field Length

• Number of Passengers or Fuselage Volume

that a designer must consider. Designers make the decision that take-off weight is the

most important goal, while landing field length is not as important, and number of

passengers is least important. Further, say there are three possible designs, shown below

with their goal achievement.

fl = (210,000 lbs., 5000 ft., 170 passengers)

f2 = (235,000 Ibs., 4500 ft., 190 passengers)

f3 = (210,000 lbs., 4700 ft., 180 passengers)

To determine the best design using the lexicographic minimum approach, level one is

considered first. Designs fl and f3 are equally "good" at this level. Design f2 is not

considered further even though lower priorities may be better than the other designs. At

level 2, design f3 is better satisfied, and therefore, all other levels are ignored, and design

f3 is considered the best design, because of its satisfaction of the top priority goals. This

concept has been implemented the Adaptive Linear Programming (ALP) algorithm,

introduced in Section 1.2.2 (Mistree, et al., 1993a).

One issue touched on by these approaches is the uncertainty and changing of the

information in a design process. In Sen (Sen and Yang, 1993), a group of concepts may

be analyzed based on multiple attributes, and the final concept will be analyzed based on

multiple objectives. In Matsumoto (Matsumoto, et al., 1993), it is recognized that precise

rankings are often unavailable, and identifying broad groups of objectives may be the
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only alternativefor a designerwhenthereis muchuncertaintyaboutthedesign. Further,

preemptive ordering of objectives may precedeArchimedeanordering in the earlier

stagesof designbefore preciseweighting areknown. In any case,the interactionof a

designerwith thecomputer-basedtools,asa meansto updatesystemmodelsand/ortools

asknowledge is gained, is essentialin MDO. In the next section,this issueof human-

computerinteractionis addressed.

2.3.7 The Human Factor

In Barkan (Barkan and Hinckley, 1993), a very important but often overlooked point is

made about design methodologies. Citing studies from U.S. firms, it stresses that

following one set of design steps or rules could many times lead to suboptimal designs

and highly inefficient design processes. The point Barkan tries to make is for designers

in any field to keep their minds open to many theories, methods, and rules concerning

what should be done in design. Single structured methodologies such as Functional

Analysis, Quality Function Deployment, Robust Design, and Design for Assembly should

not be applied blindly across the design process. Using aspects from various

methodologies and philosophies throughout a design process is how MDO has been

evolving recently.

In Hale (Hale, et al., 1995, Hale, et al., 1996), a design infrastructure is being developed

which integrates a decision-based architecture called DREAMS with a computing

infrastructure called IMAGE. This work addresses both process and product issues in a

design process and establishes the human interface to both the computer-implemented

design product and process models. The Framework for Interdisciplinary Design

Optimization (FIDO) (Townsend, et al., 1994) program has recognized this need and
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developed a "housing" for MDO, but the contents of the various "rooms" are prescribed

by the specific residents. In Figure 2.7, the FIDO framework is demonstrated.

SClPLINE 2

DISCIPLINE 1

DISCIPLINE 2

DISCIPLINE 3

Figure 2.7. Framework of FIDO for MDO Implementation

The residents in the house of a complex problem are the various disciplines in a MDO

problem. Each discipline has its own solution software, formulation philosophy, and

analysis approach. FIDO allows for the combination of these various methodologies

under a single roof, all based on the foundation of research in MDO. But how do the

various methodologies of each discipline "see" into the other rooms in the house? The

79



openings that connect two or more "rooms" or disciplines are resolved using a state-of-

the-art, on-line graphics interface where designers can see the progress of the design and

can visualize the effects of any changes that are made on the other disciplines and the

entire system. This type of framework allows a complex system to reap the benefits from

various design methodologies, philosophies, and technologies. In addition, the

framework allows for the parallel development and implementation of the disciplines and

other sciences that contribute to MDO.

The focus of a designer as an interactive decision maker throughout a design process

leads to the need of having appropriate information available for a designer at any given

time. In the next section, the issue of information storage, transfer, and availability is

discussed.

2.3.8 Information Storage and Transfer

In the design of complex systems, disciplinary design teams working on the same system

are many times geographically distanced within the company. Because each discipline is

dependent on the others, the information in a usable form from each discipline is

necessary for the other ones. Therefore, the use of effective databases is becoming

necessary in multidisciplinary design. However, in design, the use of databases to only

store information is not enough. Information is being instantly utilized by the other

design groups. Therefore, the database is being used as a "wipeboard" of sorts where

information is stored for a short time, and is replaced by new information, generated by

other disciplines. As a result, the role of the database, in complex systems design, is

more than storing information, it must transfer the information in a usable way. The

nature of the information indeed changes as the design process evolves. The database

becomes a dynamic system rather than a static one. These issues and other relevant to
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managinginformation in engineeringdesignareexplored in (Fulton, et al., 1989): In

(Hazelrigg, 1996),information-baseddesignis addressedandit is assertedthat systems

engineeringis a viable approachto handlingthe complexitiesin informationally driven

designprocesses.

The ability to balancethe demandsof accuratebut efficient information is paramountin

complexsystemdesignandanalysis. Theavailability of information frequentlydictates

at what level of detail designerscan perform experimentsor even make decisions.

Experimentalmethodscanevenbeusedto lessentheburdenof information availability

through the useof approximationtechniques. Experimentaldesignmethodsarebeing

talked aboutin the samecontextas informationavailability sincethereis sucha strong

relationshipbetweenthem. In the next section,experimentaldesignmethods,design

quality, androbustdesignandtheir applicability to effectiveandefficient systemdesign

andsimulationarediscussed.

2.3.9 Experimental Design Methods: Balancing Efficiency and Quality

System simulation is performed at all levels of design from "back of the envelope"

calculations in the early stages of design to prototyping in the later stages of design.

Making the simulation as efficient as possible while maintaining an acceptable level of

effectiveness is an important and difficult issue in system and subsystem simulation. In

the following, efficient experimental design methods as well as robust design techniques

are presented.

Experimental design methods

In the design of experiments, a finite number of designs in the design space are simulated

using prescribed settings of the design variables and system evaluation routines. How
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small or large a number the term "finite" implies is the dilemma of full factorial

experimentsversusfractional factorial experiments. Taguchiutilizes a specialclassof

fractional factorial matrices,called Orthogonal Arrays (OA) to span the design space

efficiently while maximizing the effectiveness of the informationl OAs also can simulate

control factors (design variables) and noise factors (uncontrollable factors, such as

environmental effect) in one OA. In Stanley (Stanley, et al., 1992) Taguchi's OAs have

been applied to the design of Single Stage To Orbit (SSTO) vehicles. In Lewis (Lewis, et

al., 1994), OAs are used to simulate and explore the multidisciplinary behavior of a

Boeing 727-200 effectively . Box (Box, et al., 1978) has introduced the Central

Composite Design (CCD) experiments as modifications to the OA. These types of

experimental methods combined with response surface methodologies produce a

powerful simulation tool that can be linked to optimization techniques in complex

systems design. This is demonstrated and further explained in (Chen, 1995a, Chen, 1996,

Olds, 1994, Unal and Stanley, 1992, October).

Robust Systems design

In robust design, the effects of noise factors are reduced without eliminating the causes of

the noise. Robust design is an excellent method of designing quality into the design

process and product. Taguchi, an early proponent of robust design, builds his philosophy

on the notion of not finding optimums, but regions of low variability (Taguchi, 1987).

This notion can be traced back to Simon (Simon, 1982), who introduced the notion of

"satisficing" as opposed to optimizing. Simon states:

"The decision that is optimal in the simplified model will seldom be optimal in the

real world. The decision maker has a choice between an optimal decision from

an imaginary simplified world, or decision that are 'good enough', that satisfice,

for a world approximating the complex real one more closely." (Simon, 1982)
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Anotherway of putting this is the"betterization"of a designinsteadof the optimization

of adesign(Stadler,1988). Stadlerstatesthatthetrueoptimizationof a designis closeto

impossible. A morepracticalapproachis makingthedesignbetter,or thebetterizationof

a design.

The techniques of Taguchi and the notion of "satisficing" have been applied in various

MDO applications. Taguchi's measure of the quality of the design is the signal-to-noise

ratio, a ratio of the mean value to its standard deviation. In (Mistree, et al., 1993b, Olds

and Walberg, 1993, February, Stanley, et al., 1992) the Taguchi approach to robust

design has been incorporated into the design of complex systems such as a Life Satellite

Vehicle and SSTO space vehicle. There are drawbacks to Taguchi's approach to robust

design. These drawbacks are well documented in (Box, 1988) and include the single

objective (signal-to-noise ratio) nature of the approach. Researchers are finding excellent

results integrating robust design methods into MDO (e.g., (Chen, 1995a)). However,

they must not be applied blindly, but must be intelligently synthesized with other

methods and strategies discussed in this chapter. Measuring and maximizing the quality

of a product or process along with efficient experimentation is a very important aspect of

the design of any system, including multidisciplinary systems.

2.3.10 Applications of MDO

Although the roots of MDO are being attributed to the field of structures in aircraft

design, multidisciplinary design optimization has been performed for years in many other

disciplines. It is only recently that these areas are being recognized as multidisciplinary

design optimization application and research areas. It is the unifying field of MDO which

has brought together developments from a variety of applications.
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Much of the focusof MDO applicationsis in the areaof flight systems,both orbital and

non-orbital. NASA, Boeing,Lockheed,andMcDonnell-Douglasareeachindependently

andjointly researchingMDO technologiesin aircraft design,including the High Speed

Civil Transport(HSCT). In spacesystemdesign,work concentratedat NASA-Langley

focusesonapplyingMDO technologiesto thedesignof advanced,mannedtransportation

systemconceptsincluding the new family of spacevehicles(Olds, 1992,Stanley,et al.,

1994). Also, MDO technologyhasbeenappliedto trajectoryoptimization problemsin

groundto missionvehicles(Beltracchi,1990). In civil engineering,applicationsof MDO

include thedesignof steelandconcretesystems(Bailing, 1993,FangandAzarm, 1994).

In mechanicalengineering,applicationsincludethe designof damagetolerant structural

and mechanical systems,mechanisms(Mistree, et al., 1990a), and thermal energy

systems(Bascaran,et al., 1989,Vadde,et al., 1992). Overlappingin eachfield is the

study of materialswhich forms the foundation of complex systems. Many times the

selection of materials is coupled with the determinationof physical design variables,

further increasingthecomplexityof thesystemanalysis.

2.4 A LOOK BACK AND A LOOK AHEAD

In this chapter, Phase I of the strategy for implementation and verification of this

dissertation, as outlined in Section 1.3.2, is completed. In Chapter 2, the foundation of

the dissertation is further solidified, as shown in Figure 2.8. The needs and research

opportunities that provide the motivation and background for the dissertation are

identified through a comprehensive literature review. The foundation for the dissertation

is now complete and in Chapter 3, the algorithm for integrated subsystem embodiment
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andsystemsynthesisis presented,buildinguponthefoundationbuilt in Chapters1and2.

In Chapter3, PhaseII of the strategyfor implementationand verification (seeSection

1.3.2)is initiated.

.... Phase h Foundations and
Motivations

IChapter 21

Figure 2.8. Frame of Reference: Chapter 2
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CHAPTER 3

THE ALGORITHM, TECHNOLOGY BASE, AND RESEARCH

HYPOTHESES - VERIFICATION GUIDELINES

Having addressed the research background and research opportunities in Chapters 1 and 2,

the algorithm for integrated subsystem embodiment and system synthesis is f'u'st presented

in this chapter. The algorithm is presented as a step-by-step approach for integrating the

solution and coordination of subsystems. This algorithm is developed based on several

research hypotheses. The focus in this chapter is to provide the background, ramifications,

and verification guidelines for each hypothesis. Verification studies of the hypotheses are

presented in Chapters 4, 5, and 6, and the motivating case study is presented in Chapter 7.

In this chapter, an overview of the algorithm is given. The research hypotheses, and

supporting posits follow in Section 3.1.3. Sections 3.2, 3.3, 3.4, and 3.5 are devoted to

testing the four hypotheses, respectively. For each hypothesis, ramifications are provided,

a literature background is presented, and verification guidelines are discussed. Associated

with the respective four hypotheses are a set of characteristics for complex systems design

taxonomies (Sections 3.2.1 and 3.2.2), the use of various approximation techniques

including the Design of Experiments and Response Surface Methodology (Section 3.3.4),

constructs from various discrete optimization algorithms (Sections 3.4.2-3.4.3), and a

formal proof of convexity (Sections 3.5.1-3.5.3). For Hypothesis IV, the guidelines for

verification are straightforward, and the proof to discount Hypothesis IV is given in

Sections 3.5.1-3.5.3. A review of the examples and motivating study used to verify and

illustrate the developments of this work is given in Section 3.6. Finally, this chapter is

closed with a look back at what has been presented and a look ahead to what is next.
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3.1 AN OVERVIEW OF THE ALGORITHM AND RESEARCH

HYPOTHESES

3.1.1 An Algorithm for Concurrent Subsystem Embodiment and System

Synthesis

The algorithm presented here is conceptual in nature. In other words, the algorithm is a

conceptual procedure, and not an automated computer system. Parts of the algorithm have

supporting computer packages, but an encompassing computer infrastructure does not

exist. A schematic of the overall algorithm is shown in Figure 3. I. There are three distinct

steps: 1) Classify problem based on system model, 2) Formulate subsystem models and

interactions, and 3) Solve and coordinate subsystems.

Problem classification

ctions

\
Coordination/Sol

Figure 3.1. Schematic of Overall Algorithm
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Thesesteps constitute an algorithm as opposed to a method simply because of the

mathematical rigor behind Steps 2 and 3 (see definition of algorithm in Section 1.1.5). In

(1984), method is defined as

A systematic and regular way of accomplishing a given task.

Although the steps introduced are systematic, it is the mathematics of the steps that

constitute the use of the term "algorithm." These steps are explored with reference to

Figure 3. I.

Step 1. Classify problem and process based on structure of the system

model.

In Figure 3. I, this step is shown as the supporting structure surrounding the inner

parts of the algorithm. This is the function of this step: to provide the foundational

support for the remaining steps. In this step, the design problem and process

formulation are classified based on the system model and the assigned design

teams. A classification system provides a linguistic basis for the structuring of a

system and its associated modeling and solution processes. The classification

developed and used is a three-level lexicon that builds upon previous classifications

and establishes the decision as the fundamental design construct. The hypothesis

and posits supporting this step are provided in Section 3.2.

Step 2. Based on the classification from Step 1, formulate appropriate

compromise DSP for each disciplinary subsystem.

In Figure 3.1, this step is shown as the top half of the inner portion, from the top

level system to lower level subsystems, which may be interacting. It is asserted

that the interactions among the subsystems can be abstracted as games and the

relationships modeled using game theory protocols. Based on the protocol

(relationship) among the subsystems, established in Step 1, compromise DSPs are
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formulatedfor eachsubsystem. The four protocols usedare full cooperation,

approximatecooperation,noncooperative,andleader/followerformulations.These

protocols are introduced and defined in Section 3.3.3. Depending upon the

protocol,different informationis availableto thedifferent subsystems.Therefore,

theconstructsto formulateandprocessinformationfor eachsubsystemchangewith

eachprotocol,but thecorecompromiseDSPof eachsubsystemremainsthesame.

However, depending on what information is available, the solution of the

compromise DSPs may change. The hypothesis and posits supporting this step are

provided in Section 3.3.

Step 3. Solve the disciplinary models and coordination problem based on

the classification and interactions from Steps 1 and 2.

This step again uses one of the four possible protocols: full cooperative,

approximate cooperative, noncooperative, and leader/follower. In Figure 3.1, this

step is shown in the lower half of the inner portion, from the subsystems to the

integrated system at the bottom. The protocol established in Step 1 dictates the

solution process that is used to solve and coordinate the subsystem compromise

DSPs. Depending upon the protocol and presence of discrete and/or continuous

design variables, different solution techniques are used to solve and coordinate the

disciplinary models. It is also required to handle nonconvex functions in the

solution process. The hypothesis and posits supporting this step are provided in

Sections 3.4 and 3.5.

These steps are motivated by ideal aspects of an algorithm for integrated subsystem

embodiment and system synthesis, as identified in Section 1.1. In Figure 3.2, an "ideal"

algorithm is shown on the left. On the right, the needs and foundation for such an

algorithm are shown. Within the body of existing work are various needs or "holes" which
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represent open research questions. The holes addressed in this dissertation, reviewed and

identified in Chapter 2, are: a basis of linguistic communication, realistic modeling of

interactions in multidisciplinary design, the solution of mixed discrete/continuous

problems, and the capability of handling nonconvex functions in an optimization context.

It is these holes which represent the motivation for this dissertation. These holes are filled

through the formulation, verification, and implementation of four hypotheses.

Basis of
Linguistic

Communication
HI, Hypothesis I

Ideal Algorithm
for Integrated

Subsystem

Embodiment and

System Synthesis

Modeling of ,,,,,k Hypothesis H
Interactions "--'1'

Solution of Mixed
llb Hypothesis HI
--7

Problems

Handling

Nonconvex I_
Funcuons

Hypothesis IV

BODY OF EXISTING
WORK: Game Theory,
ALP Algorithm, MIX)

Figure 3.2. Needs, Opportunities, and Hypotheses

The implementation of the hypotheses is realized through three steps which constitute "an

algorithm for integrated subsystem embodiment." As a roadmap to this chapter, Figure 3.3

combines the algorithm schematic, research hypotheses, and tools used for each

hypothesis. In Sections 3.2 through 3.5, the four hypotheses are presented along with

background of the tools used and verification guidelines.
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Algorithm Schematic

STEP 1

[
STEP 2

STEP 3 [

Hypothesis Tools

Hypothesis I
Section 3.2

Multidisciplinary Design 1
Optimization, Decision

Support Problem Technique

Hypothesis II Game Theory, DOE, RSM, 1
Section 3.3 Taylor's Theorem, JCompromise DSP

Hypothesis III, IV Tabu Search, Foraging, |
Sections 3.4, 3.5 ALP Algorithm, Nonlinear JOptimization Theory

Figure 3.3. The Algorithm, Hypotheses, and Tools: A Roadmap

The tools in Figure 3.3 are shown beside the primary step where they are applied, but there

is overlap of the tools in multiple steps. This overlap of the constructs and tools used in

each step is shown in Figure 3.4. The constructs and tools of Step 1 are largely conceptual

and are not implemented in a formal sense on a computer. The constructs and tools of

Steps 2 and 3 have formal structure on a computer. The computer implementations for

Steps 2 and 3 are presented in the next section.

Al_oorithm Steps Constructs and Tools

Decision Support Problem Technique,i
Step 1: Por_u/:tees:rOblem and /jMultidisciplinary Design Optimization i

-Ste 2 Based o_ Game Protocol :Compromise DSP, Game Theory,
FoPrmulateDiscinlinarv Modml_ ' _ Global Sensitivity Equations,

- , " "" - - / _ Taylor's Theorem, DOE, RSM

/J! (Hypothesis II) i

.Step 3: Resolve.the.disciplinary _____ Adaptive Linear Programming, Tabu
oeswgn ano cooralnauon proolems _Search F, oraging, Optimization Theory i

i (Hypotheses III and IV)

Figure 3.4. Overlap of the Constructs and Tools
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3.1.2 Computer Implementation of Algorithm

Depending upon the protocol among the design teams established in Step 1 of the

algorithm, different theoretical and computational tools are used. In Step 2, there are four

primary game protocols that are used (see Section 1.2.3): full cooperation, approximate

cooperation, noncooperation, and the leader/follower protocol. In Figure 3.5, the

computer infrastructure for implementing the computer-based portions of the algorithm is

shown. The input is the game theoretical protocol that exists among the subsystems

(players). This is a result of Step 1 of the algorithm. Then, depending upon the protocol,

different tools are used to model the interactions in Step 2 of the algorithm, and to solve the

resulting models in Step 3. The major components of the existing computer infrastructure

shown in Figure 3.5 include four processors (a nonlocal approximation processor, module

A, a design of experiments/response surface processor, module B, and a solution

processor, module D), each centered about the primary processor, the compromise DSP,

module C.

The full cooperative protocol (defined in Section 3.3.3) is the simplest case and uses only

the compromise DSP (module C) in Step 2 to formulate the problem. The appropriate

solution scheme in DSIDES (module D) is used in Step 3 to solve the formulation

depending upon whether discrete variables are present in the model.

The approximate cooperative protocol (defined in Section 3.3.3) utilizes a nonlocal

approximation processor (module A) based on the Global Sensitivity Equations (GSE) and

Taylor Series in Step 2. The nonlocal approximation processor is embedded within the

players' compromise DSPs (module C). The resulting compromise DSPs are solved in

Step 3 using the appropriate solution scheme in DSIDES (module D).
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For both the noncooperative and leader/follower protocols (defined in Section 3.3.3), a

Design of Experiments processor (module B) is used to generate a Response Surface

Model of the players' rational reaction sets in Step 2. To generate these RSMs, the DOE

processor calls the players' compromise DSPs (module C) as the simulation routine. At

each simulation, the appropriate solution scheme in DSIDES (module D) is used to solve

the model. In the noncooperative protocol, Mathematica is also used as the solution

processor (module D) in Step 3, in order to find the intersection of the rational reaction

sets. In the leader/follower formulation, the rational reaction sets are then used by the

appropriate players in their compromise DSPs, which are again solved in Step 3 using the

appropriate solution scheme in DSIDES (module D). The result is a set of solutions which

correspond to the various protocols.

The different tools and techniques used in Steps 2 and 3 for each protocol are shown in

Table 3.1. Specific discussion of the computer implementation of these tools and

techniques in the various protocols is discussed in Section 5.5.

Table 3.1. Tools used in Each Protocol

Protocol

Tools Used

Full Cooperation

Sequential Linear

Programming

(SLP), Heuristic

Search

Approximate

Cooperation

Global Sensitivity

Equations (GSE),

Matrix Solver,

Taylor Series, SLP

Noncooperation

Design of

Experiments,

SLP,

Matrix Solver

Leader/FoUower

Design of

Experiments,

SLP, Heuristic

Search
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Corresponding to these computer-based tools are a set of theoretical approximation

concepts which are used in each protocol. Applying game theory principles to complex

systems design requires approximation of various game-theoretical constructs because of

the complexity of the analyses. The approximation concepts used in each protocol are

shown in Table 3.2.

Table 3.2. Approximation Concepts used in Each Protocol

Protocol

Approximation
Concepts Used

Full Cooperation

Sequential Linear

Programming

Approximate

Cooperation

Global Sensitivity

Equations (GSE),

Taylor Series,

Sequential Linear

Pro[ramming

Noncooperation

Response

Surfaces,

Sequential Linear

Programming

Leader�Follower

Response

Surfaces,

Sequential Linear

Programming

3.1.3 Hypotheses and Posits

In Section 2.3, the areas of research of this work are presented and reviewed. These

namely are problem and process classification, subsystem interaction, mixed

discrete/continuous optimization, and nonconvexity. A literature review of these areas is

provided in Section 2.3, along with other areas related to these in the design of complex

systems. It is in these four areas where the four hypotheses of this work are derived.

Associated with each hypothesis is a set of supporting posits. As the hypotheses and

posits are unique for this research topic, they are considered the fundamental contribution

of this dissertation.
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IHypothesisI: Classification of problem and process in multidisciplinary design can be]

1

I

extended by integrating constructs from Decision-Based Design, Game Theory, and]
I

Multidisciplinary Design Optimization. [

Hypothesis H: Game theoretic principles can be applied to accurately model and

describe the interactions in complex systems design.

Hypothesis III: The notion of foraging of wild animals is a natural analogy for

optimization and can be used as an effective search technique in the solution of mixed

discrete/continuous models.

Hypothesis IV: The g-function is a useful transformation of nonconvex functions into

well-behaved convex functions.

Hypothesis I Posits

Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-

independent lexicon for multidisciplinary design.

Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidisciplinary design.

Hypothesis H Posits

Posit 2.1: Design processes can be abstracted as games where the players are multiple

designers or design teams and their associated analysis and synthesis tools.

Posit 2.2: Approximate cooperation can be modeled using the Global Sensitivity

Equations and Taylor series to approximate nonlocal equations.

Posit 2.3: First order Taylor series can be used as a good approximation of nonlocal

state equations.

Posit 2.4: Second order response surfaces can be used to approximate the Rational

Reaction Sets of the disciplinary players in a design game.

Posit 2.5: The compromise DSP can be used as the fundamental construct to develop

the _ame theory protocols and techniques.

Hypothesis Ill Posits

Posit 3.1: Foraging is a heuristic, under which characteristics from genetic algorithms,

Tabu Search, and Simulated Annealin_ can be _rouped.
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I

Posit 3.2." The Tabu Search can be used as the building block for the foraging solution]

algorithm. I
Posit 3.3: The ALP Algorithm along with foraging can be used to effectively solve[

mixed discrete/continuous problems. I

Hypothesis IV Posits

Posit 4.1: Nonlinear optimization theory can be used to prove/disprove the

effectiveness of the g-function in transforming nonconvex constraints and goals in the

compromise DSP to convex equations.

In the next section, Hypothesis I is discussed, including the necessary technical

background, ramifications, and verification guidelines.

3.2 TEST OF HYPOTHESIS I - DEVELOPMENT OF PROBLEM AND

PROCESS FORMULATION

Ramifications and verification guidelines are provided for testing

Hypothesis I in this Section. The verification guidelines are

discussed in Section 3.2.3. It is asserted a classification system for

problem and process formulation in design should

• have the capability to classify the roles of multiple designers,

• have the capability to handle multiple levels of detail,

• be domain-independent, and

• be independent of time and technology.

In Section 3.2.2, these four characteristics are discussed in the context of MDO. Design,

however, is neither a science nor an art. Therefore, classification systems in design are

difficult to implement due to the numerous interpretations of design. In Section 3.2.1, the
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amorphousnatureof classifications in design is discussed as a precursor to the remainder

of Section 3.2.

3.2.1 Nature of Classifications in Design

In accordance with the Collins English Dictionary, taxonomy is defined as

- the principles of classification or order (1976).

In the field of science, the term taxonomy has evolved into a term, synonymous with

classification, based on the principles of order. Taxonomies are used in various areas of

science to classify certain parts of the field according to some logical, structured ordering

and to facilitate future communication and research among peers in the field. In largely

creative areas, such as art, everyone typically has his or her interpretation of the field, and

this interpretation is neither wrong nor right because of the large amount of ambiguity.

Since design arguably is composed of aspects rooted both in science and in art, an accepted

taxonomy is difficult to establish and has not been developed (Muster and Mistree, 1989).

Traditionally, a design process is divided into stages based on the requirements of the

project's management. This division is usually some variation of the following process:

problem definition, conceptual design, layout design, detail design, and manufacturing

design. It has become more apparent that other areas such as designing for assembly,

designing for recycleability, and designing for maintenance, or in other words, DFX, must

be taken into account in the design process. Unfortunately, this taxonomy provides little

information on what is being accomplished in each stage, the information flow among the

stages, and the types of decisions required at each stage. Many researchers have attempted

to develop a standard classification scheme for design with some of these areas in mind.
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Someof theseclassificationsare: taxonomiesfor mechanicaldesignsand artifactsin the

Europeanliterature(Hubka,1982,PahlandBeitz, 1984,VDI, 1986),classificationof the

mechanicaldesignresearchandresultsbasedon a schemeof classifying initial and final

statesof knowledgeof anobjectto bedesignedDixon (Dixon, et al., 1988),classification

of mechanicaldesignaccordingto designproblem,researchmethod,environment,and

designprocessby Ullman (Ullman, 1992),classificationof mechanicaldesignby design

type and design activity by Snavely (Snavely, et al., 1989), identification of eight

approachesto designalongwith threetasks,designselection,parametricredesign,and

designsynthesisby Marshek (Marshekand Kannapan,1987),and an expansionof a

taxonomyof theentireProductRealizationProcess(PRP)by Mills (Mills, 1993). While

each of these taxonomieshascontributed to the scienceof design in some form, an

acceptedclassificationfor communicationandcomparisondoesnotexist.

It is among the contributions of this dissertation to expand the scienceof design by

expandingclassificationssuchastheseto the designof complex systems, which may be

carried out by multiple designers, design teams with their own analyses and syntheses

routines at different levels of fidelity. Issues associated with multiple designers and

multiple levels are addressed in the next section.

3.2.2 Multi-Player and Multi-Level Formulations

The underlying assumption in many of the general design taxonomies discussed in Section

3.2.1 is that design does not have to be performed by different designers and design teams

who may be geographically distanced. However, in an industrial context, this is often the

case, and as such, is fundamental motivation for this dissertation as well as for the field of

Multidisciplinary Design Optimization (MDO). The term methodology is defined in

Webster's Dictionary (1984) as
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a body of methods, procedures, working concepts, and postulates, etc.

Consistent with that generic definition, MDO can be defined as a methodology for the

design of complex engineering systems that are governed by mutually interacting physical

phenomena and made up of distinct interacting subsystems (Sobieszczanski-Sobieski and

Tulinius, 1991). From this definition, it is obvious that any engineering design problem in

MDO will be performed by multiple designers and design teams working in multiple

disciplines. Several approaches to formulating and solving a multidisciplinary design

problem have arisen in a rather ad hoc fashion since the inception of MDO. These

approaches include single-level and multi-level formulations, hierarchical and

nonhierarchical system decomposition methods, and numerous optimization and analysis

processes and approaches at the system and subsystem levels. The fundamental problems

in MDO arise in the modeling, solution, and coordination of the system and subsystem

models. Therefore MDO is driven by analysis and synthesis, as opposed to general design

methods as in Section 3.2.2. As a result the classification of problem and process in MDO

can be viewed as a subset of the general design classifications. A classification in MDO

would be useful at a given snapshot of a general design process where a system model

must be formulated and solved. As the field of MDO expands, it becomes increasingly

necessary for a consistent classification system that can be used as a form of

communication and comparison. It is asserted that the following characteristics are

beneficial, if not necessary to an effective classification system in MDO.

A classification system must address the possibility of multiple levels, multiple

designers, multiple design teams, and multiple analysis and synthesis levels. But in

complex systems design, the primary function of a designer does not change. The

function is still to make decisions. Therefore, the foundation of the classification, it

is asserted, should remain the decision. The focus of a classification system in
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MDO shouldclassifythetools,methods,andprocessesthatareusedto supportthe
integrateddecisionsof multipledesigners.

A classificationsystemshouldaddressthe nature of the interaction among the

designers and/or design teams from a mathematical, analysis-oriented perspective.

Many times design teams who are geographically distanced from the other teams

may have to act on their own and make assumptions about the other teams'

decisions. Often, some design teams will take the lead in a design process while

others will wait to perform their analysis and make their decision until later in the

process. Further, some design teams may design according to their own

requirements and goals while ignoring the goals of other disciplines. While this

may result in an ideal design of their subsystem, it may not translate to an ideal

system design. These situations are common in complex systems design and are

also representative of typical situations in game theory. Classification systems

should account for the nature of the interactions among the design teams at both the

personal level and the analysis or synthesis level.

A classification should be independent of time-based developments, such as

technology. As technology continues to expand and better and faster tools and

methods are developed, classifications should not change. An example is found in

the area of chemistry. In chemistry, the framework is in the form of the periodic

table. All research and technology, no matter how advanced, can be referred in

some sense back to this table, and this will always be true. The pure sciences have

set the standard for classifications of some sort. In design, or even

multidisciplinary design, this type of framework is difficult due to the inherent lack

of structure.

A classification should also be independent of the domain of application. Designers

working on aircraft design should be able to use the same classification entities as

designers working on ship design. The complex system domain should not affect

the classification used.
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To addresstheseissues,entities from gametheory and the Decision SupportProblem

Technique(seeSection1.2.1)areintegratedwith anexistingmultilevelframework(Bailing

andSobieski, 1994),asdescribedin Chapter4. In this dissertation,valueis addedto the

evolving framework of MDO to stimulate its acceptanceas a basisof communication

(Lewis andMistree, 1995). In thenext section,guidelinesfor verifying HypothesisI are

given.

3.2.3 Guidelines for Verifying Hypothesis I: Problem and Process

Formulations

IHypothesis I: Classification of problem and in multidisciplinary design can be[

process
I

extended by integrating constructs from Decision-Based Design, Game Theory, and]
I

Multidisciplinar,/Design Optimization. [

Hypothesis I is tested by using two posits. The guidelines and section numbers related to

the testing of each posit are given.

Posit 1,1: Entities from the Decision Support Probi_ Tec_que_ provide a domain-Iindependent Iexicon for multidisciplinary desi_i. '1

To verify this posit, a multi-level lexicon is presented in Section 4.2 that includes entities

from the Decision Support Problem Technique. Previous attempts at defining a lexicon for

multidisciplinary design have been focused in the field of aircraft design. The benefit of

having a domain-independent lexicon is that designers from various fields and backgrounds

are then able to communicate and compare problem formulations. The DSPT has been

used in the design of many systems, from small and simple to large and complex. The

work supporting this posit further establishes the DSPT as an effective set of ideas, tools,

and entities to support designers in the design of engineering systems.
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• In Section4.3 the lexicon is mappedinto previousclassificationsystemsusing

linguistic entities. The linguistic entities of the lexicon presented are shown to be

domain and time independent.

• In Section 4.3 various examples are used to illustrate the effectiveness of the

lexicon in complex systems design. These examples include a pressure vessel

and a passenger aircraft, both studies used to verify other portions of this work.

Posit 1.2: Game Theory principles can be used to extend problem formulation in[

multidisciplinary desi_n. I
Previous attempts at problem formulation in multidisciplinary design have addressed the

existence of multiple levels of designers and disciplines but never addressed anything but

cooperative relationships among them. This is point of departure in this work, the

extension of problem formulations in multidisciplinary design to design scenarios where

full cooperation may not exist. In conversations with industry experts in aircraft design, it

is apparent that although researchers in problem formulation and complex systems design

assume cooperation in their models, in practice, cooperation is rare. For instance, at the

National Aeronautics and Space Administration (NASA) it is common for the

aerodynamicists to take the lead in a design process and establish the wing and fuselage

profiles first. Then the propulsion, controls, and structural engineers design according to

the wing and fuselage design set by the aerodynamics team. In the former Soviet Union, it

was a common practice to choose the engines for aircraft first, then design the remaining

sections around the engines. These two practices are very different, but would be

classified very similarly using previous lexicons in multidisciplinary design. There is a

need to account for the fundamental interactions among the subsystems and/or disciplines

when complete cooperation is not possible or practical. The work of this posit supports the
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capabilityto accountfor thesetypesof interactionsin a lexicon. In Sections3.3.3and5.5,

the linguisticentitiesof gametheoryarepresented.

3.3 TEST OF HYPOTHESIS II - SUBSYSTEM INTERACTIONS

The fundamental notion of this hypothesis is that a complex design

process can be abstracted as

players (designers and their

tools). The theoretical and

a series of games among a set of

associated analysis and synthesis

intuitive notions to support this

Hypothesis are established in this section. Ramifications and

verification guidelines are also provided for testing Hypothesis II in this section.

3.3.1 A Typical Complex System Design Model

Typical complex system models are analyzed and solved using one of two strategies: 1)

solving the system level problem as a single level problem, or 2) decomposing the problem

into smaller problems and solving the smaller problems. In this work, it is assumed that

the system level problem is decomposed into smaller, subsystem level problems which

must be analyzed and solved accounting for any coupling among the subsystem problems.

This is shown in Figure 3.6, where a typical complex system model is decomposed into

two subsystem problems. At the system level, there are overall system requirements and

system parameters. At the subsystem level, SS 1 and SS2 consist of constraints and goals

each must satisfy, and system and deviation variables each mustfind. Once these variables

are found, a system configuration is generated based on the subsystem problem solutions.

But this is easier said than done. For one, each subsystem typically needs the values of

design variables of the other subsystems. This is illustrated in Figure 3.6. Furthermore,

integrating the subsystem solutions into a system level configuration is not a trivial
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problem. It mustbegovernedby thecoupledvariablesandacoordinationprocedurebased

on thesubsysteminteractions.

SATISFY
FIND

__d ¢'- SS1 System Variables _'_

GIVEN/ A I "--]_S 1 Deviation VariablesJ

×ss Z ×ss, I

FIND 1

f SS2 System Variables"_

.,_,_LSS2 Deviation VariablesJ

SATISFY

Figure 3.6. A Typical Complex System Model

To illustrate some fundamental integration principles from a mathematical perspective, the

following subsystem model (compromise DSP) in Figure 3.7 is presented.

x2 = 2.3

Figure 3.7. A Coupled

Given

x2= 2.3
Find

Xl

Satisfy
gl: xl 2< 5
g2: x i *x:,/5 < 13
fl: xl/x2 + 4*xl + dr- dl+ = 20

Minimize

Z={df+ dl÷ }

Compromise DSP
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On the left sideof Figure 3.7a verysimplecompromiseDSPrepresentingonesubsystem

is shownwith onelocaldesignvariable,x i, two constraintsandonegoal. Theonly catch

is that x2, the designvariable of anothernonlocal subsystemis neededin g2 and fl.

Without a representationof x2thecompromiseDSPon theleft sideisunsolvable. Typical

complex system design practices either require a value of x2 at each iteration from the other

subsystem, or just assume some value. On the right side of Figure 3.7, the value of x2 =

2.3 is used in the model and is either provided by the other subsystem or taken as an

assumption. Either way, the compromise DSP on the right side is now solvable. If the

actual value is used, it requires extensive information transfer and coordination for the

multiple analysis and synthesis iterations in a solution process. However, if assumptions

are made, there exists a risk of the assumptions being wrong or infeasible. So the question

is posed, how can the designers of this subsystem know x2 without making assumptions

or requiring large information transfer? It is asserted that if the designer using the

compromise DSP in Figure 3.8 has a representation of x2 such as x2 = f(xl), then the

problem is solved. This is illustrated in Figure 3.8.

x2 = f(xl)

Given

x 2 = f(x I )
Find

Xl

Satisfy
gl: xl 2< 5

g2:xl*x2/5 < 13
fl: xl/x2 + 4*xt +dl'- dl + = 20

Minimize

Z={dl-+ dl +}

Figure 3.8. A Coupled Compromise DSP: Smarter Coupling

In Figure 3.8, the designer now has a representation of x2 for any value of xl which can be

used in the compromise DSP to find solutions. This is a major point of contribution of this
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dissertationin complexsystemsdesign,but it createsasignificantmathematicalchallenge.

Constructinga function,x2= fix!), where the independent variable of one subsystem is the

dependent variable of the other subsystem is not a trivial task when x2 and Xl may

represent vectors of multiple design variables. Still, this is a simple abstraction of a

complex subsystem model. In design problems, there are variables that are not design

variables, but describe the behavior of the system. These are called state variables, s, or

behavior variables. Examples may include lift-to-drag ratios, velocities, or stresses. Now

consider the compromise DSP of Figure 3.9.

xz = f(xl, sl)
&

s2= f(x t, s I)

Given

x2= f(x t, s,)
_= f(xl, s0
sI = 300xx :2001a

Find
X

I

Satisfy
g: 4s i*x_2_<6
g_ xx*x_/5 + s_ + _ < 18
ft; xl/(s'z*x2) + 4*xt + dl- dl'= 30

Minimize

Z= [ dl+ dl÷ }

Figure 3.9. A Coupled Compromise DSP: Realistic Coupling

In this case, the designer (player 1) requires both the design variable, x2, and the state

variable, s2, from the other subsystem (player 2). Therefore, two functions must be

constructed,

x2 = f(xl, Sl) (3.1)

s2 = f(xl, Sl).

This set of equations is in essence the rational reaction set of player 2, a fundamental

construct in game theory. The rational reaction set is presented and discussed in Sections

3.3.3 and 3.3.4. On the right hand side of Figure 3.9, the designer now has a
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representationof x2ands2for anyXl andSl. This is anothermajorpoint of contribution

of this dissertation:thecouplingof designandstatevariablesin a game-theoreticcontext.

In the next section,a typical gameis describedandthe parallel is establishedbetweena

game among multiple players and a complex design processperformed by multiple

designers(who usetheir own analysisandsynthesisroutines).

3.3.2 A Game as an Abstraction of a Design Process

A "game" consists of multiple decision-makers or players (or designers, in this case) who

each control a specified subset of system variables and who each seek to minimize their

own cost functions subject to their individual constraints (Myerson, 1991). The game

requires these multiple decision makers to select single decision strategies to optimize their

set of rewards. However, each player's reward depends on the other player's strategies,

i.e., a local reward depends on decision variables that are controlled by other players. The

fact that players lack control over all decision variables affecting their rewards is what

makes a game a game and what distinguishes it from an optimization problem. To

illustrate, consider Figure 3.10. When only one decision maker is modeled, the problem is

an optimization problem, scalar for single rewards or vector for multiple rewards.

However, with more than one decision maker, the problem becomes a game. The focus of

this dissertation is on the bottom right-hand comer of Figure 3.10: vector games where

there exists more than one decision maker who each have more than one reward. The

developments and techniques can be applied, however, to all four quadrants under the

appropriate assumptions.
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Number of Rewards per Decision Maker
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Figure 3.10. Various Formulations in Optimization Theory (Mesterton-

Gibbons, 1992)

It is asserted that the processes required to design a complex system can be abstracted as a

game. To illustrate, assume that a complex system such as an aircraft has been

decomposed into disciplinary subsystems such as propulsion and structures. It is

commonly accepted that a model such as

minimize f(x,p) = {fl(x,p) .... ,fAx, p)} (3.2)
xE X(p) c 9f_

is the typical starting point for much of the current research and practice in systems

modeling and applied optimization. Yet in specific design instances, this assertion should

be boldly challenged. For example, when the propulsion designer only controls x and the

structures designer controls p, how is p chosen in the propulsion design? Can the

propulsion designer assume that the structural designer will always select the vector that is

most advantageous to the propulsion design? If not, how should the propulsion designer

respond to this conflict? This scenario describes a two-player strategic game where one

player controls x and the other player controls p and where p represents all decisions which

are outside the scope of the designer controlling x (Aubin, 1979, Dresher, 1981, Von

Neumann and Morgenstern, 1944).
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Mathematical modeling of such strategic behavior, where one decision-maker's action

depends on decisions by others, is well-established in wide-ranging applications from

economics to business and military applications (Aubin, 1979, Dresher, 1981, Fudenberg

and Tirole, 1991, Mesterton-Gibbons, 1992). If the use of multi-player strategic models in

these non-engineering applications is so compelling, it is natural to ask what role do these

models have in the design of complex engineering systems? After all, design is often a

collaborative activity, with different decision-makers responsible for different subsystems

or design stages (e.g., design and manufacturing of a product). But the notion and

application of game theory in engineering design is limited (Badhrinath and Rao, 1995,

Dhingra and Rao, 1995, Hazelrigg, 1996, Pakala and Rao, 1996, Rao, et al., 1996).

It is asserted that strategic situations in design can be abstracted as games among designers

or design teams, and depending upon the protocol of the game, the resulting designs may

be significantly different. There are various game protocols depending on the level of

cooperation and behavior of the players. Certain protocols lend themselves nicely to

modeling interactions in design, namely the cooperative or Pareto formulation when the

players work together and communicate, the Nash or noncooperative formulation when the

players act in their own self-interest, and the Stackelberg or leader/follower formulation

when one player dominates another. These protocols are illustrated in the next section

using simple 2-player terminology from (Vincent and Grantham, 198 I).

3.3.3 Protocols Applicable to Design

Let there be two players P1 and P2 who select strategies x I and x 2 which belong to strategy

sets X l(cg_nl) and X2(cfftn2), respectively. Further, let fl(xl,x 2) and f2(xl,x 2) be their

respective cost or loss functions. The various game-theoretic models between the players
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are difficult to solve for two principal reasons:(i) coupled optimality, i.e., the cost

functions fl and f2 of the two players depend on strategies x I and x 2 selected by both

players, and (ii) coupled feasibility, i.e., if U c X I x X 2 is the set of feasible strategies,

then in the presence of constraints, U is not necessarily equal to the product of strategy sets

X I x X 2. In other words, given x 1 _ X 1, x 2 is constrained to the set S(x 1) = {x 2 _ X 2 :

(xl,x 2) _ U}, and vice-versa. This latter point is subtle; it indicates that one player may

affect not just the cost of other player, but that this player may also influence the feasibility

of the other player's decisions as indicated in Figure 3.11. In other words, X 2 = f(X 1) in

both feasibility and optimality.

D

X2

In general, U ;_ Xlx X 2

U

I

I v

!
S 1 _-!

Figure 3.11. Feasible Strategies in the Presence of Constraints

In a given application, once the problem data is established, namely the feasible strategy set

U c X l x X 2 and the respective cost functions, fl, and f2, the basic goal is to single out

pairs of decisions (i.e., strategies) (x 1,x 2) that correspond to the protocols (relationships)

that exist between the two players. For these various protocol models, it is important to

examine the stability properties of the solution. A strategy pair (xl*,x 2.) is individually
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stableif neitherplayerhasanincentiveto unilaterallyalterhisstrategy. Suchapair would

be collectively stable or a Pareto solution if both the cost functions cannot be

simultaneously improved by another strategy pair. The various models and the

corresponding solution concepts are classified for the two players according to when the

players: (i) cooperate, (ii) act in their own self-interest (noncooperation), or (iii) dominate

one another. For simplicity in the presentation, assume that U c X 1 x X 2.

Cooperative or Pareto solution: If the players cooperate, they can be expected to

obtain better solutions than when they do not. Assuming total cooperation among decision

makers, disciplines, or subsystems is the typical optimization approach. Often, it is not

unusual to find that by cooperating with one another, both the players can improve on their

solution when they do not cooperate. A pair (xlp, x2P) is Pareto optimal if

A 1 9 fl(X Ip 4" A 1,X 2p) < fl(xl_,x 2p) andf2(x lp + AI,x 2p) < f2(xIP,x 2p)

and (3.3)

Ix2 _ f_(x_,x 2_+ A2) < f_(x_P,x 2p) andf2(x_,x 2_+ A2) < f2(x_,x 2_)

By definition, the Pareto solutions are collectively stable. However, these solutions need

not be individually stable, as each player could do better but at the expense of the other

player. The set of Pareto solutions is usually large, thus requiring some additional

selection procedures among the Pareto solutions. The Pareto or cooperative solutions

occur when players have complete, precise information from the other players.

Cooperation is classical game theory. One of the contributions of this dissertation is the

notion of approximate cooperation where a player does not have complete information from

the other players but has approximations of the information needed from the other players.

Nash or noncooperative solution: The Nash or noncooperative formulation occurs

when coalition among players is not possible due to organizational, information, or process

barriers. This is often the case in designing large systems, where players act independently
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and must make assumptions concerning the other players' actions. A strategy pair (x IN,

X 2N) is a Nash solution if

= min fl(xl,x 2N) & f2(xlN, x2N) = rain f2(xlN, x2)
f l(xlN'x2N) xS _ x I x2_ g2

(3.4)

This solution has the property of individual stability, but is not necessarily collectively

stable. It is also difficult to compute since it is the fixed point of a nonlinear map, namely,

(xIN,xZN) E x1N(x2N) X x2N(x lN) (3.5)

where

xIN(x 2) := {x 1N E X 1 " fl(xlN,x 2) = minfl(xl,x2)}
x I _ X 1

(3.6)

and

x2N(x 1) := {X2N E X2 • f2(xl,x 2N) = minf2(xl,x2) }
x2 E X2

(3.7)

are called the rational reaction sets of the two players.

Stackelberg solutions: Consider the case when one player dominates another, i.e., the

two players have a leader-follower relationship. P1 is a leader if he declares his strategy

first by assuming or dictating that the follower P2 behaves rationally. Thus, the model

with PI as leader is

minimize f l(xl,x 2)
(xl,x2) _ U

satisfying x2 • x2N(x 1) (3.8)

and the model with P2 as leader is

minimize f 2(xl,x 2)
(xl,x2) _ U

satisfying x I • xIN(x 2) (3.9)

where xIN(x 2) and x2N(x 1) are defined in Eq. (3.6) and Eq. (3.7). For two players, these

Stackelberg games are special cases of bilevel models. These models occur in a variety of

important applications and have been studied extensively (Azarm and Li, 1987, Azarm and

Li, 1995, Falk and Liu, 1993, Loridan and Morgan, 1988, Loridan and Morgan, 1989,
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Lucchetti, et al., 1987, Rao and Mistree, 1995, Shimuzu, 1985, Shimuzu and Aiyoshi,

1981, Simaan and Cruz, 1973).

Application of these protocols in the design of complex systems is one of the fundamental

motivations of this dissertation. The mathematics behind the protocols are borrowed, but

implementation of the conceptual constructs in the context of complex system design is part

of the novelty of this work (Lewis and Mistree, 1996b). As part of this implementation,

various approximation techniques are used to facilitate the application of game theoretical

techniques to design. These approximation techniques are discussed in Section 3.3.4.

3.3.4 Approximation Techniques Used in Each Protocol

Approximate Cooperative

The primary approximation technique used in the approximate cooperative formulation is

Taylor series. Suppose f(x) is a function of a single variable x and f is differentiable to the

nth order on some interval. If x* is a point in that interval, then Taylor's theorem says that

the change in f from x* to (x* + e) is as follows (Reklaitis, et al., 1983):

f(x'+e)=f(x')+(e)_xX=_" + (s)d2f2!dx 2 _--_'+""
(3.10)

(e) l .
-t n! dx I,=_,

where On+l(e) in Eqn. 3.10 indicates terms of (n+l)st order or higher in e. For multiple

variables, the Taylor series takes the form of

f(x" + e) = f(x*) + Vf(x*)(e) + (t_) r H I (e) + O(e). (3.11)

For sufficiently small c, the first order term in Taylor theorem will dominate the others. It

is assumed that the first term is sufficient to approximate f. The validity of this assumption

is addressed in Section 7.5.1. Taylor series in Eqns. 3.10 and 3.11 is truncated to give
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f(x'+s)= f(x')+(_)d_f l_=x. or f(x'+_)= f(x')+Vf(x*)(S)

where f is now approximated.

(3.12)

In the context of complex systems design and game theory, different disciplines are

coupled through design and state variables. Design variables are the independent variables,

so no closed form expression is available. But it is assumed that each discipline has an

analysis routine to calculate the local state variables as functions of the design variables.

However, nonlocal state variables also affect the local analysis. Therefore, Taylor series

are used to approximate the nonlocal state variables, s. This is illustrated in Figure 3.12.

Each player has his own independent design variables, xi. There is no formula or equation

for these xi's. An optimization algorithm, which calls analysis routines to find the values

of si (for which equations exist), is used to determine the values of xi. Approximations of

nonlocal state variables (of the other players) are used by each player. It is assumed that

actual values of nonlocal xi's are used in the approximate cooperative formulation, as no

analysis routines exist to simulate and approximate the xi's.

Player 1 Analysi_lSynthesis

Independent variables, x 1
x I = ???

Optimization Algorithm ]

Analysis Routines
s 1 = f(sl,s2,xl,x 2)

Xl, Sl •
approximation

of s 1

Figure 3.12. Coupling

Player 2 Analysis/Synth¢_i_

Independent variables, x2
• 2 = ???

Analysis Routines
s2 = f(sl,s2,xl,x2)

approximation
of s 2

xZ s2

of Behavior Variables
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Single and multiple variable representation of the state variables are

s(x) = s ° + ds x
_'x__xo(-x°), s(x)=s°+Vs(x°)(x-x°). (3.13)

For example, the approximation of a state variable as a function of three design variables in

scalar form is

s( x .,xb,x c) s" ds o. ds o ds
-" +--_(X,.--X,)+--_b(Xb--Xb)+--_'f(Xc--X°). (3.14)

The one major step remaining to complete the Taylor approximation is the determination of

the full derivatives of the state variables in Eqn. 3.13, with respect to the design variables,

or Vs(x). Determining the full derivatives is accomplished using the Global Sensitivity

Equations (GSE) method first proposed in (Sobieszczanski-Sobieski, 1988) and

successfully used in the design of complex systems (Bloebaum, et al., 1992, Renaud and

Gabriele, 1991, Renaud and Gabriele, 1993, Renaud and Gabriele, 1994). Using the GSE

method, the total derivatives of the dependent variables can be solved for as functions of

the independent variables from every player. These derivatives use the local partial

derivatives from each player to determine the total derivative. To illustrate, consider a

problem with three players, a, b, and c, each with one state variable, Sa, sb, and So, which

are functions of the design variables of each player, Xa, Xb, and xc (Eqn. 3.15). The

Global Sensitivity Equations are developed by analyzing the derivative of the functions Sa,

Sb, and se (state equations) from the three players with respect to the independent design

variables, Xa, Xb, xc (Eqn. 3.16).

Sa -Sa (Xa, Xb, Xc)

S b ----S b (Xa, Xb, Xc) (3.15)

S c -- S c (Xa, Xb, Xc)

dsa/dXk = ()Sa/()X k "l"03Sa/OBSb(dSb/dXk) + OSa/C)Sc (dsc/dXk)

dSb/dXk = ()Sb/t)X k 4" t_Sb/_Sa(dSa/dXk) + _Sb/C_Sc (dsc/dXk)

dsc/dXk = 03Sc/O3Xk+ O3Sc/_Sa(dSa/dXk) + _Sc/t)S b (dSb/dXk)

(3.16)
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Rearranging equation 3.16 into matrix notation produces the following matrix

representationof theGSE:

I -_Sa]_S b -_Sa/_S c

-_Sb/_S a I -_Sb/OS c

-SsdSsb -SsdSsb I

or

dsa/dXk

dsb/dXk

dsffdXk

[M] [X] = [B]

8Sd_Xk

_SbI_X k

_sd_xk

(3.17)

The partial derivatives in the GSE [M] and [B] matrices can be found by various methods,

and the total derivatives [X] can be found using matrix solution techniques. These total

derivatives then are used in a Taylor expansion of nonlocal equations, Eqn. 3.13.

Therefore, each player uses an approximation of the state equations of the other players.

This is the essence of approximate cooperation in design. The implementation of

approximate cooperative formulations is illustrated and discussed in Sections 5.5.1 and

5.6.1.

Noncooperative and Leader/Follower

In both the noncooperative and leader/follower formulations, the fundamental construct is

the Rational Reaction Set. The Rational Reaction Set, RRS, as defined in Section 3.3.3

and illustrated in Section 3.3.1 quantifies the decision-making strategy of a player in a

game. In complex systems design, constructing an exact RRS becomes an insurmountable

problem with the existence of multiple variables and multiple nonlinear constraints and

goals. Therefore, an approximation of an RRS must be constructed. In this dissertation

this approximation is accomplished using the Design of Experiments and Response Surface

Methodology.
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Design and Analysis of Experiments and Response Surface Methodology

The Design of Experiments is a statistical approach (Box, et al., 1978, Montgomery, 1991)

for solving problems that range from engineering to social science. Among various DOE

techniques, the Response Surface Methodology is a collection of statistical techniques

which support the design of experiments and fitting a response model (Box and Draper,

1987, Khuri and Cornell, 1987). By systematic design and analysis of experiments, a

response surface model is used to relate a response (output) variable to the levels of a

number of factors or input variables that affect it. In problems using computer simulation

tools, performing 'experiments' is equivalent to performing a number of simulations with

different input settings. Generally speaking, when fitting the response surface model, the

following relationship exists:

y = f(x, 15)+ random error + bias, (3.18)

where y represents the observed result of the response from the simulation, x is the vector

representing the simulation inputs, and 13is the vector representing the coefficients in the

regression model. In Eqn. 3.18, the response surface model is represented by f(x,I]). The

predicted response is presented by

_= f(x, 15), (3.19)

where _ is the estimated value of the response. It can be noted that the difference between

the observed and the estimated values of the response, y - _, is the random error plus the

bias. Random error is defined as

random error = y -E(y), (3.20)

where E(y) is the statistical expected value of y. The bias, also called systematic error, is

defined as

bias = E(y)- f(x, 13). (3.21)
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In this dissertation,statisticalmethodsarecombinedwith thenotionsof gametheoryin the

design of complex systems. Simply speaking,what has been proposed is to build

approximatingfunctionsof responses,i.e., _ = f(x, 13), using the design of experiments

(DOE) techniques, specifically the Response Surface Methodology (RSM). But there are

primary differences between typical applications of RSM and the implementation proposed

in this dissertation (see Section 3.3.4.2). Specifically, since RSM is being used to

construct approximations of the decision-making strategy of a player with respect to the

control variables of another player, the terms input variables and response must be

explicitly defined:

Input variables: For Player I, the input variables are the control variables

(design and state) of Player II that are needed (but unknown) by Player I to

determine his control variables, and vice versa for Player I/.

Response: For Player I, a response is a control variable (design or state) of Player

I which is dependent on the input variables of Player II.

In Section 3.3.1, the relationship between the input variables and responses as defined here

are illustrated using a simple example. Typical application of RSM will involve a set of

input variables (design variables) and a number of responses (state variables, constraints,

goals). Therefore, a major point of departure in this dissertation is the application of RSM

to non-traditional scenarios encountered in game theory.

There are three main reasons why these statistical methods are used here:

First, using DOE techniques, it is possible to quantify and study the effect of

one player upon another. One player's behavior variables (and design

variables, in an optimization context) are functions of not only local variables,

but non-local variables under the control of other players. It is important to

quantify the non-local effect of other players on the local decisions of each
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player. Therefore,the statistical methods provide an effective way to formalize

the interactions among players.

Second, the RSM embodies the decision-making strategy of a player regardless

of the other players' actions. This embodiment is built by multiple solutions of

a player's model (compromise DSP) for different values of the input variables

(non-local control variables) in the experimental design. In this way, the

embodiment of each player's decision-making strategy, or the approximations

of the Rational Reaction Sets, can be used in solving the game theoretic

formulations.

Third, in complex systems design, solving a player's model using unknown,

symbolic input variables is highly unreasonable due to the existence of multiple

design variables, nonlinear constraints, and nonlinear goals. Therefore, using

DOE techniques, the unknown input variables can be simulated using numerical

values, and the model can be solved for each input setting. By using DOE and

RSM techniques to simulate known input variables, approximations of each

player as functions of unknown, nonlocal variables can be constructed.

Therefore, constructing a RRS can be facilitated without using symbolic

variables, thus solving a difficult theoretical and computational problem of

finding an exact RRS using symbolic variables.

It is asserted that the above three considerations address not only the issue of efficiency,

but also the issue of effectiveness in designing complex systems using game-theoretical

principles. The use of statistical methods makes it possible to approximate a fundamental

decision-making construct, the Rational Reaction Set, in game theory.

In Figure 3.13, the general procedure for constructing response surface equations (RSE) is

shown. Each step is discussed in the context of its implementation in this dissertation.
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Step 1: Set up DOE based on number

of input variables and lower/upper
bounds

Step 2: Perform sim_ulation experiment_

(Solve compromise DSP)

Step 3: Analyze responses and create
RSEs B - (XX) X'Y

Figure 3.13. Construction of RSE in Game Theory

Step 1: Set up DOE based on number of input variables and their lower/upper bounds

In this dissertation, one specific experimental design is employed. This design is the

Central Composite Design (CCD). There are many other experimental designs which can

be used such as the full factorial design, fractional factorial design, orthogonal arrays, and

Plackett-Burman design. The CCD is used in this work because: I) it is likely the most

effective and widely used experiment for fitting second-order response surfaces and

studying second-order effects (Montgomery, 1991), and 2) only second order surfaces are

built in the algorithm of this dissertation. Generally speaking, when picking the

experiment, a designer has to consider factors including: 1) number of simulation runs

required, 2) ease of implementation, 3) flexibility of the design, 4) recognition of

confounding patterns, and 5) ease of analysis. Confounding patterns are dictated by the

resolution of the experiment. The definitions of resolution III, IV, and V designs are

provided here, as the distinction between experimental designs of different resolution is

important.
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PResolutionIII: Therearedesignsin which estimatesof main factorsare free of
confoundingwith estimatesof othermain factors,but maybe lumpedwith two-
factor interactions. Theestimatesof two-factor interactionsmay be lumpedwith
eachother.

ResolutionIV: Therearedesignsin which estimatesof main factors are free of
confoundingwith anyotherestimatesof main factorsor two-factor interactions.
However,theestimatesof two-factorinteractionsarelumpedwith eachother.

ResolutionV: Estimatesof main factors and two-factor interactionsare free of
confoundingwith anyothermainfactorsor two-factor interactions.However,the
estimatesof two-factorinteractionsmaybe lumpedwith three-factorinteractions.

Thebackgroundfor theCCDis givennext.

As shown in Figure 3.14, central compositedesignsare first order fractional factorial

designsaugmentedby additional"star" andcenterpointswhich allow theestimationof a

quadraticsurfacemodelof thefollowing form:

f(Xl .... Xn) = _0 + _lXl + ...+_nXn

+ 71Xl 2 + ...+_/nXn 2

+ _12Xl,2 + ... + _n,n-lXn-l,n

Linear Terms

Quadratic Terms

Interaction terms

(3.22)

1
2
3

Factorial 4

portion 56
7
8

9
Star

10

portion 1I

12

13

Center 14

point 15

Figure 3.14.
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A CCDgenerallyconsistsof:

1. A completeor fractionof a first-order (2n) factorial designwhereparameter
levels arecoded to the usual -I and+1 values. This is called the factorial

portion of the design. For a model as shown in Eqn. 3.22, a resolution IV

design is needed to clear the main factors and two-factor interactions with any

other main factors or two-factor interactions.

2. Two "star points" on the axis of each design variable at a distance (x from the

center. A central composite design is made rotatable by the choice of or. The

value of c_ for rotatability depends on the number of points in the factorial

portion of the design.

3. Center points. The number of center points in a physical experiment can be

more than one. In this computer experiment, because there is no blocking

effect, only one center point is necessary.

The number of experiments needed for fitting a second-order model using a CCD with a

Resolution V (estimation of distinct main factor and two-factor interactions are possible)

fractional factorial design as the factorial portion is significantly less than that would be

required in a three-level full factorial design, as shown in Table 3.3. The benefit of using

this technique increases as the number of input factors increases. From the form of Eqn.

3.22, it is noted that a second-order model can be used to study the main effects of a factor

(linear terms), non-linear effects (quadratic terms) and the interaction effects (interaction

terms).

Table 3.3. A Comparison of Full Factorial 3 n and CCD Design

Factors Full Factorial

3 n

27

81
243
729

2,187

CCD

15
25
27
45
79
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In thisdissertation,anautomatedstatisticalsoftwarepackagecalledNORMAN (Cartuyvels

and Dupas, 1993),which is availableon the UNIX platform, is applied. The designof

experimentssupportedby this packageinclude Plackett-Burman,3-level full factorial

design,3 level Box-Behknendesign,full factorial2-leveldesign,fractionalfactorial2-level

design,central compositedesign,Latin-Hypercubedesign,Taguchi OA, userdefined

experiments,etc.

Step 2: Perform Simulation Experiments

Most of the DOE techniques available in the literature are specifically developed for

physical experiments rather than computer simulations. Though most of the technologies

for these two types of experiments are similar, the focus and the details are different.

Computer experiments differ from physical experiments in that there is no random error.

The lack of random (or replication) error leads to important distinctions between computer

and physical experiments:

• The adequacy of a response-surface model fitted to the observed data is

determined solely by the systematic bias, e.g., the assumed model differs

significantly from the exact model.

• Usual measures of uncertainty derived from least-squares residuals have no

obvious statistical meaning. Though deterministic measures of uncertainty are

available, they may be very difficult to compute.

• Classical notions of experimental unit, blocking, replication, and randomization

are irrelevant.

The current methodologies for the design and analysis of physical experiments (Box, et al.,

1978, Box and Draper, 1987) are not ideal for complex, deterministic computer models.

However, as summarized by Welch and co-authors (Welch, et al., 1990), statistics still

plays its role in the following ways:
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• Theselectionof inputsat whichto runacomputercodeis still anexperimental
designproblem.

• Statisticalprinciplesandattitudestowardsdataanalysisarehelpful howeverthe
dataaregenerated.

• There is uncertaintyassociatedwith predictionsfrom fitted models,and the

quantificationof uncertaintyisastatisticalproblem.
• A computercodecan be modeledas if it were a realization of a stochastic

process.

The conceptof computersimulationin this dissertationis different from typical computer

simulations(Chen,1995b,Engelund,et al., 1993,Unal, et al., 1994). Sinceit is desired

to find thevalueof theresponses(say,designandstatevariablesof PlayerI) asfunctions

of the input variables(say,designandstatevariablesof PlayerII), theRSE'staketheform

of

xI = fl(XII, SlI)

SI = f2(xlI, SlI). (3.23)

Generating responses for sI, Eqn. 3.23, is the typical simulation procedure in constructing

RSEs. The difficulty occurs as a result of having to find xI, Eqn. 3.23. Since the xi's are

independent variables, there is no explicit function to describe them. They are found by

solving a given model. Therefore, a simulation in this dissertation is the solution of a

compromise DSP for one set of input variables. So, whereas in previous applications of

RSM, a simulation consisted of one analysis call to a set of equations, in this dissertation a

simulation may consist of multiple analysis calls during one compromise DSP solution in

order to find xI (and subsequently, si as well).

Step 3: Analyze Experiments and Create RSE

In this dissertation, the primary objective of analyzing the results of the designed computer

experiments is to: create a mathematical relationship between the coupled design and state
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variables of multiple players. In other words, the primary objective is to estimate the effect

of one player on another in the form of an approximated Rational Reaction Set. Analyzing

and creating a response surface model can involve different steps depending on the scope

of the study and engineer's preferences (Box and Draper, 1987, Montgomery, 1991).

Some common steps are discussed next in the context of constructing a rational reaction

set.

Estimate the Significance of Different Factors

In order to be considered as an input in the simulation experiment, a control variable from

one player is needed by another player. So, it is already assumed that the control variable

is significant. Typically in estimating the significance of different factors, no information is

available about the effects of the factors. But with the RRS, it is assumed that all the

factors are at least first-order significant. All second order interactions are assumed to be

significant as well. That is, no screening experiments are performed to eliminate any

meaningless second order interactions (Chen, 1996, Chen, et al., 1994). Screening

experiments certainly could be performed, but in this work they are not.

