NASA Contractor Report 201732

An Algorithm for Integrated Subsystem
Embodiment and System Synthesis

Kemper Lewis
Georgia Institute of Technology, Atlanta, Georgia

National Aeronahtics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Grant NAG1-1564

August 1997

The information in this report was offered as a thesis in partial fulfillment of the requirements for the Degree of Doctor of
Philosophy in Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, September 1996.

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

ACKNOWLEDGMENTS

"Pain and fatigue make cowards of us all. The harder you work, the harder it becomes to
surrender.” Vince Lombardi

Vince summarized the struggles and triumphs I have experienced during the completion
of this dissertation well. I certainly could not have done it without the help of many close
friends and colleagues. In the following I have summarized my feelings and appreciation

as best I could for as many as I could.

First to God, who provided me with incredible opportunities, perseverance, discipline,
and strength to reach this point. He has given me the best friends and family anyone

could ask for.

To my advisor, Farrokh Mistree. One paragraph can not hope to describe the gratitude
and respect I have for him. He was the most outstanding advisor I could have imagined.
However, his influence on me is not temporal; it will live on forever. He has been a
great friend, confidant, and person. My heart goes out to Farrokh; he has a special place

there.
Very special thanks go out to my committee members:

Bert Bras, whose expertise in optimization and design was incredibly helpful. He also

gave invaluable advice concerning my career and life in general.

i

David Rosen, whose feedback on the mathematical analysis aspects of the dissertation
was very influential. He also gave me invaluable advice concerning my career and life in

general.

Leon McGinnis, whose expertise in systems engineering and optimization provided

invaluable insights and perspectives on my work.

Dan Schrage, whose expertise in aerospace systems design and design processes in
general was critical to my work. Dr. Schrage's support for the past 4 years was

invaluable to my graduate study and career development.

Janet Allen, whose expertise in decomposition, statistics, and living systems played a
large role in the dissertation. Janet was also such a strong source of support in many
aspects of graduate school, from career advice, to helping print, copy, and set up events.

A very special thanks goes to Janet.

Jarek Sobieski, whose support allowed this research to be accomplished for the last 3
years. His expertise in multidisciplinary design optimization was influential in the
fruition of the research. Many parts of this dissertation are based on work performed by

Dr. Sobieski. I am eternally grateful to him for his technical feedback and career advice.
Special thanks go out to my family, especially my sister, father, and step-father, Bob

Childers. They have supported through every valley and peak, and I am deeply indebted

to them.

v

The next thanks go out to my very close friends in the lab: Jesse Peplinski, Pat Koch, and
Stewart Coulter. Without these guys, I would have not made it. We struggled through
everything together and I will never forget the great times we had for the past four years.
They are the brightest guys I have every worked with. I feel honored to have had the

opportunity to work with them.

To other members of the lab: Wei Chen and Tim Simpson. Wei has taught me alot about
robust design, optimization, and statistics. She was and continues to be a great influence
on me. Tim leads the next generation of academic superstars. He knows when to speak

and when to listen. I hope we can continue to work together throughout our careers.

I also thank the other special members of the SRL who have had their own personal
effects on me: Matt Bauer, Jack, Srinivas, Matt Marston, Scott, Reid, Keith, Kristie,

Zahed, and Brian.

My friends outside of the SRL:

Scott Kollins, who has experienced this wild ride in the front seat with me the entire time.
I could not have made it without him. His support in philosophical awakenings, scientific
exploration, physical triumph, emotional struggles, and mental innovation has been the
most significant influence upon me for the past four years. He is truly a partner in this

roller coaster of life we live.

Tom Hawkins and David Griffin have been two pillars of support for eight years. They
are the best friends someone could have. I look forward to creating more memories with

them for the rest of my life.

Debbie Greco, who has given me more support than she probably realizes. She is truly

one of a kind and she will always have a very special place with me.

To my other close friends who have played significant roles in my life: Brittany Griffin,
Pete Sproul, Dan Fahley, Paul Euber, Phil Harrell, Dave Magee, Chad, Charlie, Jason,

Alan, Melanie, Jan, and Brian.

I would like to thank NASA for their support under the GSRP, NASA NAG-1-1564. I
also would like to thank NASA and NSF for their support under the grants, NGT-51102L
and DMI1-9420405, respectively. The computer costs were underwritten by the Systems

Realization Laboratory of the Georgia Institute of Technology.

Special thanks go to the Dallas Cowboys who have given me the needed break on

Sundays and the stress relief that brought me close to home.
And lastly, my feelings are aptly summarized by the following passage:

"The desire accomplished is sweet to the soul.” Proverbs 13:19

I thank everyone who helped my dream come true. My heart and soul go out to you.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES
GLOSSARY
NOMENCLATURE
SUMMARY

CHAPTER 1: FOUNDATIONS FOR INTEGRATED SUBSYSTEM

1.1

1.2

1.3

1.4

EMBODIMENT AND SYSTEM SYNTHESIS

MOTIVATION AND BACKGROUND

1.1.1 Engineering Design Processes and the Design of Complex
Systems

1.1.2 The Nature of Conflict in Design

1.1.3 Cooperation and Communication: The Ideal Cases

1.1.4 Mathematical Hurdles to System Embodiment

1.1.5 Opportunities: A Descriptive Approach

FRAME OF REFERENCE

1.2.1 Decision-Based Design and the Compromise DSP

1.2.2 The Adaptive Linear Programming Algorithm and the G-
function

1.2.3 Game Theory as a Decision Support Tool

GOALS, FOCUS, AND STRATEGY FOR IMPLEMENTATION

1.3.1 The Principal Goal and Fundamental Questions

1.3.2 Strategy for Implementation and Verification/Validation

CONTRIBUTION AND SCIENTIFIC RELEVANCE

1.4.1 Deliverables - A Summary of the Algorithm

vii

iif
vii
Xiii
XV
XXi
XXV

XXvi

10
12
15
17
18
18

22
24
27
27
29
33
33

1.5

142 Engineering and Scientific Relevance of This Work
ORGANIZATION AND OVERVIEW OF THE DISSERTATION

CHAPTER 2:REALIZING MULTIDISCIPLINARY SYSTEMS -

2.1
2.2
2.3

24

RELEVANT LITERATURE

CHANGE OF PERSPECTIVE IN MDO

MDO: AN INTERNAL DECOMPOSITION

ISSUES IN MDO

2.3.1 Lexicon Development

2.3.2 Decomposition: Friend or Foe?

2.3.3 Strategic Interactions

2.34 Approximation

235 Heuristics: From Designer to Computer

2.3.6 Multiobjectives

2.3.7 The Human Factor

2.3.8 Information Storage and Transfer

239 Experimental Design Methods: Balancing Efficiency and
Quality

2.3.10 Applications of MDO

A LOOK BACK AND A LOOK AHEAD

CHAPTER 3: THE ALGORITHM, TECHNOLOGY BASE, AND

3.1

RESEARCH HYPOTHESES - VERIFICATION
GUIDELINES

AN OVERVIEW OF THE ALGORITHM AND RESEARCH

HYPOTHESES '

3.1.1 An Algorithm for Concurrent Subsystem Embodiment and
System Synthesis

3.1.2 Computer Implementation of Algorithm

3.13 Research Hypotheses and Posits

viil

37
41

48

50
53
57
57
59
62

68
74
78
80

81

83
84

86

87

87
92
95

32

33

34

3.5

3.6

3.7

TEST OF HYPOTHESIS I - DEVELOPMENT OF PROBLEM AND

PROCESS FORMULATION

3.2.1 Nature of Classifications in Design
3.2.2 Multi-Player and Multi-Level Formulations

3.2.3 Guidelines for Verifying Hypothesis I: Problem and Process

Formulations

TEST OF HYPOTHESIS II - SUBSYSTEM INTERACTIONS

3.3.1 A Typical Complex System Design Model

3.3.2 A Game as an Abstraction of a Design Process
3.33 Protocols Applicable to Design

3.34 Approximation Techniques Used in Each Protocol
3.3.5 Guidelines for Verifying Hypothesis II:

Interactions

TEST OF HYPOTHESIS Il - FORAGING NOTION
34.1 Discrete Design Space Search

Subsystem

3.4.2 The Foundation of the Foraging Search: The Tabu Search

343 Simulated Annealing and Genetic Algorithms

344 The ALP Algorithm

3.4.5 Guidelines for Verifying Hypothesis III
TEST OF HYPOTHESIS IV - CONVEXITY

3.5.1 Handling Convexity

3.5.2 The Single Variable Case
3.5.3 The Multiple Variable Case
3.5.4 Guidelines for Verifying Hypothesis IV: Convexity

A SUMMARY OF THE VERIFICATION AND MOTIVATING

STUDIES

A LOOK BACK AND A LOOK AHEAD

ix

97
98
99

102

104
108
110
114

127
131
132
133
134
136
141
143
143
146
147
152

153
154

CHAPTER 4: CLASSIFICATION AND FORMULATION OF

4.1

4.2

43
44
4.5

MULTIDISCIPLINARY DESIGN PROBLEMS: A
DECISION-BASED PERSPECTIVE

TECHNOLOGY BASE: CONCEPTUAL CONSTRUCTS

4.1.1 The Balling-Sobieski Scheme

4.12 A Decision-Based Perspective

A DECISION-BASED CLASSIFICATION

4.2.1 Level 1: Overall System and Process Formulation

422 Level 2: System Definition

4.2.3 Level 3: Process Definition

MAPPING OF APPROACHES: AN INTEGRATION OF IDEAS
THE MINDSET TAKEN IN THIS CHAPTER

A LOOK BACK AND A LOOK AHEAD

CHAPTER 5: GAME THEORY IN COMPLEX SYSTEMS DESIGN: A

5.1
5.2
53
54

5.5

5.6

5.7

CONCEPTUAL BASIS

FOUNDATIONS OF GAME THEORY IN DESIGN
DESIGN AS A GAME

A DESIGN GAME DEFINED

DISCRETE, CONTINUOUS, AND MIXED GAMES
5.4.1 Discrete Games

542 Continuous Games

5.43 Mixed Games: Application to Design
GAME PROTOCOLS IN DESIGN

5.5.1 The Cooperative Formulations

5.5.2 Nash or Noncooperative solutions

5.5.3 Stackelberg Leader/Follower solutions
VERIFICATION STUDY: THE DESIGN OF A PRESSURE VESSEL
5.6.1 The Cooperative Formulation

5.6.2 The Noncooperative Formulation

5.63 The Leader/Follower Formulation

A LOOK BACK AND A LOOK AHEAD

190

158
160
163
166
167
167
168
169
184
186

190

192
194
196
201
201
205
209
211
212
216
220
222
226
227
234
238

CHAPTER 6: THE SOLUTION OF MIXED DISCRETE / CONTINUOUS

6.1
6.2

6.3

6.4

6.5

DECISION SUPPORT PROBLEMS

MIXED DISCRETE/CONTINUOUS OPTIMIZATION IN DESIGN
TECHNOLOGY BASE

6.2.1 The Compromise DSP: The Domain Independent Interface
6.2.2 The ALP Algorithm: The Continuous Solver

6.2.3 The Notion of Foraging in Optimization

FALP: THE MIXED DISCRETE/ CONTINUOUS ALGORITHM, A
STEP-BY-STEP APPROACH

VERIFICATION STUDIES

6.4.1 Coil Compression Spring Design

6.4.2 Spring Design: Validation and Verification

6.4.3 Pressure Vessel Design

6.4.4 Pressure Vessel Design: Validation and Verification

A LOOK BACK AND A LOOK AHEAD

CHAPTER 7: MULTIDISCIPLINARY DESIGN OF A SUBSONIC

7.1
7.2

7.3
7.4

7.5

PASSENGER TRANSPORT AIRCRAFT

THE SYSTEM DESIGN PROBLEM

THE SUBSYSTEM MODELS

7.2.1 Aerodynamics Subsystem Model

7.2.2 Weights Subsystem Model

STEP 1: FORMULATION OF PROBLEM AND PROCESS
STEP 2: FORMULATE THE DISCIPLINARY PROBLEMS
7.4.1 Cooperative Protocol

7.4.2 Noncooperative Protocol

74.3 Leader/Follower

STEP 3: SOLVE SUBSYSTEM AND INTEGRATION PROBLEMS
7.5.1 Cooperative

7.5.2 Leader/Follower

7.5.3 Noncooperative

Xi

241

243
246
246
247
248

250
257
258
262
269
271
279

282

285
291
292
295
299
302
303
309
315
318
318
327
337

7.6 DISCUSSION OF RESULTS: COMPARISON OF PROTOCOLS 344

7.7 OBSERVATIONS AND IMPLICATIONS IN DESIGN 350

7.8 A LOOK BACK AND A LOOK AHEAD: A SUMMARY OF
OBSERVATIONS 352
CHAPTER 8: ACHIEVEMENTS AND RECOMMENDATIONS 357
8.1 ACHIEVEMENTS 358
8.1.1 A Summary of this Dissertation 358
8.1.2 Achieving the Principal Goal 360
8.1.3 Addressing the Fundamental Questions 361
8.2 CRITICAL EVALUATION AND RECOMMENDATIONS 364
8.3 FUTURE WORK 373

APPENDIX A: THE PRESSURE VESSEL PROBLEM, VERIFICATION
OF GAME THEORY TECHNIQUES 382

APPENDIX B:THE FORAGING-DIRECTED ADAPTIVE LINEAR
PROGRAMMING ALGORITHM: ASSOCIATED CODE
AND RESULTS 390

APPENDIX C: FULL RESULTS: SUBSONIC PASSENGER AIRCRAFT
STUDY 428

REFERENCES 483

Xii

Table 2.1.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.
Table 6.1.
Table 6.2.
Table 6.3.
Table 6.4.
Table 6.5.
Table 6.6.
Table 6.7.
Table 6.8.
Table 7.1.
Table 7.2.

Table 7.3.

Table 7.4.
Table 7.5.

Table 7.6.

Table 7.7.

LIST OF TABLES

Various Areas of Literature Background

Tools used in Each Protocol

Approximation Concepts used in Each Protocol

A Comparison of Full Factorial 3n and CCD Design

Solver Characteristics

Features of Example Problems and Motivating Study

Deviation Functions of 2 Players

Protocol Approximation

Nomenclature for the Pressure Vessel Example

Pressure Vessel Parameters

Possible Wire Diameter for ASTM A228 (inches)

Coil Spring Results

10 Best Spring Solutions (Schema)

Spring Validation (nfs - no feasible solution)

Pressure Vessel Results

10 Best Pressure Vessel Solutions

Pressure Vessel Validation (nfs - no feasible solution)

Improvement in Hsu's Solution

Mission Requirements and System Parameters for the Boeing 727-200
System Variables and Bounds for the Aerodynamics Player for the
Boeing 727-200 Compromise DSP Template

System Variables and Bounds for the Weights Player for the Boeing
727-200 Compromise DSP Template

Possible Engine Thrust Values (Ibs) for the Boeing Aircraft
Aerodynamics Player Constraints For The Boeing 727-200
Compromise DSP Template

Weights Player Constraints For The Boeing 727-200 Compromise DSP
Template

Aerodynamics Player Goals For The Boeing 727-200 Compromise DSP
Template

Xiii

51

93

95
123
133
154
202
211
223
225
259
261
266
268
271
275
277
278
286

288

288
289

290

290

290

Table 7.8. Weights Player Goals For The Boeing 727-200 Compromise DSP

Template 291
Table 7.9. Results of Cooperative Protocols 319
Table 7.10. Average Error for Each Nonlocal Approximation 324
Table 7.11. R2 Values for Each Coupled Variable 330
Table 7.12. Stackelberg Solutions 330
Table 7.13. State Variables for the Leader/Follower Solutions 333
Table 7.14. Stackelberg Solutions: Relaxed RRS Constraint 336
Table 7.15. Noncooperative Solutions 340
Table 7.16. Comparison of Solutions and Existing Design 344
Table 7.17. State Variables of Various Solutions 348
Table C.1. Cooperative Solutions 430
Table C.2. Leader/Follower Full Solutions 469
Table C.3. Seven Noncooperative Scenarios 476
Table C.4. Noncooperative Full Solutions: All Scenarios 477

Xiv

LIST OF FIGURES

Figure 1.1. Areas of Focus in this Dissertation 4
Figure 1.2. The Structure of the Literature Background Review 5
Figure 1.3. Four Phases in Aircraft Design 7
Figure 1.4. A Typical Product Realization Process 9
Figure 1.5. Bridge Between Practice and Research in Multidisciplinary Design
Problems 14
Figure 1.6. Integration of Principles, Tools, and the Framework 28
Figure 1.7. Steps, Hypotheses, and Techniques 34
Figure 1.8. Existing Computer Infrastructure of the Algorithm 36
Figure 1.9. Examples of Design Applications 37
Figure 1.10. Organization of this Dissertation 42
Figure 1.11. Running Icon 45
Figure 1.12. Individual Pieces of the Dissertation 46
Figure 1.13. Frame of Reference: Chapter 1 46
Figure 1.14. A Guide to the Appendices 47
Figure 2.1. Aspects of Algorithm: An Overview of Chapter 2 49
Figure 2.2. Roadmap to Chapter 52
Figure 2.3. Couplings of M, D, and O 53
Figure 2.4. Second Order Response Surface 67
Figure 2.5. Heuristics Across the Design Spectrum:From Human to Computer 69
Figure 2.6. Concept of Priority Ranking Strategy 76
Figure 2.7. Framework of FIDO for MDO Implementation 79
Figure 2.8. Frame of Reference: Chapter 2 85
Figure 3.1. Schematic of Overall Algorithm 87
Figure 3.2. Needs, Opportunities, and Hypotheses 90
Figure 3.3. The Algorithm, Hypotheses, and Tools: A Roadmap 91
Figure 3.4. Overlap of the Constructs and Tools 91
Figure 3.5. Computer Infrastructure for Computer-Based Parts of the Algorithm 94
Figure 3.6. A Typical Complex System Model 105
Figure 3.7. A Coupled Compromise DSP 105
Figure 3.8. A Coupled Compromise DSP: Smarter Coupling 106

XV

Figure 3.9.

Figure 3.10.
Figure 3.11.
Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.
Figure 3.16
Figure 3.17.
Figure 4.1.

Figure 4.2.

Figure 4.3.
Figure 4.4.

Figure 4.5.
Figure 4.6.
Figure 4.7.

Figure 4.8.
Figure 4.9.

Figure 4.10.
Figure 4.11.

Figure 4.12. Multi-Level Pressure Vessel: Coupled Selection-Compromise DSPs

Figure 4.13.
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 5.1.
Figure 5.2.
Figure 5.3.

Figure 5.4.
Figure 5.5.

Figure 5.6

A Coupled Compromise DSP: Realistic Coupling
Various Formulations in Optimization Theory
Feasible Strategies in the Presence of Constraints
Coupling of Behavior Variables

Construction of RSE in Game Theory

Three Variable Central Composite Design
Mathematical Form of a Compromise DSP
Implementation of the ALP Algorithm

Frame of Reference: Chapter 3

A Three-Discipline Coupled System

Potential Support Problem Entities

General Taxonomy

Examples of Linguistic Research Terms in MDO
Overall Mapping of DSPs into B-S Framework
Multiobjective Aircraft Compromise DSP
Single-SAND-SAND Formulation
Representative Classification: Aircraft Example

Multi-Level Thermal System: Coupled Compromise DSPs and

Interactions
Multi-SAND-SAND Formulation
Representative Classification: Thermal Example

and Interactions

Multi-SAND-SAND Formulation

Representative Classification: Pressure Vessel
Typical User Interface of the Classification System
Frame of Reference: Chapter 4

Various Formulations in Optimization Theory
Possible Discrete Solutions

Solutions for Various Protocols

Full Cooperation: Pareto Solutions

Construction and Solution of the Approximate
Formulation

Compromise DSPs in Approximate Cooperation

xvi

Cooperation

107
109
111
115
121
122
138
140
155
160
164
166
168
170
172
173
174

176
177
179

180
181
183
186
189
192
203
208
213

215
216

Figure 5.7.
Figure 5.8
Figure 5.9.

Figure 5.10.
Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.16.
Figure 5.17.
Figure 5.18.
Figure 5.19.
Figure 5.20.

Figure 6.1.
Figure 6.2.
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.
Figure 6.8.
Figure 6.9.

Figure 6.10.
Figure 6.11.
Figure 6.12.
Figure 6.13.
Figure 6.14.
Figure 6.15.
Figure 6.16.
Figure 6.17.
Figure 6.18.

Figure 7.1.
Figure 7.2.

NORMAN/DSIDES Interface

Conceptual Outline of RRS Construction
Noncooperative Compromise DSPs
Leader/Follower Solution Process
Leader/Follower Compromise DSPs
Thin-Walled Pressure Vessel

R as a Function of T

L as a Function of T

R as a Function of T: Approximation

L as a Function of T: Approximation

T as a Function of R

T as a Function of R and L: Approximated
T as a Function of only R: Approximated
Frame of Reference: Chapter 5

Foraging Search: Extending a Gradient Search
The Foraging Metaphor

Flowchart of FALP

Schematic of FALP Solution Scheme

Coil Compression Spring

Coil Diameter Behavior

Number of Coils Behavior

Wire Diameter Behavior

Spring Deviation Function Behavior
Number of Moves Not Allowed

Pressure Vessel

Radius Behavior

Length Behavior

Shell Thickness Behavior

Hull Thickness Behavior

Pressure Vessel Deviation Function Behavior
Number of Moves Not Allowed

Frame of Reference: Chapter 6

Sample Aircraft Classification

Combining the Players' Compromise DSP: Full Cooperation

xvii

218
219
220
221

222
224
229
229
230
230
231

232
233

240
246
249
251

252

259
263

264
264
265
267
269
272
273
273
274
274
276
279
300
304

Figure 7.3.
Figure 7.4.
Figure 7.5.
Figure 7.6.
Figure 7.7.
Figure 7.8.
Figure 7.9.
Figure 7.10.
Figure 7.11.
Figure 7.12.

Figure 7.13. Design Variable History: Full Cooperation (Continuous)

Figure 7.14.
Figure 7.15.

Figure 7.16. Deviation Functions for Both Stackelberg Formulations

Figure 7.17.

Figure 7.18.Deviation Functions for Both Stackelberg Formulations: No RRS

Figure 7.19.
Figure 7.20.
Figure 7.21.
Figure 7.22.
Figure 7.23.
Figure 7.24.
Figure 8.1.

Figure 8.2.

Figure A.1.
Figure A.2.
Figure A.3.
Figure A 4.
Figure A.S.
Figure A.6.
Figure A.7.
Figure A.8.
Figure A.9.

[M] Matrix of GSE

[B] matrix of GSE

Approximate Compromise DSPs: Aircraft Study
Construction of Weights' RRS

Noncooperative Compromise DSPs: Aircraft Study
Leader/Follower Compromise DSPs: Aero as Leader

Leader/Follower Compromise DSPs: Weight as Leader

Cooperative Solutions
Cooperative Deviation Functions
Nonlocal Approximations

Design Variable History: Approximate Cooperation
Stackelberg Solutions

Difference in RRS Implementations
Restriction

Nash Noncooperative Solutions
Deviation Function for Nash vs. Stackelberg

Nash and Approximate Cooperative Deviation Functions
Sample of Protocol Results as Compared to an Existing Design

Aircraft Configurations

Frame of Reference: Chapter 7

Possible Formulations with a Third Player

Spectrum of Investigations

Solution History: Cooperative (Minimizing Weight)
Weight History: Cooperative (Minimizing Weight)
Volume History: Cooperative (Minimizing Weight)
Solution History: Cooperative (Maximizing Volume)
Weight History: Cooperative (Maximizing Volume)
Volume History: Cooperative (Maximizing Volume)
Solution History: Weight as Leader

Weight History: Weight as Leader

Solution History: Volume as Leader

XViii

306
307
308
310
311
317
318
320
320
323
325
326
330
331
336

337
341
342
343
345
347
353
375
376
383
384
384
385
386
386
388
388
389

Figure A.10.

Figure B.1.
Figure B.2.
Figure B.3.
Figure B.4.
Figure C.1.
Figure C.2.
Figure C.3.
Figure C 4.
Figure C.5.

Figure C.6.
Figure C.7.

Figure C.8.
Figure C.9.
Figure C.10.
Figure C.11.

Volume History: Weight as Leader

Design Variable History: Lower Bound Starting Point
Design Variable History: Middle Point Starting Point
Design Variable History: Mid-Point Starting Point
Design Variable History: Upper Bound Starting Point
Design Variable History: Full Cooperation (Mixed)
Best Deviation Function

Deviation Function

Design Variable History: Full Cooperation (Continuous)

Best Deviation Function and Constraint Violation:

Full Cooperation (Continuous)

Design Variable History: Approximate Cooperation
Best Deviation Function and Constraint Violation:
Approximate Cooperation

Design Variable History: Aero as Leader

Design Variable History: Weight as Leader

Design Variable History: Aero as Follower

Plot of Noncooperative Scenarios: Deviation Functions

Xix

389
423
424
426
427
435
436
436
440

441
466

467
472
474
475
481

GLOSSARY

Algorithm
A mathematical rule or procedure for solving a problem.

Central Composite Design (CCD)
Central composite designs are first order fractional factorial designs augmented by
additional points which allow the estimation of a quadratic surface model.

Complex Systems
Complex systems consist of a number of subsystems, each embodied by a particular set
of components. Each component has its own working principle.

The compromise Decision Support Problem
A multiobjective decision model which is a hybrid formulation, incorporating concepts
from Mathematical Programming and Goal Programming.

Concurrent Engineering

A systematic approach to the integrated, concurrent design of products and their related
processes, including manufacture and support. This approach is intended to cause the
developers, from the outset, to consider all elements of the product life cycle from
conception through disposal, including quality, cost, schedule, and user requirements.

Control Variables
Variables which a designer has direct control over. A designer's control vector consists

of the design and state variables of a particular subsystem.

Decision-Based Design (DBD)
The fundamental paradigm for designing and creating design methods, rooted in the
notions that the principal role of a designer, in the design of an artifact, is to make

decisions.

xX1

Decision Support Problem (DSP)
A formalization of a type of a decision made by a designer. Two types of decision
support problems exist, namely, selection and compromise.

Decision Support Problem Technique
An implementation of Decision-Based Design. It is a technique to support human
judgment in designing systems which can be manufactured and maintained through the
solution of Decision Support Problems.

Design
A process of converting information that characterizes the needs and requirements for a
product into knowledge about a product.

Design of Experiments
The formal techniques of planning an experiment so that appropriate data can be
collected and analyzed by statistical methods, resulting in valid and objective

conclusions.

Design Methodology

Includes the study of how designers work and think, the establishment of appropriate
structures for a design process, the development and application of new design methods,
techniques and procedures, and the reflection on the nature and extent of design
knowledge and its application to design problems.

Design Variable
Independent variables which a designer must determine values for.

Discipline
A branch of knowledge or teaching. In the context of complex systems, a discipline is a
subsystem that is governed by similar physical phenomena.

Efficiency

A measure of the swiftness with which information and design knowledge can be used by

a designer.

XXii

Effectiveness
Represented by the correctness, completeness, and comprehensiveness of design

decisions.

Game

In a general sense, a game is a set of rules completely specifying a competition, including
the permissible actions of, and information available to each participant, the criteria for
termination of the competition, and the distribution of payoffs. From a systems
perspective, a game consists of multiple decision-makers who each control a specified
subset of system variables and who each seek to minimize their own cost functions
subject to their individual constraints.

Game Protocols
The relationships that exist among a group of players. The protocol dictates the
interactions between and information available to each player in a game.

Game Theory
The study of the strategic interactions among players in a game.

Global Sensitivity Equations
A set of equations relating the local partial derivatives and the global full derivatives of
the state variables with respect to the design variables using the chain rule.

Lexicon
A stock of terms used in a particular subject, style, or profession.

Mixed Discrete/Continuous Optimization
The modeling and solution of problems which contain both discrete/integer (only a finite

number of possible values) and continuous (any real value) design variables.
Multidisciplinary Design Optimization

A methodology for the design of complex engineering systems that are governed by
mutually interacting physical phenomena and made up of distinct interacting subsystems.

XX1il

Players in a game

Classically, players may be people, groups of people or more abstract entities like
computer programs or “nature”. In design, a player is a disciplinary designer or design
team and their associated analysis and synthesis design tools.

Rational Reaction Set (RRS)
Conceptually, the RRS is an embodiment of the decision making strategy of a player as a
function of the decisions of another player.

Response Surface Methods (RSM)
A collection of statistical techniques for empirical model building and model
exploitation. RSM seeks to relate a response to a number of predictors that affect it.

Satisficing
The idea that a solution is "good enough", but not necessarily the best.

State Variables
Dependent behavior variables which are functions of the design variables. A designer
controls the state variables indirectly through the design variables.

Subsystem

A part of the system which may be a system itself, such as the propulsion system of an
aircraft. A subsystem is considered to be a group of elements governed by the same
physical phenomena. In other words, in this dissertation, a subsystem is considered to be

discipline-defined.

System
A functionally related group of elements.

Tabu Search
An iterative improvement procedure which starts from an initial solution and attempts to
determine a better solution by applying a greatest-descent procedure, subject to short and

long term memory criteria.

Taxonomy
The science, laws, or principles of classification.

XXiv

NOMENCLATURE

ALP Adaptive Linear Programming

CCD Central Composite Design

CE Concurrent Engineering

DBD Decision-Based Design

DOE Design of Experiments

DSIDES® Decision Support in the Design of Engineering Systems (computer
software)

DSP Decision Support Problem

FALP Foraging-directed Adaptive Linear Programming

GA Genetic Algorithms

NAND Nested Analysis and Design

NASA National Aeronautics and Space Administration

NORMAN® Simulation experiment sequencing system

RRS Rational Reaction Set

RSE Response Surface Equation

RSM Response Surface Methodology

SAND Simultaneous Analysis and Design

SA Simulated Annealing

S State variable vector

TOM Total Quality Management

TS Tabu Search

X Design variable vector

X The control vector of a designer, X = {x,s}

Z Deviation function in a compromise DSP

XXV

SUMMARY

Consider the statement, "A system has two coupled subsystems, one of
which dominates the design process. Each subsystem consists
of discrete and continuous variables, and is solved using
sequential analysis and solution." To address this type of statement in the
design of complex systems, three steps are required, namely, the embodiment of the
statement in terms of entities on a computer, the mathematical formulation of subsystem

models, and the resulting solution and system synthesis.