Create a Response Surface Model

To create the relationship between a response and input variable as a response surface

model, the most widely used method is the least squares method (Heiberger, 1989). The

general least squares problem is to find the coefficients B that minimize the distance

between an observed vector Y and linear combination XB of a set of basis vectors X:

min IY- XBI 2 (3.24)
B

The minimum distance is obtained when XB is the projection of Y into the linear space

defined by X:
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Therefore,thesolutionis
XB = Px Y = X(X'X) -j X'Y (3.25)

B = (X'X)-' X'Y (3.26)

where X' is the transpose of the matrix X. From Eqn. 3.26, it is noted that, once the result

of Y is available from experiments, the coefficient B in the response surface model can be

calculated by matrix operations. In addition to matrix operations, several other algorithms,

e.g., Wikinson's Sweep and Beaton's SWP, have been demonstrated to achieve the same

purpose (Heiberger, 1989).

Confirmation tests

By using the response surface models to approximate the Rational Reaction Set of a player,

it is necessary to confirm the accuracy of surface models. However, confirmation tests can

only occur when the model is very simple and an exact RRS can be found. With complex

models, finding an exact RRS is virtually impossible. Therefore, in complex systems

design there is nothing to compare the approximation with in order to confirm its accuracy.

However, in order to confirm the results and validate the approach, a simple example is

studied in Section 5.6, where the exact rational reaction sets are known. With complex

problems, the accuracy of the approximation is embedded within the solution algorithm, in

this case, the FALP Algorithm. In Sections 6.5, the effectiveness of the FALP Algorithm

is given, which is a step towards validating the approximated RRS with complex models.

3.3.5 Guidelines for Verifying Hypothesis Ih Subsystem Interactions

Hypothesis H." Game theoretic principles can be applied to accurately model and]

Idescribe the interactions in complex s_cstems design.
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HypothesisII is testedby usingfive posits. Theguidelinesandsectionnumbersrelatedto

thetestingof eachpositaregiven.

Posit 2.1:Design processescan be abstractedas games where the playersare multiplel

desi_ners or design teams and tlaeir associated analysis and synthesis tools, I

The application of game theory to complex design problems is one of the novel and

fundamental contributions of this work. Therefore, testing of this posit requires the

mapping of design processes to typical games. Most of the previous research in modeling

interactions among designers and their analysis and synthesis tools has assumed

cooperation. But, in practice this may not be the case. Consider the two practices of

NASA and the Soviet Union's former aircraft design teams described in Section 3.2.3.

These practices are quite unlike the concurrent engineering principles that are found in the

modem classroom and research annals. These two practices are also drastically different

from each other and most likely will result in different aircraft. Which aircraft is "better"?

Which design process is "better"? In this posit, insight into possible answers to these types

of questions is provided and the capability to descriptively model multidisciplinary design

when cooperation may or may not exist is developed. Starting from a Decision-Based

Design perspective, the mapping of complex design processes to typical games is

accomplished:

• at a general level in Sections 3.3.2 and 3.3.3.

• by presenting specific definitions for the application of game theory in design in

Section 5.3.

• and by providing rationale for using the specific game protocols in design

situations in Sections 5.4 and 5.5.
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Posit 2.2: Approximate cooperation can be modeled using the Global Sensitivity I
Equations and Taylor series to approximate nonlocal equations. I

To verify this posit, two steps are required.

• First the notion of approximate cooperation must be defined. In game theory, the

majority of game modeling is concerned with full cooperation. However, in

complex systems design, analysis and synthesis models are too large to achieve

full cooperation. Therefore, the notion of approximate cooperation must be

established. This is accomplished in Section 3.3.4.

• Second, the use of the Global Sensitivity Equations and Taylor series and their

relation to approximate cooperation is detailed in Section 3.3.4 and Section 5.5.1.

This is the typical approach in complex systems modeling -- using an

approximation of the required information from the other disciplines. The

primary contribution in this posit is the mapping of the GSE approach to

approximate cooperation in game theory.

Posit 2.3: First order Taylor series canbe used as a good approximation of nonlocal[
state equations. I

To verify this posit, the fidelity of the term "approximate" in approximate cooperation is

explored. First order Taylor series are used as the approximation tool, and verification of

this approximation is detailed in Section 7.5. The Taylor series approximations must also

be differentiable in order to be useful in a gradient based solution scheme. The

fundamental contribution of this posit is the integration of previous approaches into the

compromise DSP, and mapping of the approach to approximate cooperation. Practically,

approximate cooperation is a very inviting concept, as disciplines may not have to

cooperate fully with exact representations of nonlocal information, but may be happy

129



enoughwith approximationsof nonlocalinformation. In otherwords,thedisciplinesare

satisficinginsteadof optimizing.

lPosit 2.4: Second order response surfac.es can u_ to approximate the Raftonal[
Reaction Sets of the disciplinaryplayersm a _si[;n_;ame. I

To verifythisposit,the benefitsof approximating the RRS of each playeras second order

equations are illustrated.The benefitsof thispositincludethe capabilityto quantifythe

decision-making strategyof each decisionmaker. Qualitatively,the strategyof a decision

maker inthe compromise DSP isto "minimize thedeviationfunction."The RRS quantifies

thisstrategyso thattheotherdecisionmakers can make theirdecisionaccordingly.

• In Section 3-.3.3,the RRS isdefinedmathematically.

• In Sections 3.3.4 and 5.5.2,the RRS in the context of design is defined

conccptuaUy.

• In complex systems design, finding the exact RRS of a player is virtually

impossible bccausc of multiple system variablcs,and multiple nonlinear

constraintsand goals. Therefore, in order to quantify the decision-making of

each player,the RRS must bc approximated. In Section 5.5,the process for

constructingtheseapproximations using RSE's isdetailed.

• The verificationof using theseresponse surfaceequationsas approximations of

therationalreactionsetsisexplored in Section5.6.

To verify this protocol, the use of the compromise DSP in each game protocol is illustrated.

The compromise DSP has been shown to be a fundamental multiobjective mathematical

construct (Chen, 1995a, Mistree, et al., 1993a, Mistree, et al., 1994, Vadde, 1995). The
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work of this posit further establishesthe benefitsof using the compromiseDSP as the

fundamentalbuildingblock in systemsmodeling.

• In Sections5.5.1 and 7.4, the compromiseDSP is used as the fundamental

construct in modeling full cooperation and approximate cooperation using

multipleobjectives.

• In Sections5.5.2 and 7.4, the compromiseDSP is used asthe mathematical

decision-makingmodel to constructthe RationalReactionSetsof eachplayer.

Multiple solutionsof eachplayer'scompromiseDSPaccordingto changinginput

variables allows a Design of Experimentsdriver to characterizea player's

decision-makingstrategy,which is embodiedin a compromiseDSP. This is

fundamentalin boththenoncooperativeandleader/followerformulations.

3.4 TEST OF HYPOTHESIS IIl - FORAGING NOTION

In this section, ramifications and verification guidelines are

provided for testing Hypothesis III. The notion of design space

search in a discrete domain is explored in Section 3.4.1. In

Section 3.4.2, the fundamental building block of foraging, the

Tabu Search, is introduced. In Section 3.4.3, two other heuristic

optimization algorithms, Simulated Annealing (SA) and Genetic Algorithms (GA), are

introduced in order to discuss some notions of foraging which are similar to constructs in

SA and GA. In Section 3.4.4, the fundamentals of the continuous solver, the ALP

Algorithm, are introduced.
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3.4.1 Discrete Design Space Search

Methods for the solution of a purely continuous optimization problem are well-established

and understood (Reklaitis, et al., 1983). Most are based on calculating a gradient and

moving in the appropriate direction in the design space to increase the goodness of the

design. Therefore, the design space is searched via a set of directions represented by

gradients. If discrete (or integer) variables are present in a design model, gradients of

functions with respect to discrete variables do not exist. Therefore, the search of a discrete

space cannot be accomplished by using derivatives or gradients, and must be based on

other heuristic-based methods.

There are many such heuristic methods for solving discrete optimization problems

including branch and bound methods, simulated annealing, genetic algorithms, and tabu

search. In Section 2.3.4, application of these methods to complex systems design

problems are reviewed. However, when discrete and continuous variables are present in a

design model, purely discrete or purely continuous solvers are not adequate unless some

strong simplifications are made in the model. For instance, one could discretize the

continuous variables and solve the resulting discrete rn,odel using a discrete solver, or one

could assume the discrete variables are continuous and then round-off the continuous

solution values to the nearest discrete values. These types of methods have been shown to

produce sub-optimal solutions in general (Arora and Huang, 1994, Loh and Papalambros,

1991, Papalambros, 1995). Therefore, algorithms must be able to handle and search the

discrete and continuous design spaces without making strong assumptions such as these.

In this dissertation, techniques using heuristics and calculus-based methods are combined

into one solution algorithm.
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The heuristicportionof thealgorithmisbasedon thenotionof animalsforagingfor food in

the wild. Certainempiricalconstructsdevelopedby observinganimalsforaging for food

aresimilar to characteristicsof threepreviousdiscretesolution techniques,asshown in

Table 3.4. The basicmemorystructureis built using constructsfrom the Tabu Search.

Identifying portions of solutions that frequently occur in good solutions is similar to

identifyingschemain GeneticAlgorithms. Establishingadynamicmemoryis similar to the

changingprobabilitydistributionusedin SimulatedAnnealing. Thesethreealgorithmsand

their basicsolutionprinciplesareintroducedin thenextsection.

Table 3.4. Solver Characteristics

Solution Technique

Tabu Search

Genetic Algorithms

Simulated Annealin_

Characteristic

Memory of visited sites

Solution schema

Dynamic memory

3.4.2 The Foundation of the Foraging Search: The Tabu Search

In this work, the tabu search is used as the building block for the foraging search. The

basis for Tabu Search (TS) is described as follows (Bland and Dawson, 1991, Glover,

1989a, Glover, 1989b). In general terms, TS is an iterative improvement procedure in that

it starts from some initial solution and attempts to determine a better solution by applying a

greatest-descent procedure. However, TS is characterized by a capability to escape local

optima by using short and long term memory of visited solutions. Moreover, TS permits

backtracking to previous solutions, which may ultimately lead, via a different direction, to

better solutions. The features of a tabu list and aspiration criteria make TS a powerful

optimization tool for models characterized by discrete variables (Bland and Dawson, 1991,
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Ford andBloebaum,1993). Givena setof objectivesto bemetovera setX, TS proceeds

from one point in the designspaceto anotheruntil a chosentermination criterion is

satisfied. Since the TS is anunassumingalgorithm (it will continue to searchwithout

assumingthe best solution hasbeen found), the termination criteria usually involve a

maximumnumberof neighborhoodsearchesor time limit. Eachx _ X hasanassociated

neighborhood N(x) c X, and each solution x' _ N(x) is reached from x by an operation

called a move. For discrete variables, the neighborhood is easily defined. TS goes beyond

local search by employing a strategy of modifying N(x) as the search progresses,

effectively replacing it by another neighborhood N*(x). A key aspect of TS is the use of

special memory structures that serve to determine N*(x) and hence to organize the way in

which the space is explored. However, researchers using the TS have assumed constant

memory lists. It is asserted that using constant list lengths limits the search, and by

expanding the TS using dynamic memory lists parallels the natural process of foraging

more closely and provides a more effective search construct. This assertion is detailed and

verified in Sections 6.3 and 6.4, respectively. In addition, the TS does not provide

effective decision support information during a design process. Therefore, TS is also

expanded to provide the designer with effective information concerning the design. This

information is based on how animals learn about sites with food during a search. This is

also detailed in Section 6.3. Both principles are found in similar forms in two other

discrete solvers, Simulated Annealing and Genetic Algorithms. These are the use of

dynamic memory in SA and schema identification in GA. In the next section these two

algorithms are introduced in order to illustrate these principles.
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3.4.3 Simulated Annealing and Genetic Algorithms

Simulated Annealing (SA)

The idea behind SA is to generate random design points and evaluate the goodness of each

point (Arora and Huang, 1994). If the trial point is better than the current best value, then

the point is accepted. However, SA is also characterized by an ability to escape local

minima by accepting points even if they are worse than the best point so far. This

acceptance is based on the value of the probability density function:

p(Af) = exp(Z_j_ ) (3.27)

where the parameter Tj is the "temperature" at iteration j. This changing temperature is how

simulated annealing gets its name, by simulating the process of annealing where the

temperature is slowly decreased in order to cool a metal. A high temperature is used

initially and slowly decreased as the solution process continues. The new point is accepted

if the probability is larger than a random number z, p(Af) > z. The acceptance probability

steadily decreases to zero as the temperature is reduced. Thus in the initial stages, the

method is likely to accept worse designs, while in the final stages the worse designs are

almost always rejected. Eqn. 3.27 is therefore a form of a dynamic memory structure,

which parallels the foraging behavior of animals (see Section 6.3). As discussed in Section

2.3.5, SA has been used for mixed discrete/continuous design problems, but it is

computationally intensive and not efficient for large problems. Therefore, only one

principle of SA is being modeled in this work, the notion of dynamic memory.

Genetic Algorithms (GA)

Genetic Algorithms are based on the natural process of genetic reproduction (Arora and

Huang, 1994). Their philosophical basis is in Darwin's survival of the fittest theory. A set

of design alternatives (represented by binary strings) representing a population in a given

generation are allowed to reproduce and cross-pollinate among themselves, with bias
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allocatedto the most fit membersof the population. In a GA, an initial setof designs

producesnew and better designsusing the most fit setmembers. Threeoperatorsare

neededto implementGA's: reproduction,crossover,andmutation. Reproductionoccurs

when an old string is copied into the new populationaccordingto the string's fitness.

More fit strings,or schema, receive higher numbers of offspring, and therefore project

their genes (or values of design variables) into more and more populations. Crossover

occurs when selected members of the population exchange characteristics among

themselves. Mutation occurs when a select few members of the population, determined at

random locations on a String, are switched from 0 to 1, or 1 to 0. As discussed in Section

2.3.5, GA's are computationally intensive for large problems. Therefore, only one

principle of GA is being modeled in this work, the notion of schema identification.

These three algorithms, TS, SA, and GA, are all very useful because they do not require

the calculation of gradients, and therefore differentiability requirements of the models can

be relaxed. In Section 6.3, a heuristic discrete algorithm is developed based on notions of

foraging, integrating constructs from these algorithms. The foraging search is coupled

with a continuous, gradient-based solver to solve mixed discrete/continuous problems

(Lewis and Mistree, 1996a). In the next section, the background for the continuous solver,

the ALP Algorithm is given.

3.4.4 The ALP Algorithm and the Compromise DSP

The ALP Algorithm as introduced in Section 1.2.2, is the solution algorithm for continuous

compromise DSPs. In Section 1.2.1, a conceptual overview of the compromise DSP is

given. In this section, a mathematical overview is given. The compromise DSP is a

multiobjective decision model which is a hybrid formulation (Mistree, et al., 1993a),

incorporating concepts from both traditional Mathematical Programming (Winston, 1995)
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andGoal Programming(Ignizio, 1983). ThecompromiseDSP is usedto determinethe

valuesof designvariables to satisfy a set of constraintsand to achieveas closely as

possiblea setof conflictinggoals. ThecompromiseDSPis usedto modelsuchdecisions

sinceit is capable of handling constraints, goals, and multiple objectives (Mistree, et al.,

1994). In particular, the compromise DSP offers the following capabilities:

• accurately represent single-objective or multi-objectives,

• use either preemptive or Archimedean formulation to pdoritize objectives,

• have hard constraints or soft constraints (goals),

• quickly generate results for several different weighting schemes,

• handle discrete or continuous variables.

The system descriptors, namely, system and deviation variables, system constraints,

system goals, bounds and the deviation function are described in detail elsewhere (Mistree,

et al., 1993a) and are therefore is not repeated here.

The mathematical form of the compromise DSP is summarized in Figure 3.15. In the

compromise DSP, each goal, Ai, has two associated deviation variables di- and di +, which

indicate the extent of the deviation from the target. The deviation variables, di + and di-, are

both positive, and the productl di +- di" = 0, ensures that at least one of the deviation

variables for a particular goal is always zero. If the problem is solved using a vertex

solution scheme (as in the ALP algorithm (Mistree, et al., 1993a)), then this condition is

automatically satisfied.
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Given
An alternativeto beimprovedthroughmodification.
Assumptions used to model the domain of interest.
The system parameters:

n
1

p+q
P
q
m

gi(X)

fk(d0

number of continuous system variables
number of discrete/integer system variables
number of system constraints
equality constraints
inequality constraints
number of system goals

system constraint functions

gi(X) = Ci(X) - Di(_.)
function of deviation variables to be minimized

at priority level k for the preemptive case.
Find

Xi i = 1..... n+l

d_,d_ i= 1..... m

Satisfy
System constraints (linear, nonlinear)

gi(__) = O; i = 1..... p
gi(X) > 0; i = p+l ..... p+q

System goals (linear, nonlinear)

Ai(X_.) +di - dT = Gi; i =

Boun.ds

Xi man < X i < ximax ; i=

d],d_* > 0; i =

(d].d T = 0; i =

Minimize

1_ ..., m

1, .°°._ n

1 ..... m

1..... m)

Archimedean or preemptive deviation function (lexicographic minimum)

Z = [ fl( d], d_) ..... fk( d], dl+) ]

Figure 3.15. Mathematical Form of a Compromise DSP

Three important features contribute to the success of the ALP algorithm, namely,

• the use of second-order terms in linearization,

• the normalization of the constraints and goals and their transformation into generally

well-behaved convex functions in the region of interest,

• an "intelligent" constraint suppression and accumulation scheme.
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Thesefeaturesaredescribedin detailin (Mistree,et al., 1993a)andbriefly describedin the

following paragraphs.

First andsecondorderalgorithmsneedthederivatives(with respectto thedesignvariables)

of the constraints and goals in addition to the values of thesequantities. The ALP

algorithm is amodified secondorderalgorithm(only thediagonalsecondordertermsare

used). This is one of the principal deviations from other SLP algorithms that were

developedbasedon the well-known work of StewartandGriffith (Stewartand Griffith,

196l). This is thefirst principal featureof thealgorithm. Thederivativesaredetermined

numericallyusing thecentraldifferenceformula. After solving the linearproblem,this

solutioncanbeusedto improvethesecondorderapproximationusingtheALP algorithm.

A blockdiagramof theimplementationof theALP algorithmis shownin Figure3.16.

A userspecifiesthe inputto thesoftwareimplementationof thealgorithm in the form of a

DSPtemplate.This templateconsistsof dataanduserprovidedFORTRAN routines. The

data is usedto define the problemsize, the namesof the variablesand constraints,the

bounds on the variables, the linear constraints, and the convergencecriteria. The

FORTRAN routinesareusedto evaluatethenonlinearconstraintsandgoals,to input data

required for the constraintevaluationroutines andthe design-analysisroutines, and to

output resultsin a format desiredby the user. Accessis provided to a design-analysis

programlibrary from theanalysis/synthesiscycleand alsowithin the synthesiscycle. In

thedesignof major systemsit is desirableto usethe design-analysisinterfaceassociated

with the analysis/synthesiscycles (e.g., structural design requiring the useof a finite

elementprogram).
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Figure 3.16 Implementation of the ALP Algorithm
For Solving Compromise DSPs (Mistree, et al., 1993a)

Once the nonlinear compromise DSP is formulated, it is approximated by linearization. At

each stage the solution of the linear programming problem is obtained by a Multiplex

algorithm based on (Ignizio, 1985b). The choice among these algorithms depends on the

form of the deviation function, which is the measure of how well the system goals are met.

The deviation function that is given in the mathematical form of the template can be

implemented in two ways:

. In the Preemptive form the deviation function is given as a lexicographic

minimum of the goal deviation variables (Ignizio, 1985a). Usually, goals

are not equally important. To determine a solution on the basis of
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preference, the goals may be rank-ordered into priority levels. For

example, customers rate certain product qualities higher than other

qualities.

In an Archimedean form the deviation function is given as a weighted

function of the goal deviation variables. This reduces the formulation of

the template to a traditional single objective problem. This formulation is

used when exact quantitative relationships among the goals are known.

The integration of the ALP Algorithm with the foraging heuristic is detailed in Section 6.3.

In the next section, guidelines for verifying Hypothesis III are discussed.

3.4.5 Guidelines for Verifying Hypothesis IIl

Hypothesis III: The notion of foraging of wild animals is natural for[a analogy

[ optimization and can be used as an effective search technique in the solution of mixed [
J

[ discrete/continuous models. I

Hypothesis III is tested by using three posits. The guidelines and section numbers related

to the testing of each posit are given.

In Section 6.2, foraging as a natural process and an analogy to optimization is introduced.

Certain empirical observations of various animal species foraging for food are quantified in

Section 6.3. It is shown that these observations are similar to processes in other heuristic

algorithms. Subsequently, it is asserted that foraging, or the notion of animals looking for
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the most food in the smallest amountof time, is the natural equivalent of artificial

optimization processes.

The foraging heuristic is a computer-based tool that designers can use to make decisions in

a design process. Furthermore, foraging itself is based on an everyday decision-making

process in nature. This creates an interesting closed loop of an abstraction of a natural

decision making process which provides support to designers who are making decisions.

IPosit 3.2: The Tabu Search can be the building block for the fo_g solution Ial or tr ! ii !  ' ii iii?¸¸ iii iiii!ii !  iii  /!ii!!iliiill ! ¸ ii i!i! iii  iliI
It is well-known that animals use their memory to recall sites which have already been

visited. This is precisely the premise under which the Tabu Search was developed.

Therefore, in Section 6.3, it is shown how the Tabu Search is used as the fundamental

building block of the foraging search.

To verify this posit, the integration of ALP and foraging is presented in Section 6.3 and the

effectiveness of the resulting algorithm to solve mixed discrete/continuous design problems

is presented. The effectiveness of this posit is verified in Section 6.4. The developments

to support this posit allow designers to solve mixed discrete/continuous design problems

using constructs from discrete solvers and continuous solvers. Therefore, designers (or

computer tools) do not have to approximate discrete variables as being continuous or

continuous variables as being discrete. Instead, the actual design problem can be modeled

and solved.
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• In Section6.3, the integrationof the two constructsis detailed. The resulting

algorithmiscalledForaging-directedAdaptiveLinearProgramming(FALP).

• In Sections6.4,verificationof FALPis presentedfor two well-studiedexamples:

the designof acoil compressionspringandthedesignof acylindrical pressure

vessel. It is shown that FALP producessignificantly better solutions than

previouspublishedalgorithms.

• In Section 7.5, FALP is used to solve the disciplinary players' compromise DSPs

in certain protocols in the study of a passenger aircraft. Whereas the studies in

Sections 6.5 are single level problems with a single objective, the aircraft study

consists of two players each with discrete and continuous variables, and each

with multiple nonlinear goals.

3.5 TEST OF HYPOTHESIS IV - CONVEXITY

In this section, some ramifications and verification guidelines are provided for testing

Hypothesis IV. It is asserted in (Mistree, et al., 1993a), that a transformation function, the

g-function, is an effective way to transform nonconvex functions into well-behaved convex

functions in the ALP Algorithm. In this section, the basic definitions of convexity in

optimization theory are given, as well as a proof of the transformation of functions using

this g-function.

3.5.1 Handling Convexity

One of the most difficult issues in nonlinear optimization is handling nonconvex

constraints. Previous attempts to handle nonconvex functions have developed special

algorithms to handle nonconvex functions or have established conditions under which
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certainclassesof functionscanbe transformedinto convexfunctions(Feng,et al., 1990,

Floudasand Visweswaran,1990,Styblinski and Tang, 1990,Thachand Konno, 1993,

VaidyanathanandEI-Halwagi, 1994,Ye, 1992). Most of classicoptimization theory is

basedon the assumptionthat the constraintsare eachconvex. However, in complex

systemsdesign,constraintsareusuallyhighlynonlinearandareneitherconvexor concave.

Many derivative-based solution algorithms have difficulty solving problems when

constraints are not convex. The continuous portion of FALP, the Adaptive Linear

Programming Algorithm is derivative-based (Mistree, et al., 1993a). To overcome the

mathematical hurdles present when nonconvex constraints are present, a "g-function" (see

Section 1.2.2) transformation is proposed in (Mistree, et al., 1993a). In this section, this

g-function is investigated. It is proven that the g-function does not retain the convexity of a

constraint in regions where the constraint is convex, and theoretically does not transform

nonconvex constraints into well-behaved convex functions.

The g-function transformation is a one-to-one mapping of the original constraint into a new

function over the same domain. Consider a general constraint of the form:

g(x):C(x) > D. (3.28)

where C(x) is the constraint (capability) equation, x is the design variable vector, and D is

In a standard compromise DSP, this constraint is thenthe constraint limit (demand).

normalized as,
C(x_

g(x):--_ - 1 > 0 (3.29)

C(x)
r = _ (3.30)

D

g(x)=r-1 >0. (3.31)

The g-function is then divided by the term (r+l), which will always be positive. The g-

function representation of a constraint becomes:
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r-1
g(x) = _ > 0. (3.32)

r+l

The convexity of this g-function (Eqn. 3.32) is investigated in Sections 3.5.2 and 3.5.3.

In general, a function f is convex if the Hessian matrix of f is positive definite or positive

semidefinite for all values of Xl ..... xn (Reklaitis, et al., 1983). On the other hand, a

function f is concave if the Hessian matrix of f is negative definite or negative semidefinite

for all values of Xl ..... Xn. The Hessian matrix of a function f(xl ..... xn) is a nxn

symmetric matrix given by

Hz(xl ..... xn)= °32f =V2f. (3.33)

. x: xj

For H to be positive definite or positive semidefinite, the following conditions must be met:

1. All diagonal elements are positive.

2. The leading principal determinants are positive.

In the ALP Algorithm, a heuristic simplification is used (Mistree, et al., 1993a) to

determine the convexity of a function. Only the principal diagonals are used in determining

the convexity of a given function. This simplification is a relaxation of the convexity

restriction, as a function may be considered convex from the main diagonal terms, but in

reality may not be convex due to the principal determinants. In the following proof, the g-

function, as implemented in the ALP Algorithm is investigated.

In the following sections, the convexity of the g-function (Eqn. 3.32) with respect to the

design variables (Eqn. 3.33) is investigated. It is proven by induction that the g-function in

the ALP Algorithm is not a good transformation of nonconvex functions into well-behaved

convex functions. The proof begins in Section 3.5.2 with the case when the g-function is a
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function of only onesystemvariable(n=1). In Section3.5.3,thecasewhentheg-function

is a function of k-1 systemvariables(n=k-1) is considered. The proof is concludedby

induction for thecasewhenn=k in Section3.5.3.

3.5.2 The Single Variable Case (n=l)

Assume that the vector x contains only one design variable. The convexity of this function

is investigated by taking first and second derivatives with respect to a representative design

variable, x.

dg(x) (r+l)_-(r-1) dr77 2dr
- = -- 77 (3.34)

dx (r + 1)2 (r + 1)2

dZg(x) = 2 _,._ (r + 1) 2 - 4(-_)2(r + 1)

dx 2 (r + 1) 4
(3.35)

In order for g to be convex, the second derivative (Hessian with only one element) must be

non-negative,

d2g(x) > 0. (3.36)
dx 2 -

This occurs when,

2 d2r (r+ 1)2 - 4(_)2(r + 1)
dx 2 x- >_0

(r + 1)4

d"r

2 d--_r.(r + 1)2 _>4(_)2(r + 1)

d-_-,_(r + 1) > 2r dra2
m 'k_'X / "aX'"

(3.37)

Investigating Eqn. 3.37, it is obvious that the fight hand side will always be non-negative.

The term (r+ l) on the left hand side will always be positive since the constraint involves

positive quantities and limits. Therefore, the left hand side must be a larger non-negative

number for the g-function to be convex. Consider two cases: 1) the original constraint is

convex, and 2) the original constraint is concave.
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Case 1

If the constraint is convex, then d:.._.s__> 0, and the g-function becomes convex when
<:Ix2

_(r + i) > 2(_) 2 (3.38)

and concave when

0 < d:r 1) < 2(_) 2-- d-7(r + • (3.39)

This is a strong result, as the g-function still may be convex, but may not be everywhere

convex, as the original function is.

Case 2

If the constraint is concave then

_2--r-_< 0 (3.40)
dx2

and the g-function is also everywhere concave, as the left hand side of Eqn. 3.37 is < 0,

and the right hand side of Eqn. 3.37 is > 0. Therefore, the g-function does not transform

the original constraint into a convex function.

3.5.3 The Multiple Variable Case

n=2

The vector x consists of two design variables. With multiple variables, the convexity of a

constraint is determined by the Hessian, Vr 2. The Hessian of the original constraint is

r a_ a_ .7
_lax, |

Vr2 = La_, _2r -j (3.41)

Again, two cases are investigated: case 1) the original constraint is convex, and 2) the

original constraint is concave.

Case 1

If the original constraint is convex, then Vr 2 is positive definite or positive semidefinite for

all x, and

a:r > O, and _2r _2r ( _2r "12ax--'_-- a_? a_ _J > O. (3.42)
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The Hessianof theg-function,Vg 2 is,

_:r - 4(_-_-)2 (r + 1)2 a-_?(r+ I) 2

(r+l) 4
Vg 2 =

2_(r+ 1) 2 -4 c °-_-__c ar _Cr + l)

(r + 1)4

2 a2r tr+ n2 -4 t or at__:__tr+ 1)"

(r+l) 4

¢)2r

2_((r+ 1) 2 - 4(_,, )_(r + 1)

(r+l) 4

.(3.43)

For the g-function to be convex, Vg 2 (Eqn. 3.43) must be positive definite or positive

semidefinite, so the two sub-determinants must be

t)2r ( _r 22_-_-_(r+I)2-4 _,) (r+l)
>0, and

(r + 1)4

4c3:rbZrt'---1)--R(c)r_2_:r--8(_r_2_2r 4 _:r 2 1 ar ar _r_, _x_ "_ _ a-_?,J a_; _-7_-,, a,? (_---_) (r+l)- 6(_-_-)(_-_-)
. _ . --- _,a_, > 0 (3.44)

(r + 1) 5

In the ALP Algorithm, only the main diagonal terms are used to determine the convexity of

the function, therefore, only

¢32r A( _3r x2_2_--_[(r+l)2 " a-;7) tr+l)

(r + 1) 4

are necessary.

O2r - _r 2

- 4(a-_-_) > 0 (3.45)>0, and 2 a--_((r+ 1)2 (r+l)

(r + 1) 4

As in the single variable case, for Eqn. 3.45 to be satisfied,

O2r (r + 1) >_? _ ,_-;7,_ , and a_(r + l) > 2(_-.) . (3.46)

Unlike the original constraint which is everywhere convex, these conditions may not be

satisfied everywhere. Therefore, the g-function transformation is not useful for the multi-

variable case as well.

Case 2

If the original constraint is concave, then Vr 2 is negative definite or negative semidefinite,

and

O2r cl2r _2r ( t)2r "_2a_-'T < O, and , (3.47)_r a4 _-_,, < O.

For the g-function to be concave, Vg 2 must be negative definite or negative semidefinite,

so the two sub-determinants must be

2 _(r + 1)5 - 4(a-_'t )2 (r + 1)
-< 0, and

(r + 1)'
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4a2r a-'r, -- 8[ ar _2 a2r -- Or 2 c32r -- A( a2r -,2/ Or _3r a2r

_-_[T_-._trtl)- _x,J _d 8(o-_-.,) ax-T -'_) tr+l)-16(_-g_,)(_-_,)a_,a:
< 0 (3.48)

(r + 1)5

In the ALP Algorithm, only the main diagonal terms are used to determine the convexity of

the function, therefore, only

2_(r + 1)2 - 4(a-_-)2 (r + 1)

(r + 1)4

2_(r + 1) 2 - 4(_-_r7)2(r + I)
-< 0, and " -. 0. (3.49)

(r + 1)4

As in the single variable case, for Eqn. 3.49 to be satisfied,

_'_ (r + i) < (r + 1) < .-- 2¢ ar ]2 a2r ( ar 2_, - _a-Z,J , and _ _ 2 _--_-) (3.50)

If the original constraint is concave then ax"T-a:r < 0 and _--d'._-a:r < 0 (again, only the diagonal

terms of the Hessian are used), and the g-function is also everywhere concave, as the left

hand side is < 0, and the right hand side is > 0 for both equations in Eqn. 3.50. Therefore,

the g-function does not transform the original constraint into a convex function.

n=(k-1)

The vector x consists of multiple design variables. With multiple variables, the convexity

of a constraint is determined by the Hessian, Vr 2. The Hessian of the original constraint is

a"..._r a2r l

ax_ "'" axjax__,

Vr2 = " " . (3.51)
c_2r a2r

a_,_,a_, --- _L--'_

Again, two cases are investigated: case 1) the original constraint is convex, and 2) the

original constraint is concave.

Case I

If the original constraint is convex, then Vr 2 is positive definite or positive semidefinite for

all x, and

aZ__r

ax,-'
_>0, 02 r ¢32r

( aZr "_2_, > 0 ..... each sub-determinant up to (k-i) > 0.
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The Hessianof theg-function, Vg2is,
Oar

2 a-iT?(r + 1)z - 4(a-_, )2 (r + 1)

(r+l) 4

Vg 2 =

,-, , 4 a_ a,2_(r+ 1)2- (a-g,)(g77__,)(r + 1)

2 _2r r ' - 4t ar _( ar _(r+ D"
_( -r 1) 2 'a-_77__j/'a-77/' '

(r+l) 4

2 .___ (r + 1/2 - 4(_)2(r + l)
0'%__ I

(r + 1)' "'" (r + 1)4

(3.52)

For the g-function to be convex, Vg 2 must be positive definite or positive semidefinite, and

taking the main diagonals,

o-'r (r+ 1)2 - 4(_-_-)2 (r + 1) 2 _(r + 1)2 - 4(_[_, )2(r + 1)
> 0 ..... - >0. (3.53)

(r + 1)' (r + 1)4

each must be greater than or equal to zero. As in the single variable case, for Eqn 3.53 to

be satisfied,

2{ Or_2 _r t-_(r+l) > ,_-7) ..... ad_, ,r + 1) > 2(a__, )2 (3.54)

Unlike the original constraint which is everywhere convex, these conditions may not be

satisfied everywhere. In essence, it becomes increasingly difficult for the convexity

conditions to be satisfied with more design variables.

Case 2

If the original constraint is concave, then Vr 2 is negative definite or negative semidefinite,

and

a_r < 0, a2r O"r ( O"r _2
_-7 - ad aq _a_-gaT,J < 0 ..... each sub-determinant up to (k-1) < 0

For the g-function to be concave, Vg 2 must be negative definite or negative semidefinite,

and

a-', _ 4(a__)2(r + 1)2 a-7(r+ 1)2 2 a_"[ (r+1)2_4( a, _2
_<0 ..... _;-' _77,_,j (r + 1)- <0.

(r + 1)4 (r + 1)'
(3.55)

As in the single variable case, for Eqn. 3.55 to be satisfied,
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_(r+ 1)< ,_-_-, ..... _(r+ 1) < a-ST_,J • (3.56)

If the original constraint is concave then a-'___c._ _-_.._.z__< 0 (again, only the diagonal termsax, .... , a.__, -

of the Hessian are used), and the g-function is also everywhere concave, as the left hand

side is < 0, and the right hand side is > 0 for both equations in Eqn. 3.56. Therefore, the

g-function does not transform the original constraint into a convex function.

In conclusion, it is shown that the g-function does not transform concave functions into

well-behaved convex functions in the ALP Algorithm. In addition, the g-function does not

guarantee full retaining of the convexity of convex functions. These proofs are shown for

the cases of number of design variables = I, 2, and k- 1. Therefore, by induction, it can be

shown that it is true for the case of number of design variables = k. As previously

mentioned, in the preceding proof, it is assumed that only the principal diagonals are used

to determine the convexity of the function. This relaxation results in a stronger proof, as

even with the relaxed conditions, the g-function does not transform nonconvex functions

into well-behaved convex functions in the ALP Algorithm.

The g-function is currently a recommended option in the ALP Algorithm. Therefore, in

order to implement the g-function, the user would have to hard-code the transformation of

the constraints and goals themselves. That is, the g-function is not part of the source code

of the ALP Algorithm. Therefore, when the ALP Algorithm is used in Chapters 5, 6, and

7 to solve design models, the g-function is not used. It is noted that although it has been

shown for general functions across x _ 9_, this is not to say that the g-function may work

well in certain cases numerically in a small neighborhood, x _ R. Since the ALP

Algorithm operates on small intervals, it is left to future work to investigate the merit of the
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g-function from anempirical andnumericalstandpoint. In addition, functionswhich are

neitherconcaveorconvexhavenotbeeninvestigated.

3.5.4 Guidelines for Verifying Hypothesis IV: Convexity

IHypothesis IV: The g-function is a useful transformation of nonconvex functions intoI

I

Iwell-behaved convex functions.

Hypothesis IV is tested and rejected using one posit. The guidelines and section numbers

related to the testing of this posit are given.

Hypothesis IV is verified by testing Posit 4.1 which supports the use of Hypothesis IV.

This is a very straightforward posit, as a formal proof is constructed. In Sections 3.5.2

and 3.5.3, it is proven that the g-function theoretically does not transform nonconvex

functions into well-behaved convex equations. This proof is constructed across the entire

analytical independent variable range. The proof presented in Section 3.5.3 does not

discount that in certain circumstances, in a small neighborhood around a given design

point, the g-function numerically may be used to construct well-behaved convex functions

based on the step size. This is precisely how the ALP Algorithm operates, therefore,

further numerical investigation of the g-function and improvement of the transformation

function is warranted. However, the theoretical foundation of the g-function has been

investigated.
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3.6 A SUMMARY OF THE VERIFICATION AND MOTIVATING

STUDIES

In Section 1.3, the strategy for implementing and verifying the method and approach in this

dissertation is provided. Two primary verification problems, the design of a pressure

vessel, and the design of a compression spring are first used to explain and verify the

research hypotheses associated with the developments of this work in Chapters 4, 5, and 6.

Two pressure vessel problems are studied, one with multiple players to verify Hypothesis

II in Chapter 5, and one with discrete and continuous variables to verify Hypothesis IZI in

Chapter 6. In Chapter 4, variations on the pressure vessel and aircraft design problems are

included to verify Hypothesis I. Having tested the hypotheses, the second part of the

verification strategy is the further development and verification using a motivating study,

the design of a Boeing passenger aircraft. The aircraft design problem is presented in

Chapter 7.

These studies have been chosen based on the motivating research issues identified in

Chapter 2. A summary of the representative features of each study is given in Table 3.5,

including the type of analysis, nonlinearity, number of goals, type of decision variables,

overall complexity, type of confirmation tests, and relevant hypotheses.

The complexity increases in Table 3.5 from the first pressure vessel problem to the

motivating Boeing case study. Each problem is marked by nonlinearity. In the first

pressure vessel problem the level nonlinearity is low (quadratic or cubic equations), while

the aircraft problem is highly nonlinear. The compression spring and second pressure

vessel problem are single-objective for comparison and illustration purposes, while the

other studies are multi-objective. The compression spring and second pressure vessel
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problemconsistof bothdiscreteandcontinuousdecisionvariablesto verify HypothesisIll,

while the first pressure vessel problem is purely continuous to verify Hypotheses I and II.

The motivating case study is mixed discrete/continuous. Different types of confirmation

tests are used depending upon the availability of previous studies, analytical equations, and

numbers of variables

Table 3.5. Features of Example Problems and Motivating Study

Type of
Analysis

Nonlinearity
of Function

Goals

Decision
Variables

Overall

Complexity
Type of
Confirmation
Tests

Hypothesis
Used to Test

Pressure
Vessel I

structural,
economic

nonlinear

multiple
continuous

very low

3-D plots,
analytical

comparison
I, II

Compression

Spring
structural

nonlinear

sin$1e
discrete and
continuous

Pressure
Vessel II

structural,
economic

nonlinear

sin$1e
discrete and
continuous

Boeing Aircraft

aerodynamics,
weights, propulsion,
economic

highly nonlinear

multiple
discrete and
continuous

low low high

exhaustive comparison analytical
search with previous

studies

III III I, I.I, III

3.7 A LOOK BACK AND A LOOK AHEAD

In this chapter, the algorithm for integrated subsystem embodiment and system synthesis

and the research hypotheses associated with the development of the algorithm are

presented. For each hypothesis, ramifications, relevant theoretical information, and

verification guidelines are provided as a means to establish the foundations for the research

approach. The three steps of the algorithm, corresponding the first three hypotheses are
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exploredin Sections3.2, 3.3,and3.4, respectively.The final hypothesisis disprovedin

Section3.5. In Figure3.17, theprogressof the dissertationis shown. Building uponthe

theoreticalfoundationandliteraturereviewof ChaptersI and2, in Chapter3 theoverall

algorithmis introducedin Chapter3. Chapter3beginsphaseII of theverificationstrategy

of this dissertation. In Chapters4, 5, and 6, phaseII is continuedas the threespecific

stepsand hypothesesassociatedwith the algorithm are explored in moredetailed and

verifiedusingthecasestudiesintroducedin Section3.6.

IChapter 3_--

Phase Ih Testing the
Research Hypotheses

Figure 3.17. Frame of Reference: Chapter 3
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CHAPTER 4

CLASSIFICATION AND FORMULATION OF

MULTIDISCIPLINARY DESIGN PROBLEMS: A DECISION-
BASED PERSPECTIVE

A multidisciplinary design process consists of multiple designers or design teams, each

with a specified domain of expertise. This expertise is

., domain-dependent but design is an interactive, integrated

transformation of information. Therefore, th e designers
i

-_ _ _a-h-dlv _and design teams must be able to communicate with the

s_t_rt_i_ other teams at various levels of detail, from integrated
Solutions

cross-disciplinary teams to integrated computer

infrastructures of "talking" software. Many times, however, complete communication and

cooperation are not possible at either level. Because of the complexity of multidisciplinary

design problems, there is a need to "step back" and design the design process. In other

words, a meta-design phase is needed to define and structure linguistically the design

process and product (Mistree, et al., 1990b, Mistree, et al., 1993c). There axe many

approaches to formulating and solving complex design problems including various single

and multi-level approaches. There is, however, no common set of linguistic entities to

compare and map these approaches to each other. In this chapter, multidisciplinary design

optimization (MDO) is approached from a game-theoretic, Decision-Based Design (DBD)

perspective and classification schemes for multidisciplinary design problems are explored.

The exploration and developments in this chapter provide support for the first step of the

algorithm (Figure 1.7), Hypothesis I, and Posits 1.1 and 1.2, presented in Section 3.1.

156



NOMENCLATURE

From (Bailing and Sobieski, 1994):

SAND - Simultaneous Analysis and Design
NAND - Nested Analysis and Design
i: denotes discipline number i
si: disciplinary state variables which comprise the state equations
ri: residuals in the state equations

Yij: coupling functions, contains those function computed in discipline i which are needed
in discipline j

Yij*: coupling variables
x: system design variables needed by more than one discipline
xi: disciplinary design variables
gi: design constraint functions
fi: design objective functions
ci: cumulative design function determined by a system analyzer
di: discrepancy functions
disciplines: subsystems described by a common underlying physical principle
Disciplinary analyzers seek values for the state variables that reduce the residuals in the

state equations to zero. That is, analyzers try establish to equilibrium conditions by
changing the state variables.

Disciplinary evaluators find the residuals in the state equations for given values of the state
variables. That is, evaluators are usually sets of equations that only evaluate the
value of the equations for a set of constant state variables.

From (Mistree, et al., 1990b):

selection is the process of making a choice between a number of possibilities taking into
account a number of measures of merit or attributes.

compromise is the process of determining the "right" values (or combination) of design
variables, such that, the system being designed is feasible with respect to
constraints and system performance is maximized with respect to multiple, possibly
conflicting goals.

heuristic decision (Kamal, 1990) is, roughly speaking, a combination of a preliminary
selection and compromise decision. The solution process for a heuristic decision
differs from the compromise and selection DSPs and involves reasoning.

LI: Lateral interactions between subsystems
FVI: Forward vertical interactions among parent system and subsystems

RVI: Reverse vertical interactions among parent system and subsystems

di +, di-: deviation variables, measures difference between goal i target values and actual
achievement.

Zi: deviation function of model i
state variables: dependent variables which describe the behavior of a system.
state equations: equations which are functions of the state and design variables and describe

the behavior of a system.
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4.1 TECHNOLOGY BASE: CONCEPTUAL CONSTRUCTS

In this chapter, Hypothesis I, which corresponds to the first step of the algorithm presented

in Section 3.1, is explored. This hypothesis is:

I

Hypothesis I: Classification of problem and process in multidisciplinary design can be [

facilitated by integrating constructs from Decision-Based Design, Game Theory, and[

I

Multidiscplinary Design Optimization. [

Posits 1.1 and 1.2, which support this hypothesis are as follows.

Hypothesis I Posits

Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-

independent lexicon for multidisciplinary design.

Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidisciplinar 7 design.

Explanation and description of each posit is provided in the context of the formulation and

solution of complex design problems characterized by multiple disciplines. Several

approaches to formulating and solving a multidisciplinary design problem have arisen in a

rather ad hoc fashion over the years. These approaches include single-level and multi-level

formulations, hierarchical and nonhierarchical system decomposition methods, and

numerous optimization and analysis processes and approaches at the system and subsystem

levels. In Bailing (Bailing and Sobieski, 1994, Cramer, et al., 1994), a classification

system for formulation of MDO problems is presented. In this chapter,

• this classification system is explored and extended from a game-theoretical,

decision-based perspective,

• a framework is provided within which research activities and open questions in

the field of MDO can be articulated in the future,
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• the linguistic entities most often used by designers and researchers in MDO to

describe both the system and the process are identified,

• the first step of the algorithm of this dissertation presented in Chapter 3 is

embodied with the classification framework.

Specifically, the focus of the classification presented in this chapter is on the types of

decisions made by designers and how they affect the decisions of the other designers.

Entities from the DSP Technique are integrated with the Bailing-Sobieski (B-S) framework

(Bailing and Sobieski, 1994, Cramer, et al., 1994) and domain-independent linguistic

terms to build the taxonomy (Lewis and Mistree, 1995).

In this chapter, it is shown that the Bailing-Sobieski framework is consistent with that of

the Decision Support Problem Technique through the use of linguistic entities describing

the same type of formulations. It is shown that the underlying linguistics of the solution

approaches are the same and can be coalesced into a homogeneous framework with which

to base the research, application, and technology of MDO upon. Identifying linguistic

entities is only the first step in designing complex systems. These terms must be embodied

on a computer according to a parsing and translation scheme. Identification of these terms

facilitates the development of a complete system and process taxonomy for MDO.

In Sections 4.1.1 and 4.1.2, the foundational principles of this chapter are presented.

These include the background of the B-S scheme and the Decision Support Problem

Technique (DSP Technique). The game theory foundation is presented in Sections 1.2.3

and 3.3.3. In Section 4.3, these concepts are integrated and their continuity illustrated in

complex systems design. The DSP Technique approach is mapped into the B-S scheme

and the synergy between the two approaches is illustrated. This chapter is closed with

some assertions concerning the implementation and application of the taxonomy in complex
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system design. The mindset of this chapter is one of description as opposed to

prescription. The lexicon is presentedasa meansto describethenecessaryproductand

processissuesthatdesigners,researchers,andengineersmusthandlein complexsystems

designasopposedto prescribinga specificmethodthatdesignersmustfollow.

4.1.1 The Bailing-Sobieski Scheme

A brief overview of the classification to MDO problems presented in (Bailing and Sobieski,

1994) is given in this section. The classification scheme is rooted in the following

assumptions:

• that complex systems consists of distinct disciplinary subsystems which may or may

not overlap,

• and that these systems can be represented by a mathematical model.

The validity of these assumptions is returned to in Section 4.3. As a frame of reference, in

Figure 4.1 a generic representation of a coupled, three-discipline system is shown.

X, X2 J Discipline 2 I

f2, g2 < I J2 _r2 I Y13 Y31I I

Y23 1 I y32

_ Discipline3 _

f3, g3 e13 r3

I

Figure 4.1. A Three-Discipline Coupled System (Bailing and Sobieski, 1994)
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Dependingon the level of analysis,themodulesin Figure4.1 mayrefer to disciplines,

components,or processes. This figure is representativeof a typical three-discipline

coupledsystem. It is thedecompositionof the system,subsystemcouplingandsolution,

and systemsynthesisthat posemajor researchandapplicationproblemsin MDO. The

terms usedin the figure, as well asother commonterms aredefined below (seealso

Nomenclature)andtakenfrom (Bailing andSobieski,1994).

SI, S2,S3:disciplinarystate variables which comprise the state equations

rl, r2, r3: residuals in the state equations

Y12, Y13, Y21, Y23, Y31, Y32: coupling functions, Yij contains those function computed

in discipline i which are needed in discipline j.

YI2*, YI3*, Y21*, Y23", Y31*, Y32": coupling variables

x: system design variables needed by more than one discipline

x l, x2, x3: disciplinary design variables

gl, g2, g3: design constraint functions

fl, f2, f3: design objective functions

Disciplinary analyzers seek values for the state variables that reduce the residuals in the

state equations to zero. That is, analyzers try to establish equilibrium

conditions by changing the state variables.

Disciplinary evaluators find the residuals in the state equations for given values of the

state variables. That is, evaluators are usually sets of equations that only

evaluate the values of the equations for a set of constant state variables.

The primary task at hand is summarized as follows:

Determine the values of the design, state, and coupling variables that satisfy the state

equations, the coupling equalities, the design constraints, and the design objective

functions.

Based on this, six classifications for fundamental approaches to MDO problem formulation

and solution are presented by Bailing and Sobieski, which depend on three criteria:
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1) Systemvs.Multilevel decomposition

2) Simultaneous(SAND) vs. NestedAnalysis and Design(NAND) at the system

level

3) Simultaneous (SAND) vs. Nested Analysis and Design (NAND) at the

subsystem or discipline level

At the discipline level, SAND implies that the disciplinary design and state variables are

determined simultaneously by the optimizer, while NAND implies that the optimizer

determines only the disciplinary design variables and requires determination of the state

variables at each iteration. Thus, at each iteration of the optimizer, disciplinary evaluators

are called for SAND while disciplinary analyzers are called for NAND. At the system

level, SAND implies that the system design variables and coupling variables are determined

simultaneously by the system optimizer, while NAND implies that the system optimizer

determines only the system design variables and requires calls to a system analyzer to

determine the coupling variables at each iteration. The "optimizers" at the system level or

discipline level could be gradient based or heuristic in nature, depending on the problem

formulation. Further classifications can be generated if these approaches are combined or

linked sequentially within one design problem.

Each approach has a three-part name consisting of the overall decomposition descriptor, the

solution approach at the system level, and the solution approach at the subsystem level.

The first part indicates whether the approach is a single-level or multi-level approach. The

middle and last parts of the name indicate whether the SAND or NAND approach is used at

the system and discipline levels, respectively. The B-S scheme has inherently assumed

cooperation is the only possible form of communication among design teams. In reality

this is not the case (See Sections 1.1.2 and 3.3.2). Therefore, the B-S scheme is extended

using game-theoretic entities. In (Rat and Mistree, 1995), SAND and NAND bilevel
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modelsareexploredusinggametheoryformulationsandconstructs.This work extends

the integration of game theory into MDO. In the B-S scheme, if a single-level approach is

used, the game is cooperative, as the disciplinary problems are combined into one single-

level problem. Therefore, a set of Pareto solutions are ideally available. If a multi-level

approach is used, then the disciplines must be designated a status in the design game. The

possible designations are:

• cooperative: each disciplinary design team cooperates and has a representation of

the other teams' information. If the representation is exact, then it is full

cooperation. If it is approximate, then it is an approximate cooperation scenario,

• noncooperative: each disciplinary design team has to make assumptions about the

other teams,

• leader: a discipline either decides first or dominates a process, assuming the

followers behave rationally,

• follower: a discipline either waits on another discipline or is dominated by another

one.

The theoretical and mathematical descriptions of each designation in the context of game

theory are given in Section 3.3.3.

4.1.2 A Decision-Based Perspective

Decision-Based Design (DBD) is offered as a starting point for the creation of design

methods that are based on the notion that the principal role of an engineer, in the design of

a product or process, is to make decisions. An introduction to DBD is presented in Section

1.2.1. Independently of the approaches or methods used to plan, establish goals and

model systems, designers are, and will continue to be involved in two primary activities,

namely, processing symbols and making decisions. Therefore, it is asserted that the

process of design, in its most basic sense, is a series of decisions. By focusing upon
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decisions, a description of the processesis available which is written in a common

"language" for teamsfrom the variousdisciplines -- a languagethat canbeusedin the

processof designing.

It is recognizedthattheimplementationof DBDcantakemanyforms; the implementation

used is the Decision Support Problem (DSP) Technique. It is being developed and

implemented to provide support for human judgment in designing systems that can be

manufactured and maintained. It was indicated that this approach to engineering design is

embodied in the DSP Technique and the principal support for human designers is provided

through the formulation and solution of Decision Support Problems (DSPs). The

software to solve DSPs on the computer is called DSIDES (Decision Support in the Design

of Engineering Systems) (Mistree, et al., 1993a). Details about the mathematical structure

of the DSPs are presented in (Mistree, et ai., 1993a, Mistree, et al., 1993c). Entities from

the computer implementation of the DSP Technique are used to model processes (Bras and

Mistree, 1991, Mistree, et al., 1990b). These entities, called Support Problems, are

shown in Figure 4.2. It is these entities that are integrated with the linguistic entities of the

B-S scheme from Section 4.1.1 in the classification system of this dissertation.

Phase

Event

. - "[] CompromiseTask ,, Decision
J

Decision [] Selection
", .. Decision

System "-_ o Heuristic
- Decision

Figure 4.2. Potential Support Problem Entities
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Thephase entity is used to represent pieces of a partitioned process. Events occur within a

phase. Tasks and decisions are used to model phases and events. Tasks and decisions

require direct involvement of human designers and/or systems. Phases and events are

accomplished by performing tasks and making decisions. A task is an activity to be

accomplished. The design process itself is a task for the design team, namely, "design a

suitable product". A task itself may contain other tasks and decisions, even phases and

events, as in the design task. However, simple tasks like "run computer program A" do

not involve decisions.

In this chapter, the focus is on decisions, which are only a small portion of the DSP

Technique, but the primary notion in DBD. More specifically, the focus is on coupled

DSPs. By focusing on coupled DSPs, they can be mapped into the B-S scheme as coupled

approaches to MDO problems. Examples of coupled DSPs include coupled selection-

compromise and compromise-compromise formulations. The solution algorithm for

continuous Decision Support Problems is the Adaptive Linear Programming (ALP)

Algorithm (Mistree, et al., 1993a) (see Sections 1.2.2 and 3.4.4). Decision Support

Problems and the ALP Algorithm are based on the notion of satisficing solutions, or

solutions that are "good enough", as opposed to optimizing solutions (Simon, 1982). In

the B-S scheme, optimizers are used extensively in the classification. However,

throughout this chapter, the ALP Algorithm is referred to as a solver instead of an

optimizer. In Section 4.2, a classification scheme is presented which consists of terms

from both the B-S scheme, game theory, and the DSP Technique. Domain-independent

terms inherent in complex systems design which embody certain open research areas are

also integrated.
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4.2 A DECISION-BASED CLASSIFICATION

Scientific lexicons, or classification structures generally consist of a number of levels of

identification. For example, consider the field of biology. Any living entity can be

classified according to the accepted framework in biology. This framework begins at the

kingdom level and continues to the species level, getting more specific with the lower

levels. The levels of the taxonomy presented in this section also correspond to a given

level of detail, but in addition to the system, classification of the process is included as

well. Each level classifies a portion of the design process and product. The taxonomy is

rooted in the notion of Integrated Product and Process Design (IPPD) where issues

concerning the design product and the process to required to reach the final product are

simultaneously addressed. The taxonomy proposed has three levels as shown in Figure

4.3. Each level is explained in the following sections.

PROCESS
DESCRIPTORS

SYSTEM
DESCRIPTORS

LEVEL 1

LEVEL3

Figure 4.3. General Taxonomy
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4.2.1 Level 1: Overall System and Process Formulation

Level 1consistsof the scheme proposed by Bailing and Sobieski with game theoretical

extensions. In this scheme, the overall analysis and solution scheme for the problem at

hand is identified (Bailing and Sobieski, 1994) and the interaction structure is identified

using terms from game theory to classify the roles of the disciplines. By using the B-S

scheme, insight into the structure of the system is apparent, but classification of the

solution process is the primary focus. Once the first level terms have been determined, the

second level of the classification is used to classify the problem and process further.

4.2.2 Level 2: System Definition

Level 2 contains domain independent linguistic terms that are used to define the system and

the structure of the disciplines. These terms are inherent in complex systems design and

MDO. A sample of these terms is shown at the top level in Figure 4.4. The process of

identifying the domain independent terms involves surveying the relevant work, both

research and application, in the field of MDO. Of course, there are countless terms used by

different contributors, but the aim is to identify fundamental terms which are intrinsic to

and define MDO as an emerging field of research and application. The domain independent

terms do not connote any type of technological information concerning specific

optimization algorithms, analysis packages, approximation techniques, etc. These terms

are independent of time-based developments such as technology. The domain independent

terms should act as an umbrella to the specific system developments in academia,

government, and industry, while the other taxonomy levels encompass the process

developments. Within this framework it is espoused that there are various "open"

linguistic statements, such as "solution method", or "level of approximation". The

"solution method" used varies according to problem requirements, system characteristics,

researcher background, and so on. It is within these types of open statements that the
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individual researchand applicationsevolve in academia,industry, andgovernment. In

Figure4.4 it is illustratedwheremanyof theresearchtopicsandpracticalapplicationsof

MDO fit into someof the domainindependententities. For instance,under"solution",

researchareasinclude discrete methods,continuous methods,and multiple objective

techniques.

I Approximation I

I

,ooj

I
Discrete Methods
Genetic Algorithms

Integer Programming
Continuous Methc.ds

CONMIN
SLP

Muttlole Ob!ective
Techniauea

Figure 4.4.

IDecomposlUonl

N Hierarchical

[

I RobusVQuality_

I

System Analysis Codes "_

Response Surface E,-,uations JNeural Networks

I_Human Faa*_

l
omoutlna Interfaces I

Examples of Linguistic Research Terms in MDO

4.2.3 Level 3: Process Definition

Level 3 contains the process independent base entities of the DSP Technique (Bras and

Mistree, 1991) which are introduced in Section 4.1.2. These are the basic entities for a

designer that are independent of the system or process at hand. These entities classify the

type of action that must be made in order to perform the terms of level 2. Then, based on

the action that must be made, the appropriate support tool, whether it be computer-based,

experiment-based, or rule-based, can be used to help designers make decisions.

As technology continues to expand and better and faster approaches are developed,

taxonomies should not change. If they do change, then they do not represent a robust,

time-independent description of a set of entities. It is asserted that any lexicon in technical

fields must be independent of technology. For instance, the Bailing-Sobieski framework is

independent of technology. In the B-S framework the simple classification of "evaluators"
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could include crude Simpson'sintegration of strain energyto detailed finite element

analysis and simulation. Therefore, the framework is independent of time-based

developments,suchastechnology.A similaranalogyis foundin theareaof chemistry. In

chemistry,theframeworkis in theform of theperiodictable. All researchandtechnology,

no matterhow advanced,canbe referredin somesenseback to this table, andthis will

alwaysbe true. The purescienceshavesetthestandardfor classificationsof somesort.

Granted,in design,or evenmultidisciplinary design,this typeof frameworkis difficult

due to the inherent lack of structure. In this chapter, value is addedto this evolving

frameworkof MDO to stimulateits acceptanceasa basisfor communication. In Section

4.3, the verification for Hypothesis I is provided by linguistically mapping the

classificationof threeexampleproblemsusingtheB-S schemeandentitiesfrom theDSP

Technique.Furtherverificationof HypothesisI is providedin Section4.3 by classifying

theseexampleproblemsusingthecompleteclassificationsystemof Section4.2.

4.3 MAPPING OF APPROACHES: AN INTEGRATION OF IDEAS

In this section, it is illustrated how various applications of the DSPT to designing complex

systems can be mapped into the B-S scheme. In particular, the design of a passenger

aircraft, a thermal energy system, and a pressure vessel subject to design and

manufacturing requirements are used to illustrate the mapping. The classification of these

examples are also given, as further support for Hypothesis I. In Figure 4.5, a roadmap of

the general mapping is given for this section. Problem formulations using coupled DSPs

are mapped into the Bailing-Sobieski formulations. In Figure 4.5, examples are given of

both formulations including all coupling functions. This mapping includes comparing the

linguistic entities of the formulations and illustrating the consistency among the entities.
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The objective function in coupled DSPs is in the form of a deviation function, which

characterizes the deviation from the goal achievements and the goal aspirations. The

objective function in the B-S framework is either a standard objective function or a

discrepancy function which is used to characterize the discrepancy in the goals, constraints,

and coupling functions. In both frameworks, the form of the objective function is

minimized. Using coupled DSPs, interactions between subsystems are modeled using

lateral interaction constraints (LI), and interactions between the system and subsystems are

modeled using reverse and forward interaction constraints (RVI, FVI). In the B-S

framework, coupling is modeled using Coupling functions (Yij) and cumulative design

functions (ci). This mapping also represents the highest and lowest level of the taxonomy

presented in Section 4.2 and establishes the continuity between the levels of classification

in the taxonomy. Throughout this section, after the linguistic terms from the classification

presented, the equivalent linguistic terms from the B-S scheme are given in parentheses.

DSPs

Given
Find

xi, di
Satisfy

gi<o

gLI, gRVl, gFVI < 0
fi + d" - d+ = 0

Minimize

di

Bailing - Sobieski

Find

xi, di

Satisfy
gi < di
fi- f < di

Yii*" Yii < di
Ci" - Ci < di

Minimize

di

coupled DSPs _ B-S classification

d i, deviation function _ d i, discrepancy function

LI, FVI, RVI, _ Yij, coupling functions

coupling functions ci, cumulative design function

Figure 4.5. Overall Mapping of DSPs into B-S Framework
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DSPs have been used to design many complex systems, including aircraft, ships, damage

tolerant structural and mechanical systems, and thermal energy systems. Three of these

examples are used in this section to support Hypothesis I.

Aircraft." Single-SAND-SAND-cooperative

In (Lewis, et al., 1994), technical, economic, and quality issues are addressed in the

design of a passenger aircraft. The problem statement for the study is as follows:

A three engined subsonic jet transport is to be acquired. To ensure that the aircraft is
operational from many airports the take-off field length should be less than 6,50Oft

and the landing fieM length should be as close to 4,50Oft as possible. It is required
that the range of the aircraft exceed 2,000 nmi.

It is desirable that the airplane carry about 190 passengers, have a useful load
fraction of O.5, an endurance of O.03 hours, and a range of 2,400 nmi. It is also
desirable that the missed approach climb gradient be as large as possible.

At this early stage, the variables to be determined are the wing span and area,
fuselage diameter and length, installed thrust, take-off weight, airfoil thickness
location parameter, wetted area to planform area ratio, useful load fraction, airfoil

form factor, fuselage form factor, airfoil thickness ratio. The solution should
provide information on the size of the aircraft based on geometrical parameters,
aerodynamic considerations, the Federal Air Regulations, quality considerations,
and economic issues.

In Figure 4.6, the framework of this single level compromise DSP approach is given along

with the systems descriptors of the compromise DSP and the technical, economic, and

quality evaluation routines.
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Figure 4.6. Multiobjective Aircraft Compromise DSP

In Figure 4.7, this single level solution approach is presented in the B-S framework. The

first level of classification, single or multilevel approach, is considered. Since the system

problem is formulated at a single system level, the first classification level is "Single."

Since a single level is used, the game designation is cooperative. The second level of

classification, SAND or NAND at the system level is considered next. In the current

compromise DSP formulation, the computation of the design variables and the variables

describing aircraft technical, economic, and quality performance (state variables) by the

system solver is simultaneous. As indicated earlier, the system solver is the ALP

Algorithm (Mistree, et al., 1993a), which is the solution algorithm for compromise DSPs.

In the ALP Algorithm (system solver), the design and coupling variables are found and the

constraint violations (residuals) and deviation function (residuals) are minimized based on
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the constraint, goal, and coupling function information from the various disciplinary

evaluators.Therefore,atthesystemlevel,theapproachis classifiedasSAND.

Solver (Controls Calculation off, g)

X'XI'X2"X3 I X' XI'X2'X3 _ l I X'XI'X2'X3
Technical Economic Quality
Residual Residual Residual

Computation

(Analyzer)
Computation

(Analyzer)

r,
Computation

(Analyzer)

r3

Figure 4.7. Single-SAND-SAND Formulation

The third level classification, SAND or NAND at the subsystem or discipline level is then

considered. The compromise DSP formulation in this case is decomposed into three

disciplines, technical, economic, and quality performance. Evaluator subroutines are called

from the ALP Algorithm (system solver) for the technical, economic, and quality constraint

and goal calculations. These subroutines may be part of the compromise DSP or may be

separate subroutines depending on their sizes. At the discipline level, only evaluation is

performed, and the deviation variables and constraint violations (residuals) are returned to

the ALP Algorithm (system solver) along with values for the constraints, goals, and

coupling functions. Therefore, at the discipline level, the classification is SAND. The

classification of this approach at level 1 of the classification is given as Single-SAND-

SAND-cooperative.
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A representative of the full classification of the aircraft example is shown in Figure 4.8. At

level 2, different linguistic terms can be used, but it is assumed in this example that the

representative term at the second level is solution, as the model must be solved by

performing a type of decision. As shown in Figure 4.8, multiple terms must be used at

level 2 to classify the nature of the product being designed, but only solution is

demonstrated here. The third level classification is given as decision. In this example, a

compromise DSP is formulated and solved. Using the classification, the aircraft problem

and process to solve it have been structured according to linguistic entities. A single-level

cooperative formulation is used and solved using simultaneous analysis and design. The

solution of the single-level formulation is found by solving a compromise DSP.

level 1

level 2

Level 3

Single-level cooperative formulation

System Classification: SAND

Subsystem Classification,. SAND

i

i
!

Approximation Solution
I

Dec ision Decision

t I
Selection Compromise

Decomposition

I
Decision

Sele :tion

Figure 4.8 Representative Classification: Aircraft Example

Thermal Energy System: Multi-SAND-SAND-cooperative

In Kuppuraju (Kuppuraju, et al., 1985a), an approach at multilevel system decomposition

and solution is presented using hierarchical compromise DSPs. The problem statements

for the parent and subsystem problems are given.
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Parent level: It is necessary to determine the quantity of raw materials (Ash A and

Ash B) that have to be purchased each day to run a power plant. Information on
the amount of Ash A, Ash B, and acid, and the yield of each Ash is given. The

funds available to buy raw materials are limited to $17,000/day. The Ash is subject
to storage space restrictions in the factory.

Subsystem level-Coal Problem: Based on the amount of raw materials purchased
and hence the daily production quota, the exact amounts of Coal A and Coal B
needed to fire the furnaces is to be determined. It is desirable that the cost of coal
not exceed $600/day. The fuels have to satisfy the heat requirements and in
addition conform to the pollution regulations and the handling constraints in the
factory.

Subsystem level-Beam Problem: Given the amount of finished product produced in
a day, it is desired to design supports for the centrifuge that can withstand this load.

It is important to increase the surface area of the beam by as much as possible in
order to enhance heat dissipation. The materials available for the beam are
malleable cast iron, gray cast iron, and steel Parameterized dimension of the beam
along with information on the operation of the motor are given. The dimensions of
the beam are limited by the volume of material available, a surface area limit, and a
safety factor of 2.

In Figure 4.9, the hierarchical framework of this multilevel compromise DSP approach is

given along with the systems descriptors of each compromise DSP. In Figure 4.10, this

multilevel solution approach is presented in the B-S framework. The approach in Figure

4.9 is certainly multi-level as disciplinary design problems exist at the subsystem level. At

the system level, there is a system level compromise DSP that is solved using the ALP

Algorithm (System solver).
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SYSTEM/PARENT LEVEL PROBLEM
GIVEN

Details from problem statement
FIND

Quantity of raw material A to be purchased, YA

Quantity of raw material B to be purchased, YB

Deviation variable associated with

amount of zinc sulphate to be manufactured

SATISFY

Purchasing power co_tratnt

Storage rapacity constraint

Bounds on system variables

Zinc sulphate goal

MINIMIZE

Underachievement of goal (maximize amount of

zinc sulphate)

FVI .__ FVI

SUBSYSTEM 1: // _._. SUBSYSTEM 2:

COAL PROBLEM _ _._._BEAM PROBLEM
GIVEN

Details from problem statement
FIND

Amount of Coal I to purchase

Amount of Coal II to purchase
Deviation variables associated with

fuel requirement goal

co_t goal
SATISFY

Smoke emission constraint

Loading constraint

Pulverizing constraint

Sulphur oxide emission constraint
Cost constraint

Bounds on system variables
Fuel requirement goal

Cost goal
MINIMIZE

Deviation function, preemptive form

LI

GIVEN

Details from problem statement

Material praperth_
FIND

Material of centrifuge
Cross section dimensions of beam

Length of beam
Deviation variables ass_ioted with

material selection goals

surface area goal
SATISFY

Material selection constraint

Stress constraint

Frequency constraint

Deflection constraint

Volume constraint

Bounds on system variables

Material selection goals
Surface area grad

MINIMIZE

Deviation function, preemptive form

Figure 4.9. Multi-Level Thermal System: Coupled Compromise DSPs and

Interactions

Then at the discipline, or subsystem, levels there are disciplinary compromise DSPs.

Included in this approach are lateral, forward, and reverse interaction functions that dictate

the coupling between the system and subsystems and among the subsystems. These

interaction functions allow the formulation to be a cooperative one, because even though

the disciplinary problems are distinct, the interactions are modeled and accounted for using

interaction functions. That is, the subsystems are not acting on their own, and neither is
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dominating the process. The linguistic entities of this approach are mapped to their

equivalents in the B-S scheme are given.

Lateral interactions, LI

Forward and reverse

interactions, FVI and RVI

di, deviation function

v

v"- Yij, coupling functions

ci, cumulative design function
f, objective function
x, design variables

d i, discrepancy function

System Solver: Solution of ]

Compromise DSP I
dl, d2

X, f, y_/* System Compromise DSP

scipUnarYcom,_romiseS°lver:DspS°luti°n of ]

X, X1, X2

Coal PurchasingCompromise DSP

rl

X, XI, X2

Beam Dimensional

Synthesis DSP

r2

Figure 4.10. Multi-SAND-SAND Formulation

In Figure 4.10, the lateral interaction coupling functions, LI, are represented by the

disciplinary design variables XI and X2. Additional coupling considerations in this

approach are the reverse and forward interactions, RVI and FVI, between the system and

subsystem levels. The reverse and forward coupling functions between the system level

and subsystems are denoted by objective functions, f, or design variables, x. These denote

information passed from the system to the subsystems. Each subsystem compromise DSP
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(which may dependon the solutionof thesystemcompromiseDSP) is solvedusing the

ALP Algorithm. The ALP Algorithm (disciplinary solver) of each subsystem is used to

minimize the deviation function (discrepancy function) and finds the subsystem design

variables. At the system level, the ALP Algorithm (system solver) is used to solve for the

system design variables and system deviation function (residuals). The system solution

depends on the deviation functions (discrepancy functions, di) from the subsystem

problems, which may be in the form of reverse coupling functions (RVI), as in Figure 4.9.

This multilevel approach is classified as Multi-SAND-SAND-cooperative at level 1 of the

classification. A representative of the full classification of the thermal energy example is

shown in Figure 4. I 1. Since a multi-level formulation is used, Figure 4.11 only shows

one subsystem classification at levels 2 and 3. The other subsystems would have their own

classifications at level 2 and 3 describing their subsystems. At level 2, different linguistic

terms can be used, but it is assumed in this example that the representative term at the

second level is solution, as the model must be solved by performing a type of decision. As

shown in Figure 4.11, multiple terms must be used at level 2 to classify the nature of the

product being designed, but only solution is demonstrated here. The third level

classification is given as decision. In this example, a compromise DSP is formulated and

solved. Using the classification, the thermal energy problem and process to solve it have

been structured according to linguistic entities. A multi-level cooperative formulation is

used and solved using simultaneous analysis and design. The solution of the problems in

the multi-level formulation are found by solving compromise DSPs.
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Level 1

Level 2

Level 3

Multi-level cooperative formulation

f _N
System Classification: SAND

Subsystem Classification: SAND
K, j

Subsystem 1

Approximation Solution
I J

Dec i s ion Decision

I I
Selection Compromise

Figure 4.11. Representative Classification:

Decomposition

1
Decision

Sele!tion

Thermal Example

Pressure Vessel: Multi-SAND-SAND-cooperative

In (Karandikar and Mistree, 1992a, Karandikar and Mistree, 1992b, Karandikar and

Mistree, 1992c, Karandikar and Mistree, 1993) the design of a pressure vessel,

considering both design and manufacturing issues is presented. The problem statement for

the pressure vessel is given below.

Design a cylindrical composite material pressure vessel with hemispherical and

closures and having a volume of 10 mm 3. Two materials (carbon�epoxy

composites) are available for fabricating the pressure vessel. The pressure vessel
is to be manufactured by filament winding and the specifications for the filament
winding operation need to be determined. The pressure vessel is subjected to
internal pressure loads and a constant temperature difference across its thickness.

The pressure vessel should not fail under the given loading conditions and
should be manufacturable using the available filament winder. The performance
factor of the pressure vessel is to be maximized. There is experimental evidence
to suggest that is advantageous to keep the ratios of the boss opening diameter to
the chamber diameter between 1/10 and 1/5. On manufacturing, the volume

fraction of fibers and the degree of cure across the body of the pressure vessel
should be uniform and the residual stresses in the vessel should be minimized. It
is desirable that the fabrication time and the material cost be kept to a minimum.
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The solution process involved simulation of the technical performance and manufacturing

considerations. The technical (design) variables and the manufacturing variables are found

using separate compromise DSPs, but the compromise DSPs are coupled through the

system variables, both design and manufacturing. This approach is similar to the previous

approach to the thermal energy system, but at the system level, the compromise DSPs feed

into a selection DSP where the best concept is selected based on the information from the

compromise DSP solutions. The model of the system using entities from the DSP

Technique is shown in Figure 4.12.

Laminate

FVI, RV_[y1)

COMPROMISE DSP

Subsystem 1
DIMENSIONAL SYNTHESIS

FIND
Dimensions of the

Pressure Vessel
SATISFY

Constriants
Failure Criteria
Geometry

L/D ratio
d/D ratio
Angles

Coals 4
Volume
Deflection match
Performance factor

Bounds

MINIMIZE
Deviation Function

SELECTION DSP
OPTION TO CHOOSE
MATERIALS

(X1)

Dimensions, LI

(X2)

Process Variables, LI

L Laminate

COMPROMISE DSP

Subsystem 2
MANUFACTURE

FIND
Process Variables

Curing Schedule
Mandrel Speed

SATISFY
Fabrication Constraints

Mandrel Critical Speed
Degree of Cure

Fabrication Goals
Residual Stresses
Fiber Motion
Processing Time

Bounds
MINIMIZE

Deviation Function

Figure 4.12. Multi-Level Pressure Vessel: Coupled Selection-Compromise

DSPs and Interactions
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Rating Alternatives: Solution of ]Selection DSP

X_ dr, d2

X "*_ q
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Dimensional

Synthesis
Compromise DSP
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x, xi, x2

Manufacturing
Compromise DSP
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Figure 4.13. Multi-SAND-SAND Formulation

The corresponding schematic in the B-S scheme is shown in Figure 4.13. The solution

approach is multi-level, since the model includes subsystem compromise DSPs. At the

system level, the decision is a selection Decision Support Problem. This type of decision

is distinctly different from a compromise DSP, as it involves choosing the best alternative

from a pool of candidates. The solution of a selection DSP involves determining the

alternative with the highest merit function. A selection DSP can be formulated as a linear

goal programming problem and solved using the ALP Algorithm (system solver). The

merit function in a selection DSP consists of evaluation criteria that includes information

about the system goals, f, design variables, x, and coupling variables, Yij*. This

information is passed to the subsystems (FVI in Figure 4.12). At each iteration,

information from the subsystems is passed to the system level (RVI in Figure 4.12) which

characterizes how well the subsystem goals are met (discrepancy functions, di in Figure

4.13). The information in the selection DSP may be imprecise and objective in many
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cases,but nonethelessthe informationis valuableto designersin complexsystemdesign

(Mistree, et al., 1994, Mistree, et al., 1988). Due to the formulation and solution of

selection DSPs,the systemlevel classification is SAND. At the subsystemlevels, a

separatecompromiseDSPis formulatedfor eachsubsystem.ThecompromiseDSPsare

solved using the ALP Algorithm (disciplinary solver), similar to the thermal energy

example. Therefore, at the subsystem level, the classification is SAND. Since the

coupling variables are used and are being passed between the subsystem models, this

problem is a cooperative one. That is, the subsystems are not acting on their own, and

neither is dominating the process. The complete level 1 classification is Multi-SAND-

SAND-cooperative. A representative of the full classification of the pressure vessel

example is shown in Figure 4.14. Since a multi-level formulation is used, Figure 4.14

only shows the system level classification at levels 2 and 3. The subsystems would have

their own classifications at level 2 and 3 describing their own subsystems. At level 2,

different linguistic terms can be used, but it is assumed in this example that the

representative term at the second level is solution, as the model must be solved by

performing a type of decision. As shown in Figure 4.14, multiple terms must be used at

level 2 to classify the nature of the product being designed, but only solution is

demonstrated here. The third level classification is given as decision. In this example, a

selection DSP is formulated and solved. Using the classification, the pressure vessel

problem and process to solve it have been structured according to linguistic entities. A

multi-level cooperative formulation is used and solved using simultaneous analysis and

design. The solution of the system problem in the multi-level formulation is found by

solving a selection DSP.
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Level 1

Level 2

Level 3

Multi-level cooperative formulation

I System Classification: SAND 1Subsystem Classification: SAND

Approximation Solution Decomposition

Decision Decision Decision

Figure 4.14. Representative Classification: Pressure Vessel

According to the assumptions of Bailing and Sobieski (see Section i.1), the B-S

classification is useful when a mathematical model is available. In the approach to

designing a pressure vessel, imprecise information (information not based on mathematical

models, for instance) is used in selection DSPs. This type of information can and must be

used in complex system design. In the later stages of a design process, the information

may be completely precise, but in the earlier stages, designers must have the capability to

classify imprecise approaches. To facilitate this, designers can move to the second and

third levels of the classification presented where domain independent MDO terms can be

used to describe the system and decision types can be classified. By only using the B-S

scheme, designers are not able to discern between selection and compromise decisions,

although they are completely different in philosophy and application. In the pressure

vessel example, by using the extended taxonomy, the selection and compromise DSPs can

be identified which would allow designers to apply the appropriate formulation and

solution tools for each.
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In this section,the synergybetweenSupportProblementitiesof theDSPTechniqueand

the B-Sclassificationis presentedby mappingtheapproachesinto theeachother in order

to add value to the classification system. They are both domain-independent,and by

integratinggametheoreticprinciplesandtheDSPentities,theclassificationis extendedto

beingindependentof time aswell. Representativeclassificationsfor variousexamplesare

presentedasfurtherverificationof HypothesisI. Thework supportingHypothesisI is not

meantto prescribea new way of designingcomplex systems,but is usedasa way to

linguistically describethecommonentitiesamongdifferentapproachesto complexdesign

processes.This mindsetis illustratedin thenextsection.

4.4 THE MINDSET TAKEN IN THIS CHAPTER

The mindset of this chapter is one of description as opposed to prescription. The lexicon is

presented as a means to describe the necessary product and process issues that designers,

researchers, and engineers must handle in complex systems design. Ideally, the lexicon

presented could be integrated into a computer-based design guidance system to guide a

design teams through a design from problem formulation to final product design. This

would require a parser to 1) identify the linguistic entities of a problem or process

statement, and 2) embody the entities on a computer. The embodiment of these terms on a

computer involves embedding a set of information characteristic to each term in the lexicon.

For instance, in Figure 4.15, a prototypical interface for such a system is given. The

discipline shown, the structures discipline, is identified as the leader in a multilevel

formulation. This identification is often determined by a project manager, or may be

prescribed based on organizational design or information barriers. Many times, disciplines
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are not given a choice of being a leader or a follower or even cooperating. The

relationshipsamongdisciplinesis typically dictated by existing organizational constructs.

The system classification for the aircraft problem in Figure 4.15 is SAND, and the

subsystem classification is NAND. The level 1 classification is shown at the top of Figure

4.15. At the second level, the solution (MDO term) of this disciplinary problem requires

the solution of heuristic DSP (third level classification using DSP entities). A set of

algorithms could be linked to the heuristic classifier to solve the structures problem using a

leader/follower game theory protocol. Also, at the second level, the term approximation is

shown in Figure 4.15. This term is classified at the third level as a selection decision, as a

selection must be made for the level of approximation and approximation technique to use.

The designer ideally would be able to "click on" a given box, and be given information

about the box, as illustrated in Figure 4.15. A parser could interpret the entries and then be

linked to support tools which embody the entries in terms of computer entities. So,

embedded within each box could be a set of computer-based tools, such as mathematical

models, approximation techniques, or solution algorithms which could be invoked

interactively or automatically by a designer.

The information in the lexicon is independent of domain and time, and would feed into the

domain-specific methods, algorithms, and techniques. The developments of this chapter

have been presented and implemented in a descriptive mindset as a means to lay the

foundation for future prescriptive implementations.
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Decision-Based Taxonomy for a Passenger Aircraft
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Figure 4.15. Typical User Interface of the Classification System

4.5 A LOOK BACK AND A LOOK AHEAD

In this chapter, MDO is approached from a game-theoretic, decision-based perspective and

classification schemes are explored for designing complex systems and processes. A
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game-theoretic, decision-based approach to design is mapped into the previous

classification schemesproposedin (Bailing and Sobieski, 1994,Cramer,et al., 1994).

Eachis independentof technologyandtogetherthey classify theprocessesnecessaryin

MDO. By integratingdifferent levels of processand systemdescriptorsinto a lexicon,

value is addedto the B-S classificationschemeby enhancingits breadthand depthin

systemandprocessclassification.It is assertedin orderto facilitatefuturecommunication

in thefield, computerimplementationof this lexicon is needed. Implementationof this

lexicononacomputerandthemodels(wordsor mathematical)supportingthesystemand

processwouldaid applicationof this taxonomyto complexsystems.It is acknowledged

that thework of thischapteris only aprecursorfor a biggergoal. To be fully functional,a

parseris neededto 1) identify the linguistic entities of a problem or process statement, and

techniques are needed to 2) embody the entities on a computer to aid designers in the

design of complex systems in MDO. The embodiment of these terms on a computer

involves embedding a set of information characteristic to each term in the lexicon. This

information is independent of domain and time, and feeds into the domain-specific

methods, algorithms, and techniques.

Ideally, a designer would use the lexicon to examine and identify the key activities and

characteristics of the system and processes at hand. Identification of these terms would

help create models of the system and process in terms of domain independent terms. Then

these models of the system and process can be solved, analyzed, synthesized, etc., in the

context specific to the application. In this chapter, it is attempted to lay the foundation for

further developments in this area. Establishing a common lexicon among researchers and

developers in the area would facilitate communication and aid designers in establishing the

structure of both a system and a process. Establishing a lexicon would allow designers

either to rapidly change the classification of the approach or effectively introduce new
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technologywithin anentity. Establishingthis structurebasedon acommonlexiconcould

increasetheefficiencyof theprocessandeffectivenessof designdecisions.

In this chapter,the first stepof the algorithmpresentedin Section3.1.1,is exploredand

developed. In the first step,the overall structureof the problemandsolutionprocessis

classified. The work of thischapteris providedto supportposits1.1and 1.2which relate

to HypothesisI presentedin Section3.1.1. The observationsrelating to eachposit are

discussed.

Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-

independent lexicon for muItidisciplinary design.

The lexicon presented in this chapter has been applied to various design problems

from various domains. The entities in the DSPT are not dependent on any time-

based developments such as technological improvements. Designers will continue

to make decisions, and design will continue to be a sequence of phases and events.

The DSPT entities have been integrated with linguistic terms from multidisciplinary

design optimization and game theory to provide an encompassing framework for

problem and process classification. The DSPT entities are discussed in Section

4.1.2 and are illustrated in various examples in Section 4.3. The linguistic entities

of the DSP Technique are shown to be equivalent to those in the B-S scheme,

establishing the linguistic synergy of the classification.

Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidiscipIinary design.

The linguistic entities of game theory are used in Section 4.2 to expand the previous

work in classifying product formulation into domains where the disciplinary models

and their design teams may or may not cooperate. Noncooperation in theory is not

advantageous in design, but in practice it is common. Also, true concurrency is

rare; many times subsystems are designed sequentially. Game theory entities are

used to describe these scenarios. The precise role of a discipline in a complex

design process can be identified, which helps structure the process and allocate
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resources. Therefore,gametheory is usedto extendproblemclassification for

realisticcomplexdesignproductandprocessformulations.

Theclassificationof Chapter4, asshownin Figure4.16,providesthe frameworkfor the

overall algorithm, presentedin Chapter3. This frameworkrests upon the foundation

establishedin Chapters1 and2. The developmentsof Chapter4 supportPhaseII of the

strategy for verification and testingof the hypotheses. In Chapters5 and 6 the two

remainingstepsof the algorithm andassociatedhypothesesarepresentedto fill out the

completealgorithm.

Chapter

Figure 4.16. Frame of Reference: Chapter 4

189



CHAPTER 5

GAME THEORY.IN COMPLEX SYSTEMS DESIGN: A

CONCEPTUAL BASIS

Design is a process of decisions which are made by multiple decision makers, design

teams, or organizations. In complex systems such as aircraft, the decisions are typically

made by design groups organized by discipline. Ideally, a seamless Concurrent

Engineering philosophy could be applied to a company's design process among

disciplines. In reality, however, the simultaneous nature of information flow and

cooperation, inherent in CE, among design teams makes concurrency difficult, if not

impossible. M.L. Dertouzos and the Massachusetts Institute of Technology (MIT)

Commission on Industrial Productivity, in their report Made in America (1989), found that

six recurring weaknesses were hampering American manufacturing industries. The two

weaknesses most relevant to product development were 1) technological weakness in

development and production, and 2) failures in cooperation. The remedies to these

weaknesses are considered the essential twin pillars of CE: 1) improved development

process, and 2) closer cooperation (Schrage and Gordon, 1992). In the MIT report, it was

recognized that total cooperation among teams in a CE environment is rare in American

industry, while the majority of the research in mathematically modeling CE has assumed

total cooperation.
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Therefore, the focus of this work is on this notion of

cooperation. Much has been written about the design of

complex systems based on the implicit assumption that the

design teams cooperate. There is a paucity of work

dealing with strategic interactions in which the teams do

not, or more directly, cannot cooperate. In this chapter, it

Set of Design
Solutions

is asserted that a complex design process with multiple designers or design teams can be

abstracted as a series of games among design teams and that applying game theoretic

principles to these processes can generate rich insights into design process and product

structure. The use of game theory in engineering design is of relatively recent origin;

therefore, the use of game theory within the context of Decision-Based Design requires

further definition. This chapter provides the foundation for Step 2 of the overall algorithm

introduced in Chapter 3. It provides support and verification for Hypothesis II (Figure

1.7) and Posits 2.1, 2.4, and 2.5 presented in Section 3.1.3 and shown below.

IHypothesis H: Game theoretic principles can be applied to accurately model and]

I

Idescribe the interactions in complex systems desi_;n.

Posit 2.1: Design processes can be abstracted as games where the players are multiple

designers or design teams and their associated analysis and synthesis tools.

Posit 2.4: Second order response surfaces can be used to approximate the Rational

Reaction Sets of the disciplinary players in a design game.

Posit 2.5: The compromise DSP can be used as the fundamental construct to develop

the _ame theory protocols and techniques.
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5.1 FOUNDATIONS OF GAME THEORY IN DESIGN

Designing complex systems includes the difficult task of integrating disciplinary design

teams each with their own analyses, syntheses, and decision processes. Optimizing such a

system on a global scale is realistically impossible, but finding a solution which is "good

enough" and robust is achievable. With only one decision maker (or design team), the

problem becomes a scalar or vector optimization problem. However, in Multidisciplinary

Design Optimization (MDO), many decision makers (design teams) may exist, and each

decision maker's strategy to optimize his reward(s) often depend on the strategies and

decisions of other decision makers. Therefore, the focus in this chapter is on problems

characterized by:

• multiple decision makers who each have single rewards, and

• multiple decision makers who each have multiple rewards.

This focus in the context of optimization theory is shown as the shaded region in Figure

5.1. The modeling of strategic and optimal behavior based on the actions of other

individuals is known as a game and the study of the strategic behavior is game theory.

Figure 5.1.
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Typical courses in optimization focus on the upper-left quadrant, namely scalar

optimization problems with one objective and one decision maker. In rare instances,

problems in the upper-right quadrant, namely vector optimization problems with one

decision maker are covered in advanced courses. In this chapter, the focus is on the lower

two quadrants as a means to expand the application of optimization theory to problems that

frequently occur in complex system design.

As mentioned before, the use of game theory in engineering design is of relatively recent

origin; its usefulness in many other decision-making sectors is well-established. For

instance, the 1994 Nobel Prize in Economics was awarded to two economists and a

mathematician for their work in game theory. In awarding the prize to John F. Nash, John

C. Harsanyi and Reinhard Selten, the Swedish Academy said the following in its citation:

"Everyone knows that in games (such as chess and poker), players have to think ahead and

devise a strategy based on countermoves from other players. Such strategic interaction also

characterizes many economic situations, and game theory has therefore proved to be very

useful in economic analysis." Although in games such as chess, there is a winner and a

loser, this type of strategic interaction also occurs in complex system design, but the

primary, overriding goal is the same for each player in the game: to meet the requirements

and objectives as well as possible. The interactions, conflicts, and resolution processes in

design parallel those in economics, board games, or any other strategic environment. In

the next section then, it is asserted that a complex design process with multiple designers or

design teams is simply a series of games.
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5.2 DESIGN AS A GAME

In a general sense, a "game" is a set of rules completely specifying a competition, including

the permissible actions of and information available to each participant, the criteria for

termination of the competition, and the distribution of payoffs (1984). From a systems

perspective, a "game" consists of multiple decision-makers or players who each control a

specified subset of system variables and who each seek to minimize their own cost

functions subject to their individual constraints (Myerson, 1991). This definition can also

be applied to a design process; the design of a complex system is performed by multiple

designers, who make decisions, and who each control their own design variables and are

trying to minimize their objective functions subject to some technical and economic

constraints. It is clear at least at a conceptual level, a design process and a typical game are

similar in formulation.

To illustrate further, assume that a complex system such as an aircraft has been

decomposed into disciplinary subsystems such as propulsion and structures. It is

commonly accepted that a model such as

minimize f(x,p) = [fl(x,p) .... ,fAx,p)} (5.1)
x_ X(p) c _"

is the typical starting point for much of the current research and practice in systems

modeling and applied optimization. And yet in specific design instances, this assertion

should be boldly challenged. For example, since the propulsion designer only controls x

and the structures designer controls p, how is p chosen in the propulsion design? Can the

propulsion designer assume that the structural designer will always select the vector that is

most advantageous to the propulsion design? If not, how should the propulsion designer

respond to this conflict? This scenario describes a two-player strategic game where one
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player controls x and the other player controls p, and where p represents all decisions

which are outside the scope of the designer controlling x (Aubin, 1979, Dresher, 1981,

Von Neumann and Morgenstem, 1944).

In processes of designing complex systems, the situation described is a very common

practice. That is, complex design processes are performed many designers, each of which

only controls a subset of the entire system variables. However, each designer certainly is

not in isolation. The design of complex systems necessitates the coordination of multiple

disciplines and designers, each with their own interests, goals, requirements, constraints,

and analysis routines. At best, their state is one of semi-isolation; their decisions affect the

outcome of the other disciplines through subsystem interfaces, which may be geometric,

functional, behavioral, or logistical. There is extensive overlap and interaction of variables,

constraints, and goals (hierarchically and nonhierarchically) which requires coordination

and/or heuristic ordering. Since each designer has multiple objectives, and these objectives

may conflict with the objectives of the other designers, there results a continual strategic

interaction among designers or design teams. Ideally, complete cooperation occurs and

each designer is aware of all the others and the decisions made by each. In well-controlled

design problems, the typical research assumption of perfect or approximate communication

is extremely beneficial (Sobieszczanski-Sobieski, 1988). Realistically, this is not always

the case. In some cases, a Nash noncooperative formulation models a system and the lack

of interaction among design teams more accurately (Nash, 1951). Although design teams

may not explicitly choose to "not cooperate", due to the lack of information available to

them, the scenario can be modeled as a noncooperative formulation. Each design team will

have to make worst case assumptions concerning the other teams. Further, in many cases,

a Stackelberg leader/follower formulation more accurately models the sequential

interactions among design teams throughout a design process. Stackelberg formulations
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arealsoeffectivein modelingthepresenceof adominatingdesignteamwhich often makes

their decisions first while assuming the other design teams will behave rationally.

So in essence, complex design processes can be abstracted as forms of a game among

various players. These forms of games in design are quite unique applications of game

theory, however. This uniqueness of applying game theory to design processes for

complex systems is described and defined in the remainder of this chapter.

5.3 A DESIGN GAME DEFINED

Before full definitions are given, the assumptions under which this work operates are

given.

Assumption 1: Models of players are mathematically explicit. That is, there

exist full mathematical relationships in the form of equations. This does include

use of fuzzy set theory and stochastic variables, as they can be represented by

equations.

Assumption 2: The common link among each designer is the hypothetical single

company under which they all work. Therefore, the notion of noncooperation

is not intuitive. They each strive to act in the company's best interests, but

information availability prevents full compliance.

Assumption 3: Disciplinary analysis and synthesis packages are not shareware.

That is, each discipline does not have access to the other disciplinary software,

even though each discipline may depend on the design information from other

packages.

Assumption 4: The design variables of various designers or design teams do not

overlap. The local control of each designer is exclusive. That is, if one

designer controls x 1_ E m and the other controls x2_ E s, then

E m u E s = E and E rn c3 E s = 0.
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Given theseassumptions,the definitions of gametheory in the context of engineering

designarenowpresented.

Definition 5.1. In design, a player in a is the decision maker, which is embodied I
a designer or design team and his associatedgameanalysis and s;cnthesis packages, bY I

Classically, players in a game may be people, groups of people or more abstract entities

like computer programs or "nature". A principal tenet in game theory is the inherent or

allocated decision-making ability or capability of each player in a game. A motivating tenet

of this work is the notion of Decision-Based Design (DBD), where the principal role of a

designer is to make decisions. In DBD, a computer may support a game player in making a

decision, but the final decision is that of the player. Therefore, it is asserted that a decision

maker in a design process (embodied by a designer or design team) is equivalent to a player

in a game. The associated analysis routines, computer software and hardware in this game

do not make decisions. They do not play the game. They support the decision-making

strategy of a designer from a mathematical perspective. It is asserted that only the human

decision makers play the game in design.

Definition 5.2. A of a designer is the motivating principle of a decision
strategy

formulation.

In classical game theory, players chose their strategies based on the information available to

them. These strategies may change as more information becomes available. In design,

however, the strategy is usually explicitly dictated in the decision formulation as the

motivating principle. In a design process, a designer's motivation is to design a product

that meets all requirements, technical, economic, safety, quality, etc. At some point in a

design process, a formulation of a decision is typically given in terms of the system or
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subsystemvariables, constraints,and objectives. At this level of detail, a designer's

motivationtypically becomesembodiedin thesystemobjectives,suchas"minimizecost"

or "maximizequality." It is assertedthat atafundamentallevel,designersmakeoneof two

decisions,selectionor compromise(Mistree,et al., 1993c). The strategy implied in the

selection DSP is to maximize the merit function (Mistree, et al., 1994). The strategy

implied in the compromise DSP is to minimize the deviation function (see Section 1.2.1)

(Mistree, et al., 1993a). The deviation function is a measure of the difference between

what can be achieved and what is desirable. It is asserted in (Mistree, et al., 1994) that

this form of a strategy is generic and domain independent.

objective models such as "minimize weight."

It also encompasses single

[Definition 5.3. A payoffis the value of the motivating function at a _iven move. I

In the context of the compromise DSP, a payoff value is the value of the deviation function

for a given set of values of the system variables. While, in most applications of game

theory the players strive to maximize the payoff, in the context of the compromise DSP, the

payers strive to minimize the payoff to each of them. Therefore, in the compromise DSP,

the payoff can be viewed as the cost incurred. The deviation function of a designer can be

viewed as the cost incurred by the designer.

Definition 5.4. The state of a player is described completely by the system variables and IIstate variables.

A player's model is defined by the system variables, state variables, constraints, goals, and

deviation function. In this chapter, one of the goals is to illustrate the equivalency of a

player in game theory and a designer or design team in systems design. It is asserted that

the following terms are equivalent in this work.
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Game Theory

Iterated Game ............... >

Player ....................... >

Player's problem ........... >

Cost Incurred ............... >

Design

Design Process

Designer/design team and their

associated analysis/synthesis routines

Disciplinary design model

Deviation Function

In the context of complex systems design, a player's model is defined by the disciplinary

problem. For instance, a structural design team's model is defined by the physics of a

structural problem and the finite element codes, weight approximations, and any other

associated analysis and synthesis codes. But the decisions of a structural design team are

dependent on the decisions of other disciplinary design teams (and more generally,

assumption number three at the start of this section). Certainly, the structural design

problem depends on the size of the wing, the amount of thrust available, etc., and

conversely, the structural design affects the other disciplinary design problems. However,

the complexity of the overall system design problem warrants additional considerations

when applying game theoretical principles. Typically, in game theory, the only information

that is transferred is the values of the local design variables to another player. Yet in

complex systems design, there is a need for transferring more than just design variables.

Each designer or design team ideally would like not only the information concerning the

design variables, but also the state variables describing the state of the other designers.

Consider again the structural design problem. The structural designer ideally would like to

know the values of the systems variables of the aerodynamic designer such as the wing

area and wing span. This is where classical game theory would stop. However, the

structural designer would also need the values of the state variables such as the lift-to-drag
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ratio on take-off, landing, andcruising. Thesearestatevariableswhich arefunctions of

the design variables. So, someone schooled in functional analysis could ask:

If the state variables are functions of the design variables, why not just transfer the

design variables?

This question in effect asks, why not just transfer the design variables, and allow the other

disciplines access to the analysis codes where the state variables are calculated? Doing this

may make sense in small problems, but in complex design problems where the analysis

codes are large, expertise and judgment may be required to use the codes, and designers

may be geographically separated, this is not practical, if even feasible. Therefore, the

control vectors of each designer are defined in Def. 5.6.

Def 5.5. The control vector of a designer consists of the design variables and the state]

I

Ivariables.

Mathematically, this is equivalent to

X := {x,s} (5.2)

where X is the control vector, x is the design variable vector, and s is the state variable

vector. These terms are formally defined in Section 4.1. Throughout the remainder of this

chapter, the vector notation X will infer {x,s} unless specified.

The discussion of design variables thus far has not addressed the type of design variables

that may exist in the control variable vector of each player. Often in complex systems

design, design variables are continuous, discrete, integer, and Boolean in the same

problem. Depending upon the type of design variable, the type of game and solution

technique may change dramatically. Therefore, in order to use constructs from game

theory, the basis of discrete, continuous and mixed games must be established. In the next

section, the distinction between discrete and continuous games is presented including the
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typesof analysisand solutiontechniquesrequiredby each. Section5.4 is concludedby

addressingthenotionof amixedgamein thecontextof thecompromiseDSP.

5.4 DISCRETE, CONTINUOUS, AND MIXED GAMES

The application of game theory has taken two primary paths. The problems in each path

are distinctly different, but the applied theory is the same. These two paths are discrete and

continuous games. Discrete games occur when the players' decision variables are found by

making a selection among a discrete number of alternatives, such as the choice of materials.

The Prisoner's Dilemma (Axelrod, 1984, Gleick, 1986, Hofstadter, 1985, Luce and

Raiffa, 1957) is an example of classical discrete game and has been studied extensively

using game theoretical techniques. Continuous games occur when the players' decision

variables can take any real value, such as size of a beam. Application of game theory

principles to these two types of problems is similar, but the method of solution can be

completely different. The work in this thesis focuses on a third type of game, a mixed

game where the control variables are both discrete and continuous. The method of solution

of this type of game can vary greatly from the solution of purely discrete or continuous

games.

5.4.1 Discrete Games

To illustrate a discrete game, consider the following problem.

Assume there are two designers (or design teams) working on the conceptual design of a

passenger aircraft. They each control one discrete (configuration) variable that can have 2

values. For instance, the propulsion player could choose either 2 or 4 engines, and the

aerodynamics player could choose single or double delta wing formations. The propulsion

design player's objective is to bring the range of the aircraft as close to 5000 nmi as
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possible,while theaerodynamicsplayer'sobjectiveis to bring thelift-to-drag ratio of the
aircraft ascloseto 20 aspossible. Eachplayer'sobjective is a function of the decision

madeby both players. The compromise DSPs of the two players are as follows:

Player 1: Propulsion

Given

Range = f(Xl, X2)

Find

X1 _ [XIA, X1B], dp-

Satisfy

Range + dp- = RangeTarget = 5000

Minimize

Z = Deviation from Range Target

Z = dp- = f(Xl,X2)

Player 2: Aerodvnamics

Given

Lift-to-Drag = f(X1, X2)

Find

X2 E [X2A, X2B], dA"

Satisfy

Lift-to-Drag + d A- = L/DTarget = 20

Minimize

Z = Deviation from L/D Target

Z = dA- = f(Xl,X2)

The payoff matrix of this game is shown in Table 5.1 and the four possible solutions are

plotted in Figure 5.2. In the payoff matrix, the deviation functions of each player are given

for each possible configuration. As formally defined in Section 5.3, a player's deviation

function can be viewed as the cost incurred to a player. For instance, if Player Propulsion

chooses X1A and Player Aerodynamics chooses X2A, the deviation function of Player

Propulsion is 3000 (a Range of 2000) and Player Aerodynamics is 10 (an L/D of 10).

Table 5.1. Deviation Functions of 2 Players

Player X1A

Propulsion XIB

Player Aerodynamics

X2A X2B

(3,0O0, 10) (2,0O0, 8)

(4,000, 4) (1,000, 6)
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V
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Figure 5.2. Possible Discrete Solutions

In this simple game, the solution depends on the protocol of the game (i.e., if cooperation

exists, or if a sequential order exists). Each player wants to minimize his entry in the

matrix. The different solutions are explored to illustrate the effects the different protocols

have on the resulting solution of the problem.

Cooperative Solution

The cooperative solution for this game depends on the importance placed on the two

objectives. If the range is considered to be the more important objective, then the solution

is ( 1,000, 6) (point B in Figure 5.2), as this maximizes the range. If the lift-to-drag ratio is

considered more important, then the solution is (4,000, 4) (point D in Figure 5.2), as this

maximizes the lift-to-drag ratio. At these two solutions, both players cannot

simultaneously improve upon their solutions. As is defined in Section 3.3.3, this is the

definition for a cooperative or Pareto solution.
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Noncooperative Solution

The noncooperative solution of this game is constructed by formulating each player's

rational reaction sets. Construction of the rational reaction set assumes that information

about the other player's strategy is not known and mathematically answers the following

question: "No matter what decision player B makes, what decision can player A make to

ensure that he does as well as possible?" In this problem, the rational reaction set of Player

Aerodynamics is

_Xza ifX 1 = Xzs (point D in Figure 5. 2)

D(Aerodynamics) = _[X2s ifX_ = X_A (point A in Figure 5.2) (5.3)

and the rational reaction set of Player Propulsion is

f XIA ifX 2 = X2A (point C in Figure 5. 2)
D(Propulsion) = [Xt8 if X2 X2s (point B in Figure 5. 2) (5.4)

Both of these RRS's are shown in Figure 5.2. The noncooperative solution, if it exists, is

the intersection of the two rational reaction sets. In this game the intersection is

D( Aerodynamics) n D( Propulsion) = O. (5.5)

In other words, no solution exists for the noncooperative protocol. This is evident from

Figure 5.2; the two rational reaction sets do not intersect.

Stackelberg Leader�Follower with Player Propulsion as the Leader

In the Stackelberg formulation, the leader has the advantage of knowing how the follower

will react to his decision. In other words, the leader knows the rational reaction set of the

follower. Therefore, Player Aerodynamics' (follower) strategy is to choose X2B if Player

Propulsion (leader) chooses X IB, and to choose X2B if Player Propulsion chooses X1A.

Since the leader in this game knows this information about the follower, the leader chooses

XIA to minimize his deviation function, so the payoff for the players is (2,000, 8) at the

point (XIA, X2B) (point A in Figure 5.2).
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Stackelberg Leader�Follower with Player Aerodynamics as the Leader

Player Propulsion's (follower) strategy is to choose XIB if Player Aerodynamics (leader)

chooses X2B, and to choose XIA if Player Aerodynamics chooses X2A. Since the leader in

this game knows this information about the follower, the leader chooses X2B, so the payoff

for the players is (1,000, 6) at the point (XIB, X2B) (point B in Figure 5.2). It is not

necessarily an advantage to be a leader or follower. In this game, player Aerodynamics

would prefer to be the leader, but player Propulsion would prefer to be the follower.

Obviously, this is an exaggerated simplification of a design decision. In design, many

variables are continuous. That is, they can take on any positive real value. In the next

section, the solution of various protocols is illustrated for a continuous game.

5.4.2 Continuous Games

Continuous games occur when the decision variables are continuous. Payoff tables such as

Table 5.1 cannot be constructed with an infinite set of variable values. In addition, the

solution of a particular protocol of a continuous game requires more than a simple

exhaustive search or inspection, which may be adequate in the discrete domain. Therefore,

methods to solve continuous games borrow from the field of nonlinear optimization. To

illustrate, consider the following problem.

Assume the same two designers (or design teams) are working on the conceptual design of

a passenger aircraft. They each control one variable which can take on any real value. For

example, the propulsion player could control the installed thrust, and the aerodynamics

player could control the wing area. The propulsion design player wants to maximize the

range of the aircraft, and the aerodynamics design player, wants to maximize the lift-to-

drag ratio of the aircraft. It is assumed, for illustration purposes that the deviation

functions of each player can be approximated by quadratic functions. Each player's

objective is a function of the decision made by both players. The two players compromise

DSPs are as follows:
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Player Propulsion

Given

Range = f(Xl, X2)

Find

XI, dp-

Satisfy

Range + dp- = RangeTarget

Minimize

Z = Deviation from Range Target

Z =dp- = (Xl - 2) 2 +X2 2

Player Aerodynamics

Given

Lift-to-Drag = f(Xl, X2)

Find

X2, dA-

Satisfy

Lift-to-Drag + dA" = L/DTarget

Minimize

Z = Deviation from L-to-D Target

Z = d A- = (Xl - X2) 2

This problem is the same as the discrete problem in Section 5.4.1, except the control

variables are now continuous. That is, they can take on any real value, whereas in Section

5.4.1, they could only take on one of two values. In addition, each player has an explicit

mathematical form of the deviation function. Solving this type of game is quite different

from simply analyzing a payoff table. Knowledge of optimization theory or more

frequently, nonlinear programming techniques now become a necessity in order to find a

solution. In Figure 5.3, the level sets of the deviation functions of each player, dA and dp,

are plotted as functions of the design variables of each player, X I and X2. Each player

wants to bring his deviation function to zero. In Figure 5.3, this occurs along the line X1 =

X2 for player aerodynamics (dA), and at the point X1 = 2, X2 = 0 for player propulsion

(dw). Obviously, both conditions cannot be simultaneously met. Therefore, solution of

this problem again depends upon the protocol and interactions between the players.

Cooperative Solution

The cooperative solution for this game depends on the importance placed on the two

objectives. The set of Pareto solutions can be constructed by using a composite deviation

function,
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d = aid P + o_2d a = O_l[(X t - 2) 2 + X_]+ oc2[(X I - X2)2]. (5.6)

To find the set of solutions to this problem, the partial derivatives are taken

0d
--= 2X_ -2cruX 2-4_ 2 =0
0X_

0d
= 2X 2 - 2a_X l = 0

,9X2

(5.7)

(5.8)

where

0<cx_<l, 0<az<l, cr_+a2=l.

Solving these equations, the set of solutions are

X I = 2_2
(1-a_)

X 2 = 2a_a2
(1- a?_"

(5.9)

This set of solutions (which depend on the weights assigned to the two objectives) is

shown in Figure 5.3 as the line between points A and B. Along this line, both players

cannot simultaneously improve upon their solutions. As presented in Section 3.3.3, this is

the definition for a cooperative or Pareto solution.

Noncooperative Solution

The noncooperative solution of this game is constructed by formulating each player's

rational reaction sets. To formulate the RRS of the aerodynamics player, it is necessary to

determine what value of X2 would be advantageous for the aerodynamics player for any

value of Xx. For any value of X1, the aerodynamics player can minimize his deviation (to

a value of zero) by setting X2 = X1. Therefore, the rational reaction set for the

aerodynamics player (shown in Figure 5.3) is

D( Aerodynamics ) = {(X_,X 2) _ E2IX2 = X_}. (5.10)

To formulate the RRS of the propulsion player, it is necessary to determine what value of

XI would be advantageous for the propulsion player for any value of X2. For any value of
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X2, player propulsion can minimize his deviation function by setting X! = 2. Therefore,

player propulsion's rational reaction set (shown in Figure 5.3) is

D(Propulsion) = {(XI,X2) e E21XI = 2}. (5.1 1)

From Figure 5.3, it is clear that the intersection of the two sets occurs at (2, 2) with a

payoff of (dp, dA) = (4,0). This corresponds to the solution with the Aerodynamics player

as the leader, and is shown as point C in Figure 5.3.

x2 dA = 1 dA = 1

D(aerodynamics) -1 l

Pareto

Solutions

D(propulsion)

dA=0

C

dp

increasing

3 Xl

Figure 5.3. Solutions for Various Protocols

StackeIberg with Player Propulsion as the Leader

Since the leader in this game knows the strategy of the follower in the form of player

aerodynamics' rational reaction set, the leader (propulsion) chooses X1 = 1 to minimize

Range[X z, X 2 (X 1)] = (X t - 2) 2 + X 2 (5.12)
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and subsequently,player aerodynamicschoosesX2 - Xl - l, and the solution is (1, 1)

and the payoff for the players is (dp, dA) = (2, 0). This is shown as point A in Figure 5.3.

Stackelberg with Player Aerodynamics as the Leader

Since the leader in this game knows the strategy of the follower in the form of player

propulsion's rational reaction set, the leader (aerodynamics) chooses X2 = 2 to minimize

Lift - to - Drag[X2,Xt (X2) ] = (2 - X2) 2 (5.13)

and subsequently, player propulsion chooses X] = 2, and the solution is (2, 2) and the

payoff for the players is (dp, dA) = (4, 0). This is shown as point C in Figure 5.3. With

these simple examples, it is obvious that the solution to the problem differs depending upon

the protocol between the players. In order to ensure the best overall solution in design, it is

paramount to explore and understand the results and implications of each protocol. This

exploration is presented in Chapter 7.

In complex systems design, and engineering design in general, many times the design

variables are not all discrete or continuous, but are a mixture of continuous and discrete

variables. In this case, the game becomes a mixed game.

5.4.3 Mixed Games: Application to Design

In complex systems design, designers or design teams usually control multiple system

variables that are not all discrete, but are continuous, integer, and discrete. They also have

state variables, equality and inequality constraints on the design, and multiple objectives to

meet as closely as possible. A typical game in the design of a complex system combines

aspects of discrete and continuous games. The focus in this work is not on discrete or

continuous games, but on mixed discrete/continuous games. Although the developments in

this work can certainly be used for discrete or continuous games, in this thesis, they are
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illustrated primarily using mixed games.The examplespresentedin Sections5.4.1and

5.4.2 aresimple illustrationsof theprinciplesof gametheory. The foundationfor game

theoreticprinciplesin complexsystemdesignaredevelopedandappliedto arepresentative

system in this thesis. The departurefrom the previousgametheory examplescan be

summarizedby:

• presenceof discrete(includingintegers)andcontinuousvariables,

• presenceandcouplingof statevariables,

• multipleobjectiveswithineachproblem,

• multipledisciplinarynonlinearconstraints,and

• theuseof extensivedisciplinary,platform-dependentanalysisroutines.

Formulating models for each player and finding the various protocol solutions, as in

Sections5.4.1and5.4.2,is a muchmoredifficult problemwith the introductionof these

aspectscommonly found in thedesignof complexsystems.The generalform of a mixed

discrete/continuouscompromiseDSPis givenin Section3.4.4,Figure3.15. Whentwo or

morecompromiseDSPsarecoupled,certainaspectsof thegeneralcompromsieDSPmay

beaugmented.For thecaseof a 2-playergame,thecompromiseDSPof player lincludes

thefollowing changes:

• Possiblegiven information from the other player, X2

• Constraints and Goals are functions of the control variables of the other player,

g(Xl, X2), f(Xl, X2)

• Deviation Function is also a function of the control variables of the other player,

Z(X1, X2).

The different protocols, formulations, and solutions of a mixed discrete/continuous game,

involving multiple mixed compromise DSPs, in complex systems design are illustrated and

explored in Chapter 7.

Although the definitions in Section 5.3 and examples in this section have been specified for

abstracting design as a form of a game, the fundamental principles of game theory remain
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the same. There are many protocols in gametheory that are usedto model various

situations among the gameplayers. It is assertedthat threeof theseprotocols have

relevanceto thesituationsoftenfound in designprocessesamongthe designersor design

teams. The mathematicalbasisfor thesevariousprotocolsis presentedin Section3.3.3,

andtheimplementationstrategiesfor eachprotocolaxepresentednext.

5.5 GAME PROTOCOLS IN DESIGN

As introduced in Section 3.3, the focus in this dissertation is on three primary protocols

applicable to design processes: cooperative, noncooperative, and leader/follower. In all

three protocols, some form of approximation is used to generate a useful solution. The

approximation tools used for each protocol are shown in Table 5.2.

Table 5.2. Protocol Approximation

Protocol What is Approximated?
Cooperative Nonlocal State Variables

Noncooperative Rational Reactions Sets

Stackelberg Rational Reactions Sets

Leader/Follower

Approximation Tool

GSE and Ta_,lor's Theorem

Design of Experiments and

Response Surfaces

Design of Experiments and

Response Surfaces

The implementation of each approximation strategy is discussed in this section. The

cooperative formulation is constructed at two distinct levels, full cooperation and

approximate cooperation, and their application to complex systems design is presented in

the Section 5.5.1.
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5.5.1 The Cooperative Formulations

If the players cooperate, they can be expected to obtain better solutions than when they do

not. This is the typical optimization approach: to assume total cooperation among decision

makers, disciplines, or subsystems. Previous work in multidisciplinary design has

assumed cooperation exists among the players (Bloebaum, et al., 1992, Renaud and

Gabriele, 1994).

Full Cooperation

The steps to construct and solve the full cooperative protocol are as follows:

Ioo Combine each players' model into one encompassing model.Solve the model usin_ appropriate continuous, discrete, or mixed solution technique.

The full cooperation protocol is illustrated in Figure 5.4. The disciplinary compromise

DSP of Player 1 and Player 2 are combined into one compromise DSP in Figure 5.4 and

solved using the cumulative design variables, constraints, goals, and deviation variables of

both players. It must be stressed that determining priorities on the goals when the

encompassing compromise DSP is formulated is not a trivial matter unless a simple

Archemedean scheme with equal weighting is used. Insight into the customer and problem

requirements must be used when establishing weights or priorities.

Although conceptually the full cooperative protocol is simple and theoretically sound,

Pareto solutions are very difficult to compute in complex systems designs since the models

of the different disciplinary players (designers, or design teams) utilize different analysis

packages and many times are solved at different points in a process using approximate or

incomplete information. In other words, a single objective which combines the objectives

from players A, B, and C using a weighted sum such as
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Player 1

Player 2

"Find

xl, dl÷,d(
Satisfy

constraints

(x_,sl,xz,s2)->O.O
lCxl,s,x2,sz)--O.O

goals
fl( xl,sl,x_,sz)+dF-dl"=l-O

Minimize
Zl(xl,s_,xvs2)

fFind _'

x2, d2",d 2"
Satisfy

constraints

g2(x;,svx2,s2)->O.0
hz(xl,sl,xz,s_=O.O

goals
f2(xl,sl,x2,sl)+d2"'d2+=l.C

Minimize

Z_(x_,s_,xz,sz) ,,/

Figure 5.4. Full Cooperation:

_Find

x! ,x2, dl÷ ,dF, d z. ,d 2-

Satisfy
constraints

_z(x_,sl,x2,s2)->O.O
l(x,svxz, sz)=O.O

_(x_,s_,xz,sz):zO.O
2(xvsvx-e_)=O.O

goals
fl(x I,Sl ,x-z,s2)+dl "-all÷= 1 .C
f z(xl,sl,x2,s2)+dz--d2+=I.0

Minimize

_, Z(x_,s_,x2,Sz) j

Pareto Solutions

F(XA,XB,Xc) = wAf A + wBf B + wcf C

where

_wi -- 1

O<wi_< 1,

is typically impractical. Furthermore, combining separate models is often computationally

impossible due to the sheer size of the models and analysis routines. Therefore, the

definition of a cooperative solution in complex systems design can be extended to

approximate cooperation where models can remain separate but linked through

approximations of the coupling variables which are needed by more than one discipline.

Approximate Cooperation

The notion of cooperation in complex systems design is one of approximate cooperation.

Approximate cooperation is achieved using approximations of the state variables, including
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constraints and goals needed from the other players. However, approximation of every

constraint, goal, and state variable is unrealistic. Only, the coupled equations (i.e.,

equations which are functions of the design variables of two or more players) are

approximated. Therefore, required nonlocal information about the other players is

approximated in each player's model. This approximation is accomplished using the

Global Sensitivity Equations (GSE) method first proposed in (Sobieszczanski-Sobieski,

1988) and successfully used in the design of complex systems (Bloebaum, et al., 1992,

Renaud and Gabriele, 1991, Renaud and Gabriele, 1993, Renaud and Gabriele, 1994).

The fundamental constructs used in modeling approximate cooperation are introduced in

Section 3.3.4. In this work, the full derivatives from the GSE method are used in a Taylor

series expansion to approximate nonlocal variables. The steps to modeling and solving an

approximate cooperation formulation are given as follows.

@ Construct approximations of nonlocal behavior variables

@a. Perform an initial analysis and take partial derivatives of behavior variables 1)

with respect to the other behavior variables, matrix [M], and 2) with respect to the

local design variables, matrix [B].

Ob. Set up and solve the GSE matrices.

Oc. Use the full derivatives in a first-order Taylor series approximation.

s(x, Xb,X _) So ds . O_X_)+d__b(X_,_Xb)+ dS(xo, = ¢ -x¢) (5.14)
+ _x(Xa dx c

@ Solve disciplinary models using nonlocal approximations.

O If all models have converged, then stop.

Ob.

If not, update GSE matrices, and goto Step

In effect, each player uses an approximation of the coupled equations of the other players.

This is the essence of approximate cooperation in design. In Figure 5.5, the schematic for

the implementation of approximate cooperation in the context of the compromise DSP is

shown. Step I is performed completely within the compromise DSP formulation of each

214



player. Oncenonlocalapproximationshavebeenmade,the ALP Algorithm is usedto

solve the model in step 2. It is important to note that since derivatives are used to

approximatethevariables,discreteor integervariablesarenot usedin thisprotocol. In step

3, convergenceof eachplayeris checked,andif met,thesolutionis found.

Taylor's series Matrix Solver

,,tad solveConstruct

i GSE equations atcurrent design point

ALP continuous solver

Figure

Starting Points
Xlo, X2,O

Compromise DSP

5.5 Construction and Solution of the Approximate Cooperation

Formulation

In Figure 5.6, the compromise DSPs of two players in the approximate cooperative game

formulation are shown. The values of the required nonlocal design variables, x, are used,

along with approximations of the nonlocal state variables, s. With these representations,

Player I is able to solve his compromise DSP using Xl/and an approximation of SlI as part

of his given information (left side of Figure 5.6), and vice versa for Player II (right side of

Figure 5.6).
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Player I

/-Given _

su = sip + Vsi1(x-x°)

XII
Find

XI, di+,di"

Satisfy
constraints

gi(xl,si,xa,sa)->-O.O
hi(xI,sl,xII,s_=O-O

goals
fi(xi,si, xn,sn)+di-di+= 1.0

Minimize

ZI(XI,SI, XII,SII)

J

Figure 5.6 Compromise DSPs

Player H

in Approximate Cooperation

5.5.2 Nash or Noncooperative solutions

The Nash or noncooperative formulation occurs when coalition among players is not

possible due to organizational, information, or process difficulties. Players in design

usually would not choose to "not cooperate" but because of the lack of information, the

scenario can be modeled using noncooperative notions. This is often the case in designing

large systems, and when players act independently and must make assumptions concerning

the other players' actions. This is also the case when information availability plays a role in

a design process. If the appropriate information is not available to the designers,

assumptions will have to be made. To ensure a functional and safe design, designers often

must construct a set of solutions according to any decision the other players make. In other

words, designers usually have to assume worst case scenarios of the other players. This

parallels the Nash formulation where players do not cooperate and must make decisions

assuming the other decision makers could make any decision.

Nash Solutions in the context of Complex Systems Design

Similar to the cooperative protocol where ideal and complete cooperation is not realistic in

the design of complex systems, finding the exact mathematical RRS of the two players is

216



not practical. Each player's model consists of multiple, nonlinear constraints and

objectivesthat requireadvancednonlinearprogrammingand/or heuristic techniquesin

orderto solvefor the independentvariables.To developaclosedform equationfor oneor

moreindependentvariablesasfunctionsof otherindependentvariablesis computationally

difficult andtheoreticallyextremelylaborious.Therefore,theRRSof eachplayeris found

by usingapproximationtechniques.Specifically,theRRSof eachplayer is approximated

by usingdesignof experimentsandsecond-orderresponsesurfaces.A responsesurface

equationis usedto approximate

X 1N= f(X 2) (5.15)
as

xl,s I=f(x2,sz)=A'x2+B.s 2+C-(x 2×x2)+D.(s 2×s2)+E.(x 2×s2) (5.16)

In Eqn 5.16, the coupled design, Xl, and state, Sl, variables of player 1 are approximated

as functions of the required design, x2, and state, s2, variables of player 2. A response

surface is constructed for each variable, design and state, which is needed by another

player. The steps to construct the RRS of each player is as follows.

Constructing the Rational Reaction Set

@ Use NORMAN® as the design of experiments driver.

la) Based on the number of input variables, set-up the Central Composite Face-

Centered Design.

1b) Set the input variables (variables of the other player which are required) constant

in Pl's compromise DSP and call DSIDES.

O In DSIDES solve Pl's compromise DSP using the ALP Algorithm and send the values

of the design and state variables to NORMAN®

O Determine if the full experiment is finished.

• If not, continue by moving to the next experiment point and repeat Step 0.

• If so, construct the response surfaces.

It is stressed that the ALP Algorithm is used to solve a compromise DSP at each simulation

point. Even though the compromise DSP model may contain discrete and continuous
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designvariables(as illustrated in Chapter7), to constructtheRRS'sthe designvariables

are assumedto all be continuous. Creating response surfaces of functions of discrete

variables is a difficult, if even feasible, task. To illustrate schematically, the specific steps

to construct the RRS approximation for P2 are shown in Figure 5.7. In step 1, based on

the range of the variables from P1, NORMAN® is used to construct an experimental

design to sample the design space of P1. In step 2, the ALP Algorithm in DSIDES is

called to solve P2's compromise DSP at each hypothetical point in P l's design space. In

step 3, P2's solution information is used to construct response surfaces equations of P2's

control variables as function of Pl's control variables needed by P2. So, in effect,

NORMAN® is used to build a function that embodies how P2 will behave for any value of

Pl's variables by sampling the design space as defined by the variable ranges and solving

P2's model throughout the space.

# input variables
range of input variables

order of response surface

STOP
Rational Reaction

Coefficients

xp2, SP2
XP1, SP1

@

Figure 5.7. NORMAN/DSIDES Interface

mo¢ •
w,
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Conceptually,the ideaof constructinganapproximaterationalreactionsetis illustratedin

Figure5.8. The aim is to construct the RRS of player 2, P2. Therefore, in step 1, points

are taken from player one, Pl's, design space (defined by xp1 and Spl) through the CCD

experimental design. In step 2, at each of these points (xp1, SPI), P2's compromise DSP

is solved using the numerical values of (xpl, SPl) as input parameters. Then in step 3, the

resulting set of solutions, [(xp2 , SP2)] are taken as the output parameters to construct

response surface equations of the form xp2 , sp2 = f(xpl , Spl) which approximate the

rational reaction set of P2.

SP1

0 Xpl, SP1

Pl's Design Space

J XP1, SP1
[

P2's Compromise
DSP

@
XP2, SP2

XP2, SP2

XP2,

0
Rational Reaction Set

Xp2, Sp2 = f(Xp1, Sp1)

Response Surface Equations

XP1

Figure 5.8 Conceptual Outline of RRS Construction

In Figure 5.9, compromise DSPs of two players in a noncooperative formulation are

shown. The given information is that information required from the other player is

unknown. Therefore, a player's solution must be found using unknown variables.

Constructing an approximation of the RRS of each player is found using the compromise

DSPs of Figure 5.9. Construction of the RRS's is the first step to solving the

noncooperative game formulation. The steps to solve the noncooperative formulation are

as follows.
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Player I

,_iven

unknown sii, xii

Find

X1, di+,di"

Satisfy
constraints

gI(XI,$1,Xu, SII)>O-O

hI(Xx,Si,Xii,sii)=O.O
goals

fi(xi,st,xn,sxi)+d(-di+= 1.0
Minimize

ZI(XI,SI,XII,$11)

J

Figure 5.9. Noncooperative

Player H

Compromise DSPs

Solution to the Noncooperative Protocol

O Construct Rational Reaction Set of Each Player, Di

O Using appropriate technique, find the intersection points of the RRS's of each player.

X* = D1 n D2 (5.17)

• Determine which solutions fall in the ran[ges of the desi[gn variables.

Finding the rational reaction sets of a player is paramount to game theory not only in the

noncooperative protocol, but also in the Stackelberg Leader/Follower protocol.

5.5.3 Stackelberg Leader/Follower solutions

In the Stackelberg leader/follower formulation (presented in Section 3.3.3), the leader may

be able to use knowledge of the followers' response to his advantage in minimizing his

own deviation function. The followers may also benefit from having a leader in that they

do not have to guess what the leader will do. Therefore, neither the leader nor the

followers necessarily have an advantage. This behavior of the follower is dictated by his

strategy and embodied by his rational reaction set, which describes how the follower will

behave in response to any decision made by the leader.
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Leader�Follower Solutions in the Context of Complex Systems Design

Again, in the Stacketberg protocol, the rational reaction sets are crucial for finding the

leader/follower solution. The rational reaction sets are constructed using the same

procedure as in Section 5.5.2. The process for solving the leader/follower formulation is

as follows.

@ Construct the RRS of the follower.

O Allowing the leader access to the follower's RRS in the leader's compromise DSP,

solve the leader's compromise DSP.

O compromiseAll°wingtheDSP.fOllower access to the leader's solution, solve the follower's

In Figure 5.10, the steps to solve the leader/follower formulation are shown schematically.

Each players' compromise DSP can be solved using the Foraging-directed Adaptive Linear

Programming Algorithm (see Chapter 6), since the players' models may contain discrete

and continuous design variables.

1

!

( DSI,,ES 1
| Foraging-directed Adaptive

t Linear Programming Algorithm
- _

!

Figure 5.10. Leader/Follower Solution Process
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In Figure 5.1 i, the compromise DSPs of the leader and follower are shown. The leader's

given information includes the RRS of the follower, while the follower's given information

includes the leader's control variable solution, XL and SL.

Leader's Compromise DSP

f'Give follower,sn RRS: xF, s F = f(XL,$ L)

Find

X L, di÷,di -

Satisfy
constraints

g(XL,SL,XF,SF)-->0.0
h(XL,SL, XF, SF)=O-O

goals
fi(XL,SL,XpS F) +di--di ÷ =1.0

Minimize

ZL(XL,SL,XF, S F)

Follower's Compromise DSP

Figure 5.11. Leader/Follower Compromise DSPs

The implementation of the three protocols is studied and verified in the next section using

the design of a pressure vessel as the verification study.

5.6 VERIFICATION STUDY: THE DESIGN OF A PRESSURE VESSEL

As a simple verification study, the design of a thin-walled pressure vessel which has

hemispherical ends as shown in Figure 5.12 is used. The nomenclature for this example is

presented in Table 5.3. This case study is derived from the example presented in Section

4.3 and studied in (Karandikar and Mistree, 1992b, Rao, et al., 1996). The design
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variablesarethe radiusR, the lengthL, andthethicknessT. Thevesselis to withstanda

specifiedinternalpressureP andthematerialis alsospecified.Therearetwo objectives:to

minimizetheweightandto maximizethevolumeof thecylinder,bothsubjectto stressand

geometryconstraints. It is recognizedthat this exampleis not naturally a multi-player

problem,andthat a single-playermultiobjectiveformulation is normally used. A multi-

playerformulationis usedin this chapterto verify thegametheoreticdevelopmentsof this

dissertation.Two playersareused:1)player VOL who wishesto maximizethe volume

andthuscontrolsR andL, and2) playerWGT who wishesto minimize theweight of the

vesselandcontrolsT.

Table 5.3. Nomenclature for the Pressure Vessel Example

W

V

R

T

L

P

St

P

_circ

TV

Weight of the pressure vessel, lbs.

Volume, in. 3

Radius, in.

Thickness, in.

Length, in.

Pressure inside the cylinder, Klb.

Allowable tensile strength of the cylinder material, Klb.

Density of the cylinder material lbs./in. 3

Circumferential stress Ibs./in. 2

Target Value for a goal
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Figure 5.12. Thin-Walled

,-7
!

Pressure Vessel

The compromise DSPs of the two players are shown below:

Given

Weight:

Find

PLAYER WGT

W(R,T,L)= p[4 n:(R + T)3 + _(R + T)2L - (3 nrR3 + rcR2L)]

Design Variable: T

Overachievement Deviation Variable associated with the weight goal, dw +

Satisfy

Stress constraint:

Geometric constraints:

Bounds:

Weight Goal:
Minimize

dw +

aci.c= PR_<s,
T

5T-R<0
R+T-40<0
L + 2R+ 2T- 150 <0

Ti < T < Tu

W - dw + = WTV
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Given

Volume

PLAYER VOL

V(R'L)= 4L3 + xR Z'I
Find

Design Variables: R and L

Underachievement Deviation Variable associated with the volume goal, dv-
Satisfy

Stress constraint:

Geometric constraints:

PR

5T-R<0
R+T-40<0
L+ 2R+2T- 150<0

RI < R < Ru
LI < L < Lu

V + dv- = VTV

Bounds:

Volume Goal:

Minimize

dv-

The specific data (problem constants) for this problem is given in Table 5.4.

Table 5.4. Pressure Vessel Parameters

P 3.89 klb

St 35.0 klb

13 0.283 lbs/in 3

LI 0. I in.
Lu 140.0 in.
R! 0.1 in.
Ru 36.0 in.
Tl 0.5 in.
Tu 6.0 in.

WTV 0 lbs.

VTV 775,000 in 3

This example is studied as a multi-player formulation in (Rao, et al., 1996). Since this

example is quite simple, exact analytical solutions for different protocols are found in (Rao,

et al., 1996). The motivation in this chapter is the notion of complex systems such as
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aircraft, automobiles,andships. In otherwords, thedevelopmentsof this chapterwould

typically not be usedto designthepressurevesselstudiedin this section. The pressure

vesselis only being used to verify the developments presented in this chapter. The work

presented in this chapter, as illustrated in Chapter 7, are primarily applicable to complex

systems, but certainly could be applied to smaller, less complex systems as well. The

developments in this chapter include strategies to approximate constructs and solutions in

game theory. Therefore, the approximated solutions are compared to the exact results from

(Rao, et al., 1996) as a means to verify the developments of this chapter in the context of

game theory in complex systems design.