In complex system decomposition, the subsystems are not isolated, self-supporting
entities. Information such as constraints, goals, and design variables may be shared
between entities. But many times in engineering problems, full communication and
cooperation does not exist, information is incomplete, or one subsystem may dominate
the design. In addition, these engineering problems give rise to mathematical models

involving nonlinear functions of both discrete and continuous design variables.

In this dissertation an algorithm is developed to handle these types of scenarios for the
domain-independent integration of subsystem embodiment, coordination, and system
synthesis using constructs from Decision-Based Design, Game Theory, and
Multidisciplinary Design Optimization. Implementation of the concepts in this
dissertation involves testing of the hypotheses using example problems and a motivating

case study involving the design of a subsonic passenger aircraft.

XXVi

CHAPTER 1

FOUNDATIONS FOR INTEGRATED SUBSYSTEM
EMBODIMENT AND SYSTEM SYNTHESIS

In this dissertation the principal goal is to:

Develop a framework for the decision support of formulating a
multidisciplinary design problem, decomposing the problem into
disciplinary subproblems, modeling the resulting interactions according to
realistic assumptions, and solving and coordinating the disciplinary
mathematical models.

To establish some context, the following terms are defined:

* System - a functionally related group of elements or components.

* Subsystem - a part of the system which may be a system itself, such as the
propulsion system of an aircraft.

* Complex system - a system composed of a number of subsystems where
each subsystem is embodied by a particular set of components. Each
component has its own working principle. In designing complex systems, it is
difficult to make tradeoffs without understanding the complete relationships
between all of the components that constitute a subsystem and all of the
subsystems that constitute the system.

* Design team - a group of designers who work on the design of a particular
subsystem of a complex system and their associated analysis and synthesis
computer tools.

 Embodiment - to represent in concrete form. Concrete form could be
mathematical, geometrical, or prototypical, for instance. Embodiment in this

work means to represent numerically.

This chapter begins with the motivation and background for the dissertation. In Section
1.1, the overall context of this work is presented which includes discussion of three topics,
namely, interactions in design, classification systems, and solution of design models. As a
frame of reference, in Section 1.2, background material on Decision-Based Design, the
compromise DSP, the ALP Algorithm, and Game Theory is presented. The principal goal
of this work is summarized in Section 1.3. Included in Section 1.3 are the fundamental
questions to be addressed. Associated with the implementation strategy for achieving the
principal goal, the major tasks are identified, the research hypotheses are introduced, and
the verification strategy for the dissertation is presented. In Section 1.4, the contributions
of this work are justified by summarizing the deliverables and establishing the scientific
relevance of this dissertation. The organization of the chapters and appendices of this

dissertation are given in Section 1.5.

1.1 MOTIVATION AND BACKGROUND

The fundamental contributions of this dissertation are:

» techniques for implementing game theoretical protocols in the design of
complex systems characterized by multiple disciplinary design teams.
Developing and integrating game theoretical constructs in the design of complex
systems is a primary contribution.

e an effective solution scheme for mixed discrete/continuous design problems.
The analogy and constructs that guide the behavior of the scheme are a primary
contribution.

Associated with the fundamental contributions, the secondary contributions of this
dissertation are:

» athree-level lexicon for the classification of the design of complex systems and
their associated design processes. In this contribution, a representation of the
product and process is abstracted using linguistic entities.

» aformal proof of the characteristics of a transformation function, as a technical

criticism. Nonlinear optimization theory is used in a proof by induction that
addresses convex transformations.

To establish the motivation and background for these contributions, consider the statement,
"A system has two coupled subsystems, one of which dominates
the design process. Each subsystem consists of discrete and
continuous variables, and are solved using sequential
analysis and solution." In order to address this type of statement in the design of
complex systems, three steps are required, namely, (1) the embodiment of the statement in
terms of entities on a computer, (2) the mathematical formulation of the coupled
subsystems problems, and (3) the resulting solution and coordination at the subsystem and

system levels. Developing an algorithm to integrate these three domain-independent steps

in complex systems design is the fundamental motivation for this dissertation. In Figure
1.1, the fundamental research areas of this dissertation, which correspond to the three
required steps to address the previous statement, are given in the context of the title. In the
top, left corner of Figure 1.1, the foundation for the algorithm is developed through the
classification of the problem and process. In the top, right corner, the mathematical
formulation of the coupled subsystem models is developed (corresponding to the
“integrated subsystem" part of the title). On the bottom row, the capabilities to solve the
subsystem problems, while coordinating them into an functional system are developed
(corresponding to "embodiment and system synthesis" part of the title). The corresponding
section numbers, where each area is discussed are given in Figure 1.1. Figure 1.1 is used

throughout Section 1.1 as a frame of reference.

Subsystem formulation
Communication channels
Section 1.1.1 Sectlons 1.1.2 and 1 1 3

An Algorithm for
Embodiment and System Synthesis

¥ ¥

Solution of mixed models
Nonconvexity
Sectlon 1 1.4

Problem and process
classification

Resolution of subsystem interaction *%

Maintain system integrity i
Sectlons 1 1 2 and 113 |

3
SRR ARR

Figure 1.1. Areas of Focus in this Dissertation

The fundamental, big picture umbrella under which this dissertation can be classified is
Complex Systems, as shown in Figure 1.2. The focus under complex systems is
developing tools and techniques for subsystem embodiment and system synthesis. The
research areas of interest are product and process classiﬁc_ation, subsystem interactions in
design, and the solution of complex design models, precisely the three steps mentioned
earlier. These research areas are introduced in the context of design, engineering, and
science in Section 1.1. The fourth secondary research area, a generic mathematical
decision-making construct is addressed in Section 1.2.1. Literature reviews of these areas
are provided in Chapter 2. The various tools relating to each research area are introduced in

Figure 1.2 and are presented in detail in Chapter 3.

Sections 1.1.1 and 1.1.2

Big Picure (Complex Systems }

Subsystem Embodunent and System Synthesis

Focus wmsp Section |

Product and Process Subsystem Intemuo Sohmon of Design Decision-Making
Research ‘ Classification Approximation Models Construct

Section 1.1.1 Secnons 1. 1 2and 1.1.3 Section 1.1.4 Section 1.2.1

l l

MDO Classifications Game Theory .
— Response Surface Methodol ALP Algorithm
Tools Used Gamlis'll;l;ory Taylor’s Theorem el Tabu Search Compromise DSP

Global Sensitivity Equations

Figure 1.2. The Structure of the Literature Background Review

1.1.1 Engineering Design Processes and the Design of Complex Systems
Design is quite unlike invention in that there is
some type of rational methodology to solving Q

problems. Invention involves repeated trial- 4. A1o0rithm for Integrated Subsystem

.) Embodiment and System Synthesis
and-error experimentation whose succes e

sometimes even depends upon luck. In design, there is a need to plan the process of
designing. This planning takes the form of meta-design (Mistree, et al., 1990b, Rogan and
Cralley, 1990) where the product and process are partitioned and planned. Meta-design is
defined as "the design of the design process" (Mistree, et al., 1990b). Various theories and
methodologies have been developed in the engineering design community for describing
and improving engineering design processes. Although models of design processes vary
significantly for different streams of research, there are some models that are widely
acceptable and make intuitive sense to many designers. An example is the four major

design phases identified by Pahl and Beitz (Pahl and Beitz, 1984):

* Clarification of the task — collection of information about the requirements to be
embodied in the solution and also about the constraints.

* Conceptual design — establishment of function structures, the search for suitable
solution principles and their combination into concept variants.

« Embodiment design - starting from the concept, a designer determines the
layout and forms, and develops a technical product or system in accordance
with technical and economic considerations. Embodiment design is sometimes
called preliminary design.

* Detail design - all the details of the final design are specified and manufacturing
drawings and documentation are produced.

The design of complex systems follows similar phases. Using aircraft design as an
example, in Figure 1.3, the aircraft design process is roughly divided into four major
phases, i.e., conceptual, preliminary, detail design, and production and support (Schrage,
1992). In Figure 1.3, the flow between different phases and the major tasks implemented
in each phase are illustrated. The focus of this dissertation is on the first two stages of
Figure 1.3, conceptual and preliminary design. Although, the techniques developed herein

can be applied at any point along a design timeline using the appropriate assumptions, the

primary areas of application are when distinct subsystems can be identified and are
accounted for in development of a system configuration. More detailed descriptions of the
decisions made in each phase and the disciplines involved in aircraft design are provided by

Bond and Ricci (Bond and Ricci, 1992) and Raymer (Raymer, 1989).

Mission
Requirements
Conceptual |

Design

* General arrangement & performance
* Representative configurations

» General internal layout
* Internal arrangements

Allocated
Baseline
* Process design
Detailed Production
Design Baseline
Production
& Support

Figure 1.3. Four Phases in Aircraft Design (Schrage, 1992)

Conceptual
Baseline
Preliminary
Design

* System specifications
* Detailed subsystems

In aerospace engineering, FLOPS, the FLight OPtimization System (McCullers, 1993)
and ACSYNT (ACSYNT Institute, 1992), the AirCraft SYNThesis programs are the two
most popular programs for the conceptual design of aircraft. Both of them employ a
number of discipline specific modules to perform aircraft analysis and synthesis.
However, the modules are all contained within the same computer simulation program. In
the later stages of design, when domain-dependent codes and tools are used by different
design teams who may be separated by geography, by computer platforms, or by

organizational structure, the luxury of having one encompassing analysis code is not

available. Different design teams may prescribe to using different design methodologies,
analysis routines, and synthesis tools. The task of partitioning and planning the processes
to design a complex system, being performed by multiple design teams is a difficult task.
Each subsystem team may perform its own form of meta-design, but at the system level,
meta-design or process design is rarely established. In (Balling and Sobieski, 1994,
Cramer, et al., 1994), process classification schemes for complex, multidisciplinary
systems are described. This is one of the primary capabilities of Section 1.1 which is
necessary in the design of complex systems. Within each subsystem, a form of the
linguistic design processes described in Figures 1.2 and 1.3 may certainly be employed,
but at the system level, a common linguistic form of classification, communication, and
comparison is needed (Balling and Sobieski, 1994, Cramer, et al., 1994). It is among the
interests in this dissertation to expand these forms of classification from a decision-based
perspective. Foundational to these interests is the motivation to develop domain-
independent methods and tools that can facilitate the use of domain-dependent

analysis/synthesis codes for the design of complex systems.

Broadening the scope to the product realization processes, in Figure 1.4 a typical product
realization process is shown. The process flows from left to right along the x-axis, from
conceptual design to preliminary design to support and beyond. It is recognized that
conceptual design is not the origin of this process. Needs recognition, problem definition,
etc. must occur before conceptual design. At some point in the process, distinct
disciplinary subsystems can be identified (y-axis in Figure 1.4). Design teams for each
subsystem must embody their subsystem which requires the solution of a disciplinary
design model (z-axis in Figure 1.4). The focus of this dissertation is on the y and z-axes of
Figure 1.4. In other words, the focus is on a snapshot in time during a design process.

Certainly at different times in a design process, relationships and model characteristics may

change, but one of the advantages of the algorithm developed in this dissertation is its lack
of dependence on time. Therefore, as long as a system can be represented mathematically
on a computer, the algorithm can be utilized, even though the relationships among

disciplines/subsystems and the types of decision support tools may change.

subsystem it T subsystem k 1

subsystem i2

S Pl e i) e (el B v e il

Disciplinary design teams

Figure 1.4. A Typical Product Realization Process

Decomposing a problem into smaller problems is a common approach in the sciences. In

(Simon, 1982) it is asserted that the design of a complex system can be facilitated through

the use of decomposition and coordination techniques.

To design such a complex structure, one powerful technique is to discover viable
ways of decomposing it into semi-independent components corresponding to its

many functional parts. The design of each component can then be carried out with

some degree of independence of the design of others, since each will affect the
others largely through its function.

Consider the typical approach in chemistry to such a problem:

Often, the only possible course is to decompose a large system into smaller ones
and to analyze each subsystem in semi-isolation with simplifying assumptions.
Surrounding processes ... are held in a fixed state (Courtois, 1985).

In design, owever, there is no such thing as a "fixed state." Design teams are constantly
making decisions that affect not only their own subsystems but affect the other subsystems
as well. Assuming the other sub-problems are in a "fixed state" while working on one sub-
problem is Very limiting. Therefore, modeling interactions in design mandates accounting
for changing states of the other subsystems. However, many times the requirements and
objectives of the design teams are in conflict with each other. Concurrent and mutual
satisfaction of multiple design teams is difficult and rare. The nature of conflict in design is

discussed in the next section.

1.1.2 The Nature of Conflict in Design

Specialization and generalization are two

concepts diametrically opposed, in theory. In

practice, however, the two concepts are An Algorithm for Integrated Subsystem

Embodiment and System Synthesis

struggling to find identities in the same

marketplace. Companies preach customization of their product and processes, but also
emphasize the broad applications of their practices, processes, and engineers. At an
engineering level, specialization must occur. In the design of complex systems, such as

aircraft, the system must be decomposed into smaller sub-problems which can be handled

by groups of specialists in specific disciplines. On the other hand, the disciplinary

10

information must be coordinated to produce a functional system. This task becomes one
for the company management which sees the broader, more general, big picture issues.
However, what happens when disciplinary specialists are each governed by their own
"generalist” who prescribes a set of local objectives for the group to meet? Or, what
happens when the disciplinary groups are separated geographically, informationally, or
organizationally? The general, system level objectives may get lost in the details. Each
disciplinary group typically resorts to fulfilling their own requirements while leaving the
consideration of nonlocal requirements to other groups. Although, this approach may be
advantageous locally, when a general view of the system is taken, the individually
motivated decisions of the groups many times are not advantageous for the system as a

whole.

From De Bono (De Bono, 1985), who refers to conflicts in design,

We find a genuine clash of interests. The parties want things which are
incompatible ... A basic design technique is move away from the obvious clash

point and to explore benefits and values in various modifications of the situation.

The separation between the disciplinary design teams is made wider because of the different
approaches to analysis, synthesis, and optimization each group may employ. Uniting each
local approach under a global conceptual umbrella is a difficult task. The distinct nature of
each subsystem necessitates the capability of a design framework to handle a wide variety
of methods and approaches to similar problems. This capability must stretch across a
design process, from the meta-design stage to the conceptual design stage, to the detailed

and embodiment stages.

11

In light of the previous discussions, this dissertation is motivated by the need to understand
and model the interactions in the design of complex systems in order to develop design
methods and tools which can assist decision makers in making decisions throughout a
design process. Specifically, the primary interest in this dissertation is to develop an
algorithm capable of handling the domain independent tasks of classifying approaches to a
complex design problem, modeling realistic interactions among disciplinary subsystems,
and resolving embodiment and coordination problems. In addition, this dissertation
represents an effort to integrate concepts from Concurrent Engineering, Game Theory, and

Decision-Based Design with the research issues of Multidisciplinary Design Optimization.

Although cooperation in design is ideally the best scenario, in practice, it is not the most
common. The nature of cooperation and communication in design, and the implications

and difficulties therein are explored in the next section.

1.1.3 Cooperation and Communication: The Ideal Cases
The principles of give and take pervade our society.
In Descent of Man (Darwin), Charles Darwin was

4+

aware of the role of cooperation in human evolution, An Algorithm for Integrated Subsystem
Embodiment a

nd System Synthesis
writing, "the small strength and speed of man, his S 2
SYSTE
want of natural weapons are more than ‘1‘@
—

counterbalanced by his ... social qualities, which

lead him to give and receive aid from his fellow men." The notions of cooperation and
mutual help are further explored in societal and cultural environments in (Nowak, et al.,
1995). It is asserted that cooperation has assisted the processes of evolution in everything
from humans to small organisms. Isolated factions of noncooperation may exist but it is

the innate cooperative drive of society and nature that pervades. These principles can be

12

mapped to the processes of design. Since engineering design is a human-centered activity
usually performed by multiple designers, opportunities for cooperation exist from the
personal level to the analysis level. Engineering design, because of its inherent reliance on
cooperation among designers and design teams, is certainly not a forum for noncooperation

to flourish at any level of detail.

In the early stages of complex system design, system level approaches and tools can be
used (e.g., FLOPS and ACSYNT in aircraft design). Cooperation and communication are
not a problem since the designers at the system level are each focused on the same problem
and are using the same design tools. But at some point, the system level problem becomes
too complex and it must be decomposed into smaller problems. With reference to Figure
1.4, this typically occurs in the conceptual or preliminary stages. When subsystems are
identified, design teams assigned, and various methods and tools are employed by each
group, ensuring cooperation and communication becomes a significant hurdle.
Researchers addressing the issues of cooperation have taken a distinctly different approach
to the problem than what is observed and practiced in industry. Previous research in
modeling the interactions among disciplines has assumed some sort of cooperation and
communication, either implicit or explicit (Bloebaum, et al., 1992, Renaud and Gabriele,
1993, Sobieszczanski-Sobieski, 1988), but in industry practice has experienced a
somewhat different environment. From (Duffey, et al., 1996) for example, it is found that
the leaders of two design teams designing aircraft in the same company for several years
had never met face to face until only recently. The cooperation and communication
modeled in academic research is usually not applicable in industrial contexts. More times
than not, design processes are still largely sequential (Sobieszczanski-Sobieski, et al.,
1984), and many times the design groups do not even communicate (Duffey, et al., 1996).

Furthermore, there exists computational difficulties in ensuring cooperation and

13

communication in an industrial context. The gap between the research perspective and the

industrial perspective of a multidisciplinary design problem is shown in Figure 1.5.

Capabilities to:
* model and predict design results in
cooperation,
noncooperation,
sequential, and
concurrent design processes
* develop techniques to facilitate best practice

X LI

[T 11 1 _1J
—— — — — -

Research
» Cooperation
« Communication
* Design Theory

*» Lack of Cooperation
* Design Reality

Figure 1.5. Bridge Between Practice and Research in Multidisciplinary
Design Problems

To bridge the gap between research and practice from the industrial side, companies such
as the Boeing Aircraft Company are making significant strides. In their recently publicized
design of the 777 aircraft, Boeing has had great success revamping their design processes
to facilitate cooperation and communication among the various disciplinary design teams.
Principles from Concurrent Engineering (CE) (Kusiak, 1993) and Total Quality
Management (Brassard, 1989) were successfully applied at the personal/organizational

level and to a lesser extent at the computational/mathematical level. Extension of CE

14

principles from the personal level to the mathematical level is not a trivial conceptual jump.
It is part of the motivation of this dissertation to provide mathematical techniques and tools
for applying principles of CE and Systems Engineering. While these efforts are paying
great dividends (Duffey, et al., 1996), there still exists a gap between research and practice
in modeling interactions in complex systems design. A contribution of this dissertation is
to help bridge this gap from an academic research perspective. A major point of departure
in this dissertation is developing methods and techniques to not only model cooperation in
complex systems design, but also model sequential processes and processes where the
design teams do not communicate or cooperate. Ideally, the keystone of this bridge, as
shown in Figure 1.5, would be decision support tools with the capability to model and
predict results in cooperation, noncooperation, sequential, and concurrent design
processes, and techniques to facilitate and implement best practice strategies. Full
construction of such a bridge requires further work both from the industrial and academic
perspectives integrated with the concept of organizational or enterprise design where the
structure of corporations are determined based on design product and process issues. Of
course, developing the capability of modeling different interaction protocols means
developing the means to solve the models. In the next section, hurdles in the solution of

the models are discussed in the context of complex systems.

1.1.4 Mathematical Hurdles to System Embodiment

An Algorithm for Integrated Subsystem

In the discussion in Sections 1.1.1 and 1.1.2,
n scussion 1 Embodiment and System Synthesis

analysis and synthesis tools are referred to in
the third person. That is, they exist, and the
effectiveness of them is left up to the
disciplinary designers. From the title of this

dissertation, the phrase "subsystem embodiment and system synthesis"” connotes ideas of

15

solving multiple design models. In order to complete to the "algorithm" of this
dissertation, a solution scheme is developed to help designers solve the disciplinary
models. Two characteristics of complex design problems are addressed in the solution

scheme, mixed discrete/continuous problems and nonconvex functions.

In complex systems, the design variables, for the most part, can be set to any real value. In
other words, the design variables are continuous. There are, however, times when
variables exist which can only take on certain values. For instance, the number of engines
in an aircraft can only be an integer, and the number of teeth on a gear can only be an
integer. Moreover, when existing components are selected "off the shelf," there are only a
finite number of possible values. For instance, gears usually come in standard discrete
sizes. Bolts and springs usually come in similar standard sizes. Analyzing functions of
these types of variables, integer and discrete, presents mathematical challenges, since the
derivatives of the functions with respect to the integer or discrete variables do not exist.
Therefore, any kind of approximation or optimization technique which requires derivatives
can not be used. In fact, the solution of these mixed problems is identified in

(Papalambros, 1995) as being "one of the most daunting problems in design optimization."

Analytical functions that describe the behavior of a complex system are rarely simple, linear
functions. They typically are complex, nonlinear, nth-order equations of multiple
variables. Optimization algorithms have difficulty handling functions of this type, which
are neither convex or concave, even in small regions. But highly nonlinear equations in
complex systems design are a fact of life. Therefore, techniques for handling nonconvexity
are necessary for effective and reliable solutions for design models of complex systems.

Techniques are well established for finding solutions to convex problems. However, with

16

nonconvex problems, often heuristic approaches are used, yielding mixed results

(Papalambros, 1995).

It is among the contributions of this dissertation to develop a solution scheme to handle
mixed discrete/integer/continuous design models characterized by highly nonlinear analysis
equations. Foundational to this dissertation, a mindset of description is taken as opposed
to prescription. A primary benefit of using the algorithm developed in this work is the
capability to describe the results and ramifications of various complex product and process
structures through the classification, modeling, and solution of design problems. The

descriptive opportunities of the algorithm are presented in the next section.

1.1.5 Opportunities: A Descriptive Approach

In Sections 1.1.1 through 1.1.4 different aspects of the design of complex systems are
described as a means to establish the context of the dissertation. The areas of focus are the
classification of design product and process, interactions in design, and the solution of
design models. These are the areas identified in Section 1.1 as being paramount to
formulating, modeling, and solving complex design problems. These three areas map one-
to-one to the three steps of the algorithm for subsystem embodiment and system synthesis
presented in Chapter 3. In Webster's (1984), "algorithm" is defined as

A mathematical rule or procedure for solving a problem.

The term "procedure” connotes a sense of prescription. In other words, an algorithm
prescribes a set of steps to solve a problem. In a sense, the algorithm in this dissertation is
prescriptive, but more importantly, it provides a framework to explore formulating,
modeling, and solving a complex design problem. However, the true benefit of the
algorithm is its descriptive power. The algorithm provides a dynamic framework, and

when exercised, can describe the results of different design scenarios when muitiple design

17

teams are involved. Therefore, the mindset for this dissertation is more descriptive than
prescriptive. The results are meant to describe the various resulting product and process
implications when a certain prescriptive approach to design is taken. In order to address
the issues raised in Section 1.1, several hypotheses are formed in Section 1.3. These
hypotheses are constructed based upon a solid technology foundation, rooted in Decision-
Based Design and Game Theory. The necessary background for the foundational areas is

presented in the next section.

1.2 FRAME OF REFERENCE

In this section, the necessary technology base for the dissertation is given. Detailed
presentations of the foundations for the developments of this work are presented in Chapter
3. Three fundamental starting points are offered in this section, the Compromise DSP (and
more generally, Decision-Based Design), the Adaptive Linear Programming Algorithm,

and Game Theory.

1.2.1 Decision-Based Design and the Compromise DSP

There have been several reviews of design literature (Andreasen, 1987, Cross, 1989, De
Boer, 1989, Finger and Dixon, 1989a, Finger and Dixon, 1989b, Hubka and
Schregenberger, 1987, Pahl and Beitz, 1984). Although these reviews focus on different
aspects of design literature, such as the evolution of design theory, state of the art methods,
and research trends, one common characteristic of these reviews is that they all aim at
supplying the missing elements for making design more "scientific”. It is asserted that, as
an emerging science-based discipline, design is still in its pre-theory stage; a lot of

experimental studies are still needed. There are various ways to approach design in the

18

current design research community, for example, prescriptive approaches to design
(Hubka, 1982, Pahl and Beitz, 1984), axiomatic approaches (Suh, 1990, Takala, 1987,
Tomiyama and Yoshikawa, 1987), decision-based design approaches (De Boer, 1989,
Mistree, et al., 1990b, Ostrofsky, 1977), and mathematical-oriented optimization
approaches (Hubka, et al., 1988, Vanderplaats, 1984). Moreover, in recent years there
has been a growth of artificial intelligence (AI) principles being applied to design (Brown,
1985, Brown and Chandrasekaran, 1986). Independently of the approaches or methods
used to plan, establish goals and model systems, designers are and will continue to be
involved in two primary activities, namely, processing symbols and making decisions.
Therefore, it is asserted that the process of design, in its most basic sense, is a series of
decisions. By focusing upon decisions, a description of the processes can be written in a
common “language” for teams from the various disciplines -- a language that can be used in
the process of designing. It is this language of decisions that is used to build the lexicon
addressed in Section 1.1.1 that can be used to classify processes in complex systems

design.

A definition of the term designing is as follows (Kamal, et al., 1987, Mistree, et al.,

1989):

Designing is a process of converting information that characterizes the needs and

requirements for a product into knowledge about a product.

In this dissertation, Decision-Based Design (DBD) (Mistree, et al., 1990b, Shupe, 1988), a
term coined to emphasize a different perspective from which to develop methods for
design, is used as the design paradigm. The paradigm is based on the premise that the

principal role of a designer is to make decisions (Mistree, et al., 1990b). This seemingly

19

limited role is useful in providing a starting point for developing design methods based on
paradigms that spring from the perspective of decisions being made by designers (who may
use computers) as opposed to design that is assisted by the use of computers, optimization
methods (computer-aided design optimization), or methods which evolve from specific

analysis tools such as finite element analysis.

It is recognized that the implementation of DBD can take many forms. The implementation
form used in this dissertation is the Decision Support Problem (DSP) Technique (Mistree,
et al., 1993¢, Muster and Mistree, 1988), which is developed as a technique that supports
human judgment in designing systems which can be manufactured and maintained. In a
computer assisted environment, support for the designer is provided in the form of
solutions to Decision Support Problems. Formulation and solution of DSPs provide a

means for making the following types of decisions:

Selection - the indication of a preference, based on multiple attributes, for one
among several feasible alternatives (Kuppuraju, et al., 1985b, Mistree, et al.,
1994, Mistree, et al., 1988).

Compromise - the improvement of a feasible alternative through modification
(Bras and Mistree, 1993, Chen, et al., 1994b, Karandikar, et al., 1990,
Mistree, et al., 1988).

Coupled or hierarchical - decisions that are linked together - selection/selection,
compromise/compromise and selection/compromise decisions may be coupled.
(Bascaran, 1990, Bascaran, et al., 1989, Karandikar, 1989).

These types of decisions may also be implemented in an uncertain or conditional
environment where decisions account for the risk and uncertainty of the outcome (Allen, et
al., 1992, Allen, et al., 1989, Bhattacharya, 1990, Zhou, et al., 1992), or by a rule- based

or heuristic approach where reasoning and rules of thumb are used (Kamal, et al., 1992).

20

Applications of DSPs include the design of ships, damage tolerant structural and
mechanical systems, the design of aircraft, mechanisms, thermal energy systems, design
using composite materials and data compression. A detailed set of references to these
applications is presented in (Mistree, et al., 1990a). The software for implementing the
DSP Technique is called DSIDES (Decision Support in the Design of Engineering
Systems) (Mistree, et al., 1993a). As a general framework for solving multiobjective,
nonlinear optimization problems, a compromise DSP can be used to model each of the
aforementioned decisions. The compromise DSP is used in this dissertation as the
fundamental mathematical construct for modeling disciplinary-dependent problems and the
strategic interactions among them. The general word formulation of a compromise DSP is

given as follows.

Given
An alternative to be improved through modification.
Domain analysis information
Find
System design variables
Deviation variables associated with the system goals
Satisfy
System constraints
System goals
Bounds on the system variables
Minimize
Deviation Function

In a compromise DSP, the design variables and deviation variables (which measure the
deviation between the achievement and target values of the system goals) are found subject
to satisfying system constraints, goals, and variable bounds. The objective in a
compromise DSP is to minimize the deviation function, which quantifies the "goodness" of
a design. A mathematical overview of the compromise DSP is provided in Section 3.4.4.
As part of DSIDES, the solution algorithm for solving compromise DSPs with continuous

variables is called the Adaptive Linear Programming Algorithm (Mistree, et al., 1993a). A

21

brief introduction and discussion of the features of the ALP Algorithm are given in the next

section, Section 1.2.2, and detailed discussions are reserved for Sections 3.4.4 and 6.2.2.

1.2.2 The Adaptive Linear Programming Algorithm and the G-function
Solutions to the compromise DSPs can be found using different optimization methods
(Mistree, et al., 1993a). The choice of the optimization method depends, to a certain

extent, on the problem. Solution algorithms fall into two categories, namely,

* those that solve the exact problem approximately, and
* those that solve an approximation of the problem exactly.

Gradient-based methods, pattern search methods, and penalty function methods fall into the
first category whereas methods involving sequential linearization fall into the second
category. The ALP Algorithm is based on the sequential linearization of a nonlinear
problem. At each stage the solution of the linear programming problem is obtained by a
Multiplex algorithm based on (Ignizio, 1985b). Three important features contribute to the

success of the ALP algorithm, namely,

» the use of second-order terms in linearization,

* the normalization of the constraints and goals and their transformation into
generally well-behaved convex functions in the region of interest, and

* an “intelligent” constraint suppression and accumulation scheme.

These features are described in detail in (Mistree, et al., 1993a) and briefly described in
Section 6.2.2. Nonconvex functions in optimization problems are difficult to handle and
can cause solutions schemes to find inferior solutions or diverge. However, it is asserted

in (Mistree, et al., 1993a) that the ALP algorithm does not have problems dealing with

22

nonconvex constraints which invariably occur in the real-world engineering design. The
effectiveness of the function that is used in the ALP Algorithm to transform nonconvex

equations in well-behaved convex equations is investigated in this dissertation. To

introduce this transformation, if C;(X) and D;(X) represent the capability and demand

placed on a system in mode i, then, a system constraint is
CiX) 2 DiX) or GX) - DiX) =2 O

In the normalized, dimensionless form (Mistree, et al., 1993a) the preceding equation

becomes

CG(X) - DiXV(GX) + DiX)) 2 0
and hence

giX) = (X - DiXV(CX) + DiyX)).
Ifri(X) = CyX)/DyX) for a system constraint, then

giX) = X) - DAX + 1) . (1.1

In a compromise DSP, a nonlinear system constraint is represented as

(X - DX +1) 2 0 (1.2)
or,
gixXy =2 0

Similar derivations of the g-function are given in (Mistree, et al., 1993a) for system goals.

The function gi(X) is normalized and is therefore nondimensional. This simplifies the task

of solving a compromise DSP with constraints expressed in different physical units. The
preceding is asserted to be the second important feature of the algorithm. In this

dissertation a proof of contradicting this assertion is formalized in Section 3.5.

23

The ALP Algorithm is used as a fundamental starting point in this dissertation for the
development of a solution algorithm for mixed discrete/continuous design problems. The

final starting point is game theory, introduced in the next section.

1.2.3 Game Theory as a Decision Support Tool

In a general sense, a "game” is a set of rules completely specifying a competition, including
the permissible actions of, and information available to each participant, the criteria for
termination of the competition, and the distribution of payoffs (Websters, 1984). From

more of a systems perspective, a "game" is defined as follows:

Definition 1.1. A game consists of multiple decision-makers who each
control a specified subset of system variables and who each seek to
minimize their own cost functions subject to their individual constraints
(Myerson, 1991).

In this dissertation, a designer is considered a decision-maker. Therefore, the definition of
a game can be applied directly to a design process characterized by multiple designers who
each try to minimize their own cost functions (or maximize performance functions) subject
to local constraints. Game Theory is the study of the strategic interactions of such games
(Von Neumann and Morgenstern, 1944). It is asserted in this dissertation that principles
from game theory can be applied to design situations to understand and model the complex
relationships among subsystems in the design of complex systems. Game theory has
typically been used extensively in economics, business, and military applications. In these
applications, the players in the game are large companies, industries, or national military
forces. Classically, players may be people, groups of people or more abstract entities like

computer programs or "nature”. In design a player is defined as follows:

24

Definition 1.2. A player in design is a disciplinary designer or design team and their

associated analysis and synthesis design tools.

In Def. 1.2, again the synergy between a human and computer is found. This concept is
introduced in Section 1.2.1, where computer capabilities enhance the designer's abilities to
make decisions. In design, since the player is the decision-maker, in order for players to
cooperate, cooperation is required at the personal level (designer level) and at the
mathematical level (analysis and synthesis levels). In this dissertation, cooperation from a

mathematical perspective is explored in the context of game theory.

In game theory, a fundamental assumption is the inherent rationality of the players in the
game, but as pointed out in (Bertalanffy, 1968), "human behavior ... falls far short of the
principle of rationality.” By asserting that the players in design are not only the decision-
makers, but their associated analysis and synthesis tools as well, this principle of rationality
is satisfied to some extent. Thg rationality is embodied within the analysis that describes
the behavior of the system in terms of physical and mathematical laws. Rationality from a
human perspective can be disputed, but from a perspective based on the laws of nature,
physics, and mathematics, rationality cannot be disputed, e.g., if the physics of an aircraft
problem predicts that an aircraft will not fly, it is safe and rational to assume that it will not
fly. Although, analysis is only a support tool for the designer whose responsibility it is to
make the final decision, rationality can not be guaranteed, but it is assumed in this

dissertation that rationality exists beyond a reasonable doubt.

Application of game theory classically has had two goals. The first goal is a descriptive
goal of understanding why the players behave as they do. This includes describing the

results of a certain game structure. The second goal is a more practical goal of being able to

25

advise the players of the game as to the best way to play, or the best strategy to take. For
instance, two players could strike a mutually profitable compromise, but each could
possibly gain still more by withholding its contributions and information and exploiting the
other player. In design, disciplinary design teams, working for the same company, should
be working towards a common goal: designing a product that meets the customer
requirements as closely as possible. Therefore, competitive notions that are present in
games such as chess, poker, bridge, baseball, and so on, are not present (or at least should
not be present) in design. This is the fundamental difference between classical games

studied in game theory and design:
The competitive behavior of players in classical games occurs because of the
dichotomy of goals. One player wants to win or maximize his profit, and the other
player also wants to win or maximize his profit. Simultaneous satisfaction of both
players' goals cannot occur. Whereas in design, although disciplines may have
their own goals, the disciplines are linked by the same encompassing goal under the
umbrella of a company's profit strategy. Therefore, disciplinary design teams

theoretically should always cooperate.
There are many conceptual similarities between design and game theory which provide
motivation for this work. The purpose of this dissertation is not to develop methods to
ensure reciprocal altruism among designers, but to describe the results when cooperation,

exploitation, or noncooperation exists.

Mathematical modeling of strategic behavior, where one decision-maker's action depends
on decisions by others, is well-established in wide-ranging applications from economics, to
business and military applications (Aubin, 1979, Dresher, 1981, Fudenberg and Tirole,
1991, Mesterton-Gibbons, 1992). If the use of multi-player strategic models in these non-
engineering applications is so compelling, it is natural to ask what role such models have in

the design of complex engineering systems. After all, design is often a collaborative

26

activity, with different decision-makers responsible for different subsystems or even design
stages (e.g., design, manufacturing, and retirement of a product). Developing the
capability to model and understand the role of collaboration, cooperation, and
noncooperation in design would benefit anyone who makes decisions in a design process,
from management to engineering. Certain protocols lend themselves nicely to modeling
interactions in design, namely the cooperative or Pareto formulation when the players
cooperate, the Nash or noncooperative formulation when the players act in their own self-
interest, and the Stackelberg or leader/follower formulation when one player dominates

another. These protocols are described and discussed in Sections 3.3 and 5.5.

1.3 GOALS, FOCUS, AND STRATEGY FOR IMPLEMENTATION

1.3.1 The Principal Goal and Fundamental Questions
Given the inherent complexity at various levels of the design of complex systems, the
principal goal of this dissertation is to:
Develop a framework for the decision support of formulating a
multidisciplinary design problem, decomposing the problem into
disciplinary subproblems, modeling the resulting interactions according to
realistic assumptions, and solving and coordinating the disciplinary
mathematical models.
To achieve this goal several fundamental constructs are integrated into a conceptual
framework centered around the Decision Support Problem Technique and the compromise
DSP. The compromise DSP is used as a generic decision model to incorporate discrete and
continuous design variables with notions of cooperation, exploitation, and noncooperation

within a multiobjective, nonlinear decision construct. As shown in Figure 1.6, the

principles and tools are derived from Game Theory, Response Surface Methodology,

27

Multidisciplinary Design Optimization, and the Tabu Search. These principles and tools are

described in Chapter 3.

Principles and Tools

Game Theory
Response Surface Methodology :
Multidisciplinary Design Optimization |
Tabu Search

Algorithm for Integrated Subsystem Embodiment and System Synthesis I

Figure 1.6. Integration of Principles, Tools, and the Framework

During the development of the framework and associated techniques, the following
fundamental questions are addressed. After each question the corresponding sections
where the motivation and/or technology base for the question is given. These sections

correspond to the sections and areas identified in Figures 1.1 and 1.2.
* Question 1: How can complex system design problems and processes be described

and classified using an intuitive decision support lexicon? (Sections 1.1.1 and

1.2.1)

28

* Question 2: How can realistic interactions among design teams and their associated
analysis and synthesis tools be modeled and incorporated into a design process?
(Sections 1.1.2, 1.1.3, and 1.2.3)

* Question 3: How can mathematical models which consist of continuous, discrete,
and integer variables be solved and coordinated? (Sections 1.1.4 and 1.2.2)

* Question 4: Is the g-function of the ALP Algorithm a good transformation of

nonconveXx functions into well-behaved convex functions? (Section 1.2.2)

The answers to these questions will help bridge some of the gaps found in blind integration
of Concurrent Engineering principles at a mathematical level (see Section 1.1.3), and will
also help designers to accurately model actual products and processes and solve the
resulting models. In the next section, the strategy for answering these questions and

verifying the answers is described.

1.3.2 Strategy for Implementation and Verification/Validation

The implementation of this dissertation consists of three phases: 1) identification of the
needs and research opportunities in multidisciplinary design, 2) testing the research
hypotheses, and 3) further development and verification of the framework using an
integrated case study. The following tasks are identified as being necessary to the

fulfillment of the three phases.

Phase I: Identification of the needs and research opportunities in
multidisciplinary design

Task 1: The first task is identifying the ideal aspects of an algorithm for the integrated

design (formulation, decomposition, solution, and coordination) of complex systems that

may consist of discrete and/or continuous variables. The design of complex systems first

29

involves problem and process formulation (meta-design), then embodiment of coupled
subsystems, and finally system synthesis. Therefore, the ideal aspects of each stage are
identified in Section 1.1, reviewed in Chapter 2, and detailed in Section 3.1.

Task 2: Based on the ideal aspects of such an algorithm, the second task is to identify the
research needs and opportunities in the current state-of-the-art technology base. The

various research and application areas are covered in Chapter 2.

Phase II: Testing the hypotheses

Task 3: Based on the research opportunities identified, the third task is to identify the
research hypotheses for the development of the algorithm for integrated subsystem
embodiment and system synthesis. The hypotheses are considered the theoretical
foundations for the approach and developments in this dissertation. Ramifications and
verification guidelines must be provided for each hypothesis. This is covered in Chapter 3.
Task 4: The fourth task is to test the hypotheses using example problems. These example
problems are less complex than the motivating example but are used to illustrate the
developments associated with each hypothesis. This work is presented in Chapters 4, 5,

and 6.

Phase III: Further development and verification of the framework

Task 5: Having tested and illustrated the hypotheses on less complex examples, the fifth
task is to use the motivating study, the design of a passenger aircraft, to further
demonstrate and verify the algorithm and its associated techniques. This is presented in
Chapter 7.

Task 6; The final task is to summarize the achievements, critically evaluate the work, and

discuss future issues and open questions. This is covered in Chapter 8.

30

Four hypotheses are tested in the development of the algorithm, namely:

Hypothesis I: Classification of problem and process in multidisciplinary design can be
facilitated by integrating constructs from Decision-Based Design, Game Theory, and
Multidisciplinary Design Optimization. (Answering Question 1)

Hypothesis 1I: Game theoretic principles can be applied to accurately model and
describe the interactions in complex systems design. (Answering Questions 1 and 2)
Hypothesis I1I: The notion of foraging of wild animals is a natural analogy for

optimization and can be used as an effective search technique in the solution of mixed
discrete/continuous models. (Answering Questions 2 and 3)
Hypothesis IV: The G-function is a useful transformation of nonconvex functions into

well-behaved convex functions. (Answering Question 4)

There are a total of 11 posits which support or help verify these hypotheses. A detailed
presentation of the hypotheses and posits is given in Section 3.1.3. Various mechanical
examples are used in Chapters 4-6 to verify the hypotheses. Once the hypotheses are
tested, the algorithm and its associated techniques are further developed and verified for the
design of a complex system using the design of a subsonic transport aircraft as a case study

in Chapter 7.

Each question is answered in the following chapters with the following developments.

1) How can complex system design problems and processes be described and classified

using an intuitive decision support lexicon?
» Using entities from the Decision Support Problem Technique, a domain-
independent classification lexicon is established for multidisciplinary design

optimization problems (Sections 3.2.3 and 4.2).

31

Game Theory entities can be used to extend problem and process formulation in

multidisciplinary design (Section 4.2).

2) How can realistic interactions among design teams and their associated analysis and

3)

synthesis tools be modeled and incorporated into a design process?

Design processes are abstracted as a series of games where the players are the
disciplinary design teams and their associated analysis and synthesis tools (Sections
3.3.2 and 5.2).

Appropriate definitions are given for the application and development of game
theory constructs in Decision-Based Design (Section 5.3).

Approximate cooperation is modeled using the Global Sensitivity Equations and
first order Taylor series to approximate nonlocal information (Sections 3.3.4,
5.5.1, and 7.4.1).

The decision-making strategy of a player in a game is approximated using a second
order response surface scheme to construct approximate rational reaction sets
(Sections 3.3.4, 5.5.2, 5.6.2, and 7.4.2).

Leader/Follower and noncooperative solution strategies are developed for complex
design problems characterized by multiple disciplinary models (Sections 3.3.3,

3.3.4,5.5.3, 5.6.3, and 7.4.3).

How can mathematical models which consist of continuous, discrete, and integer

variables be solved and coordinated?

Empirical observations of animals are used to develop a foraging heuristic, which
borrows notions from the Tabu Search, Genetic Algorithms, and Simulated
Annealing (Sections 3.4.2, 3.4.2, 6.2).

An effective solution scheme for mixed discrete/continuous design problems is
developed by integrating a foraging heuristic and the ALP Algorithm (Sections

3.44, 6.3, and 6.4).

32

4) Is the g-function of the ALP Algorithm a good transformation of nonconvex functions
into well-behaved convex functions?

* A formal proof of the g-function and its properties is demonstrated (Section 3.5).

1.4 CONTRIBUTION AND SCIENTIFIC RELEVANCE

The contributions are presented by summarizing the deliverables and establishing the

scientific and engineering relevance.

1.4.1 Deliverables - A Summary of the Algorithm
Corresponding to the principal goal of this dissertation, the major deliverable is the

development of

» an algorithmic framework for the domain-independent formulation, modeling,
solution, and coordination of complex systems characterized by multiple
subsystems which each consists of discrete and continuous variables.

Associated with the use of the algorithm, the other deliverables are:

» athree-level lexicon for the classification of the design of complex systems and
their associated design processes,

* techniques for implementing game theoretical protocols in the design of
complex systems characterized by multiple disciplinary design teams,

» an effective solution algorithm for mixed discrete/continuous design problems.

» aformalized proof by induction of the transformation characteristics of the g-

function.

These are considered to be the fundamental contributions of this dissertation.

33

The Algorithm for Integrated Subsystem Embodiment and System Synthesis
- An Overview

An algorithm 1s developed that consists of three primary steps as shown in Figure 1.7. The
correspondence of the algorithm steps with the four research hypotheses introduced in
Section 1.3.2 and the associated techniques and deliverables introduced in this section is

shown in Figure 1.7.

Techniques Algorithm Steps Hypotheses

3-Level
Lexicon Step 1 Hypothesis |

(Section 4.2)

Techniques for
implementing game —Y]
formulations Step 2 Hypothesis Il

(Section 5.5)

Solution scheme for

different classes of Step 3
problems

(Section 5.5)

| Hypotheses il and IV

Figure 1.7. Steps, Hypotheses, and Techniques

In general, given a complex system and its associated disciplines, Step 1 of the algorithm is
used to classify the process and product using a three-level lexicon. In level 1 of the
lexicon, the modeling scheme is classified as being either a single-level or multi-level
approach. If a multi-level approach is used, the role of the subsystems in the realization
process are identified. In levels 2 and 3 of the lexicon, specific process-based entities are
used to further classify the product and process based on the decisions being made and the

computer-based tools employed to support these decisions.

34

In Step 2 of the algorithm, depending upon the classification identified in Step 1, a certain
game protocol is used to model the relationship between the disciplines and
analysis/synthesis programs (players). Each discipline's local subsystem model is
formulated based on their role in the design process. In Step 3 of the algorithm, the models
for each player are solved according to the appropriate protocol of the game. Various
techniques are developed to facilitate the solution of the different protocols depending upon
the information available to each disciplines. It is inherent, by using game theory
constructs, that when the disciplinary models are solved, the problem of coordinating the
coupled disciplinary models is also resolved. This is part of the elegance of game theory
(see Chapters 3 and 7) and the motivation behind the phrase "integrated subsystem

embodiment and system synthesis” used in the dissertation title.

The Computer Infrastructure for Implementing the Algorithm

Ideally, the use of the algorithm would be automated on a computer system. Certain
aspects of the algorithm have been implemented in a computing framework, while others
are only conceptual in nature. Integration into a computing framework such as a Design
Guidance System (Bras, et al., 1990) or IMAGE (Intelligent Multidisciplinary Aircraft
Generation Environment) (Hale, et al., 1996) would be a natural extension of this
dissertation. The major components of the existing computer infrastructure shown in
Figure 1.8 include four processors (a nonlocal approximation processor, module A, a
design of experiments/response surface/rational reaction set processor, module B, and a
solution processor, module D), each centered about the primary processor, the compromise

DSP, module C.

35

__~Full Cooperation 2L
”~
'Approximate
Cooperation
assification
/Protocol

I

Compromise DSP
Module C

Nonlocal

Approximation
Module A

Sets of
Solutions

Engine eaction Se () Simulation Program
Module B

Design of Experiments) L Rational j] £ 7 InpuQutput
R ts

Figure 1.8. Existing Computer Infrastructure of the Algorithm

Each of the other processors is linked to the compromise DSP through a computing
interface. Within the compromise DSP lies the domain dependent analyses for the various
disciplinary design problems. Given a certain protocol, different processors are used. For
the full cooperative protocol, the compromise DSP is the only processor used as shown in
Figure 1.8. For the approximate cooperative protocol, the nonlocal approximation
processor (module A) is used along with the compromise DSP. For both the
leader/follower and noncooperative protocols, the design of experiments processor (module
B) is used, coupled with the compromise DSP as shown in Figure 1.8. Each protocol uses
some sort of solution method (module D) depending upon the protocol. In this
dissertation, NORMAN® (Cartuyvels and Dupas, 1993) is used as the design of
experiments processor (module B), and different solution techniques from DSIDES® and
Mathematica® are used as the solution processors (module D). A detailed description of

the of the computer infrastructure is provided in Section 3.1.2.

What are the Design Applications of the Algorithm?
The primary purpose of the algorithm is to provide decision support in the design of

complex systems that are characterized by multiple design teams who each have their own

36

analysis and synthesis routines. Some of the developments in this dissertation could
certainly be used for small design problems. The examples used in Chapters 4, 5, and 6
are simple examples. But as a whole, the algorithm's primary use is for the design of
complex systems, some of which are illustrated in Figure 1.9. An aircraft is used in this
dissertation as the motivating study, but from the observations in (Duffey, et al., 1996), it
is apparent that the automotive and ship building industries could also benefit from the
developments of this dissertation. Although, the systems shown in Figure 1.9 are all
forms of transportation systems, the developments of this dissertation can be applied to
various other forms of complex systems. Succinctly, any system which can be
decomposed into interacting subsystems, which are independently analysis-driven, could
benefit from the techniques developed as part of this dissertation. Many systems can be
broken down even further into sub-subsystems, facilitating the use of the algorithm at

multiple levels of detail.

Figure 1.9. Examples of Design Applications

1.4.2 Engineering and Scientific Relevance of This Work
The engineering and scientific relevance of this work is established by establishing three

levels of relevance, 1) science and engineering in general, 2) the field of design, and 3) the

design of complex, multidisciplinary systems.

37

Relevance to Science and Engineering

This dissertation is concerned with the study of systems in science and engineering. The
developments could be applied to a large number of systems in general, but are specified
and developed for engineering systems in particular. In Simon (Simon, 1982), the

increasing study of such systems is addressed:

In science and engineering the study of "systems" is an increasingly popular
activity. Its popularity is more a response to a pressing need for synthesizing and
analyzing complexity than it is to any large development of a body of knowledge
and technique for dealing with complexity. If this popularity is to be more than a
fad, necessity will have to mother invention and provide substance to go with the

name.

The motivation for this dissertation is to provide a piece of this "substance" to support the
study of complex systems as a body of cohesive knowledge and theory. Although
engineering systems are the focus here, the concepts, ideas, and theory could be used in
any large-scale system that can be represented mathematically. This could include the
design of an organization, an industrial consortium, a city strategic plan, or various

examples in biological and behavioral sciences. These situations represent

...problems of organized complexity, i.e., interaction of a large but not infinite
number of variables, [which] are popping up everywhere and demand new
conceptual tools (Bertalanffy, 1968).

In this dissertation, conceptual, decision-support tools are developed to assist designers in

a computer-based design environment. These conceptual tools include the capability to:

38

» classify and formulate different product and process models of the same
system.

* model the interactions in complex systems based on levels of cooperation,
information availability, and process structure.

» identify sets of solutions of complex systems, based on product, process, and

organizational preferences and structure.

Relevance to Design

Although design’s existence as a science or an art is a debate that may never end, design in
this dissertation is viewed as a science of the artificial (Simon, 1982). Unlike a scientist, a
designer is not simply an observer of objects and processes, but is a controller of objects

and processes. In (Cross, 1993), the science of design refers to
that body of work which attempts to improve our understanding of design through

"scientific” (i.e., systematic, reliable) methods of investigation.
In other words, the science of design is the study of design. In many communities, the
study of design implies developing design methodologies, based on formal language and

theories. According to Cross,

DESIGN METHODOLOGY

includes the study of how designers work and think, the establishment of
appropriate structures for the design process, the development and application of
new design methods, techniques and procedures, and the reflection on the nature
and extent of design knowledge and its application to design problems (Cross,
1993).

Currently two major streams of research activities for developing the science of design

through design methodologies exist, namely:

(1) the development of computer-based design tools to aid designers, and
(2) the pursuit of a definitive theory of design.

39

In this dissertation, contributions in both areas are established. In the first area, the
algorithm developed in this dissertation is based on the inherent assumption that designers
are using computers to assist in decision-making. Therefore, computer capabilities have

been developed to

* use mathematical implementations of game theoretical protocols to model
strategic interactions among designers,

+ produce effective decision-making information in the form of numerical
solutions and geometric representations to describe the design of a system, and

* heuristically search a discrete design space to find areas of promising solutions
in complex models.

In the second area, i.e., the pursuit of a definitive theory of design, an attempt is made to
formulate, model, and solve complex design problems based on the fundamental paradigm
that the principal role of a designer is to make decisions. The compromise DSP is used as a
generic decision model to incorporate game theoretical constructs within a multiobjective,
nonlinear decision construct. Many design product and process structures, different in
concept and implementation, have been studied each using the compromise DSP as the
fundamental mathematical construct. The work of this dissertation adds support to the
claim in (Bras, 1992, Mistree, et al., 1993a) that the compromise DSP is a domain-
independent, generic decision support construct which can be used to support designers in

the design of products, processes, and systems.

Relevance to Complex Systems Design
Multidisciplinary Design Optimization (MDO) is described as a methodology for the design

of systems where the interaction between several disciplines must be considered, and

40

where the designer is free to significantly affect system performance in more than one
discipline (Sobieszczanski-Sobieski, 1993). Using the definition of complex systems
introduced at the beginning of Chapter 1, it is obvious that research in MDO focuses on the
design of complex systems which are characterized by interacting disciplines. This is
precisely the focus of this dissertation as well. Some of the primary developments in this
dissertation can aid designers in the design of single disciplined systems, but the true
benefit occurs when multi-disciplinary systems are designed. Certainly, the
interdisciplinary coupling inherent in MDO tends to present additional challenges beyond
those encountered in single-discipline optimization (Sobieszczanski-Sobieski, 1993,
Sobieszczanski-Sobieski and Chopra, 1991). This is one of the primary focuses of this
dissertation: handling the interdisciplinary coupling in design situations when cooperation
may or may not exist among the disciplines and their analysis and synthesis tools. The

contributions of this dissertation to MDO include the capability to:

rapidly explore different product and process structures,

» quantify the disciplinary interactions as functions of design and state variables,
» use effective approximation techniques to increase analysis efficiency, and

e solve mixed discrete/continuous design problems which often occur in MDO.

1.5 ORGANIZATION AND OVERVIEW OF THE DISSERTATION

In Section 1.3.3, the three major phases of establishing, implementing and verifying the
developments of this dissertation are presented. In Figure 1.10, a guide to the dissertation
and the three phases is given. Chapters 1 and 2 belong to Phase I - identification of the
motivation, needs and research opportunities. Chapters 3, 4, 5, and 6 belong to Phase II -

development and testing of the research hypotheses. Chapters 7 and 8 belong to Phase III -

41

further development and verification of the algorithm, along with a summary of the

achievements.

CHAPTER 1
Foundations and

Motivations
Phase I: Foundations and CHAPTER 2
Opportunites Literature Review
and Research
Opportunites
CH AP"I‘ER 3 Phase II: Development and
The overall Testing of the Hypotheses
algorithm and
research hypotheses
4
CHAPTER 4 CHAPTER 5 CHAPTER 6
Lexicon for Game Theory in Mixed
Multidisciplinary Design: Modeling Discrete/Continuous
Design Interactions Solution Scheme
CHAPTER 7
Exercising the
algorithm for a
passenger aircraft
Phase I1I: Further l
Development and
Achievements CHAPTER 8
Achievements and
Recommendations

Figure 1.10. Organization of this Dissertation

42

In Chapter 1, the foundations of the dissertation are laid. The motivation for the work in
the context of the design of complex systems is given. The principal goal and fundamental
questions are presented. The research hypotheses and strategy for verification are given

along with the contributions and scientific relevance of the dissertation.

In Chapter 2, a comprehensive literature review is presented. The review focuses on the
research areas established in Chapter 1 which are fundamental to the work, but also covers
related research areas in multidisciplinary design optimization and compiex systems design.

The needs and research opportunities are identified throughout the review.

In Chapter 3, the overall algorithm and its techniques are presented. The posits to support
the four hypotheses are presented. For each hypothesis, ramifications and verification
guidelines are presented including the approach of applying them in the algorithm. For
Hypothesis I, the nature of classifications in design, and the need for multi-levels and
domain and time independence is established. For Hypothesis II, design is abstracted as a
game, and the game theory protocols applicable to design are presented conceptually and
mathematically. For Hypothesis III, the characteristics of design space search in a discrete
domain are presented along with the foundation for a mixed discrete/continuous solver.
Hypothesis IV is disproven in this chapter using a formal proof from nonlinear

optimization theory.

In Chapter 4, the development and testing of Hypothesis I is undertaken. A previous
classification system is presented and then expanded to three levels using domain
independent terms and entities from the Decision Support Problem Technique and game
theory. Various examples are classified and mapped to the previous scheme to illustrate the

continuity of the approach to previous work.

43

In Chapter 5, the foundations of game theory in design (Hypothesis II) are established. A
design game is formally defined, and distinctions between discrete, continuous, and mixed
games are shown. The protocols introduced in Chapter 3 are expanded and developed in
the context of Decision-Based Design. A verification study using the design of a pressure

vessel is performed using the developments from the chapter.

In Chapter 6, the mixed discrete/continuous solution scheme is presented and verified
(Hypothesis III). The foraging heuristic is developed based on empirical observations of
animals foraging for food. Details of the continuous solver, the ALP Algorithm, is
presented. Integration of foraging and ALP to produce an effective solution scheme for
mixed discrete/continuous design problems is detailed and tested using two examples, the

design of a compression spring and a pressure vessel.

In Chapter 7, the motivating case study, the design of a subsonic passenger aircraft, is used
to further develop, understand, and verify the contributions of this dissertation. The work
in this chapter further verifies Hypotheses I-IIl. The aircraft study involves two distinct
disciplines, the aerodynamics and weights disciplines. Various games are conducted based
on different protocols between the players. The resulting designs are explored and
implications to modern design processes and products are presented. Although the
algorithm is illustrated only for a 2-discipline problem, it is developed with the capability to

handle design problems composed of n-disciplines.

In Chapter 8, the dissertation is summarized, a critical evaluation is presented and areas of

future work are identified.

In Figure 1.11, the running icon of this dissertation is shown. In this icon the roles and
relationships of the eight chapters in the development, verification, and implementation of
this dissertation are summarized. The similarities between Figure 1.10 and 1.11 are
apparent. The three phases of the verification strategy are shown as being phases of
construction of Figure 1.11. The chapters in Phase I provide the foundation and
motivations. The chapters of Phase II provide the construction and testing of the algorithm
and associated hypotheses. Sitting atop the algorithm and foundation is an aircraft, which
is the motivating case study of the dissertation, and the primary verification study in Phase

111

Phase lll: Exercising and
Verifying the Algorithm

Chapter 4

(Chapter 3 Chapter 5)—

Chapter 6 Phase |: Foundations and
Motivations
Phase lI: Testing the
Research Hypotheses Chapter 2
tlonslMotl Chapter 1

Figure 1.11. Running Icon

In Figure 1.12, the separate pieces, Figure 1.11 is dismantled and the individual pieces are

shown. Throughout the dissertation, the pieces of Figure 1.12 are combined one-by-one

45

and Figure 1.12 is eventually built at the end of Chapter 8. This construction acts as an

inventory of the progress and frame of reference of the dissertation.

Complex
System Design
Application

W Problems

System Level

Problem

Solved and
[Coordinated
: Subsystem Models

Disciplinary

Supporting Product and

Coupled Subsystem Level Process Framework

Problems

ARBET R KRB BT TS A G EE R
nawi&t!!&s«waavsmm‘ng 2% i

Literature Review

Foundations and Motivations

Figure 1.12. Individual Pieces of the Dissertation

The first piece of Figure 1.12, established in this chapter is the foundation blocks. These
blocks are constructed and arranged in Figure 1.13 to provide the foundation for the
remainder of the dissertation. In the following chapters, the remaining pieces will be

combined on top of the foundation and motivations.

Chapter 1
ons/Moti

Figure 1.13. Frame of Reference: Chapter 1

46

In Figure 1.14, the structure of the Appendices corresponding to the appropriate chapter are
shown. It is assumed throughout this dissertation that the protagonists are female in even-
numbered chapters and male in odd-numbered chapters. This is to avoid the continual use

of "his or her" and "he or she"” in place of epicene pronouns.