5.6.1 The Cooperative Formulation

In (Rao, et al., 1996), the cooperative or Pareto solutions are found symbolically. That is,

the equations are simple enough to find an analytical set of equations describing the set of

Pareto solutions. In the compromise DSP, a single numerical solution is given. Therefore,

to generate the set of Pareto solutions, multiple compromise DSPs are run for various

values of Wl and W2, where Wi is the weight corresponding to the deviation function of

Player i. The two players' compromise DSPs are combined into one, and the overall goal

becomes:

W 4
WtP[3zr(R+ T)3 +/_(R+ T)2L - (3/rR3 +/I_R2L)] + 2[-_/rR3 + I_R2L] (5.18)

and the deviation functions becomes

Z = Wl*dw + + W2*dv-

where

WI+W2= land0_<Wi<__l
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To replicatethe symbolic solutionsin (Rao,et al., 1996),variousvaluesof the W's are

usedin thecooperativecompromiseDSP. In (Rao,et al., 1996),theextremepointsof the

Paretosolutionsetaregivenas

( 40S, 40P )(R,T,L)= _+ S, ' P + S, ,70 ,(5T,,T,,L,). (5.19)

These two solutions are replicated using WI = 0.0 and W2 = 1.0, and W! = 1.0 and W2 --

0.0, respectively in the compromise DSP. The two numerical solutions from the two

weighting schemes are:

(R,T,L) = (36,4, 70),(2.5,0.5,0.1)

(Weight, Volume)= (39475 1bs,480385 in3),(13.73 lbs,67.41 in3).

These two solutions correspond to Eqn. 5.19 when the specific input parameter values

from Table 5.4 are used. Three starting points are used for each case, each converging to

the same solution, as shown in Appendix A. Varying Wl and W 2 on the interval [0,1]

results in a set of Pareto solutions corresponding to the cooperative protocol. These

solutions correspond to the solutions identified on the interval in Eqn. 5.19. Therefore,

using the compromise DSP and the ALP Algorithm, the set of exact Pareto solutions

reported in (Rao, et al., 1996) is replicated. The other two protocols are now studied for

the same problem. In each protocol, the fundamental mathematical construct is the Rational

Reaction Set.

5.6.2 The Noncooperative Formulation

As discussed in Section 3.3.3 the noncooperative solution occurs at the intersection of the

players' Rational Reaction Sets. The Rational Reaction Sets of the two players from (Rao,

et al., 1996) are:
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L(T) = 150 - 2T - 2R(T)

PR >_-_anaL+2R(l+-ff,)<150 (5.21)
7 ifR <_,os, __ ,,DWEm : T(R, L)

"-t

() otherwise

Using the process described in Section 5.5.2 to approximate the RRS of each player using

NORMAN and DSIDES, the RRS of each player are approximated as:

DVOLUME:

DWEIGHT:

R(T) = 29.29 + 14.75"T - 10.01*T 2

L(T) = 85.45 - 34.45"T + 20.10*T 2 (5.22)

T'(R,L) = 2 + 1.75"R - 2.267"10-5"L + 3.15*10-5*R*L + 0.2445"R 2 +

8.667* 10-7*L 2 (5.23)

Again, the problem parameters from Table 5.4 are used in constructing these RRS. One of

the most striking differences in the two sets of RRS is the representation of L(T). In (Rao,

et al., 1996), it assumed that Player VOL does not know the value of R at any given point,

therefore, L(T) is not only a function of T, but also a function of R. In constructing the

approximate RRS, a compromise DSP is solved for various values of (theoretically

unknown) T, but the values of the local variables, R and L are known. Therefore, the

approximate L(T) is only a function of T. Another subtle difference is that the independent

variables in the approximate RRS (R(T), L(T), and T(R,L)) are normalized from their

original ranges to [-I, 1] in order to perform the experimental design and analysis.
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In order to compare the accuracy of the approximate RRS, both sets of RRS are plotted. In

Figures 5.13, and 5.14, the exact Rational Reaction Set of Player VOL is plotted (Eqn.

5.20).

(in.) R

35

30

25

20

15

I0

5

1 2 3 4 5 6
(in.) T

Figure 5.13. R as a Function of T

(in.) L

70

60

5O

40

|

2 3 4 5 6
(in.) T

Figure 5.14. L as a Function of T

In Figures 5.15 and 5.16, the approximate RRS of Player VOL is plotted.
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(in.) R

35
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15

I0

, .... m ..... - - • .... •

-I -0.5 0.5 I
(normalized) T

Figure 5.15. R as a Function of T: Approximation

(in.) L

140

130

120

Ii0

80

(normalized) T....... o, ......

-I -0.5 0.5 1

Figure 5.16. L as a Function of T: Approximation

Comparing Figures 5.13 and 5.15 (the x-axis is different because of the normalized values

in Figure 5.15), it is clear that the second order approximation of R in Figure 5.15 (Eqn.

5.22) is an accurate representation of Figure 5.13 (Eqn. 5.20). The function in Figure

5.15 is a smooth, continuous function, while the one in Figure 5.13 is continuous but not

smooth. The derivative of the function does not exist at the sharp comer. Therefore, many

optimization algorithms will have difficulty handling this type of function, but would have
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no trouble handling the representation of R in Eqn. 5.20. Using second order

approximations of functions in game theory models and solutions is an interesting area for

future research.

The plots of L in Figures 5.14 and 5.16 are quite different. This is primarily due to the

representation of R as a symbolic variable in the equation for L in Eqn. 5.20, while in the

approximation of L in Eqn. 5.22, R is numerically known. Therefore, the two functions

do look different, but as is shown in Sections 5.6.2 and 5.6.3, both rational reaction sets

produce the same noncooperative and leader/follower solutions. The exact RRS of Eqn.

5.20 is correct from a theoretical perspective, but from a practical design perspective, the

designers do know and control the values of the local design variables. Therefore, the

approximate RRS is more pragmatic.

The WGT player is now explored. The exact RRS of Player WGT (Eqn 5.21) is plotted in

Figure 5.17

(in.) T

4

3

9.

5 I0 15 20 25 30 35
(in.) R

Figure 5.17. T as a Function of R

The approximate RRS of Player WGT (Eqn. 23) is plotted in Figure 5.18.
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(in.)

4
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I
0
-I

-0.5
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(_rmalized) R

I

0.5

(normalized) L

Figure 5.18. T as a Function of R and L: Approximated

The striking difference is the dimension of the two plots. The exact RRS in Figure 5.17

and Eqn. 21 is only a function of R, as L can be ignored due to active constraints and

monotonicity arguments (Rao, et al., 1996). However, in the process to approximate the

RRS, the players' models are typically very complex and simple active constraints and

monotonicity arguments are difficult to recognize and compute. Therefore, every nonlocal

variable is assumed to be significant in approximating the local variables. For this reason,

T in Figure 5.18 is shown to be a function of R and L. With closer inspection, the exact

RRS of Eqn. 5.21 and Figure 5.17 can be recovered from Figure 5.18. T is constant with

respect to L, but increases with respect to R. In other words, T does not depend upon L

which is exactly what is implied by Figure 5.18. Furthermore, Figure 5.17 is simply a

"slice" of Figure 5.18 for any value of T. In Figure 5.19, a "slice" of Figure 5.18 for a

constant T is shown. The similarity between Figures 5.17 and 5.19 is easily observed (the

x-axis in Figure 5.19 is again normalized).
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(in.) T
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-i -0.5 0.5 I
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Figure 5.19. T as a Function of only R: Approximated

In Eqn. 5.23, the coefficients of the terms that include L are very small relative to the

coefficients of the terms with R. This further verifies the approximation of the RRS, and

validates its implementation in design.

The exact noncooperative solution occurs at the intersection of Eqns. 5.20 and 5.21. In

(Rao, et al., 1996), the intersection lies along the line represented by

S,(150- L,,) < RU < 40S,

2(P+S,) P+S,

LN:= 150-- 2RN[_ + 1]

pR N
TN:= --

s,

(5.24)

Using Mathematica® to solve Eqns. 5.22 and 5.23, the approximate noncooperative

solution is:

R N = 28.4 in.

L N = 86.9 in.

T N = 3.16 in.

Weight = 24746 Ibs.

Volume = 3161 I0 in 3

(5.25)
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It is readily verified that this is a solutionalongthe line in (R, L, T) spacedescribedby

Eqn.5.24(usingtheconstantparametersin Table5.4). This furtherverifies theapproach

describedin Section5.5.2 to approximatetheRRSof a player,asthe solution usingthe

approximatedRRS's(Eqn.5.25) is a memberof the solutionsetusingexactRRS's(Eqn.

5.24).

5.6.3 The Leader/Follower Formulation

Player WGT as the Leader

In this protocol, player WGT dictates his strategy first by assuming or dictating that the

player VOL behaves in a predetermined or rationai way (i.e., player VOL must minimize

his deviation function for a given thickness, T). The compromise DSP for the leader,

WGT is

Given
Rational Reaction Set from VOL: {R=f(T), L=f(T)}

=p4zr(RF_, x(R (4/lrR3 /¢R2 L)]T, L) ! + T) 3 + + T) 2 L - +Weight: W( R,

Find

Design Variable: T
Overachievement Deviation Variable associated with the weight goal, dw +

Satisfy

Stress constraint:

Geometric constraints:

Bounds:

Weight Goal:
Minimize

dw +

PR

T
5T-R<0
R+T-40<0
L+2R+ 2T- 150<0

T1 < T < Tu

W - dw + = WTV

where (R,L) is the solution to the follower's (VOL) problem, given by
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Given
T unknown

Volume:

Find
V(R'L)=F4_rR31.3 + _R2L]

Design Variables: R and L

Underachievement Deviation Variable associated with the weight goal, dv-
_atisfy

PR
Stress constraint: cr,_,c = -- < S,

T
Geometric constraints: 5T - R < 0

R+T-40<0
L + 2R + 2T- 150 <0

R1 < R < Ru
LI < L < Lu

V +dv" =VTv

Bounds:

Volume Goal:
Minimize

dv"

In other words, the follower constructs his Rational Reaction Set which the leader can use

to solve his compromise DSP. The RRS of Player VOL is given by Eqns. 5.20 and 5.22,

exact and approximate, respectively. In (Rao, et al., 1996) the solution of the

leader/follower problem with WGT as the leader is reported as

(R,T,L) = I T_Sp',T_,150- 2Tt(I + _ )). (5.26)

Using the constant and parameters values (see Table 5.4), this corresponds to a solution of

(R, T, L) = (4.5 in., 0.5 in., 140 in.). (5.27)

Using the approximation of the RRS of Player VOL, and the process described in Section

5.5.3 for solving leader/follower problems in the context of the compromise DSP, the

leader's solution is

T = 0.5 in.

Weight = 635.6 lbs (5.28)

Using the leader's solution, the follower's solution is predetermined from its strategy

dictated in its RRS. In other words, the follower cannot change his strategy which has

been used by the leader. In the context of the compromise DSP, it would be pointless and
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absurdfor a designerto decide to "maximize the deviation function." Therefore, the

assumption in game theory for the follower to not changestrategies has a natural

implication in design:adesignerdoesnot changehisvaluestructurewhich is inherentin

hismodel. PlayerVOL's solutionasfollower (dictatedby hisRRS)is
R = 4.53in.

L = 140.0in. (5.29)
Volume= 9413.9in3.

So,thetotalapproximatesolutionwith WGT astheleaderis

(R, T, L) = (4.53 in., 0.5 in., 140in.) (5.30)

which is very close to the exact solution in Eqn. 5.27. The completeresults for this

formulationare given in Appendix A.

Player VOL as the Leader

In this protocol, player VOL dictates his strategy first by assuming or dictating that the

player WGT behave in a predetermined or rational way (i.e., player WGT must minimize

his deviation function for a given radius and length, R and L). The compromise DSP for

the leader, player VOL is

Given
Rational Reaction Set from WGT: {T=f(R,L) }

Volume: V(R,L)=[4_R 3 + zrRZL]

Find

Design Variables: R and L

Underachievement Deviation Variable associated with the weight goal, dv"

Satisfy
PR

Stress constraint: a,rc = -- < S,
T

Geometric constraints: 5T - R < 0
R+T-40<0
L+2R+2T- 150<0

Bounds: R1 < R < Ru
LI < L < Lu

V + dv" = VTVVolume Goal:
Minimize

dv-
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where(R,L) is thesolutionto thefollower's(WGT) problem,givenby

Given
UnknownR andL

p 4zr(R+ T) 3 T)2L +
Weight: W(R,T,L)= [.J + _(R+ -(3_R 3 zrR2L)]

Find

Design Variable: T

Overachievement Deviation Variable associated with the weight goal, dw +
Satisfy

Stress constraint:

Geometric constraints:

Bounds:

Weight Goal:
Minimize

dw +

PR
Crcirc= _ <_S,

T
5T-R<0
R+T-40<0
L+2R+2T- 150<0

TI < T < Tu

W - dw + = WTV

The RRS of Player WGT is given by Eqns. 5.21 and 5.23, exact and approximate,

respectively. In (Rao, et al., 1996) the solution of the leader/follower problem with VOL

as the leader is reported as

L (" 40S, 40P ](R,T,)=_._--S,P+S,,70. (5.31)

Using the constant and parameters values, this corresponds to a numerical solution of

(R, L, T) = (36.0 in., 70.0 in., 4.0 in.). (5.32)

Using the approximation of the RRS of Player WGT, and the process described in Section

5.5.3 for solving leader/follower problems in the context of the compromise DSP, VOL's

solution as the leader's is

R = 36.0 in.

L = 71.1 in. (5.33)

Volume = 39772.4 in 3

Using the leader's solution, the follower's solution is predetermined from its strategy

dictated in its RRS. Player WGT's solution as follower (dictated by his RRS) is

T = 4.0 in.
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Weight= 484863.0lbs.

So,thetotalsolutionwith VOL astheleaderis

(R, L, T) = (36.0 in., 71.1 in., 4.0 in.)

(5.34)

(5.35)

which is very close to the exact solution in Eqn. 5.32. The total results for this formulation

are given in Appendix A.

In this section, the primary interest is to verify the game theoretical developments and

associated posits that are used to support Hypothesis III of this dissertation. It is shown

that for a well-studied simple problem where exact game theoretical solutions are known,

the techniques presented in Section 5.5 are valid and effective.

• The set of Pareto cooperative solutions are reproduced by formulating the pressure

vessel problem using two compromise DSPs and solving the cooperative formulation

using the ALP Algorithm.

• The techniques to approximate the Rational Reaction Sets of each player using second

order response surfaces are verified by: 1) graphical comparison, and 2) numerical

verification by reproducing the exact leader/follower and noncooperative solutions

found in (Rao, et al., 1996).

Full results of each protocol are presented in Appendix A. Application to a complex, large

scale system where exact solutions are unknown is presented in Chapter 7 using the design

of a passenger aircraft.

5.7 A LOOK BACK AND A LOOK AHEAD

In this chapter, the foundation for applying game theory in complex systems design is

developed and presented. The work in this chapter represents one of the primary building
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blocks of this work. It supportsHypothesisIII andPosits2.1,2.4, and 2.5 presentedin

Section3.1.3. Posits4 and6 areverified in Chapter7. Theobservationsrelating to each

posit arediscussed.

Posit 2.1: Design processes can be abstracted as games where the players are multiple

designers or design teams and their associated analysis and synthesis tools.

In Section 3.3.2, the similarities between a game between multiple players and a design

process consisting of multiple design teams are presented. In each case, a decision-

maker must make a decision to satisfy his requirements and constraints. However, this

decision is affected by the decisions made by the other decision-makers in the game or

design process. The notion of noncooperation is the main difference between the two.

In a game, there is usually a winner and loser. Noncooperation may help a single

player win. But in design ideally everyone should cooperate. Noncooperation notions

occur when design teams are separated and information from another team is not

available to make a decision. In this case, assumptions must be made, and worst case

scenarios are often assumed. This is the notion of noncooperation in design.

Posit 2.4: Second order response surfaces can be used to approximate the Rational

Reaction Sets of the disciplinary players in a design game.

In Section 5.5.2, a process of approximating Rational Reaction Sets using second order

response surfaces is presented. Rational Reaction Sets of players who have complex

nonlinear decision models are difficult to construct and axe unknown. Therefore, a

second order model is prescribed to approximate the RRS. In Section 5.6.2, the

efficacy of the second order representations of the RRS of two players in a simple case,

where the exact RRS's are known, is shown. The resulting noncooperative and

leader/follower solutions using the approximate RRS's match those using the exact

RRS's. Therefore, there is evidence to suggest that a second order approximation is

shown to be an effective representation of an RRS. However, to conclude that second

order RSE's are adequate for all classes of problems is wrong. It has been shown for

one example. Further mathematical analysis of certain classes of problems is required

to make a broad statement concerning second order RRS approximations.
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Posit 2.5: The compromise DSP can be used as the fundamental construct to develop the

game theory protocols and techniques.

In Section 5.5, techniques to model game theoretical protocols in complex systems

design are presented, each using the compromise DSP as the fundamental decision

construct. In each protocol, the players use their compromise DSPs as the basis to

support their decision. However, the interactions among the players change, so the

information available to each player changes. According to the information available,

each players' compromise DSP gets augmented accordingly, but the role of the

compromise DSP as the core decision-making construct does not change.

With reference to Figure 5.20, this chapter is the second of the three primary building

blocks detailing aspects of the overall algorithm introduced in Chapter 3. The role of

Chapter 5 is to provide theoretical and computational support for the second step of the

algorithm (see Section 3.3) where disciplinary problems are formulated based on the game

protocol among the players. The game protocol is identified and established in step one of

the algorithm (Chapter 4). In the next chapter, the final building block (step three), the

solution of the game theoretical formulations developed in this chapter, is presented.

I Chapter

Figure 5.20. Frame of Reference: Chapter 5
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CHAPTER 6

THE SOLUTION OF MIXED DISCRETE/CONTINUOUS

DECISION SUPPORT PROBLEMS

Design models often contain a combination of discrete, integer, and continuous variables.

Previously, the Adaptive Linear Programming (ALP) algorithm, which is based on

sequential linearization, has been used to solve design models composed of continuous and

Boolean variables. In this chapter, the ALP algorithm is extended to solve subsystem

models which consist of discrete and continuous variables, is developed and verified. This

new solution scheme is the vehicle with which Step 3 of the algorithm of this dissertation is

performed. The work in this chapter supports Hypothesis IN (Figure 1.7), and posits 3.1,

3.2, and 3.3 of Chapter 3, as shown below.

Hypothesis III: The notion of foraging of wild animals is a natural analogy for[

I

I

optimization and can be used as an effective search technique in the solution of mixed[

Idiscrete/continuous models.

Posit 3.1: Foraging is a heuristic, under which characteristics from genetic algorithms,

Tabu Search, and Simulated Annealing can be grouped.

Posit 3.2: The Tabu Search can be used as the building block for the foraging solution

algorithm.

Posit 3.3: The ALP Algorithm along with foraging can be used to effectively solve

mixed discrete/continuous problems.

The mixed discrete/continuous solution scheme involves extending the ALP Algorithm

using a discrete heuristic based on the analogy of an animal foraging for food. This
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solution scheme for mixed discrete/continuous design

problems integrates ALP and the foraging search and

is called Foraging-directed Adaptive Linear

Programming Algorithm (FALP) I. In Section 6.1, a

frame of reference is presented to establish the

context of mixed discrete/continuous problems in

design. In Section 6.2, the discrete heuristic,

Hypothesis II :

Set of Design
Solutions

foraging, is detailed. In Section 6.3, the continuous solver, the ALP Algorithm is detailed.

In Section 6.4, the mixed discrete/continuous scheme is developed. In Section 6.5, two

design studies, the design of a compression spring and the design of a pressure vessel, are

presented to illustrate the effectiveness and behavior of the solution scheme.

It is stressed that the FALP Algorithm is only a portion of the overall algorithm of this dissertation
introduced in Chapter 3. The use of two "algorithms" should not cause confusion. One is an overall
algorithm (as in the title of the dissertation), and the other, FALP, is the solution algorithm within the
overall algorithm.
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6.1 MIXED DISCRETE/CONTINUOUS OPTIMIZATION IN DESIGN

Optimization techniques have become an integral part of a design process where values for

system variables must be found subject to a set of constraints, bounds, and objectives. The

capability to solve a model or multiple models using optimization techniques is identified in

Sections 1.1.4 and 3.1 as being necessary for the design of complex systems at both a

subsystem and system level. In many cases, the design variables in optimization problems

are assumed to be continuous. In design, however, this is not always the case. In a given

design problem, there may exist design variables which are continuous, integer, or

discrete. Examples of these are shaft lengths, number of gear teeth and gear diameters,

respectively. There are well established methods for solving continuous problems

(Reklaitis, et al., 1983). These are largely calculus-based and usually require evaluation of

derivatives (e.g., gradient-based solvers). There are also well established methods for

solving discrete problems (Arora and Huang, 1994). Application of these methods in the

design of complex systems is reviewed in Section 2.3.5. These are largely based on some

heuristic (e.g., branch and bound, Genetic Algorithms, Simulated Annealing, Tabu

Search), since unlike its continuous counterparts, optimality criteria such as the Karush-

Kuhn-Tucker conditions for discrete problems do not exist. Mixed discrete/continuous

problems present mathematical programming challenges from both the continuous and

discrete domains. The solution of these mixed problems is identified in (Papalambros,

1995) as being "one of the most daunting problems in design optimization."

As a starting point, a general mixed discrete/continuous optimization problem is stated as

follows:
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FindX
x I E X C, x 2E X I, x 3 E X D

x I k.) x2k.) x 3 = X

XlC'_x 2 = Xlt"_x 3 = x2('_x 3 -- 0

Satisfying
Constraints

g(X) _<0.0
h(X) = 0.0

Goals
<

At(X) = Gt for all t
>

Maximize

Ar(X) for all r
Mimmize

As(X) for all s

(6.1)

where Xc are the continuous domain variables, XI are the integer domain variables, and

XD are the discrete domain variables. This general model encompasses all classes of

mathematical models. There are different modeling techniques to convert the general model

for its solution by different codes. The philosophy for the conversion used in this

dissertation is detailed in (Mistree, et al., 1994). This philosophy is implemented through

the compromise Decision Support Problem (DSP), a multiobjective decision model which

incorporates concepts from both traditional mathematical programming and goal

programming (Mistree, et al., 1993a). In short, converting a general baseline model into a

compromise DSP includes establishing priority among the goals and representing the goals

as equations by using deviation variables. It is recognized that design problems are

inherently multiobjective and optimizing with respect to each objective is impractical and

many times impossible. Therefore, the problem is approached from a satificer's

perspective (Simon, 1982). Consider a haystack with a number of needles hidden in it.

An optimizer will continue to search the haystack until the last needle has been found. A

satisficer, on the other hand, stops when she has found enough needles to proceed to the

next step. The compromise DSP has the capability to model problems from either a
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satisficing or an optimizing perspective(Mistree,et al., 1994). The perspectivein this

chapteris oneof an optimizer, but the perspective of this dissertation is one of a satisficer.

The compromise DSP is used to model mixed discrete/continuous optimization problems

and focus on their single unique solutions.

The solution scheme developed in this dissertation to solve mixed discrete/continuous

design problems is called the Foraging-directed Adaptive Linear Programming (FALP)

Algorithm (Lewis and Mistree, 1996a). This idea is illustrated in Figure 6.1. Three

primary constructs are labeled in the figure, O, O, and O. The ALP Algorithm,

construct O in the lower half of Figure 6.1, uses gradients to move through the

continuous design space. As part of the work in this chapter, a search engine is developed,

construct O in the upper half of Figure 6.1, to intelligently search the discrete solution

space for promising regions. This search engine is based on the notion of foraging of

animals in the wild. In the animal behavior literature, foraging behavior in the wild is

characterized by empirical observations and simple analytical models. Therefore, the

foraging solver is not based on an accepted theory of foraging but on empirical foraging

behavior observed in animals. The foraging search is not constrained by the convexity of

the design space, taking a higher-level perspective of the design space and using heuristics

to search it, as shown in Figure 6.1. Information is passed from the foraging discrete

solver to the continuous solver using a common mathematical construct, the compromise

DSP, construct O linking O and _ in Figure 6.1. Therefore, a continuous solver (ALP)

and discrete solver (foraging) are combined into one solution scheme (FALP) for mixed

discrete/continuous problems, In Section 6.2, the three fundamental constructs of Figure

6.1 are presented. In Section 6.3, the step-wise FALP Algorithm is detailed, and in

Section 6.4, the effectiveness of FALP is demonstrated using two well-studied examples.
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FALP

0

@ 4m0

discrete space

continuous space

Figure 6.1. Foraging Search: Extending a Gradient Search

6.2 TECHNOLOGY BASE

In this section, each construct, O, 4_, and • presented in Figure 6. I are discussed in

relative detail. The integration of these constructs into an effective solution scheme for

mixed discrete/continuous problems is presented in Section 6.3.

6.2.1 The Compromise DSP: The Domain Independent Interface

The compromise DSP, construct O in Figure 6.1, is the decision formulation linking the

discrete and continuous solvers, foraging and ALP. In Section 1.2.1, a conceptual

overview of the compromise DSP is given. In Section 3.4.4, a mathematical overview is

given. The compromise DSP is a multiobjective decision model which is a hybrid

formulation (Mistree, et al., 1993a), incorporating concepts from both traditional

Mathematical Programming (Winston, 1995) and Goal Programming (Ignizio, 1983). The

compromise DSP is used to determine the values of design variables to satisfy a set of

constraints and to achieve as closely as possible a set of conflicting goals. The compromise

DSP is used to model such decisions since it is capable of handling constraints, goals, and

multiple objectives (Mistree, et al., 1994).
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In this dissertation,the compromiseDSP is usedto model mixed discrete/continuous

designproblems.A generalmixeddiscrete/continuouscompromiseDSPisgiven in Figure

3.15. The constraints,goals,andanalysisroutinesembodiedwithin thecompromiseDSP

areusedby thetwo solversof FALP, foragingandALP. ThecompromiseDSPis usedas

the domain independentanalysis interface between the foraging and ALP synthesis

routines.

Becauseof thecapabilitiesof thecompromiseDSPto handlemultiplenonlinearconstraints

andgoals,anda varietyof variabletypes,thecompromiseDSPis usedin this sectionto

modelsingle objectiveoptimizationproblems,andmoregenerally in this dissertationto

modelmultiple objectivesatisficingproblems. In thenext section,thecontinuoussolver

for compromiseDSPs,theALP Algorithm is discussed.

6.2.2 The ALP Algorithm: The Continuous Solver

The ALP Algorithm, construct O in Figure 6.1, is used as the continuous solution portion

of the FALP mixed discrete/continuous solver of this dissertation. The background of the

ALP Algorithm is presented in Section 3.4.4 and the details are presented in (Mistree, et

al., 1993a). The ALP Algorithm is only capable of handling continuous and Boolean

variables. In this chapter, the ALP Algorithm is extended using an intelligent search engine

which facilitates the handling of discrete and integer variables. There are various other

methods for solving mixed optimization problems, but this work is rooted in the notion of

satisficing and is applicable to both satisficing and optimizing problems. In this chapter,

however, its applicability is only illustrated to optimization problems. The examples

presented in Section 3 are single objective, and are used for comparison purposes. It is

asserted that design problems are inherently multi-objective, and application to future
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designproblemswill includemultipleobjectives. In Chapter7, thedesignof anaircraft is

studiedand multiple objectivesareaddresses.In the next sectionthe final component,

constructO from Figure6.I, theforagingheuristicis introduced.

6.2.3 The Notion of Foraging in Optimization

The discrete solver, labeled O in Figure 6.1, is modeled after the natural process of

foraging by animals in the wild. The foundation for this search is the Tabu Search (TS)

(Glover, 1989a) which is introduced and outlined in Section 3.4.2. TS is extended using

constructs, which parallel the process of foraging by animals in the wild. The notion of

using biological and evolutionary metaphors to model optimization has been explored and

hypothesized upon in Glover (Glover and Greenberg, 1989). In Figure 6.2, TS and the

foraging model are illustrated using a simple cartoon.

territorial boundaries / constraints

regional boundaries / bounds

Figure 6.2. The Foraging Metaphor
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In Figure 6.2, therabbit (forager)beginsthesearchby picking up a variety of scents(in

effect, gradients). Shemoves in the direction of the strongestscent (largest descent

gradient)until a solution (local optimum 1) is reached.The rabbitthinks, however,that

placeswith more food exist, so shecontinuesher search.This takesher to anothersite

with food (local optimum 2). The searchcontinuesto anothersite (local optimum 3).

Here,if theforagerwereto simply look for the strongestscent,it would leadherback to

local optimum i. However,sheremembers that she has been there already, and continues

the search elsewhere, eventually leading to the site with the most food (global optimum).

The two fundamental developments of the foraging search in this chapter are the use of a

dynamic, changing memory structure and the identification of good portions of solutions

that frequently occur (schema). The parallel aspects of the foraging analogy to discrete

optimization are listed:

FORAGING

areas with food

area with most food

search steps

regional boundaries

territorial boundaries

experience

site

neighborhood

increasing hunger

characteristics of food areas

diversification

objective:
find most food in a
reasonable amount of time

DISCRETE OPTIMIZATION

local optimum

global optimum

discrete variables

bounds

constraints

memory structure

specific set of design variables

region of allowable moves

dynamic memory

schema identification

randomization

objective:
find best solution
in reasonable time
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Foragingemploysasetof heuristicsbasedonempiricalobservationsof animals,presented

in Section6.3. Searchingadesignspacebasedonheuristicsis common;searchtechniques

suchasgeneticalgorithmsandsimulatedannealingarebasedonheuristicsadaptedfrom

naturallyoccurringprocesses.The verificationexamplesusedto validateandverify the

FALP Algorithm are single objective, and have strictly been used as a means of

comparison.Therefore,in thischapter,anoptimizer'sperspectiveis taken. The resultsin

Section6.4arepresentedfrom anoptimizationstandpoint,but asatisficingstandpointhas

beentakenin developingthesolutionscheme.A strengthof thesolutionschemefor mixed

discrete/continuousdesignproblemsis the capability to handlemultiple objectives, as is

demonstrated in Chapter 7.

In Section 6.3, the step-wise details of FALP are presented, which are based on the three

notions introduced in this section, namely foraging, the ALP Algorithm, and the

compromise DSP. In Section 6.4, two examples are presented to verify the FALP

Algorithm and Hypothesis III of this work.

6.3 FALP: THE MIXED DISCRETE/

ALGORITHM, A STEP-BY-STEP APPROACH

CONTINUOUS

A flowchart of the FALP algorithm in given in Figure 6.3. The foraging computer code,

along with the updated files of DSIDES are given in Appendix B. Implementation of the

solution scheme includes essentially 2 stages: the discrete solver (foraging), construct _,

and the continuous solver (ALP), construct _. They are linked by the compromise DSP,

construct _. Alone, each solver would be ineffective in solving a mixed
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discrete/continuousproblem. The integrationand interactionof thesolversprovide the

basisfor themixedsolutionscheme.

O
I StartingPoint 1

Yes XD

XC_ NC

ence

X = {XD, XC}

0

Figure 6.3. Flowchart of FALP

The basic step-wise solution procedure of FALP is summarized as follows, and a

corresponding detailed schematic is shown in Figure 6.4.
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Step 1: lniti_izeproblem and parameters (identify starting poktt, convergence criteri_._)

Step 2: Solve the discrete problem to fmd XDand Xc _ D, asingforaging search.

Step 2a: Discretize the continuous variables:
Step 2b: Find best candidate solution in localneighborhood, N(x).
Step 2c: Check dynamic memory list,and aspiration criteria to allow/disallow

solution.

Step 2d: Build new solutions or enact diversification scheme based on schema, if
necessary. • : :::

Step 2e: Update list of best solutions encountered :'::for user-interactive schema
identification, _::i,

Step 2t'." Ifmaximum number of iterafions_isreached, select beat solution visited. If
not go to step. 2b._ - :

Step 3: Solve the continuaus:probUnt Xc:._i:i_g _basedon:theinformation in

Step3a: •

Step
Step 3d:

iterations; stop. :Ifnor; go to step:3b_: ......

.-..-.¢

Step 1: Initial parameters I

Step 2: Solve the discrete problem

Step 2a: Diseretize Continuous Domain

Xc_ [0.0,1.0] --> X G [0.0.1,0.2....,1.0]

_ten 2b: Find Best solution in N(x)

N: = {allx_such that II -k[< 4 V i = 1,n}

Steo 2c: Check memory criteria
I

memory_size
(_lution_ cycle)

_teo 2d: Enact diversification scheme

Co..---.o]

No Stev 2f: MAX number of searches reached?
Select best

allowable [;olution visited Yes

Step 2e: Utxtate schema list

List of 10 btst solutions visited to date

#

Figure 6.4. Schematic

Step 3: Solve the continuous problem

Step 3a: Set discrete variables eon_ant

K D = Con._taltlt

Step 3b: Construct Linear Problem

Step 3c: Solve Linear Problem

of FALP

Sten 3d: Converted or MAX

Yes_

Solution, X: {XD, XC}

Solution Scheme
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Thesestepsareembodiedwithin thethreefundamentalconstructsof the solution scheme in

Figure 6.4. These steps are more closely discussed.

Step I: Initialize problem and parameters

In this step, the starting point and the lower and upper bounds on the variables are

determined and the type of variable for each system variable is set. For the discrete

variables, the possible values are specified. Convergence criteria and deviation function

type are specified as well.

Step 2: Solve the discrete domain, XD and XceD, using foraging search.

Step 2a: Discretize the continuous variables.

Previous versions of the FALP solution scheme involved the isolation of the discrete solver

and the continuous solver. Due to the decoupling of the two solvers, non-optimal solutions

were found. The reasons for this are discussed in (Pan and Diaz, 1990). Therefore, to

alleviate this difficulty, the continuous variables are discretized and used in the discrete

domain search. This allows the discrete and continuous solver to interact more effectively.

In the discrete solver, a discretized domain, D, is created for the continuous variables.

Presently, the continuous variables are discretized using 10 discrete steps across the

continuous domain specified from the lower and upper variables bounds. This low-fidelity

discretization allows for exploration of the continuous domain without the expense of

searching too fine of a discretization. Once the best neighborhood for the continuous

variables (and best combination of the discrete variables) is found, the continuous solver

can further refine the solution.
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Step 2b: Findbestcandidatesolutionin localneighborhood,N(x).

As outlinedin Section3.4.2,performinglocalneighborhoodsearchesis basedon theTabu

Search (TS). Starting from some initial solution, the best solution in the local

neighborhoodischosenby applyinga greatest-descentprocedure.Thetermneighborhood

can be defined differently based on the size and characteristics of the problem. In this

dissertation, a neighborhood size of three is used. That is, assume the discrete variables

k I x 2, x 3 ..... x_'} where i is the variable number, k is the indexare ordered as x i = { x i ,

number, and m is the number of possible discrete values for variable i. A variable value is

in a local neighborhood if the indices of the variable values differ by less than four.

Formally, the neighborhood of a point x_ is defined as

N_ = {all x[such that It- kl < 4 V i= l,n} (6.2)

where n is the number of variables.

Step 2c: Check dynamic memory list to allow/disallow solution.

Researchers using the Tabu Search have assumed that the memory list lengths are constant.

By allowing a changing list according to design space characteristics and search progress,

better solutions could be generated more efficiently. This parallels the approach of

Simulated Annealing (SA) where the probability of accepting a new move changes based

on the progress of the search. The use of dynamic memory is evident in animals foraging

for food (Benhamou, 1994, Todd and Kacelnik, 1993). The tendency for an animal to

continue searching early in the search process for better "finds" as opposed to later is

frequently observed (Huntingford, 1984, Todd and Kacelnik, 1993) based on relative

energy levels. The mathematical description of the dynamic memory is as follows,

1
memory_ size - (6.3)

(solution_ iteration)

where (memory_size) is the length of forbidden (tabu) moves list.
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In otherwords,theforagingsearchwill acceptworsesolutionsmore frequently (longer list

of forbidden moves) earlier in the solution process. As the process continues, the length of

the forbidden list becomes shorter and shorter, thus the search accepts fewer and fewer

worse solutions and becomes more and more content with the best solution found thus far.

In a foraging context, the dynamic memory corresponds to a forager becoming more and

more hungry, thus increasingly content with the most food found to date. The dynamic

memory structure is used in each neighborhood, N(x), to determine if a given design point

is allowable. In other words, the search determines if the site has already been visited

based on the present length of the memory list and then allows or disallows the move.

Step 2d: Enact diversification scheme based on stationarity of design variables, if

necessary.

If certain variable values occur over a large number of iterations, then the solution scheme

enacts a diversification scheme. The diversification scheme forces a change in the variable

identified as having remained constant for a large number of iterations. Ideally, this

diversification scheme would allow the search to escape from local optima. This

diversification scheme has also been used in versions of the TS and is paralleled to an

extent by the mutation operator in Genetic Algorithms.

Step 2e: Update list of best solutions encountered for user-interactive schema

identification.

This notion parallels a similar notion in Genetic Algorithms (GA). That is, characteristics

or schema (variable values) which occur frequently in the best solutions are identified and

new solutions can be found based on this set of characteristics. In the foraging search, a

record is kept of what discrete variable values occur as the solution of each iteration.

Presently, the user can then "build" solutions using the schema as the foundation. This
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could greatlysimplify theproblemif schemaareidentified. With referenceto Figure6.3,

notetheflowers(_l") thatarepresentat mostof thefoodsites. It hasbeenobservedin the

behaviorof manyanimalsthatthey identify certaincharacteristicsof placeswherefood is

found and will look for theseguidingcharacteristicsin determiningfuturesites(Menzel,

1991). Therefore, in Figure 6.3, the rabbit would ideally recognizethe presenceof the

flowersandin the futureidentify theflower andthenlook for food in closeproximity.

Step 2f: If maximumnumberof iterationsis reached,selectbestsolutionvisited. If not

go to step2a.

Stoppingcriteriais avery importantaspectof thesolutionscheme.Theforagingsearchis

an unassumingsearch. That is, it will continue to searchuntil a maximum numberof

iterations is reached. In order to ensureefficient designspacesearch,in foraging, the

maximumnumberof iterationsisproportionalto theproblemsize(numberof variablesand

numberof discretevalues). Theproportionalityconstantcurrentlyis determinedbasedon

simple empirical studiesusing classesof problemswith similar size. For example,a

representativerulecouldbe:

(for 10,000-20,000possibleneighborhoods,

setmaximumnumberof neighborhoodssearchedto 1,000.)

Therefore,thepercentageof the designspacesearchedin variousproblemsmay change.

For example,in theprecedingrule,thepercentagedesignspacesearchedina problemwith

10,000possibleneighborhoodswould be around10%,while for a problemwith 20,000

possible neighborhoodswould be around20%. The examplesin Section6.4 areof the

sameorder of magnitude, but the percentageof design spacesearchedis different.

Identifying a proportionality constantthat results in the most effective solutions for all

problemsizesis anareaof futureconsideration.
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Step 3: Solve the continuous problem, Xc_R, using ALP

information in Step 2.

Step 3a: Set discrete variables constant.

The discrete variable values found in Step 2, XD, are set constant.

neighborhood, X¢ _ Nc is also determined from Step 2.

based on the

The continuous

The continuous solver, labeled _ in Figures 6.1

Programming Algorithm (ALP).

and 6.4, is the Adaptive Linear

Step 3b:

Step 3c:

Step 3d:

Construct Linear Problem using Sequential Linearization

Solve Linear Problem using Multiplex Algorithm

If continuous solution has converged, go on. If not, go to step 3b.

In the next section, the effectiveness of the solution scheme is illustrated using two example

problems. These examples are single objective, and are used for comparison purposes.

Design problems are inherently multi-objective, and application to other design problems,

including the study in Chapter 7, includes addressing multiple objectives.

6.4 VERIFICATION STUDIES

The two problems in this section have been well studied by other researchers. They are

used only as a means of verification, comparison, and illustration of FALP. Therefore,

compromise DSPs are used, which are typically multiobjective, to model single objective
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optimization problemsonly to illustrate and verify the FALP algorithm. In the spring

designproblem,it is illustratedandnumericallyproventhattheglobaloptimumis foundby

FALP. The behaviorof FALP is alsoillustratedusingthespringdesignproblem. With

certainproblems,globallyoptimalsolutionsmaybe found,asis demonstratedin thespring

designproblem. In more complexdesignproblems,finding globally optimal solutions

may not be feasibleor possibledue to the nonlinearityof the problem andpresenceof

multiple local optima. In the pressurevesseldesignproblem, it is also illustrated and

numericallyproventhatthe global optimumis found by FALP. It is alsoillustratedhow

the previous studies can be improved upon using active constraint and monotonicity

arguments.

6.4.1 Coil Compression Spring Design (Kannan and Kramer, 1994, Sandgren,

1990)

This is a problem involving discrete, integer, and continuous variables. A helical

compression spring is to be designed as shown in Figure 6.5. The goal is to minimize the

volume of the spring. The spring is to be manufactured from music wire spring steel

ASTM A228. Therefore, the wire diameter can assume only the discrete values shown in

Table 6.1. The design variables are D, the winding diameter (continuous), d, the wire

diameter (discrete), and N, the number of spring coils (integer). The units for D and d are

inches. The constraint gl is shear stress limit. The constraints g2, g3, and g4 are geometry

limits. The constraint g5 is to ensure proper winding. The constraints g6, g7, and g8 are

for deflection requirements.
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Y._.

Figure 6.5. Coil Compression Spring

Table 6.1. Possible Wire Diameter for ASTM A228 (inches)

0.0090 0.0095 0.0104 0.0118 0.0128 0.0132

0.0140 0.0150 0.0162 0.0173 0.0180 0.0200

0.0230 0.0250 0.0280 0.0320 0.0350 0.0410

0.0470 0.0540 0.0630 0.0720 0.0800 0.0920

0.1050 0.1200 0.1350 0.1480 0.1620 0.1770

O. 1920 0.2070 0.2250 0.2440 0.2630 0.2830

0.3070 0.33 I0 0.3620 0.3940 0.4375 0.5000

The problem was discussed in (Kannan and Kramer, 1994, Sandgren, 1990) to

demonstrate different algorithms for nonlinear mixed discrete-continuous optimization.

The compromise DSP of this problem is as follows:

Given
S = Allowable Stress

G = Shear Modulus

Frnax = Maximum Working Load

lmax = Maximum Free Length
drain = Minimum Wire Diameter

189,000 psi.
1.15 x 108

1000 lb.
14.00 in.
0.200 in.
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Dmax= MaximumOutsideSpringDiameter 3.00 in.
Fp= PreloadCompressionForce 300 lb.
C_pm= Maximum Deflection under Preload 6.00 in.
/)w = Deflection from Preload to Max Load 1.25

Spring is Guided
C = D/d

4C - 1 0.615
Cf = t-

4C -4 C

Gd 4

U = 8-_T3 Ib / in.

K
If = _) + 1.05(N+2)d

3p = Fp/K

Find

System variables
D = Coil Diameter
d = wire diameter
N = Number of Coils

Deviation Variable d l ÷

Satisfy 2

Constraints

8KF,_xD < I.O
g_, shear stress: Srtd 3 _

g2, free length limit: II > 1.0
lma_

"1

wire diameter:.-_ - < 1.0g3' minimum
t_

g4, maximum outside diameter: D + d < 1.0
Dm_

gs, winding limit: C < 1.0
3

6

g6, maximum preload deflection: ___ < O. 0

gT, combined deflection consistency:.

lop Fm"x-FPK 1.05(N+2)d] < 1.0

lt

K6w
gs, deflection requirement: < 1.0

(F.,_-F,)

(6.4)

2 UB = Upper Bound, LB = Lower Bound, TV = Target Value
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Goals

F:[0.25n'-'Dd2(N + 2)] / VOITv -- d_" = 0.0

Bounds

DLB < D < DUB
dLB < d _<dUB
NLB _<N < NUB

Minimize

Deviation Function dl +

The bounds on the system variables for the problem are DLB = 1.0, DUB = 6.0, dLB = 0.0,

dUB = 0.5, NLB = 3, NUB = 30. Based on the previous results on this problem, the target

value for the cost goal is taken as VolTv = 0.5 in 3. In Table 6.2, the results from FALP,

and (Kannan and Kramer, 1994, Sandgren, 1990) are compared. While Kannan's solution

is 15.5% better than Sandgren's solution, the objective function (corresponding to the

deviation function) found by FALP is 58.2% lower than the Sandgren's solution. The

constraint values are all feasible.

D (in.)

d (in.)

N

gl

g2

g3

g4

g5

g6

g7

F (in. 3)

Table 6.2. Coil Spring Results

FALP Kannan and Sandgren
Kramer

1.000

0.283

3

0.874

0.129

0.707

0.428

0.849

0.016

-0.641

0.182

1.329

0.283

7

1.054

0.318

0.707

0.537

0.639

0.089

-0.200

0.998

1.180

0.283

10

0.971

0.382

0.707

0.488

0.720

0.089

-0.334

0.998

0.988 2.365 2.799
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6.4.2 Spring Design: Verification and Validation

Validation o/Search Process

In this section, the solution found by FALP is validated and then verified as the best

possible solution for this problem. Before the solution is discussed, the notion of a "cycle"

in FALP warrants some definitions. Since FALP consists of 2 solvers, the total number of

cycles equals those spent in the foraging search and the ALP solver. A cycle in FALP is

defined as

the process to move from one design point to another.

However, because one is based on search heuristics and the other is based on calculus, the

process of moving from one point to another is different. In the foraging search, a cycle is

the search of one neighborhood and the selection of the next design point based on the

foraging protocol.

In this problem, the number of cycles (neighborhood searches) used in the foraging search

is 100. In the ALP solver, a cycle is

the linearization of the nonlinear model and solution of the linear model.

Since no external analysis routines are used, this cycle correponds to a synthesis cycle of

ALP in Figure 3.16. The number of cycles performed in the ALP routine depends on the

mathematics of the model. Convergence criteria is set for the continuous variables, and

when this is reached, ALP stops. If convergence is not reached, there is an upper limit of

40 cycles in ALP. Once ALP stops, FALP is finished as well.

In Figures 6.6-6.8, the search history of the foraging search is shown for the three system

variables using the upper bound starting point. In this study, three different starting points,

the upper bounds of the variables, the lower bounds of the variables, and points in the

middle of each range. Since D and N are at their lower bounds in the final solution, the

variable activity is illustrated using only the upper bounds starting point, as this starting
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point is the furthest away from the solution. The other starting points also converge to the

same solution and the plots look very similar and are given in Appendix B.

The one trait of the search that is clearly illustrated in Figures 6.6-6.8 is the diversification

scheme (step 2d in FALP, see Section 6.3). If a system variable remains at a given value

for more than a specified number of cycles, the variable is changed to another value in

completely different part of the design space. For instance, in Figure 6.6, the

diversification scheme was enacted around cycles 36, 57, and 80. Similar behavior can be

seen in Figures 6.7 and 6.8.
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Figure 6.6. Coil Diameter Behavior
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Figure 6.8. Wire Diameter Behavior

As further illustration of the foraging search, the deviation function at each cycle is shown

in Figure 6.9 (a), and the best deviation function found so far is plotted in Figure 6.9 (b).

It is clear that foraging is accepting worse solution points, in order to escape local
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optimum,muchlike theapproachin SimulatedAnnealing(Kirkpatrick, et al., 1983),but

thebest deviation function encountered continues to improve steadily.

tie
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(a) Current Deviation Function (b) Best Deviation Function

Figure 6.9. Spring Deviation Function Behavior

Two of the fundamental observations of foraging animals which are modeled are schema

identification and dynamic memory (steps 2e and 2c, respectively). These two

developments are illustrated using Table 6.3 and Figure 6.10. In Table 6.3, the 10 best

solutions for the spring problem as identified by the foraging portion of FALP are shown.

As is shown, nine of the ten solutions include the value of 1.0 for D, while N and d vary.

However, since D is a continuous variable, it is not identified as being part of the schema.

If N or d consistently had a certain value in Table 6.3, they could be set constant in order to

simplify the problem and build better solutions.
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Table 6.3. Solutions (Schema)10 Best Spring

Z D N d

0.494 1 3 0.283

0.581 1 3 0.307

0.593 1 4 0.283

0.676 1 3 0.331

0.691 1 5 0.283

0.697 1 4 0.307

0.790 1 6 0.283

0.811 1 4 0.331

0.814 I 5 0.307

0.872 1.5 3 0.307

In Figure 6.10, the dynamic memory structure of the foraging search is validated. In

Figure 6.10, the number of moves is plotted against the cycle number in the foraging

search for three different starting points. Again, a cycle is a complete neighborhood

search. For two of the starting points, the number of moves not allowed increases rapidly

until about cycle 65, and then the search becomes more and more content with the visited

solutions. In other words, earlier in the solution process, a longer memory list is enacted.

In a foraging context, the scheme (or an animal in search of food) will not return to a site

already visited for a considerable amount of time. As the solution process continues the

memory list steadily decreases, as the scheme (animal) becomes more satisfied with what

has been found and will not try new directions as often.
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Figure 6.10. Number of Moves Not Allowed

The total number of function evaluations in this study is on the order of [n*2*(m-l)*l]

where n is the number of design variables, m is the number of neighbors allowed in the

local neighborhood and I is the number of foraging cycles. The total number of possible

functions evaluations (a measure of the problem size) is on the order of lid i, where d i is

the number of discrete values for design variable number i. For the spring study the

number of function evaluations is

3"2"(4-1)'100 = 1800

and the total possible is

11"27"42 = 12474.

Therefore, the percentage of the discrete design space searched is approximately 14%.

This is not a large percentage, but with the small size of the spring problem, even fewer

foraging neighborhood searches could have been performed, as the best solution was

encountered before the search ended for the lower bound, middle point, and upper bound

starting points. Optimizing the length of the search based on problem size is part of the

future work in this area.
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Verification of Solution

The success of the solution found by FALP is interesting. As a means of verifying the

solution, an exhaustive combinatorial experiment is performed using the discrete and

integer variable. Since there are 28 possible values for N and 42 possible values for d, the

total number of possible combinations is 28 x 42 = 1176. At each of these combinations a

one-variable optimization problem was performed with respect to the continuous variable

D, keeping N and d constant. Therefore, 1176 different designs are obtained. A sample of

these 1176 designs is shown in Table 6.4. In Table 6.4, the first solution is infeasible

(About 25% of the solutions were infeasible). Solution number 119 corresponds to the

solution found by FALP. Solution number 204 corresponds to Kannan's solution.

Solution number 330 corresponds to Sandgren's solution. Out of these ! 176 designs,

solution number 109, found by FALP, was clearly the best solution with the smallest

objective function. The previous solutions from other studies were indeed found to be

local optimum, but only local optimum. By performing an exhaustive search, the solution

is validated and it is shown that it is indeed a global solution for this problem.

Table 6.4• Spring Validation (nfs - no feasible solution)

Solution # N d (in.)

1 3 0.009

119 3 0.283

• D •

204 7 0.283

330 10 0.283

1176 30 0.500

D (in.)

nfs

1.00

1.33

1.10

nfs

f (vol, in 3)

nfs

0.988

2.365

2.799

nfs
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6.4.3 Pressure Vessel Design (Hsu, et al., 1995, Kannan and Kramer, 1994, Lin, et

al., 1995, Sandgren, 1990)

TS

-" "- R
-" L "- Th

Figure 6.11. Pressure Vessel

This is a problem involving discrete and continuous variables. A cylindrical pressure

vessel is capped at both ends by hemispherical heads as shown in Figure 6.11. The goal is

to minimize the total cost of manufacturing the pressure vessel, including the cost of

material, and cost of forming and welding. The design variables are R and L, the inner

radius and length of the cylindrical section, and Ts and Th, the thickness of the shell and

head. The variables are each given in inches. The variables R and L are continuous, while

Ts and Th are integer multiples of 0.0625 inch, the available thicknesses of rolled steel

plates. The constraints gl, g2, g3 correspond to ASME limits on the geometry while g4

corresponds to a minimum volume limit.

The problem was discussed in (Hsu, et al., 1995, Kannan and Kramer, 1994, Lin, et al.,

1995, Sandgren, 1990) to demonstrate different algorithms for nonlinear mixed discrete-

continuous optimization. In the study by Lin, Genetic Algorithms (GA) and Simulated

Annealing (SA) were used as the solution algorithms. The compromise DSP of this

problem is as follows:
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Find

System variables

R, L, Ts and Th

Deviation Variable dl +

Satisfy
Constraints :

_LOg_, minimum shell wall thickness: 0.0193R : ::

0 00_54R .... ::::_
g2, minimum head wall thickness: " _L0

TII

L <
g3, maximum length:_-_ _ 1.0

(-4_R_ + 1296000): ::, ..... . ,-

g4, minimum volume of tank: 3 ,_1.0 ....
n-R2L

Goals

F:[0.6224T, RL + 1.7781ThR z + 3.I661T_L +

19.84T_R] I Costrv - _ = 0: 0

Bounds

RLB <R < RUB

LLB_< L-< LUI3

T,t 

ThLB < Th <-ThUB

(6.5)

Deviation Function dl +

The bounds on the system variables for the problem are RLB = 25 in., RUB --- 150 in., LLB

= 25 in., LUB = 250 in., TsLB = 0.0625 in., TsUB = 1.25 in., ThLB = 0.0625 in., ThUB =

1.25 in.. Based on the previous studies of this problem, the target value for the cost goal

is, CostTv = $5000.00. In this problem as in the spring problem, the number of foraging

cycles (neighborhood searches) used was 100. The upper limit of cycles in the continuous

portion, ALP, is 40 cycles.
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In Table6.5,theresultsfrom FALP arecomparedwith thepreviousstudies.Theobjective

function(correspondingto thedeviationfunction) foundby FALP is 14.6%lower thanthe

previousbestfoundsolution. Theconstraintvaluesareall feasible(< i).

Table 6.5. Pressure Vessel Results

R (in.)

L (in.)

Ts (in.)

Th (in.)

gl

g2

g3

_4

F ($)

FALP Hsu 3 Lin Kannan and Sandgren
(GAJSA) Kramer

38.76

223.3

0.75

0.375

0.997

0.986

0.998

0.930

51.81

101.85

1.00

0.50

1.000

0.989

0.424

0.831

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

58.29

43.69

1.125

0.625

1.000

0.890

0.182

1.000

47.7

117.70

1.125

0.625

0.840

0.747

0.445

1.000

5869.5 7021.67 7197.7 7198.20 8129.80

6.4.4 Pressure Vessel Design: Validation and Verification

Validation of Search Process

In this section, the solution found by FALP is validated and then verified as the best

possible solution for this problem. In this study, three different starting points, the upper

bounds of the variables, the lower bounds of the variables, and points in the middle of each

range. Each starting point "converged" to the same solution. Since foraging is based on

heuristics and not on strict convergence criteria, the "convergence" of a starting point is

misleading. The solution history plots look very similar and are given in Appendix B for

the pressure vessel problem. Since the value of L in the solution is close to its upper

3 Note that g4 is different from the Hsu's reported value of 1.000. The author was contacted about an

error in his paper which led to an erroneous value of 1.000 being reported. He acknowledges this error.
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bound, the variable history is shown for only the lower bound starting point, as this

startingpoint is thefurthestawayfrom thesolutionof L.

In Figures 6.12-6.15,the searchhistory of the FALP Algorithm is shownfor the four

systemvariables. For the pressurevesselproblem, 125cyclesareperformed,100in the

discretedomain (foraging) and 25 in the continuousdomain (ALP). As describedin

Section6.3,thediscretevariablesarekeptconstantin continuoussolver. Therefore,in the

cycles 100-125,only thecontinuousvariables,R andL, arechanged.The diversification

scheme(step2dof FALP, seeSection6.3) isclearly illustratedagainin Figures6.12-6.15.

If a systemvariable remainsat agiven valuefor morethana specifiednumberof cycles,

the variable is changedto anothervalue in completelydifferent part of the designspace.

For instance,in Figure6.12,thediversificationschemewasenactedaroundcycles30,60,

and80. Similar behaviorcanbeseenin Figures6.13-6.15.
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Figure 6.12. Radius Behavior
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Similar to the spring example, the deviation function at each cycle is shown in Figure 6.16

(a), and the best deviation function found so far is plotted in Figure 6.16 (b). It is clear that

foraging is accepting worse solution points, in order to escape local optimum, but the best

deviation function encountered continues to improve steadily.
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Figure 6.16. Pressure Vessel
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In Table 6.6, the 10best solutionsfor the pressurevesselproblem asidentified by the

foragingportionof thesolutionschemeareshown. Nineof the tensolutionsincludethe

valueof 37.5 for R, and250 for L, while Ts andThvary. SinceR andL arecontinuous

variables,they arenot identified asbeingpart of theschema. A designercanusethis

informationto simplify theproblem.

Table 6.6. 10 Best Pressure Vessel Solutions

Z R L Ts Th

0.441 37.5 250 0.75 0.375

0.452 37.5 250 0.75 0.4375

0.464 37.5 250 0.75 0.5

0.475 37.5 250 0.75 0.5625

0.478 37.5 250 0.8125 0.375

0.484 50 115 0.9375 0.5

0.486 37.5 250 0.75 0.625

0.489 37.5 250 0.8125 0.4375

0.497 37.5 250 0.75 0.6875

0.500 37.5 250 0.8125 0.5

In Figure 6.17, the dynamic memory structure of the foraging search is again validated. In

Figure 6.17, the number of moves is plotted against the cycle number in the foraging

search for three different starting points. For all three starting points, the number of moves

not allowed increases, but in the later cycles begins to level off. With the lower bound

starting point, the number of moves not allowed is significantly more than the other two

starting points, indicating that the better regions are found more rapidly and therefore, a

greater number of moves must be not allowed. This is supported by the fact that the best

solution was found at cycle number 9 using the lower bound starting point.
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Figure 6.17. Number of Moves Not Allowed

For the pressure vessel study the number of function evaluations is

4"2"(4-1)'100 = 2400

and the total possible is

11" 11"20"20 = 48400.

So, the percentage of the discrete design space searched is approximately 5%. This is even

a smaller percentage than the spring problem because the size of this problem (number of

variables and number of discrete values) is larger than the spring problem, but the same

number of foraging cycles is used. Similar to the spring problem, even fewer foraging

neighborhood searches could have been performed, as the best solution was encountered

before the search ended for the lower bound, middle point, and upper bound starting

points. Optimizing the length of the search based on problem size is part of the future work

in this area. This will include looking at the efficiency of the search process and

determining if a certain search percentage of the design space produces superior solutions

regardless of problem size.
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Verification of Solution

Again, in this problem favorable results are found. Various starting points are used for this

problem as in the spring design problem. An exhaustive search is again performed again

using 400 (20 discrete values for two variables) combinations of Ts and Tla. In this case,

each discrete combination requires an optimization with respect to two continuous

variables. In Table 6.7, partial results of the 400 cases are shown. Solution #1 is

infeasible with Ts and Tla set at their lower bounds. In fact, 265 of the 400 (66%) solutions

are infeasible. The best solution is found at solution #226 (cost = 5869.5), which

corresponds to the solution found by FALP. Solution #350 corresponds to the solution

found by Kannan in Table 6.5. It is interesting to note that Sandgren's solution shares the

same discrete variable values with Kannan's solution, but the continuous variable values

are different. In the 2-variable optimization results in Table 6.7, Kannan's solution (#350)

was found to be the best solution using the discrete combination, Ts = 1.125 and Th =

0.625. Therefore, Sandgren's solution is not even a local optimum.

Table 6.7• Pressure Vessel Validation (nfs - no feasible solution)

Solution #

1

226

308

350

4O0

Ts(in.)

0.0625

0.75

1.00

1.125

1.25

Th (in.)

0.0625

0.375

0.50

0.625

1.25

R (in.)

nfs

38.75

51.8

58.3

52.0

L (in.)

nfs

223.3

84.6

43.7

83.3

f (cost)

nfs

5869.5

6423.40

7198.20

11401.8
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Solution#308in Table6.7correspondsto Hsu'ssolution inTable6.5,except for the value

of L. This can be explained by simply analyzing the active constraints and behavior of the

objective function in the pressure vessel model. Specifically looking at the results from

Hsu (Hsu, et al., 1995) in Table 6.5, constraints gl (1.000) and g2 (0.989) are active or

very close to active. Since the cost is a monotonically increasing function with respect to

every variable, the only improvement would be from decreasing a variable. However, in

gl and g2, decreasing x3, or x4, will result in infeasibility. Therefore, any improvement

must occur by changing Xl or x2. In constraint g3 (0.424) the value of x2 can be changed.

However x2 also is present in g4, therefore caution must be used as to not cause g4 to

become infeasible. Since g4 is not active, however, there is some slack available. Keeping

Xl constant, x2 can be decreased to 84.6 in. where g4 becomes active. The new solution is

shown in Table 6.8, which is exactly the solution predicted in the full search of Table 6.7.

Table 6.8. Improvement in Hsu's Solution (Hsu, et al., 1995)

R (in.)

L (in.)

Ts (in.)

Th (in.)

gl

g2

g3

g4

F ($)

Solution from Improvement of
Hsu Hsu's solution

51.81

101.85

1.00

0.50

1.000

0.989

0.424

0.831

7021.67

51.81

84.60

1.00

0.50

1.000

0.989

0.353

1.000

6410.80

In this section, the effectiveness of the FALP Algorithm is illustrated using two well-

studied examples. The highlights of this chapter are:

278



• the previously published best solutions for both problems are greatly improved

upon,

• the solutions found by FALP are proven to be the global optimum for both

problems,

• some of the previous solutions are shown to be local optimum while others are

shown to not even be local optimum.

In the next section, the developments and contributions of this chapter are summarized,

with respect to Hypothesis III and the corresponding posits.

6.5 A LOOK BACK AND A LOOK AHEAD

In this chapter, a solution scheme for mixed discrete/continuous design problems is

presented, namely, the Foraging-directed Adaptive Linear Programming Algorithm. The

discrete portion of the scheme is based on the notion of foraging of animals in the wild and

includes a dynamic memory structure and schema identification. The effectiveness of the

solution approach presented is illustrated using two examples. These examples are strictly

single objective, but have strictly been used as a means of comparison. A strength of the

foraging search for mixed discrete/continuous design problems is the ability to handle

multiple objectives. The FALP algorithm presented is the solution algorithm in the

computer decision support package, Decision Support in the Design of Engineering

Systems (DSIDES).

This work is a step towards a broader goal. By combining these aspects of the Tabu

Search, Simulated Annealing, and Genetic Algorithms, a broad class of solution algorithms

can be established, under which TS, GA, and SA can be classified. This broad class is an

abstraction of nature, where intelligence is embedded in many biological processes.

Algorithms such as GAs model a natural process and capture the inherent intelligence in a
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computationalmodel. By usingforagingasthefoundation,it is anobjectiveto establisha

classof algorithmsbasedon intelligence,either innateor artificial. Aspectsof GAs, SA,

andTS arefound in the foraginganalogy,andit is assertedthat there is abroadclassof

intelligent algorithmsunderwhich thesecanbegrouped. The work in this chapterwas

stimulated by the exploration of the similarities betweenoptimization and artificial

intelligencein (Glover, 1986,GloverandGreenberg,1989).

In this chapter, the support and verification for Hypothesis III of this dissertationis

presented. The developmentsassociatedwith Hypothesis III constituteStep 3 of the

overall algorithmof this dissertation.ThesedevelopmentssupportPosits3.1, 3.2,and3.3

presentedin Section3.1.3. Theobservationsrelatingto eachpositarediscussed.

Posit 3.1: Foraging is a heuristic, under which characteristics from genetic algorithms,

Tabu Search, and Simulated Annealing can be grouped.

The empirical notions with which the foraging search is based upon are presented in

Section 6.3. The dynamic memory structure (step 2c) notion parallels a similar

approach found in the Simulated Annealing algorithm. Identifying good portions of

solutions (step 2e) parallels a similar notion in Genetic Algorithms. Diversifying a

search based on its relative progress (step 2d) parallels a similar construct in the Tabu

Search. Therefore, notions of foraging encompass constructs from various heuristic

solvers and can be viewed as a heuristic based on a model of intelligent searching in

animals.

Posit 3.2: The Tabu Search can be used as the building block for the foraging solution

algorithm.

Animals, searching for food in the wild, often utilize the memory of site visits to

facilitate efficient progress through the search area. This memory-based search

parallels the fundamental construct of the Tabu Search (TS). The Tabu Search is

presented in Section 3.4.2 and some of the constructs from TS are used in Section 6.3

in the discrete portion of FALP, or foraging.
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Posit 3.3: The ALP Algorithm along with foraging can be used to effectively solve mixed

discrete/continuous problems.

In Section 6.3, the ALP Algorithm is integrated with the foraging heuristic and a step-

by-step solution scheme is presented. This scheme, FALP, is shown in Section 6.4 to

be an effective method to solve mixed discrete/continuous design problems. In fact, the

solutions found by FALP are proven to be global optimum and are significantly better

solutions than previous studies of the same problems. Therefore, there is evidence to

suggest that the FALP Algorithm is capable of solving mixed discrete/continuous

design problems effectively. Although, the efficiency of FALP has been addressed,

there is room for future studies to optimize the search efficiency of the foraging

heuristic.

The role of Chapter 6 in the dissertation is shown in Figure 6.18. In Chapter 6 the final

step of the algorithm presented in Chapter 3 is detailed. Together with Chapters 4 and 5,

the algorithm is complete. In Chapter 7, the developments of Chapters 4-6 are integrated

and applied to the design of a subsonic passenger aircraft. Chapter 6 marks the end of

Phase II of the strategy for verification, developing and testing the research hypotheses.

Chapter 7 marks the beginning of Phase III, exercising and further verification of the

algorithm.