Appendix A CHAPTER §
) . Game Theory in

Computer implementations Design: Modeling
of the game theory protocols Interactions

Appendix B

_ CHAPTER 6
*Foraging code/DSIDES Mixed
updates Discrete/Continuous

*Detailed solution output of

X Solution Scheme
spring and pressure vessel

examples
Appendix C CHAPTER 7
Exercising the
Full results from each algorithm for a

protocol and scenario for

the aircraft study passenger aircraft

Figure 1.14. A Guide to the Appendices

47

CHAPTER 2

REALIZING MULTIDISCIPLINARY SYSTEMS - RELEVANT
LITERATURE

In this chapter, implementations of Tasks 1 and 2 identified in Section 1.3.2 are
discussed. For Task 1, the ideal aspects of an algorithm for the integrated design
(formulation, decomposition, solution, and coordination) of complex systems are
identified, in a broad sense, as problem and process formulation, embodiment of coupled
subsystems, and system synthesis. In Figure 2.1, these three aspects are shown to be the
primary stages of system realization, supporting the algorithm. In this chapter the
relevant work in these areas is reviewed, establishing the context and foundation of this
dissertation. Reviews in secondary areas such as approximation and multiobjective
design, supporting the primary areas as shown in Figure 2.1, are also presented. To help
provide context and completeness, related areas, namely, the human factor of design,
computational costs, robust/quality methods, and decomposition, are reviewed. The
corresponding sections for each subject are given in Figure 2.1. For Task 2, the research

needs and opportunities in the appropriate areas are identified, throughout this chapter.

48

Human Factor Robust/Quality

: Methods
Section 2.3.7 Aspects of an Algorithm Section 2.3.9
Computational for Integrated Design of
Costs Complex Systems Decompeosition
Section 2.3.8 Section 2.3.2
Problem and Process Coupled Subsystem System
—2 Classification Embodiment ——»] Synthesis [—»
Section 2.3.1 Section 2.3.3 Section 2.3.5
Approximation Multiobjectives
ection 2.3.4 Section 2.3.6

Figure 2.1. Aspects of Algorithm: An Overview of Chapter 2
As defined in Section 1.4.2, the work of this dissertation, in a specific sense, belongs to

the field of Multidisciplinary Design Optimization (MDO). The literature review

presented in this chapter is discussed from an MDO perspective.

49

21 CHANGE OF PERSPECTIVE IN MULTIDISCIPLINARY DESIGN
OPTIMIZATION (MDO)

In the past several years, there has been a shift in the interest and application of the MDO
community from mainly aerospace applications, which stemmed from MDO's origins in
the field of structures, to fields including mechanical, civil, and electrical engineering,
operations research, and materials science. In each of these fields, there are indeed
multidisciplinary research issues in the design, development, production, and support of
complex systems. Recently, the multidisciplinary research and development in each field
are merging into fundamental approaches to complex system design problems. Also,
with the advent of systems thinking and doing "more with less," issues usually reserved
for the later stages of a design process are brought forward into the initial stages, MDO
technology and research is moving from the detailed analysis design stages to the
conceptual stages where multidisciplinary system tradeoffs can be rapidly explored
effectively and efficiently. This shift parallels a similar shift from traditional calculus
based optimization algorithms, where precise mathematical models and couplings are
known, to more imprecise techniques where laws of uncertainty guide mathematical
models and their interactions. The former certainly has its place in the later stages of
design, but in the early stages, the information about a multidisciplinary, complex system
may not be fully known and many times is unstructured. This gives rise to the
requirement of imprecise techniques for decomposing, analyzing and synthesizing a
system model. Thus, the study of complex systems moves into a new age of research and
technology, one characterized by both precise and imprecise models, and exact

mathematics and fuzzy heuristics.

50

It is within this "new age" of research and technology that this chapter is motivated. In
this chapter, both primary and secondary literature backgrounds are presented. In the
primary backgrounds, the foundation for the main research focuses of this work are
given. The primary background addresses the issues of problem and process formulation,
embodiment of coupled subsystems, and system synthesis. These correspond to the three
hypotheses introduced in Section 1.3.2 and are labeled as PRIMARY areas in Table 2.1.
In the secondary backgrounds, the foundation for the supporting issues of this work is
given in the context of multidisciplinary design optimization of complex systems. These
are labeled as SUPPORTING areas in Table 2.1. Also reviewed are related areas in
MDO that provide added support and completeness to this work. These are labeled as

RELATED areas in Table 2.1.

Table 2.1. Various Areas of Literature Background

PRIMARY: Primary research focuses of this work
* Mixed Discrete/Continuous Optimization (Heuristics)
* Strategic Interactions
* Problem and Process Classification

SUPPORTING: Secondary focuses of this work
* Approximation
+ Multiple objectives

RELATED: Not explicitly addressed in this work, but help define the context and
arena of application.
e The Human Factor
* Decomposition
* Quality Design Methods
+__Information Storage and Transfer

51

In Figure 2.2, the specific concepts covered in this chapter under the umbrella of MDO
are shown. In Section 2.2, the trends in MDO are identified by evaluating the distinct
areas of research in MDO, namely its three linguistic components, multidisciplinary,
design, and optimization. In Section 2.3, the research and application issues under the
umbrellas of each research area are surveyed and summarized. As shown in Figure 2.2,
these issues overlap beneath the research areas, as they are motivated by questions from
more than one area. This is part of the difficulty researchers in MDO face, as the
integration of various fields and disciplines poses complex problems. In Figure 2.2, the
three primary areas of focus, interactions (under multidisciplinary and design), heuristics
(under design and optimization), and classification (under all three), are highlighted. The
supporting areas of review in this chapter are given beneath the primary areas in Figure
2.2. The work presented here includes government, industry and academic contributions

to this emerging area of research and practical application.

Q Interactions O Heuristics
[Decomposition 0O Multiobjectives
0 Approximation O Human Factor

O Classification
0 Information Storage
[Robust/Quality Principles

Figure 2.2. Roadmap to Chapter

52

2.2 MDO: AN INTERNAL DECOMPOSITION

System decomposition is a valuable and many times necessary approach in solving
complex systems. The method used to decompose a system, however, is another issue,
addressed in Section 2.3.2. Capitalizing on the advantages of decomposition, the field of
MDO is investigated in this chapter by applying a linguistic decomposition approach to
the term "MDOQO". This stems from the simple approach used to determine the meaning of
"complicated" compound words such as schoolbus, where combining the meanings of the

root words "school" and "bus" result in the connotation of the compound word.

Decomposing "MDO", the root words "multidisciplinary”, "design", and "optimization"
are discovered. Each area calls on certain capabilities from the others to perform its
required duties. These calls and demands among the areas are illustrated in Figure 2.3.

Each of these terms and the demands each makes on MDO as a whole is investigated in

this section.

Classification
Information Stirage/\m‘fwst/auamy Principles
Multidisciplinary Optimization

Interactions Multiobjectives
Decomposition Human-centered
Approximation Heuristics

Figure 2.3. Couplings of M, D, and O

53

Multidisciplinary

The term "multidisciplinary” plays an important role in the complexity of system
problems. Individual disciplines have developed mature methods to analyze disciplinary
problems. However, when two or more disciplines and their analyses are combined, such
as Computational Fluid Dynamics (CFD) in aerodynamics and Finite Element
Methodology (FEM) in structures, the problem becomes well beyond what even the most
powerful computer of next year can handle. Therefore, some sort of decomposition
method is necessary for most multidisciplinary problems to establish less complex,
disciplinary-level problems. Many decomposed problems are still too complex to
effectively analyze because of the size of the analysis routines. Consequently, a form of
approximation may be necessary to replace the exact analysis. It has been shown that the
fidelity of an approximate model can decrease and still maintain acceptable analysis
accuracy (Chen, 1995a, Malone and Mason, 1991). But, how approximate can a model
be and still maintain accuracy, is another research issue in complex systems design.
Approximation can take many forms, from using approximate models within a discipline
to using approximations to represent the effect of one discipline upon another. However,
the key notion here is that each discipline plays an important role in the function of the

entire system.

In a given discipline, there may exist system variables which are continuous, integer,
discrete, or Boolean. Examples of these are wing span, number of engines, gear
diameter, or control variables, respectively. Integer, discrete, and Boolean variables will
be referred to as discrete variables in the remainder of this dissertation. There are well
established methods for solving either purely continuous problems, or purely discrete
problems. Continuous methods are largely calculus based, while discrete methods range

from integer programming methods to heuristic search methods. Yet, it is the

54

development of robust methods to support the decision making of designers in problems
with mixed continuous/discrete variables that the presence of multiple disciplines

demands.

Design

The term "design” mandates the investigation of other issues, including multiobjective
system formulations. Practical systems are not single objective in nature. In vessel
design, minimizing resistance is similar to minimizing weight in aerospace design, but
there are many other design objectives a designer may want to consider. A naval
designer may want to minimize the vessel powering and keep seakeeping at acceptable
levels for various seastates. Complex systems are frequently multiobjective, but these
objectives may have different priorities, according to system requirements and designers'

preferences.

Process and human designer issues are also brought in with the term “"design”. In
Decision-Based Design, design is accomplished using the abilities of a designer and the
capabilities of a computer. The principal role of the designer, and not the computer, is to
make the design decisions. Design, in addition, consists of a series of decisions made by
a designer or design team along a timeline. Designers and design teams repeatedly use
their decision-making ability together with the computer's decision support capability to
make decisions regarding various system and subsystem tradeoffs. Hence, the notion of a
designer interface and human-centered design is inherent in any design process. The
sense of time, past and present, in a process requires some way of storing and retrieving
information to expedite future decisions. Hence, some type of database that links the
information from all disciplines for efficient retrieval throughout a design process is

necessary.

35

Optimization

The term "optimization" acts as a dependent and independent-variable in MDO.
Regardless of decomposition, there is a need for the determination of system variables
based on system constraints, variable bounds, and with respect to system objectives. This
is the independent nature of the term "optimization". Independent of the modeling
approach taken or domain of application, optimization techniques are required to solve

decision models and support the decision making abilities of a designer.

The link between "optimization" and MDO is where "optimization" plays a dependent
role. Previously, researchers in MDO established optimization techniques depending on
the problem formulation. Moreover, "optimization" has even sometimes assumed the
role of a synthesizer, where a number of subsystems are optimized or coordinated into a
system level "optimum"”. However, this process became inefficient as the needs of MDO
began to require more than what "optimization" had bargained for. Consequently,
"optimization” has now become an integral part of the decision support of MDO, as
researchers have embraced the issues inherent in multidisciplinary design optimization.
"Optimization” now acts as the bearer of good or bad news for the issues and
requirements from the "multidisciplinary” and "design" areas. These two areas demand
optimization techniques for multiobjectives, mixed continuous/integer systems, desigrer
interfaces, robust global solutions, and post-solution analysis, among others. Researchers
have addressed one or more of these various issues, but there does not presently exist a
single algorithm to encompass all the needs of MDO in a decision-based environment.
This may be a problem too great to handle at present, but certainly is a research issue.
There has been extensive work in single objective optimization, but since the term
"multidisciplinary” implies multiple objectives, issues in multiple objective modeling,

solution, and decision support are the focus of this dissertation.

56

In this section, the innate issues in MDO are examined by simple decomposition and
analysis among the components. The harmonious coordination of these issues is the
basic task in MDO. Issues in all three areas are addressed in this dissertation,
multidisciplines, design, and optimization. In the next section, the developments and
fundamentals of each issue are investigated, including the specific research opportunities

that constitute the basis of this dissertation.

2.3 ISSUES IN MDO

Researchers, when addressing the areas of research in Section 2.2, must keep the inherent
issues of MDO in mind. Some researchers in MDO have addressed some of these issues
by themselves, while others have looked at a combination of a few. Any development in
MDO must keep these issues in mind, as it will add to the integrity, broaden the

acceptance, and establish the value of MDO.

2.3.1 Lexicon Development

With several individual research directions, a framework for research and application is
needed. In most pure science fields, such as chemistry and biology, there is a standard
framework and lexicon which are used now and forever. In order for MDO to continue to
evolve and establish itself as a distinct field, a framework, including a common lexicon
for researchers and industries, is necessary for synergistic communication. This
framework must be applicable to the entire MDO process from concept generation to
detail design. The most promising attempts at these have come in two forms. First, in

(Balling and Sobieski, 1994, Cramer, et al., 1994), lexicons and classifications of

57

approaches to MDO problem formulation and solution are presented (see Section 4.1.1).
These types of classification give the field a form of common communication upon which
to base future developments and research. If a common lexicon were established, the
various work in academia, industry, and government could be easily classified and

compared.

Second, in the Framework for InterDisciplinary Optimization (FIDO) program
(Townsend, et al., 1994), a computer framework for MDO is being generated. This type
of framework has been shown to be an excellent interface for multidisciplinary design
issues among distanced design teams throughout a design process. It is uncertain where
the present research in MDO could fit into computer frameworks of this type. Computer
frameworks may become simply the housing for MDO research, where developments are
integrated into the "guts" of the framework at the system or discipline level. This would
allow for future developments, and would permit a design team to design and analyze a
system without having to know about the inner workings of the algorithms, schemes, and
routines. Also, unclear is how the evolution of the design process from concept design to

detailed component design would be accommodated in a computer framework.

Research Opportunities

The primary research opportunity in this area is to further develop these lexicons,
establishing common baseline linguistics. The baseline used is the notion of a decision
and its supporting entities in the Decision Support Problem Technique (Mistree, et al.,
1993a, Mistree, et al., 1988, Mistree, et al., 1990b) and Game Theory (Von Neumann and
Morgenstern, 1944). The domain-independence and time-independence of such a lexicon

are paramount to ensure effective application across disciplines and over an entire,

58

evolving design process. This is a primary thrust of this work and the focus of

Hypothesis I (Sections 1.3.1 and 3.2) and Chapter 4.

2.3.2 Decomposition: Friend or Foe?

The decomposition or partitioning of large systems has long been viewed as being
beneficial to the efficient solution of the system. Although breaking a system up into
smaller, less complex subsystems may allow for the effective solution at the subsystem
level, decomposition makes the system design problem more complicated by requiring
the coordination of subsystem solutions into a harmonious system solution. A mirror can
be broken apart, the pieces reassembled, and in no way function as a mirror again. This
problem in analyzing and synthesizing various subsystems poses a difficult problem in
MDO. So why not simply analyze systems at one level, the system level? This creates
analysis problems, as complex system models may become too large to handle. When do
systems become too large for single-level analysis and require decomposition and
multilevel analysis? The answer may lie in the amount and quality of information in a
system model at any point in a design process. Both single-level and multilevel
approaches are being developed as fundamental approaches to a MDO problem. General
decomposition approaches have been developed for generic problems which include
information overlap among various tasks, events, or disciplines by Rogers (Rogers, 1989)
and Kusiak (Kusiak and Larson, 1995, Kusiak and Wang, 1993). A general
decomposition procedure based on the hypergraph representation of known mathematical
analysis models is presented in (Michelena, et al., 1995). More specific decomposition

and coordination approaches for MDO problems are explored below.

Decomposition schemes initially were hierarchical in nature. An excellent review of

hierarchical decomposition is presented in Renaud (Renaud, 1992). On the other hand,

59

many systems lend themselves to nonhierarchical decompositions instead of hierarchical
ones. The development of nonhierarchical decomposition schemes is relatively new
compared to hierarchical ones. A review of the early work in nonhierarchical
decomposition is also presented in Renaud (Renaud, 1992). Implementations of
decomposing larger, more complex problems into smaller, temporarily decoupled
disciplinary problems have been studied (Beltracchi, 1990, Korngold, et al., 1992, Olds,
1992, Rohl and Schrage, 1992). Various decomposition and coordination strategies have
been developed and implemented based on the Global Sensitivity Equation (GSE)
(Sobieszczanski-Sobieski, 1988) approach to couple the nonhierarchical subsystems
(Balling and Sobieski, 1994, Bloebaum, et al., 1992, Ford and Bloebaum, 1993, Renaud
and Gabriele, 1991, Renaud and Gabriele, 1993, Renaud, et al., 1994). In Bloebaum
(Bloebaum and Chi, 1994) the GSE method is extended into handling discrete and
continuous variables by decomposing the system according to variable type, resulting in
discrete subsystems and continuous subsystems. In (Bloebaum and Chi, 1994), neural
networks are included to avoid the expense of continuous re-analysis within the discrete
subspace. Typically in MDO, identifiable subsystems exist with both discrete and
continuous variables, but this work is a step in this direction. As pointed out, cumulative
constraints are difficult to use with discrete variables, adding to the complexity of

handling discrete variables.

In related work on the decomposition and resolution of nonhierarchical system models, in
Renaud (Renaud and Gabriele, 1991), a first order approximation using the GSE method
for system approximation is used. In Renaud (Renaud and Gabriele, 1993, Renaud and
Gabriele, 1994) a second order approximation, using second order GSE's, is used to
improve the accuracy of cumulative constraint approximation and improve solution

convergence. In (Renaud, 1993) the algorithm is further extended to include non-disjoint

60

decomposition of design variables that allows greater latitude in design subspace
optimizations. In (Renaud, et al., 1994), the algorithm is extended to handle mixed
discrete/continuous problems. The solution scheme uses neural network to model the
design space and a successive simulated annealing algorithm for solution. The case study
contains five discrete and one continuous variable. The simulated annealing algorithm
includes successive discretizing of the continuous domain until a solution is reached.
With more than one continuous variable, this algorithm may not be computationally
practical. In addition, "sufficiently” accurate training of the neural network seems to be

problem dependent and difficult to quantify.

In Balling (Balling and Sobieski, 1994), an approach to the nonhierarchic decomposition
problem is developed whose coordination procedure focuses on the minimization of the
norm of the coupling constraint and design constraint violation (called a discrepancy
function). A solution scheme that incorporates a cutting-plane algorithm and a move-
limit strategy is used to solve the complex discrepancy function. Application of the

algorithm to truly multidisciplinary systems is yet to be demonstrated.

In Kroo (Kroo, et al., 1994), compatibility constraints are used at the system and
subsystem levels to account for the coupling between levels. At the system level a single
objective is used (aircraft range in the case study) and the system constraints ensure that
the coupling among the subsystems is maintained. At the subsystem level, the
discrepancy between the system variables and their target values is minimized. System
variables may overlap among subsystems, creating the coupling among subsystems.
Various discrepancy functions are investigated, similar to the investigation of discrepancy

function norm formulations in Balling (Balling and Sobieski, 1994). Application to

61

mixed discrete/continuous systems and handling of multiobjectives is not explicitly

addressed.

The decomposition approaches in this section have focused on two primary areas:

* hierarchical modeling where bilevel models are present

* nonhierarchical modeling where some form of cooperation is modeled

mathematically

Realistically, these models are not always applicable. First, because of informational or
geographical barriers, a model that incorporates noncooperative notions may simulate
actual processes better. Second, it is common for certain disciplines to lead or dominate a
design process and for others to follow their lead of decision-making (Hazelrigg, 1996).
This type of process would demand a model that incorporates sequential relationships
among decision makers. The leader/follower formulation is a special case of a bilevel

model. In the next section, strategic interactions are addressed.

2.3.3 Strategic Interactions

The design of multidisciplinary systems requires a series of decisions which are made by
multiple decision makers, design teams, or organizations. Implementation of Concurrent
Engineering principles have made certain strides to facilitating this integrated decision
making process at a personal interaction level. However, at the analysis and synthesis
levels, a seamless computer infrastructure among the disciplinary software is rare. That
is, cooperation at the analysis and synthesis levels does not occur even though the
majority of the research in this area has assumed cooperation (see Section 2.3.2). When
cooperation is not present, game theory principles of noncooperation and multilevel
processes can be beneficial to the modeling of the system and process. In (Rao, et al.,

1996, Rao and Mistree, 1995), different game theory formulations are exercised for

62

simple engineering examples using two simulated designers. The formulations studied
are the cooperative (communication exists), noncooperative (no communication exists),
leader/follower (one player dominates), and conservative (players assure a minimum
gain) protocols. Each designer wants to meet their own objective, but even in the simple
examples used in (Rao, et al., 1996, Rao and Mistree, 1995), these objectives are in
conflict with each other. Therefore, depending upon the protocol exercised between the
players, significantly different solutions are found. Rich insights are gained into the
relationships between the players and the process by which the design is performed. The
mathematical foundation for the cooperative, noncooperative, and leader/follower models

are given in Section 3.3.3.

Research Opportunities

The design of multidisciplinary systems requires a series of decisions that are made by
multiple decision makers, design teams, or organizations. Concurrent Engineering
principles have made certain strides to facilitating this integrated decision making process
at a personal interaction level. In this dissertation, game theory is being used to make
similar strides, but at the level of the interactions of mathematical models, analysis
packages, and/or synthesis and optimization routines. The use of game theory to model
multidisciplinary design processes where cooperation may or may not exist among
decision makers in engineering design is of relatively recent origin (Hazelrigg, 1996,
Rao, et al., 1996, Rao and Mistree, 1995); its usefulness in many other decision-making
sectors such as economics, politics, and strategic warfare is well-established (Axelrod,
1984, Owen, 1995). Game theory was explicitly proposed as a design tool originally in
(Vincent, 1983). But the notion of game theory in engineering design and optimization
has since been limited (Badhrinath and Rao, 1995, Dhingra and Rao, 1995, Hazelrigg,
1996, Pakala and Rao, 1996, Rao and Chidambaram, 1993, Rao, 1987, Rao and Freiheit,

63

1991). In these studies, small, simplified problems are used to illustrate the concepts. As
a result, there are rich research and implementation opportunities in developing and
applying game theoretic principles to complex problems encountered in MDO. Modeling
the strategic interactions in MDO as a game is a novel pursuit, and one of the primary
contributions of this work. The work of this dissertation in this area support Hypothesis
II introduced in Section 1.3.2 and discussed in Section 3.3 and Chapter 5. The
development and application of game-theoretic principles to complex systems design are
presented in Sections 5.5, Sections 5.6, and 7.4. This is one of the main contributions of

this dissertation.

By using system level analysis many issues involved in decomposition strategies can be
avoided and Pareto solutions can be found, but system analyses may be too complex to
handle computationally. One issue brought on by decomposition strategies is
approximation on many levels, from the approximation at the system level to
approximation of nonlocal information at the subsystem level. In the next section, the

use of approximation in MDO is presented.

2.3.4 Approximation

In a perfect world, approximation would not be needed, as the actual analysis routines
across a multidisciplinary system could be used without concern for the computational
cost or time constraints. However, until computers become "perfect"”, approximation is

necessary at some level in a MDO process. This approximation may take many forms.

The first and most developed area is the approximation of the derivatives, both global and
local, of the state variables of the system with respect to other state variables, fixed

parameters, and design variables. Optimization routines have been used approximate

64

derivatives to determine search directions and magnitudes for decades. Ideally, for an nth
order equation, nth order derivatives could be calculated and used in the optimization of
the system. Designers however must make a tradeoff between accuracy and efficiency.
Much of the derivative approximation work has concentrated on developing schemes to
efficiently approximate first order derivatives of a system. A system, however, may
consists of many subsystems, each with their own derivatives. In Barthelemy
(Barthelemy and Sobieszczanski-Sobieski, 1983), the derivatives of the optimal objective
with respect to fixed parameters are calculated directly from the Lagrange multipliers and
disciplinary sensitivities. As a method of calculating the global derivatives with respect
to the design variables using the local derivatives of the subsystems, the Global
Sensitivity Equation (GSE) was proposed in Sobieszczanski-Sobieski (Sobieszczanski-
Sobieski, 1988). The GSE method allows for the local derivatives to be calculated using
any method. Various studies have been conducted concerning the accuracy of using GSE
approximate first-order system derivatives including (Bloebaum, et al., 1992, Korngold,
et al., 1992). Further investigations have explored the accuracy vs. efficiency tradeoff by
using second-order derivatives in the GSE method (Renaud and Gabriele, 1993, Renaud
and Gabriele, 1994). It is an open issue as to when a designer can, with confidence, use
the nth-order derivatives and still maintain acceptable efficiency. This may be a function
of computer capabilities, but the answer may lie in deeper explanations, such as
information theory, which asks 'when is the amount of information enough to make

appropriate decision along a design timeline?'

Derivative approximations may become obsolete with the emergence of Automatic
Differentiation in FORTRAN (ADIFOR) (Bischof, et al., 1992). In ADIFOR the exact
derivatives of a FORTRAN code are calculated analytically by using the numerical

entities at a given design point, and employing the chain rule to find total local and global

65

derivatives. Having the exact derivatives with acceptable efficiency is a major step in
numerical analysis and approximation, and may pave the way for further major

‘developments.

The next area of research in approximation is approximation of the design space, locally,
nonlocally and globally. From a global or systems perspective, less detailed analytical
models have effectively been used to approximate the behavior of an aircraft system
(Chen, 1995a, Chen, 1996, Malone and Mason, 1991). The use of low fidelity models is
useful in the early stages of design, but it may sacrifice accuracy in more detailed design
stages. High fidelity approximation models have effectively been used in more detailed
design, but are more computationally expensive. Livne and coworkers (Livne, et al.,
1993) accomplished comprehensive wing optimization including structural, aerodynamic,
and active control requirements using realistic approximations along with nonlinear
programming techniques. So the question becomes, when does a designer "switch” or
evolve from less detailed models to more realistic or very detailed models? Or when can

approximate models be used in place of full analytical models?

Typically in multidisciplinary systems, the behavior is quite nonlinear and difficult to
simulate directly because of the complexity of the local behavior equations. Therefore,
methods to approximate the behavior or design space are needed, but again must meet the
same accuracy vs. efficiency tradeoffs. In (Chen, 1995a, Engelund, et al., 1993, Unal, et
al., 1994) , response surface methodology is shown to be both effective and efficient in
design space approximation. Response surface methodology fits a surface to a given set
of design points according to a prescribed surface fit equation. To account for nonlinear
effects, the fit equation must be at least of order two. In Figure 2.4, a second order

response surface and its corresponding equation are shown. Response surfaces allow for

66

rapid approximation of a design space based on simulated designs at certain settings of

the design variables.

y=PBp+ ZBIX + ZBH 24 Zﬁu

Figure 2.4. Second Order Response Surface (Box and Draper, 1978)

Another common approximation method is Neural Nets (NN) which "learn" about the
behavior of the system from training data. NN's have been shown to produce effective
approximations of the design space (Batill and Swift, 1993). Yet, with any method, poor
fidelity may lead to poor approximation. Using the above methods, a surface fit equation
of too low an order, or not enough training data may easily lead to erroneous and
unacceptable results. On the other hand, with higher order fits and more training data
comes more computation time. The balance of these issues has long been resolved
through trial-and-error and has been problem dependent. Therefore the development of
rigorous approximation strategies based on higher level concepts such as information or

even deterministic heuristics that are domain independent would be invaluable.

The issues in approximating local design spaces also hold true for approximating
nonlocal design spaces in hierarchical or nonhierarchical design optimization. Designers

of one subsystem must account for the effects upon other subsystems. Therefore, the

67

ability for a given subsystem to "see” what how it is affecting and being affected by other
subsystems is vital. However, seeing the effects on actual behavior is not realistic.
Subsystems only can see effects on approximate behaviors. Various strategies have been
implemented to approximate nonlocal states (Balling and Sobieski, 1994, Diaz, Renaud
and Gabriele, 1991). Inherent in these approaches is accommodating the approximate
coupling between subsystems via objective functions, constraints, or additional design

variables.

Many times the level of approximation that is needed or effective is based on heuristic
insight or rules. Heuristics play a large role in the design of complex systems from a
human decision-making standpoint to a computer-based Al standpoint. There is a need
for some sort of heuristics to account for the inevitable uncertainty in any given design
process. Heuristics many times take the form of solution algorithm "facelifts" where
certain ad-hoc rules, based on the designer's experience or naturally occurring phenomena
help solution algorithms become more effective or efficient. In the next section the

spectrum of heuristics in MDO is presented.

2.3.5 Heuristics: From Designer to Computer

Heuristics, or rules based on intuition, experience, or natural phenomena, have been used
from a designer's point of view in various stages of a design process to "smooth" over
rough spots where insufficient or unstructured information is present. In Bloebaum
(Bloebaum, 1991), heuristic rules are employed to allocate variables to subsystems,
determine the most appropriate move limits, and assign coordination coefficients during
system synthesis. In (Kamal, et al., 1992, Peplinski, et al., 1996a, Peplinski, et al.,
1996b), heuristic Decision Support Problems are formulated based on sets of evaluation

criteria and rules. These evaluation criteria are based on uncertain information in the

68

concepts. The best concept is selected based on multiple measures of merit. These rules
are based on designers' experience with the design of complex systems and are used when
the mathematical information to make these decisions is not fully defined or, in other
words, uncertain. These types of heuristics are shown originating from the human in

Figure 2.5.

Decision Rules/Trees Tabu Search
Simplification , 4
Assumptions m.proved Hit-and-Run

Simulated Annealing

o

o

Figure 2.5. Heuristics Across the Design Spectrum:
From Human to Computer

Heuristics are also being incorporated from the other end of the human-computer
interface, the computer, primarily to aid in the solution of discrete and mixed models.
These types of heuristics are inherent parts of the computer in Figure 2.5. In Figure 2.5,
the synergy between the human and the computer, and the heuristics employed by each is
illustrated. This synergy is also found in Decision-Based Design, a design paradigm that

provides the foundation for this dissertation (see Section 1.2.1).
Glover (Glover, 1986) postulates that integer programming methods and artificial

intelligence based methods, both stemming from a common origin, are now reuniting and

creating a new class of algorithms capable of solving a large class of problems. In MDO,

69

integer programming or calculus based methods have been used as the optimization
techniques to solve design problems. But, multidisciplinary problems inherently consist
of both discrete and continuous variables which require other solution methods than
calculus based ones. Unlike its continuous counterpart, optimality criteria such as the
Karush-Kuhn-Tucker conditions for discrete problems do not exist. Recently, researchers
are using a class of algorithms, which Glover calls "artificial intelligence" (Glover, 1986),
to solve problems such as mixed discrete/continuous design problems. These artificial
intelligence methods are based on various heuristic based searches or pattern moves. A

brief review of the most recent advancements with these algorithms follows.

In Renaud (Renaud, et al., 1994), the simulated annealing (SA) algorithm, which is based
on the heating and cooling schedule in an annealing process, is used to solve mixed
discrete/continuous problems. This algorithm involved sequential discretizing of the
continuous domain and then solving the problem using the SA algorithm. They refer to
the algorithm as successive simulated annealing (SSA) as the continuous variables are
successively discretized, using a finer and finer mesh as a design process progresses. The
algorithm was tested with a system with five discrete and one continuous variable with
good results. However, the computational expense of discretizing more continuous
variables explodes quickly. Therefore, a better method of approximating the continuous
domains or using fewer intervals may be improvements to the algorithm. In Sellar
(Sellar, et al., 1994) neural networks are used to simulate the continuous and discrete
design space. The benefits of neural networks in domain specific applications are
evident, but across domains, neural networks must continuously be re-trained according
to the problem specific information. For problems that may not change much over long
periods of time, neural networks are beneficial, but for systems that are continuously

undergoing improvements and changes, neural networks are limited.

70

In Zhang (Zhang and Wang, 1993) a SA algorithm is developed which modifies the step
sizes and neighborhood move strategy based on 1) discrete or continuous variables and 2)
optimization process stage. Step sizes are set by the designer based on variable types.
Combined moves, where two or more variables can change, are used in the early stages of
the process to traverse open spaces quickly, while orthogonal moves, where only one
variable changes, are utilized in the later stages of the process. The drawbacks to this
approach are the computational expense of the algorithm, the definition of the penalty
function in constraint handling, and the sensitivity of the algorithm to cooling schedule
parameters which vary wiih application. Future work included seeking modifications to

reduce the computational expense.

In 1982, Glover introduced the tabu search, a heuristic algorithm based on hiding certain
moves to prevent cycling and then searching in a given neighborhood for improving
designs (Glover, 1989a). The term "tabu" implies that certain moves are not allowed for
a certain time frame according to current visit status. In Bland (Bland and Dawson,
1989a, Bland and Dawson, 1989b), the tabu search has been shown to be an effective
method to solve discrete problems such as ordering or placement problems. In Ford
(Ford and Bloebaum, 1993), the tabu search is used as the discrete solver in the discrete
subspace optimizations. One caveat of the tabu search is that it is an unassuming
algorithm; that is, it does not know when an optimum or satisfactory solution has been
reached. It will continue to search until a maximum iteration is reached. Certainly in a
MDO environment where computational efficiency is paramount, stopping criteria must
be adequately defined for a given problem. Applications to mixed discrete/continuous

problems have not been developed.

71

Zabinsky (Zabinsky, et al., 1993) has developed Improved-Hit-and-Run, a random search
algorithm that at each iteration generates a candidate point for improvement that is
uniformly distributed along a randomly chosen direction within the feasible region. This
algorithm combines pure adaptive search, which produces an improving point with each
iteration, with Hit-and-Run methods, which generate a sequence of random points by
providing a random direction and then providing a uniform random point in that
direction. The algorithm, largely based on notions in operations research, has been
effectively used in composite laminate design (Zabinsky, et al., 1992). It has been
demonstrated to be effective in problems with only continuous or only discrete variables,
but has the capability to handle both. Its effectiveness in an MDO environment is

unknown, but seems promising based on previous results.

Genetic algorithms, which are based on the natural processes of evolution, mutation, and
selection based on fitness levels, have shown promise in scheduling and optimization
problems in MDO. In Hajela (Hajela and Shih, 1989), genetic algorithms are shown to
be an alternative to solving nonconvex optimization problems and in Hajela (Hajela,
1995), genetic algorithms are used in the multidisciplinary design of rotor blades. In
McCulley (McCulley and Bloebaum, 1994) genetic algorithms (GA) are used to order the
tasks in a multidisciplinary design process. Limited success was found for design
problems made up of relatively few tasks. With a large number of tasks or a very large
multidisciplinary design problem, the computational expense of GA's is often too high.
Other work is being conducted to reduce intelligently the number of evaluations in

genetic algorithms without sacrificing solution effectiveness.

Other attempts to solve mixed discrete/continuous problems without the use of heuristic

algorithms have had limited success. Cutting plane algorithms in general require a large

72

number of cuts to produce an integer solution. Branch and bound techniques in
nonconvex problems may fathom nodes that are not feasible and also require a large
number of function evaluations. In Loh and Papalambros (Loh and Papalambros, 1991),
a sequential linearization technique is used. This technique begins by assuming all
variables continuous and solving using a continuous solver. Then the solution is rounded
to the nearest integer solution and the objective function and constraints are linearized
about that point. The problem is then solved using an LP solver and the linearization and
LP solution process is repeated until no change in the solution is apparent. Convergence
to the global optimum is only guaranteed if the objective is pseudoconvex and the
constraints are linear or convex. The authors talk about constraint forms and suggestions
to obtain better forms of the constraints for the optimization. Many times in engineering,
objective functions and constraints are non-convex. A technique is needed to handle

these types of functions.

In Fu (Fu, et al., 1991), a strict penalty function is used to enforce integer values. The
continuous problem is solved first, then the penalty function is used to further constrain
the integer variables. Different starting vectors are used to ensure the robustness of a
solution. An appropriate penalty function may be problem dependent and difficult to
identify. Also, the algorithm showed great sensitivity to starting vectors and initial input

factors.

These types of algorithms, whether calculus based or heuristic in nature, and the
advantages and disadvantages of each are presented as being parallel developments that
MDO researchers can utilize. Algorithms to solve mixed discrete/continuous problems
are necessary in MDO whether it be at the subsystem level or at the system level.

Systems invariably consist of discrete and continuous variables and the development of

73

robust algorithms to handle the pitfalls involved in continuous, discrete, and non-convex

optimization are necessary to the practical evolution of MDO.

Research Opportunities

The ALP Algorithm (see Section 1.2.2) has been used extensively in design problems that
consist of continuous or Boolean variables. It is been shown to solve a wide class of
problems with great success. The primary opportunity is to expand the ALP Algorithm to
handle discrete and integer variables by developing a heuristic search engine for the ALP.
This is one of the primary contributions of this work, supporting Hypothesis III in

Sections 1.3.2 and 3.4 and Chapter 6.

A fundamental notion in design, many times overlooked, is the presence of multiple
objectives in a design problem. Developing the mathematical capabilities to handle
multiple objectives to study tradeoff scenarios in complex systems design is necessary to
facilitate satisfying the various customer requirements in an effective manner. In the next

section, methods to model and handle multiobjectives in design are presented.

2.3.6 Multiobjectives

Multiobjective algorithms and approaches have largely been developed outside the
aerospace field, but are now becoming more accepted based on their successful
application in fields such as marine design and structures. Many multiple objective or
attribute approaches have been developed for application in MDO. A general approach,
proposed in Sen (Sen and Yang, 1993) calls for the analysis of design concepts based on
multiple criteria (attributes or objectives) without clarifying distinct disciplinary
boundaries. Attributes are used to make a selection from a set of choices, and objectives

are used in the synthesis of a concept. In Sen's approach, both objective and subjective

74

factors can be used in a design process. Sen uses an analytical hierarchy process (Saaty,

1980) to combine the different criteria from different levels.

In order to analyze a system based on multiobjectives, a solution scheme must be based
on a ranking of these objectives. If precise weightings are known (the preference of one
objective over another is precisely known), a single objective formulation can be
constructed based on relative weights. However, if a designer only knows the
preferences (and not by how much one is preferred over another) a priority ranking
scheme must be used. In Messac (Messac and Hattis, 1995), "physical programming" is
used to capture a designer's preferences in a mathematically consistent manner in order to
avoid needless iterations to determine the objective weightings. In Hajela (Hajela, 1990),
a branch and bound algorithm is used to incorporate integer and discrete design variables
in multiobjective problems. In Matsumoto (Matsumoto, et al., 1993), a fuzzy logic
scheme where objectives are ranked as being either "soft" or "hard" is used. Then, once
the system is solved using the "hard" objectives, the "soft" objectives are used. If no
improvement can be gained from the design based on the "hard" objectives, then a
designer may sacrifice some of the "hard” objective in order to improve the "soft"
objective. For instance, in Figure 2.6, there are three objectives, one hard and two soft.
Based on the designer's objective targets, the shaded region ABC is the area satisfying all
three priorities. Within this region, a designer's preferences and allowable deviations can
be explored. At the design point x!, the hard objective F is fully satisfied, but F; and F3
are sub-optimal. If a designer makes a decision to allow some deviation, F; + A2 and
make F3 more important than F», the design point x2 could be reached where F; is fully
satisfied. Likewise, a decision to allow F; + Al and make F; more important than F3, the

design point x3 could be reached.

75

‘ Soft Objective F 3(x)

Design Variable x,

Hard Objective Fy(x)) Soft Objective F(x)

Design Variable x4

Figure 2.6. Concept of Priority Ranking Strategy

The authors also present objective categories for which the labels "soft" and "hard” apply.
For instance, those objectives concerned with the protection of the environment should be
"hard” while those concerned with comfort should be "soft". This approach is very

similar to the fuzzy priority scheme implemented in (Zhou, 1988).

In (Lewis, et al., 1994), multiobjective designs are analyzed based on the lexicographic

minimum concept. This concept is defined as follows (Ignizio, 1985a).

LEXICOGRAPHIC MINIMUM Given an ordered array f = (1}, f2, ... , fn) Of

nonnegative elements fi's, the solution given by f(1) is preferred to f(2) iff

£ (D < £,2)

and fi(D) = ;@ fori=1, ... k-1; thatis all higher-order elements are equal. If no
other solution is preferred to f, then f is the lexicographic minimum.

76

The lexicographic minimum concept is also similar to the approach developed by Stadler
(Stadler, 1988) who stresses the history and importance of multiobjective approaches in
all types of design. To illustrate the lexicographic minimum concept, consider the design

of aircraft that is multiobjective. Say that there are three goals,
* Take-off Weight
* Landing Field Length
» Number of Passengers or Fuselage Volume

that a designer must consider. Designers make the decision that take-off weight is the
most important goal, while landing field length is not as important, and number of
passengers is least important. Further, say there are three possible designs, shown below

with their goal achievement.
f1 = (210,000 lbs., 5000 ft., 170 passengers)
f2 = (235,000 Ibs., 4500 ft., 190 passengers)
f3 = (210,000 lbs., 4700 ft., 180 passengers)

To determine the best design using the lexicographic minimum approach, level one is
considered first. Designs f1 and f3 are equally "good" at this level. Design f2 is not
considered further even though lower priorities may be better than the other designs. At
level 2, design f3 is better satisfied, and therefore, all other levels are ignored, and design
f3 is considered the best design, because of its satisfaction of the top priority goals. This
concept has been implemented the Adaptive Linear Programming (ALP) algorithm,

introduced in Section 1.2.2 (Mistree, et al., 1993a).

One issue touched on by these approaches is the uncertainty and changing of the
information in a design process. In Sen (Sen and Yang, 1993), a group of concepts may
be analyzed based on multiple attributes, and the final concept will be analyzed based on
multiple objectives. In Matsumoto (Matsumoto, et al., 1993), it is recognized that precise

rankings are often unavailable, and identifying broad groups of objectives may be the

77

only alternative for a designer when there is much uncertainty about the design. Further,
preemptive ordering of objectives may precede Archimedean ordering in the earlier
stages of design before precise weighting are known. In any case, the interaction of a
designer with the computer-based tools, as a means to update system models and/or tools
as knowledge is gained, is essential in MDO. In the next section, this issue of human-

computer interaction is addressed.

2.3.7 The Human Factor

In Barkan (Barkan and Hinckley, 1993), a very important but often overlooked point is
made about design methodologies. Citing studies from U.S. firms, it stresses that
following one set of design steps or rules could many times lead to suboptimal designs
and highly inefficient design processes. The point Barkan tries to make is for designers
in any field to keep their minds open to many theories, methods, and rules concerning
what should be done in design. Single structured methodologies such as Functional
Analysis, Quality Function Deployment, Robust Design, and Design for Assembly should
not be applied blindly across the design process. Using aspects from various
methodologies and philosophies throughout a design process is how MDO has been

evolving recently.

In Hale (Hale, et al., 1995, Hale, et al., 1996), a design infrastructure is being developed
which integrates a decision-based architecture called DREAMS with a computing
infrastructure called IMAGE. This work addresses both process and product issues in a
design process and establishes the human interface to both the computer-implemented
design product and process models. The Framework for Interdisciplinary Design

Optimization (FIDO) (Townsend, et al., 1994) program has recognized this need and

78

developed a "housing” for MDO, but the contents of the various "rooms” are prescribed

by the specific residents. In Figure 2.7, the FIDO framework is demonstrated.

SCIPLINE 2

DISCIPLINE 3

MDO Research

DISCIPLINE 2

DISCIPLINE 1 AN

/ DISCIPLINE 3

Figure 2.7. Framework of FIDO for MDO Implementation

The residents in the house of a complex problem are the various disciplines in a MDO
problem. Each discipline has its own solution software, formulation philosophy, and
analysis approach. FIDO allows for the combination of these various methodologies
under a single roof, all based on the foundation of research in MDO. But how do the

various methodologies of each discipline "see” into the other rooms in the house? The

79

openings that connect two or more "rooms" or disciplines are resolved using a state-of-
the-art, on-line graphics interface where designers can see the progress of the design and
can visualize the effects of any changes that are made on the other disciplines and the
entire system. This type of framework allows a complex system to reap the benefits from
various design methodologies, philosophies, and technologies. In addition, the
framework allows for the parallel development and implementation of the disciplines and

other sciences that contribute to MDO.

The focus of a designer as an interactive decision maker throughout a design process
leads to the need of having appropriate information available for a designer at any given
time. In the next section, the issue of information storage, transfer, and availability is

discussed.

2.3.8 Information Storage and Transfer

In the design of complex systems, disciplinary design teams working on the same system
are many times geographically distanced within the company. Because each discipline is
dependent on the others, the information in a usable form from each discipline is
necessary for the other ones. Therefore, the use of effective databases is becoming
necessary in multidisciplinary design. However, in design, the use of databases to only
store information is not enough. Information is being instantly utilized by the other
design groups. Therefore, the database is being used as a "wipeboard" of sorts where
information is stored for a short time, and is replaced by new information, generated by
other disciplines. As a result, the role of the database, in complex systems design, is
more than storing information, it must transfer the information in a usable way. The
nature of the information indeed changes as the design process evolves. The database

becomes a dynamic system rather than a static one. These issues and other relevant to

80

managing information in engineering design are explored in (Fulton, et al., 1989). In
(Hazelrigg, 1996), information-based design is addressed and it is asserted that systems
engineering is a viable approach to handling the complexities in informationally driven

design processes.

The ability to balance the demands of accurate but efficient information is paramount in
complex system design and analysis. The availability of information frequently dictates
at what level of detail designers can perform experiments or even make decisions.
Experimental methods can even be used to lessen the burden of information availability
through the use of approximation techniques. Experimental design methods are being
talked about in the same context as information availability since there is such a strong
relationship between them. In the next section, experimental design methods, design
quality, and robust design and their applicability to effective and efficient system design

and simulation are discussed.

2.3.9 Experimental Design Methods: Balancing Efficiency and Quality

System simulation is performed at all levels of design from "back of the envelope"
calculations in the early stages of design to prototyping in the later stages of design.
Making the simulation as efficient as possible while maintaining an acceptable level of
effectiveness is an important and difficult issue in system and subsystem simulation. In
the following, efficient experimental design methods as well as robust design techniques

are presented.

Experimental design methods

In the design of experiments, a finite number of designs in the design space are simulated

using prescribed settings of the design variables and system evaluation routines. How

81

small or large a number the term "finite" implies is the dilemma of full factorial
experiments versus fractional factorial experiments. Taguchi utilizes a special class of
fractional factorial matrices, called Orthogonal Arrays (OA) to span the design space
efficiently while maximizing the effectiveness of the information. OAs also can simulate
control factors (design variables) and noise factors (uncontrollable factors, such as
environmental effect) in one OA. In Stanley (Stanley, et al., 1992) Taguchi's OAs have
been applied to the design of Single Stage To Orbit (SSTO) vehicles. In Lewis (Lewis, et
al., 1994), OAs are used to simulate and explore the multidisciplinary behavior of a
Boeing 727-200 effectively . Box (Box, et al., 1978) has introduced the Central
Composite Design (CCD) experiments as modifications to the OA. These types of
experimental methods combined with response surface methodologies produce a
powerful simulation tool that can be linked to optimization techniques in complex
systems design. This is demonstrated and further explained in (Chen, 1995a, Chen, 1996,

Olds, 1994, Unal and Stanley, 1992, October).

Robust systems design

In robust design, the effects of noise factors are reduced without eliminating the causes of
the noise. Robust design is an excellent method of designing quality into the design
process and product. Taguchi, an early proponent of robust design, builds his philosophy
on the notion of not finding optimums, but regions of low variability (Taguchi, 1987).
This notion can be traced back to Simon (Simon, 1982), who introduced the notion of

"satisficing" as opposed to optimizing. Simon states:

"The decision that is optimal in the simplified model will seldom be optimal in the
real world. The decision maker has a choice between an optimal decision from
an imaginary simplified world, or decision that are 'good enough’, that satisfice,

for a world approximating the complex real one more closely.” (Simon, 1982)

82

Another way of putting this is the "betterization” of a design instead of the optimization
of a design (Stadler, 1988). Stadler states that the true optimization of a design is close to
impossible. A more practical approach is making the design better, or the betterization of

a design.

The techniques of Taguchi and the notion of "satisficing" have been applied in various
MDO applications. Taguchi's measure of the quality of the design is the signal-to-noise
ratio, a ratio of the mean value to its standard deviation. In (Mistree, et al., 1993b, Olds
and Walberg, 1993, February, Stanley, et al., 1992) the Taguchi approach to robust
design has been incorporated into the design of complex systems such as a Life Satellite
Vehicle and SSTO space vehicle. There are drawbacks to Taguchi's approach to robust
design. These drawbacks are well documented in (Box, 1988) and include the single
objective (signal-to-noise ratio) nature of the approach. Researchers are finding excellent
results integrating robust design methods into MDO (e.g., (Chen, 1995a)). However,
they must not be applied blindly, but must be intelligently synthesized with other
methods and strategies discussed in this chapter. Measuring and maximizing the quality
of a product or process along with efficient experimentation is a very important aspect of

the design of any system, including multidisciplinary systems.

2.3.10 Applications of MDO

Although the roots of MDO are being attributed to the field of structures in aircraft
design, multidisciplinary design optimization has been performed for years in many other
disciplines. It is only recently that these areas are being recognized as multidisciplinary
design optimization application and research areas. It is the unifying field of MDO which

has brought together developments from a variety of applications.

&3

Much of the focus of MDO applications is in the area of flight systems, both orbital and
non-orbital. NASA, Boeing, Lockheed, and McDonnell-Douglas are each independently
and jointly researching MDO technologies in aircraft design, including the High Speed
Civil Transport (HSCT). In space system design, work concentrated at NASA-Langley
focuses on applying MDO technologies to the design of advanced, manned transportation
system concepts including the new family of space vehicles (Olds, 1992, Stanley, et al.,
1994). Also, MDO technology has been applied to trajectory optimization problems in
ground to mission vehicles (Beltracchi, 1990). In civil engineering, applications of MDO
include the design of steel and concrete systems (Balling, 1993, Fang and Azarm, 1994).
In mechanical engineering, applications include the design of damage tolerant structural
and mechanical systems, mechanisms (Mistree, et al., 1990a), and thermal energy
systems (Bascaran, et al., 1989, Vadde, et al.,, 1992). Overlapping in each field is the
study of materials which forms the foundation of complex systems. Many times the
selection of materials is coupled with the determination of physical design variables,

further increasing the complexity of the system analysis.

24 A LOOKBACKAND A LOOK AHEAD

In this chapter, Phase I of the strategy for implementation and verification of this
dissertation, as outlined in Section 1.3.2, is completed. In Chapter 2, the foundation of
the dissertation is further solidified, as shown in Figure 2.8. The needs and research
opportunities that provide the motivation and background for the dissertation are
identified through a comprehensive literature review. The foundation for the dissertation

is now complete and in Chapter 3, the algorithm for integrated subsystem embodiment

84

and system synthesis is presented, building upon the foundation built in Chapters | and 2.

In Chapter 3, Phase II of the strategy for implementation and verification (see Section

1.3.2) is initiated.

= = = = Phase I: Foundations and
i Motivations

Chapter 2

)

Figure 2.8. Frame of Reference: Chapter 2

85

CHAPTER 3

THE ALGORITHM, TECHNOLOGY BASE, AND RESEARCH
HYPOTHESES - VERIFICATION GUIDELINES

Having addressed the research background and research opportunities in Chapters 1 and 2,
the algorithm for integrated subsystem embodiment and system synthesis is first presented
in this chapter. The algorithm is presented as a step-by-step approach for integrating the
solution and coordination of subsystems. This algorithm is developed based on several
research hypotheses. The focus in this chapter is to provide the background, ramifications,
and verification guidelines for each hypothesis. Verification studies of the hypotheses are

presented in Chapters 4, 5, and 6, and the motivating case study is presented in Chapter 7.

In this chapter, an overview of the algorithm is given. The research hypotheses, and
supporting posits follow in Section 3.1.3. Sections 3.2, 3.3, 3.4, and 3.5 are devoted to
testing the four hypotheses, respectively. For each hypothesis, ramifications are provided,
a literature background is presented, and verification guidelines are discussed. Associated
with the respective four hypotheses are a set of characteristics for complex systems design
taxonomies (Sections 3.2.1 and 3.2.2), the use of various approximation techniques
including the Design of Experiments and Response Surface Methodology (Section 3.3.4),
constructs from various discrete optimization algorithms (Sections 3.4.2-3.4.3), and a
formal proof of convexity (Sections 3.5.1-3.5.3). For Hypothesis IV, the guidelines for
verification are straightforward, and the proof to discount Hypothesis IV is given in
Sections 3.5.1-3.5.3. A review of the examples and motivating study used to verify and
illustrate the developments of this work is given in Section 3.6. Finally, this chapter is

closed with a look back at what has been presented and a look ahead to what is next.

86

3.1 AN OVERVIEW OF THE ALGORITHM AND RESEARCH
HYPOTHESES

3.1.1 An Algorithm for Concurrent Subsystem Embodiment and System
Synthesis

The algorithm presented here is conceptual in nature. In other words, the algorithm is a
conceptual procedure, and not an automated computer system. Parts of the algorithm have
supporting computer packages, but an encompassing computer infrastructure does not
exist. A schematic of the overall algorithm is shown in Figure 3.1. There are three distinct
steps: 1) Classify problem based on system model, 2) Formulate subsystem models and

interactions, and 3) Solve and coordinate subsystems.

IS el -
Problem classification S

STEP 8
Coordination/Soly

\

a
Figure 3.1. Schematic of Overall Algorithm

87

These steps constitute an algorithm as opposed to a method simply because of the
mathematical rigor behind Steps 2 and 3 (see definition of algorithm in Section 1.1.5). In
(1984), method is defined as

A systematic and regular way of accomplishing a given task.
Although the steps introduced are systematic, it is the mathematics of the steps that
constitute the use of the term "algorithm." These steps are explored with reference to

Figure 3.1.

Step 1. Classify problem and process based on structure of the system
model.

In Figure 3.1, this step is shown as the supporting structure surrounding the inner
parts of the algorithm. This is the function of this step: to provide the foundational
support for the remaining steps. In this step, the design problem and process
formulation are classified based on the system model and the assigned design
teams. A classification system provides a linguistic basis for the structuring of a
system and its associated modeling and solution processes. The classification
developed and used is a three-level lexicon that builds upon previous classifications
and establishes the decision as the fundamental design construct. The hypothesis

and posits supporting this step are provided in Section 3.2.

Step 2. Based on the classification from Step 1, formulate appropriate
compromise DSP for each disciplinary subsystem.

In Figure 3.1, this step is shown as the top half of the inner portion, from the top
level system to lower level subsystems, which may be interacting. It is asserted
that the interactions among the subsystems can be abstracted as games and the
relationships modeled using game theory protocols. Based on the protocol

(relationship) among the subsystems, established in Step 1, compromise DSPs are

88

formulated for each subsystem. The four protocols used are full cooperation,
approximate cooperation, noncooperative, and leader/follower formulations. These
protocols are introduced and defined in Section 3.3.3. Depending upon the
protocol, different information is available to the different subsystems. Therefore,
the constructs to formulate and process information for each subsystem change with
each protocol, but the core compromise DSP of each subsystem remains the same.
However, depending on what information is available, the solution of the
compromise DSPs may change. The hypothesis and posits supporting this step are

provided in Section 3.3.

Step 3. Solve the disciplinary models and coordination problem based on
the classification and interactions from Steps 1 and 2.

This step again uses one of the four possible protocols: full cooperative,
approximate cooperative, noncooperative, and leader/follower. In Figure 3.1, this
step is shown in the lower half of the inner portion, from the subsystems to the
integrated system at the bottom. The protocol established in Step 1 dictates the
solution process that is used to solve and coordinate the subsystem compromise
DSPs. Depending upon the protocol and presence of discrete and/or continuous
design variables, different solution techniques are used to solve and coordinate the
disciplinary models. It is also required to handle nonconvex functions in the
solution process. The hypothesis and posits supporting this step are provided in

Sections 3.4 and 3.5.

These steps are motivated by ideal aspects of an algorithm for integrated subsystem
embodiment and system synthesis, as identified in Section 1.1. In Figure 3.2, an "ideal”
algorithm is shown on the left. On the right, the needs and foundation for such an

algorithm are shown. Within the body of existing work are various needs or "holes" which

89

represent open research questions. The holes addressed in this dissertation, reviewed and
identified in Chapter 2, are: a basis of linguistic communication, realistic modeling of
interactions in multidisciplinary design, the solution of mixed discrete/continuous
problems, and the capability of handling nonconvex functions in an optimization context.
It is these holes which represent the motivation for this dissertation. These holes are filled

through the formulation, verification, and implementation of four hypotheses.

Basis of '
Linguistic # Hypothesis |
Communication

Modeling of # Hypothesis 11
Interactions

Ideal Algorithm
for Integrated . .
Subsystem Solution of Mixed)
Embodiment and Discrete/Continuous # Hypothesis Il1

System Synthesis Problems

Handling
Nonconvex # Hypothesis 1V
Functions

BODY OF EXISTING
WORK: Game Theory,
ALP Algorithm, MDO

Figure 3.2. Needs, Opportunities, and Hypotheses

The implementation of the hypotheses is realized through three steps which constitute "an
algorithm for integrated subsystem embodiment.” As a roadmap to this chapter, Figure 3.3
combines the algorithm schematic, research hypotheses, and tools used for each
hypothesis. In Sections 3.2 through 3.5, the four hypotheses are presented along with

background of the tools used and verification guidelines.

90

Algorithm Schematic Hypothesis Tools

T

Muttidisciplinary Design

1’;‘::2:?’2' Optimization, Decision
i Support Problem Technique
STEP 1
Hypothesis II Game The?ry, DOE, RSM,
Section 3.3 Taylor's Theorem,
Compromise DSP
STEP 2
i Tabu Search, Foraging,
's'l&'igf:? 4m'3“sl ALP Algorithm, Nonlinear
e Optimization Theory
STEP 3

Figure 3.3. The Algorithm, Hypotheses, and Tools: A Roadmap

The tools in Figure 3.3 are shown beside the primary step where they are applied, but there
is overlap of the tools in multiple steps. This overlap of the constructs and tools used in
each step is shown in Figure 3.4. The constructs and tools of Step 1 are largely conceptual
and are not implemented in a formal sense on a computer. The constructs and tools of
Steps 2 and 3 have formal structure on a computer. The computer implementations for

Steps 2 and 3 are presented in the next section.

Algorithm Steps nstr and Tool

Decision Support Problem Technique,
]Multidisciplinary Design Optimization
: (Hypothesis I)

“Step 1: Formulate Problem and :
Process :

T Compromise DSP, Game Theory,

i Global Sensitivity Equations,

Taylor’s Theorem, DOE, RSM
(Hypothesis il)

Step 2: Based on Game Protocol, |
Formulate Disciplinary Models

~ Step 37 Resolve the disciplinary

€ the « I Adaptive Linear Programming, Tabu
design and coordination problems |

.Search, Foraging, Optimization Theory!
i {Hypotheses lil and V)

Figure 3.4. Overlap of the Constructs and Tools

91

3.1.2 Computer Implementation of Algorithm

Depending upon the protocol among the design teams established in Step 1 of the
algorithm, different theoretical and computational tools are used. In Step 2, there are four
primary game protocols that are used (see Section 1.2.3): full cooperation, approximate
cooperation, noncooperation, and the leader/follower protocol. In Figure 3.5, the
computer infrastructure for implementing the computer-based portions of the algorithm is
shown. The input is the game theoretical protocol that exists among the subsystems
(players). This is a result of Step 1 of the algorithm. Then, depending upon the protocol,
different tools are used to model the interactions in Step 2 of the algorithm, and to solve the
resulting models in Step 3. The major components of the existing computer infrastructure
shown in Figure 3.5 include four processors (a nonlocal approximation processor, module
A, a design of experiments/response surface processor, module B, and a solution
processor, module D), each centered about the primary processor, the compromise DSP,

module C.

The full cooperative protocol (defined in Section 3.3.3) is the simplest case and uses only
the compromise DSP (module C) in Step 2 to formulate the problem. The appropriate
solution scheme in DSIDES (module D) is used in Step 3 to solve the formulation

depending upon whether discrete variables are present in the model.

The approximate cooperative protocol (defined in Section 3.3.3) utilizes a nonlocal
approximation processor (module A) based on the Global Sensitivity Equations (GSE) and
Taylor Series in Step 2. The nonlocal approximation processor is embedded within the
players' compromise DSPs (module C). The resulting compromise DSPs are solved in

Step 3 using the appropriate solution scheme in DSIDES (module D).