Phase I1:Testing the
Research Hypotheses

Figure 6.18. Frame of Reference: Chapter 6
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CHAPTER 7

MULTIDISCIPLINARY DESIGN OF A PASSENGER
TRANSPORT AIRCRAFT

In this chapter the motivating study of this dissertation, the design of a subsonic passenger

transport aircraft, is presented and explored. The algorithm for integrated subsystem

embodiment and system synthesis is demonstrated step by step for the aircraft study. The

overall system and subsystem level requirements are presented in Section 7.1. A

mathematical model of the Arcraft is presented which consists of two coupled disciplines,

aerodynamics and weights. The mathematical forms of the disciplinary compromise

Decision Support Problems are presented in Section 7.2. The problem of integrating the

design of these coupled compromise DSPs is used as the primary motivating case study to

investigate the principal and secondary issues introduced in Chapter 1. In Sections 7.4 and

7.5, the compromise DSPs and the interactions between them are exercised based on the

various game theory protocols introduced in Chapter 3. Through this exploration,

Hypotheses I, II, and III, introduced in Chapter 3, are addressed. The Boeing 727-200 is

currently flying, so why is it chosen as the focus? In (Mistree, et al., 1988), a compromise

DSP model of a 727-200 is developed and exercised. It is demonstrated that the 727-200

design can be reproduced using this compromise DSP model. Although, the model used in

this dissertation is modified from the one in (Mistree, et al., 1988), the 727-200 is used to

illustrate the insights into the design of an existing system using an established baseline

model. Aircraft are excellent examples of large scale systems, where many multi-

disciplinary subsystems interact and interface continually, enabling the entire system to

remain successful and profitable throughout its entire life cycle. Therefore, this work is not

only applicable in the design of aircraft, but for large scale systems in general.
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NOMENCLATURE

useful load fraction: The useful load is the difference between the empty weight

established when the airplane is completed by the manufacturer

and the gross weight, which is the maximum legal flying

weight.

fuel balance: the equating of the fuel available and the fuel required.

Productivity Index: a measure of overall aircraft performance, given as

Payload * Block Speed knots
Empty Weight + Fuel Weight

climb gradient: the angle at which an aircraft can climb on take-off or missed

approach.

aspect ratio:
b 2

a geometric ratio describing the slenderness of the wing

S

1

b

Wto

Ti

d

R

AR

qL

qTO

SL

STO

CdoTO

CdoC

U

Rf

Wing area ft 2

Fuselage length ft

Wing span ft

Take-off weight Wto

Installed thrust lbs

Fuselage diameter ft

Range nmi

Aspect ratio

Climb gradient, landing

Climb gradient, take-off

Landing field length ft

Take-off field length ft

Drag coefficient, landing/take-off

Drag coefficient, cruise

Useful load fraction

Fuel balance

283



Rfa
Rfr

Wempty/W'to
Wf/Wi
PRI

V

Vbr
t/c

bt

Ptl

Pc
a)tl

_c

lref

Ldt

Ldc

Ldl

e

k

CL

Ss

Np

Wpay

Wfix

CLrnax

N

Fuel weight available

Fuel weight required

Empty weight ratio

Ratio of take-off weight to landing weight

Productivity Index

Velocity

Best-range Velocity

Airfoil thickness-to-chord ratio

Fuel consumption

Density, take-off

Density, cruise

Kinematic viscosity, take-off

Kinematic viscosity, cruise

Reference length

Lift-to-drag ratio, take-off

Lift-to-drag ratio, cruise

Lift-to-drag ratio, landing

Oswald factor

Quadratic drag polar

Lift coefficient

Body wetted surface ratio

Number of passengers

Payload

Fixed equipment weight

Maximum lift coefficient

Number of engines

knots

ft/sec

ft/sec

lb/lb-sec

slugs/ft 3

slugs/ft 3

ft2/sec

ft2/sec

ft

1/ft 2

lbs

lbs
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7.1 THE SYSTEM DESIGN PROBLEM

The case study presented in this chapter is derived from the study in (Mistree, et al., 1988)

where a compromise DSP template is developed for the Boeing 727-200 aircraft. In

(Mistree, et al., 1988), it is shown that by using the technical template (no economical

analysis), the existing 727-200 design is reproduced in an efficient and effective form. The

template from the study in (Mistree, et al., 1988) is borrowed in this work with two

significant additions.

• The original model is a single-level compromise DSP. This model is expanded

into a multilevel model with two distinct, but coupled disciplinary compromise

DSP. In order to accomplish this, additional analyses are developed associated

with the weight ratios and overall productivity of the aircraft.

• Discrete variables are introduced for three design variables. Previously, these

variables were assumed to be continuous.

In other words, the technical template used in (Mistree, et al., 1988) is augmented with

more detailed weight and fuel ratio analyses, an overall measure of productivity, and the

restriction of discrete design variables. The additional analyses are historically used in the

design of subsonic passenger aircraft. Therefore, due to the success of the study in

(Mistree, et al., 1988), it is asserted that the model used in this chapter represents the

appropriate analysis in the design of a 727-200 aircraft. In Section 7.6, the 727-200

aircraft is used as a baseline for comparison

The 727-200 is a three-engined subsonic jet transport aircraft designed for short to medium

ranges and short runway operations. It is considered to be one of the most successful jet

transport aircraft ever produced. The aircraft is popular with the airlines because it can be

operated profitably over various range segments and passenger load requirements. The

727 design was originally laid out in 1959 and 1960 - almost forty years ago. The airplane
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is no longerin production,butasof September1978almost1400hadbeenproducedand

the equivalent of ten billion 1978 dollars passed through the Boeing Aircraft Company.

A typical problem statement for the 727-200 could read, in part, as:

A three engined subsonic jet transport is to be designed. To ensure that the aircraft

is operational from many airports the take-off field length should be less than 6,500
ft and the landing field length should be as close to 4,500 ft as possible. It is
required that the aircraft have the capability of flying a range of 2,900 nmi.

The aircraft will carry 188 passengers, and it is desirable that the aircraft have a

useful load fraction of O.5, a fuel balance of 1.0, and the Productivity Index should
be maximized reflecting a sense of economic worth. It is also desirable that the

climb gradients be as close to 3 percent as possible.

At this early stage of design the variables to be determined are the wing span and
area, fuselage length, installed thrust, and take-off weight. The solution should

provide information on the size of the aircraft based on geometrical parameters,
aerodynamic considerations and the Federal Air Regulations.

The Boeing 727-200 mission requirements are summarized in Table 7.1 (Mistree, et al.,

1988). Aircraft can fly many different ranges according to the payload. Transport aircraft

are designed to achieve a maximum range for the desired payload. For the maximum

mission requirements, a payload of 40,000 lbs. and a range of 2900 nautical miles is listed

for the Boeing 727-200.

Table 7.1. Mission Requirements and System Parameters for the Boeing
727-200

Mission Requirements and

System Parameters

Range, R

Number of Passensers, Np

Payload (cargo and passensers), Wpav

Fixed equipment weight, Wfix

Maximum Lift coefficient, CLmax

Number of Engines, N

Values

2,9_ n_

188

40,000 lbs

1100 Ibs

2.6
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Thedesignconstants,suchasthenumberof engines,airfoil thickness-to-chordratio, and

numberof passengers,arerelatively thesamefor aircraftof comparablesizeandmission

andhavebeenprincipally takenfrom (Loftin, 1980). In complexsystemsdesign,typically

systemlevel analysispackagesto designthis typeof aircraftarenot available. However,

with the availability of disciplinary level analysis packages,systems are typically

partitionedinto disciplinarysubsystemswhich aredesignedby disciplinarydesignteams.

The systemvariables, goals, and constraints are partitioned into subsystems,where

detaileddisciplinaryanalysisandsynthesispackagesareusedto embodythe subsystems.

But the disciplinary design teamsare rarely in isolation. Their stateis one of semi-

isolation; although they may be isolated geographically, by information, or

organizationally,their decisionsaffectandareaffectedby theotherdisciplines'decisions.

Therefore, somesort of coordination among their design teamsand their associated

analysisandsynthesisroutinesis necessary.In theBoeingstudy,thesystemdescriptors

are partitioned into two disciplinary subsystems:the aerodynamics discipline and the

weights discipline. The aerodynamics discipline is concerned with the aerodynamic

profiles of the aircraft. Specifically, it focuses on the lift-to-drag ratios and drag

coefficients of the wings and fuselage in order to maximize the lift of the aircraft from the

wings and fuselage. The weights discipline is concerned with establishing a fuel balance

for the aircraft by controlling the installed thrust and take-off weight. The weights

discipline represents an integration of the typical aircraft disciplines, structures and

propulsion. As presented in Section 5.2, it is asserted that the disciplinary design teams

and their associated analysis and synthesis routines can be abstracted as players in a game.

Each players model is mathematically described in Section 8.2.

The Boeing 727-200's design variables for each player and the upper and lower bounds

used in exercising the aircraft template are listed in Tables 7.2 and 7.3 (Mistree, et al.,
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1988). These values were difficult to ascertain due to the many different versions of this

aircraft; wherever possible the actual Boeing information was used. For the 727-200, the

take-off weight varies between 175,000 to 220,000 lbs. depending on its options. The

benchmark value used here was 210,000 lbs.(Maddalon, 1978). The aerodynamics

player's design variables include one continuous design variable (wing area) and two

discrete variables (wing span and fuselage length). The discrete variable represent a choice

of available lengths for the materials of the fuselage and wings. It is assumed that the wing

span and fuselage length must be integers between their upper and lower bounds. The

weights player's design variables include one continuous variable (take-off weight) and one

discrete variable (installed thrust). The discrete variable in this case represents a choice of

available engines with given amounts of thrust. Therefore, design of a new engine is not

required, and an existing engine can be selected. The possible thrust values for the

installed thrust are given in Table 7.4.

Table 7.2. System Variables and Bounds for the Aerodynamics Player for
the Boeing 727-200 Compromise DSP Template

Aerodynamic Variables

Continuous

1. WING AREA (ft 2)

Discrete (Integers)
2. FUSELAGE LENGTH (ft)

3. WING SPAN (ft)

BOUNDS

1,200 < S < 2,500

105 < 1 < 150

85 < b < 140

BOEING

727-200

1,700

136

108

Table 7.3. System Variables and Bounds for the Weights Player for the
Boeing 727-200 Compromise DSP Template

Weight Variables

Continuous
1. TAKE-OFF WEIGHT (lbs)

Discrete
2. INSTALLED THRUST (lbs)

BOUNDS

140,000 < WTO_< 250,000

27,750 < Ti < 55,000

BOEING
727-200

210,000

48,000
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Table 7.4. Possible Engine Thrust Values (ibs) for the Boeing Aircraft

27750 28500 30000 31000 33000

34000 36000 38000 40000 41000
i

42000 43000 45000 47000 48000

50000 51000 53000 55000

The constraints of each player along with the limiting values are given in Tables 7.5 and

7.6. The goals of each player along with the target values are given in Tables 7.7 and 7.8.

The mathematical form for the constraints and goals that constitute the technical

requirements and aspirations are based on the work of (Loftin, 1980, Nicolai, 1984). The

landing and take-off field length constraints and goals are common to both disciplines,

since the constraints and goals are strong functions of the design variables of both

disciplines. Satisfying the landing and take-off field lengths is paramount to establishing

the feasibility and goodness of both disciplines. Likewise, the climb gradients are strong

functions of the thrust and lift capacity. Therefore, both climb gradients are constraints and

goals in both disciplines. It is not uncommon for disciplines to share the burden of

satisfying one constraint (Bloebaum, 1991, Bloebaum, et al., 1992, Sobieszczanski-

Sobieski, 1988). The other disciplinary constraints are strictly allocated and local to each

discipline because of the innate dependence on the function of the discipline. The algorithm

of this dissertation is able to handle both allocated and shared constraints and goals. The

decision to allocate or share constraints is problem dependent, and must be made using

domain-dependent knowledge, judgment and/or experience.
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Table 7.5. Aerodynamics Player Constraints For The Boeing
727-200 Compromise DSP Template

Aerodynamics Constraints REQUIREMENTS

1. ASPECT RATIO [A_R] < 10.5

2. CLIMB GRADIENT, landing [qL] > 2.4 percent
3. CLIMB GRADIENT, take-off [qTO] > 2.7 percent
4. LANDING FIELD [SL] < 4,500 ft
5. TAKE-OFF FIELD [STo] < 6,500 ft

6. DRAG COEFFICIENT, take-off/landing[CdOTo] < 0.02
7. DRAG COEFFICIENT, cruise [Cdoc] < 0.02

Note: System constraints must be satisfied for feasibility

Table 7.6. Weights Player Constraints For The Boeing 727-
200 Compromise DSP Template

Weight Constraints REQUIREMENTS

1. USEFUL LOAD FRACTION
2. FUEL BALANCE

3. CLIMB GRADIENT, landing
4. CLIMB GRADIENT, take-off
5. LANDING FIELD
6. TAKE-OFF FIELD

[U] > 0.3

[Rf] _ 1.0
[qL] > 2.4

[qTo] > 2.7
[SL] < 4,500

[STo] < 6,500

percent
percent

ft
ft

Note: System constraints must be satisfied for feasibility

Table 7.7. Aerodynamics Player Goals For The Boeing 727-
200 Compromise DSP Template

Aerodynamics Goals TARGET VALUES

1. CLIMB GRADIENT, landing
2. CLIMB GRADIENT, take-off

3. ASPECT RATIO
4. LANDING FIELD

5. TAKE-OFF FIELD

[qLrV]
[qrcrrv]

[ARrv]
[Slrv]

[StOTv]

3.0

3.0

10.5

4,500

4,500

percent

percent

ft

ft

Note: System goals are to be achieved as far as possible
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Table 7.8. Weights Player Goals For The Boeing 727-200
Compromise DSP Template

Weight Goals TARGET VALUES

1. PRODUCTIVITY INDEX

2. USEFUL LOAD FRACTION

3. FUEL BALANCE

4. CLIMB GRADIENT, landing
5. CLIMB GRADIENT, take-off

6. LANDING FIELD

7. TAKE-OFF FIELD

[PITy] 270

[Urv] 0.5
[RfTv] 1.0
[qLTV] 3.0

[qTOTV] 3.0

[S1Tv ] 4,500

[StOTV ] 4,500

percent

percent
ft

ft

Note: System goals are to be achieved as far as possible

In this next section the mathematical form of each players' compromise DSP is presented

based on the information in Section 7.1.

7.2 THE SUBSYSTEM MODELS

Aircraft design involves the interaction and coordination of many disciplines and design

teams. In this work, the focus is only on two of these disciplines and the interactions,

results, and implications of different design scenarios. These two subsystems are

aerodynamics and weights. Each subsystem model (compromise DSP) is described below.

For both players, only the Archimedean form of the deviation function is used in this

study. Again, the majority of the disciplinary compromise DSPs are taken from the single,

system level compromise DSP in (Mistree, et al., 1988).
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7.2.1 Aerodynamics Subsystem Model

Given

Airport performance requirements
Federal Air Regulations
Mission requirements
aircraft maximum lift coefficient, CLmax

Number of engines, N
airfoil thickness-to-chord ratio, t/c

number of passengers, Np
engine specific fuel consumption, bt

Range, R

density, sea-level (take-off, landing), 9tl

kinematic viscosity, sea-level (take-off, landing), vtl

kinematic viscosity, 35,000 ft (cruise), Vc

Velocity, sea level (take-off and landing), Vtl

density, 35,000 ft (cruise), Pc

Important Relationships and Equations (State

Zero lift drag coefficient

CDo = (CDo)wing+(CDo)body + ACDo
wing contribution

(Coo)_,,,,_ = 1.1c/.,,,,g(1 + 1.2(t) + 100(t/)sw,,
c c

body contribution

(Cno)boay = C/._,ay(1 + 0.0025(/) + 100(/)3)Ss

skin friction coefficient

c f = 0.455(1og]0 (V_fl_f))-2,5s
V

Velocity

_V, if in take - off or landing
V_f = [Vb,, if in cruise

Reference length

1, for bodyIre f =
c, for wing, c=S/b

Body wetted surface ratio

Ss = 7r d/(1 _ 2d)%(1 + (d)2)
S l I

Incremental drag coefficient

2.6
3.0
0.12

188
0.00019444 lb/lb-sec

2900 nmi, 1.762x107 feet

0.002378 slugs/ft 3

0.000156 ft2/sec

0.000406 ft2/sec

220 ft/sec

0.000737 slugs/ft 3

Variables) Eq. No.

[7.11

[7.2]

[7.31

[7.4]

[7.5]

[7.6]

[7.7]
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ACDo -- 0.005

Fuselage diameter

d = 1.83(4.325 NP + 1)
l

Oswald factor

e = 0.9611 - (d/b) 2]

Quadratic drag polar

k = 1/[n(AR)e]

Lift-to-Drag, landing and take-off

L cL

D Coo + kc_

Lift Coefficient, take-off and landing

I_, if in take - off
=_pv

CL |2W.ro(1 - R,_.), if in landing

[ pV2S

Lift-to-Drag, best cruise ratio
L 1 1

D,,p, 2 C_ooop,k

Velocity for best range

Landing Field Length

118 * Wvo(1 - Rrr)
S L =400+

(CLm_xS)

Take-off Field Length

20.9 * W_o _-87_ wT°Sro = (CLm._S. Ti ) --(CL,_S )

Missed Approach Achievable Climb gradient, OEI, landing

(L)-I g-1 Tiqt. "D L N WTO(1-- Rf)

Achievable Climb gradient, OEI, take-off

(L)-' N-1 Ti"-- 4

qTO D r N Wro

Aspect ratio

[7.8]

[7.9]

[7.10]

[7.111

[7.12]

[7.131

[7.141

[7.15]

[7.16]

[7.17]

[7.18]

[7.191
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b 2
AR =

S

Find

The values of the system variables
Continuous

Wing area, S
Discrete

Fuselage length, 1
Wing span, b

The values of the deviation variables associated with

Climb Gradient, landing,
Climb Gradient, take-off,

Landing Field Length,
Take-off Field Length,
Aspect Ratio

Satisfy

The system constraints (non-normalized)

The aspect ratio must be less than 10.5
AR _< 10.5

The achievable climb gradient on landing must be

greater than 2.4 °

qL > 2-4°

The achievable climb gradient on take-off must be

greater than 2.7 °

qTO > 2.7°

The landing field length must be less than 4,500 ft.
SL < 4,500

The take-off field length must be less than 6,500 ft.

STO -< 6,500

The drag coefficient in take-off and landing must
be less than 0.02

CDoTL -< 0.02

The drag coefficient in cruise must
be less than 0.02

CDoC < 0.02

Units

[ft21

[ft]
[ft]

Units

[-]

[degrees]

[degrees]

[ft]

[ft]

[-]

[-]

[7.20]

Eq.No.

[7.21]

[7.221

[7.231

[7.24]

[7.251

[7.261

[7.27]
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The system goalsI (normalized)

MissedApproachClimbGradient,landing
(qL/0.03)+ d1"- dl+ = 1

Climb Gradient,take-off
(qTO/0.03)+ d2-- d2+= 1

LandingFieldLength
SL/4500+ d3-- d3+ = 1

Take-offFieldLength
STO/4500+ d4- - d4+ = 1

AspectRatio
AR/10.5+ d5-- d5+ = 1

The bounds on the system variables

Wing area (ft.) 1200 <
Fuselage length (ft.) 105 <

Fuselage diameter (ft.) 85 _<

S < 1500
1 < 150
d < 140

Minimize

The sum of the deviation variables

Z = {Pl(dl- + d1+), P2(d2- + d2+), P3(d3- + d3+), P4(d4- + d4+), Ps(d5 +

d5+)}

[7.281

[7.29]

[7.301

[7.31]

[7.32]

7.2.2 Weights Subsystem Model

Given

Airport performance requirements
Federal Air Regulations
Mission requirements
aircraft maximum lift coefficient, CLmax

Number of engines, N
engine specific fuel consumption, bt

Range, R
payload (cargo and passengers), Wpay

fixed equipment weight, Wfix

2.6 (STO, SL)
3.0
0.00019444 lb/lb-sec

2900 nmi, 1.762x10 -/feet

40,000 lbs
1100 lbs

It is important that the system goals are normalized so that the maximum values of the
deviation variables are reasonably close.
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Important Relationships and Equations

Fuel Weight Available

Rf, = 1 Wro Wro Wro

Empty Weight Ratio

• _ T °gsslW,,p,, 0.9592 t- 0.38

WTO W0"0638"TO WTO

Fuel Weight required for mission

...:.(lO9  1
Overall Fuel Balance

_ Rfa
Re

Rf_

Ratio of take-off weight to landing weight

( /- exp - TV cruise "S cruise

Landing Field Length
118 * Wro(1 - Rf,)

SL =400+
(CL.,_xS)

Take-off Field Length

20.9 * W2o
I

STO -- (CLmax S * T i )

Useful Load Fraction

I WT 04-87 (CL._xS)

-bt*R

U = 1.1(1- 0.95e L°''v" )+ W_y
WTo

Achievable Climb gradient, OEI, landing

qL=-- D L + -- WTo(1-Rf)

Achievable Climb gradient, OEI, take-off

qTO = -- +

T

Productivity Index

N-1 T i

N WTO

PRI =
VbrWpay

(1 - Re,, + Rfr)WTo - Wv_y - Wfix

(State Variables) Eq. No.

[7.33]

[7.34]

[7.35]

[7.361

[7.37]

[7.38]

[7.39]

[7.40]

[7.41]

[7.42]

[7.43]
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Find

The values of the system variables
Continuous

Take-off weight, WTO
Discrete

Installed thrust, Ti

Units

[lb]

[Ib]

The values of the deviation variables associated with

the useful load,
the fuel balance,

the Productivity Index
the missed approach climb gradient, landing, OEI
the climb gradient, take-off, OEI

landing field length
take-off field length

Satisfy

The system constraints (non-normalized)

The useful load must be greater than 0.3
U>0.3

Units

[-]

Eq.No.

[7.44]

The fuel availab,,: must be greater than the fuel required
Rf > 1.0 [-] [7.45]

The achievable climb gradient on landing must be

greater than 2.4 °

qL > 2.40

The achievable climb gradient on take-off must be

greater than 2.7 °

qTO > 2.70

The landing field length must be less than 4,500 ft.
SL < 4,500

The take-off field length must be less than 6,500 ft.
STO < 6,500

[degrees]

[degrees]

[ft]

fit]

[7.46]

[7.47]

[7.48]

[7.49]

The system goals 2 (normalized)

The Productivity Index

PRU270 + d l- - dt + = l [7.50]

Useful Load Fraction

2 It is important that the system goals are normalized so that the maximum values of the
deviation variables are reasonably close.

297



U/0.5 + d 2- - d2 + = 1

Fuel Balance

Rf+d 3--d3 +=1

Missed Approach Climb Gradient, landing

(qL/0.03) + d 4- - d4 + = 1

Climb Gradient, take-off

(qTO/0.03) + d4- - d4 + = 1

Landing Field Length

SL/4500 + d 5- - d5 + = 1

Take-off Field Length

STO/4500 + d 6- - d6+ = 1

[7.511

[7.521

[7.53]

[7.54]

[7.551

[7.55]

The bounds on the system variables

Installed thrust (lbs.) 27750
Take-off weight (lbs.) 140,000

Minimize

The sum of the deviation variables

Z

< Ti < 55000

< WTO < 250,000

= {Pl(dl- + dl+), P2(d2- + d2+), P3(d3- + d3+), Pg(d4" + d4+), Ps(ds- +

ds+), P6(d6 + d6+), P7(dT- + d7+) }

In the analytical model of the aerodynamics designer, there are three control variables 3

required by the aerodynamics designer from the weights designer. These are the design

variables take-off weight, WTO, and installed thrust, Ti, and the state variable,

fuel ratio required, Rfr. In the analytical model of the weights player, there are five

control variables required by the weights designer from the aerodynamics designer. These

are the design variable wing area, S, and the state variables, lift-to-drag ratios on

take-off, cruise, and landing, Ldt, Ld¢, Ldi, and the best range velocity, Vbr.

3 Defined in Section 5.3.
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In Sections 7.3-7.5, the algorithm for integrated subsystem embodiment and system

synthesis (see Chapter 3) is presented step by step for the aircraft study introduced in this

section. It is stressed that even though the aircraft model has only two disciplines, the

algorithm is applicable to n disciplines. In Section 7.3, the first step of the algorithm, the

formulation and classification of the problem and process, is presented. Figure 1.8, the

infrastructure of the algorithm, is used as a frame of reference through Sections 7.3-7.6.

7.3 STEP 1: FORMULATION OF PROBLEM AND PROCESS

In this section, the aircraft

N**_ described in
Module A

vloaule C

T Section 7.2 is classified
using the lexicon and

_,r_l t _,_ II

E,_i,, M_t_o,s_, jj classification presented in

Chapter 4. The classification framework consists of three levels. In Figure 7.1, a sample

of the possible classifications based on various game theory protocols with example

linguistic entities at each level are shown. In no means is the classification in Figure 7.1

complete.

Level 1

Since the Boeing aircraft model consists of two disciplinary subsystems, it is a multi-level

model. At the system level, since the model is solved using simultaneous analysis and

design, it is SAND at the system level. At the subsystem level, the model is also solved

using simultaneous analysis and design. Therefore, the Level 1 classification is Multi-

SAND-SAND (shown at the top of Figure 7.1). Since it is a multi-level model, the

subsystems are designated according to the design and solution process. Normally, in a
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specificapplicationof thealgorithm,one protocol is identified and a single classification is

made. Since the aircraft model is exercised in this chapter for all possible player protocols,

there is no one classification in this study. Therefore, in Figure 7.1, all four possible game

classifications based on protocol are shown as representative terms. Note that in the full

cooperative protocol, the two disciplinary models are combined into one model and solved.

In only this case, the designation would be single-level. Using the other protocols, it is a

multi-level approach.

Level 2

The classification terms of Level 2 depend upon the classification of Level 1. For instance,

in Figure 7.1, if the leader/follower formulation is used, the leader uses an approximation

of the RRS of the follower. In the approximate cooperative formulation, each player uses

an approximation of the other player's state variables. As another example from Figure

7.1, in the full cooperative formulation, it is required to find a solution to the model.

Level 3

The classification terms of Level 3 further classify the terms in Level 2 according to the

DSPT entities (see Section 4.1.2). From Figure 7.1, the approximation of the follower's

RRS in a leader/follower formulation is a task. Therefore, as part of the leader's decision

resolution, he must perform a task of constructing the RRS of the follower. Construction

of a RRS is illustrated in Section 7.4.2. Also, from Figure 7.1, in the approximate

cooperative protocol, each player must decide how approximate to make the approximation

of nonlocal state variables. In other words, they must make a selection decision. In this

dissertation, as shown in Section 7.4.1, a first-order approximation scheme is used.

Therefore, the selection decision has been made. In the full cooperative protocol, also in

Figure 7.1, since there exists both discrete and continuous variables in the cooperative
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model, solving a mixed compromise DSP is required. Solution of such a model is

illustrated in Section 7.5.

In this chapter various game formulations of the aircraft design problem are explored.

Even though the formulations are different in theory and implementation, the classification

of the problem and process does not drastically change. The only part of the classification

that changes is the subsystem designations in Level 1, as shown in Figure 7.1. The

primary difference is the solution implementation. The solution implementation process is

determined by executing the tasks and solving the decision support problems identified in

Level 3. This is one of the advantages of the lexicon: even though the solution process

may change drastically as a result of changes in the subsystem designations, the overall

classification of the problem does not significantly change. In the next section, Step 2 of

the algorithm is described using the aircraft study.

7.4 STEP 2: FORMULATE THE DISCIPLINARY PROBLEMS

The formulation of the

_linary problems is

based on the classification

of the subsystems in Step

1. In this study all possible

classifications of the players are studied. With each protocol, there is a specific resolution

procedure outlined in Sections 7.4.1-7.4.3. The solution of each protocol for the Boeing

aircraft is outlined in Step 3 of the algorithm in Section 7.6.
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7.4.1 Cooperative Protocol

In game theory, the cooperative protocol is implemented by combining the individual

players' models and finding a Pareto optimal solution(s) (Vincent and Grantham, 1981).

However, in complex systems design, as discussed in Section 5.1, combining the models,

analysis, and synthesis routines of each player is not practical. Therefore, an approximate

form of cooperation is studied along with the full cooperative formulation.

Full Cooperation

Since each discipline in complex systems design typically has their own model with the

corresponding analysis

synthesis software,

combining the

disciplinary models into

one encompassing

model is highly unlikely. With the aircraft study, the disciplinary compromise DSPs,

presented in Section 7.2, are combined into one compromise DSPs, as shown in Figure

7.2, in order to illustrate the ideal cooperative results. The compromise DSP, which

combines the two disciplinary compromise DSP, is used as the fundamental decision-

making construct. This should theoretically be the best solution, as full cooperation is

achieved because each player is exposed to the other player's state and design variables

(control vector) at all times. This is the ideal protocol, but rarely achievable.
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Player Aero
Given

SA
Find

xA: S,l,b

dAi+,dAi"

Satisfy
aero constraints

aero goals
Minimize

ZA(XA, SA,XW,SW)
I

Player Weights
3iven

SW

Find

×w: Wto, Ti

dwi+,dwi"

Satisfy
weight constraints
weight goals

Minimize

Zw(xw, sw,xa,sA)

r

Find

Wto, Ti, S, 1,b

dwi+,dwi -

dAi+,dAi-

5a_s_/
weight constraints
weight goals
aero constraints

aero goals
Minimize

Z(xw,sW,XA,SA)

Figure 7.2. Combining the Players' Compromise DSP: Full Cooperation

Approximate Cooperation

IProto¢ol

Approximate cooperation is

chieved using

approximations of the

required state variables of

the other players. Only the

coupled equations (i.e., equations that are functions of the variables of two or more

players) are approximated. This approximation is accomplished using the Global

Sensitivity Equations (GSE) method first proposed in (Sobieszczanski-Sobieski, 1988).

Using the GSE, the total derivatives of the dependent variables can be solved for as
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functionsof the independentvariablesfrom every player. These total derivatives then are

used in a Taylor's expansion of nonlocal state variables,

o ds2
SE(X,S l ) = s 2 + Y--d-(xn - xo). (7.56)

Therefore, each player uses an approximation of the coupled state variables of the other

players. Using the procedure from Section 5.5. I to model approximate cooperation, the

following steps are performed for the aircraft problem. Computer implementation of each

step is given in Appendix C.

@ Construct approximations of nonlocal behavior variables
0 a. Determine the partial derivative matrices, [M] and [B], for each player using

exact calculations or appropriate approximation techniques.

In the case of the Boeing case study, the exact derivatives in Step O are determined using

Mathematica®. If the derivatives require some complex analysis package and exact

derivatives can not be found, certainly the derivatives can be approximated by finite

differencing. In addition, with the advent of ADIFOR (Bischof, et al., 1992), representing

the exact derivatives of functions written in FORTRAN is becoming computationally

easier. Although ADIFOR was not used in this work, it is an area of future interest to

expedite the formulation and solution of the approximate cooperative protocol.

For the aircraft case study, the symbolic [M] matrix of partial derivatives of the state

variables with respect to the other state variables is given in Figure 7.3. The symbolic [B]

matrix of local partial derivatives of the state variables with respect to the design variables is

given in Figure 7.4. The state and design variables of each player are presented in Section

7.2.
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0
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_o
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_o
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ab
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_o

aVBR

ab

aL/D T

aWro

0

aLIDL

aw_

aV BR

awro

1 Ti

a-T 0

b:t_n
at 0

_Coo_
a_ 0

0 0

0 0

0 0

0 0

0 0

__.Z.L
0 _L

0 _r,

0 0

aSro
o _--S-

o 0

aRt=

o _r-'7

0 0

0 0

0 0

matrix of GSE

aAR aAR

a"-g- _ 0

0 0 aw_

_TO

aw- m0 0

3SL as L
a'-g- 0 aw-"_

as_ asTo
a-"_- 0 aw-ro

0 0 0
aR_.

0 0 aw_

0 0 0

0

0 0

Figure 7.4. [B]

au
aWro

aP.__.AL
awro

lob. Solve the GSE system of equations, [M][X] = [Bl for the total derivatives, [X].

This is performed using a matrix solver based on Gaussian elimination. The returned

values are the total derivatives of the state equations with respect to the design variables,

ds
dx.

0 c. Construct approximations of the non-local state variables, s2, using Taylor series.
o dszs2(x,s ) = s2 + E (x. - Xo)
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The compromise DSPs for the two players, aero and weights, in the approximate

cooperative formulation are shown in Figure 7.5. The compromise DSPs are the same core

compromise DSPs as presented in Section 7.2, except for additional given information in

the form of nonlocal approximations. Each player is approximating the required state

variables needed from the other players. Player aero approximates Rfr, while player

weights approximates Ldt, Ldc, Ldl, Vbr.

Player Aero

Given

Rfr = Rfr ° + VRfr(X-X0)

Wto, Ti

Find

S,l,b

dAi+,dAf

Satisfy
aero constraints

aero goals
Minimize

ZA(XA,SA_XW,SW)

Figure 7.5. Approximate

Player Weights

Given

Ldt ---Ldt ° + VLdt(x-x °)

Ldc = Ldc ° + VLdc(x-x0)

Ldl = Ldl o + VLdl(x-x0)

Vbr = Vbr ° + _Vbr(X-X 0)

S

Find

Wto, Ti

dwi÷,dwi -

Satisfy
weight constraints
weight goals

Minimize

ZW(XW,SW, XA,SA)

Compromise DSPs: Aircraft Study

The resulting compromise DSPs are then solved and coordinated in Step 3 of the algorithm,

as described in Section 7.5.1.

I: Solve disciplinary models using nonlocal approximations. I

I

If the models of both players have converged, then stop. If not, update GSE matrices, I
and _oto Step Ob.

The solution of the model using the approximate cooperation formulation is explored in

Section 7.5. I.
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7.4.2 Noncooperative Protocol

As defined in Section

the noncooperative

protocol is exercised when

each player does not know

the information about the

other players. Therefore, each player must construct his set of solutions based on

unknown information about the other players. Mathematically, this is equivalent to each

player constructing their own RRS which dictates how each player will react regardless of

the other players' decisions. Computationally, the RRS are constructed by linking

NORMAN® with DSIDES. Based on the degree of the desired response surface and

design of experiments, a certain number of simulation experiments are run. This

"experiment" entails solving a player's compromise DSP using DSIDES for a given set of

constant parameters which are needed from and part of the other player's control vector. In

Figure 7.6, a representation of the repeated DSIDES runs is shown to construct the RRS of

the weights player. Different values of xA and sA are used in the weights' compromise

DSP according to the number of experiments needed. The weights' compromise DSP is

the same as presented in Section 7.2. The specific steps to construct the RRS

approximation are presented in Section 5.5.2 and applied to the aircraft problem as follows.

O Use NORMAN® as the design of experiments driver.

la) Based on the number of input variables, set-up the Central Composite Face-

Centered Design.

lb) Set the input variables (variables of the follower player which are required)

constant in Pl's compromise DSP and call DSIDES.

3O9



SA

O

XA

XA, SA

Weight's

Compromise DSP

XW,

@
Rational Reaction Set

XW, SW = f(XA, SA)

Response Surface Equations

Figure 7.6. Construction of Weights' RRS

In the top half of Figure 7.7, the two players' compromise DSPs in a noncooperative

protocol are given. The compromise DSPs in Figure 7.7 are the same ones as presented in

Section 7.2. Theoretically, the information required from another player is unknown

(represented by the wall in Figure 7.7). Based on the procedure presented in Section

5.5.2, the unknown information in this dissertation is simulated using the experimental

design techniques. The resulting compromise DSPs of the players in the noncooperative

protocol are shown in the lower half of Figure 7.7. These compromise DSPs are still the

same core compromise DSPs (Section 7.2), except the given information includes

simulation values of the previously unknown parameters. Each player, based on the given

ranges of the nonlocal variables, uses simulated points in the design space of the other

player in their local compromise DSP. The theory and heuristics behind the selection of the

simulated points are embedded in the experimental design package, NORMAN.
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Player Aero

Given

xw,sw (Wto, Ti, Rfr)
unknown

SA

Find

xa: S, l,.b

dAi+,dAi"

Satisfy
aero constraints

aero goals
Minimize

ZA(XA,SA,Xw,Sw)

• Given

ranges of xw,sw: Wto, Ti, R_

simulation points of

xw,sw: Wto, Ti, Rtr

SA

Find

XA: S, 1, b

dAi+,dAi -

Satisfy

aero constraints

aero goals
Minimize

ZA(XA,SA,KW,SW)

Player Weights

Given

XA,SA (Ldt, Ldo Ldl, Vbr, S)

unknown

Sw
Find

xw: Wto, Ti

dwi+,c_i"

Satisfy
weight constraints
weight goals

Minimize

ZW(XW,SW, XA,SA)
i

l
"Given

ranges of XA,SA: Ldt,Ldc,Ldl, Vbr,. c

simulation points of

XA,SA: Ldt, Ldc, Ld l, Vbr, S

sw

Find

xw: Wto, Ti

dwi+,dWi"

Satisfy

weight constraints

weight goals
Minimize

ZW(XW,SW, XA,SA)

Figure 7.7. Noncooperative Compromise DSPs: Aircraft Study

of the design and state variables to NORMAN@.@ In DSIDES, solve Pl's compromise DSP using the ALP Algorithm and send the values[

The compromise DSPs in the lower half of Figure 7.7 are solved at each simulation point.

Although the compromise DSP may contain discrete design variables, it is assumed that the

design variables are all continuous in constructing the RRS. This step is also depicted in

Figure 7.6 where multiple compromise DSPs are solved at each point in Pl's

(aerodynamics) design space.
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@ Determineif thefull experimentis finished.

• If not,continueby movingto thenextexperimentpoint andrepeatStep0.

• If so,constructtheresponsesurfaces.

For thecaseof theBoeingaircraft thereare5 variablesneededfrom the weights player by

the aerodynamics player and 3 variables needed from the aerodynamics player by the

weights player. Therefore, the aerodynamics player constructs a set of 5 equations with 3

unknowns (Eqn. 7.57), and the weights player constructs a set of 3 equations with 5

unknowns (Eqn. 7.58). The form of the approximate second order RRS's, DpLAYER I, of

each player are given below.

DA =
{S = C O + CIWt o + C2Ti + C3Rfr + CI2Wto*Ti + Cl3Wto*Rfr + C23Ti*Rfr + CIIWto 2 + C22Ti 2 +

C33Rfr 2

Ld t = C O + ClWto + C2T i + C3Rfr + Cl2Wto*Ti + Cl3Wto*Rfr + C23Ti*Rfr + CllWto 2 + C22Ti 2 +

C33Rfr 2

Ldc = CO + ClWto + C2Ti + C3Rfr + C12Wto*Ti + Cl3Wto*Rfr + C23Ti*Rfr + ClIWto 2 + C22Ti 2 +

C33Rfr 2

Ld I = C O + CIWt o + C2T i + C3Rfr + Cl2Wto*Ti + Cl3Wto*Rf r + C23Ti*Rfr + C 11Wto 2 + C22Ti 2 +

C33Rfr 2

Vbr = C O + CiWto + C2T i + C3Rfr + Cl2Wto*T i + Ci3Wto*Rfr + C23Ti*Rfr + CllWto 2 + C22Ti 2 +

C33Rfr 2. }

(7.57)

I) W =

{Wto = C O + C1S + C2Ld t + C3Ld c + C4Ld I + C5Vbr + CI2S*Ld t + CI3S*Ld c + CI4S*Ld I + Ci5S*Vbr +

C23Ldt*Ld c + C24Ldt*Ld I + C25Ldt*Vbr + C34Ldc*Ld I + C35Ldc*Vbr + C45Ldl*Vbr + C 11 $2 +

C22Ldt 2 + C33Ldc2+ C44Ldl 2 + C55Vbr 2

T i = C O + CIS + C2Ldt + C3Ld c + CaLd I + CsWbr .4- CI2S*Ld t + Cl3S*Ldc + CI4S*Ld I + CIsS*Vbr +

C23Ldt*Ldc + C24Ldt*Ld I + C25Ldt*Vbr + C34Ldc*Ld I + C35Ldc*Vbr + C45Ldl*Vbr + C ! 152 +

C22Ldt 2 + C33Ldc2+ CaaLdl 2 + C55Vbr 2

Rfr = C O + CIS + C2Ld t + C3Ld c + C4Ldt + C5Vbr + CI2S*Ld t + CI3S*Ld c + CI4S*Ld I + Cl5S*Vbr +

C23Ldt*Ldc + C24Ldt*Ld I + C25Ldt*Vbr + C34Ldc*Ld I + C35Ldc*Vbr + C45Ldl*Vbr + C 1152 +

C22Ldt 2 + C33Ldc2+ C44Ldl 2 + C55Vbr 2. }

(7.58)
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SincetheseRRS'sarebeing approximatedusing designof experimentsand statistical

techniques,therearetwo issuesdealingwith significance that must be addressed. The first

is the significance of the input factors of each response surface. It is assumed in

constructing that the response surfaces that every nonlocal variable is significant in the

model. This is observed in Eqns. 7.57 and 7.58 where every nonlocal variable is in each

approximate model. For instance, in Eqn. 7.57, the response surfaces for S and Ldt

include all main factor terms (Wto, Ti, Rfr), every interaction term (Wto*Ti, Wto*Rfr,

Ti*Rfr), and every second order squared term (Wto 2, Ti 2, Rfr2). Once the response surface

is constructed, some terms in the model certainly may turn out to be insignificant, but in the

construction it is assumed that every term is significant.

The second issue is the significance of thefitted response model. The response surfaces

that are used to predict the behavior of the design variables (S, Wto, and Ti) are

approximations of quantities which have no readily available mathematical expression.

There are no closed form expressions for design variables, as they are the indepedent

variables of a model. Therefore, using the response surfaces for the design variables is a

way to predict how another player will solve his model. With the state variables (Ldt, Ldc,

Ldl, Vbr, Rfr), closed form expressions do exist, and are used in the local subsystem

models. However, the response surfaces are being used to predict the values of the state

variables as functions of only the required nonlocal variables. There certainly could be

more local variables in the actual expression of the state variable which are not accounted

for in the response surface approximation. For example, a representative state variable, Sl,

may be a function of the local design variables, Xl, other local state variables, Sl, and

required nonlocal design and state variables, x2, and s2,

Sl = f(Xl, Sl, X2, S2).
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Yet, in theresponsesurfaceapproximationof Sl, the value of Sl is being predicted only as

a function of the required nonlocal design and state variables, x2, and s2,

Sl = f(x2, s2).

This is, however, the essence of the rational reaction set. Therefore, the significance of the

response surface regression is used to measure the significance of the effects of the

nonlocal variables on a given local variable. Specific instances of the regression

significance for the aircraft problem are investigated in Section 7.5.2.

In the Boeing study, the unknown parameters which the aerodynamics player needs from

the weights player are:

Wto (Take-off Weight), Ti (Installed Thrust), and Rfr (Fuel Ratio Required).

The design of experiments is set-up based on the minimum and maximum values of these

parameters, which are given below.

140,000 < Wto < 250,000

27750 < Ti < 55,000

0.2 < Rfr < 0.6

The number of experiments needed in a Central Composite Design is 2 n + 2n + 1, where n

is the number of input variables. With 3 input variables, 15 experiments are run for

various values of Wto, Ti, and Rfr to approximate Eqn. 7.57.

Conversely, the weights player also needs some of the variables from the aerodynamics

player. The variables needed by the weights player in this study are:

S (Wing Area), Ldt (Lift-to-drag for take-off), Ldc (Lift-to-drag for cruise), Ldl (Lift-to-

drag for landing), and Vbr (Best-Range Velocity).

Only three variables are needed by the aerodynamics player, but five variables are needed

by the weights player. With the increased number of input variables for the weights player
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thenumberof experimentsneededto constructtheRSSof theweightsplayer(Eqn.7.58)

increasesfrom 15 to 43 (25+ 2.5 + 1)using the sameorder of responsesurface. The

rangeof thevariablesneededby theweightsplayerare

1200< S < 2500

5 < Ldt < 17

12 < Ldc < 20

8 < Ldl < 18

500 < Vbr < 1000.

The construction of the RRS of each player is the first step to solving the noncooperative

formulation. The three steps to solving the noncooperative formulation, as introduced in

Section 5.5.2, are given for the aircraft problem.

i

O Construct Rational Reaction Set of Each Player

ilD Using appropriate technique find the intersection points of the RRS's of each player.

X* = DA _ DW (7.59)

O Determine which solutions fall in the ranges of the desisn variables.

The noncooperative solutions for the aircraft problem are explored in Section 7.5.3.

7.4.3 Leader/Follower

The calculation of the rational reaction sets is not only paramount to the noncooperative

protocol, but also is intrinsic to the Stackelberg leader/follower protocol. As introduced in

Section 5.5.3, the RRS of

/Protocol

Follower must be

constructed so the Leader in

the game knows what

decision the Follower is

going to make. However, the Follower must construct the RRS without knowing anything
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(besidesthe variablerangesin this case)aboutthe Leader(by definition). The solution

procedurefor the leader/followerprotocolis presentedin Section5.5.3andappliedto the

aircraftproblemasfollows.

I@ ConstructtheRRSof the follower.

As defined in Section 5.5.2, the RRS is an approximation of the actual RRS. The

procedure for constructing the RRS is the same as in the noncooperative protocol shown in

Sections 5.5.2 and 7.4.2.

I

O Allowing the leader access to the follower's RRS in the leader's compromise DSP,[

solve the leader's compromise DSP. I
The leader's compromise DSP is augmented using the RRS of the follower. The decision-

making strategy of the follower is embodied in the RRS and now available to the leader.

@ Allowing the follower access to the leader's solution, solve the follower's

compromise DSP.

The follower's compromise DSP is solved using the now known values from the leader.

Since the RRS embodies the decision-making strategy of the follower, the resulting

solution should match the strategy of the RRS. The two implementations of the

leader/follower protocol in the aircraft study are the aerodynamics player as leader, and the

weight player as the leader. Some discussion of each is given.

Aerodynamics as Leader�Weight as Follower

The aerodynamics design team takes the lead in a design process, and makes their decision

about the aircraft profiles based on some information (in the form of the RRS) from the

other disciplines. Then the weights player makes his decisions based upon the leader's

solution. The compromise DSPs of the two players in this game are shown in Figure 7.8.
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ThecompromiseDSPsarethesame as the core compromise DSPs presented in Section 7.2

except for the given information of each player. The leader has access to the follower's

RRS ([Wto, Ti, Rfr _ {Dw}], and the follower knows (but has to wait for) the leader's

solution ( {Ldt, Ldo Ldl, Vbr, S }), and then uses that information in his model.

Given

xw, sw: Wto, Ti, Rfr

Weights' RRS:

[xw,sw _ {Dw}]

SA

Find

xA:S,l,b

dAi+,dAi -

Satisfy
aero constraints

aero goals
Minimize

ZA(XA,SA,XW,SW)

Given

Aero's Solution -

XA,SA: [Ldt, Ldo Ldl, Vbr, S]

sw

Find

xw: Wto, Ti

dwi+,dwi -

Satisfy
weight constraints

weight goals
Minimize

ZW(XW,SW,XA,SA)

(a) Leader: Aero (b) Follower: Weight
Figure 7.8. Leader/Follower Compromise DSPs: Aero as Leader

Weight as Leader/Aerodynamics as Follower

This formulation corresponds to a design process where designers choose an engine

configuration first, based on the assumption that the other disciplines will behave

rationally. Then, the other disciplines have to design according to the engine specification.

This is fundamentally different from the formulation with weight as the follower. The

compromise DSPs of the two players in this game are shown in Figure 7.9. Again, the

compromise DSPs are the same as the core compromise DSPs presented in Section 7.2

except for the given information of each player. The leader has access to the follower's

RRS ([Ldt, Ldc, Ldl, Vbr, S _ {DA}]), and the follower knows (but has to wait for) the

leader's solution ({Wto, Ti, Rfr}), and then uses that information in his model.
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• Given
XA,SA: Ldt, Ldo Ldl, Vbr, S

Aero's RRS:

[XA,SA {Dw}]
SA

Find

xw: Wto, Ti

dwi+,dwi -

Satisfy

weight constraints

weight goals
Minimize

ZW(XW,SW,XA, SA)

(a) Leader: Weight

Given

Weights' Solution -
xw,sw: [Wto, Ti, RM

SA

Find

XA: S, 1, b

dAi+,dAi -

Satisfy
aero constraints

aero goals
Minimize

ZA(XA,SA XW,SW)

(b) Follower: Aero

Figure 7.9. Leader/Follower Compromise DSPs: Weight as Leader

The solutions to each implementation of the leader/follower protocols are discussed in

Section 7.5.2. The third step of the algorithm, the solution of the game formulations, is

illustrated in the next section.

7.5 STEP 3: SOLVE SUBSYSTEM AND INTEGRATION PROBLEMS

7.5.1 Cooperative

Both the cooperative

_rmulations, full and

approximate, are studied in

this section as a means to

compare forms of

cooperation. Comparison to the other protocols is presented in Section 7.6. The

approximate cooperative formulation, because it utilizes derivatives, can only handle
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continuous variables. Therefore, in order to makecomparisonsto the (continuous)

approximatecooperativeformulation,afull cooperativeformulationonly using continuous

variables is studied. A full cooperative model using mixed discrete/continuous design

variables is studied as well. The three solutions depending upon the level of cooperation

are shown in Table 7.9. The approximate cooperative and continuous version of the full

cooperative formulations are solved using the ALP Algorithm (continuous variables only).

The mixed version of the full cooperative formulation is solved using the discrete extension

of the ALP Algorithm, the FALP Algorithm, introduced in Chapter 6. Both the ALP

Algorithm and its extension, the FALP Algorithm are part of the decision support package,

DSIDES. The resulting aircraft configurations are shown in Figure 7.10, and the deviation

functions (Archimedean form) of the two players in each protocol solution are plotted in

Figure 7.11. The configurations in Figure 7.10 look very similar, as they should since the

results using the approximate cooperative protocol (see Table 7.9) are very close to the full

cooperative results (continuous). There is a slight change in configuration when the mixed

formulation of full cooperation is used. This is due to the discrete variable restriction in the

b, 1, and Ti variables. Full results of the three cooperative formulations, including solution

history and corresponding DSIDES input files are given in Appendix C.

Table 7.9. Results of Cooperative Protocols

Player Protocol

Player
Aero

Player

Weights

Approx. Coop

Full Coop: Cont.

Full Coop: Mixed

Design Variables, x

S (ft 2)
1554

1557

Deviation
Function

b(fi) 1(_)

122.4 119.1

122.7 116.2

126 120

m_ro

0.242

0.242

1613 0.242

Approx. Coop

Full Coop: Cont.

Full Coop: Mixed

Ti(lbs)

33960

33910

33000

Wto (lbs) Zweight

196800 0.213

196700 0.214
197700 0.220
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a. Approximate Coop. b. Full Coop.: Continuous c. Full Cooperation: Mixed

Figure 7.10. Cooperative Solutions (Approximately 1:1500 scale)

0.245

0.24

0.235

0.23

_ 0.225
ol

0.22

0.215

0.21

0.205

f't 0.2

0.195

Aero Weights

Player

• Approximate

Cooperation

r"l Pareto solution:

continuous Variables

• Pareto Solution: Mixed

Variables

Figure 7.11. Cooperative Deviation Functions
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Comparingthe approximatecooperativewith the mixed full cooperativesolution, it is

apparentthattheapproximatecooperativeformulationsolutionisa bettersolutionthanthe

mixedsolution. Thefundamentalreasonfor this is thepresenceof thediscretevariablesin

themixedformulation. The capability of "fine-tuning" a solution in the continuous domain

does not exist for discrete variables in the mixed problem. A similar discrepancy is

observed between the continuous and mixed full cooperative solutions. In essence, the

comparison of the solution of a continuous problem with the solution of a mixed problem is

like comparing apples to oranges. It is shown in Section 7.6 that in general, the

cooperative formulations result in better solutions than the other protocols.

Comparing apples with apples, the approximate cooperative (continuous) and the

continuous full cooperation solutions in Table 7.9 and Figure 7.11 are shown to be very

similar. The deviation function of the weight player in the approximate cooperative

formulation is slightly less than the full cooperative scenario (0.213 compared with 0.214),

but this is due only to round-offs in the solution processes. Indeed the design variables of

the weight player in each protocol are virtually the same. The only other major difference is

the value of the fuselage length (1) in the aerodynamics player's problem. The difference in

values (119.1 and 116.2) does not make a significant difference in the deviation function.

This is an important result, as multiple values of the fuselage length have been identified

where the deviation function of the aerodynamics player does not change. In other words,

there is not one optimal solution, but multiple satisficing solutions. This is advantageous in

the design of open engineering systems, where multiple solutions can be explored along a

design timeline. When continuous variables are assumed, the deviation functions of the

full and approximate cooperative formulations are virtually identical. Therefore, the

nonlocal approximations made by the players in the approximate cooperative formulation

seem to give accurate results. These nonlocal approximations are now explored.
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Accuracy of the Taylor series approximations

By using first order derivatives in the GSE, a first order approximation of nonlocal state

variables can be constructed by the players. In previous studies, second order Taylor

series expansions have been used to better approximate the nonlocal state variable. With

this increase in accuracy, however, comes an increase in computation and information

transfer as well. In order to formulate second order Taylor series expansions, second order

derivatives are needed. In (Renaud, 1993), a second order GSE approach is presented. In

this work of this dissertation, it is asserted that the first order approximations are good

approximations of the nonlocal variables. In the Boeing study, five state variables, Ldt,

Ldc, Ldl, Vbr, and Rfr, are approximated using GSE and Taylor series. In Figure 7.12 (a)-

(e), plots are shown which reflect the actual values of the variables and the approximated

values of the variables. In Figure 7.12, the approximations in general are very close to the

actual values. The only large deviation occurs when the actual value jumps a large amount,

corresponding to a large jump in the design variables. This occurs around approximation

numbers 11 and 24 for Ldl in Figure 7.12 (a) (indicated by the arrows). In these instances,

the solution algorithm (ALP) makes a large step across the design space resulting in a

significant increase of Ldl from 15.4 to 16.3. Since the difference in design variables (Xn -

Xo) is a multiplier in the Taylor series, if this difference is large, then the approximated

variable will be approximated by a large linear step. Similar tendencies are found in the

other plots in Figure 7.12 (b-e), but throughout the solution process, the approximations

are very close to the actual values. In fact, the average percentage error over all the

approximations for every variable is less than 1.0%. This information is summarized in

Table 7.10.
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Figure 7.12. Nonlocal Approximations
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Table 7.10. Average Error for Each Nonlocal Approximation

Approximated
State Variable

Average Percent
Error

Approximation in
Aerodynamics

Rfr 0.15%

Approximation in
Weights

Ldt 0.43%

Ldc 0.14%

Ldl 0.50%

Vbr 0.03%

The occasional "jumps" in the approximations in Figure 7.12 do lead to slight instabilities

in the convergence history of the solution algorithm. Consider the convergence history of

three different starting points of the continuous formulation of full cooperation shown in

Figure 7.13. In Figure 7.13, there is rapid convergence for all three starting points for all

of the design variables. In Figure 7.13 (f), the deviation function steadily decreases and

the constraint violation decreases to zero. The only reason the convergence takes longer

than 6-7 cycles is because of the Fuselage Length (Figure 7.13 (c)) takes about 9 more

cycles to converge to its final value.

Now consider the convergence history of the approximate cooperation formulation shown

in Figure 7.14. In these convergence plots, it is shown that one of the starting points

converges to a different solution than the other two starting points. This lack of

convergence to one common solution can be attributed to the occasional inaccuracies in the

nonlocal Taylor series approximations. Because the ALP Algorithm is derivative based,

when the derivatives are inaccurate, it may lead to erroneous or nonoptimal solutions. This

is observed for one of the starting points of this formulation.
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Figure 7.13. Design Variable History: Full Cooperation (Continuous)
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Therefore,althoughthegeneralaccuracyof thefirst orderTaylor seriesapproximationsare

good, and the resulting solution is virtually identical to the full cooperativesolution,

stabilityin thesolutionprocessmaybesacrificed.Sincemultiplestartingpointsareusedto

verify the bestsolution, it is concludedfrom Figure 7.12andTable 7.10 that first order

Taylor seriesgive agoodapproximationof thenonlocalstatevariablesin theapproximate

cooperation formulation in this study. Another important issueof the Taylor series

approximationsis therequirementof differentiabiIity since they are used with a derivative-

based solution scheme. The derivatives of the state variables used in the GSE matrices are

continuous as the state variables are themselves continuous functions across the domain of

interest (Section 7.2). The Taylor series approximations are sums of continuous and

differentiable functions, and therefore are differentiable as well. Therefore, the first order

approximations in this study can be used in a derivative-based solution scheme.

In this study "approximate" cooperation is modeled. But how approximate is

"approximate"? An interesting future application is to use more terms in the Taylor series

as a means to model closer cooperation. Along these lines, the limit of the Taylor series as

the number of terms reaches infinity would be full cooperation. With fewer terms, the level

of cooperation decreases, as the approximation becomes worse.

7.5.2 Leader/Follower

The first step to solving the

formulation

is constructing the RRS of

the follower. Both player

aerodynamics and player

weights take their turn as the leader and follower in this section. The rational reaction sets
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of thetwo players,asconstructedusingtheprocessandinformationpresentedin Sections

5.5.2 and7.4.2, areshownasfollows. Again, theseRRS'sareconstructedassumingall

designvariablesarecontinuousasprescribedin Sections5.5.2and7.4.2.

Player Aerodynamics
DA =
{
S = 1448 + 444.4"Wto + 175.8"Ti - 107.5*Rfr - 155.8*Wto*Ti - 83.01*Wto*Rfr -

83.01*Ti*Rfr + 186.5"Wto 2 + 97.04"Ti 2 + 15.27*Rfr 2,
LDc = 18.06 - 1.878"Wto - 1.380"Ti + 0.3684*Rfr + 0.1019*Wto*Ti + 0.19*Wto*Rfr +

0.19*Ti*Rfr - 0.4238"Wto 2 + 0.1319"Ti 2 - 0.685*Rfr 2,
Vbr = 744.9 + 6.421"Wto - 52.37"Ti + 7.532*Rfr + 15.79*Wto*Ti + 6.924*Wto*Ti +

6.924*Ti*Rfr - 31.64*Wto 2 - 9.419"Ti 2 + 7.828*Rfr 2,
LDI = 14.12 + 1.47*Wto - 2.142"Ti + 2.601*Rfr - 0.2179*Wto*Ti + 0.2556*Wto*Rfr +

0.0879*Ti*Rfr + 0.0998"Wto 2 + 0.4169"Ti 2 - 0.6684*Rfr 2,
LDt = 9.698 - 0.9576"Wto - 1.97"Ti + 0.04071*Rfr - 0.336*Wto*Ti - 0.05205*Wto*Rfr

- 0.05205*Ti*Rfr + 0.1815*Wto 2 + 0.7128"Ti 2 - 0.899*Rfr 2 }
(7.60)

Player Weights
DW =
{

Wto = 216000 + 15040"S - I 1300*Vbr - 163.4"LD1 - 5318"LDc + 20930*LDt -
305.0*S*Vbr - 148.6"S*LD1 + 2694"S*LDc + 13580*S*LDt - 158.9*Vbr*LDI +
2512*Vbr*LDc - 9457*Vbr*LDt + 425.8*LDl*LDc - 173.6*LDI*LDt -

3912*LDc*LDt - 22370"S 2 - 1624*Vbr 2 + 11730"LD12 + 2571 *LDc 2 - 24730*LDt 2,
Ti = 39120 - 284.1"S - 2565*Vbr-547.2*LDI - 1558"LDc - 10170*LDt + 1680*S*Vbr-

559.6"S*LD1 + 1525"S*LDc - 784.5*S*LDt - 447.1*Vbr*LD1 + 1409*Vbr*LDc -

2194*Vbr*LDt - 149*LDI*LDc - 581.4*LDI*LDt - 1355*LDc*LDt - 4058"S 2 -

229.7*Vbr 2 + 2212"LD12 + 988.2"LDc 2 + 6190*LDt 2,

Rfr = 0.3145 - 0.0833*Vbr - 0.06146"LDc + 0.01412*Vbr*LDc + 0.00003624"S 2 +

0.02323*Vbr 2 + 0.00003624"LD12 + 0.01261 *LDc 2 + 0.00003624*LDt 2 }
(7.61)

Significance issues associated with these response surfaces warrant investigation. First, it

is assumed that every term in the regression is significant, and therefore, every term occurs

in each equation. Some coefficients may certainly turn out to be insignificant are could be
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eliminatedusingscreeningexperiments(Chen,1996),but in this dissertationeveryterm is

kept. With largerproblems,it wouldbeadvantageousto performscreeningexperimentsto

reducethecomputationdemandof creatingtheresponsesurfaces.

Second,thesignificanceof theregressionis investigated. In Table7.11,theR2valuesof

eachresponsesurfacearegiven. In essence,theR2valueof aregressionfor a variable,X,

approxmiatedasafunctionof asetof variables,Y, impliesthatthepercentagevariability of

thevariableX thatis accountedfor by variablesY is R2. Thehighestvalueof R2for this

studyoccursfor thestatevariableRfr. Thismeansthatvirtually all of thevariationin Rfris

being accountedfor by the requirednonlocalvariables,S,Vbr, Ldt, Ldl, andLdc. The

threedesignvariables(S,Wto,andTi) havefairly high R2values,implying that muchof

the variability in thesevariablesis beingaccountedfor by the nonlocal variables. The

lowestvaluesof R2occurin thestatevariables(Vbr,Ldt, Ldl, andLdc). This implies that

other factors, not accountedfor in the responsesurfaceregression,contribute to the

variationin thesevariables.This makesperfectsense,asillustratedin Section7.4.2,asthe

state variables could be functions of other design and state variables which are not

accountedfor in themodel. The responsesurfacemodelof arational reactionsetis used

only to predict the effect of nonlocal variables on a local variable. In general, the R 2 in

Table 7.11 are acceptable and with a high level of confidence, it can be concluded that the

regression for each variable is significant. In other words, there is significant nonlocal

coupling that can be accounted for in the approximations of the rational reaction sets (Eqns.

7.60 and 7.61).
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Table 7.11. R 2 Values for Each Coupled Variable

Variable

S

R 2 value

94.9

Vbr 76.7

Ldt 74.8

Ld! 83.3

L,de 82.2

Wto 90.0

Ti 89.2

Rfr 99.9

The two solutions of the two leader/follower protocols which utilize the RRS's are shown

in Table 7.12. Full results of each leader/follower formulation, including solution history

and corresponding DSIDES input files are given in Appendix C. Both protocol

formulations are solved using the FALP Algorithm in DSIDES (Chapter 6), since the

compromise DSPs of both players have discrete and continuous variables. The resulting

aircraft configurations are shown in Figure 7.15 and the deviation functions of both players

are shown in Figure 7.16. The resulting configurations of the two solutions are quite

different. The differences in the configurations are explored in this section.

Table 7.12. Stackelberg Solutions

Player Protocol

Player As Leader
Aero As Follower

Deviation

Design Variables, x Function

S (ft 2) b (ft) l (ft) Zaero
1870 136 107 0.241

1644 114 150 0.252

Player I As Leader
Weights I As Follower

Ti (lbs)

41000

36725

Wto (lbs)

208126

224206

Zweight

0.201

0.255
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a. Aero as Leader/ b. Weights as Leader/

Weights as Follower Aero as Follower

Figure 7.15. Stackelberg Solutions (Approximately 1:1500 scale)

0.3

,. 0.25
O

o 0.2

U.,

0.15
C
O

N 0.1

0

a 0.05

Aero Weights

Player

R Aero as Leader

[] Weight as Leader

Figure 7.16. Deviation Functions for Both Stackelberg Formulations

In both cases, each player would rather be the leader, as the deviation function of each

player is smaller when he is the leader in the game. This can be explained directly from

looking at the nature of the RRS of the follower. In the leader/follower game (defined in

Section 3.3.3), the follower is constrained to the strategy embodied by his RRS. Since the

leader knows the RRS of the follower, he can make his decision and know how the
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follower will react. Thefollower doeshavethefreedomto controlthe local variablesnot

coupled with the leader'sproblem,althoughhe is constrainedto behaveasthe leaderhas

assumedhewill behave.Thatis,thevaluesof thecontrolvariableswhicharepredictedby

the RRS as a function of the leader'scontrol variablesare set. The large discrepancy

between the two deviation functions of the weight player and the smaller discrepancy

between the two deviation functions of the aerodynamics player can be explained by the

following.

• As the leader, once the aerodynamics player's solution is found, the basic

geometric parameters are set (wing area, S, wing span, b, fuselage length, 1, and

fuselage diameter, d). The weights player is constrained to these values, and

must obtain a fuel balance based on the configuration. Therefore, depending

upon the configuration geometry, the weights player is restricted to allocate the

fuel weight required and fuel weight available. Once the configuration is set, the

weights player is greatly constrained by the geometry. In fact, the weights player

is constrained fully by the aerodynamics player's solution. In the case where the

aerodynamics player is the leader, both design variables of the weight player, Ti

and Wto, are needed. Therefore, the RRS of the weight player dictates what

values the weight player will choose for Ti and Wto according to what values the

aerodynamics player chooses for his control variables. In other words, once the

aerodynamics player solves his model, the weight player's solution is given also.

This is because the aerodynamics player requires all the design variables of the

follower.

• When weights is leader, Wto is set but the aerodynamics player still has the

freedom to allocate the weight to the wing or fuselage. The aerodynamics player

still has freedom to size the aircraft given a certain total weight. He is constrained

somewhat by the thrust available, Ti, which dictates the size of the wings to an
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extent. Comparatively,however,theaerodynamicsplayerhasmore freedomto

meet his requirementsas the follower than the weights player does as the

follower. In addition, since the weights player only needs one of the

aerodynamics player's design variables, the wing area, S, the aerodynamics

player still has the freedom to control and change the other design variables, b and

1.

Insights into Process Structure

These two strategies model two completely different practices in design process structure.

The resulting aircraft configurations carry rich insights into the differences between the two

strategies. To investigate the characteristics of each aircraft, the state variables of each

aircraft are explored. The influential state variables of the aircraft for each protocol are

shown in Table 7.13.

Table 7.13. State Variables for the Leader/Follower Solutions

State Variable

U

Aero as Leader /

Weight as Follower
Weight as Leader /
Aero as Follower

0.46 0.48

Rf 1.13 1.00

PRI 155 174

Ldl 16.0 12.9

Ldt 12.6 9.9

Ldc 20.7 18.3

AR 9.89 7.91

The following observations are made, which explain the difference in configuration of the

two protocols.
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• Thegoalsof playerweight includebringingU (usefulloadfraction)closeto 0.5,

Rf (Fuel Balance)close to 1.0,and maximizing the PRI (Productivity Index).