92

For both the noncooperative and leader/follower protocols (defined in Section 3.3.3), a
Désign of Experiments processor (module B) is used to generate a Response Surface
Model of the players' rational reaction sets in Step 2. To generate these RSMs, the DOE
processor calls the players' compromise DSPs (module C) as the simulation routine. At
each simulation, the appropriate solution scheme in DSIDES (module D) is used to solve
the model. In the noncooperative protocol, Mathematica is also used as the solution
processor (module D) in Step 3, in order to find the intersection of the rational reaction
sets. In the leader/follower formulation, the rational reaction sets are then used by the
appropriate players in their compromise DSPs, which are again solved in Step 3 using the
appropriate solution scheme in DSIDES (module D). The result is a set of solutions which

correspond to the various protocols.

The different tools and techniques used in Steps 2 and 3 for each protocol are shown in

Table 3.1. Specific discussion of the computer implementation of these tools and

techniques in the various protocols is discussed in Section 5.5.

Table 3.1. Toolé used in Each Protocol

Protocol
Full Cooperation| Approximate | Noncooperation | Leader/Follower
Cooperation
Sequential Linear | Global Sensitivity Design of Design of
Programming | Equations (GSE), | Experiments, Experiments,
Tools Used | 1 p) Heuristic | Matrix Solver, SLP, SLP, Heuristic
Search Taylor Series, SLP | Matrix Solver Search

93

w03y ay) Jo syaegd pasegg-1anduwio)) Joj aanjngjserjuy Rndwo)) ‘g ¢ 3andig

wesdoyg vonejuns C)
indinopndu >

JaMO0|j04/19pe]
AA11RIA00IUON
aanesadoa))

votieunxoxddy -
2anesadoo) jing

/ wonnpspss [/

suonenby snoavenuiig
10 uoINjog ‘4 TV ‘dIvd

S9POIN depng .
»suodsoy

._«E...m._.e_uar_
.>a=<_«=ou2=o._ato_u-"_==u_ &n
udisag snsodwo) renua)

udug syuawpadag jo uliseq

aRuNIN

POYRI uvoninjog

aanpop

"
| <

Apsmeg
ot
UM
350 RW0IBW0 3
3 ANPO

q Anpop

$7U95 JojheL
suonenbsy Awanisuag iwgor)
SIAIRALINT [PIURg [B0)

uoyjsunxosddy jedojuoN
SRR
V Inpoy

s..!.wv_.zeox washsqng

€d3ls

1d31S

14318

94

Corresponding to these computer-based tools are a set of theoretical approximation
concepts which are used in each protocol. Applying game theory principles to complex
systems design requires approximation of various game-theoretical constructs because of

the complexity of the analyses. The approximation concepts used in each protocol are

shown in Table 3.2.

Table 3.2. Approximation Concepts used in Each Protocol

Approximation
Concepts Used

Protocol
Full Cooperation | Approximate Noncooperation | Leader/Follower
Cooperation
Sequential Linear | Global Sensitivity Response Response
Programming | Equations (GSE), Surfaces, Surfaces,

Taylor Series,

Sequential Linear

Sequential Linear
Programming

Sequential Linear
Programming

Programming

3.1.3 Hypotheses and Posits

In Section 2.3, the areas of research of this work are presented and reviewed. These
namely are problem and process classification, subsystem interaction, mixed
discrete/continuous optimization, and nonconvexity. A literature review of these areas is
provided in Section 2.3, along with other areas related to these in the design of complex
systems. It is in these four areas where the four hypotheses of this work are derived.
Associated with each hypothesis is a set of supporting posits. As the hypotheses and

posits are unique for this research topic, they are considered the fundamental contribution

of this dissertation.

95

Hypothesis I: Classification of problem and process in multidisciplinary design can be
extended by integrating constructs from Decision-Based Design, Game Theory, and
Multidisciplinary Design Optimization.

Hypothesis II: Game theoretic principles can be applied to accurately model and
describe the interactions in complex systems design.

Hypothesis III: The notion of foraging of wild animals is a natural analogy for
optimization and can be used as an effective search technique in the solution of mixed
discrete/continuous models.

Hypothesis IV: The g-function is a useful transformation of nonconvex functions into
well-behaved convex functions.

Hypothesis I Posits
Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-
independent lexicon for multidisciplinary design.
Posit 1.2: Game Theory principles can be used to extend problem formulation in
multidisciplinary design.

Hypothesis 11 Posits

Posit 2.1: Design processes can be abstracted as games where the players are multiple
designers or design teams and their associated analysis and synthesis tools.

Posit 2.2: Approximate cooperation can be modeled using the Global Sensitivity
Equations and Taylor series to approximate nonlocal equations.

Posit 2.3: First order Taylor series can be used as a good approximation of nonlocal
state equations.

Posit 2.4: Second order response surfaces can be used to approximate the Rational
Reaction Sets of the disciplinary players in a design game.

Posit 2.5: The compromise DSP can be used as the fundamental construct to develop
the game theory protocols and techniques.

Hypothesis III Posits
Posit 3.1: Foraging is a heuristic, under which characteristics from genetic algorithms,

Tabu Search, and Simulated Annealing can be grouped.

96

Posit 3.2: The Tabu Search can be used as the building block for the foraging solution
algorithm.

Posir 3.3: The ALP Algorithm along with foraging can be used to effectively solve
mixed discrete/continuous problems.

Hypothesis IV Posits
Posit 4.1: Nonlinear optimization theory can be used to prove/disprove the
effectiveness of the g-function in transforming nonconvex constraints and goals in the

compromise DSP to convex equations.

In the next section, Hypothesis I is discussed, including the necessary technical

background, ramifications, and verification guidelines.

3.2 TEST OF HYPOTHESIS I - DEVELOPMENT OF PROBLEM AND
PROCESS FORMULATION

Ramifications and verification guidelines are provided for testing
Hypothesis I in this Section. The verification guidelines are
discussed in Section 3.2.3. It is asserted a classification system for

problem and process formulation in design should

* have the capability to classify the roles of multiple designers,
* have the capability to handle multiple levels of detail,

* be domain-independent, and

» be independent of time and technology.

In Section 3.2.2, these four characteristics are discussed in the context of MDO. Design,
however, is neither a science nor an art. Therefore, classification systems in design are

difficult to implement due to the numerous interpretations of design. In Section 3.2.1, the

97

amorphous nature of classifications in design is discussed as a precursor to the remainder

of Section 3.2.

3.2.1 Nature of Classifications in Design

In accordance with the Collins English Dictionary, taxonomy is defined as

- the principles of classification or order (1976).

In the field of science, the term taxonomy has evolved into a term, synonymous with
classification, based on the principles of order. Taxonomies are used in various areas of
sciénce to classify certain parts of the field according to some logical, structured ordering
and to facilitate future communication and research among peers in the field. In largely
creative areas, such as art, everyone typically has his or her interpretation of the field, and
this interpretation is neither wrong nor right because of the large amount of ambiguity.
Since design arguably is composed of aspects rooted both in science and in art, an accepted

taxonomy is difficult to establish and has not been developed (Muster and Mistree, 1989).

Traditionally, a design process is divided into stages based on the requirements of the
project’s management. This division is usually some variation of the following process:
problem definition, conceptual design, layout design, detail design, and manufacturing
design. It has become more apparent that other areas such as designing for assembly,
designing for recycleability, and designing for maintenance, or in other words, DFX, must
be taken into account in the design process. Unfortunately, this taxonomy provides little
information on what is being accomplished in each stage, the information flow among the
stages, and the types of decisions required at each stage. Many researchers have attempted

to develop a standard classification scheme for design with some of these areas in mind.

98

Some of these classifications are: taxonomies for mechanical designs and artifacts in the
European literature (Hubka, 1982, Pahl and Beitz, 1984, VDI, 1986), classification of the
mechanical design research and results based on a scheme of classifying initial and final
states of knowledge of an object to be designed Dixon (Dixon, et al., 1988), classification
of mechanical design according to design problem, research method, environment, and
design process by Ullman (Ullman, 1992), classification of mechanical design by design
type and design activity by Snavely (Snavely, et al.,, 1989), identification of eight
approaches to design along with three tasks, design selection, parametric redesign, and
design synthesis by Marshek (Marshek and Kannapan, 1987), and an expansion of a
taxonomy of the entire Product Realization Process (PRP) by Mills (Mills, 1993). While
each of these taxonomies has contributed to the science of design in some form, an

accepted classification for communication and comparison does not exist.

It is among the contributions of this dissertation to expand the science of design by
expanding classifications such as these to the design of complex systems, which may be
carried out by multiple designers, design teams with their own analyses and syntheses
routines at different levels of fidelity. Issues associated with multiple designers and

multiple levels are addressed in the next section.

3.2.2 Multi-Player and Multi-Level Formulations

The underlying assumption in many of the general design taxonomies discussed in Section
3.2.1 is that design does not have to be performed by different designers and design teams
who may be geographically distanced. However, in an industrial context, this is often the
case, and as such, is fundamental motivation for this dissertation as well as for the field of
Mutltidisciplinary Design Optimization (MDO). The term methodology is defined in

Webster's Dictionary (1984) as

99

a body of methods, procedures, working concepts, and postulates, etc.
Consistent with that generic definition, MDO can be defined as a methodology for the
design of complex engineering systems that are governed by mutually interacting physical
phenomena and made up of distinct interacting subsystems (Sobieszczanski-Sobieski and
Tulinius, 1991). From this definition, it is obvious that any engineering design problem in
MDO will be performed by multiple designers and design teams working in multiple
disciplines. Several approaches to formulating and solving a multidisciplinary design
problem have arisen in a rather ad hoc fashion since the inception of MDO. These
approaches include single-level and multi-level formulations, hierarchical and
nonhierarchical system decomposition methods, and numerous optimization and analysis
processes and approaches at the system and subsystem levels. The fundamental problems
in MDO arise in the modeling, solution, and coordination of the system and subsystem
models. Therefore MDO is driven by analysis and synthesis, as opposed to general design
methods as in Section 3.2.2. As a result the classification of problem and process in MDO
can be viewed as a subset of the general design classifications. A classification in MDO
would be useful at a given snapshot of a general design process where a system model
must be formulated and solved. As the field of MDO expands, it becomes increasingly
necessary for a consistent classification system that can be used as a form of
communication and comparison. It is asserted that the following characteristics are

beneficial, if not necessary to an effective classification system in MDO.

¢ A classification system must address the possibility of multiple levels, multiple
designers, multiple design teams, and multiple analysis and synthesis levels. But in
complex systems design, the primary function of a designer does not change. The
function is still 70 make decisions. Therefore, the foundation of the classification, it
is asserted, should remain the decision. The focus of a classification system in

100

MDO should classify the tools, methods, and processes that are used to support the
integrated decisions of multiple designers.

A classification system should address the nature of the interaction among the
designers and/or design teams from a mathematical, analysis-oriented perspective.
Many times design teams who are geographically distanced from the other teams
may have to act on their own and make assumptions about the other teams'
decisions. Often, some design teams will take the lead in a design process while
others will wait to perform their analysis and make their decision until later in the
process. Further, some design teams may design according to their own
requirements and goals while ignoring the goals of other disciplines. While this
may result in an ideal design of their subsystem, it may not translate to an ideal
system design. These situations are common in complex systems design and are
also representative of typical situations in game theory. Classification systems
should account for the nature of the interactions among the design teams at both the
personal level and the analysis or synthesis level.

A classification should be independent of time-based developments, such as
technology. As technology continues to expand and better and faster tools and
methods are developed, classifications should not change. An example is found in
the area of chemistry. In chemistry, the framework is in the form of the periodic
table. All research and technology, no matter how advanced, can be referred in
some sense back to this table, and this will always be true. The pure sciences have
set the standard for classifications of some sort. In design, or even
multidisciplinary design, this type of framework is difficult due to the inherent lack

of structure.

A classification should also be independent of the domain of application. Designers
working on aircraft design should be able to use the same classification entities as
designers working on ship design. The complex system domain should not affect

the classification used.

101

To address these issues, entities from game theory and the Decision Support Problem
Technique (see Section 1.2.1) are integrated with an existing multilevel framework (Balling
and Sobieski, 1994), as described in Chapter 4. In this dissertation, value is added to the
evolving framework of MDO to stimulate its acceptance as a basis of communication
(Lewis and Mistree, 1995). In the next section, guidelines for verifying Hypothesis I are

given.

3.2.3 Guidelines for Verifying Hypothesis I: Problem and Process

Formulations

Hypothesis I: Classification of problem and process in multidisciplinary design can be
extended by integrating constructs from Decision-Based Design, Game Theory, and
Multidisciplinary Design Optimization.

Hypothesis I is tested by using two posits. The guidelines and section numbers related to

the testing of each posit are given.

Posit 1.1: Entities from the Decision Support Prdbl'émi:Techniqug} pi'ovide: a domain-
independent lexicon for multidisciplinary design. - '

To verify this posit, a multi-level lexicon is presented in Section 4.2 that includes entities
from the Decision Support Problem Technique. Previous attempts at defining a lexicon for
multidisciplinary design have been focused in the field of aircraft design. The benefit of
having a domain-independent lexicon is that designers from various fields and backgrounds
are then able to communicate and compare problem formulations. The DSPT has been
used in the design of many systems, from small and simple to large and complex. The
work supporting this posit further establishes the DSPT as an effective set of ideas, tools,

and entities to support designers in the design of engineering systems.

102

* In Section 4.3 the lexicon is mapped into previous classification systems using
linguistic entities. The linguistic entities of the lexicon presented are shown to be
domain and time independent.

* In Section 4.3 various examples are used to illustrate the effectiveness of the
lexicon in complex systems design. These examples include a pressure vessel

and a passenger aircraft, both studies used to verify other portions of this work.

Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidisciplinary design.

Previous attempts at problem formulation in multidisciplinary design have addressed the
existence of multiple levels of designers and disciplines but never addressed anything but
cooperative relationships among them. This is point of departure in this work, the
extension of problem formulations in multidisciplinary design to design scenarios where
full cooperation may not exist. In conversations with industry experts in aircraft design, it
is apparent that although researchers in problem formulation and complex systems design
assume cooperation in their models, in practice, cooperation is rare. For instance, at the
National Aeronautics and Space Administration (NASA) it is common for the
aerodynamicists to take the lead in a design process and establish the wing and fuselage
profiles first. Then the propulsion, controls, and structural engineers design according to
the wing and fuselage design set by the aerodynamics team. In the former Soviet Union, it
was a common practice to choose the engines for aircraft first, then design the remaining
sections around the engines. These two practices are very different, but would be
classified very similarly using previous lexicons in multidisciplinary design. There is a
need to account for the fundamental interactions among the subsystems and/or disciplines

when complete cooperation is not possible or practical. The work of this posit supports the

103

capability to account for these types of interactions in a lexicon. In Sections 3.3.3 and 5.5,

the linguistic entities of game theory are presented.

3.3 TEST OF HYPOTHESIS 1I - SUBSYSTEM INTERACTIONS

The fundamental notion of this hypothesis is that a complex design

process can be abstracted as a series of games among a set of

players (designers and their associated analysis and synthesis

tools). The theoretical and intuitive notions to support this

Hypothesis are established in this section. Ramifications and

verification guidelines are also provided for testing Hypothesis II in this section.

3.3.1 A Typical Complex System Design Model

Typical complex system models are analyzed and solved using one of two strategies: 1)
solving the system level problem as a single level problem, or 2) decomposing the problem
into smaller problems and solving the smaller problems. In this work, it is assumed that
the system level problem is decomposed into smaller, subsystem level problems which
must be analyzed and solved accounting for any coupling among the subsystem problems.
This is shown in Figure 3.6, where a typical complex system model is decomposed into
two subsystem problems. At the system level, there are overall system requirements and
system parameters. At the subsystem level, SS1 and SS2 consist of constraints and goals
each must satisfy, and system and deviation variables each must find. Once these variables
are found, a system configuration is generated based on the subsystem problem solutions.
But this is easier said than done. For one, each subsystem typically needs the values of
design variables of the other subsystems. This is illustrated in Figure 3.6. Furthermore,

integrating the subsystem solutions into a system level configuration is not a trivial

104

problem. It must be governed by the coupled variables and a coordination procedure based

on the subsystem interactions.

SATISFY FIND

SS1 System Variabls)

SS1 Deviation Variables

'

GIVEN

Overall System XSS X
Requi ts 2 & s
quiremen SS1 ISystem Configuration '
Parameters
FIND f
SS2 System Variables
_____.y $S2 Deviation Variabm)
SATISFY

Figure 3.6. A Typical Complex System Model

To illustrate some fundamental integration principles from a mathematical perspective, the

following subsystem model (compromise DSP) in Figure 3.7 is presented.

Given
X,=2.3
Find
X|
x2=23 Satisfy
’ g]: x12.<_ 5

2 X, *x /513

fiox;/x,+4*x, +d;-d;*=20
Minimize

Z={d/+d,*}

Figure 3.7. A Coupled Compromise DSP

105

On the left side of Figure 3.7 a very simple compromise DSP representing one subsystem
1s shown with one local design variable, x|, two constraints and one goal. The only catch
is that x2, the design variable of another nonlocal subsystem is needed in g; and fj.
Without a representation of x; the compromise DSP on the left side is unsolvable. Typical
complex system design practices either require a value of x; at each iteration from the other
subsystem, or just assume some value. On the right side of Figure 3.7, the value of x5 =
2.3 is used in the model and is either provided by the other subsystem or taken as an
assumption. Either way, the compromise DSP on the right side is now solvable. If the
actual value is used, it requires extensive information transfer and coordination for the
multiple analysis and synthesis iterations in a solution process. However, if assumptions
are made, there exists a risk of the assumptions being wrong or infeasible. So the question
is posed, how can the designers of this subsystem know x; without making assumptions
or requiring large information transfer? It is asserted that if the designer using the
compromise DSP in Figure 3.8 has a representation of X3 such as x3 = f(x), then the

problem is solved. This is illustrated in Figure 3.8.

Given
x2 = f(x))
Find
X1
x2 = f(x1) Satisfy
- g X285
82 X1*x5/5<13
fir Xy /%y +4%x +d;-d,*=20
Minimize
Z={d/+d,*}

Figure 3.8. A Coupled Compromise DSP: Smarter Coupling

In Figure 3.8, the designer now has a representation of x2 for any value of x| which can be

used in the compromise DSP to find solutions. This is a major point of contribution of this

106

dissertation in complex systems design, but it creates a significant mathematical challenge.
Constructing a function, xp = f(x;), where the independent variable of one subsystem is the
dependent variable of the other subsystem is not a trivial task when x> and x| may
represent vectors of multiple design variables. Still, this is a simple abstraction of a
complex subsystem model. In design problems, there are variables that are not design
variables, but describe the behavior of the system. These are called srate variables, s, or
behavior variables. Examples may include lift-to-drag ratios, velocities, or stresses. Now

consider the compromise DSP of Figure 3.9.

Given
x;=f(x,, 5))
x; = f(xy, 8) s; = f(x,,8))
& s, = 300mx ,-200u

s,=f(x,, 5)) Find §

P> | Satisfy I

e g, 48, %26

Minimize: . 25 X, *%y/S +5, +5,< 18

CZE{doedT) . fExAsxo) + 4%+~ d," =30
) ’ Minimize

Z={d;+d/"}

Figure 3.9. A Coupled Compromise DSP: Realistic Coupling

In this case, the designer (player 1) requires both the design variable, x, and the state
variable, s3, from the other subsystem (player 2). Therefore, two functions must be
constructed,
x2 = f(x1, s1) (3.1)
sz = f(x1, s1).
This set of equations is in essence the rational reaction set of player 2, a fundamental
construct in game theory. The rational reaction set is presented and discussed in Sections

3.3.3 and 3.3.4. On the right hand side of Figure 3.9, the designer now has a

107

representation of x3 and s; for any x; and s;. This is another major point of contribution

of this dissertation: the coupling of design and state variables in a game-theoretic context.

In the next section, a typical game is described and the parallel is established between a
game among multiple players and a complex design process performed by multiple

designers (who use their own analysis and synthesis routines).

3.3.2 A Game as an Abstraction of a Design Process

A "game" consists of multiple decision-makers or players (or designers, in this case) who
each control a specified subset of system variables and who each seek to minimize their
own cost functions subject to their individual constraints (Myerson, 1991). The game
requires these multiple decision makers to select single decision strategies to optimize their
set of rewards. However, each player's reward depends on the other player's strategies,
i.e., a local reward depends on decision variables that are controlled by other players. The
fact that players lack control over all decision variables affecting their rewards is what
makes a game a game and what distinguishes it from an optimization problem. To
illustrate, consider Figure 3.10. When only one decision maker is modeled, the problem is
an optimization problem, scalar for single rewards or vector for multiple rewards.
However, with more than one decision maker, the problem becomes a game. The focus of
this dissertation is on the bottom right-hand corner of Figure 3.10: vector games where
there exists more than one decision maker who each have more than one reward. The
developments and techniques can be applied, however, to all four quadrants under the

appropriate assumptions.

108

Number of Rewards per Decision Maker

r=1 rz2
'
[V
x Scalar Vector
= n=1 | Optimization | Optimization
s Problems Problems
]
Q
[+]
Q
]
T
8 n22 Games
E
3
2

Figure 3.10. Various Formulations in Optimization Theory (Mesterton-
Gibbons, 1992)

It is asserted that the processes required to design a complex system can be abstracted as a
game. To illustrate, assume that a complex system such as an aircraft has been
decomposed into disciplinary subsystems such as propulsion and structures. It is
commonly accepted that a model such as

minimize f(x.,p) = {fi(x,p),...fHx.p)} (3.2
xe X(p)c K"

is the typical starting point for much of the current research and practice in systems
modeling and applied optimization. Yet in specific design instances, this assertion should
be boldly challenged. For example, when the propulsion designer only controls x and the
structures designer controls p, how is p chosen in the propulsion design? Can the
propulsion designer assume that the structural designer will always select the vector that is
most advantageous to the propulsion design? If not, how should the propulsion designer
respond to this conflict? This scenario describes a two-player strategic game where one
player controls x and the other player controls p and where p represents all decisions which
are outside the scope of the designer controlling x (Aubin, 1979, Dresher, 1981, Von

Neumann and Morgenstern, 1944).

109

Mathematical modeling of such strategic behavior, where one decision-maker's action
depends on decisions by others, is well-established in wide-ranging applications from
economics to business and military applications (Aubin, 1979, Dresher, 1981, Fudenberg
and Tirole, 1991, Mesterton-Gibbons, 1992). If the use of multi-player strategic models in
these non-engineering applications is so compelling, it is natural to ask what role do these
models have in the design of complex engineering systems? After all, design is often a
collaborative activity, with different decision-makers responsible for different subsystems
or design stages (e.g., design and manufacturing of a product). But the notion and
application of game theory in engineering design is limited (Badhrinath and Rao, 1995,

Dhingra and Rao, 1995, Hazelrigg, 1996, Pakala and Rao, 1996, Rao, et al., 1996).

It is asserted that strategic situations in design can be abstracted as games among designers
or design teams, and depending upon the protocol of the game, the resulting designs may
be significantly different. There are various game protocols depending on the level of
cooperation and behavior of the players. Certain protocols lend themselves nicely to
modeling interactions in design, namely the cooperative or Pareto formulation when the
players work together and communicate, the Nash or noncooperative formulation when the
players act in their own self-interest, and the Stackelberg or leader/follower formulation
when one player dominates another. These protocols are illustrated in the next section

using simple 2-player terminology from (Vincent and Grantham, 1981).

3.3.3 Protocols Applicable to Design
Let there be two players P1 and P2 who select strategies x/ and x2 which belong to strategy

sets X!(cRn!) and X2(<R"2), respectively. Further, let f;(x/,x2) and f2(x!,x2) be their

respective cost or loss functions. The various game-theoretic models between the players

110

are difficult to solve for two principal reasons: (i) coupled optimality, i.e., the cost
functions f; and f of the two players depend on strategies x/ and x? selected by both
players, and (ii) coupled feasibility, i.e., if U < X! x X2 is the set of feasible strategies,
then in the presence of constraints, U is not necessarily equal to the product of strategy sets
X! x X2. In other words, given x! € X1, x2 is constrained to the set S(x!) = {x2e X2:
(x!,x2) € U}, and vice-versa. This latter point is subtle; it indicates that one player may
affect not just the cost of other player, but that this player may also influence the feasibility
of the other player's decisions as indicated in Figure 3.11. In other words, X2 = f(X!) in

both feasibility and optimality.

In general, U # xlx x2
A E
U
Y
x2
| A SR
. [
< : t >

Ve —

Figure 3.11. Feasible Strategies in the Presence of Constraints

In a given application, once the problem data is established, namely the feasible strategy set
U < X! x X2 and the respective cost functions, f;, and fo, the basic goal is to single out
pairs of decisions (i.e., strategies) (x1,x2) that correspond to the protocols (relationships)
that exist between the two players. For these various protocol models, it is important to

examine the stability properties of the solution. A strategy pair (x!*,x2*) is individually

111

stable if neither player has an incentive to unilaterally alter his strategy. Such a pair would
be collectively stable or a Pareto solution if both the cost functions cannot be
simultaneously improved by another strategy pair. The various models and the
corresponding solution concepts are classified for the two players according to when the
players: (i) cooperate, (ii) act in their own self-interest (noncooperation), or (iii) dominate

one another. For simplicity in the presentation, assume that U < X! x X2,

Cooperative or Pareto solution: If the players cooperate, they can be expected to
obtain better solutions than when they do not. Assuming total cooperation among decision
makers, disciplines, or subsystems is the typical optimization approach. Often, it is not
unusual to find that by cooperating with one another, both the players can improve on their

solution when they do not cooperate. A pair (x/?, x°P) is Pareto optimal if

AA, 3 f,(x""+A,,x*P)< f,(x',x%7) and f,(x'? + A, x*P) < fz(x"’,xz")

and (3.3)

BA, 3 f,(x"7. X+ A,) < f,(x'P,x%P) and f,(x'?,x*? + A,) < f,(x'?,x*P)
By definition, the Pareto solutions are collectively stable. However, these solutions need
not be individually stable, as each player could do better but at the expense of the other
player. The set of Pareto solutions is usually large, thus requiring some additional
selection procedures among the Pareto solutions. The Pareto or cooperative solutions
occur when players have complete, precise information from the other players.
Cooperation is classical game theory. One of the contributions of this dissertation is the

notion of approximate cooperation where a player does not have complete information from

the other players but has approximations of the information needed from the other players.

Nash or noncooperative solution: The Nash or noncooperative formulation occurs
when coalition among players is not possible due to organizational, information, or process

barriers. This is often the case in designing large systems, where players act independently

112

and must make assumptions concerning the other players' actions. A strategy pair (x!N,
x?N) is a Nash solution if
Fi(xINx2Ny = min f1(x] x2N) & fo(xIN,x2N) = min fo(xIN x2) (3.4)
XI € Xl X'ZE X2

This solution has the property of individual stability, but is not necessarily collectively

stable. It is also difficult to compute since it is the fixed point of a nonlinear map, namely,

(XIN’XZN) € XlN(XZN) X X2N(XIN) (3.5)
where
XINx2) := {xINe X!: fi(xIN x2) = minf(x!,x2)} (3.6)
xex!
and
X2N(x1):= {x2N e X2: fo(x1,x2N) =xgnin)2‘2(x1,x2)} 3.7
€ X

are called the rational reaction sets of the two players.

Stackelberg solutions: Consider the case when one player dominates another, i.e., the
two players have a leader-follower relationship. P1 is a leader if he declares his strategy
first by assuming or dictating that the follower P2 behaves rationally. Thus, the model
with P1 as leader is
minimize f1(x!,x2)
(x/.x2) e U
satisfying x? € X2N(x!) (3.8)
and the model with P2 as leader is
minimize fa(x!,x2)
(x1.x2) e U
satisfying x! € XIN(x2) (3.9)
where X/N(x2) and X2N(x!) are defined in Eq. (3.6) and Eq. (3.7). For two players, these
Stackelberg games are special cases of bilevel models. These models occur in a variety of

important applications and have been studied extensively (Azarm and Li, 1987, Azarm and

Li, 1995, Falk and Liu, 1993, Loridan and Morgan, 1988, Loridan and Morgan, 1989,

113

Lucchetti, et al., 1987, Rao and Mistree, 1995, Shimuzu, 1985, Shimuzu and Aiyoshi,
1981, Simaan and Cruz, 1973).

Application of these protocols in the design of complex systems is one of the fundamental
motivations of this dissertation. The mathematics behind the protocols are borrowed, but
implementation of the conceptual constructs in the context of complex system design is part
of the novelty of this work (Lewis and Mistree, 1996b). As part of this implementation,
various approximation techniques are used to facilitate the application of game theoretical

techniques to design. These approximation techniques are discussed in Section 3.3.4.

3.3.4 Approximation Techniques Used in Each Protocol

Approximate Cooperative

The primary approximation technique used in the approximate cooperative formulation is
Taylor series. Suppose f(x) is a function of a single variable x and f is differentiable to the
nth order on some interval. If x* is a point in that interval, then Taylor's theorem says that

the change in f from x* to (x* + €) is as follows (Reklaitis, et al., 1983):

2
f(x'+£)=f(x')+(£)5iji =.+£—8—)i—]2: ot
dx '*=* 21 dx* === (3.10)
(8n)dllf -
+ =y +0rwl(£)
n! dx" 1*=x

where Op+1(€) in Eqn. 3.10 indicates terms of (n+1)st order or higher in €. For multiple

variables, the Taylor series takes the form of
f(x +e)=f(x)+ Vf(x*)(8)+(£)TH,(e)+ O(e). 3.11)

For sufficiently small €, the first order term in Taylor theorem will dominate the others. It
is assumed that the first term is sufficient to approximate f. The validity of this assumption

is addressed in Section 7.5.1. Taylor series in Eqns. 3.10 and 3.11 is truncated to give

114

Fx+e)= f(x')+(£)% Cor f(x +)= f()+V(xENE) (3.12)

L.

where f is now approximated.