From Table7.13,clearlywhentheweightsplayer is the leader,theseobjectives

aremet betterin theconfigurationof Figure7.15(b) thanwhentheaerodynamics

player is the leader(Figure 7.15 (a)). U is closer to 0.5, Rf is 1.0,andPRI is

larger. Therefore,the weightsplayer is ableto satisfyhis goalsandconstraints

while knowing how theaerodynamicsplayerwill react. The weightsplayercan

be confident that the aerodynamicsplayer will not adverselyaffect his own

solutiontoo muchbecauseof therationalityassumptionsin the RRS. Although

thedifferencein U (0.46and 0.48) is not significant, the differencesin Rf and

PRIaresignificant. Two aircraftwith thesevaluescertainlybehavedifferently.

• Theaerodynamicsplayerstrivesto maximizethelift-to-drag ratios of the aircraft.

From Table 7.13, each lift-to-drag ratio (Ldl, Ldt, Ldc) is greater in the

configuration in Figure 7.15 (a) than when aerodynamics is the leader (Figure

7.15 (b)). As the leader, the aerodynamics player has the freedom to change the

aircraft profile and dimensions to meet his requirements. The differences in the

values of the lift-to-drag ratios are quite significant. An average difference of

around 2.8 in the Ld's result in aircraft which behave differently and have much

different lift characteristics.

• One of the goals of the aerodynamics player is to bring the aspect ratio (AR) as

close to 10.5 as possible. As the leader, the aerodynamics player is able to bring

the AR closer to 10.5 than as the follower. The freedom to change the profile of

the wing simply does not exist when the aerodynamics player is constrained by

his RRS and the solution from the weights player. The difference in the AR

values is significant. An aircraft with an AR of 9.89 has the potential to behave
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muchdifferentlythanonewith anAR of 7.91. The lift and drag characteristics of

the aircraft are effected by the AR.

Two significantly different aircraft are produced depending upon the protocol exercised.

The aircraft look and behave differently. Clear understanding of the aircraft requirements

and prioritization of objectives must exist in order to structure a design process accordingly

to maximize the overall goodness of the aircraft.

Verification of the Rational Reaction Sets

In order to verify the RRS's of the players, it is required to measure how well the RRS

represents the decision making strategy of each player. In Sections 3.3.3 and 5.5.3, it is

assumed that the follower is constrained to behave as dictated by his rational reaction set.

This constraint is now relaxed in order to investigate the results when the follower is free to

change all of his design variables. Therefore, two cases are performed:

(1) Restricting the follower to behave as his RRS predicts (already presented in

Table 7.12), and

(2) Allowing the follower to solve his full model.

These two cases are illustrated with the aerodynamics player as the follower in Figure 7.17.

In both cases, the weights player knows the value of the aerodynamics player's wing area,

S, from his RRS. In case (I) (Figure 7.17 (a)), once the weight player solves his problem,

the wing area, S, of the aerodynamics player is set. However, the value of S dictated in the

aerodynamics player's RRS is only an approximation. The aerodynamics player still has

the freedom to change I and b since they are not needed by the weights player. In case (2)

(Figure 7.17 (b)), this constraint is relaxed and the aerodynamics player is free to change

all of his design variables. Therefore, the leader only sees an approximation of how the

follower will react to the leader's decision.
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I Weightsplayer _._
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controls Wto,T i ) - _ RRS

_k NN_ =f(xw'sw)

S only _ 1

approximate _Aerodynamics Player 1
- _ controls S, I, and b

b. No RRS Restriction
Figure 7.17. Difference in RRS Implementations

Theoretically, if the follower's RRS is a close enough approximation of how he will react,

the solutions of the two cases should be similar. Case (1) is presented in the beginning of

this section (see Table 7.12). In Table 7.14, the solutions for case (2) are given for each

leader/follower formulation. Comparing Tables 7.14 (case 2) and 7.11 (case 1), it is

obvious that the solutions are very similar. The deviation functions in Figures 7.18 and

7.18 are very similar as well. It is concluded that the RRS of each player gives a very good

approximation of how each player will react to the leader's decision. This is verified as

well by the high values of R 2 for each of the response surfaces in Table 7.11. The

nonlocal variables are acting as significant predictors of the local variables in the response

surface approximations of the rational reaction sets.

Table 7.14. Stackelberg Solutions: Relaxed RRS Constraint

Player

Player
Aero

Protocol
Deviation

Design Variables, x Function

s (ft2)
As Leader 1870

As Follower 1640

b (_) 1(_)
136 107

114 150

0.246

0.252

Player
Weights ]

Ti (lbs)

As Leader 41000

As Follower 36000 222106

Wto (lbs)

208126
Zweight

0.201

0.256
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Figure 7.18. Deviation
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RRS Restriction
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7.5.3 Noncooperative

_oopcral_on

Noniocal

Approximation
Moc_ie A

/Protocol

The noncooperative

occurs at the

intersection of the players'

RRS's, DA _ Dw, or

Eqns. 7.60 and 7.61. The

RRS's are constructed assuming continuous variables, and since it is not likely that the

intersection of multiple nonlinear 2nd-order surfaces will occur at an acceptable discrete

variable value, only continuous variables can be handled in the noncooperative formulation.

There are five variables needed by the weight player from the aerodynamics player and

three variables needed by the aerodynamics player from the weight player. Therefore, the

combined RRS's of the two players are comprised of eight equations with eight unknown

variables. Finding the intersection of these eight equations is equivalent to finding the point

intersection of eight nonlinear n-dimensional surfaces. The solution to this system of
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equationscanbefound usingeithera closed-formsolutionmethod,or approximateroot-

finding method. If the equationswere linear, finding a solution to a systemof eight

equationswith eight unknowns would be feasible. However, since the equationsare

secondorder with first order,squared,andinteractionsterms,setof equationsof this type

is extremelydifficult to solve with eventhemost sophisticatedmathematicalsoftware.

Therefore,in orderto solvetheequations,someassumptionshaveto bemadein orderto

simplify the setof equations.The largestsetof equations(secondorderas in Eqns7.60-

61) thatcanbesolvedwith Mathematica®isa setof 3 equationsand3 unknownvariables.

Therefore,five variablesin thecombinedRRS'smust besetconstant. Sincethecoupled

design variables are S (Wing Area), Ti (Installed Thrust), and Wto (Take-off Weight),

these are chosen to be the variables solved for. The remaining five state variables are set

constant at different values to explore different noncooperative solutions. Seven scenarios

are explored using seven sets of constant input values. These seven scenarios correspond

to the following conditions.

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Scenario 5

Scenario 6

Scenario 7

Midpoints of the variable ranges.
Lower Bounds of the variable ranges.

Upper Bounds of the variable ranges.
The values from the Stackelberg formulation with

Aerodynamics as leader, Weight as Follower.
The values from the Stackelberg formulation with

Weight as leader, Aerodynamics as Follower.
The values from the approximate cooperative
formulation.

The values from the full cooperative formulation.

By using the values of the state variables from these scenarios and only solving for the

remaining design variables in the RRS's, the simplified combined RRS's take the form of:

{S = Co + ClWto + C2Ti + C12Wto*Ti + C1 lWto 2 + C22Ti 2,

Wto = Co + CIS + Cll $2,

Ti = Co + C1S + Cll $2} (7.62)
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The results of the noncooperativeformulations using the assumptionsof the seven

scenariosaregivenin Table7.15. Configurationsof thesevenresultingaircraftareshown

in Figure 7.19. Thesevenconfigurationsarevery different, from shortandwide to long

andthin configurations.Full resultsof eachscenario,includingthe simplified RRS(Eqn.

7.62) for eachscenarioaregiven in Appendix C. Someinterestingobservationscanbe

madefrom thenoncooperativeresults.

Only one of the scenariosproducesa feasiblesolution (convio = 0.0) for both

players, scenario 4, when the values are taken from the leader/follower

formulation when aero is the leader. Therefore,without communicationand

cooperationamongthe players,a feasibledesignusingthis aircraft modelis not

likely to be found. Mathematically,thisoccursbecauseof two reasons

1) the solution is constrainedto lie on the intersection of three nonlinear

surfaces. Theremay bebettersolutionselsewherein the designspace,but

becauseof thisrestriction,theycannotbeused.

2) thenonlinearsurfacesareapproximationsof eachplayer'sRRS. Therefore,

theapproximationof thepredictionof theexactbehaviorof eachplayermay

not be effective enough. Also, the intersectionof the approximate RRS

surfacesmaynot matchtheintersectionof theexactRRSsurfaces.However,

theexactRRSsurfacesarevery difficult to compute. Therefore,thequality

of the solution may be sacrificed for efficiency in constructing the

approximateRRSsurfaces.

• The thrust in scenario2 (60460 lbs.) is greaterthan the upper bound for the

allowablethrust. This high valueoccursbecauseof the lack of communication
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andcooperationandnotbecauseof theaircraftconfiguration. In scenario2, the

aircraft is relatively small, having the smallesttake-off weight, wing spanand

fuselagelengthof all the scenarios.The thrust requiredfor this configuration

shouldnotbeaslargeasit is, but sincetheplayersdonotcooperate,an inferior

(andinfeasible)solutionis found.

Pla_cer

Table 7.15. Noncooperative Solutions

Protocol Design Variables, x

Deviation
Function

S (ft 2)

Scenario 1 1600 0.326 -0.242

Scenario 2 1584 0.519 0.0

Player Scenario 3 1529 0.393 -0.221

Aero Scenario 4 1938 0.257 0.0

Scenario 5 1571 0.281 0.0

Scenario 6 1818 0.319 -0.211

1822

b (_) 1(_)

112.5 127.5

85 105

140 150

136 107

114 150

122.4 119

122.7 116Scenario 7 0.320

Constraint
Violation

Convio

-0.211

Player

Weights

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Ti (lbs)

38622

60460

28814

36716

Wto (lbs)

206800

185600

176638

225960

39970 199829

37620 218461

37597 218723

Zweight

0.252

0.393

0.314

0.262

Convio

-0.242

-0.352

-0.08

0.0

0.227 -0.04

0.272 -0.211

0.272 -0.211
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a. Scenario 1 (infeasible) b. Scenario 2 (infeasible)

"l

d. Scenario 4 (feasible)

I

1

c. Scenario 3 (infeasible)

1

_._o, 7Fo,
e. Scenario 5 (infeasible) f. Scenario 6 (infeasible)

m

g. Scenario 7 (infeasible)

Figure 7.19. Nash Noncooperative Solutions (Approximately 1:1500 scale)
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In scenarios 4-7, the noncooperative solution shares the value of multiple design and state

variables with the leader/follower and cooperative formulation. Only three of the coupled

variables are found using the intersection of the players' RRS's. It is intuitive to think that

if the noncooperative formulation shares multiple variable values with another protocol, the

resulting solutions would be similar. But with the restriction of belonging to the

intersection of the RRS's, the quality of the solution is greatly decreased even when only

three variables are solved for. In fact the average increase in deviation function values from

in Scenarios 4-7 is 17.2%.

Scenarios 4 and 5: Nash vs. Stackelberg

In Figure 7.20, the deviation functions for each player are plotted for the Stackelberg

formulations (from Figure 7.16) and the respective Nash solutions, from Scenarios 4 and 5

in Table 7.15, which use variable values from each Stackelberg formulation. From Table

7.15, the noncooperative solution, using values from the leader/follower formulation with

the aerodynamics player as the leader, is indeed feasible but the noncooperative solution,

using values from the leader/follower formulation with the weights player as leader, is not

feasible. The deviation functions of each player in the noncooperative formulation (shown

in Figure 7.20) are worse for both players in both scenarios.

0.265

0.26

°= 0.255

0.25

_ 0.245

"_ 0.24

0.235

0.23

I

1=
o

c
"!
u.

c
2

Q
P,

,4

Aero Weights

Player

a. Aero as Leader

Figure 7.20. Deviation Function
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0.2

0.15

0.1
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• Noncooperative

I-I Weight as

Leader

Aero Weights

Player

b. Weight as Leader

Nash vs. Stackelberg
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Even thoughthe noncooperativeformulationsareusingfive of the samevariablesfrom

eachStackelbergformulation,becausethenoncooperativesolutionis constrainedto lie on

the intersectionof the RRS's,the player'scontrol over the remainingthreevariablesis

limitedto only rationalitynotoptimality.

Scenarios 6 and 7." Nash vs. Approximate Cooperation

In Nash Scenarios 6 and 7, variables from the approximate and full cooperative solutions

are used, respectively, in the noncooperative formulations. As shown in Table 7.15, the

noncooperative solutions in both cases are not feasible. In Figure 7.21, the deviation

functions for each player are plotted for the cooperation formulations (from Figure 7.11)

and respective Nash, from Scenarios 6 and 7 in Table 7.15, which use variable values from

the approximate and full cooperative formulations. In these scenarios as well, both

players' deviation functions increase in the noncooperative formulations for similar reasons

as in the previous scenarios.

0.35 .

• NoncooperatNe

[] Approximate

Cooperation

Aero Weights

Player

a. Approximate Cooperation

Figure 7.21. Nash and Approximate

0.35
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In summary, the noncooperativesolutionsare inferior to the solutions from the other

protocols. In other words,both players do considerably worse when noncooperation is

exercised. The results from all the protocols are compared to each other and to the existing

727-200 aircraft in the next section.

7.6 DISCUSSION OF RESULTS: COMPARISON OF PROTOCOLS

Nenlecal

Module A

The purpose of this section

to compare the results of

the individual protocol

results in the previous

section, Section 7.5, and

gain some insight into the nature of each protocol in design. A summary of the results is

given in Table 7.16.

Table 7.16. Comparison of Solutions and Existing Design

System Variable B N AC FC AL WL

1571 1554 1557 1870 1644 1700

114 122 123 136 114 108

Wing Area (ft 2)

Wing Span (ft.)

Fuselage Length (ft.)

Installed Thrust (lbs.)

Take-off Weight (lbs.)

150

39971

199829

119

33903

196512

116

33906

196687

107

36725

224206

150

41000

208126

Existing
Aircraft

136

48000

210000

BN: Best Noncooperative Solution
AL: Aerodynamics as Leader

AC: Approximate Cooperative
WL: Weights as Leader

FC: Full Cooperative
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Figure 7.22. Sample of Protocol Results as Compared to an Existing

Design

Since there were seven noncooperative solutions, depending upon the assumptions made,

only the best noncooperative solution (Scenario 4) is shown in Table 7.16. Also included

are the values for the existing 727-200 aircraft. In Figure 7.22 the deviation functions

corresponding to the protocols are shown. Some interesting observations can be made

from the results.

• The best "overall" results occur, as expected, when cooperation exists among the

players. The term "overall" is meant to imply that both players cumulatively do

well. It is interesting to note that whether full or approximate cooperation is

exercised does not affect the result significantly. Using approximate cooperation

345



provideseffectiveresultswith lesscomputationalinformation transferthan full

cooperation.

• Playeraerodynamicsdoesvery well (sameasin the cooperativeformulations)

whenhe is leaderin the leader/followerformulation,but at the expenseof the

weight player. Playerweight asthe leaderin the leader/follower formulation

actually doesbetter than he does in the cooperative formulations, but at the

expense of the aerodynamics player.

• In the existing 727-200, the aerodynamics player fares worse than every other

scenario. Player weight only fares worse when he is the follower in the

leader/follower formulation (AL) and in the best noncooperative formulation

(BN). This result is not supposed to be used in any means to suggest that the

727-200 aircraft is inferior in any sense. It only shows that using this model of

an aircraft (aerodynamics and weights player), the 727-200 is inferior. Certainly,

aircraft design involves other disciplines as well, such as structures and controls.

These disciplines were not accounted for in this work.

• The existing 727-200 values do not match exactly with any one protocol exercised

in this work. In the original study of the 727-200 aircraft (Mistree, et al., 1988),

the existing 727-200 values are reproduced using a single-level, simplified model

with continuous variables. However, the model used in this dissertation is a

multi-level, more detailed model that also uses discrete variables. Therefore, the

fact that the 727-200 design does not match one protocol solution exactly is not

surprising because of the partitioning of the system level problem in (Mistree, et

al., 1988), into smaller problems, the existence of updated analyses for each

discipline, and the restriction of discrete design variables for each discipline. The

study in this chapter is used to illustrate the rich insights and benefits that could be

generated when the behavior of the disciplines is modeled as strategic interactions
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usinggametheory. It is interestingto note thatif oneaircraft hadto chosenas

being closest to the 727-200 aircraft, it would be the aircraft from the

leader�follower formulation with weights as the leader. Configurations of the

727-200 and the weight as leader formulation are shown in Figure 7.23. The

significant differences are the values of the wing span, fuselage length, which are

larger in the weight as leader aircraft and thrust, which is larger in the 727-200.

' O _- O "

a. Weight as Leader

Figure 7.23. Aircraft Configurations

b. Existing 727-200

(Approximately 1:1500 scale)

Further insight into the different aircraft can be gained by exploring the values of the state

variables that describe the behavior of the aircraft. In Table 7.17, the significant state

variables for the aircraft are given.
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State Variable

U

Rf

PRI

Ldl

Ldt

AR

qL

qTO

SL (ft)

STO (ft)

Table 7.17. State Variables

BN FC AC

0.48 0.49 0.49

1.0

158

13.1

10.0

18.0

7.2

0.11

1.0

177

15.07

11.8

19.9

9.66

0.09

1.0

177

15.0

11.8

19.9

9.65

0.09

of Various Solutions

AL

0.46

1.1

155

16.0

12.6

20.7

9.89

0.09

WL

0.48

1.0

174

12.9

9.9

18.3

7.91

0.11

727-200

0.49

0.94

174

11.7

8.8

17.2

6.86

0.13

0.03 0.03 0.03 0.03 0.03 0.04

3942 4492 4498 4306 4473 4336

5124 6497 6500 6474 5774

BN: Best Noncooperative Solution
AL: Aerodynamics as Leader

4944

AC: Approximate Cooperative FC: Full Cooperative
WL: Weights as Leader

From the system requirements and compromise DSPs presented in Sections 7.2-7.3, the

desired values of the state variables are as follows.

Weight Hayer

U=0.5

Aerodynamic_ Player

Maximize Ldl, Ldt, Ldc

Both Players

qL = 0.03

Rf = 1.0

AR = 10.5

qTO = 0.03 SL = 4500 ft.

Maximize PRI

STO = 4500 ft.

Each state variable is investigated for the various cases.

Useful Load, U

The useful load fractions for each player in the FC, AC, WL, and 727-200 cases are close

to 0.50, but in the other aircraft they are less than 0.50. This is intuitive because in the AL
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case,theaerodynamicsplayerdoesnot leavetheweightplayerenoughfreedomto improve

U. In the noncooperativeprotocol, thetwo playersdonot reacha suitablecompromise,

andthereforeU is sacrificed.Thedifferencesin thevaluesof U arenot significantenough

to constitutedifferentaircraftbehavior,butusedto illustratethedifferencesin protocols.

Fuel Balance, Rf

The fuel balance goal is satisfied in the BN, AC, and FC cases, as well as in the WL case.

In the other cases, the fuel balance is not 1.0. In the AL case, again aerodynamics player

does not leave the weight player enough freedom to improve Rf. It is interesting to note

that the 727-200 value of Rf is the furthest away from 1.0. The differences in the values of

Rf are significant and would result in different aircraft behavior and/or configurations.

Productivity Index, PRI

In the FC, AC, WL, and 727-200 cases, the productivity index is the maximum, while in

the others it is significantly less. When weights is the leader (WL), the PRI is high because

PRI is a state variable of the weight player, and he strives to maximize it. In both

cooperative formulations, the players cooperate and achieve the highest PRI of the

scenarios. The differences in the values of PRI are significant and would result in different

aircraft behavior and/or configurations.

Lift-to-Drag ratios, Ld's

The lift-to-drag ratios are maximum when aerodynamics is leader (AL). This is interesting,

as when the players cooperate (FC and AC), the aerodynamics player sacrifices some of the

lift-to-drag to benefit the weight player in U, Rf, and PRI. When aerodynamics is only

concerned with his own requirements, the lift-to-drag ratios are maximum, but this

adversely affects the weight player, and in turn the "goodness" of the overall aircraft. The

differences in the values of the lift-to-drag ratios are significant and would result in

significantly different lift characteristics of the different aircraft.
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Aspect Ratio. AR

Similar to the lift-to-drag ratios, AR is closest to 10.5 in the AL case. When cooperation is

exercised, player aerodynamics realizes that he can sacrifice the AR to benefit both players.

The differences in the values of AR are significant and would result in different aircraft

aerodynamic behavior and/or configurations.

Climb Gradients, qk and q.T..Q

The climb gradients are both closest to 0.03 in the FC, AC, and AL cases. The climb

gradients are strong functions of the lift-to-drag ratios which are largely controlled by the

aerodynamics player. Therefore, the values of qL and qTO in the AL case are close to the

cooperative cases. The differences in the values of qL and qTO are not significant enough

to constitute different aircraft behavior, but used to illustrate the differences in protocols.

Landing and Take-off Field Lengths, sI_ and sTO

The landing and take-off field lengths are closest to 4500 ft. in the existing 727-200 case.

It is interesting to note that the BN case does fairly well in this regard as well. However,

since the BN case is inferior to the other scenarios in each of the previous behavior

variables, the BN case is certainly the worst case result. In the cooperative formulations,

the players sacrifice STO to satisfy the other requirements more closely. The differences in

the values of SL and STO are significant and would result in different aircraft behavior and

could possibly effect the capability of an aircraft to land and/or take-off from various

airports.

7.7 OBSERVATIONS AND IMPLICATIONS IN DESIGN

The results in Sections 7.5 and 7.6 have computational and theoretical implications in

modern design processes.
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• The leader/followerprotocolembodiesa sequential philosophy that principles

such as concurrent engineering (CE), and integrated product and process

development (IPPD) strive to make obsolete. However, with the design of

complex systems where design teams are located throughout the world and

governed by different management with different objectives and priorities, true

concurrency is very difficult. Therefore, tools and methods that accept and

engage in some form of sequential processes have important roles in complex

systems design.

• The noncooperative case (BN) used in Section 7.6, is the best noncooperative

case, but is still inferior to the other solutions. Therefore, noncooperation should

be avoided at all costs. Even largely sequential processes, as modeled in the

leader/follower protocol are shown to be more advantageous to the final design

than the noncooperative case.

• The computational requirement of constructing a player's rational reaction set is a

direct function of the number of variables needed from another player. In the

aircraft study, player aerodynamics needed 3 variables from player weights, and

therefore 15 simulations were required to span the unknown design space. Player

weights needed 5 variables from the aerodynamics player, and therefore 43

simulations were required. If the analysis code is expensive to run, then running

43 versus 15 simulations may prove to be costly. Of course, the number of

interactions should be minimized, but completely decoupling a problem in

complex systems design such as aircraft is virtually impossible.

• The noncooperative protocol embodies design scenarios where the design groups

must make some rational assumptions about the other groups. This is one end of

the cooperation spectrum. Although it is not explored here, introducing another

player, a higher level "performance" or system-level player, whose primary duty
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is to ensurethat the playersstrive to meetoverall systemobjectivesalongwith

their own localobjectiveswouldbea feasiblestrategyto modelthemanagement-

engineerhierarchyatanygivenindustry.

• Boeingin its recentlypublicizedsuccessin thedesignof the777aircrafthasmade

philosophical and computationalstrides to ensuring cooperationat both the

personallevel andat the mathematical(analysis/synthesis)level. Although it is

not a seamless,fully cooperativeprocess,it certainlycouldbeconsideredaform

of approximate cooperation, which is shown in this work to be a worthy

implementation.

The results and observationspresentedin this chapter have been driven largely by

descriptive motivations, as opposed to prescriptive motivations. In other words, in this

work the resulting designs are described when various design process structures are used,

or when different strategies are used by different design teams. In this work, the intention

is not to prescribe remedies to the noncooperative or leader/follower relationships, but

describe the results if these relationships exist. And since relationships such as these

certainly exist and will continue to exist in modem design of complex systems, the

descriptive power of this work is beneficial to explore certain scenarios and the inherent

tradeoffs between them.

7.8 A LOOK BACK AND A LOOK AHEAD: A SUMMARY OF

OBSERVATIONS

In this chapter, Phase III of the strategy for verification and implementation of this

dissertation is accomplished. This represents the final piece of the puzzle of this
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dissertation,as representedin Figure 7.24. In this chapter, an aircraft casestudy is

exercisedusingthealgorithmestablishedin Chapters4-6. Chapters1-6haveprovidedthe

basis,foundations,hypotheses,and developmentsfor theexercisingand verification of

Chapter7.

Phase II1: Exercising and
Verifying the Algorithm

IChapter 71

Phase Ih Testing the
Research Hypotheses

Figure 7.24. Frame

Phase h Foundations and
Motivations

of Reference: Chapter 7

The following observations are summarized based on the demonstration and verification of

the algorithm for a passenger aircraft. Similar to the summaries in Chapters 4, 5, and 6,

the observations are classified into categories for verifying different posits.

Hypothesis I Posits (Lexicon classification)

Verifying Posit 1.1 - domain-independent lexicon for mulfidisciplinary_ design

In Section 7.3, the lexicon is demonstrated as applied to the aircraft study. Its

applicability to complex systems characterized by multiple design teams each with

their own analysis, synthesis, and optimization strategies is demonstrated.
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Verifying Posit 1.2 - Game Theory in multidi_ciplinary design problem formulation

In complex, multidisciplinary design, the problems are too large to handle with one

design team. Typically multiple design teams that may be separated geographically

are used. Game theoretical constructs are used to classify the teams and their

computer decision support tools based on their role in the design process. In

Section 7.3, this is demonstrated for the aircraft study.

Hypothesis H Posits (Game Theory formulations)

Verifying Posit 2. I - Design processes abstracted as games

In Section 7.2, the models (compromise DSPs) of the two players are given. Each

players' model is a function of variables, both design and state, from the other

player. In other words, the decisions made by one designer affect the decisions

made by the other player. This is precisely the definition of a game, therefore

applying game theory to complex design problems is a natural extension.

Verifying Posit 2.2 - Approximate cooperation

In Section 7.4.1, the procedure for constructing approximations of nonlocal

variables using the GSE and Taylor series is demonstrated. Since the actual values

of the nonlocal variables are not used, but only approximated, it is considered to be

an approximation of full cooperation.

Verifying Posit 2.3 - Taylor series approximation of nonlocal state equations

In Section 7.5.1, the accuracy of using first order Taylor series is shown. The first

order approximations are shown to be very good representations of the actual

variables of another player for the aircraft design problem. There is evidence to

suggest that first order approximations may be adequate representations of nonlocal

information, needed by a designer. To empirically or theoretically prove this posit

would require significant mathematical investigations of a large number of
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problems. In anycase,thehighcostof transferringanalysisroutinesandequations

is avoidedbyusingapproximationsof theexpensivenonlocalanalyses.

Verifying Posit 2.4 - Response surfaces used to approximate the Rational Reaction Sets

In Section 7.5.2, the RRS's of the players are presented which are constructed

using response surfaces. The effectiveness of a designer's ability to use the RSS's

to embody and predict another decision maker's strategy is verified for the aircraft

design problem in Section 7.5.2. Therefore, in complex systems design, it is

possible to approximate an otherwise unknown player's RRS using second order

response surfaces. The RRS of a player in complex systems design is very difficult

to compute exactly. From the aircraft study, there is evidence to suggest that using

second order response surfaces may be adequate. A proof of any kind of this posit

would require significant mathematical investigations of a large number of

problems.

Verifying Posit 2.5 - The compromise DSP as the fundamental construct

The core compromise DSP of each player is presented in Section 7.2. For each

game protocol, the core compromise DSP of each player is massaged in the

appropriate manner to account for the interaction (or lack of interaction) between the

players. Only the given information of each player is changed in the various

protocols according to the players' roles in the design process. The find, satisfy,

and minimize constructs along with the local analysis remain the same as in Section

7.2. The augmented compromise DSPs of each player in each protocol are shown

in Figures 7.2, 7.5, 7.6, 7.7, 7.8, and 7.9 in Sections 7.4. i-7.4.3. Although only

the Archimedean formulation of the deviation functions is exercised in this study,

the preemptive formulation will be exercised in future studies. The compromise

DSPs of each player do not change using either the Archimedean or preemptive

forms. Only the solution scheme in ALP or FALP gets adjusted. This is a major
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advantageof the compromiseDSP:to capability to modelmultiobjective design

problemsand explore the tradeoffs. The compromiseDSP is usedasa domain

independent,fundamentalmathematicalmodelfor eachplayerfor everyprotocol.

Hypothesis III Posits (Solution scheme)

Verifying Posit 3.3 - The Foraging-directed ALP Algorithm

The FALP Algorithm has been used in Section 7.5 to solve the full cooperative and

leader/follower protocol formulations. Both players' models consist of discrete and

continuous variables, and the capability to handle both in an optimization context is

demonstrated.

In the next chapter, the dissertation is summarized. The primary contributions, a critical

evaluation, and areas for future work are presented.
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CHAPTER 8

ACHIEVEMENTS AND RECOMMENDATIONS

This dissertation is motivated by the need to understand, classify, model, and solve

design problems of complex systems characterized by multiple interacting disciplinary

design teams who may or may not cooperate. This dissertation represents efforts to

incorporate the concepts of Game Theory, Multidisciplinary Design Optimization, and

Decision-Based Design into a framework for decision support in the design of large scale

systems. In this chapter, a review of the achievements is presented, a critical evaluation

is provided, and areas of future work are identified.
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8.1 ACHIEVEMENTS

A summary of the dissertation is provided in Section 8.1.1. The achievement of the

principal goals of the dissertation is given in Section 8.1.2. In Section 8.1.3, the

fundamental questions and the answers that are provided throughout the dissertation are

reviewed.

8.1.1 A Summary of this Dissertation

This dissertation is entitled "An Algorithm for Integrated Subsystem Embodiment and

System Synthesis." By using the algorithm, complex, multidisciplinary systems are

classified, and the subsystem problems are solved and coordinated using various

interaction protocols in order to obtain a system level design. Based on the motivation

and background of this work, the foundations of this dissertation are laid in Chapter 1.

Based on the needs identified for developing an algorithm to handle subsystem

embodiment and system synthesis, the principal goal for this dissertation is

Develop a framework for the decision support of formulating a
multidisciplinary design problem, decomposing the problem, modeling the
resulting interactions according to realistic assumptions, and solving and
coordinating the disciplinary mathematical models.

To achieve this goal, the ideal aspects of such an algorithmic framework are identified by

examining the nature of complex systems design in the context of multidisciplinary

design optimization. This framework is developed by focusing on four research areas,

namely, Subsystem Interaction, Mixed Discrete/Continuous Optimization, Problem and

Process Classification, and Nonconvexity. For each of these areas along with related

research areas, the research background, state-of-the-art, and opportunities are identified

in Chapter 2.
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Basedon theneedsandresearchopportunitiesin complexdesignidentified in Chapter2,

four hypothesesandelevensupportingpositsareidentifiedin Chapter3 asthetheoretical

foundationsand assumptionsfor the developmentof the algorithm. Thesehypotheses

involve the integration of game theoretical constructs, first and second order

approximation concepts,and a hybrid solution schemeall with the multiobjective

mathematicalconstruct,thecompromiseDecisionSupportProblem(DSP). In Chapter3,

for eachhypothesis,ramificationsareprovided, the necessaryliterature backgroundis

presented,andverification guidelinesfor eachsupportingposit arediscussed.Basedon

the hypothesesand their supportingposits, theoverall structureof thealgorithm is also

presentedin Chapter3. In Chapters4-6 the researchhypothesesaredemonstratedand

verified according to steps 1-3 of the algorithm, respectively. In Chapter4, various

examples,including the designof a pressurevesseland passengeraircraft areusedto

verify thefirst stepof thealgorithm,problemandprocessclassification. In Chapter5, the

designof a pressurevesselis usedto verify the secondstepof the algorithm, modeling

the subsysteminteractions. In Chapter6, the design of a compressionspring and a

pressurevesselareusedto verify thethird andfinal stepof the algorithm, thesolutionof

mixed discrete/continuousdesignproblems.

Having testedthehypothesesusingexampleproblems,thedesignof a subsonictransport

aircraft is usedin Chapter7 asthemotivatingstudyto furtherdemonstrateandverify the

applicationof thealgorithmin acomplexsystemsdomain. Eachstepof thealgorithm, as

appliedto theaircraft problem,is presentedandthe resultsareexploredin thecontextof

complexsystemsdesignin amodemdesignenvironment. Chapter8 is theclosureof the

dissertation.
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8.1.2 Achieving the Principal Goal

Consistent with the principal goal as identified in

Sections 1.3.1 and 8.1.1, the algorithm developed in

this dissertation is a three-step framework for

realizing complex systems when cooperation may or

may not exist. A detailed description of the algorithm

,5t.._.__eep_11.----7 Hypothesis l

_te__, ,P'-_ _7 " Hypothesis_ll i

r3 _..-- Hypotheses m ana Iv

Set of Design
Solutions

is provided in Section 3.1. The major steps of the

algorithm and their relationships are illustrated (Figures 1.6 and 3.2). Associated with the

development of the algorithm are techniques for decision support of designers in

designing complex systems:

• a three-level lexicon for the classification of the design of complex systems

and their associated design processes (Section 4.2).

• techniques for implementing game theoretical protocols in the design of

complex systems characterized by multiple disciplinary design teams (Section

5.5).

• an effective solution scheme for mixed discrete/continuous design problems

(Section 6.4).

• a formal nonlinear optimization proof of the characteristics of the g-function

(Section 3.5).

The partial S.,,k_

computer

infrastructure for

implementing the

algorithm is

illustrated in Figures 1.7 and 3.4. The major components of the existing computer

infrastructure include four processors (a nonlocal approximation processor, a design of
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experiments/responsesurface/rationalreactionset processor,and a solution processor),

eachintegratedwith theprimaryprocessor,thecompromiseDSP(seeSection3.1.2).

The usefulnessof the algorithm is illustrated by discussingtypes of applications that

couldbenefit throughtheuseof its varioustechniques(Section1.4.1). The usefulnessis

also illustratedusinganexampleapplication,the designof a passengeraircraft (Section

7.5). Specifically,thealgorithmcanbeusedto

• classify different approachto formulating the designof a complex system,

includingproductandprocessdescriptors,

• formulatedisciplinaryproblemsaccordingto thedisciplines'realistic roles in

adesignprocess,

• effectively solve disciplinary problems which consist of discrete and
continuousvariables,

• resolve the coordination of various disciplinary problems basedon game

theoryprinciplesof strategicinteractions.

The implementationsof thesedifferent activities havebeendemonstratedusing various

verification examplesanda motivating casestudy. From theachievementsreviewedin

this section,it is concludedthattheprincipalgoal is achieved.

8.1.3 Addressing the Fundamental Questions

The achievements documented in this dissertation are also highlighted using the four

fundamental questions introduced in Section 1.3.1. To address these questions, the

research opportunities are identified in Chapter 2. The research hypotheses, which, along

with supporting posits, address these questions, are presented in Chapter 3. In Chapters

4, 5, and 6 the research hypotheses are developed and verified using simple examples in
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orderto understandtheimplicationsandresults. In Chapter7, the hypothesesarefurther

demonstratedandverified usinga casestudy.

1)

2)

How can complex system design problems and processes be described and classified

using an intuitive decision support lexicon ?

It is discussed in Section 1.1.1 that it is necessary to perform a type of "meta-

design" before actually formulating and solving complex design problems. In this

dissertation, this meta-design takes the form of a lexicon used to classify the

product and process under consideration. The classification provides a basis of

comparison and communication among researchers and designers in

multidisciplinary design. The use of entities from the Decision Support Problem

Technique and Game Theory is proposed as a means to augment a classification

system. In Section 4.2, the overall, three-level classification lexicon is presented.

In Section 4.3, various examples are classified and mapped into an existing

classification to illustrate the efficacy of the lexicon. Domain and time-

independence, two requirements of useful lexicons, are demonstrated. In Section

7.3, representative classifications of a subsonic passenger aircraft are shown. The

classification can be rapidly changed to reflect changes in system and process

structure. The classification can be used as a decision support tool to guide the

design process.

How can realistic interactions among design teams and their associated analysis

and synthesis tools be modeled and incorporated into a design process?

It is discussed in Sections 1.1.1 and 1.1.2 that the design of complex systems

involves multiple design teams who each use their associated analysis and

synthesis tools. Coordination of these teams is not a trivial task. Many times,

although total cooperation is ideal, more practical relationships exist. These
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relationships, it is assertedin Section 3.3.3, can be modeled using game

theoreticalconstructs.The four gametheoryprotocolsapplicableto design, full

cooperation(ideal), approximatecooperation(practical),noncooperative(worst

case),and leader/follower (sequential),are demonstratedin Section 3.3.4. In

Section 5.5, techniqu.esto formulate each protocol in the context of the

compromise DSP are developed and presented. Various approximation

techniquesand solution schemesare used for each protocol according to the

amount and type of information availableto eachplayer. In Section5.6, these

developmentsareverified usingthegame-theoreticaldesignof a pressurevessel.

In Section 7.4, the developmentsare illustrated for a representativecomplex

system.Usingthesetechniques,differentdesignscanbeconstructedaccordingto

different design scenariosand design process structures. Rich benefits, as

illustratedin Sections7.6 and7.7,canbegeneratedfrom comparingtheresults.

3) How can mathematical models which consist of continuous, discrete, and integer

variables be solved and coordinated?

It is discussed in Section 1.1.3 that typically in complex systems, the system

variables are continuous, integer, and discrete. Solving models with these types

of variables presents mathematical challenges in classical optimization theory. A

solver is developed based on the notion of animals foraging for food in the wild.

The empirical observations with which the foraging heuristic solver is built upon

are illustrated in Section 6.2. In Section 6.3, the integration of the discrete solver,

foraging, and the continuous solver, the ALP Algorithm, is detailed. In Section

6.5, the effectiveness of the FALP Algorithm is demonstrated using two well-

studied examples, the design of a compression spring and the design of a pressure

vessel are given. In Section 7.5, the approximate cooperative and the
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4)

leader/follower formulations of the aircraft case study are solved using the FALP

Algorithm.

Is the g-function of the ALP Algorithm a good transformation of nonconvex

functions into well.behaved convex functions?

It is discussed in Section 1.1.3 that behavior or state equations which describe

complex systems are often highly nonlinear. Handling models with these

equations presents mathematical challenges in optimization theory. The g-

function (Mistree, et al., 1993a) has been asserted as being an effective

transformation of nonconvex functions into well-behaved convex functions. In

Section 3.5, a formal proof of induction is given, demonstrating that the g-

function does not, in theory, transform nonconvex functions into convex

functions. This is not to say that in small regions, the g-function numerically may

produce valid results, but across large domains, and in general, the g-function

theoretically is not effective.

8.2 CRITICAL EVALUATION AND RECOMMENDATIONS

The four contributions documented in this dissertation, corresponding to the four

hypotheses are given as follows.

(J) A three-level lexicon for the classification of the design of complex systems

and their associated design processes.

(_) Techniques for implementing game theoretical protocols in the design of

complex systems characterized by multiple disciplinary design teams.

An effective solution scheme for mixed discrete/continuous design problems.

@ A formal nonlinear optimization proof of the characteristics of the g-function.
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In this section, each contribution is evaluated, the limitations of application are presented,

and recommendations are made for improvements.

0) Classification

In Section 4.2 a three-level classification system for complex, multidisciplinary design

problems is presented. The developments associated with the classification scheme are

used in Step 1 of the algorithm documented in this dissertation (Section 3.1.1). The

advantages of the classification include:

• The classification can be used to classify the types of analysis and synthesis tools

being used by different design teams and the relationships among the design teams,

as illustrated in Sections 4.3 and 7.3.

• By using domain independent linguistic entities, presented in Section 4.2, it is

applicable to a large set of systems, regardless of the level of technology present.

There are certain limitations of the classification, which are described in the following.

• There does not exist a computing infrastructure for this portion of the algorithm.

There are pieces for the other parts of the algorithm, but one interactive

infrastructure for the entire algorithm does not exist. Some assertions are made

about the development of such an infrastructure in Chapter 4, but it is

acknowledged that to have industrial application capability, a computer

infrastructure is necessary. The computational support exists for each step of the

algorithm, but for the most part, they are isolated entities.

• The classification is applicable at a given point in a design process. No information

concerning the sequence of decisions required in a complete design process is

given.
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Development and application of the classification also helped stimulate future areas of

exploration, both conceptually and at an implementation level, including:

• The integration with an existing design guidance system would create a useful

interface between the designer and the associated analysis and synthesis tools

supporting the designer, as presented in Section 4.4.

• The linguistic entities describing coupled DSPs in the DSP Technique embody the

same information as the entities used in the Bailing-Sobieski scheme. This is

demonstrated by mapping the two sets of entities onto each other using various

examples in Section 4.3.

Game theory_ interactions

In Section 5.2, it is asserted that complex systems design can be abstracted as a series of

games among players who are embodied by disciplinary design teams and their

associated analysis and synthesis tools. In Section 5.5, the techniques to model the

interactions between design teams and their tools in complex systems design are

presented. These techniques are applied to design problems in Sections 5.6 and 7.4. The

developments associated with the game theory techniques are used in Step 2 of the

algorithm documented in this dissertation (Section 3.1.1). The advantages associated

with this contribution include:

• The techniques can be used to abstract the interactions among design teams as a

series of games, as defined in Section 5.3. This abstraction occurs at a

mathematical level though, as opposed to a personal level. Team building, TQM,

and CE principles are used to help bridge the personal interaction gaps, while in this

dissertation, game theory constructs are used to bridge the gaps at the mathematical

analysis and synthesis levels.
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• The results provide a foundation with which to build strategies in order to design

and build the best system subject to product and process constraints. The

consequences of different strategies are explored in Chapter 7.

• This contribution is one of the primary, original contributions documented in this

dissertation.

There are certain limitations identified with the developments and techniques associated

with this contribution which are described in the following.

• The first concern is the practical implementation of the work. In this dissertation,

verification studies of the hypotheses and posits are performed using various

example problems and one case study to support the work presented. Because of

the novelty of developing game theory constructs in complex systems design,

however, application to actual industrial systems is not accomplished. The case

study in Chapter 7 consists of only two disciplines, aerodynamics and weights, but

actual aircraft design consists of these disciplines along with others such as

structures and controls.

• There typically is a system-level coordinator at the engineering or management

level who tries to ensure communication and cooperation among the design teams

and their associated analysis and synthesis routines. In this work, it is assumed that

the design teams are carrying out a strategy dictated by the structure of the

management, organization, or geography. In an industrial context it would be

pragmatic to add another player to the games studied here, a system level "overall

performance" player whose sole purpose is to ensure that the players satisfy the

system level requirements along with their own disciplinary requirements. Possible

formulations to facilitate this type of arrangement are given in Section 8.3.

• There are limitations of using some the approximation techniques in this

dissertation. One limitation in the approximate cooperative formulation stems from
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the fact that, since derivativesareusedin a Taylor seriesapproximation(Section

3.3.4),discretevariablescannotbehandled. Derivativesof functionswith respect

to discrete variables do not exist. Therefore, in the approximate cooperative

formulation, only continuousvariablescanbeused. Another limitation is the fact

that the Rational Reaction Set of a player is constructedassuming continuous

variables (Section 3.3.4). The aircraft study includes discrete variables, but

constructing response surfaces of functions of discrete variables is a difficult task

without an effective solution. In the noncooperative formulation the solution is

found by taking the intersection of a set of smooth, continuous nonlinear response

surfaces that make up the players' RRS's. However, since discrete variables are

being solved for using the surfaces, there is no guarantee that the intersection will

lie at one of the discrete points in the design space. Therefore, only continuous

variables can be used in the noncooperative formulation. The RRS is used in the

leader/follower formulation as well. Therefore, when the follower is constrained to

behave as her RRS dictates, it may not result in an allowable discrete value.

• Evidence to suggest acceptance of the posits supporting this hypothesis is

developed in Chapters 5 and 7, but at this point, the supporting posits and

Hypothesis II cannot be proven per se. The techniques and developments are

shown to work well for certain verification studies. This does not mean that they

will necessarily work for all types of problems or even a large class of problems.

For instance, first order Taylor series approximations are shown to be effective

representations of nonlocal state variables in the aircraft study in Chapter 7.

However, this does not rule out the possibility of needing second order

approximations for more complex analyses. Further, second order response

surfaces are shown to be effective representations of a player's rational reaction set

in Chapters 5 and 7. However, this also does not rule out the possibility of needing
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third or fourth orderresponsesurfacesfor morecomplexproblems.The conditions

under which first order Taylor series or second order responsesurfaces are

applicableand effective hasnot beenestablished. Extensiveverification studies

both from empirical andtheoreticalstandpointsmustbeconductedto furtherverify

thedevelopments.Representativestudiesof this typeareprescribedin Section8.3.

Developmentand applicationof the gametheoretical techniquesalso helped stimulate

future areasof exploration,bothconceptuallyandatan implementationlevel, including:

• In Section7.6, thesetof solutionsfor thegametheoreticalprotocolsarediscussed.

It is shown that the cooperative protocol, with deviation functions 0.242 for

aerodynamicsand 0.214 for weights,is the bestsolution for both players. If one

playerdeviatesfrom this solution,it will adverselyaffect theotherplayer'ssolution.

For instance,the leader/followerprotocol with weights as the leader, the weight

playerdoesbetterthanin thecooperativeprotocol (0.201),but attheexpenseof the

aerodynamicsplayer,whosedeviationfunction increases(0.253). However, if the

deviation functions of both players are added to produce an overall deviation

function of the system, given as

Zoverall = Zaero + Zweights

then the overall deviation functions in the cooperative and leader/follower

formulations are

Cooperative: Zoverall = 0.453

Leader/Follower with Weights as Leader: Zoverall = 0.456

and the formulation with weights as the leader is the best scenario. However, the

aerodynamics player may not be pleased with this decision, as she can improve her

status. It is interesting to formulate the measure of overall goodness in different

ways:

choose the solution with collective stability (cooperative),
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allow individual playersto sufferat theexpenseof theoverall system,or

give priority to certainplayer'sdeviationfunctionsasbeingmoresignificant

in thesuccessof thesystem.

Of course,thedeviationfunctionsof eachplayermustbenormalizedin sucha way

to provide aconsistentmeansof comparison.Theproblemof how to evaluatethe

overall goodness of the system is left to further study of the

management/engineeringhierarchy. In this work, it is assumedthat the players'

deviation functions aresomewhatin isolation. That is, although the players are

trying to maximizetheoverall goodnessof theaircraft,the local deviationfunctions

are not compatible. The goodnessof the overall aircraft is measuredusing the

individual deviation functions of the players.

• Another practical issue is the scalability of the work. In preliminary studies,

increasing the number of players in a game (the number of disciplinary design

teams) does not pose difficult theoretical or computational problems. Game Theory

is as applicable to n players, as it is to 2 players. A game could have multiple

leaders and multiple followers, who may cooperate or not. The same constructs and

developments documented in this dissertation can be applied to multi-player games.

Possible applications to three-player games are discussed in Section 8.3.

• Another scaling issue, increasing the fidelity of each player's analysis model,

however, may pose greater difficulty, since the approximation concepts used in this

dissertation assume that access to the analysis is available. With black-box analysis

codes, the accuracy of the local and nonlocal derivative representations may

decrease. This issue is related to the possible theoretical and empirical

investigations discussed in Section 8.3
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(_ FALP solution scheme

In Section 6.3, the Foraging-directed Adaptive Linear Programming Algorithm is

presented. The notions of foraging in the context of optimization are discussed in Section

6.2.3. The FALP Algorithm is used to solve design models that consist of both discrete

and continuous design variables in Sections 5.6 and 7.5. The developments associated

with the FALP scheme are used in Step 3 of the algorithm documented in this dissertation

(Section 3.1.1). The advantages of the FALP Algorithm include:

• Application of the FALP Algorithm has been shown to produce effective results,

compared to previous studies of mixed discrete/continuous problems. These results

are documented in Section 6.4.

• FALP has the capability of handling multiple goals in either an Archimedean or

preemptive formulation. The Archimedean form of a deviation function is used in

Section 7.5.

• This is one of the primary contributions documented in this dissertation.

There are certain limitations identified with the developments and techniques associated

with this contribution which are described in the following.

• The FALP solution scheme is based on heuristics that dictate how to search the

design space. The FALP Algorithm is certainly a "smart" algorithm, as it based on

the behavior of intelligent animals (Sections 6.2.3 and 6.3). However, it sacrifices

efficiency for intelligence. Since foraging is an unassuming algorithm, it will

continue to search until it reaches a maximum number of neighborhood searches.

Determining the best stopping criteria has not been fully investigated. Possible

studies to determine the best stopping criteria both empirically and theoretically are

discussed in Section 8.3.
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• Evidence to suggest acceptanceof the posits supporting this hypothesis is

developed in Chapters 6 and 7, but at this point, the supporting posits and

Hypothesis III cannot be proven per se. The techniques and developments are

shown to work well for certain verification studies. This does not mean that they

will necessarily work for all types of problems or even a large class of problems.

Extensive verification studies both from empirical and theoretical standpoints must

be conducted to further verify the developments. Representative studies of this type

are prescribed in Section 8.3.

Development and application of the FALP Algorithm also helped stimulate future areas

of exploration, both conceptually and at an implementation level, including:

• The foraging heuristic is based on empirical observations of animals foraging for

food. It would be interesting to update the foraging heuristic solver using new

constructs from actual foraging observations, in order to make the algorithm

"smarter" or more efficient in its search processes.

• The foraging heuristic combines notions from the Tabu Search, Genetic Algorithms,

and Simulated Annealing, all heuristic solution schemes. It would be interesting to

classify the fundamental assumptions and constructs of each and strive to create a

class of heuristics which are based on the same meta-heuristics at an abstract level.

(_) Convexity

In Section 1.2.2, the g-function of the ALP Algorithm is introduced. In Section 3.5, a

proof is developed concerning the capability of the g-function to transform nonconvex

equations into well-behaved convex functions. The advantages of this contribution

include:

• A formal proof, disproving the hypothesis that the g-function of the ALP Algorithm

is developed. Although it discounts an earlier assertion, the g-function is currently
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a recommendedoption in the ALP Algorithm. Therefore, the quality of the

solutionsin thedissertationis notcompromisedin anyway.

• By usingthe relaxedconvexity condition presentin theALP Algorithm, a stronger

versionof theproof is developed.

The limitation with the proof is that only strictly convex or concave functions are

investigated.Functionswhich areneitherconvexor concavearenot investigated,but are

commonin complex systemsdesign. Further, it would bebeneficial to the ALP (and

FALP) Algorithm to utilize an effective transformationfunction to handlenonconvex

functions. In small regions, numerically the g-function may perform well, although the

theoretical basis of the function has been disproved in this work. Further investigations

of changes to the g-functions or development of a new function are warranted.

In the next section, areas of future work to address many of the issues addressed in this

section are presented. Some are conceptual in nature, while others are largely empirical

and the processes with which to conduct the studies are prescribed.

8.3 FUTURE WORK

Based on the critical evaluation in Section 8.2, some areas of future work are

recommended in this section:

• Moving from single company to multiple company interactions. One of the

operating assumptions of this work is that the disciplinary teams (and support tools)

which are interacting each work for the same company. Therefore, their general

priority is to build a good product which maximizes their company's profit. But in
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modernengineeringpractices,designteamsfrom multiple companies must often

interact and coordinate in order to design a complex system. In this case, each

company would like to maximize their own profit, regardless of whether such an

outcome comes at the expense of another company's profits. Exploitation may

replace cooperation as the best alternative. This stimulates the question, "Is there a

situation when noncooperation is advantageous to a player?" In simple games such

as the prisoner dilemma's (Axelrod, 1984, Gleick, 1986, Nowak, et al., 1995), a

player will benefit by not cooperating for one play of the game. This single player

benefit will occur at the expense of the other player, who does not fare as well. In

this work, game theoretical constructs, borrowed largely from economics

applications, are defined and applied in the context of complex systems design. In

the future, by addressing multiple companies and the profit-making strategy of

each, the gap between design engineering and management/economics may be

bridged to some extent. Management could even be introduced as a player in the

game, since they certainly have some influence on the design product and process.

If this influence and resulting interactions with engineers could be modeled and

quantified, the results could be very beneficial to companies in organizing their

design processes both from a management and an engineering perspective. This is a

natural extension in design as well. Consider the following excerpt from De Bono

(De Bono, 1985) who seems to ponder this very idea:

The plain purpose of the third party is to convert a two-dimensional fight into a

three-dimensional exploration leading to the design of an outcome... The third

party is not an addition or an aid but an integral part of the process.

374



• Identifying natural leaders andfoUowers. It is shown in Chapter 7 that both players

do better when they are the leader instead of the follower. In other situations,

disciplines may do better as the follower. So the question is asked, under what

circumstances can a discipline be identified as a good leader or a good follower?

Because of the complexity of the disciplinary models, this may be an unanswerable

question in most scenarios. Yet if it can be answered under certain conditions, it

could benefit the organizational structure of a company that, in large part, dictates

how the design teams interact. Further, one of the limitations identified in Section

8.2 of the application of the game theoretical developments, is the lack of a high-

level player whose primary objective is to ensure that the disciplinary players meet

subsystem as well as system level objectives. This formulation could take many

possible forms depending upon the organization of the company, information

transfer, or geographical location. In Figure 8.1, three possible formulations are

shown.

LEADER

ISystem Level 1

/ }
WITH EACH OTHER

(a) Two-level

ystem Level 1

\

EVERYONE COOPERATES WITH

EACH OTHER

(b)Single-level

2}

T
LEADER iscipline 1

FOLLI_owER IDiscip,ine 2 }

(c) Three-level

Figure 8.1. Possible Formulations with a Third Player

In Figure 8.1 (a), the system level player is the overall leader, while the disciplines

are both followers. However, at the follower level, the followers could cooperate

with each other as well. Therefore, multiple game theory protocols could exist
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amongtheplayersin onegame. In Figure 8.1 (b), all threeplayersnow cooperate

with eachother. In this case,theresponsibilityof thesystemlevelplayer to "guide"

thedisciplinaryplayersmustbeexplicitly formulatedin themathematicalmodel,as

opposedto the previouscase(Figure8.1 (a)), whenasthe leader,thesystemlevel

player has the advantageof knowing how the disciplinary playerswill react. In

Figure8.1(c), thesystemlevel playeris againthe leader,but now discipline 1is the

follower to thesystemlevel leader,but is alsotheleaderto discipline2. Discipline

2 is the lowest level follower. This formulationwould be applicableto sequential

processes,and scenarioswhen the systemlevel player may not know anything

about discipline 2, but must rely on discipline 1 to makedecisions,reflecting its

knowledgeof its follower, discipline2.

• Investigation of the applicability of the techniques to classes of problems. Many of

the techniques developed in this dissertation have been verified using a number of

small verification examples. The techniques have been shown to work well for

these problems, but the unanswered question is under what conditions, or for what

class of problems would the techniques work? In order to answer this question with

any kind of confidence, detailed investigations are required. It is asserted that these

investigations could take one of two forms: empirical in nature or theoretical in

nature. These two perspectives are found on opposite ends of the spectrum of

possible investigations for this type of problem, as illustrated in Figure 8.2
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Figure 8.2. Spectrum of Investigations

On the empirical side repeated numerical experiments are typically run where small

perturbations are made and results are continually generated and analyzed. While

on the theoretical side, general relationships between problem parameters are

constructed and broad, formal proofs are formed for types of problems. Ideally,

both perspectives could be taken and at some point, there would be a threshold

where the conceptual and applied investigations would meet, creating a seamless

study of feasibility of a given technique to a class of problems. These types of

studies could be conducted for various techniques developed in this dissertation,

including:

21 applicability of first order Taylor series approximations to a class of

problems. When would second order approximations be necessary?

21 applicability of second order response surfaces to approximate the

rational reaction set of a player. When would an inflection point be

advantageous?

21 number of neighborhoods searched in the foraging search. The number

of neighborhoods searched is a measure of the length of the foraging

search. What percentage of the design space searched produces the best
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results? This issueis returnedto in greaterdetail in the next areaof

futurework.

Issuesof computationaldemandmustbeaccountedfor in both types of studies. For

instance, although, in a theoretical study, it may be shown that a fourth order

response surface is the best approximation for a certain class of problems, the

computational demand of constructing a fourth order response surface may be too

large to warrant practical implementation. Therefore, a practical perspective must

always be maintained concerning analysis and synthesis computational limits.

Increasing the efficiency of the foraging search. In the current foraging search, the

number of neighborhood searches in the foraging portion increases proportionally to

the size of the problem (dictated by the number of variables and the number of

possible discrete values). The number of neighborhood searches is a measure of the

efficiency of foraging. If the best solution can be found in x searches as opposed to

y searches, where x < y, then foraging is more efficient by using x searches. With

problems where the best solution is known, it can be determined what the minimum

number of neighborhood searches required to find the best solution is. However,

with problems where the solution is unknown, determining the best number of

searches is a more difficult problem. This problem can be investigated by taking

one of the two approaches as discussed in the previous area of future work. From

an empirical approach, the parameters of the algorithm can be changed repeatedly

for a number of problems of varying size. The "best" set of parameters can be

found by analyzing the effectiveness of the resulting solutions and efficiency of the

search. From a theoretical approach, there are really two different approaches

possible. First, since the search is based on the foraging of animals for food in the

wild, observations of animals could be made and formalized in a model. However,
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this approachis fundamentallyflawedby thefact thatanimalseatwhat theyseeand

continueto searchfor morefood. Therefore,theystopwhentheir brainsreceivea

messagethat enoughfood hasbeeneaten. The foragingsolution schemeshould

stopwhenit hasfoundthebestor anacceptablesolution. It cannotstopwhenit "is

full." Thus,asecondtheoreticalapproachcould be takenthough. In this approach

thedefining characteristicsof the foragingsearchcould bedefinedasfunctionsof

thedefining characteristicsof a classof problems. The defining characteristicsof

theforagingsearchinclude:

thenumberof neighborhoodsearches,

:l thesizeof theneighborhood,and

:_theproportionof thedynamicmemoryreduction.

The characteristicsof aclassof problemsinclude:

thenumberof variables,

:_thenumberof possiblediscretevalues,
thenumberof constraints,and

thenumberof goals.

Relationshipsbetweenthesesetsof characteristicscould be constructedand the

efficiency and effectiveness of the foraging search could be investigated and

establishedusingtheseformalizedrelationships. In problemswherethesolution is

unknown, therewill be tradeoff issuesinvolving theefficiency of the searchto the

effectivenessof thesolution. When is a solution"goodenough"for now? Or, how

is "goodenough"definedfor theseproblems?

• Further development of a Design Guidance System. The classification lexicon

presented in Chapter 4 is conceptual in nature. It is hypothesized that it could be

integrated with an existing Design Guidance System (DGS) (Bras, et al., 1990) or

IMAGE computing infrastructure (Hale, et al., 1996) as a means to classify the
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productbeingdesignedandtheprocessto designit. The classificationof a given

system may change throughout its realization processas more information is

generated. Designers, interacting with the DGS, would be able to updatethe

classification and in turn prescribe the appropriate methods and tools to help

embodythesystemin termsof entitiesonacomputer.

• Interface to virtual�rapid prototyping to explore designs. Different designs are

found according to different protocols among the design teams. It would be

advantageous to be able to rapidly build a prototype, virtual or actual, to explore the

ease of manufacturing and mass and space-related properties of the different designs

corresponding to the game protocols. The "goodness" of the examples in Chapter 6

and 7 are measured largely by technical and economic goals. Although a product

may be "good" on paper using technical performance measures, it may not

necessarily translate to manufacturing and operating "goodness". Measures of

manufacturing considerations, and operating and interference limitations can be

efficiently quantified using prototypes.

• Consideration of different design stages as players. Considering the typical product

realization process shown in Figure 1.4, only interactions along the y-axis are

considered in this dissertation. An interesting application of the developments

would be to consider the interactions along the x-axis. Consider the well-used

phrase, design for manufacture. Semantically, this phrase connotes the

manufacturing phase as the leader in this process. A design process is constrained

by the manufacturing capabilities available. However, what if it is manufacturing

for design? This is a completely different situation with drastically different

product and process implications as well. By exploring the interactions among
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product realization phases,valuable insight can be gained into the structure and

relationship between phases when cooperation (concurrent engineering),

noncooperation,andleader/follower(over-the-wall)scenariosexist.

Design is an amorphousentity, always changing shapeand form in the presenceof

outside influence. To capture the full essenceof design is an impossible task; the

theoreticalandpracticalmotivationsof designsometimesevenresideon different sides

of achasm. A primary motivationbehindthis dissertationis to help bridgesuchachasm,

to use design theory to model practical design processesand products as close as

possible. However,oncethis bridge is constructed,it will inevitably bearchaicitself in

time. New problems will arise, and new solutions will be found. This idea is

summarizedwell by thefollowing:

"Everyproblemwasoncea solutionto apreviousproblem."
- BobMandel

The solutionsdevelopedin this dissertationwill help createfuture problemsfor further

studyandexploration. This is the natureof scientific discovery: continual questioning,

hypothesizing,and testing. The fire embodiedby this dissertationwill live on to fuel

future explorations of new problems and solutions, and more problems and more

solutions.

381



APPENDIX A

THE PRESSURE VESSEL PROBLEM, VERIFICATION OF GAME

THEORY TECHNIQUES

In this Appendix, the full results for the pressure vessel verification example presented in

Chapter 5 are given. Included are full results for the cooperative and leader/follower

protocols.
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Cooperative Protocol

Deviation Function = Wl*dw + + W2*dv" where dw + is the deviation function associated

with the weight goal, and dv- is the deviation function associated with the volume goal.

Case 1" WI_ = 1.0 and W 2 = 0.0 (emphasis on minimizing weight)
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Figure A.1 Solution History: Cooperative (Minimizing Weight)
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In Figure A.2, the weight is minimized, and since the weight player is the leader, the

volume is constrained by the weight's solution. Therefore, as shown in Figure A.3, the

volume is subsequently minimized as well (the volume player wants to maximize

volume).
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Case 2: W± = 0.0 and W 2 = 1.0 (emphasis on maximizing volume)
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Figure A.4 Solution History: Cooperative (Maximizing Volume)

In Figure A.6, the volume is maximized, and since the volume player is the leader, the

weight is constrained by the volume's solution. Therefore, as shown in Figure A.5, the

weight is subsequently increased compared to Figure A.3 (the weight player wants to

minimize weight).
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Leader Follower Protocol

Weight as the leader

The three different starting points converge to two different solutions. The best solution

is found when the lower bound of the thickness is used by the Weights player (Figure A.7

(c)). The corresponding solution of the Volume Player, as dictated by his RRS, is shown

in Figure A.7 (a) and (b). The best solution is found when T = 0.5 in., R = 4.0 in., and

L=140 in.. The weight corresponding to this solution is shown in Figure A.8 (Weight =

635 lbs.). As is illustrated in Figure A.8, the other two solutions have significantly higher

weights. Convergence to the same solution is not achieved for all three points because of

the existence of two separate, feasible design regions. The best solution corresponds to

the solution reported in 5.6.3.

Volume as Leader

Again, the three different starting points converge to two different solutions. The best

solution is found when the upper bounds of the radius and length are used as the starting

point by the Volume player (Figures A.7 (a) and (b)). The corresponding solution of the

Weight Player, as dictated by his RRS, is shown in Figure A.7 (c). The best solution is

found when R = 36.0 in., L = 70.0 in., and T = 4.0 in.. The volume corresponding to this

solution is shown in Figure A. I0 (Weight = 39800 in3.). As is illustrated in Figure A. 10,

the other two solutions have significantly lower volumes. Convergence to the same

solution is not achieved for all three points because of the existence of two separate,

feasible design regions. The best solution corresponds to the solution reported in 5.6.3.
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APPENDIX B

THE FORAGING-DIRECTED ADAPTIVE LINEAR

PROGRAMMING ALGORITHM: ASSOCIATED CODE AND

RESULTS

In this Appendix, the computer code associated with the Foraging-directed Adaptive Linear

Programming Algorithm is given, along with full results for the verification examples used

in Chapter 6. Firstly, the computer code, including updated files for the DSIDES manual

and source code, and the course code for the foraging scheme, are given. Secondly, full

results from the spring design problem, including the DSIDES data file, are given. Lastly,

full results from the pressure vessel design problem, including the DSIDES data file, are

given.
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COMPUTER CODE: UPDATED DSIDES MANUAL

LIST OF DATA BLOCKS

PTITLE

NUMSYS

SYSVAR

NUMCAG

LINCON

LINGOL

DEVFUN

STOPCR

NLINCO

NLINGO

INITFS

ALPOUT

USRMOD

USRDAT

OPTIMP

ADPCTL

USERAN

FIXVAR

SUPCON

PVALFX

PVEPSZ

PVSTEP

PVCVIL

PVREMO

PVDI SC

ADREMO

XPLORE

ENDPRB

Mandatory Blocks

1 Problem title

2 Number of System Variables

3 Description of System Variables - name, type, bounds and guess value

4 Number of Constraints and Goals

5 Linear Constraints - names and data (if specified m NUMCAG)

6 Linear Goals - names and data (if specified in NUMCAG)

7 Deviation Function - number of levels and weights of deviation variables

8 Stopping Criteria (run and principal print flags, NITER, EPSZ, EPSX)

Optional Blocks

9 Names of Nonlinear Constraints (default names: NLCO##)

10 Names of Nonlinear Goals (default names: NLGO##)

11 Automatic Generation of Initial Feasible Solution

12 Flags for Output Level, Post Processor and Time Statistics

13 Flags for User Modules (USRINP, USROUT, USRMON, USRLIN)

14 User Data Block for Access From USRINP

15 Optimization Parameters (VIOLIM, REMO, STEP)

16 Nonlinear Inequality Constraint Adaption Flag (LADAP)

17 Information for USR.,_A (maximum cycles - NANCY, NSYCY)

18 Fixing of Variables

19 Suppression of Nonlinear Constraints

20 Particular Values for Stationarity of System Variables

21 Particular Values for Stationarity of Deviation Function Levels

22 Particular Values for STEP

23 Particular Values for VIOLIM

24 Particular Values for REMO

25 Particular Values for DISCRETE variables

26 Adaptive Reduced Move Parameters

27 Explore the design space for best initial points

28 End of Problem Definition
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2. NUMSYS (Mandatory)

Purpose:

Format:

ijk

Variables:

i: integer

j: integer

k: integer

Define number of system variables - real, discrete, and boolean.

Number of real variables

Number of discrete variables (including integers)

Number of boolean (selection) variables

Example:

NUMSYS : Number of system variables

3 2 2 : real, discrete, boolean

Notes:

• If you do not have any variables of one type, you must indicate this by specifying a value

of zero. In other words, three integers (i, j, and k) must be specified on the second line of

the block.

• Number of discrete variables includes the number of integer variables.

• If you have discrete variables that are not integer-valued, you must specify the possible

values in the block PVDISC.
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3. SYSVAR (Mandatory)

Purpose: Define system variable information.

Format:

name k min max guess

Variables:

name: string

k: integer

min: (real/integer)

max: (real/integer)

guess: (real/integer)

Name of variable (6 characters long)

Serial number of variable

Lower bound for variable

Upper bound for variable

Initial guess value for variable

Example:
I

SYSVAR : System variable information

weight 1 i0. I00.0 33.5 : weight of assembly

length 2 2.0 25.0 18.0 : length of assembly

height 3 0.0 I00.0 15.0 : height of assembly

nteeth 4 20 60 45 : number of teeth

gerdrv 5 0 1 1 : use gear drive

bltdrv 6 0 1 0 : use belt drive

Notes:

• Real variable must precede the integer/discrete variables and the boolean variables should

follow the integer/discrete variables.

• If the variable name is not given, a default name is assigned to the variable. This is of the

form X## where ## is the serial number of the variable, e.g., X 1, X45 etc.

• Variable types are assigned based on the serial number of the variable and are shown in

the output file.

• Lower and upper bounds for boolean variables are 0 and 1, respectively. The guess value

can be either 0 or 1.

• If initial guess value is out of the specified bounds, a default value of[min2maxj- - is

assumed and a warning is printed in output file.
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25. PVDISC (Optional)

Purpose: Particular values for discrete variables.

Format:

k

i n guess

discrete values

Variables:

k: integer

i: integer

n: integer

guess: integer

discrete values:

Number of discrete variables to follow

Serial number of variable

Number of possible discrete values to follow

Serial number of initial guess value for discrete variable

n possible values of discrete variable number i

Example:

PVDISC : Particular values for discrete variables

2:2 variables have discrete values

3 8 i: variable number 3 has 8 possible values,

value is value number 1

2.5 4.0 7.4 9.0 12.1 13.0 14.8 16.1

4 4 4: variable number 4 has 4 possible values,

value is value number 4

0.234 0.576 0.856 1.125

initial

initial

Note:

• This is used when discrete or integer variables can have values other than only integers

between the MIN and MAX from the SYSVAR block.

• The guess value from this block overrides the one set in SYSVAR for the discrete

variables specified in this block.

• The maximum number of discrete values for a given variable is set at 50.

394



COMPUTER CODE: UPDATED DSIDES ROUTINES

C+

C

C Program ALPCTL
C

C Purpose: Main program for DSIDES: SLIPML Version 4.80 /
C ALP Release 1.0

C

C-

COMMON/ADINTE/ NRELV, NDISV, NVSEL, NDESV, NDVUSR, NDEVAR,

& NLINCO, NLINGO, NMPRI,

& NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT
INTEGER NRELV, NDISV, NVINT, INDEX(MDESV),

& NVSEL, NDESV, NDVUSR, NDEVAR, NDSCC(MDESV)

INTEGER NLINCO, NLINGO, NMPRI

INTEGER NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT

C
REAL DESVAR(MDESV), DUMVAR(MDESV), CONDEV, DEVFUN(MLEVEL),

& DEVVAR(MDEVV), GVAL(MNLNCG), Z2(MLEVEL),
& TABUN(MDESV_ClDSCV)

LOGICAL LPRCOV, LCOVIL, LVDISC

C

C

C

C

C

C

Read in control information and initialize values

- Call ALPDAT

OPEN (UNIT=NUINP, FILE='ALPINP.DAT', ACCESS:'SEQUENTIAL',

& FORM='FORMATTED', STATUS='OLD')

OPEN (UNIT=NUSER, STATUS='SCRATCH',

& FORM='FORMATTED', ACCESS='SEQUENTIAL')

CALL ALPDAT (NUOUT, NUINP, NUSER,

&

&

&

&

&

&

NRELV, NDISV, NVINT, TABUN, NDSCC, INDEX, NVSEL,

NDESV, NDEVAR,

NLINC©, NLINGO, NMPRI,

NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,

NANCY, NSYCY,

NH_, NADREM, IACTVR, IADCON, LISIGN,
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C

C

C

&

&

&

&

&

&

&

&

&

NPTGEN, NPTBST, IGSEED, IGENFX,

IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO,

PTITLE, COFLIN, RHSLIN, DFNCOF,

PESTEP, REDMOV, VBOUNS, DESVAR,

HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,

FRACZ, FRACX, VILCN,

LFATAL, LDRYKN, LPRFIN,

LPROUT, LPPROC, LTIME, LADREM, LADAP, LINIT,

LMON, LUINP, LUOUT, LVCOF, LXPLOR, LPRGEN, LVDISC)

CLOSE (NUINP)

STOP program if fatal errors encountered during reading

C

C

C

C

C

C

SYNTHESIS CYCLES ONLY
Ulllgglu_iI0go01gl01!

Obtain and record current timer values.

CALL TIMER (NUOUT, 2, TIMCOM, CURTIM, INITIM, EXETIM )

C

C******Discrete Part of solution -> Call FORAGING Algorithm

C

IPATH = 1

IF( LVDISC ) THEN

INTFLAG = 1

ELSE

INTFLAG = 50

ENDIF

83 IF (INTFLAG.LT.14) THEN

CALL FORAGEMV (INTFLAG, DESVAR, NDESV, NRELV, ND I SV, TABUN,

& NDSCC, IPATH, NNLTOT,NOUT, NNLCON, NNLGOA,

& DFNCOF, NMPRI, INDEX, VBOUNS, IACTVR)

C

82

SET INACTIVE vars to discrete ones

DO 82 K=NRELV+I,NRELV+NDISV

IACTVR(K) = 0

CONTINUE

ENDIF
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C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C

C

&

&

&

&

&

&

&

&

&

&

&

&

Perform Synthesis cycles

- Call ALPMOD

- Returned DESVAR corresponds with best nonlinear

solution

INUMAN = 0

CALL ALPMOD (NANCY, INUMAN, NTITER, NUOUT, NUPPI,

NRELV, NDISV, NVSEL, NDESV, NDEVAR,

NLINCO, NLINGO,

NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT,

NMPRI, NSYCY, IACTVR, IADCON, LISIGN,

JSYCY, NADREM,

CONDEV, DELREM,

COFLIN, DESVAR, DFNCOF,

DEVFUN, DEVVAR, FRACX, FRACZ, GVAL,

PESTEP, REDMOV, RHSLIN, VBOUNS, VILCN,

LADAP, LADREM, LMON, LVCOF, LPRFIN, LPROUT,

LPPROC, LCONDF, LCONSV, LIMPRV,

IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO)

This is to check for discrete number of synthesis cycles

complete

WRITE (NUOUT,*) ********************************************

WRITE (NUOUT,*) "This is the end of synthesis cycle
& " INTFLAG

t

WRITE (NUOUT,*) ********************************************

IF (INTFLAG. LT. i) THEN

INTFLAG = INTFLAG + 1

goto 83

ENDIF

Obtain timer results for current analysis cycle.

CALL USRSET(IPATH, NDESV, MNLNCG, NOUT, DESVAR,

& CONSTR, GOALS)

IF ( LTIME ) THEN

TIMCOM : 'Time required to complete synthesis cycles:'

CALL TIMER ( NUOUT, -3, TIMCOM, CURTIM, EXETIM, EXETIM )
ENDIF

397



C+

C

C Subroutine ALPDAT

C

C Purpose:

C

C

C ................

C Arguments Name Type
C

C Input: NUINP int

C NUOUT int

C NUSER int

C

C Output: NDESV int

C NDEVAR int

C NRELV int

C

C NDISV int

C

C DSTEP real

C

C NVALUS int

C

C NUMNGH int

C

C INDEX int

C

C NEIGH int

C

C TABUN real

C NVINT int

C

This routine reads the ALP data file for

compromise DSPs and sets the necessary defaults.

Description

unit number of input data file

unit number of output data file

unit number of user data file

number of design variables

number of deviation variables

number of real (continuous)

variables

number of discrete variables

(inc. integer)

step for discrete variables (I

default)

number of discete values (overide

step) MAX = 50

number of variables to have tabu

Nghbrhd

index of initial discrete vars

(for tabu)

counter to set up tabu with DSTEP

= 1.0

tabu neighborhood (MDESV, 50)

number of integer variables

C-

SUBROUTINE ALPDAT(NUOUT, NUINP, NUSER,

&

&

&

&

&

&

&

&

&

&

&

&

&

NRELV, NDISV, NVINT, TABUN, NVALUS, INDEX, NVSEL,

NDESV, NDEVAR,

NLINCO, NLINGO, NMPRI,

NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,

NANCY, NSYCY,

NHJMAX, NADREM, IACTVR, IADCON, LISIGN,

NPTGEN, NPTBST, IGSEED, IGENFX,

IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO,

PTITLE, COFLIN, RHSLIN, DFNCOF,

PESTEP, REDMOV, VBOUNS, DESVAR,

HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,

FRACZ, FRACX, VILCN,

FATAL, LDRYRN, LPRFIN,
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C

&

&

LPROUT, LPPROC, LTIME, LADREM, LADAP, LINIT,

LMON, LUINP, LUOUT, LVCOF, LXPLOR, LPRGEN, LVDISC)

INCLUDE 'alplim.cmm'

C

C ...............................

C Argument s :

C .............................

Logical Unit numbers for I/OC

C

C

C

C

C

C

C

C

INTEGER NUOUT, NUINP, NUSER

INTEGER NRELV, NDISV, NVALUS(MDESV), DSTEP, INDEX(MDESV),

NUMNGH,

&

&

&

&

&

&

&

NVINT, NVSEL, NDESV, NDEVAR,

NLINCO, NLINGO, NMPRI,

NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,

NANCY, NSYCY(MNANCY),

NHJMAX, NADREM, IACTVR(MDESV), IADCON(MNLNCG),

LISIGN(MLINCG),

NPTGEN, NPTBST, IGENFX(MDESV), IGSEED

CHARACTER*6 IDDESV(MDESV), IDDEVR(MDEVV),

& IDLICO(MLINCG), IDLIGO(MLINCG),

& IDNLCO(MNLNCG), IDNLGO(MNLNCG)

CHARACTER*80 PTITLE(2)

REAL COFLIN(MLINCG,MDESV), R}{SLIN(MLINCG),

&

&

&

&

&

&

DFNCOF(MLEVEL,MDEVV),

PESTEP(MDESV), REDMOV(MDESV),

VBOUNS(2,MDESV), DESVAR(MDESV),

HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,

FRACZ(MLEVEL), FRACX(MDESV), VILCN(MNLNCG),

TABUN(MI)ESV, MDSCV)

LOGICAL FATAL,

& LDRYRN, LPRFIN,

& LPROUT(8), LPPROC, LTIME,

& LADREM, LADAP, LINIT,

& LMON, LUINP, LUOUT, LVCOF,

& LPRGEN, LXPLOR, LVDISC
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C

LVDISC = .FALSE.

C

C Set other defaults

C

C

C Beginning of main GOTO loop
C Read next block name

C

iiii READ(NUINP,FMT=' (A) ',END=9000,ERR=8888)DUM

CALL GETNAM(DUM, BLKNAM, KST, LNONAM)

C

C

IF(LNONAM)THEN

GO TO Iiii

ENDIF

WRITE(NUOUT, 3)BLKNAM

3 FORMAT(/,X, 'BLOCK ',A6,X,54('-'),/)

C

C BLOCK2 NUMSYS

C

C

C

C

C

C

C

C

C

Read number of design variables - Real, and dicrete

NRELV = Number of real variables

NDISV = Number of discrete variables

NVINT = Number of integer variables

NVSEL = Number of selection (boolean) variables)

NDESV = Number of standard variables.

= NRELV+NDISV

C

C

C

IF(BLKNAM.EQ.'NUMSYS')THEN

CALL BLKCHK(NUOUT,BKIN(2))

NVINT = 0

READ(NUINP,FMT=*,ERR=8888)NRELV, NDISV, NVSEL

IF (NDISV.GT.0) THEN
LVDISC = .TRUE.

ENDIF

C

2O

&

&

&

NDESV = NRELV+NDISV+NVSEL

WRITE (NUOUT, 20 )NRELV, NDISV, NVSEL, NDESV

FORMAT(3X,' Number of real variables = ', I5/,

3X,' Number of discrete variables = ', I5/,

3X, 'Number of selection (Boolean) variables = ',

3X,' Total number of design variables = ', I5)

IF(NDESV.GT.MDESV) THEN

WRITE(NUOUT,21)MDESV,NDESV

I5/,

4OO



C

21

&

&

GO TO 9999

ENDIF

FORMAT(' E ** Problem Size',/

3X, ' Maximum number of design variables : ',I5,/

3X, ' Specified = ',I5)

GO TO iiii

ENDIF

C

CC BLOCK3 SYSVAR

Read design variable informationC

C

C

C

IF(BLKNAM.EQ.'SYSVAR')THEN

CALL BLKCHK(NUOUT,BKIN(3))

Check if NUMSYS has been read.

IF(.NOT.BKIN(2))THEN

WRITE(NUOUT, 700)

GO TO 9999

ENDIF

C

3O

&

&

&

C

C

C

C

C

C

C

C

WRITE(NUOUT,30)

FORMAT(2X,' Number Name Type Minimum

3X,'Guess Value',/,

2X,' ......

3X,' ')

Maximum

DO 35 K=I,NDESV

READ(NUINP,'(A)',ERR=8888)DUM

CALL GETNAM(DUM, DUMNAM, KST, LNONAM)

IF (LNONAM) DUMNAM = MKNAME('X',K)

READ(DUM(KST:80),FMT=*,ERR=8888)J,XMIN,XMAX,XGES

Variable type assigned using serial number

IF(J.LE.NRELV)THEN

VTYPE:'R'

ELSEIF(J.GT.(NRELV+NDISV))THEN

VTYPE='B'

ELSE

VTYPE='D'

ENDIF

Check if values are within bounds

32

&

I

!

IF((XGES.LT.XMIN).OR. XGES.GT.XMAX))THEN

XGES=0.5*(XMIN+XMAX

WRITE(NUOUT,32)J

FORMAT(/,' I ** Guess value out of bounds, '
l

'reset to (XMIN+XMAX)/2 for variable number ',I3)
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C

C

C

C

C

C

37

C

C

C

C

ENDIF

IDDESV (J) = DUMNAM

VBOUNS(I,J) = XMIN

VBOUNS(2,J) = XMAX

DESVAR (J) = XGES

THIS SETS up the tabu neighborhood from the bounds.

DSTEP = 1

IF (J.GT.NRELV.AND.J.LT.(NRELV+NDISV+I)) THEN

NVALUS(J) = VBOUNS(2,J) - VBOUNS(I,J) + 1

This sets the index number as the guess index.

INDEX(J) = (DESVAR(J)-VBOUNS(I,J))/DSTEP + 1

SETS up the temporary counter for set of discrete values.

STARTS at the lower bound.

NEIGH = VBOUNS(I,J)

DO 37 L=I,NVALUS(J)

TABUN(J,L) = NEIGH

NEIGH = NEIGH + DSTEP

CONTINUE

ENDIF

Use different formats for REAL and other variables.

33

&

38

34

IF (VTYPE. EQ. 'R' )THEN

WRITE (NUOUT, 33 )J, IDDESV (J ), VTYPE, VBOUNS (I, J),

VBOUNS (2, J ), DESVAR (J )

FORMAT(4X, I3,5X,A6,4X,AI, 2X, GI2.5,3X,GI2.5,3X, GI2.5)

ELSE

IF (VTYPE.EQ. 'D' )THEN

WRITE (NUOUT, 38 )J, IDDESV (J), VTYPE, VBOUNS (I, J),

VBOUNS (2, J), DESVAR (J)

FORMAT (4X, I3, 5X, A6,4X, A1,2X, GI2.5, 3X, GI2.5,3X, GI2.5 )

ELSE

KMIN=XMIN+0.5

KMAX=XMAX+ 0.5

KGES=XGES+0.5

WRITE (NUOUT, 34 )J, IDDESV (J), VTYPE, KMIN, KMAX, KGES

FORMAT (4X, I3,5X, A6,4X, A1, 2X, II0,5X, II0, 5X, Ii0 )
ENDIF

ENDIF

35 CONTINUE

GO TO iiii

ENDIF
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C

C

C

C

C

BLOCK4 DISCRETE

Read discrete design variable information

IF (BLKNAM. EQ. 'PVDISC ')THEN

CALL BLKCHK(NUOUT, BKIN(28) )

LVDISC = ,TRUE.

WRITE (NUOUT, 285 )

285 FORMAT(' I ** User inputted discrete data will be

used', / / )

C

READ (NUINP, FMT=*, ERR=8888) NUMNGH

DO 284 J=I,NUMNGH

READ (NUINP, FMT=* ,ERR=8888 )NUM, NVALUS (NUM) ,XGES

IF (NUM .LE. NRELV) THEN

WRITE (NUOUT, 282 )NUM

GO TO 9999

ENDIF

IF (NUM .GT. NRELV+NDISV) THEN

WRITE (NUOUT, 282 )NUM

GO TO 9999

ENDIF

IF (XGES.LT.I .OR. XGES.GT.NVALUS(NUM)) THEN

GO TO 9999

ENDIF

IF (NUM .GT. 0) THEN

READ(NUINP,FMT=*,ERR=8888) (TABUN(NUM, I), I=I,NVALUS(NUM) )

C Guess value is read is as initial DESVAR

INDEX (NUM) = XGES

DESVAR(NUM) = TABUN(NUM, XGES)

WRITE (NUOUT, 281 )NUM, IDDESV (NUM)

WRITE (NUOUT, * ) (TABUN (NUM, I ), I-l, NVALUS (NUM))

WRITE (NUOUT, 286 )DESVAR (NUM)

ENDIF

284 CONTINUE

281

282

286

&

FORMAT (4X,'Variable No. ', I2, ' (', A, ')'

' has the following discrete values possible.')

FORMAT(' E ** Variable number ',I3,' is not discrete')

FORMAT(5X,'and the initial value is:',F6.4)

GO TO Iiii

ENDIF

END
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COMPUTER CODE: FORAGING SOLVER

C+

C

C Subroutine FORAGEMV

C

C Purpose: Solve the discrete problem

C

C-

C Arguments Name Type Description

C ..........

C Input : NDITER I

C DESVAR R

C NDESV I

C NRELV I

C NDISV I

C XX R

C

C NVALS I

C IPATH I

C NNLTOT I

C

C NOUT I

C NNLCON I

C NNLGOA I

C DFNCOF R

C NMPRI I

C INDEX I

C VBOUNS R

C IACTVR I

C

C Local variables:

C

C MAXIT I

C

C NUMBST I

C MEMLIM I

C FEASFL I

C CONT R

C CONTSTEP R

C

C MEM I

C INDEX I

C DFLAG I

C DFLAG2 I

C F I INDX I

C DVTEMP R

C ALLBEST R

C BESTOBJ R

C TEMPX R

Number of Calls to Discrete Routine

Vector of Design Variables

Number of Design Variables

Number of Real Variables

Number of Discrete Variables

Neighborhood Structure of Discrete

Vars

Number of Possible Discrete Values

Total number of nonlinear consts and

goals

Number of nonlinear constraints

Number of nonlinear goals

Vector of deviation function weights

Number of Priority Levels

Index Marker for Discrete Variables

Bounds on the design variables

Array of inactive variables

Maximum number of neighborhood

searches

Number of solution to keep in schema

Memory limit, initial value

Flag of feasibility

Discretized continuous variable

Discretization step for continuous

vars

Memory array
Index of current variable values

Diversification Flag

Diversification Flag: One-time check

Final Indices of best solution

Temporary buffer for continuous vars

Best deviation function

Current best objective

Temporary buffer for neighborhood
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C

C BESTX R

C

C STARTOBJ R

C STARTCON R

C CONVIO R

C SCHEMA R

C DEVFUN R

C ABESTX R

C

C Output :

C

C Input/Output

C

C ..................

C Common Blocks: none

C

C Include Files: a!plim.cmm
C

C Calls to: LOCL, OBJ

C .................

C Development History
C

C Author: Kemper Lewis

C Date: October 25, 1995

C

C Modifications:

C

checks

Vector of the current best design
variables

Initial deviation function value

Initial constraint violation

Current constraint violation

Vector of NUMBST solutions

Current deviation function

Final best design variables

CW*WWWWWWWWWWWWWW*WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

C

CWWWWWWWWWWWWWWWWWWWWWWWWW*WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

C

C MAIN PROGRAM: Computes the best possible solution

C possible for any DISCRETE problem using a

C local improvement scheme. In particular, a

C search of the O(n) neighorhood structure is employed.

C A foraging search is employed (with aspiration NEWZ>BSTZ).

C A dynamic memory is used.

C Check all neighbors before picking best admissable move.

C Frequency-based diversification capability added.

C Schema list is created for each problem.
C

CW_W**W**WWWW**W*WWWWW*WWWWWWWWWWWWWWWWW.WWW.W.WWWWW**WW**WWWWW

SUBROUTINE FORAGEMV (NDITER, DESVAR, NDESV, NRELV, NDISV,

$ XX, NVALS, IPATH, NNLTOT, NOUT,

$ NNLCON, NNLGOA, DFNCOF, NMPRI, INDEX,

$ VBOUNS, IACTVR)

C

C
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INCLUDE 'alplim.cmm'

C Arguments:

C ...............................

C

INTEGER NN, NDESV, NVALS(MDESV),

$ IACTVR(MDESV),NDISV, MAXIT,

$ NRELV, NMPRI, NDITER, NSIZE

INTEGER I, J, K, L, M, N, NUMBST, MEMLIM, FEASFL

C COMMON/ADREAL/ VBOUNS (2,MDESV)

REAL VBOUNS(2,MDESV), CONT, CONTSTEP

PARAMETER (NN=I,

$ NUMBST=I0, NSIZE=5)

c

*

C

C NN - number of desired random starting configurations

C

C

C NOTE: This is for 50 discrete choices, can make this as

C large as the problem is.

INTEGER MEM(MDESV,MDSCV,MI)SCV),

$ INDEX(MDESV), NDESV, MEMPLC(MDESV), DFLAG(MDESV, MDSCV),

$ DFLAG2(MDESV,MDSCV), NNINDX(MDESV), FIINDX(MDESV)

C

INTEGER NNLCON, NNLGOA, IPATH, NOUT, NNLTOT, BESTINDX,

$ REPEAT(MDESV,MDSCV,MDSCV), RESTART

REAL DESVAR(MDESV), DVTEMP(MDESV), DFNCOF(MLEVEL,MDEVV),

$ ALLBEST

REAL BESTOBJ, TEMPX(MDESV), BESTX(MDESV), STARTOBJ,

$ STARTCON,

$ CONVIO, XX(MDESV,MDSCV), SCHEMA(NUMBST,MDESV+I),

$ DEVFUN, ABESTX(MDESV)

open (12,file='tpitab.out',status='unknown')

open (!3,file='points.out',status='unknown')
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open (14,file='schema.out',status='unknown,)

open (15,file='ppinfo.vars',status='unknown')

open (17,file='ppinfo.zcon',status='unknown,)

open (!6,file='debug.out',status='unknown')

**W********W*W*W*WW***WW*******WWWWWWWWWWWWW*WWWWW**WWW**W**

* Set up number of neighborhood searches and length of

* memory according to the size of the problem

IF (NRELV+NDISV.GT.4) THEN

MAXIT = 200

MEMLIM = 67

ENDIF

IF (NRELV+NDISV.GT.2 .AND. NRELV+NDISV.LE.4) THEN
HAXIT = i00

MEMLIM = 50

ENDIF

IF (NRELV+NDISV.LE.2) THEN

MAXIT = 50

MEMLIM = 20

ENDIF

12

DO 12 I=I,NDESV

TEMPX(I) : DESVAR(I)

BESTX(I) : DESVAR{I)
CONTINUE

FEASFL = 0

********************** initial objective function

CALL OBJEC(CONVIO,DEVFUN, IPATH,NDESV, DESVAR,DFNCOF,NMPRI,

$ NNLTOT,NNLCON,NNLGOA)
STARTOBJ = DEVFUN

STARTCON = CONVIO

WPCTE(12,*) 'Initial design variables'

WRITE(!2,*) (DESVAR(I),I=I,NDESV)

WRITE(12,*) 'Initial DEVFUN and CONVIO: ',DEVFUN, CONATIO

C******** loop around tabu search subroutine NN times

ALLBEST = I0000000

DO 2700 i=I,NN

* Discretizing the continuous domain to explore *
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IF (I.EQ.I) THEN

CONTSTEP = 0.i

DO 699 J = I,NRELV

DVTEMP(J) =

& (DESVAR(J)-VBOUNS(I,J))/(VBOUNS(2,J)-VBOUNS(I,J))

699 CONTINUE

DO 700 J = I,NRELV

IF (IACTVR(J).EQ.0) THEN

NVALS(J) = 1

INDEX(J) = 1

GOTO 700

ENDIF

IF(DVTEMP(J).EQ.0) THEN

INDEX(J) : 1

ELSE

IF(DVTEMP(J).EQ.0.1) THEN

INDEX(J) : 2

ELSE

IF(DVTEMP(J).EQ.0.2) THEN

INDEX(J) : 3

ELSE

IF(DVTEMP(J).EQ.0.3) THEN

INDEX(J) = 4

ELSE

IF (DVTEMP (J) .EQ.0.4) THEN

INDEX(J) = 5

ELSE

IF(DVTEMP(J).EQ.0 5) THEN

INDEX(J) = 6

ELSE

IF(DVTEMP(J).EQ.0 6) THEN

INDEX(J) = 7

ELSE

IF(DVTEMP(J).EQ.0 7) THEN

INDEX(J) = 8

ELSE

IF(DVTEMP(J).EQ.0 8) THEN

INDEX(J) = 9

ELSE

IF(DVTEMP(J).EQ.0 9) THEN

INDEX(J) = i0

ELSE

IF(DVTEMP(J).EQ.I 0) THEN

INDEX(J) = ii

ELSE

INDEX(J) = 6
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DE SVAR (J )

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

= (VBOUNS(2,J) + VBOUNS(I,J))/2

&

IF (INDEX(J).EQ.0)

WRITE(16,*)'You have

guess for

goto 999

ENDIF

NVALS(J) : ii

CONT = 0.0

THEN

entered an incorrect variable

continuous variable number ',J

* Set up continuous neighborhoods *

701

&

DO 701 K = I,NVALS(J)

XX(J,K) = C0NT

CONT : CONT + CONTSTEP

XX(J,K) = XX(J,K)*(VBOUNS(2,J)-VBOUNS(I,J))

+ VBOUNS (i, J)

CONTINUE

700 CONTINUE

ENDIF

710

IF

&

(I.EQ.2) THEN

DO 710 J=I,NRELV

IF(MOD(J,2).EQ.0) THEN

DESVAR(J) = XX(J,I)*(VBOUNS(2,J)-VBOUNS(I,J))

+ VBOUNS(I,J)

INDEX(J) : 1

ELSE

DESVAR(J) : XX(J,NVALS(J))*

(VBOUNS(2,J)-VBOUNS(I,J)) + VBOUNS(I,J)

INDEX (J) : NVALS (J)

ENDIF

CONTINUE

DO 713 J=NRELV+I,NRELV+NDISV

IF(MOD(J,2).EQ.0) THEN

DESVAR(J):XX(J,I)
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713

711

714

712

715

ENDIF

IF

&

&

ENDIF

IF

&

INDEX(J) = 1

ELSE

DESVAR (J) =XX (J, NVALS (J))

INDEX(J) = NVALS (J)

ENDIF

CONTINUE

(I .EQ.3)

DO 711

THEN

J= i, NRELV

IF (MOD (J, 2) .EQ. 0) THEN

DESVAR(J) = XX(J,NVALS(J) )*

(VBOUNS (2, J) -VBOUNS (I, J) )

INDEX(J) : NVALS (J)

ELSE

+ VBOUNS (I, J)

DESVAR (J) = XX (J, 1 ) * (VBOUNS (2, J) -VBOUNS (i, J) )

+ VBOUNS (I, J)

INDEX(J) = 1

END I F

CONTINUE

DO 714 J=NRELV+I, NRELV+NDISV

IF(MOD(J,2) .EQ.0) THEN

DESVAR (J) =XX (J, NVALS (J))

INDEX(J) = NVALS (J)

ELSE

DESVAR (J )=XX (J, 1 )

INDEX(J) = 1

ENDIF

CONTINUE

(I.EQ.4) THEN

DO 712 J=I,NRELV

DESVAR(J) = XX(J,6)*

(VBOUNS(2,J)-VBOUNS(I,J)) + VBOUNS(I,J)

INDEX(J) = 6

CONTINUE

DO 715 J:NRELV+ 1, NRELV+NDI SV

IF(MOD(NVALS(J),2) .EQ.0) THEN

DESVAR (J) =XX (J, NVALS (J) /2 )

INDEX(J) = NVALS (J) /2

ELSE

DESVAR (J) =XX (J, (NVALS (J) +i)/2)

INDEX(J) = (NVALS(J) +I) /2

END IF

CONTINUE

ENDIF

RESTART = I
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c********Initialize short,long term memory and diversification

IF (NDITER.EQ.I .AND. !.EQ.I) THEN

2

DO 2 J=I,MDESV

DO 2 K:I,MDSCV

DO 2 L=I,HDSCV

MEM(J,K,L) = 0

REPEAT(J,K,L) = 0

CONTINUE

C****Initialize SCHEMA array-make worst, so better ones fill up

C*** Only on the first iteration through foraging

21

DO 8 K=I,NqlHBST

SCHEMA(K,1) = !00000

CONTINUE

ENDIF

DO 21 N=I,NRELV+NDISV

DO 21 K=I,NVALS(N)

DFLAG(N,K) = 0

DFLAG2(N,K) = 0

CONTINUE

****** Call search routine

C

9

CALL LOCL (NDESV, NRELV, NDISV, NVALS,STARTOBJ, STARTCON,

$ RESTART, DESVAR, XX, BESTINDX, INDEX, MAXIT,

$ MEN, DFLAG, DFLAG2, TEHPX, BESTX, BESTOBJ,

$ MEHPLC, NIIMBST, SCHEMA, REPEAT, DFNCOF,

$ NMPRI, NNLTOT, NNLCON, NNLGOA, IPATH, FEASFL,

$ MEHLIM, NNINDX, NSIZE, IACTVR)

WRITE(14,*)'The ',NUMBST,' best solutions were found to
be:'

DO 9 J:I,NUHBST

WRITE(14,*)(SCHEMA(J,K),K=I,NDESV+I)
CONTINUE

WRITE(12,*) 'final objective is ', bestobj
WRITE(12,*) 'at the point ', (BESTX(M),M=I,NDESV)

PRINT *, 'ALLBEST, BESTOBJ = ', ALLBEST, BESTOBJ

IF (BESTOBJ.LE.ALLBEST) THEN

ALLBEST = BESTOBJ
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2703

DO 2703 M=I,NDESV

ABESTX(M) = BESTX(M)

CONTINUE

DO 2704 M=I,NRELV+NDISV

FIINDX (M) =NNINDX (M)

2704 CONTINUE

ENDIF

2700 CONTINUE

DO 500 J:I,NDESV

DESVAR(J) = ABESTX(J)

WRITE(12,*)'FOR ITERATION',NN,'BEST vars = ',J,DESVAR(J)

500 CONTINUE

DO 501 J=l, NRELV+NDISV

INDEX(J) = FIINDX(J)

501 CONTINUE

999

CLOSE(UNIT=I2)

CLOSE(UNIT=I3)

CLOSE(UNIT=I4)

CLOSE(UNIT=I5)

CLOSE(UNIT=I7)

RETURN

END

C+

C

C Subroutine LOCL

C

C Purpose: Solve the local neighborhood problem

C

C ..................................

C Arguments
C

Name Type Description

C Input: NROW I

C NRELV I

C NDISV I

C NVALS I

C OLDZ R

C OLDC R

C

C RESTART I

Number of design variables

Number of Real Variables

Number of discrete variables

Number of possible discrete values

The previous objective function value

The previous constraint violation

value

Number of re-starts of foraging
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C DESVAR

C XX

C BESTINDX

C

C

C INDEX

C MAXIT

C MEM

C DFLAG

C DFLAG2

C TEMPX

C BESTX

C BSTZ

C MEMPLC

C

C _ST

C

C SCHEMA

identify

C

C REPEAT

C DFNCOF

C NMPRI

C NNLTOT

C NNLCON

C NNLGOA

C IPATH

C FEASFL

C MEMLIM

C NNINDX

C NSIZE

C IACTVR

C ITBST

C STCNT

C ASPCNT

is

C

C BESTPOS

C SCHFLG

C DIVDUM

value

C

C

C Output:

C

C Input/Output
C

C

R

I

I

I

I

I

I

I

R

R

R

I

I

R

I

R

I

I

I

I

I

I

I

I

-I

I

I

I

I

I

I

I

Design variable vector

Vector of possible discrete values
Index of discrete variable which

results in most improvement in the

deviation func.

Index of current variable

Maximum number of neighborhood C

searches

Dynamic memory vector

Diversification flag

Diversification flag

Temprorary vector of design variables

Best design variable vector

Best observed objective function

Memory index, keep track of visited

sites

Number of best solutions to keep in

schema

Nector of NUMBST solutions to

frequent characteristics of solution

Ensures solution is not repeated

Vector of deviation functions weights

Number of priority levels

Total number of nonlinear c/g's

Number of nonlinear constraints

Number of nonlinear goals

Flag of feasibility

Memory size, initially

Number of re-starts

Neighborhood size

Inactive variable vector

Number of times aspiration criteria

met

Index of best variable to change

Flag for schema

Diversification flag to find new

C Common Blocks: none

C
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C Include Files: alplim.cmm

C

C Calls to: OBJEC

C-

C Development History

C

C Author: Kemper Lewis

C Date: October 25, 1995

C

C Modifications:

C

C***_*_*WW_W*WWWW_WW*W*W_*WWWWWWWWWWWW*_*WW*W*_WW_WW********

C

SUBROUTINE LOCL (NROW, NRELV, NDISV, NVALS, OLDZ,OLDC,

$ RESTART, DESVAR, XX, BESTINDX, INDEX, MAXIT,

$ MEM, DFLAG, DFLAG2, TEMPX, BESTX, BSTZ,

$ MEMPLC, NUMBST, SCHEMA, REPEAT, DFNCOF,

$ NMPRI, NNLTOT, NNLCON,NNLGOA, IPATH, FEASFL,

$ NMEMLIM, NINDX,NSIZE, IACTVR)

INCLUDE 'alplim.cmm'

INTEGER NROW, NVALS(MDESV), IACTVR(MDESV),

$ MEM(MDESV,MDSCV,MDSCV),

$ INDEX(MDESV), NNINDX(MDESV), BESTINDX, NUMBST, NSIZE

INTEGER RESTART, MEMPLC(MDESV), DFLAG(MDESV,MDSCV),

$ DFLAG2(MDESV,MDSCV),

$ REPEAT(MDESV,MDSCV,MDSCV), NRELV, NDISV, NMPRI,

$ NNLGOA, NNLCON, NNLTOT

REAL DFNCOF (MLEVEL, MDEVV)

REAL CONVIO, DEVFUN, OLDZ, OLDC,

$ DESVAR(MDESV), TEMPX(MDESV), XX(MDESV,MDSCV)

REAL BSTZ, BESTX(MDESV), SCHEMA(_ST,MDESV+I)

INTEGER ITBST, STCNT, ASPCNT, BESTPOS, I, J, K, L, M, N,

$ STFLAG, LTFLAG, MEMFLAG, SCHFLG, MAXIT, IPATH,

$ FEASFL, MEMLIM, LISTL, RESTART, DIVDUM

REAL NEWZ, DE, DZBEST, CURBST, EPS

!TBST=0

IF (RESTART.EQ.I) THEN

IF (OLDC.GT.0.005) THEN

BSTZ = 1000*OLDC

CURBST = 1000*OLDC
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ENDIF

ELSE

ENDIF

BSTZ:OLDZ

CURBST=OLDZ

STCNT=0

ASPCNT=0

EPS = 0.001

LISTL : MEMLIM

DO i00 L=I,MAXIT

DZBEST : i0000000000.0

FEASFL = i

*******************************************************

C *

C DIVERSIFICATION SCHEME *

C *

C Purpose:Identify parts of solution that *

C frequently show up and penalize them accordingly.*
C This uses DFLAG *

C Diversification flag. *

C ,

31

DO 31 I = I,NRELV+NDISV

IF (IACTVR(I).EQ.0) THEN

GOTO 31

ENDIF

DFLAG(I,INDEX(I)) : DFLAG(I,INDEX(I))+I

IF(MOD(DFLAG(I,INDEX(I)),20).EQ.0)

IF (MOD(NVALS(I),2).EQ.0) THEN

DIVDUM = NVALS(I)/2

ELSE

DIVDUM = (NVALS(I)+I)/2

ENDIF

IF (INDEX(I) .LE. DIVDUM) THEN

INDEX(I) = NVALS(I)
ELSE

INDEX(I) = 1

ENDIF

DESVAR(I) = XX(I,INDEX(I))

DFLAG2(I,INDEX(I)) = 1
ENDIF

CONTINUE

THEN

DO 24 J=I,NRELV+NDISV
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DO 26 K=I,NVALS(J)

C This is a neighborhood of X moves in any direction

IF (ABS(INDEX(J) - K).LT.NSIZE .AND. K.NE.INDEX(J)) THEN

STFLAG = 0

LTFLAG = 0

MEMFLAG : 0

************************** swap DESVAR with XX(j,K)

********************** change in objective function

5

DO 5 I=I,NRELV+NDISV

TEMPX(I) = DESVAR(I)

CONTINUE

TEMPX (J) = XX(J,K)

WRITE(12,*)'current design point = ', (TEMPX(I),I=I,NROW)

$
CALL OBJEC (CONVIO, DEVFUN, IPATH, NROW,

TEMPX, DFNCOF, NMPRI, NNLTOT, NNLCON, NNLGOA)

IF (CONVIO.GT.0.05) THEN

NEWZ = 1000*CONVIO

WRITE(12,*)'current obj function (INFEAS)= ',NEWZ

ELSE

FEASFL = 0

NEWZ = DEVFUN

WRITE(12,*)'current objective function = ',NEWZ

ENDIF

************************************************************

C *

C SCHEMA INDENTIFICATION SCHEME *

C *

C Purpose:Identify best set of solutions, then look to *

C identify parts of soluton that frequently show up. *

C Build future solutions on these building blocks. *

C *

SCHFLG = 0

DO 12 N=!,NUMBST

IF (SCHFLG.EQ. 0) THEN

IF (NEWZ.LT.SCHEMA(N,I)) THEN

DO 13 M=I,N-I

IF (N.GT.I .AND. NEWZ.EQ.SCHEMA(M,I)) THEN

GOTO 12
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13

ENDIF

CONTINUE

SCHFLG = i

DO 6 I : NUMBST,N+I,-I

DO 6 M = I,NROW+I

SCHEMA(I,M) = SCHEMA(I-I,M)

CONTINUE

C************* update best objective function

SCHEMA(N, i) = NEWZ

C************* update best design point

DO 7 M = 2,NROW+I

SCHEMA(N,M) = TEMPX(M-I)

7 CONTINUE

ENDIF

ENDIF

12 CONTINUE

DE=NEWZ-OLDZ

C**************Check to see if it is the best so far

C*********NOTE: For minimization, it is .LT.

C********* For maximization, it is .GT.

IF (DE.LT.DZBEST) THEN

c************** First condition tests for tabu status of (I,K)

C**************Must change STM size according to NUMDESV

WRITE(12,*)'MEM(',J,INDEX(J),K,

$ '):',MEM(J,INDEX(J),K)

IF ( MEM(J, INDEX(J),K) .GT. 0 .AND.

$ MEM(J,INDEX(J),K) + LISTL .GT. L) THEN

MEMFLAG = 1

WRITE(12,*)'***MEM FLAG'

ENDIF

IF(MEMFLAG .EQ. i) THEN

************************ IS .it. if minimization ********

************************ IS .gt. if maximization ********

IF (NEWZ .LT. BSTZ) THEN

WRITE(i2,*)'***ASPIRATION CRITERIA MET***'

ASPCNT = ASPCNT+I

CURBST = NEWZ

DZBEST = DE

BESTPOS = J

BESTINDX = K

ELSE

WRITE(12,*)'******TABU STATUS MET****'
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ELSE

STCNT = STCNT + 1

ENDIF

C***************** otherwise the move is not tabu

ENDIF

ENDIF

ENDIF

DZBEST = DE

CURBST = NEWZ

BESTPOS = J

BESTINDX = K

26 CONTINUE

24 CONTINUE

*********************************************************

* DYNAMIC MEMORY STRUCTURE. *

* AS L increases, memory list size is going down. *

IF (L.GT.MEMLIM .AND. MOD(L,2).EQ.0) THEN

LISTL = LISTL - 1

ENDIF

27

MEM( BESTPOS,INDEX(BESTPOS),BESTINDX) = L

WRITE(12,*)'MEM(',BESTPOS,INDEX(BESTPOS),BESTINDX,')

$MEM(BESTPOS, INDEX(BESTPOS),BESTINDX)

INDEX(BESTPOS) = BESTINDX

WRITE(13,*)'ITERATION:',L

DESVAR(BESTPOS = XX(BESTPOS,BESTINDX)

DO 27 J=I,NROW

WRITE(13,*) DESVAR(',J,') = ',DESVAR(J)
CONTINUE

!

******This is postprocessing information for solution behavior

CALL OBJEC (CONVIO, DEVFUN, IPATH, NROW,

$ DESVAR, DFNCOF, NMPRI, NNLTOT, NNLCON, NNLGOA)

WRITE(15,28) (DESVAR(J),J:I,NROW)

WRITE(17,29)DEVFUN, CONVIO, BSTZ, STCNT, ASPCNT
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28 FORMAT (i0 (iX, F8.3) )

29 FORMAT (FI2 .3 ,!X, FI2 .3, iX, FI2 .3 ,iX, I4 ,IX, I4)

IF (FEASFL.EQ.!) THEN

WRITE(13,*)'**INFEASIBLE**(OBJ = 100*CONVIO)'

ENDIF

WRITE(13,*)'OBJECTIVE FUNCTION: ',CURBST

***************3********* BSTZ values

OLDZ = CURBST

C********** NOTE: .lt. if minimization,

19

.gt. if maximization

IF ( CURBST .LT. BSTZ ) THEN

WRITE(12,*)'***BESTZ being updated to :',CURBST

BSTZ : CURBST

ITBST = L

DO 19 M=I,NROW

BESTX(N) : DESVAR(M)

CONTINUE

18

DO 18 M=I,NRELV+NDISV

NNINDX(M) = INDEX(M)

CONTINUE

ENDIF

i00

WRITE(12,*)'BESTX = ', (BESTX(I), I=I,NROW)

WRITE(i2,*) L,CURBST,BSTZ,STCNT,ASPCNT

CONTINUE

WRITE(12 3)

WRITE(12 *)

WRITE(12 *)

WRITE(12 3)

WRITE(!2 *)

WRITE(12 3)

'BEST Z ',ITBST, BSTZ

'Tabu Move found ', STCNT

'Aspiration criteria met

'BEST variable values '

(BESTX(I),I=I,NROW)
i !

',ASPCNT

RETURN

END

C

C

C*W*****W***W************W******W**********W**W****W*W********

C

C Function OBJEC

C

C Purpose: Evaluate the deviation function and constraints
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C

C-

C Arguments

C

C

C Input :
C DESVAR

C NDESV

C I PATH

C NNLTOT

C NNLCON

C NNLGOA

C DFNCOF

C NMPRI

C IACTVR

C CONVIO

C DEVFUN

C NMPRI

C

C

C

C Output:

C

C Input/Output
C

C--

Name Type Description

R

I

I

I

I

I

R

I

I

R

R

I

Vector of Design Variables

Number of Design Variables

Total number of nonlinear c/g's

Number of nonlinear constraints

Number of nonlinear goals

Vector of deviation function weights

Number of Priority Levels

Array of inactive variables

Current constraint violation

Current deviation function

Number of priorities

C Common Blocks: none

C

C Include Files: alplim.cmm

C

C Calls to: USRSET

C--

C Development History

C

C Author: Kemper Lewis

C Date: October 25, 1995

C

C Modifications:

C

SUBROUTINE OBJEC(CONVIO, DEVFUN, IPATH, NDESV, DESVAR,

$ DFNCOF, NMPRI, NNLTOT, NNLCON, NNLGOA)

C

C--

C

C--

C

INCLUDE 'alplim.cmm'

Arguments:

INTEGER NDESV, NNLTOT, IPATH, NMPRI
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INTEGER I, J, K, NOUT, NNLCON, NNLGOA

C
REAL DESVAR(NDESV), CONSTR(MNLNCG),GOALS(MNLNCG),

GOALSUM

REAL DFNCOF(MLEVEL,MDEVV),CONVIO, DEVFUN

********************* objective function based on priority

CALL USRSET (IPATH, NDESV, MNLNCG,NOUT, DESVAR,
& CONSTR, GOALS)

CONVIO = 0

56

DO 56 I=I,NNLCON
IF(CONSTR(I) .LT. 0.0) THEN

CONVIO = CONVIO + ABS(CONSTR(I))

ENDIF

CONTINUE

C

C

C

C

C

C

C

53

55

DEVFUN = 0.0

*** Only the first priority is used. This is because,

since FALP is a two-stage solution process, the foraging

(discrete) portion acts as a meta-heuristic to find

the best neighborhood. Then within this neighborhood,

the ALP portion refines the solution using i) the

continuous variables and 2) multiple priority levels,

if applicable.

DO 53 J=I,NNLGOA

DO 53 K=I,2

DEVFUN : DEVEUN + DFNCOF(I,2*J-I+K-I)*ABS(GOALS(J))

CONTINUE

DEVFUN = DEVFUN/2

RETURN

END
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SPRING EXAMPLE: DSIDES Data File

PTITLE: Problem Title: Design of a Compression Spring

NUMSYS:

! 2 0:1 continuous, 2 discrete, 0 Boolean variables

SYSVAR :

D 1 1.0 6.0 6.0:

N 2 3 30 30:

d 3 0.009 0.5 0.009:

Coil Diameter, continuous

Number of Coils, integer

Wire Diameter, discrete

NIIMCAG:

0 8 0 0 I: 8 nonlinear constraints, one nonlinear goal

DEVFUN:

I: 1 level

1 2: Level i, 2 terms

(+I,I.0) (-i,i.0)

STOPCR:

1 0 40 0.001 0.001:

NLINC©: Names of nonlinear constraints

gl I: shear stress

g2 2: free length

g3 3: wire diameter minimum

g4 4: outside diameter maximum

g5 5: inner coil ratio

g6 6: preload deflection

g7 7: combined deflections

g8 8: max deflection

NLINGO:

vo! i: volume goal

ALPOUT:

I i i 0 0 0 0 0 i !:

PVDISC:

1 : variables with discrete values

3 42 1 variable 3 has 42 possible values, initial value : ist

0.009 0 0095 0.0104 0.0118 0.0128 0.0132 0.014 0.015 0.0162 0.0173

0.018 0 020 0.023 0.025 0.028 0.032 0.035 0.041 0.047 0.054 0.063

0.072 0 080 0.092 0.105 0.120 0.135 0.148 0.162 0.177 0.192 0.207

0.225 0 244 0.263 0.283 0.307 0.331 0.362 0.394 0.4375 0.500

ENDPRB:
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SPRING EXAMPLE:Solution Search History

Starting Point: Lower Bound
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Starting Point: Mid-Points
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Starting Point: Upper Bound

GIVEN IN SECTION 6.4.2
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PRESSURE VESSEL EXAMPLE: DSIDES Data File

PTITLE: Problem Title

Press Vl problem from "A Two-Stage Sequential Approx Method for

Non-Linear Disc-Var Opt" from DAC, Bost,MA,by Hsu, pp.197-202.

NIIMSYS:

2 2 0:2 continuous , 2 variables, 0 Boolean variables

SYSVAR:

radius 1 25 150

length 2 25 250
sthick 3 0.0625

hthick 4 0.0625

87.5:1

137.5:

1.25 0.0625:

1.25 0.0625:

Radius, Continuous

Length, Continuous

Shell Thickness, Discrete

Hull Thickness, Discrete

NUMCAG:

0 4 0 0 i: 4 nonlinear constraints, 1 nonlinear goal

DEVFUN:

i: 1 level

i i: Level i, ! term

(+i,i.0)

STOPCR:

1 0 40 0.001 0.001:

NLINCO: Names of nonlinear constraints

gi i: Ts ratio geometry

g2 2: Th ratio geometry

g3 3: geometry limit

g4 4: space limitation

NLING©:

cost i: cost function

ALPOUT:

1 1 1 0 0 0 0 0 1 I:

PVDISC:

2 : variables with discrete values

3 20 i0 : variable 3 has 20 possible values, guess is 10th
0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625

0.6875 0.75 0.8125 0.875 0.9375 1.0 1.0625 1.125 1.1875 1.25

4 20 i0 : variable 4 has 20 possible values, guess is 10th

0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625

0.6875 0.75 0.8125 0.875 0.9375 1.0 1.0625 1.125 1.1875 1.25

ENDPRB:
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PRESSURE VESSEL EXAMPLE: Solution Search History

Starting Point: Lower bound

GIVEN IN SECTION 6.4.4
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Starting Point: Upper Bound
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APPENDIX C

FULL RESULTS: SUBSONIC PASSENGER AIRCRAFT STUDY

In this Appendix, the full solutions of each of the protocols and formulations presented in

Chapter 7 are presented. This includes the DSIDES data files, and full solution information

for the full cooperation (continuous and mixed), approximate cooperation, and

leader/follower protocols. For the noncooperative formulation, full solutions and

corresponding simplified rational reaction sets are given for each of the seven scenarios.
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COOPERATIVE FORMULATIONS: FULL SOLUTIONS

Full Cooperative Solutions

In Table C. 1, the full results for the three cooperative formulations are shown. The complete

design variables, state variables, constraints, goals, deviation functions, and constraint

violations are given.
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Table C.1. Cooperative Solutions

(a) Full Cooperation: Continuous (b) Approximate Cooperation

Player Aero Player Weights Player Aero

X, design vats X Tdesign vat's X Tdesign vats

S (ft2 / 1557 Ti (lbs) 33900 S (ft2) 1554

b (ft) 122.7 Wto (lbs) 196687 b fit) 122.4

1 (ft) 116.2 1 (ft) 119.1

s Tstate vars s, state vars sTstate vats
cdoc 0.018 Rfa 0.286 cdoc 0.018

icd_l 0.019

d(_) 14.64
Ld 1 15.1

Ld t 11.8

Ld c 19.9

Vbr 688.74

(ft/s)
AR 9.66

qL 0.095

qTO 0.030

sL (fl) 4491

STO 6497

(It)
constraint values

(feasible > 0.0)
gl 0.080

g2 2.94

g3 0.114

ig4 0.002

g5 0.001

g6 0.073

g7 0.091

goal values (ideal = 0.0)

fl 0.683

f2 0.003

f3 -0.080

f4 -0.002

f5 0.444

devation function and
total constraint

violation

Zaero 0.242

convio 0.0

R_ 0.286
U 0.490

cdotl 0.019

d (ft) 14.3
Ld t 15.0

Player Weights

X Tdesign vars

Ti (lbs) 33903

Wto 0bs) 196512

sT state vats
Rfa 0.286

Rfr 0.286

U 0.489

Rf 0.999 Rf 0.999

PRI 177 Ldt 11.8 PRI 177

qL 0.095 Ld c 19.9 qL 0.095

qTO 0.030 Vbr 689.6 qTO 0.030

SL (ft) 4491 AR 9.65 SL 4498

sTO (ft) 6497 qL 0.095 sTO 6500

constraint values

(feasible > 0.0)
gl 0.632

g2 -0.001

qTO 0.030

SL 4498

STO 6500

constraint values

(feasible > 0.0)
gl 0.081

g3 2.945

g4 0.114 g4 0.001

g5 0.002

g2 2.943

g3 0.111

g5 0.000

gl

_oal values (ideal = 0.0)

constraint values

(feasible > 0.0)
0.632

g2 -0.001

g3 2.943

g4 0.111

g5 0.001

g6 0.001 g6 0.074 g6 0.000

g7 0.092
goal values (ideal = 0.0) goal values (ideal = 0.0)

fl -0.344

f2 -0.021

f3 0.000

f4 0.683

f5 0.003

f6 -0.002

fl 0.683

f2 0.000

f3 -0.081

f4 -0.001

f5 0.445

fl -0.343

f2 -0.021

f3 -0.001

0.683

o.0o0
f6 -0.001

f7 0.444 t7 0.445

devation function and total devation function and devation function and total
constraint violation total constraint constraint violation

violation

Zaero 0.2420Zwei gh t 0.214
convio -0.001 convio 0.0

Zweight 0.213
convio -0.001
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(c) Full Cooperation: Mixed

Player Aero Player Weights

X r design vars X_ design vars
S (ft 2) 1613 Ti (lbs) 33000

b (fi) Wto (lbs) 197717

l(ft)

cdoc

126

120

s7 s_ vats
0.018

sr state vat's

R_ 0.289

cdotl 0.018 Rfr 0.286

d (fl) 14.23 U 0.489
Ldl 15.7 Rf 1.01

Ldt 12.3 PRI 174

Ld c 20.2 qL 0.092

Vbr 677.26

(fffs)
AR 9.84

qTO 0.030

sL (fl) 4369

qL 0.092 sTO (ft) 6491

qTO 0.030

sL(ft) 4369

STO 6499

(ft)
constraint values

(feasible > 0.0)
gl 0.063

g2 2.836

0.112

constraint values

(feasible > 0.0)
gl 0.629

g2 0.010

g3 2.836g3

g4 0.029 g4 0.112

g5 0.000 g5 0.029

g6 0.087 g6 0.000

g7 0.103

goal values (ideal

0.0)
fl

goal values (ideal = 0.0)

convio 0.0

-0.3570.674 fl

f2 0.001 f2 -0.023

f3 -0.0628 f3 0.010

f4 -0.0292 f4 0.674

f5 0.4443 f5 0.000

f6 -0.029

f7 6.444

devation function and devation function and total
total constraint constraint violation

violation

Zaero 0.242 Zweight 0.220
convio 0.0
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DSIDES DATA FILE: Full Cooperation, Mixed Discrete/Continuous

PTITLE: Problem Title, User Name and Date

Aircraft Design, Full Cooperation: Mixed

Kemper Lewis, October 19.1995

NUMSYS : Number of system variables: real, discrete, boolean

2 3 0

SYSVAR

winga 1

weigh 2

fleng 3

wspan 4

insth 5

: System variable information

0 1 1.0 : Wing area

0 1 1.0 : Take-off weight

0 1 1.0 : fuselage length

0 1 1.0 : Wing Span

0 1 1.0 : installed thrust

NUMCAG : Number of constraints and goals

0 9 0 0 8 : niinco,nnlinq,nnlequ,nlingo,nnlgoa

DEVFUN : Achievement function

1 : levels

1 16 : level i, 2 terms

(-i,i.0) (+i,i.0) (-2,1.0) (+2,1.0)

(-4,1.0) (+4,1.0) (-5,1.0) (+5,1.0)

(-7,1.0) (+7,1.0) (-8,1.0) (+8,1.0)

(-3,1.0) (+3,1.0)

(-6,1..0) (+6,1.0)

STOPCR

1 0

NLINCO

aspr
accl

acto

idfl

tofl

cdtl

cdoc

usfl

fuel

NLINGO

misl

mist

apcr
idfl

toll

prod

usfl

fuel

: Stopping criteria

40 0.0005 0.0005 : perform calcs, prt reslts,

Mcyles,sta dev, sta var

: Names of nonlinear constraints

!: aspect ratio

2: achievable climb gradient, landing

3: achievable climb gradient, take-off

4: landing field length

5: take-off field length

6: limit on take-off and landing Cd

7: limit on cruise Cd

8: Useful load fraction

9: fuel balance

: Names of the nonlinear goals

i: missed approach landing

2: missed approach take-off

3: aspect ratio

4: landing field length

5: take-off field length

6: Productivity Index

7: Useful load fraction

8: fuel balance
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ALPOUT : Output Control
1 1 1 1 1 1 1 1 1 1

PVDISC :

3 : variables with discrete values

3 46 1 : variable 2 has 46 possible values, initial value =i
0.0 0.022 0.044 0.067 0.089 0.iii 0.133 0.156 0.178 0.2

0.222 0.244 0.267 0.289 0.311 0.333 0.356 0.378 0.4 0.422 0.444

0.467 0.489 0.511 0.533 0.556 0.578 0.6 0.622 0.644 0.667 0.689

0.711 0.733 0.756 0.778 0.8 0.822 0.844 0.867 0.889 0.911 0.933

0.956 0.978 1.0

4 29 1 : variable 3 has 29 possible values, initial value =I
0.0 0.0182 0.0545 0.0909 0.1273 0.1636 0.2 0.2364 0.2727 0.3091

0.3455 0.3818 0.4182 0.4545 0.4909 0.5273 0.5636 0.6 0.6364

0.6727 0.7091 0.7455 0.7818 0.8182 0.8545 0.8909 0.9273 0.9636

1

5 19 1 : variable 2 has 19 possible values, initial value =i
0.0 0.0275 0.0826 0.1193 0.1927 0.2294 0.3028 0.3761 0.4495

0.4862 0.5229 0.5596 0.633 0.7064 0.7431 0.8165 0.8532 0.9266

i.0

ENDPRB:
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SOLUTION HISTORY: Full Cooperation, Mixed Discrete/Continuous

In Figure C. 1, the design variable history for the full cooperative formulation is shown. In

Figure C.2, the best deviation function encountered is shown as a function of the solution

time. A large decrease in the deviation function is achieved in the first cycles, and in the

later cycles, small increases (as shown in the expanded plot in Figure C.2) occur as the

solution slowly gets better and better. In Figure C.3, the deviation function at each cycle is

shown. Characteristic of the foraging search, worse solutions are accepted as a means to

find better solutions and escape local minima. This behavior is illustrated in Figure C.3,

where worse solutions are accepted throughout the solution process.
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Figure C.1. Design Variable History: Full Cooperation (Mixed)
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DSIDES DATA FILE: Full Cooperation, Continuous

PTITLE: Problem Title, User Name and Date

Aircraft Design, Full Cooperative, Continuous

Kemper Lewis, October 19.1995

NUMSYS : Number of system variables: real,discrete, boolean

5 0 0

SYSVAR

winga i

weigh 2

fleng 3

wspan 4
insth 5

: System variable information

0 1 1.0 : Wing area

0 1 1.0 : Take-off weight

0 1 1.0 : fuselage length

0 1 1.0 : Wing Span

0 1 1.0 : installed thrust

NUMCAG : Number of constraints and goals

0 9 0 0 8 : nlinco,nnlinq, nnlequ,nlingo,nnlgoa

DEVFUN : Achievement function

1 : levels

1 16 : level I, 2 terms

(-i,i.0) (+i,!.0) (-2,1.0) (+2,1.0) (-3,!.0) (+3,1.0)

(-4,1.0) (+4,1.0) (-5,1.0) (+5,1.0) (-6,1.0) (+6,1.0)

(-7,1.0) (+7,1.0) (-8,1.0) (+8,1.0)

STOPCR : Stopping criteria

1 0 40 0.01 0.01 : perform calcs, prt reslts, Mcyles,sta

dev, sta var

NL!NCO

aspr
accl

acto

idfl

tofl

cdtl

cdoc

usfl

fuel

: Names of nonlinear constraints

I: aspect ratio

2: achievable climb gradient, landing

3: achievable climb gradient, take-off

4: landing field length

5: take-off field length

6: limit on take-off and landing Cd

7: limit on cruise Cd

8: Useful load fraction

9: fuel balance

NLINGO : Names of the nonlinear goals

misl i: missed approach landing

mist 2: missed approach take-off

apcr 3: aspect ratio

Idfl 4: landing field length

toll 5: take-off field length

prod 6: Productivity Index

usfl 7: Useful load fraction
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fuel 8: fuel balance

ALPOUT : Output Control
1 1 1 1 1 1 1 1 1 1

ADREMO:

40 0.05

ENDPRB:
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SOLUTION HISTORY: Full Cooperation, Continuous

In Figure C.4, the design variable history for the full cooperative (continuous) formulation is

given for three starting points. All three starting points converge to the same solution. In

Figure C.5, the best deviation function and constraint violation are plotted. The best

deviation function steadily decreases, and the constraint violation pregressively goes to zero,

representing feasibility.
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DSIDES DATA FILE: Approximate Cooperation

PTITLE: Problem Title, User Name and Date

Aircraft Design, Approximate Cooperation

Kemper Lewis, October 19.1995

NUMSYS : Number of system variables: real,discrete, boolean

5 0 0

SYSVAR

winga 1

weigh 2

flgth 3

wspan 4

insth 5

: System variable information

0 1 0 : Wing area

0 1 0 : take-off weight

0 1 0 : fuselage length

0 1 0 : Wing Span
0 1 0 : installed thrust

NUMCAG : Number of constraints and goals

0 12 0 0 ii : nlinco,nnlinq, nnlequ,nlingo,nnlgoa

DEVFUN : Achievement function

1 : levels

1 22 : level I, 2 terms

(-i,I.0) (+i,i.0) (-2,1.0) (+2,1.0) (-3,1.0) (+3,1.0)

(-4,1.0) (+4,1.0) (-5,1.0) (+5,1.0) (-6,1.0) (+6,1.0)

(-7,1.0) (+7,1.0) (-8,1.0) (+8,1.0) (-9,1.0) (+9,1.0)

(-i0,i.0) (+I0,i.0) (-ii,I.0) (+ii,i.0)

STOPCR : Stopping criteria

1 0 40 0.01 0.01 : perform calcs, prt reslts, Mcyles,sta

dev, sta var

NLINCO : Names of nonlinear constraints

aspa !: aspect raito

qla

qlw

qto

qtow
idfl

idfa

tofl

cdtl

cdoc

usfl

flbl

i: achievable climb gradient, landing, aero approx

2: achievable climb gradient, landing, weights approx

3: achievable climb gradient, take-off

4: achievable climb gradient, take-off, weights apporx

5: landing field length

6: landing field length, aero approx

7: take-off field length

8: limit on take-off and landing Cd

9: limit on cruise Cd

I0: useful load fraction

!i: fuel balance

NLINGO : Names of the nonlinear goals

qla i: achievable climb gradient, landing, aero approx

qlw 2: achievable climb gradient, landing, weights approx

qto 3: achievable climb gradient, take-off
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qtow
asra
idf!
idfa
tofl
prod
usfl
fuel

4: achievable climb gradient, take-off, weights approx
5: aspect ratio
6: landing field length
7: landing field length, aero approx
8: take-off field length

9: Productivity Index
i0: Useful load fraction
ii: fuel balance

ALPOUT
i

OPTIMP
-0.05

: Output Control
1 1 1 1 1 1 1 1 1

: Optimization parameters
0.5 0.005 : VIOLIM, REMO, STEP

ADREMO:
40 0.005

ENDPRB:
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NONLOCAL APPROXIMATION SCHEME (GSE's, Matrix Solver, and Taylor

Series): Approximate Cooperation

C
SUBROUTINE USRSET (IPATH, NDESV, MNLNCG, NOUT, DESVAR,

& CONSTR, GOALS)

C

C .......................................

C Arguments:

C .......................................

C

INTEGER IPATH, NDESV, MNLNCG, NOUT

REAL DESVAR(NDESV)

REAL CONSTR(MNLNCG), GOALS(MNLNCG)

C

C .......................................

C Local variables:

C .......................................