In the context of complex systems design and game theory, different disciplines are
coupled through design and state variables. Design variables are the independent variables,
so no closed form expression is available. But it is assumed that each discipline has an
analysis routine to calculate the local state variables as functions of the design variables.
However, nonlocal state variables also affect the local analysis. Therefore, Taylor series
are used to approximate the nonlocal state variables, s. This is illustrated in Figure 3.12.
Each player has his own independent design variables, x;. There is no formula or equation
for these xj's. An optimization algorithm, which calls analysis routines to find the values
of s; (for which equations exist), is used to determine the values of x;. Approximations of
nonlocal state variables (of the other players) are used by each player. It is assumed that
actual values of nonlocal x;'s are used in the approximate cooperative formulation, as no

analysis routines exist to simulate and approximate the x;'s.

Player 1 Analysis/Synthesis Player 2 Analysis/Synthesis
Independent variables, x1 (ndependent variables, x2
x1=72?? x2 =222
~ L ™ 4 ;)
[Optimization Algorithm J — (Optimization Algorithm)
—d

Analysis Routines Analysis Routines

s1 = f(s1,52,x1,x2) s2 = f(s1,52,x1,x2)

_) * J
x1,8] @ — ———® X2, 52
approximation approximation
of s1 of s

Figure 3.12. Coupling of Behavior Variables

115

Single and multiple variable representation of the state variables are

s(x)=s"+ % eo(x—x), s(x) =5+ Vs(x")(x - x°). (3.13)

For example, the approximation of a state variable as a function of three design variables in

scalar form 1s
dS 0 ds el ds o
dx: (xa—xa)+z:(xb—xb)+-a?(xc—xc). (3.14)

S(x,,%,,x,)=5" +

<

The one major step remaining to complete the Taylor approximation is the determination of
the full derivatives of the state variables in Eqn. 3.13, with respect to the design variables,
or Vs(x). Determining the full derivatives is accomplished using the Global Sensitivity
Equations (GSE) method first proposed in (Sobieszczanski-Sobieski, 1988) and
successfully used in the design of complex systems (Bloebaum, et al., 1992, Renaud and
Gabriele, 1991, Renaud and Gabriele, 1993, Renaud and Gabriele, 1994). Using the GSE
method, the total derivatives of the dependent variables can be solved for as functions of
the independent variables from every player. These derivatives use the local partial
derivatives from each player to determine the total derivative. To illustrate, consider a
problem with three players, a, b, and c, each with one state variable, s,, sp, and s¢, which
are functions of the design variables of each player, x,, xp, and x¢ (Eqn. 3.15). The
Global Sensitivity Equations are developed by analyzing the derivative of the functions s,,
Sb, and s¢ (state equations) from the three players with respect to the independent design

variables, X, Xp, Xc (Eqn. 3.16).

Sa = 83 (X, Xps Xc)
Sp = S (xa9 Xbs xc) (315)

Sc = S¢ (Xay Xp, Xc)

ds,/dxy = 9s,/0Xy + 0s./dsp(ds,/dx,) + 0s,/0s. (ds./dx,)
ds,/dxy = 0dsp/9Xy + Osp/ds,(ds,/dxy) + 9s,/0s. (ds/dx,) (3.16)
ds/dxy = 0s./IXy + 0s./9s,(ds,/dxy) + ds/Ds, (ds,/dx,)

116

Rearranging equation 3.16 into matrix notation produces the following matrix

representation of the GSE:

I -0s,/0s,, -0s,/0s, ds,/dx, 08,/0Xy
-0s,/0s, I -0sp/0s, dsy/dxy | = | 9s,/0x, (3.17)
-0s/dsp -0s./dsy I ds/dx, ds./0xy

[M] [X] = [B]

The partial derivatives in the GSE [M] and [B] matrices can be found by various methods,
and the total derivatives [X] can be found using matrix solution techniques. These total
derivatives then are used in a Taylor expansion of nonlocal equations, Eqn. 3.13.
Therefore, each player uses an approximation of the state equations of the other players.
This is the essence of approximate cooperation in design. The implementation of
approximate cooperative formulations is illustrated and discussed in Sections 5.5.1 and

5.6.1.

Noncooperative and I eader/Follower

In both the noncooperative and leader/follower formulations, the fundamental construct is
the Rational Reaction Set. The Rational Reaction Set, RRS, as defined in Section 3.3.3
and illustrated in Section 3.3.1 quantifies the decision-making strategy of a player in a
game. In complex systems design, constructing an exact RRS becomes an insurmountable
problem with the existence of multiple variables and multiple nonlinear constraints and
goals. Therefore, an approximation of an RRS must be constructed. In this dissertation
this approximation is accomplished using the Design of Experiments and Response Surface

Methodology.

117

Design and Analysis of Experiments and Response Surface Methodology

The Design of Experiments is a statistical approach (Box, et al., 1978, Montgomery, 1991)
for solving problems that range from engineering to social science. Among various DOE
techniques, the Response Surface Methodology is a collection of statistical techniques
which support the design of experiments and fitting a response model (Box and Draper,
1987, Khuri and Cornell, 1987). By systematic design and analysis of experiments, a
response surface model is used to relate a response (output) variable to the levels of a
number of factors or input variables that affect it. In problems using computer simulation
tools, performing 'experiments’ is equivalent to performing a number of simulations with
different input settings. Generally speaking, when fitting the response surface model, the
following relationship exists:

y = f(x, B) + random error + bias, (3.18)
where y represents the observed result of the response from the simulation, x is the vector
representing the simulation inputs, and B is the vector representing the coefficients in the
regression model. In Eqn. 3.18, the response surface model is represented by f(x,B). The
predicted response is presented by

y= f(x, B), (3.19)
where ¥ is the estimated value of the response. It can be noted that the difference between
the observed and the estimated values of the response, y - y, is the random error plus the
bias. Random error is defined as

random error = y -E(y), (3.20)
where E(y) is the statistical expected value of y. The bias, also called systematic error, is

defined as

bias = E(y) - f(x, B). (3.21)

118

In this dissertation, statistical methods are combined with the notions of game theory in the
design of complex systems. Simply speaking, what has been proposed is to build
approximating functions of responses, i.e., y = f(x, B), using the design of experiments
(DOE) techniques, specifically the Response Surface Methodology (RSM). But there are
primary differences between typical applications of RSM and the implementation proposed
in this dissertation (see Section 3.3.4.2). Specifically, since RSM is being used to
construct approximations of the decision-making strategy of a player with respect to the
control variables of another player, the terms input variables and response must be
explicitly defined:

Input variables: For Player I, the input variables are the control variables

(design and state) of Player II that are needed (but unknown) by Player I to

determine his control variables, and vice versa for Player II.

Response: For Player I, a response is a control variable (design or state) of Player

I which is dependent on the input variables of Player II.
In Section 3.3.1, the relationship between the input variables and responses as defined here
are illustrated using a simple example. Typical application of RSM will involve a set of
input variables (design variables) and a number of responses (state variables, constraints,
goals). Therefore, a major point of departure in this dissertation is the application of RSM

to non-traditional scenarios encountered in game theory.

There are three main reasons why these statistical methods are used here:

 First, using DOE techniques, it is possible to quantify and study the effect of
one player upon another. One player's behavior variables (and design
variables, in an optimization context) are functions of not only local variables,
but non-local variables under the control of other players. It is important to
quantify the non-local effect of other players on the local decisions of each

119

player. Therefore, the statistical methods provide an effective way to formalize
the interactions among players.

» Second, the RSM embodies the decision-making strategy of a player regardless
of the other players’ actions. This embodiment is built by multiple solutions of
a player's model (compromise DSP) for different values of the input variables
(non-local control variables) in the experimental design. In this way, the
embodiment of each player's decision-making strategy, or the approximations
of the Rational Reaction Sets, can be used in solving the game theoretic
formulations.

» Third, in complex systems design, solving a player's model using unknown,
symbolic input variables is highly unreasonable due to the existence of multiple
design variables, nonlinear constraints, and nonlinear goals. Therefore, using
DOE techniques, the unknown input variables can be simulated using numerical
values, and the model can be solved for each input setting. By using DOE and
RSM techniques to simulate known input variables, approximations of each
player as functions of unknown, nonlocal variables can be constructed.
Therefore, constructing a RRS can be facilitated without using symbolic
variables, thus solving a difficult theoretical and computational problem of
finding an exact RRS using symbolic variables.

It is asserted that the above three considerations address not only the issue of efficiency,
but also the issue of effectiveness in designing complex systems using game-theoretical
principles. The use of statistical methods makes it possible to approximate a fundamental

decision-making construct, the Rational Reaction Set, in game theory.

In Figure 3.13, the general procedure for constructing response surface equations (RSE) is

shown. Each step is discussed in the context of its implementation in this dissertation.

120

Step 1: Set up DOE based on number
of input variables and lower/upper =) -
bounds ‘ 1

Step 2: Perform simulation experiment,
~_(Solve compromise DSP) ‘ @

Step 3: Analyze responses and create —vwvyvlv
RSEs ‘= B=(XX) XY

Figure 3.13. Construction of RSE in Game Theory

Step 1: Set up DOE based on number of input variables and their lower/upper bounds

In this dissertation, one specific experimental design is employed. This design is the
Central Composite Design (CCD). There are many other experimental designs which can
be used such as the full factorial design, fractional factorial design, orthogonal arrays, and
Plackett-Burman design. The CCD is used in this work because: 1) it is likely the most
effective and widely used experiment for fitting second-order response surfaces and
studying second-order effects (Montgomery, 1991), and 2) only second order surfaces are
built in the algorithm of this dissertation. Generally speaking, when picking the
experiment, a designer has to consider factors including: 1) number of simulation runs
required, 2) ease of implementation, 3) flexibility of the design, 4) recognition of
confounding patterns, and 5) ease of analysis. Confounding patterns are dictated by the
resolution of the experiment. The definitions of resolution III, IV, and V designs are
provided here, as the distinction between experimental designs of different resolution is

important.

121

Resolution III: There are designs in which estimates of main factors are free of
confounding with estimates of other main factors, but may be lumped with two-
factor interactions. The estimates of two-factor interactions may be lumped with
each other.

Resolution IV: There are designs in which estimates of main factors are free of
confounding with any other estimates of main factors or two-factor interactions.
However, the estimates of two-factor interactions are lumped with each other.

Resolution V: Estimates of main factors and two-factor interactions are free of
confounding with any other main factors or two-factor interactions. However, the
estimates of two-factor interactions may be lumped with three-factor interactions.

The background for the CCD is given next.

As shown in Figure 3.14, central composite designs are first order fractional factorial
designs augmented by additional "star" and center points which allow the estimation of a

quadratic surface model of the following form:

f(x1,-.-xp) = Bo + B1x1+ ... +Bnxn Linear Terms
+Y1x12 + ... +YnXp2 Quadratic Terms (3.22)
+Bi2x12+ ... + Bon-1Xn-1,n Interaction terms
. B T 1
T 1 1 T
2 1 -1 +1
. 3 -1 +1 -1
Factorial |4 1 +1 +1
: 5 1 -1 -1 <
portion ¢ H 1+l /
7 1+l I)
8 +1 +1 +1 ® 7r >—p
9 -« 0 0
Star 10 @ 9 9
portion || P o
12 0+« 0 ®
13 0 0 'z o Full factorial points
Center |14 0 M)
point s 0 0 O Center point

® Star points

Figure 3.14. Three Variable Central Composite Design

122

A CCD generally consists of:

. A complete or fraction of a first-order (2") factorial design where parameter
levels are coded to the usual -1 and +1 values. This is called the facrorial
portion of the design. For a model as shown in Eqn. 3.22, a resolution IV
design is needed to clear the main factors and two-factor interactions with any

other main factors or two-factor interactions.

2. Two "star points"” on the axis of each design variable at a distance o from the
center. A central composite design is made rotatable by the choice of o. The
value of o for rotatability depends on the number of points in the factorial

portion of the design.

3. Center points. The number of center points in a physical experiment can be
more than one. In this computer experiment, because there is no blocking

effect, only one center point is necessary.

The number of experiments needed for fitting a second-order model using a CCD with a
Resolution V (estimation of distinct main factor and two-factor interactions are possible)
fractional factorial design as the factorial portion is significantly less than that would be
required in a three-level full factorial design, as shown in Table 3.3. The benefit of using
this technique increases as the number of input factors increases. From the form of Eqn.
3.22, it is noted that a second-order model can be used to study the main effects of a factor

(linear terms), non-linear effects (quadratic terms) and the interaction effects (interaction

terms).

Table 3.3. A Comparison of Full Factorial 3 and CCD Design

Factors Full Factorial CCD
3n
3 27 15
4 81 25
5 243 27
6 729 45
7 2,187 79

123

In this dissertation, an automated statistical software package called NORMAN (Cartuyvels
and Dupas, 1993), which is available on the UNIX platform, is applied. The design of
experiments supported by this package include Plackett-Burman, 3-level full factorial
design, 3 level Box-Behknen design, full factorial 2-level design, fractional factorial 2-level
design, central composite design, Latin-Hypercube design, Taguchi OA, user defined

experiments, etc.

Step 2: Perform Simulation Experiments

Most of the DOE techniques available in the literature are specifically developed for
physical experiments rather than computer simulations. Though most of the technologies
for these two types of experiments are similar, the focus and the details are different.
Computer experiments differ from physical experiments in that there is no random error.
The lack of random (or replication) error leads to important distinctions between computer
and physical experiments:

» The adequacy of a response-surface model fitted to the observed data is
determined solely by the systematic bias, e.g., the assumed model differs
significantly from the exact model.

» Usual measures of uncertainty derived from least-squares residuals have no
obvious statistical meaning. Though deterministic measures of uncertainty are
available, they may be very difficult to compute.

» Classical notions of experimental unit, blocking, replication, and randomization

are irrelevant.

The current methodologies for the design and analysis of physical experiments (Box, et al.,
1978, Box and Draper, 1987) are not ideal for complex, deterministic computer models.
However, as summarized by Welch and co-authors (Welch, et al., 1990), statistics still

plays its role in the following ways:

124

* The selection of inputs at which to run a computer code is still an experimental
design problem.

* Statistical principles and attitudes towards data analysis are helpful however the
data are generated.

* There is uncertainty associated with predictions from fitted models, and the
quantification of uncertainty is a statistical problem.

* A computer code can be modeled as if it were a realization of a stochastic
process.

The concept of computer simulation in this dissertation is different from typical computer
simulations (Chen, 1995b, Engelund, et al., 1993, Unal, et al., 1994). Since it is desired
to find the value of the responses (say, design and state variables of Player I) as functions
of the input variables (say, design and state variables of Player II), the RSE's take the form
of

xp = fi(xg, s

st = f2(x11, SID- (3.23)
Generating responses for sy, Eqn. 3.23, is the typical simulation procedure in constructing
RSEs. The difficulty occurs as a result of having to find x, Eqn. 3.23. Since the x|'s are
independent variables, there is no explicit function to describe them. They are found by
solving a given model. Therefore, a simulation in this dissertation is the solution of a
compromise DSP for one set of input variables. So, whereas in previous applications of
RSM, a simulation consisted of one analysis call to a set of equations, in this dissertation a
simulation may consist of multiple analysis calls during one compromise DSP solution in

order to find xj (and subsequently, sy as well).

Step 3: Analyze Experiments and Create RSE

In this dissertation, the primary objective of analyzing the results of the designed computer

experiments is to: create a mathematical relationship between the coupled design and state

125

variables of multiple players. In other words, the primary objective is to estimate the effect
of one player on another in the form of an approximated Rational Reaction Set. Analyzing
and creating a response surface model can involve different steps depending on the scope
of the study and engineer's preferences (Box and Draper, 1987, Montgomery, 1991).
Some common steps are discussed next in the context of constructing a rational reaction

set.

Estimate the Significance of Different Factors

In order to be considered as an input in the simulation experiment, a control variable from
one player is needed by another player. So, it is already assumed that the control variable
is significant. Typically in estimating the significance of different factors, no information is
available about the effects of the factors. But with the RRS, it is assumed that all the
factors are at least first-order significant. All second order interactions are assumed to be
significant as well. That is, no screening experiments are performed to eliminate any
meaningless second order interactions (Chen, 1996, Chen, et al., 1994). Screening

experiments certainly could be performed, but in this work they are not.

Create a Response Surface Model

To create the relationship between a response and input variable as a response surface
model, the most widely used method is the least squares method (Heiberger, 1989). The
general least squares problem is to find the coefficients B that minimize the distance

between an observed vector Y and linear combination XB of a set of basis vectors X:

rnBin 1Y - XBP? (3.24)

The minimum distance is obtained when XB is the projection of Y into the linear space

defined by X:

126

XB=P,Y=X(X'X)"'X'Y (3.25)

Therefore, the solution is

B=(XX)"'X'Y (3.26)

where X' is the transpose of the matrix X. From Eqn. 3.26, it is noted that, once the result
of Y is available from experiments, the coefficient B in the response surface mode! can be
calculated by matrix operations. In addition to matrix operations, several other algorithms,
e.g., Wikinson's Sweep and Beaton's SWP, have been demonstrated to achieve the same

purpose (Heiberger, 1989).

Confirmation tests

By using the response surface models to approximate the Rational Reaction Set of a player,
it is necessary to confirm the accuracy of surface models. However, confirmation tests can
only occur when the model is very simple and an exact RRS can be found. With complex
models, finding an exact RRS is virtually impossible. Therefore, in complex systems
design there is nothing to compare the approximation with in order to confirm its accuracy.
However, in order to confirm the results and validate the approach, a simple example is
studied in Section 5.6, where the exact rational reaction sets are known. With complex
problems, the accuracy of the approximation is embedded within the solution algorithm, in
this case, the FALP Algorithm. In Sections 6.5, the effectiveness of the FALP Algorithm

is given, which is a step towards validating the approximated RRS with complex models.

3.3.5 Guidelines for Verifying Hypothesis II: Subsystem Interactions

Hypothesis II: Game theoretic principles can be applied to accurately model and

describe the interactions in complex systems design.

127

Hypothesis I1 is tested by using five posits. The guidelines and section numbers related to

the testing of each posit are given.

Posit 2.1: Design processes can be abstracted as games where the players are multiple
designers or design teams and their associated analysis and synthesis tools.

The application of game theory to complex design problems is one of the novel and
fundamental contributions of this work. Therefore, testing of this posit requires the
mapping of design processes to typical games. Most of the previous research in modeling
interactions among designers and their analysis and synthesis tools has assumed
cooperation. But, in practice this may not be the case. Consider the two practices of
NASA and the Soviet Union's former aircraft design teams described in Section 3.2.3.
These practices are quite unlike the concurrent engineering principles that are found in the
modern classroom and research annals. These two practices are also drastically different
from each other and most likely will result in different aircraft. Which aircraft is "better"?
Which design process is "better”? In this posit, insight into possible answers to these types
of questions is provided and the capability to descriptively model multidisciplinary design
when cooperation may or may not exist is developed. Starting from a Decision-Based
Design perspective, the mapping of complex design processes to typical games is
accomplished:

* at a general level in Sections 3.3.2 and 3.3.3.

* by presenting specific definitions for the application of game theory in design in

Section 5.3.
» and by providing rationale for using the specific game protocols in design

situations in Sections 5.4 and 5.5.

128

Posir 2.2: Approximate cooperation can be modeled using the Global Sensitivity

Equations and Taylor series to approximate nonlocal equations.

To verify this posit, two steps are required.

* First the notion of approximate cooperation must be defined. In game theory, the
majority of game modeling is concerned with full cooperation. However, in
complex systems design, analysis and synthesis models are too large to achieve
full cooperation. Therefore, the notion of approximate cooperation must be
established. This is accomplished in Section 3.3.4.

* Second, the use of the Global Sensitivity Equations and Taylor series and their
relation to approximate cooperation is detailed in Section 3.3.4 and Section 5.5.1.
This is the typical approach in complex systems modeling -- using an
approximation of the required information from the other disciplines. The
primary contribution in this posit is the mapping of the GSE approach to

approximate cooperation in game theory.

Posit 2.3: First order Taylor series can be used as a good approximation of nonlocal
state equations.

To verify this posit, the fidelity of the term "approximate" in approximate cooperation is
explored. First order Taylor series are used as the approximation tool, and verification of
this approximation is detailed in Section 7.5. The Taylor series approximations must also
be differentiable in order to be useful in a gradient based solution scheme. The
fundamental contribution of this posit is the integration of previous approaches into the
compromise DSP, and mapping of the approach to approximate cooperation. Practically,
approximate cooperation is a very inviting concept, as disciplines may not have to

cooperate fully with exact representations of nonlocal information, but may be happy

129

enough with approximations of nonlocal information. In other words, the disciplines are

satisficing instead of optimizing.

Posit 2.4: Second order response surfaces can be used to approximate the Rational
Reaction Sets of the disciplinary players in a design game.

To verify this posit, the benefits of approximating the RRS of each player as second order
equations are illustrated. The benefits of this posit include the capability to quantify the
decision-making strategy of each decision maker. Qualitatively, the strategy of a decision
maker in the compromise DSP is to "minimize the deviation function." The RRS quantifies
this strategy so that the other decision makers can make their decision accordingly.

* In Section 3.3.3, the RRS is defined mathematically.

* In Sections 3.3.4 and 5.5.2, the RRS in the context of design is defined
conceptually.

* In complex systems design, finding the exact RRS of a player is virtually
impossible because of multiple system variables, and multiple nonlinear
constraints and goals. Therefore, in order to quantify the decision-making of
each player, the RRS must be approximated. In Section 5.5, the process for
constructing these approximations using RSE's is detailed.

* The verification of using these response surface equations as approximations of

the rational reaction sets is explored in Section 5.6.

Posit 2.5: The compromlsc DSP: can be used as th& fundamcntai construct to develop
the game theory protocols and techmques

To verify this protocol, the use of the compromise DSP in each game protocol is illustrated.
The compromise DSP has been shown to be a fundamental multiobjective mathematical

construct (Chen, 1995a, Mistree, et al., 1993a, Mistree, et al., 1994, Vadde, 1995). The

130

work of this posit further establishes the benefits of using the compromise DSP as the
fundamental building block in systems modeling.

* In Sections 5.5.1 and 7.4, the compromise DSP is used as the fundamental
construct in modeling full cooperation and approximate cooperation using
multiple objectives.

* In Sections 5.5.2 and 7.4, the compromise DSP is used as the mathematical
decision-making model to construct the Rational Reaction Sets of each player.
Multiple solutions of each player's compromise DSP according to changing input
variables allows a Design of Experiments_driver to characterize a player's
decision-making strategy, which is embodied in a compromise DSP. This is

fundamental in both the noncooperative and leader/follower formulations.

3.4 TEST OF HYPOTHESIS III - FORAGING NOTION

In this section, ramifications and verification guidelines are

provided for testing Hypothesis III. The notion of design space

search in a discrete domain is explored in Section 3.4.1. In

Section 3.4.2, the fundamental building block of foraging, the

Tabu Search, is introduced. In Section 3.4.3, two other heuristic
optimization algorithms, Simulated Annealing (SA) and Genetic Algorithms (GA), are
introduced in order to discuss some notions of foraging which are similar to constructs in
SA and GA. In Section 3.4.4, the fundamentals of the continuous solver, the ALP

Algorithm, are introduced.

131

3.4.1 Discrete Design Space Search

Methods for the solution of a purely continuous optimization problem are well-established
and understood (Reklaitis, et al., 1983). Most are based on calculating a gradient and
moving in the appropriate direction in the design space to increase the goodness of the
design. Therefore, the design space is searched via a set of directions represented by
gradients. If discrete (or integer) variables are present in a design model, gradients of
functions with respect to discrete variables do not exist. Therefore, the search of a discrete
space cannot be accomplished by using derivatives or gradients, and must be based on

other heuristic-based methods.

There are many such heuristic methods for solving discrete optimization problems
including branch and bound methods, simulated annealing, genetic algorithms, and tabu
search. In Section 2.3.4, application of these methods to complex systems design
problems are reviewed. However, when discrete and continuous variables are present in a
design model, purely discrete or purely continuous solvers are not adequate unless some
strong simplifications are made in the model. For instance, one could discretize the
continuous variables and solve the resulting discrete model using a discrete solver, or one
could assume the discrete variables are continuous and then round-off the continuous
solution values to the nearest discrete values. These types of methods have been shown to
produce sub-optimal solutions in general (Arora and Huang, 1994, Loh and Papalambros,
1991, Papalambros, 1995). Therefore, algorithms must be able to handle and search the
discrete and continuous design spaces without making strong assumptions such as these.
In this dissertation, techniques using heuristics and calculus-based methods are combined

into one solution algorithm.

132

The heuristic portion of the algorithm is based on the notion of animals foraging for food in
the wild. Certain empirical constructs developed by observing animals foraging for food
are similar to characteristics of three previous discrete solution techniques, as shown in
Table 3.4. The basic memory structure is built using constructs from the Tabu Search.
Identifying portions of solutions that frequently occur in good solutions is similar to
identifying schema in Genetic Algorithms. Establishing a dynamic memory is similar to the
changing probability distribution used in Simulated Annealing. These three algorithms and

their basic solution principles are introduced in the next section.

Table 3.4. Solver Characteristics

Solution Technique Characteristic "

Tabu Search Memory of visited sites

Genetic Algorithms Solution schema

Simulated Annealing Dynamic memory

3.4.2 The Foundation of the Foraging Search: The Tabu Search

In this work, the tabu search is used as the building block for the foraging search. The
basis for Tabu Search (TS) is described as follows (Bland and Dawson, 1991, Glover,
1989a, Glover, 1989b). In general terms, TS is an iterative improvement procedure in that
it starts from some initial solution and attempts to determine a better solution by applying a
greatest-descent procedure. However, TS is characterized by a capability to escape local
optima by using short and long term memory of visited solutions. Moreover, TS permits
backtracking to previous solutions, which may ultimately lead, via a different direction, to
better solutions. The features of a tabu list and aspiration criteria make TS a powerful

optimization tool for models characterized by discrete variables (Bland and Dawson, 1991,

133

Ford and Bloebaum, 1993). Given a set of objectives to be met over a set X, TS proceeds
from one point in the design space to another until a chosen termination criterion is
satisfied. Since the TS is an unassuming algorithm (it will continue to search without
assuming the best solution has been found), the termination criteria usually involve a
maximum number of neighborhood searches or time limit. Each x € X has an associated
neighborhood N(x) < X, and each solution x' € N(x) is reached from x by an operation
called a move. For discrete variables, the neighborhood is easily defined. TS goes beyond
local search by employing a strategy of modifying N(x) as the search progresses,
effectively replacing it by another neighborhood N*(x). A key aspect of TS is the use of
special memory structures that serve to determine N*(x) and hence to organize the way in
which the space is explored. However, researchers using the TS have assumed constant
memory lists. It is asserted that using constant list lengths limits the search, and by
expanding the TS using dynamic memory lists parallels the natural process of foraging
more closely and provides a more effective search construct. This assertion is detailed and
verified in Sections 6.3 and 6.4, respectively. In addition, the TS does not provide
effective decision support information during a design process. Therefore, TS is also
expanded to provide the designer with effective information concerning the design. This
information is based on how animals learn about sites with food during a search. This is
also detailed in Section 6.3. Both principles are found in similar forms in two other
discrete solvers, Simulated Annealing and Genetic Algorithms. These are the use of
dynamic memory in SA and schema identification in GA. In the next section these two

algorithms are introduced in order to illustrate these principles.

134

3.4.3 Simulated Annealing and Genetic Algorithms
Simulated Annealing (SA)
The idea behind SA is to generate random design points and evaluate the goodness of each
point (Arora and Huang, 1994). If the trial point is better than the current best value, then
the point is accepted. However, SA is also characterized by an ability to escape local
minima by accepting points even if they are worse than the best point so far. This
acceptance is based on the value of the probability density function:

—4f

p(Af) = CXP(T) (3.27)

j
where the parameter Tj is the "temperature” at iteration j. This changing temperature is how
simulated annealing gets its name, by simulating the process of annealing where the
temperature is slowly decreased in order to cool a metal. A high temperature is used
initially and slowly decreased as the solution process continues. The new point is accepted
if the probability is larger than a random number z, p(Af) > z. The acceptance probability
steadily decreases to zero as the temperature is reduced. Thus in the initial stages, the
method is likely to accept worse designs, while in the final stages the worse designs are
almost always rejected. Eqn. 3.27 is therefore a form of a dynamic memory structure,
which parallels the foraging behavior of animals (see Section 6.3). As discussed in Section
2.3.5, SA has been used for mixed discrete/continuous design problems, but it is
computationally intensive and not efficient for large problems. Therefore, only one

principle of SA is being modeled in this work, the notion of dynamic memory.

Genetic Algorithms (GA)

Genetic Algorithms are based on the natural process of genetic reproduction (Arora and
Huang, 1994). Their philosophical basis is in Darwin's survival of the fittest theory. A set
of design alternatives (represented by binary strings) representing a population in a given

generation are allowed to reproduce and cross-pollinate among themselves, with bias

135

allocated to the most fit members of the population. In a GA, an initial set of designs
produces new and better designs using the most fit set members. Three operators are
needed to implement GA's: reproduction, crossover, and mutation. Reproduction occurs
when an old string is copied into the new population according to the string's fitness.
More fit strings, or schema, receive higher numbers of offspring, and therefore project
their genes (or values of design variables) into more and more populations. Crossover
occurs when selected members of the population exchange characteristics among
themselves. Mutation occurs when a select few members of the population, determined at
random locations on a string, are switched from O to 1, or 1 to 0. As discussed in Section
2.3.5, GA's are computationally intensive for large problems. Therefore, only one

principle of GA is being modeled in this work, the notion of schema identification.

These three algorithms, TS, SA, and GA, are all very useful because they do not require
the calculation of gradients, and therefore differentiability requirements of the models can
be relaxed. In Section 6.3, a heuristic discrete algorithm is developed based on notions of
foraging, integrating constructs from these algorithms. The foraging search is coupled
with a continuous, gradient-based solver to solve mixed discrete/continuous problems
(Lewis and Mistree, 1996a). In the next section, the background for the continuous solver,

the ALP Algorithm is given.