C

C constants

INTEGER Np,N,I,J, COUNT, K

REAL bt,R,Wpay,Wfix,rhotl,mutl,Vtl,rhoc,muc,tc,clmax,pi

C the design variables

REAL b,l,S,Wto,Ti

C the behaviour variables

REAL cdOc,cdOtl,d, LDc,LDi,LDt,Vbr,Rfa,Rfr,Sto,U

REAL ql,Rf,Sl,qto

REAL cdOcap,cdOtlap,dap,LDcap,LDlap,LDtap,Vbrap,

& Rfaap,Rfrap,Uap

REAL qla,qlw,Rfap, Sla,Slw, qtoa,qtow

C others

REAL HI, HH, DET pu,pd, Rfold, Rfrold, Rfaold,Uold, PRIold,

& Sold, bold, lold, Tiold, Wtoold

REAL AR, ARap

C Convergence check

REAL EPS, cd0co, Vbro

REAL PRI, PRIap, AACH, WACH

C The Derivatives for the cooperative GSE formulation

REAL dRfrdLDc, dRfrdVbr, dRfadTi, dRfadWto, dRfdRfr,

- dRfdrfa, dUdLDc, dUdVbr, dUdWto, dPRdVbr, dPRdRfr,

- dPRdRfa, dPRdWto

REAL dcd0cdVbr, dLdtdd, dLdtdcd0tl, dLdcdd, dLdcdcd0c,

- dLdldd, dLdldcd0tl, dLdldRfr, dVbrdd, dVbrdcd0c, dqLdLDl,

- dqTOdLDt, dqLdRfr, dsLdRfr
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REAL dddl, dcd0tldb, dcd0tidS, dcd0tld!, dcd0cdS, dcd0cdb,

- dcd0cdl,dLdtdS, dLdtdb,dLd_dWto,dLdcdS, dLdcdb,dLdldS,

- dLdldb, dLdldWto, dVbrdS,dVbrdb, dVbrdWto, dARdS,dARdb

REAL dqLdTi, dqLdWto, dqTOdTi, dqTOdWto, dsLdS, dsLdWto,

- dsTOdS, dsTOdTi, dsTOdWto

REAL dold, cd0tlold, cd0cold, LDtold, LDcold,

& LDlold, Vbrold, ARold, qLold, qTOold,

& sLold, sTOold

The GSE Matrices GSEM*GSESOLV=GSERHS

REAL X(5,2)

INTEGER NUMSTAT, TOTDESV

parameter (NUMSTAT=I7)

parameter (TOTDESV = 5)

REAL GSEM(NUMSTAT,NUMSTAT), GSERHS(NUMSTAT,TOTDESV),

& GSESOLV(NUMSTAT,TOTDESV)

HH(Np,I) : I. ÷ 4.325 * Np / 1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

EXPLANATION OF TERMS

AR Aspect Ratio

b wing span

bt thrust-specific fuel consumption

cd0 zero lift drag coefficient

cd0c zero lift drag coefficient, cruise

cd0tl zero lift drag coefficient, take-off and landing

clmax wing maximum lift coefficient

d

LD

LDo

LDc

LDI

LDt

1

N

qOEI

ql

qto

Rf

Rfa

Rfr

S

Sl

Sto

Ti

U

V

fuselage diameter

lift-to-drag ratio

optimum lift-to-drag ratio

lift-to-drag ratio, cruise

lift-to-drag ratio, landing

lift-to-drag ratio, take-off

fuselage length

Number of Passengers

acheievable climb gradient, one engine

inoperative

achievable climb gradient, one engine

inoperative, missed approach condition

dto., take-off condition

fuel weight balance

available fuel weight ratio

required fuel weight ratio

wing area

landing field length

take-off field length

(installed and required) thrust
useful laod fraction

velocity
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C Vbr

C W

C Wfix

C W1

C Wpay

C Wto

C EPS

C

best range speed

aircraft weight

fixed equipment weight

aircraft landing weight

paylaod weight

aircraft take-off weight

epsilon value for convergence

C

muc = 0.000406

c lmax = 2.6

N =3.0

tc = 0.12

Np = 188

bt = 0.00019444

R = 1.762e+7

Wpay = 40000

Wfix = II00

rhotl = 0.002378

mutl = 0.000156

Vtl= 220

rhoc = 0.000737

pi = 3.141592654

HI = 0.00136612

COUNT = 40

EPS = 0.001

This is the nonlocal information being read in from the

other players

OPEN (l,FILE='aprxcoop.inout')

READ(I,*)dold, cd0tlold, cd0co!d, LDtold, LDcold,

& LDloid, Vbrold, ARold, qLold, qTOold,

& sLold, sTOold, Rfrold, Rfaold, Rfold,

& Uold, PRIold, Sold, lold,

& bold, Wtoold, Tiold

CLOSE (1 )

X(l,l) = Sold

X(2,1) = lold

X(3,1) = bold

X(4,1) = Wtoold

X(5,1) = Tiold

S = DESVAR(1)

Wto = DESVAR(2)

I = DESVAR(3)

b = DESVAR(4)

Ti = DESVAR(5)
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RESCALE THE DESIGN VARIABLES

S = S*(2500-1200) + 1200

1 = 1"(150-105) + 105

b = b*(140-85) + 85

Ti = Ti*(55000-27750) + 27750

Wto = Wto*(250000-140000) + 140000

202

201

DO 201 I=I,NUMSTAT

DO 202 J=I,TOTDESV

GSERHS(I,J) = 0.0

GSESOLV(I,J) = 0.0

CONTINUE

DO 201 K=I,NUMSTAT

GSEM(I,K) = 0.0

IF (I.EQ.K) THEN

GSEM I,K) = 1.0

ENDIF

CONTINUE

OPEN (3,FILE='GSEa.out)

dRfrdLdc = -l.045*bt*R/

- (EXP(bt*R/(LDcold*Vbrold))*LDcold**2.*Vbrold)
*LDcold/Rfrold

dRfrdVbr =-l.045*bt*R/(EXP(bt*R/(LDcold*Vbrold))*
- LDcold*Vbrold**2.)

- *Vbrold/Rfrold

_************ Rfa Approximation ******************

dRfadTi = -0.379278/(Ti**0.0019*Wto)* Ti/Rfaold

dRfadWto = (0.38*Ti**0.9981/Wto**2 + 0.061197/Wto**I.0638 +

- Wfix/Wto**2 ÷ Wpay/Wto**2.)* Wto/Rfaold

dRfdRfa = I/Rfrold * Rfaold/Rfold

dRfdRfr = -(Rfaold/Rfrold**2)* Rfrold/Rfold
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dUdLdc = -l.045*bt*R/(EXP(bt*R/(LDcold*Vbrold))

*LDco!d**2.*Vbrold)

*LDco!d/Uold

dUdVbr = -l.045*bt*R/(EXP(bt*R/(LDcold*Vbrold))

*LDcold*Vbrold**2.)

*Vbrold/Uold

dUdWto = -Wpay/Wto**2* Wto/Uo!d

dPRdVbr = 40000/ -41100+(!-Rfaold+Rfrold)*Wto)*Vbrold/PRIold

dPRdRfr =-40000*Vbrold*Wto/(-411OO+(l-Rfaold+Rfrold)*Wto)**2*

Rfrold/PRIold

dPRdRfa = 40000*Vbrold*Wto/(-411OO+(l-Rfaold+Rfrold)*Wto)**2*

Rfaold/PRIold

dPRdWto = -40000*(l-Rfaold+Rfrold)*Vbrold/

(-41100+(l-Rfao!d+Rfrold)*Wto)**2*Wto/PRIold

********* d Approximation ***************

dddl = -7.91475*Np/lold**2.*lold/dold

******** Cdotl Approximation _**********

dcd0tldb = 22.2111*(l.+l.2*tc+lOO.*tc**4.)/

- (bold*Log(Sold*Vtl/(bold*mutl))**3.58)*bold/cdOt!old

dcd0tldS =

- -7.16109*lold*HH(Np, lold)*

- (i. + 367.709/(lold/HH(Np, lold))**3. +

- Hl*lold/HH(Np, lold))*

- (i. - 3.66*HH(Np, lold)/lold)**0.666667*

- (i. + 3.3489*(HH(Np, lold)/lold)**2.)*pi/

- (Sold**2*Log(lold*Vtl/mutl)**2.58) -

- 22.2111"(1. + 1.2*tc + 100.*tc**4.)/

- (Sold*Log(Sold*Vtl/(bold*mut!))**3.58)*Sold/cdOtlold

dcd0t!dl = -18.4756*HH(Np,lold)*(l.+367.709/

& (lold/HH(Np, lold))**3.+ HI*Iold/HH(Np, lold))*

& (I.- 3.66*HH(Np, lold)/lold)**

& 0.666667*(l.÷3.3489*(HH(Np, lold)/lold)**2.)*pi/(Sold*

& Log(lold*Vtl/mutl)**
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&

&

&

&

&

&

&

&

&

&

&

&

&

3.58) + 47-9635*lold*HH(Np, lold)*(HH(Np, lold)/lold)**l.*

(i. + 367.709/

(lold/HH(Np, lold))**3. + Hl*lold/HH(Np, lold))*(-4.325*Np/

lold**3 - HH(Np, lold)/lold**2)*(l.-3.66*HH(Np, lold)/lold)**

0.666667*pi/(Sold*

Log(lold*Vtl/mutl)**2.58) + 4.77406*lold*HH(Np, lold)*

(i. + 367.709/(iold/

HH(Np,lold))**3.+ Hl*lold/HH(Np, lold))*(15.8295*Np/loid**3

+ 3.66*HH(Np, lold)/lold**2 *(i. + 3.3489*(HH(Np, lold)/

lold)**2.)*pi/

((i. - 3.66*HH(Np, lold)/lold **0.333333"Sold*

Log(lold*Vtl/mutl)**2.58 -

30.9717"Np*(i. + 367.709/(lold/HH(Np, lold))**3. + Hl*lold/

HH(Np, lold))*(l.- 3.66*HH(Np,lold)/lold)**0.666667
*(1.+3.3489"

& (HH(Np, loid)/lold)**2.)*pi/

& (lold*Sold*Log(lold*Vtl/mutl)**2.58)+
& 7.16109*

& HH(Np,lold)* (l.÷367.709/(lo!d/HH(Np,lold))**3. + Hl*!old/

& HH(Np, lold))*(l. - 3.66*HH(Np, lold)/lold)**0.666667*

& (I. + 3.3489*

& (HH(Np, lold)/lold)**2.)*pi/(Sold*

& Log(lold*Vtl/mutl)**2.58) +

& 7.16109"iold*

& HH(Np, lold)*(l.-3.66*HH(Np, lold)/lold)**0.666667*(l.+3.3489*

& (HH(Np, lold)/lold)**2.)*

& (O.O0590847*Np/(lold*HH(Np, lold)**2)+Hl/

& HH(Np, lold)-l103.13*(4.325*Np/(lold*HH(Np, lold)**2) + I./
& HH(Np,lold))/

& (lold/HH(Np, lold))**4.)*pi/(Sold*Log(lold*Vtl/mutl)**2.58)
& * lold/cd0tlold

******* Cdoc Approximation **************

dcd0cdb = 22.2111*(l.+l.2*tc+lOO.*tc**4.)/

- (bold*Log(Sold*Vbrold/(bold*muc))**3.58) * bold/cdOcold

dcd0cdS =

-7.16109*lold*HH(Np, lold)*

I. + 367.709/(lold/HH(Np,lold))**3. +

Hl*lold/HH(Np, lold))*

i. - 3.66*HH(Np, lold)/lold)**0.666667*

I. + 3.3489*(HH(Np,lold)/lold)**2.)*pi/

(Sold**2*Log(lold*Vbrold/muc)**2.58)

22.2111"(1. + 1.2*tc + lO0.*tc**4.)/

(Sold*Log(Sold*Vbrold/(bold*muc))**3.58) * Sold/cdOco!d

WRiTE(3,*)Np,lold,Hl,pi,Sold,Vbrold,muc,cd0cold

dcd0cdl : -18.4756*HH(Np, lold)*(l.+367.709/

& (lold/HH(Np,lold))**3.÷ Hl*lold/HH(Np, lold))*(l.- 3.66*

& HH(Np, lold)/lold)**

& 0.666667*(l.÷3.3489*(HH(Np,iold)/lold)**2.)*pi/(Sold*

& Log(lold*Vbrold/muc)**

& 3.58) + 47.9635*lold*HH(Np,lold)*(HH(Np, lold)/lold)**l.*
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& (i. + 367.709/

& (Iold/HH(Np, lold))**3.+HI*Iold/HH(Np, lold))*(-4.325*Np/

& lold**3 - HH(Np, lold)/IoId**2)*(I.-3.66*HH(Np, lold)/

& iold)**0.666667*pi/(Sold*

& Log(lold*Vbrold/muc)**2.58) + 4.77406*lold*HH(Np,lold)*

& (I. + 367.709/(iold/

& HH(Np, lold))**3.+HI*Iold/HH(Np, lold))* (15.8295*Np/lold**3

& + 3.66*HH(Np,lold)/lold**2)*(l. + 3.3489*(HH(Np, lold)/

& lold)**2.)*pi/

- ((I. - 3.66*HH(Np, lold)/lold)**0.333333*Sold*

& Log(lold*Vbrold/muc)**2.58) -

- 30.9717"Np*(i.+ 367.709/(lold/HH(Np, lold))**3. + Hl*lold/

& HH(Np,lold))*(l.- 3.66*HH(Np, lold)/lold)**0.666667

& *(1.+3.3489"

& (HH(Np, iold)/lold)**2.)*pi/(lold*Sold*Log(lold*Vbroid/

& muc)*'2.58)+7.16109"

& HH(Np, lold)*(l.+367.709/(lold/HH(Np, lold))**3. + Hl*lold/

& HH(Np, lold))*(l. - 3.66*HH(Np, lold)/lold)**0.666667*

& (I. + 3.3489*

& (HH(Np, lold)/lold)**2.)*pi/

& (Sold*Log(lold*Vbrold/muc)**2.58)+

& 7.16109"iold*

& HH(Np, lold)*(l.-3.66*HH(Np, lold)/lold)**0.666667

& *(1.+3.3489"

& (HH(Np, lold)/lold)**2.)*

& (0.00590847*Np/(lold*HH(Np, lold)**2)+Hl/

& HH(Np,lold)- l103.13*(4.325*Np/(lold*HH(Np, loid)**2)

& HH(Np, lold))/

& (lold/HH(Np, lold))**4.)*pi/

& (Sold*Log(lold*Vbrold/muc)**2.58)

& * lold/cd0cold

+ I./

dcd0cdVbr =

-18.4756*lold*HH(Np, lold)*

i. + 367.709/(lold/HH(Np, lold))**3. +

Hl*lold/HH(Np, lold))*

i. - 3.66*HH(Np, lold)/lold)**0.666667*

i. + 3.3489*(HH(Np, lold)/lold)**2.)*pi/

(Sold*Vbrold*Log(lold*Vbro!d/muc)**3.58)

22.2111"(1. + 1.2*tc+100.*tc**4.)/

(Vbrold*Log(Sold*Vbrold/(bold*muc))**3.58) * Vbrold/cdOcold

******** LDt Approximation **************

dLdtdcd0tl = -2.*Wto/(rhotl*Sold*Vtl**2.*(cd0tlold +

- 4.!6667"Wto*'2./

- (bold**2.*(l.- doid**2./bold**2.)*pi*rhot!**2.*

- Sold*Vtl**4.))**2.)*

- cd0tlold/LDtold

dLdtdd =

- -16.6667*dold*Wto**3./

- (bold**4.*(l.- dold**2./bold**2.)**2.*pi*rhotl**3.*

- Sold**2.*Vtl**6.*

- (cd0tlold + 4.16667"Wto*'2./
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(bold**2.*(l.- dold**2./bold**2.)*pi*rhotl**2.*

Soid*Vtl**4.))**2.)*

dold/LDtold

dLdtdb =

-2.*Wto*(-8.33333*dold**2.*Wto**2./

(bold**5.*(l.- dold**2./bold**2.)**2.*pi*rhotl**2.*
Sold*Vt!**4.) -

8.33333"Wto*'2./

(bold**3.*(l.- dold**2./bold**2.)*pi*rhotl**2.*
Sold*Vtl**4.))/

(rhotl*Sold*Vtl**2.*(cd0tlold

4.16667"Wto*'2./

(bold**2.*(l.- dold**2./bold**2.)*pi*rhotl**2.*

Sold*Vtl**4.)]**2.)*

bold/LDtold

dLdtdS =

- 8.33333"Wto*'3./

- (bold**2.*(l.- dold**2./bold**2.)*pi*rhotl**3.*Sold**3.*

- Vtl**6.*(cd0tlold + 4.16667"Wto*'2./

(bold**2.*(l.- dold**2./bold**2.)*pi*rhotl**2.*Sold*

Vtl**4.))**2.)- 2.*Wto/

(rhotl*Sold**2.*Vtl**2.*(cdOtlold +

4.16667"Wto*'2./

(bold**2.*(l.- dold**2./bold**2.)*pi*rhotl**2.*Sold*
Vtl**4.)))*

- Sold/LDtold

dLdtdWto =

- -16.6667"Wto*'2./

- (bold**2.*(l.-dold**2./bold**2.)*

- pi*rhotl**3.*Sold**2.*Vtl**6.*

- (cd0tlold + 4.16667"Wto*_2./

- (bold**2.*(l.-dold**2./bold**2.)*pi*rhotl**2.*Sold*
- Vtl**4.))**2.)+ 2./

- (rhotl*Sold*Vtl**2.*(cd0tlold +

- 4.16667"Wto*'2./

- (bold**2.*(l.-dold**2./bold**2.)*pi*rhotl**2.*Sold*
- Vtl**4.)))*

- Wto/LDtoid

******* Ldc Approximation ***************

dLdcdcd0c =

-0.244949*bold**2.*(l.- dold**2./bold**2.)*pi/

- (cdOcold**2.*Sqrt(bold**2.*(l.-dold**2./bold**2.)*pi/
- (cdOcold*Sold))*Sold)*cdOcold/LDcold

dLdcdd =

-0.489898*dold*pi/

(cdOcold*Sqrt(bold**2.*(l.-dold**2./bold**2.)*pi/

(cd0cold*Sold))*Sold)

*dold/LDcold
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dLdcdb =

- 0.244949*(2.*dold**2.*pi/(bold*cdOcold*Sold) +

- 2.*bold*(l.- dold**2./bold**2.)*pi/(cdOcold*Sold))/

- Sqrt(bold**2.*(i.- dold**2./bold**2.)*pi/(cdOcold*Sold))

- *bold/LDcold

dLdcdS =

- -0.244949*bold**2.*(l.- dold**2./bold**2.)*pi/

- (cdOcold*Sqrt(bold**2.*(l.- dold**2./bold**2.)*pi/

- (cd0cold*Sold))*

- Sold**2.)*Sold/LDcold

Ldl Approximation ***************

dLdldd =

(-3.47959*lO**-6*dold*(l-Rfrold)*Wto*((l-Rfrold)*Wto)**2/

(bold**4*(l-dold**2/bold**2)**2*

Sold**2*(cd0tlold+(0.0001*((l-Rfrold)*Wto)**2)/

(bold**2*(l-dold**2/bold**2)*Sold))**2))* dold/LDlold

dLdldcd0ti = (-0.01738*(l-Rfrold)*Wto)/

(Sold*(cdOtlold+(O.OOOl*((l-Rfrold)*Wto)**2)/

(bold**2*(l-dold**2/bold**2)*Sold))**2)* cd0tlold/LDlold

dLdldRfr =

_ (3.47959*10**-6*dold*(l-Rfrold)*Wto**2*((ItRfrold)*Wto)/

- (bold**2*(l-dold**2/bold**2)*

- Sold**2*(cd0tlold+(0.0001*((l-Rfrold)*Wto)**2)/

- (bold**2*(l-dold**2/bold**2)*Sold))**2)

- (0.0i73769"Wto)/

- Sold*(cdOtlold+(O.OOOl*((l-Rfrold)*Wto)**2)/

- (bold**2*(l-dold**2/boid**2)*Sold))**2)* Rfrold/LDlold

dLdldS =(l.73979*lO**-6*(l-Rfrold)*Wto*((l-Rfrold)*Wto)**2)/

(bold**2*(l-dold**2/bold**2)*

Sold**3*(cdOtlold.(O.OOOl*((l-Rfrold)*Wto)**2)/

(bold**2*(l-dold**2/bold**2)*Sold))**2) -

(0.0i73B*(l-Rfrold)*Wto)/(Sold**2*(cd0tlold+(0.0001*

((l-Rfrold)*Wto)**2)/(bold**2*(l-dold**2/bold**2)*Sold)))

* Sold/LDlold

dLdldb =

- (-0.01738*(l-Rfrold)*Wto*

- (-0.0002*dold**2*((l-Rfrold)*Wto)_*2/

- (boid**5*(l-dold**2/bold**2)**2*Sold) 0.0002*

- ((l-Rfrold)*Wto)**2/

- (bold**3*(l-dold**2/bold**2)*Sold))/

- (Sold*(cd0tlold + 0.0001*((l-Rfrold)*Wto)**2/

- (boid**2*(l-dold**2/bold**2)*Sold))**2)) * bold/LDlold

dLdldWto =

(-3.47959*!O**-6*(l-Rfrold)**2*Wto*((l-Rfrold)*Wto))/

(bold**2*(l-dold**2/bold**2)*

Sold*'2_(cdOtlold+(O.OOOl'((l-Rfrold)*W_o)**2)/
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(bold**2*(l-dold**2/bold**2)*Sold))**2) +

(0.01738*(l-Rfrold))/

(Sold*(cdOtlold+(O.OOOl*((l-Rfrold)*Wto)**2)/

(bold**2*(l-dold**2/bold**2)*Sold)))* Wto/LDlold

********** Vbr Approximation ************

dVbrdcd0c =

- -0.35718*bold**2.*(l.- doid**2./bold**2.)*pi*Wto/

- (rhoc*(bold**2.*cdOcold*(l.-dold**2./bold**2.)*pi/Sold)**

- (3./2.)*Sold**2.*Sqrt(Wto/

- (rhoc*Sqrt(bold**2.*cdOcold*(l.-dold**2./bold**2.)*

- pi/Sold)*Sold)))*

- cd0cold/Vbrold

dVbrdd =

- 0.71436*cdOcold*dold*pi*Wto/

(rhoc*(bold**2.*cdOcold*(l.-dold**2./bold**2.)*pi/Sold)**

(3./2.)*Sold**2.*Sqrt(Wto/

- (rhoc*Sqrt(bold**2.*cdOcold*(l.- dold**2./bold**2.)*

- pi/Sold)*Sold)))*

- dold/Vbrold

dVbrdb

-0.35718*(2.*cd0cold*dold**2.*pi/(bold*Sold) +

2.*bold*cdOcold*(l.- dold**2./bold**2.)*pi/Sold)*Wto/

(rhoc*(bold**2*cdOcold*(l.- dold**2./bold**2.)*pi/Sold)**

(3./2.)*Sold*Sqrt(Wto/

(rhoc*Sqrt(bold**2*cdOcold*(l.- dold**2./bold**2.)*pi/
Sold)*Sold)))*

bold/Vbrold

dVbrdS =

0.71436*(bold**2*cdOcold*(l.-dold**2./bold**2.)*pi*Wto/

(2.*rhoc*(bold**2*cdOcold*(l.-dold**2./bo!d**2.)*pi/Sold)**
(3./2.)*Sold*'3.) -

Wto/

(rhoc*Sqrt(bold**2.*cdOcold*(l.- dold**2./bold**2.)*
pi/Sold)*Sold**2.))/

Sqrt(Wto/

(rhoc*Sqrt(boid**2.*cdOcold*(l.- dold**2./bold**2.)*pi/
Sold)*Sold))*

Sold/Vbrold

dVbrdWto =

- 0.71436/(rhoc*Sqrt(bold**2.*cdOcold*(l.-dold**2./bold**2.)_

- pi/Sold)*Sold*Sqrt(Wto/

- (rhoc*Sqrt(bold**2.*cdOcold*(l.-dold**2./bold**2.)*pi/
- Sold)*Sold ) *

- Wto/Vbrold

********** Aspect Ratlo, AR Approximation ********

dARdb =

- 2*bold/Sold*bold/ARold
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dARdS =

- -(bold**2/Sold**2)* Sold/ARold

********** qL Approximation **************

dqLdLDl = I/LDlold**2*LDlold/qLold

dqLdRfr = (0.6667*Ti)/((l-Rfrold)**2*Wto)* Rfrold/qLold

dqLdTi = (0.6667)/((l-Rfrold)*Wto)* Ti/qLold

dqLdWto = (-0.6667*Ti)/((l-Rfrold)*Wto**2)* Wto/qLold

*********** qTO Approximation *************

dqTOdLDt = i/LDtold**2 * LDtold/qTOold

dqTOdTi = 0.6667/Wto * Ti/qTOold

dqTOdWto = -0.6667*Ti/Wto**2 * Wto/qTOold

*********** sL Approximation ************

dsLdRfr = -45.3846*Wto/Sold * Rfrold/sLold

dsLdS = (-45.3846*(l-Rfrold)*Wto)/Sold**2 * Sold/sLold

dsLdWto = (45.3846*(l-Rfrold))/Sold * Wto/sLold

********** sTO Approximation ***********

dsTOdS = (-8.03846*Wto**2)/(Sold*Ti) -

- (26.9776*Wto)/(Sold**2*SQRT(Wto/Sold)* Sold/sTOold

dsTOdTi = (-8.03846*Wto**2)/(Sold*Ti**2)* Ti/sTOold

dsTOdWto = (16.0769*Wto)/(Sold*Ti) +

- (26.9776)/(Sold**2*SQRT(Wto/Sold))* Wto/sTOold

******* SETTING UP GSE MATRICES ************

GSEM

GSEM

GSEM

GSEM

GSEM_

GSEM_

GSEM

GSEM

GSEM

GSEM_

3,7

4,1

4,2

5,1

5,3

6,1

6,2

= -dcd0cdVbr

= -dLdtdd

= -dLdtdcd0tl

= -dLdcdd

= -dLdcdcd0c

= -dLdldd

= -dLdldcd0tl

6,13) = -dLdldRfr

7,1) = -dVbrdd

7,3) = -dVbrdcd0c

GSEM(9,6) = -dqLdLDl

GSEM(9,13) = -dqTOdLDt

GSEM(10,4) = -dqLdRfr

GSEM(II,13) = -dsLdRfr

GSEM(13,7) = -dRfrdVbr

GSEM(13,5) = -dRfrdLdc

GSEM(15,13) = -dRfdRfa
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GSEM(15,14) = -dRfdRfr

GSEM(16,5) = -dUdLdc

GSEM(16,7) = -dUdVbr

GSEM(17,7) = -dPRdVbr

GSEM(!7,13) = -dPRdRfr

GSEM(17,14) = -dPRdRfa

GSERHS(I,2) = dddl

GSERHS(2,1) = dcd0tldS

GSERHS(2,2) = dcd0tldl

GSERHS(2,3) = dcd0tldb

GSERHS(3,1) = dcd0cdS

GSERHS(3 2) = dcd0cdl

GSERHS(3

GSERHS(4

GSERHS(4

GSERHS(4

GSERHS(5

GSERHS(5

GSERHS(6

GSERHS(6

3) = dcd0cdb

!) = dLdtdS

3) = dLdtdb

4) = dLdtdWto

i) = dLdcdS

3) = dLdcdb

i) = dLdldS

3) = dLdldb

GSERHS(6,4) = dLdldWto

GSERHS(7,1) = dVbrdS

GSERHS(7,3 = dVbrdb

GSERHS(7,4 = dVbrdWto

GSERHS(8,1 = dARdS

GSERHS(8,3 = dARdb

GSERHS(9,4

GSERHS 9,5

GSERHS i0 4

GSERHS i0 5

GSERHS !i 1

GSERHS Ii 4

GSERHS 12 1

GSERHS 12 4

GSERHS 12 5

= dqLdWto

= dqLdTi

= dqTOdWto

= dqTOdTi

= dsLdS

= dsLdWto

= dsTOdS

= dsTOdWto

= dsTOdTi

GSERHS

GSERHS

GSERHS

GSERHS

14,4

14,5

16,4

17,4

= dRfadWto

= dRfadTi

= dUdWto

= dPRdWto

* Solve GSE ***

* Construct taylor series ***
**********************************

C

C

C

C

C

call I_gERSE(GSEM,NUMSTAT,GSERHS,TOTDESV,DET)

call mmult(NUMSTAT,_JMSTAT,TOTDESV,GSEMINV,GSERHS,GSESOLV)

do I0 i:I,NUMSTAT

do ii j=I,TOTDESV

PRINT *, 'X(',i, ', ',j, ') = ',GSERHS(i,j)
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C ii CONTINUE

C I0 CONTINUE

Do 802 I=I,NUMSTAT

Do 803 J=I,TOTDESV

the ratio pu/pd will 'denormalize' the important sensitivities.

If I eq.l) pu=dold

If I

If I

If I

If I

If I

If I

If I

If I

If I

If I

If I

If

eq.2) pu=cd0tlo!d

eq.3) pu=cd0cold

eq.4) pu=LDtold

eq.5) pu=LDcold

eq.6) pu=Ldlold

eq.7) pu=Vbrold

eq.8) pu=ARold

eq.13) pu=Rfrold

eq.i4) pu=Rfaold

eq.15) pu=Rfold

eq.16) pu=Uold

I.eq.17) pu=PRIold

If(j .eq.l

If(j .eq.2

If(j .eq.3

If(j .eq.4

If(j .eq.5

pd=Sold

pd=lold

pd=bold

pd=Wto

pd=Ti

GSERHS I,J)=GSERHS(I,J)*pu/pd

803 Continue

802 Continue

C

C

C

C

X is the vector of all design variables X(i,2) = new

X(i,l) = old

Xold are the first terms in the taylor's series expansion

dap = dold

cd0tlap = cd0tlold

cd0cap = cd0cold

LDtap = LDtold

LDcap = LDcold

LD!ap = LDlold

Vbrap = Vbrold

ARap = ARold

Rfrap = Rfrold

Rfaap = Rfaold

Rfap = Rfold

Uap = Uold
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801

PRlap = PRlold

DO 801 I=I,TOTDESV

dap = dap + GSERHS(!,I)*(X(I,2)-X(I,I))

cd0tlap = cd0tlap + GSERHS(2,I)*(X(I,2)-X(I,I))

cd0cap = cd0cap + GSERHS(3,I)*(X(I,2)-X(I,I))

LDtap = LDtap + GSERHS(4,I)*(X(I,2)-X(I,I)

LDcap = LDcap + GSERHS(5,I)*(X(I,2)-X(I,I)

LDlap = LDlap + GSERHS(6,I)*(X(I,2)-X(I,I)

Vbrap = Vbrap + GSERHS(7,I)*(X(I,2)-X(I,I)

ARap = ARap + GSERHS(8,I)*(X(I,2)-X(I,I))

Rfrap = Rfrap + GSERHS(13,I)*(X(I,2)-X(I,I

Rfaap = Rfaap + GSERHS(14,I)*(X(I,2)-X(I,I

Rfap = Rfap + GSERHS(!5,I)*(X(I,2)-X(I,I))

Uap = Uap + GSERHS(16,I)*(X(I,2)-X(I,I))

PRIap = PRIap + GSERHS(!7,I)*(X(I,2)-X(I,I)

CONTINUE

d = 1.83"(1. + 4.325 * Np / i)

cdOc = 0.05

Vbr = 770

C*****

C*****Iterate until converged within AERO

DO i00 I=I,COUNT

IF (ABS((cd0co - cd0c)/cd0c).LE.EPS) THEN

IF (ABS((Vbro-Vbr)/Vbr).LE.EPS) THEN

GOTO i01

ENDIF

ENDIF

IF(I.EQ.40) THEN

PRINT*, 'TROUBLE CONVERGING WITH cd0c AND Vbr'

ENDIF

cd0co = cd0c

Vbro = Vbr

C cd0c

cd0c = 0.005 + 7.16109"1"(1. + 4.325 * Np / i)*

- (l. + 367.709/(1/(1. + 4.325 * Np / 1))*'3. +

HI*I/(I. + 4.325 * Np / i))*

(I. - 3.66"(1. + 4.325 * Np / 1)/1)*'0.666667"

(I. + 3.3489"((i. • 4.325 * Np / l)/l)**2.)*pi/

(S*Log(l*Vbr/muc)**2.58) +

8.60896"(1. + 1.2*tc + 100.*tc**4.)/Log(S*Vbr/(b*muc))**2.58

best range speed

Vbr = 1.42872*Sqrt(Wto/
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- (rhoc*Sqrt(b**2.*cd0c*(l.- d**2./b**2. *pi/S)*S))

i00 CONTINUE

C optimum cruise lift-to-drag ratio

I01 LDc=

- 0.489898*Sqrt(b**2.*(l.- d**2./b**2. *pi/(cdOc*S)

C cd0tl

cd0tl = 0.005 + 7.16109"1"(1. + 4.325 * Np / i)*

- I. + 367.709/(1/(1. + 4.325 * Np i) **3. +

- HI*I/(1. + 4.325 * Np / i))*

- i. 3.66"(1. ÷ 4.325 * Np / i)/I **0.666667*

- I. + 3.3489"((1. + 4.325 * Np / 1 /l)**2.)*pi/

- (S*Log(l*Vtl/mutl)**2.58) +

- 8.60896"(1. + 1.2*tc + lO0.*tc**4.)/Log(S*Vtl/(b*mutl )**2.58

lift - to - drag take off

LDt=2.*Wto/(rhotl*S*Vtl**2.*(cdOtl +

- 4.16667"Wto*'2./

- (b**2.*(l.- d**2./b**2.)*pi*rhotl**2.*S*Vtl**4.)

lift - to - drag landing

LDl=2.*(l-Rfrap)*Wto/(rhotl*S*Vtl**2.

- *(cd0tl ÷ 4.!6667*((l-Rfrap)*Wto)**2./

- (b**2.*(l.-d**2./b**2.)*pi*rhotl**2.*S*Vtl**4.)))

AR=b**2/S

********************** Weights constraints (LD's approximate)

C fuel weight available ratio

Rfa = i. 0.38*Ti**0.998!/Wto

- - 0.9592/Wto**0.0638 - Wfix/Wto - Wpay/Wto

C fuel weight required ratio

Rfr = i.i*(I. - 0.95*EXP(-bt*R/(LDcap*Vbrap)))

C useful load fraction

U = i.I*(I. 0.95*EXP(-bt*R/(LDcap*Vbrap))) + Wpay/Wto

Fuel Weight Balance

Rf = Rfa / Rfr

********************* Aero constraints (Rfr approximate)

** * Achievable Climb Angle, OEI, LANDING

qLa = -I/LDI + (-l+N)*Ti/(N*Wto'(l-Rfrap))

Achievable Climb Angle, OEI, TAKEOFF

qTOa = -I/LDt + (-I+N)*Ti/(N*Wto)

Landing Field Length
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sLa = 400 ÷ llS*Wto*(l-Rfrap)/(clmax*S)

Takeoff Field Length

sTO= 20.9*Wto**2/(clmax*S*Ti)+87*Sqrt(Wto/(clmax*S))

************* Weights constraints (LD's approximate)

* Landing Field Length

sLw = 400 + llS*Wto*(l-Rfr)/(clmax*S)

* Achievable Climb Angle, OEI, LANDING

qLw = -i/LDlap + (-I+N)*Ti/(N*Wto*(!-Rfr))

* Achievable Climb Angle, OEI, TAKEOFF

qTOw = -i/LDtap + (-I+N)*Ti/(N*Wto)

************* Actual coupling comstraints

** * Achievable Climb Angle, OEI, LANDING

qL = -I/LDI + (-l+N)*Ti/(N*Wto*(l-Rfr))

* Achievable Climb Angle, OEI, TAKEOFF

qTO = -I/LDt + (-I+N)*Ti/(N*Wto)

* Landing Field Length

sL = 400 + llS*Wto*(l-Rfr)/(clmax*S)

* Takeoff Field Length

sTO= 20.9*Wto**2/(clmax*S*Ti)+87*Sqrt(Wto/(clmax*S))

C

C PRODUCTIVITY INDEX CALCULATION

C

PRI = Vbrap*Wpay/((l-Rfa+Rfr)*Wto - Wpay - Wfix)

OPEN (1,FILE ='aprxcoop.inout')

WRITE(I,*)d, cd0tl, cd0c, LDt, LDc,

& LDI, Vbr, AR, qL, qTO,

& sL, sTO, Rfr, Rfa, Rf,

& U, PRI, S, I,

& b, Wto, Ti

CLOSE(I)

C

C

*************************** OUTPUT TO **********************

C

OPEN 18,FILE='aprxcoop.apprxs')

OPEN (9,FILE='aprxcoop.apprxs2')

WRITE (8,*) LDt,LDtap,LDc,LDcap,LDI,LDIap
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WRITE (9,*) Vbr,Vbrap,Rfr,Rfrap

OPEN (ll,FILE='aprxcoop.vars')

WRITE (ii,*

WRITE (II,*

WRITE (Ii,*

WRITE (I!,*

WRITE (ii,*

WRITE (ii,*

'DESIGN VARIABLES : '

'S = ',S

'i = ',i

'b = ',b

'Wto = ',Wto

'Ti = ',Ti

C

C

C

C

C

WRITE (!i,*

WRITE (!i *

WRITE (ii*

WRITE ii *

WRITE ii *

WRITE ii *

WRITE i! *

WRITE i! *

WRITE !! *

WRITE II *

WRITE ii *

WRITE Ii *

WRITE I!

WRITE ii

WRITE ii

WRITE (II

WRITE (II

WRITE (ii

WRITE (Ii

WRITE (Ii

WRITE (ii

WRITE (Ii *

WRITE (ii *

WRITE (ii *

WRITE (II *

WRITE (II *

WRITE (II *

WRITE (ii,*

WRITE (ii,*

WRITE (ii,*

WRITE (II,*

CLOSE(II)

*)

*)

*) 'qtow

*) 'sTO

*) 'sLa

*) 'sLw

* 'AR

'Rfa

'BEHAVIOR VARIABLES:'

cd0c = ' cd0ct

cd0tl = ',cd0tl

d = ' dt

LDI = ° LDI0

LDlap = ',LDlap

LDt = ' LDti

LDtap = ',LDtap

LDc = ' LDc

LDcap = ', LDcap

Vbr = ',Vbr

Vbrap = ' ,Vbrap

qla = ' ,qla

qlw = ',qlw

qtoa = ' ,qtoa

= ' ,qtow

= ' sTOt

= ' sLat

= ' SLWi

= ' ARr

= ' Rfar

'Rfr =

'Rfrap =

'U =

'Rf =

'PRI =

'ql =

'qto =

'sTO =

'sL = '

,Rfr

',Rfrap

,U

,Rf

,PRI

,ql

,qto

,sTO

,sL

3.0 Evaluate non-linear constraints

IF (IPATH .EQ. 1 .OR. IPATH .EQ. 2) THEN

ASPECT RATIO constraint.

CONSTR(1) = -AR/10.5 + 1.0

ACHIEVABLE CLIMB GRADIENT, LANDING constraint, AERO
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C

C

C

C

C

C

C

C

C

C

C

CONSTR(2) = -!.0 + qla/0.024

ACHIEVABLE CLIMB GRADIENT, Weight subsystem

CONSTR 3) = -i.0 + qlw/0.024

ACHIEVABLE CLIMB GRADIENT, TAKE-OFF constraint

CONSTR 4) = -i.0 + qtoa/0.027

ACHIEVABLE CLIMB GRADIENT, weight subsystem

CONSTR 5) = -i.0 + qtow/0.027

LANDING FIELD LENGTH constraint

CONSTR(6) = 1.0 - Sia/4500

LANDING FIELD LENGTH constraint, AERO

CONSTR(7) = 1.0 - Siw/4500

TAKE-OFF FIELD LENGTH constraint

CONSTR 8) = 1.0 - Sto/6500

Cdotl limit

CONSTR(9) = 1.0 - cd0tl/0.02

Cdoc limit

CONSTR(10) = 1.0 - cd0c/0.02

USEFUL LOAD FRACTION constraint

CONSTR(II) = U/0.3 - 1.0

FUEL BALANCE constraint

CONSTR(12) = -i.0 ÷ Rf

END IF

4.0 Evaluate non-linear goals

IF (IPATH .EQ. 1 .OR. IPATH .EQ. 3) THEN

MISSED APPROACH CLIMB GRADIENT, OEI, landing goal, AERO

GOALS(I) = 1.0 - (0.03/qLa)

MISSED APPROACH CLIMB GRADIENT, OEI, Weights

GOALS(2) = 1.0 - (0.03/qLw)

MISSED APPROACH CLIMB GRADIENT, OEI, take-off goal

GOALS(3) = (qtoa/0.03) - 1.0

MISSED APPROACH CLIMB GRADIENT, OEI, Weights

GOALS(4) : (qtow/0.03) - 1.0

ASPECT RATIO GOAL

GOALS(5) = AR/10.5 - 1.0
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C

C

C

C

C

C

C

C

C

C

C

C

LANDING FIELD LENGTH goal

GOALS 6) = Sia/4500 -i.0

LANDING FIELD LENGTH goal, AERO approximation

GOALS 7) = Slw/4500 -I.0

TAKE-OFF FIELD LENGTH goal

GOALS 8) = Sto/4500 -i.0

PRODUCTIVITY INDEX

GOALS 9) = PRI/270 - 1.0

USEFUL LOAD FRACTION goal

GOALS i0) = U/0.5 - 1.0

FUEL BALANCE goal

GOALS II) = Rf - 1.0

OPEN (18,FILE='devfuncs.out')

AACH = ABS(GOALS(I ) + ABS(GOALS(3)) + ABS(GOALS(5

& ABS(GOALS(6) + ABS(GOALS(8))

WACH = ABS(GOALS(2 ) + ABS(GOALS(4)) + ABS(GOALS(7

& ABS(GOALS(8) + ABS(GOALS(9)) +

& ABS(GOALS(10 ) + ABS(GOALS(II))

WRITE (18,*) AACH, WACH

END IF

5.0 Return to calling routine

RETURN

END

) +

) +

* SUBROUTINE INVERSE(A,N,B,Mn,DET)

* SUBPROGRAM FOR MATRIX INVERSION AND SIMULTANEOUS

* LINEAR EQUATION SOLUTION. TAKEN FROM KUO'S "COMPUTER

* APPLICATIONS OF NUMERICAL METHODS", ADDISON WESLEY, 1972.

* USES A GAUSS-JORDAN REDUCTION TECHNIQUE

* A = GIVEN COEFFICIENT MATRIX, INVERSE OF A IS STORED AT

* RETURN TO MAIN PROGRAM

* N = ORDER OF A; N>=I

* B = MATRIX OF CONSTANTS VECTOR, USED ONLY FOR SOLUTION OF

* SIMULTANEOUS EQUATIONS

* Mn = NUMBER OF COLUMN VECTORS IN THE MATRIX OF CONSTANT

* VECTORS (M=0 IF INVERSION IS SOLE AIM; Mn=l,2 .... FOR

* SOLUTION OF SIMULTANEOUS EQUATIONS)

* DET = DETERMINANT OF AMATRIX
*********************************************************
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C

C

C

DIMENSION A(17,17),B(17,5),IPVOT(30),INDEX(30,2),PIVOT(30)

COMMON IPVOT,INDEX,PIVOT

INTEGER I,J,K,L,N,LI,MN,

& IROW,JROW, ICOL,JCOL, INDEX, IPVOT, PIVOT

REAL T, A, B, DET

EQUIVALENCE (IROW,JROW), (ICOL,JCOL)

INITIALIZATION

57 DET = 1.

DO 17 J=I,N

17 IPVOT(J)=0

DO 135 I=I,N

SEARCH FOR PIVOT ELEMENT

T=0.

DO 9 J:I,N

IF (IPVOT(J).EQ.I) GO TO 9

13 DO 23 K=I,N

IF(IPVOT(K)-I) 43,23,81

43 IF(ABS(T).GE.ABS(A(J,K))) GO TO 23

83 IROW=J

ICOL=K

T:A(J,K)

23 CONTI_OE

9 CONTINUE

IPVOT(ICOL)=IPVOT(ICOL)+I

PUT PIVOT ELEMENT ON DIAGONAL

IF(iROW.EQ.ICOL) GO

73 DET:-DET

DO 12 L=I,N

T:A(IROW, L)

A(IROW, L)=A(ICOL,L)

12 A(ICOL,L)=T

IF(Mn. LE.0) GO TO 109

33 DO 2 L=I,Mn

T=B(IROW, L)

B(IROW, L)=B(ICOL,L)

2 B(ICOL,L)=T

109 INDEX(I,I)=IROW

INDEX(I,2)=ICOL

PIVOT(I)=A(ICOL, ICOL)

DET=DET*PIVOT(I)

205

TO 109

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOL,ICOL)=I.

DO 205 L:I,N

A(ICOL,L)=A(ICOL,L)/PIVOT(I)

IF (Mn. LE.0) GO TO 347
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66

52

347

21

89

18

68

135

DO 52 L=I,Mn

B (ICOL, L} =B (ICOL, L) /PIVOT (I)

REDUCE NON-PIVOT ROWS

DO 135 Li:I,N

IF(LI.EQ.ICOL) GO TO 135

T=A(LI,ICOL)

A(LI,ICOL)=0.

DO 89 L=I,N

A(LI,L)=A(LI,L)-A(ICOL,L)*T

IF(Mn. LE.0) GO TO 135

DO 68 L=I,Mn

B(LI,L)=B(LI,L)-B(ICOL,L *T

CONTINUE

INTERCHANGE COLUMNS

222 DO 3 I=I,N

L=N-I+I

IF(INDEX(L,1) .EQ.INDEX(L,2))

19 JROW=INDEX(L,I)

JCOL=INDEX(L,2)

DO 549 K=I,N

T=A(K,JROW)

A(K,JROW)=A(K,JCOL)

A(K,JCOL)=T

549 CONTINUE

3 CONTINUE

81 RETURN

END

GO TO
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SOLUTION HISTORY: Approximate Cooperation

In Figure C.6, the design variable history for the approximate cooperative formulation is

given for three starting points. Two of the starting points converge to the same solution, but

the third converges to another solution. This lack of convergence to one common solution

can be attributed to the occasional instabilities in the nonlocal Taylor series approximations,

as discussed in Section 7.5.1.

In Figure C.7, the best deviation function and constraint violation are plotted. The best

deviation function steadily decreases, and the constraint violation pregressively goes to zero,

representing feasibility.
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Figure C.6. Design Variable History: Approximate Cooperation
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FULL SOLUTIONS: Leader/Follower Formulations

In Table C.2, the full solutions of the two leader/follower formulations are given.

Included are the design variables, state variables, constraints, goals, deviation functions,

and constraint violation of each player in both formulations.
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Table C.2. Leader/Follower Full Solutions

Aero as Leader

Player Aero

X, design vars
S (if2) 1870

b (_} 136

l(fi) 107

sr sta_ vars
!cdoc 0.017

Player Weights

Xr design vats

Ti (lbs) 36725

Wto (lbs) 224206

i

sr state vars
Rfa 0.319

cdotl 0.018 Rfr 0.282

d (ft) 15.73 U 0.461
Ldl 16.0 Rf 1.13

Ldt 12.6 PRI 155

Ldc 20.7 qL 0.090

Vbr 676.2 qTO 0.030

(ft/s)
AR 9.89 SL (ft) 4306

qL 0.090 sTO (ft) 6474

qTO 0.030

sL (ft) 4306

STO fit) 6474
constraint values

(feasible > 0.0)
g I 0.058

constraint values

(feasible > 0.0)
gl 0.535

g2 2.732 g2 0.130

g3 0.111 g3 2.732

g4 0.043 g4 0.111

g5 0.004 g5 0.043

g6 0.125 g6 0.004

g7 0.140

goal values (ideal = 0.0) goal values (ideal = 0.0)

Weights as Leader

Player Aero

X r design vars

S (ft 2) 1644

b (It) 114

1 (ft) 150

s? state vars
cdoc 0.018

Player Weights

Xr design vars

Ti (Ibs) 41000

Wto (lbs) 208216

s t state vars

Rh 0.290

cdotl 0.018 R_ 0.291

U 0.483d(R) 11.75
Ldl 12.9

Ldt 9.9

Ld c 18.3

Vbr 730.2

flus)
AR 7.91

qL 0.108

qTO 0.030

SL (fi) 4473

STO(_) 5574

constraint values

(feasible _>0.0)
gl 0.247

Rf 0.996

PR/ 175

qL 0.108

qTO 0.030

SL 4473

sTO 5574

constraint values

(feasible _>0.0)
gl 0.612

Ig2 3.485 g2 -0.004

g3 0.106 g3 3.485

g4 0.006

g5 0.112

g6 0.098

g7 0.120

goalvalues(ideal= 0.0)

g4 0.106

g5 0.006

g6 0.112

£oal values (ideal = 0.0)
f! 0.665 fl -0.427

f2 0.000 f2 -0.079

f3 -0.058 f3 0.130
f4 -0.043 f4 0.665

f5 0.439 f5 0.000

f6 -0.043

f7 0.439

devation function and devation function and total
total constraint violation constraint violation

Zaero 0.241

convio 0.0
Zweight 0.255
convio 0.0

:fl 0.721 fl

convio 0.0

-0.353

f2 -0.044 f2 -0.033

f3 -0.247 f3 -0.004

f4 -0.006 f4 0.721

f5 0.283 f5 -0.005

f6 -0.006

f7 0.283
devation function and devation function and total

total constraint violation constraint violation

Zaero 0.252 Zweight 0.201
convio -0.004
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DSIDES DATA FILE: Aerodynamics as Leader

PTITLE: Problem Title, User Name and Date

Aircraft Design, Leader/Follower: Aero as Leader

Kemper Lewis, October 19.1995

NUMSYS : Number of system variables: real,discrete, boolean

1 2 0

SYSVAR:

winga ! 0 1 0:

fleng 2 0 1 0:

wspan 3 0 1 0:

System variable information

Wing area

fuselage length

Wing Span

NUMCAG : Number of constraints and goals

0 7 0 0 5 : nlinco,nnlinq,nnlequ,nlingo,nnlgoa

DEVFUN : Achievement function

1 : levels

1 i0 : level i, 2 terms

(-i,i.0) (+i,i.0) (-2,1.0) (+2,1.0)

(-4,1.0) (+4,1.0) (-5,1.0) (+5,1.0)

(-3,1.0) (+3,1.0)

STOPCR : Stopping criteria

1 0 40 0.001 0.001 : perform calcs, prt reslts,

Mcyles,sta dev, sta var

NLINCO

aspr
accl

acto

idfl

tofl

cdtl

cdoc

: Names of nonlinear constraints

I: aspect ratio

2: achievable climb gradient, landing

3: achievable climb gradient, take-off

4: landing field length

5: take-off field length

6: limit on take-off and landing Cd

7: limit on cruise Cd

NLINGO : Names of the nonlinear goals

misl i: missed approach landing

mist 2: missed approach take-off

apcr 3: aspect ratio

idfl 4: landing field length

toll 5: take-off field length

PVDISC:

2 : variables with discrete values

2 46 1 : variable 2 has 46 possible values, initial value =i

0.0 0.022 0.044 0.067 0.089 0.Iii 0.133 0.156 0.178 0.2

0.222 0.244 0.267 0.289 0.311 0.333 0.356 0.378 0.4 0.422 0.444

0.467 0.489 0.511 0.533 0.556 0.578 0.6 0.622 0.644 0.667 0.689
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0.711 0.733 0.756 0.778 0.8 0.822 0.844 0.867 0.889 0.911 0.933
0.956 0.978 1.0

3 29 1 : variable 3 has 29 possible values, initial value =I

0.0 0.0182 0.0545 0.0909 0.1273 0.1636 0.2 0.2364 0.2727 0.3091

0.3455 0.3818 0.4182 0.4545 0.4909 0.5273 0.5636 0.6 0.6364

0.6727 0.7091 0.7455 0.7818 0.8182 0.8545 0.8909 0.9273 0.9636
1

ALPOUT : Output Control

1 1 1 1 1 i 1 1 1 1

OPTIMP : Optimization parameters

-0.005 0.2 0.005 : VIOLIM, REMO, STEP

ENDPRB:
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SOLUTION HISTORY: Aerodynamics as Leader

Aerodynamics Solutiqn

In Figure C.8, the design variable history for the leader/follower formulation with

aerodynamics as leader is given for one of the three starting points. Again, since there is no

"convergence" in the foraging search, the plots from the other two starting points look

similar and do not contribute to the insight or results of this problem.
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Figure C.8. Design Variable History: Aero as Leader

Weights Solution

Since the aerodynamics player needs both design variables from the weights player, the

weight player is constricted to the solution prescribed by his RRS. Once aerodynamics

solves their problem, the solution for the weights player is given as well. Therefore, no

convergence plots are available for the weights problem.
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DSIDES DATA FILE: Weights as Leader

PTITLE: Aircraft Design, Leader/Follower: Weights as Leader

NUMSYS : Number of system variables: real,discrete,boolean

1 1 0:1 real, 1 discrete

SYSVAR : System variable information

weigh 1 0 1 0 : take-off weight

insth 2 0 1 0 : installed thrust

NUMCAG : Number of constraints and goals

0 6 0 0 7 : nlinco,nnlinq,nnlequ,nlingo,nnlgoa

DEVFUN : Achievement function

1 : levels

1 14 : level i, 5 terms

(-i,i.0) (+i,I.0) (-2,1.0) (+2,1.0) (-3,1.0) (+3,1.0)

(-4,1.0) (+4,1.0) (-5,1.0) (+5,1.0) (-6,1.0) (+6,1.0)

(-7,1.0) (+7,1.0)

STOPCR : Stopping criteria

1 0 40 0.005 0.005 :

NLINCO

usfl

fuba

achl

acto

Idfl

tofl

: Names of nonlinear constraints

i: useful load fraction

2: fuel balance

3: achievable climb, landing

4: achievable climb, take-off

5: landing field length

6: take-off field length

NLINGO : Names of the nonlinear goals

prod I: productivity index

usef

fuel

achl

acto

!dfl

toll

2: useful load fraction

3: fuel balance

4: achievable climb, landing

5: achievable climb, take-off

6: landing field length

7: take-off field length

ALPOUT : Output Control
I 1 1 1 1 1 1 1 1 1

PVDISC :

1 : variables with discrete values

2 19 1 : variable 2 has 19 possible values, initial value =Ist

0.0 0.0275 0.0826 0.1193 0.1927 0.2294 0.3028 0.3761 0.4495

0.4862 0.5229 0.5596 0.633 0.7064 0.7431 0.8165 0.8532 0.9266

1.0

ENDPRB :
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SOLUTION HISTORY: Weights as Leader

Weight's solution

In Figure C.9, the design variable history for the leader/follower formulation with weights as

leader is given for one of the three starting points. Again, since there is no "convergence" in

the foraging search, the plots from the other two starting points look similar and do not

contribute to the insight or results of this problem.

0.8

°it ...........................°": j..., : ;..... vV o.;_g o, .^

__::lo_, r/ , _o. ,,,
= =0 ._

_. 0.3 i,*_- _*0.2
_=0o2 .... _ o., j
= °;T o L_ .......... t

Cycle C yc I•

(a) Take-off Weight (normalized) (b) Installed Thrust (normalized)

Figure C.9. Design Variable History: Weight as Leader

474



Aero's follower solution

The weights player only needs the design variable wing area from the aero player.

Therefore, the aero player still has the freedom to change his two other design variables,

fuselage length and wing span. The value of the wing area is dictated by the aero player's

RRS. The solution history for the "free" design variables of the aero player are given in

Figure C. 10.
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Figure C.10. Design Variable History: Aero as Follower
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FULL NONCOOPERATIVE SCENARIO SOLUTIONS

The full solutions for each scenario are given in Table C.4. This includes all design

variables, state variables, constraints, goals, deviation functions, and constraint violations for

each player. The seven scenarios are shown in Table C.3.

Table C.3. Seven Noncooperative Scenarios

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Midpoints of the variable ranges.

Lower Bounds of the variable ranges.

Upper Bounds of the variable ranges.

The values from the Stackelberg formulation with

Aerodynamics as leader, Weight as Follower.

The values from the Stackelberg formulation with

Weight as leader, Aerodynamics as Follower.

The values from the approximate cooperative

formulation.

The values from the full cooperative formulation.
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Table C.4. Noncooperative Full Solutions: All Scenarios

s

b (ft1
 (ft)

Player Aero

X, design vars
ft 2) 1598

112.5

127.5

s, state vars
0.018

Xr design vars
Ti (Ibs) 38622

Wto (,lbs) 206830

Scenario 1

Player Weights Player Aero

X_ design vars
S (ft 2) 1583

b (f9 85
I (ft) 105

sr state varss, state vars
Rfa 0.292cdoc

] cdotl 0.018 Rfr 0.290

d tft) 13.5 U 0.483
Ldl 12.6 Rf 1.01

Ldt 9.6 PRI 179

Ldc !8.2 qL 0.096

Vbr 737.5 qTO 0.021

(ft/s)

AR 7.92 sL (ft) 4569

qL 0.096 sTO (ft) 6183

qTO 0.021

SL (ft) 4569

STO 6183

(it)
constraint valuesconstraint values

_feasible >_0.0) (feasible >_0.0)
gl 0.6120.246gl

g2 3.006 g2 0.008

g3 -0.227 g3 3.006

g4 -0.015 g4 -0.227

g5 0.049 g5 -0.015

g6 0.091 g6 0.049

g7 0.115

goal values (ideal = 0.0)goal values (ideal =

0.0)
0.688fl fl -0.339

f2 -0.304 f2 -0.033

f3 -0.246 f3 0.008

f4 0.015 f4 0.688

f5 0.374 f5 -0.304

f6 0.015

f7 0.374

devation function and devation function and total
total constraint constraint violation

violation

Zaero 0.326 0.252Zwei_ht
convio -0.242

cdoc 0.018

cdOtl 0.018

d (ft) 16.0
Ldl 8.6

Ldt 6.2

Ldc 13.7

Vbr 811.1

Scenario 2

• Player Weights

X r design vars
Ti (lbs) 60460

Wto Qbs) 185603

s, state vars

Rfa 0.215

Rfr 0.332

U 0.547

convio -0.242

Rf 0.648

PRI 195

qL 0.209

qTO 0.055

AR 4.56 SL 3954

qL 0.209 sTO 3476

qTO 0.055

SL 3954

STO 3476

constraint values

_feasible > 0.0)
gl 0.566

g2 7.711

g3 1.028

g4 0.1214

constraint values

_feasible > 0.0)
0.824gl

g2

g3

g4

g5 0.465 g5 0.121

g6 0.087 g6 0.465

g7 0.120

fl

-0.352

7.711

1.028

goal values(ideai

0.0)
0.857

goal values (ideal = 0.0)

fl -0.277

!f2 0.825 _ 0.095

f3 -0.566 _ -0.352

l_ -0.121 f4 0.857

-0.228

devation function and
total constraint

violation

Zaero 0.519

convio 0.0

f5 0.825

f6 -0.121
f7 -0.228

devation function and total
constraint violation

Zweight 0.394
convio -0.352
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Scenario 3

Player Aero Player Weights

X, design vars X r design vars
S (ft 2) 1529 Ti (Ibs) 28814

Wto (lbs) 176638b(_) 140

(ftt
s7 state vars

0.019
s r state vars

Rfa 0.263cdoc

cdOtl 0.0 i9 R fr 0.285

d(ft) 11.75 U 0.511

Ldl 19.8 Rf 0.922

Ldt 16.2 PRI 174

Ldc 22.7 qL 0.102

Vbr 608.3 qTO 0.047

(ft/s)
AR 12.8 SL (ft) 4149

qL 0.102 sTO (ft) 6273

qTO 0.047

SL (ft) 4149

STO 6273

(ft)

goal values (ideal = 0.0)

constraint values

(feasible > 0.0)
-0.221

constraintvalues

(feasible 20.0)
gl gl 0.705

g2 3.233 g2 -0.078

g3 0.744 g3 3.233

g4 0.078 g4 0.744

g5 0.035 g5 0.078

g6 0.059 g6 0.035

g7 0.065

goal values (ideal

0.0)

Scenario 4

Player Aero Player Weights

X r design vars X_ design vats
S (ft 2) 1938 Ti 0bs) 36715

b (ft / 136 Wto (lbs) 225960

1o7
sr state vars

cdoc 0.017

cdOtl 0.017

d(ff) 15.74

Ldl 15.9

Ld t 12.5

Ld c 20.4

Vbr 675.0

AR 9.54

qL 0.088

qTO 0.028

SL 4184

STO 6350

constraint v_ues

_feasible _ 0.0)
gl 0.091

g2 2.687

g3 0.054

g4 0.070

g5 0.023

g6 0.137

g7 0.151

s r state vars
Rfa 0.310

Rfr 0.290
U 0.473

Rf 1.07

PRI 164

qL 0.088

qTO 0.028

SL 4184

sTO 6350

constraint values

(feasible > 0.0)
gl 0.539

g2 0.127

g3 2.687

g4 0.054

g5 0.070

g6 0.023

goal values (ideal = 0.0)

-0.434

-0.077

0.127

fl 0.705 fl -0.354

0.569 f2 0.023

0.221 f3 -0.078

f2
f3
f4 -0.078

f5 0.394

devation function and
total constraint

violation

Zaero 0.393

convio -0.221

f4 0.705

f5 0.569

f6 -0.078

f7 0.394

devation function and total
constraint violation

Zwei[ht 0.314
convio -0.078

goal values (ideal =

0.0)
fl 0.661 fl

-0.051 f2
-0.091 f3

-0.070 f4

0.411 f5

f6
f7

f2
f3
f4
f5

devation function and
total constraint

violation

Zaero 0.257

0.661

-0.051

-O.O7O

0.411

devation function and total
constraint violation

Zweil[ht 0.262
convio 0.0convio 0.0
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Player Aero

X, design vars
S (ft 2) 1571

b (ft) 114

lift) 150

Scenario 5

Player Weights Player Aero
X, design vats

Ti (Ibs_ 39971

Wto (lbs) 199829

s r state vars s_ state vars
!cdoc 0.018 Rfa 0.280

cdotl 0.018

d (ft) 11.75

Ldl 13.3

Ldt 10.2

Rfr 0.292
U 0.492

Rf 0.96

PRI 179

Ld c 18.5 qL 0.113

Vbr 720.1 qTO 0.036

(ft/s)
AR 8.27 sL (ft) 4489

qL 0.113 STO (ft) 5719

qTO 0.036

SL (ft) 4489

STO 5719

(ft)
constraint values

(feasible > 0.0)

Xr design vars

S (ft 2) 1819

b (ft) 122.4

l(ft) 119

sz state vars
cdoc 0.017

g3

cdotl 0.017

g3

d (ft) 14.33

Ldl 13.8

Scenario 6

Player Weights

X_ design vars

Ti (lbs) 37620

Wto (lbs) 218461

, s? state vars
Rfa 0.310

Rfr 0.290

U 0.473

Rf 1.07

Ldt ! 0.7 PRI 164

Ldc 19.0 qL 0.089

Vbr 710.4 qTO 0.021

AR 8.24 SL 4273

qL 0.089 sTO 6198

qTO 0.021

sL 4273

STO 6198

constraint values constraint values

(feasible _>0.0) (feasible _>0.0)
gl 0.212 gl 0.639 gl 0.215

g2 3.710 g2 -0.041 :g2 2.723
0.314 ._.710

g4 0.314

g3 -0.211

g4 0.051

g5 0.047

g6 0.130

g7 0.149

g5 0.002

g4 0.002

g5 0.120

g6 0.081 g6 0.120

g7 0.103

goal values (ideal = goal values (ideal = 0.0)
0.0)

fl 0.735 fl -0.338

f2 0.183 f2 -0.017

f3 -0.212 f3 -0.041

f4 -0.002 f4 0.735

f5 0.271 f5 0.183

f6 -0.002

f7 0.271

devation function and devation function and total
total constraint constraint violation

violation

Zaero 0.281

constraint values

(feasible > 0.0)
g! 0.576

g2 0.070

g3 2.723

g4 -0.211

g5 0.051

g6 0.047

convio 0.0
Zwei_.ht 0.227
convio -0.04

goal values (ideal
0.0)

fl 0.664

goal values (ideal = 0.0)

convio

fl -0.391

f2 -0.055f2 -0.290

f3 -0.215 f3 0.070

f4 -0.051 f4 0.664

f5 0.377 f5 -0.290

f6 -0.051

f7 0.377
devation function and devation function and total

total constraint constraint violation
violation

Zaero 0.319 Zweight 0.271
-0.211 convio -0.21 l

479



Scenario 7

Player Aero Player Weights

X_ design vat's X r design vats
S (ft 2) 1823 Ti (lbs) 37597

b (ft) 122.7 Wto (lbs) 218723

lift ) 116.2

sTstate vat's
0.017

s t state vars
Rfa 0.310cdoc

cdOtl 0.017 Rfr 0.290

d/ft) 14.64 U 0.473
Ld I 13.9 Rf 1.07

Ldt 10.7 PILl 164

Ldc 19.0 qL 0.089

Vbr 709.6 qTo 0.021

(fVs)
AR 8.26 sL (ft) 4268

qL 0.089 sTO fit) 6203

qTO 0.021

SL (ft) 4268

STO 6203

(ft)
constraint values

(feasible > 0.0)
0.214

2.718
gl

constraint values

(feasible __.0.0)
gl 0.575

g2 0.071g2

g3 -0.211 g3 2.718

g4 0.051 g4 -0.211

g5 0.046 g5 0.051

g6 0.129 g6 0.046

g7 0.148

goal values (ideal =

0.0)

goal values (ideal = 0.0)

fl 0.664 fl -0.393

f2 -0.290 f2 -0.055

f3 -0.214 f3 0.071

f4 -0.051 f4 0.664

f5 0.379 f5 -0.290

f6 -0.051

f7 0.379

devation function and devation function and total
total constraint constraint violation

violation

Zaero 0.320

convio -0.211
Zweight 0.272
convio -0.211
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Thedeviationfunctionsof eachplayerareplottedin FigureC.11. Thebestsolution(andthe

only feasibleoneis foundin Scenario4).
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Figure C.11. Plot of Noncooperative Scenarios: Deviation Functions
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RATIONAL REACTION SETS: Noncooperative Protocol

As described in Section 7.5.3, in order to solve the noncooperative formulation, certain

assumptions are made in order to simplify the Rational Reaction Sets of each player. The

simplified RRS's of each player are given in this section for each scenario. These RRS's

only consist of 3 variables, Wing Area, S, Take-off Weight, Wto, and Installed Thrust, Ti.

Scenario 1

{S = 1448 + 444.4"Wto - 175.8"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 216000 + 15040"S - 22370"S 2,

Ti = 39120 - 284.1"S - 4058"S 2 }

Scenario 2

{S = 1570.77 + 527.41"Wto - 92.79"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 189035 - 780.4"S - 22370"S 2,

Ti = 60262.6 - 2145"S - 4058"S 2 }

Scenario 3

{S = 1355.77 + 361.39"Wto - 258.81"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 197332 + 30860.4"S - 22370"S 2,

Ti = 30582.2 + 1576.8"S - 4058"S 2 }

Scenario 4

{S = 1516.7 + 493.349"Wto - 126.851"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 223403 + 21877.4"S - 22370"S 2,

Ti = 36728.3 + 456.661"S - 4058"S 2 }

Scenario 5

{S = 1510.96 + 489.529"Wto - 130.671"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 209958 + 14030.4"S - 22370"S 2,

Ti = 40984.9 + 625.614"S - 4058"S 2 }

Scenario 6

{S = 1514.16 + 491.666"Wto - 128.534"Ti - 155.8*Wto*T i + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 219439 + 19386.7"S - 22370"S 2,

Ti = 37651.6 + 459.511*S - 4058"S 2 }

Scenario 7

{S = 1514.04 + 491.582"Wto - 128.618"Ti - 155.8*Wto*Ti + 186.5"Wto 2 + 97.04"Ti 2,

Wto = 219585 + 19449. I*S - 22370"S 2,

Ti = 37622.8 + 449.045"S - 4058"S 2 }
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