3.4.4 The ALP Algorithm and the Compromise DSP

The ALP Algorithm as introduced in Section 1.2.2, is the solution algorithm for continuous
compromise DSPs. In Section 1.2.1, a conceptual overview of the compromise DSP is
given. In this section, a mathematical overview is given. The compromise DSP is a
multiobjective decision model which is a hybrid formulation (Mistree, et al., 1993a),

incorporating concepts from both traditional Mathematical Programming (Winston, 1995)

136

and Goal Programming (Ignizio, 1983). The compromise DSP is used to determine the
values of design variables to satisfy a set of constraints and to achieve as closely as
possible a set of conflicting goals. The compromise DSP is used to model such decisions
since it is capable of handling constraints, goals, and multiple objectives (Mistree, et al.,

1994). In particular, the compromise DSP offers the following capabilities:

* accurately represent single-objective or multi-objectives,

* use either preemptive or Archimedean formulation to prioritize objectives,
* have hard constraints or soft constraints (goals),

* quickly generate results for several different weighting schemes,

» handle discrete or continuous variables.

The system descriptors, namely, system and deviation variables, system constraints,
system goals, bounds and the deviation function are described in detail elsewhere (Mistree,

et al., 1993a) and are therefore is not repeated here.

The mathematical form of the compromise DSP is summarized in Figure 3.15. In the
compromise DSP, each goal, Aj;, has two associated deviation variables d;- and d;*, which
indicate the extent of the deviation from the target. The deviation variables, d;* and d;-, are
both positive, and the product, d;* - di- = 0, ensures that at least one of the deviation
variables for a particular goal is always zero. If the problem is solved using a vertex
solution scheme (as in the ALP algorithm (Mistree, et al., 1993a)), then this condition is

automatically satisfied.

137

Given
An alternative to be improved through modification.
Assumptions used to model the domain of interest.
The system parameters:
n number of continuous system variables
1 number of discrete/integer system variables
p+q number of system constraints
p equality constraints
q inequality constraints
m number of system goals
gi(X) system constraint functions
giX) = CGiX) -DiX)
fr(dj) function of deviation variables to be minimized
at priority level k for the preemptive case.

Find
Xi 1=1,...,n+l
1s d‘f 1=1,...,m
Satisfy

System constraints ‘(linear, nonlinear)
giX)=0; i=1,..p
giX) 2 0; 1 = p+l, ..., pHq

System goals (linear, nonlinear)

AX) +di-df=Gj; i=1,..,m

Bounds

X,mn < X, < X;max i=1,..,n

d;,df 2 0; i=1..,m

(dj-d} = 0; i=1,..,m)
Minimize

Archimedean or preemptive deviation function (lexicographic minimum)
Z = [fi(dj, dD), ..., fi(dj, d])]

Figure 3.15. Mathematical Form of a Compromise DSP

Three important features contribute to the success of the ALP algorithm, namely,

* the use of second-order terms in linearization,
« the normalization of the constraints and goals and their transformation into generally
well-behaved convex functions in the region of interest,

» an “intelligent” constraint suppression and accumulation scheme.

138

These features are described in detail in (Mistree, et al., 1993a) and briefly described in the

following paragraphs.

First and second order algorithms need the derivatives (with respect to the design variables)
of the constraints and goals in addition to the values of these quantities. The ALP
algorithm is a modified second order algorithm (only the diagonal second order terms are
used). This is one of the principal deviations from other SLP algorithms that were
developed based on the well-known work of Stewart and Griffith (Stewart and Griffith,
1961). This is the first principal feature of the algorithm. The derivatives are determined
numerically using the central difference formula. After solving the linear problem, this
solution can be used to improve the second order approximation using the ALP algorithm.

A block diagram of the implementation of the ALP algorithm is shown in Figure 3.16.

A user specifies the input to the software implementation of the algorithm in the form of a
DSP template. This template consists of data and user provided FORTRAN routines. The
data is used to define the problem size, the names of the variables and constraints, the
bounds on the variables, the linear constraints, and the convergence criteria. The
FORTRAN routines are used to evaluate the nonlinear constraints and goals, to input data
required for the constraint evaluation routines and the design-analysis routines, and to
output results in a format desired by the user. Access is provided to a design-analysis
program library from the analysis/synthesis cycle and also within the synthesis cycle. In
the design of major systems it is desirable to use the design-analysis interface associated
with the analysis/synthesis cycles (e.g., structural design requiring the use of a finite

element program).

139

INITIAL DESIGN

& | NONLINEAR DATA FiLE
>| & | coMPROMISE
g DSP
\
1 EVALUATION | | ANALYSIS
ROUTINES OGRAMS
EVALUATE DESIGN
CONSTRAINTS AND
GOALS
COMPROMISE
w | = FORMULATE DSP
d d LINEARIZED DSP TEMPLATE
=5
5 y
@
<l - SOLVE
< ; z LINEARIZED DSP MULTIPLEX
z |18 ALGORITHM
“wl <
£ l
<
H
REFORMULATE
LINEARIZED DSP

CONVERGED *

-

<

Figure 3.16 Implementation of the ALP Algorithm
For Solving Compromise DSPs (Mistree, et al., 1993a)

Once the nonlinear compromise DSP is formulated, it is approximated by linearization. At
each stage the solution of the linear programming problem is obtained by a Multiplex
algorithm based on (Ignizio, 1985b). The choice among these algorithms depends on the
form of the deviation function, which is the measure of how well the system goals are met.
The deviation function that is given in the mathematical form of the template can be

implemented in two ways:

1. In the Preemptive form the deviation function is given as a lexicographic
minimum of the goal deviation variables (Ignizio, 1985a). Usually, goals
are not equally important. To determine a solution on the basis of

140

preference, the goals may be rank-ordered into priority levels. For
example, customers rate certain product qualities higher than other

qualities.

o

In an Archimedean form the deviation function is given as a weighted
function of the goal deviation variables. This reduces the formulation of
the template to a traditional single objective problem. This formulation is
used when exact quantitative relationships among the goals are known.

The integration of the ALP Algorithm with the foraging heuristic is detailed in Section 6.3.

In the next section, guidelines for verifying Hypothesis II are discussed.

3.4.5 Guidelines for Verifying Hypothesis III

Hypothesis III: The notion of foraging of wild animals is a natural analogy for
optimization and can be used as an effective search technique in the solution of mixed

discrete/continuous models.

Hypothesis III is tested by using three posits. The guidelines and section numbers related

to the testing of each posit are given.

Posit 3.1: Notions of foraging can be modeled to'i:reate a heuristic, under which
characteristics from Genetic Algorithms, Tabu Search, and Simmlated Annealing can
be grouped. - : : '

In Section 6.2, foraging as a natural process and an analogy to optimization is introduced.
Certain empirical observations of various animal species foraging for food are quantified in
Section 6.3. It is shown that these observations are similar to processes in other heuristic

algorithms. Subsequently, it is asserted that foraging, or the notion of animals looking for

141

the most food in the smallest amount of time, is the natural equivalent of artificial

optimization processes.

The foraging heuristic is a computer-based tool that designers can use to make decisions in
a design process. Furthermore, foraging itself is based on an everyday decision-making
process in nature. This creates an interesting closed loop of an abstraction of a natural

decision making process which provides support to designers who are making decisions.

Posit 3.2: The Tabu Searchcan be: used as the bmidmg block for the foragmg sohmon
algorithm.

It is well-known that animals use their memory to recall sites which have already been
visited. This is precisely the premise under which the Tabu Search was developed.
Therefore, in Section 6.3, it is shown how the Tabu Search is used as the fundamental

building block of the foraging search.

Posit 3.3: The ALP Algorithm along with foragmg can be used to effecttvely solve|
mixed discrete/continuous problems. -

To verify this posit, the integration of ALP and foraging is presented in Section 6.3 and the
effectiveness of the resulting algorithm to solve mixed discrete/continuous design problems
is presented. The effectiveness of this posit is verified in Section 6.4. The developments
to support this posit allow designers to solve mixed discrete/continuous design problems
using constructs from discrete solvers and continuous solvers. Therefore, designers (or
computer tools) do not have to approximate discrete variables as being continuous or
continuous variables as being discrete. Instead, the actual design problem can be modeled

and solved.

142

* In Section 6.3, the integration of the two constructs is detailed. The resulting
algorithm is called Foraging-directed Adaptive Linear Programming (FALP).

* In Sections 6.4, verification of FALP is presented for two well-studied examples:
the design of a coil compression spring and the design of a cylindrical pressure
vessel. It is shown that FALP produces significantly better solutions than
previous published algorithms.

* In Section 7.5, FALP is used to solve the disciplinary players' compromise DSPs
in certain protocols in the study of a passenger aircraft. Whereas the studies in
Sections 6.5 are single level problems with a single objective, the aircraft study
consists of two players each with discrete and continuous variables, and each

with multiple nonlinear goals.

3.5 TEST OF HYPOTHESIS IV - CONVEXITY

In this section, some ramifications and verification guidelines are provided for testing
Hypothesis IV. It is asserted in (Mistree, et al., 1993a), that a transformation function, the
g-function, is an effective way to transform nonconvex functions into well-behaved convex
functions in the ALP Algorithm. In this section, the basic definitions of convexity in
optimization theory are given, as well as a proof of the transformation of functions using

this g-function.

3.5.1 Handling Convexity
One of the most difficult issues in nonlinear optimization is handling nonconvex
constraints. Previous attempts to handle nonconvex functions have developed special

algorithms to handle nonconvex functions or have established conditions under which

143

certain classes of functions can be transformed into convex functions (Feng, et al., 1990,
Floudas and Visweswaran, 1990, Styblinski and Tang, 1990, Thach and Konno, 1993,
Vaidyanathan and El-Halwagi, 1994, Ye, 1992). Most of classic optimization theory is
based on the assumption that the constraints are each convex. However, in complex
systems design, constraints are usually highly nonlinear and are neither convex or concave.
Many derivative-based solution algorithms have difficulty solving problems when
constraints are not convex. The continuous portion of FALP, the Adaptive Linear
Programming Algorithm is derivative-based (Mistree, et al., 1993a). To overcome the
mathematical hurdles present when nonconvex constraints are present, a "g-function" (see
Section 1.2.2) transformation is proposed in (Mistree, et al., 1993a). In this section, this
g-function is investigated. It is proven that the g-function does not retain the convexity of a
constraint in regions where the constraint is convex, and theoretically does not transform

nonconvex constraints into well-behaved convex functions.

The g-function transformation is a one-to-one mapping of the original constraint into a new
function over the same domain. Consider a general constraint of the form:

g(x):C(x)2D. (3.28)
where C(x) is the constraint (capability) equation, x is the design variable vector, and D is
the constraint limit (demand). In a standard compromise DSP, this constraint is then

normalized as,

g(x):g—ng—) -120 (3.29)
r=¥ (3.30)
g(x)=r—-120. (3.31)

The g-function is then divided by the term (r+1), which will always be positive. The g-

function representation of a constraint becomes:

144

-1
g(x)=:—+120. (3.32)

The convexity of this g-function (Eqn. 3.32) is investigated in Sections 3.5.2 and 3.5.3.

In general, a function f is convex if the Hessian matrix of f is positive definite or positive
semidefinite for all values of xji,x, (Reklaitis, et al., 1983). On the other hand, a
function f is concave if the Hessian matrix of f is negative definite or negative semidefinite
for all values of xj, ...,xy. The Hessian matrix of a function f(x1, ...,Xp) is a nxn

Symmetric matrix given by

if
X)) = =Vif, .
H, (... %,) [ax,.axj} f (3.33)

For H to be positive definite or positive semidefinite, the following conditions must be met:

1. All diagonal elements are positive.

2. The leading principal determinants are positive.

In the ALP Algorithm, a heuristic simplification is used (Mistree, et al., 1993a) to
determine the convexity of a function. Only the principal diagonals are used in determining
the convexity of a given function. This simplification is a relaxation of the convexity
restriction, as a function may be considered convex from the main diagonal terms, but in
reality may not be convex due to the principal determinants. In the following proof, the g-

function, as implemented in the ALP Algorithm is investigated.

In the following sections, the convexity of the g-function (Eqn. 3.32) with respect to the
design variables (Eqn. 3.33) is investigated. It is proven by induction that the g-function in
the ALP Algorithm is not a good transformation of nonconvex functions into well-behaved

convex functions. The proof begins in Section 3.5.2 with the case when the g-function is a

145

function of only one system variable (n=1). In Section 3.5.3, the case when the g-function
is a function of k-1 system variables (n=k-1) is considered. The proof is concluded by

induction for the case when n=k in Section 3.5.3.

3.5.2 The Single Variable Case (n=1)
Assume that the vector x contains only one design variable. The convexity of this function

is investigated by taking first and second derivatives with respect to a representative design

variable, x. ’
dr _(p—1)4 id
dg(x) _(r+1)% (r2 DZ _ 202 (3.34)
dx (r+1* . (r+1)
2 2LE(r+ 1) — 4L (r+1
d’g(x) _ 253 (r+1)" —4(E)(r+1) (3.35)

dx* (r+1)*
In order for g to be convex, the second derivative (Hessian with only one element) must be

non-negative,

2
‘%(2"—) >0. (3.36)

This occurs when,
2L (r+ 1) - 4(&) (r+1) 5
(r+1*

28 (r+1)" 24(£)(r +1)

Le(r+1)22(L)% (3.37)
Investigating Eqn. 3.37, it is obvious that the right hand side will always be non-negative.
The term (r+1) on the left hand side will always be positive since the constraint involves
positive quantities and limits. Therefore, the left hand side must be a larger non-negative
number for the g-function to be convex. Consider two cases: 1) the original constraint is

convex, and 2) the original constraint is concave.

146

Case |

If the constraint is convex, then % 2 0, and the g-function becomes convex when
Lo(r+1)22(&)? (3.38)
and concave when
0SLL(r+1)<2(&). (3.39)
This is a strong result, as the g-function still may be convex, but may not be everywhere
convex, as the original function is.
Case 2
If the constraint is concave then
£.<0 (3.40)
and the g-function is also everywhere concave, as the left hand side of Eqn. 3.37 is <0,

and the right hand side of Eqn. 3.37 is 2 0. Therefore, the g-function does not transform

the original constraint into a convex function.

3.5.3 The Muitiple Variable Case
n=2
The vector x consists of two design variables. With multiple variables, the convexity of a

constraint is determined by the Hessian, Vr2. The Hessian of the original constraint is

2 3

2| oxf dx,dx,
Vré = 3 2 |- (3.41)

dx20x, ox3

Again, two cases are investigated: case 1) the original constraint is convex, and 2) the
original constraint is concave.

Case 1

If the original constraint is convex, then Vr2 is positive definite or positive semidefinite for

all x, and
£ 20,and T2 -(G2) 2 0. (3.42)

147

The Hessian of the g-function, Vg2 is,

2L (r+ 1 -4 (r+1) 255 (r+ 1) = 4(E)ENr+1) |
4 (r+1)
V2= (r+1 (3.43)
23—337(”1) —4ENENr+1) 29'(r+1) — 4 (r+1)
i (r+1)* (r+1)*]

For the g-function to be convex, Vg2 (Eqn. 3.43) must be positive definite or positive

semidefinite, so the two sub-determinants must be
28L(r+1) = 4(E)(r+1)

20, and
r+1*
ATEEE(r+ 1) = 8(5)" T2 -8 21~ 4(E) (r+ D - 16(E)N(E) 525 220 (3.44)
(r+1)

In the ALP Algorithm, only the main diagonal terms are used to determine the convexity of

the function, therefore, only
28 (r+ 17 = 4(&)(r+1) 28 (r+1) - ALY (r+1)
x >0, and —2 20 (345
(r+D* (r+1*

are necessary. As in the single variable case, for Eqn. 3.45 to be satisfied,
a’(r+1)>2() and a’(r+1)>2("’) (3.46)

Unlike the original constraint which is everywhere convex, these conditions may not be

satisfied everywhere. Therefore, the g-function transformation is not useful for the multi-

variable case as well.

Case 2

If the original constraint is concave, then Vr2 is negative definite or negative semidefinite,

and

2 <0,and & -GEE) <0, (3.47)

For the g-function to be concave, Vg2 must be negative definite or negative semidefinite,

so the two sub-determinants must be
2L+ 1)’ =4 (r+1)
(r+ l)4

<0, and

148

4EESE(r+ D=8 Ze - 8(30)" B - 4(EE) (r + 1) - 16(2 () 32

i ar3 ax?
(r+1)°

<0 (3.48)

In the ALP Algorithm, only the main diagonal terms are used to determine the convexity of

the function, therefore, only

25 (r+ 17 —4(E) (r+1) 2L (r+ 1) - 4(E) (r+1)

<0, and <0. (3.49
(r+1)?* (r+1)* (3:49)

As in the single variable case, for Eqn. 3.49 to be satisfied,
LH(r+1)S2(2)%, and Lr(r+1) S 2L)% (3.50)

If the original constraint is concave then —gx—’ < 0 and gx—’ < O (again, only the diagonal
I 2

terms of the Hessian are used), and the g-function is also everywhere concave, as the left
hand side is < 0, and the right hand side is 2 O for both equations in Eqn. 3.50. Therefore,

the g-function does not transform the original constraint into a convex function.

n=(k-1)
The vector x consists of multiple design variables. With multiple variables, the convexity

of a constraint is determined by the Hessian, Vr2. The Hessian of the original constraint is

2 o
arf Tt odxdx,
Vil = : : (3.51)
9% a°r
dx,_ 0x, X

Again, two cases are investigated: case 1) the original constraint is convex, and 2) the
original constraint is concave,

Case 1

If the original constraint is convex, then Vr? is positive definite or positive semidefinite for

all x, and
3%r a*r 3% _ (_3%r N2 _ : -
o 20, 575~ (Ggan)” 20, .., each sub-determinant up to (k-1) 2 0.

149

The Hessian of the g-function, Vg2 is,

[2T 1) -4+ D) 258 (r + 1) = 4NN +1)
(r+1)“ (r+1)*
Vgl = .
255 (r+1) 4(3')(~)(r+1) 2 (r+1) = 4G (r+ 1)
L (r+1)° (r+1)* |
(3.52)

For the g-function to be convex, Vg2 must be positive definite or positive semidefinite, and

taking the main diagonals,
2L (r+1)° —4(£) (r+1) 2EE(r+1) - 4(EZ) (r+)
= — 20, .., — >0. (3.53)
(r+1) (r+1)

each must be greater than or equal to zero. As in the single variable case, for Eqn 3.53 to

be satisfied,

S+ 220,

. &). (3.54)

Unlike the original constraint which is everywhere convex, these conditions may not be
satisfied everywhere. In essence, it becomes increasingly difficult for the convexity

conditions to be satisfied with more design variables.

Case 2

If the original constraint is concave, then Vr2 is negative definite or negative semidefinite,
and

3 ?r 32 3r_y2 .

ax_fr <0, E,Lax—r (355;)" =0,..., each sub-determinant up to (k-1) <0

For the g-function to be concave, Vg2 must be negative definite or negative semidefinite,

and

2ZL(r+ 1) =4 (r+1) 22 (r+1) = 42 (r +1)
i et <0, .., —2k el <0. (3.55)
(r+1) (r+1)

As in the single variable case, for Eqn. 3.55 to be satisfied,

150

SHr+DS2AEY, o FE(r+D 2 (3.56)

3 o°r

2
T 3 eeey 3.7
ar; oxg.,

If the original constraint is concave then

< 0 (again, only the diagonal terms

of the Hessian are used), and the g-function is also everywhere concave, as the left hand
side is < 0, and the right hand side is > O for both equations in Eqn. 3.56. Therefore, the

g-function does not transform the original constraint into a convex function.

In conclusion, it is shown that the g-function does not transform concave functions into
well-behaved convex functions in the ALP Algorithm. In addition, the g-function does not
guarantee full retaining of the convexity of convex functions. These proofs are shown for
the cases of number of design variables = 1, 2, and k-1. Therefore, by induction, it can be
shown that it is true for the case of number of design variables = k. As previously
mentioned, in the preceding proof, it is assumed that only the principal diagonals are used
to determine the convexity of the function. This relaxation results in a stronger proof, as
even with the relaxed conditions, the g-function does not transform nonconvex functions

into well-behaved convex functions in the ALP Algorithm.

The g-function is currently a recommended option in the ALP Algorithm. Therefore, in
order to implement the g-function, the user would have to hard-code the transformation of
the constraints and goals themselves. That is, the g-function is not part of the source code
of the ALP Algorithm. Therefore, when the ALP Algorithm is used in Chapters 5, 6, and
7 to solve design models, the g-function is not used. It is noted that although it has been
shown for general functions across x € R, this is not to say that the g-function may work
well in certain cases numerically in a small neighborhood, x € X. Since the ALP

Algorithm operates on small intervals, it is left to future work to investigate the merit of the

151

g-function from an empirical and numerical standpoint. In addition, functions which are

neither concave or convex have not been investigated.

3.5.4 Guidelines for Verifying Hypothesis IV: Convexity

Hypothesis IV: The g-function is a useful transformation of nonconvex functions into

well-behaved convex functions.

Hypothesis IV is tested and rejected using one posit. The guidelines and section numbers

related to the testing of this posit are given.

Posit 4.1: Nonlinear optimization theory can be uscd to prove/disprbvg- the
effectiveness of the g-function in transforming nonconvex constraints and goals in the

compromise DSP to convex equations.

Hypothesis IV is verified by testing Posit 4.1 which supports the use of Hypothesis IV.
This is a very straightforward posit, as a formal proof is constructed. In Sections 3.5.2
and 3.5.3, it is proven that the g-function theoretically does not transform nonconvex
functions into well-behaved convex equations. This proof is constructed across the entire
analytical independent variable range. The proof presented in Section 3.5.3 does not
discount that in certain circumstances, in a small neighborhood around a given design
point, the g-function numerically may be used to construct well-behaved convex functions
based on the step size. This is precisely how the ALP Algorithm operates, therefore,
further numerical investigation of the g-function and improvement of the transformation
function is warranted. However, the theoretical foundation of the g-function has been

investigated.

152

3.6 A SUMMARY OF THE VERIFICATION AND MOTIVATING
STUDIES

In Section 1.3, the strategy for implementing and verifying the method and approach in this
dissertation is provided. Two primary verification problems, the design of a pressure
vessel, and the design of a compression spring are first used to explain and verify the
research hypotheses associated with the developments of this work in Chapters 4, 5, and 6.
Two pressure vessel problems are studied, one with multiple players to verify Hypothesis
II in Chapter 5, and one with discrete and continuous variables to verify Hypothesis III in
Chapter 6. In Chapter 4, variations on the pressure vessel and aircraft design problems are
included to verify Hypothesis I. Having tested the hypotheses, the second part of the
verification strategy is the further development and verification using a motivating study,
the design of a Boeing passenger aircraft. The aircraft design problem is presented in

Chapter 7.

These studies have been chosen based on the motivating research issues identified in
Chapter 2. A summary of the representative features of each study is given in Table 3.5,
including the type of analysis, nonlinearity, number of goals, type of decision variables,

overall complexity, type of confirmation tests, and relevant hypotheses.

The complexity increases in Table 3.5 from the first pressure vessel problem to the
motivating Boeing case study. Each problem is marked by nonlinearity. In the first
pressure vessel problem the level nonlinearity is low (quadratic or cubic equations), while
the aircraft problem is highly nonlinear. The compression spring and second pressure
vessel problem are single-objective for comparison and illustration purposes, while the

other studies are multi-objective. The compression spring and second pressure vessel

153

problem consist of both discrete and continuous decision variables to verify Hypothesis III,
while the first pressure vessel problem is purely continuous to verify Hypotheses I and II.
The motivating case study is mixed discrete/continuous. Different types of confirmation
tests are used depending upon the availability of previous studies, analytical equations, and

numbers of variables

Table 3.5. Features of Example Problems and Motivating Study

Pressure (!'fompression Pressure ﬁoeing Aircraft
Vessel 1 Spring Vessel I1
Type of structural, structural structural, aerodynarmics,
Analysis €conormic economic weights, propulsion,
€conomic
Nonlinearity | nonlinear nonlinear nonlinear highly nonlinear
of Function
Goals multiple single single multiple
Decision continuous discrete and discrete and | discrete and
Variables continuous continuous continuous
Overall very low low low high
Complexity
Type of 3-D plots, exhaustive comparison | analytical
Confirmation | analytical search with previous
Tests comparison studies
Hypothesis [, II I I LI, I
Used to Test

3.7 A LOOK BACK AND A LOOK AHEAD

In this chapter, the algorithm for integrated subsystem embodiment and system synthesis
and the research hypotheses associated with the development of the algorithm are
presented. For each hypothesis, ramifications, relevant theoretical information, and
verification guidelines are provided as a means to establish the foundations for the research

approach. The three steps of the algorithm, corresponding the first three hypotheses are

154

explored in Sections 3.2, 3.3, and 3.4, respectively. The final hypothesis is disproved in
Section 3.5. In Figure 3.17, the progress of the dissertation is shown. Building upon the
theoretical foundation and literature review of Chapters 1 and 2, in Chapter 3 the overall
algorithm is introduced in Chapter 3. Chapter 3 begins phase II of the verification strategy
of this dissertation. In Chapters 4, 5, and 6, phase Il is continued as the three specific
steps and hypotheses associated with the algorithm are explored in more detailed and

verified using the case studies introduced in Section 3.6.

o

Phase H: Testing the
Research Hypotheses

Figure 3.17. Frame of Reference: Chapter 3

155

CHAPTER 4

CLASSIFICATION AND FORMULATION OF
MULTIDISCIPLINARY DESIGN PROBLEMS: A DECISION-
BASED PERSPECTIVE

A multidisciplinary design process consists of multiple designers or design teams, each

with a specified domain of expertise. This expertise is

domain-dependent but design is an interactive, integrated
Hypothesis I

transformation of information. Therefore, the designers

‘S?gi: -_Hypotheses lland IV _;and design teams must be able to communicate with the
Set of Design other teams at various levels of detail, from integrated
Solutions

cross-disciplinary teams to integrated computer
infrastructures of "talking” software. Many times, however, complete communication and
cooperation are not possible at either level. Because of the complexity of multidisciplinary
design problems, there is a need to "step back” and design the design process. In other
words, a meta-design phase is needed to define and structure linguistically the design
process and product (Mistree, et al., 1990b, Mistree, et al., 1993c). There are many
approaches to formulating and solving complex design problems including various single
and multi-level approaches. There is, however, no common set of linguistic entities to
compare and map these approaches to each other. In this chapter, multidisciplinary design
optimization (MDO) is approached from a game-theoretic, Decision-Based Design (DBD)
perspective and classification schemes for multidisciplinary design problems are explored.
The exploration and developments in this chapter provide support for the first step of the

algorithm (Figure 1.7), Hypothesis I, and Posits 1.1 and 1.2, presented in Section 3.1.

156

NOMENCLATURE
Erom (Balling and Sobieski, 1994):

SAND - Simultaneous Analysis and Design

NAND - Nested Analysis and Design

i: denotes discipline number i

si: disciplinary state variables which comprise the state equations

rj: residuals in the state equations

Yij: coupling functions, contains those function computed in discipline i which are needed
in discipline j

yij": coupling variables

X: system design variables needed by more than one discipline

Xi: disciplinary design variables

gi: design constraint functions

fi: design objective functions

Ci: cumulative design function determined by a system analyzer

di: discrepancy functions

disciplines: subsystems described by a common underlying physical principle

Disciplinary analyzers seek values for the state variables that reduce the residuals in the
state equations to zero. That is, analyzers try establish to equilibrium conditions by
changing the state variables.

Disciplinary evaluators find the residuals in the state equations for given values of the state
variables. That is, evaluators are usually sets of equations that only evaluate the
value of the equations for a set of constant state variables.

From (Mistree, et al.., 1990b):

selection is the process of making a choice between a number of possibilities taking into
account a number of measures of merit or attributes.

compromise is the process of determining the “right” values (or combination) of design
variables, such that, the system being designed is feasible with respect to
constraints and system performance is maximized with respect to multiple, possibly
conflicting goals.

heuristic decision (Kamal, 1990) is, roughly speaking, a combination of a preliminary
selection and compromise decision. The solution process for a heuristic decision
differs from the compromise and selection DSPs and involves reasoning.

LI Lateral interactions between subsystems

FVI: Forward vertical interactions among parent system and subsystems

RVI: Reverse vertical interactions among parent system and subsystems

di*, di: deviation variables, measures difference between goal i target values and actual
achievement.

Z;: deviation function of model i

state variables: dependent variables which describe the behavior of a system.

State equations: equations which are functions of the state and design variables and describe
the behavior of a system.

157

4.1 TECHNOLOGY BASE: CONCEPTUAL CONSTRUCTS

In this chapter, Hypothesis I, which corresponds to the first step of the algorithm presented

in Section 3.1, is explored. This hypothesis is:

Hypothesis I: Classification of problem and process in multidisciplinary design can be
facilitated by integrating constructs from Decision-Based Design, Game Theory, and

Multidiscplinary Design Optimization.

Posits 1.1 and 1.2, which support this hypothesis are as follows.

Hypothesis 1 Posits
Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-
independent lexicon for multidisciplinary design.
Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidisciplinary design.

Explanation and description of each posit is provided in the context of the formulation and
solution of complex design problems characterized by multiple disciplines. Several
approaches to formulating and solving a multidisciplinary design problem have arisen in a
rather ad hoc fashion over the years. These approaches include single-level and multi-level
formulations, hierarchical and nonhierarchical system decomposition methods, and
numerous optimization and analysis processes and approaches at the system and subsystem
levels. In Balling (Balling and Sobieski, 1994, Cramer, et al., 1994), a classification

system for formulation of MDO problems is presented. In this chapter,

« this classification system is explored and extended from a game-theoretical,
decision-based perspective,

» aframework is provided within which research activities and open questions in
the field of MDO can be articulated in the future,

158

* the linguistic entities most often used by designers and researchers in MDO to
describe both the system and the process are identified,

* the first step of the algorithm of this dissertation presented in Chapter 3 is
embodied with the classification framework.

Specifically, the focus of the classification presented in this chapter is on the types of
decisions made by designers and how they affect the decisions of the other designers.
Entities from the DSP Technique are integrated with the Balling-Sobieski (B-S) framework
(Balling and Sobieski, 1994, Cramer, et al., 1994) and domain-independent linguistic

terms to build the taxonomy (Lewis and Mistree, 1995).

In this chapter, it is shown that the Balling-Sobieski framework is consistent with that of
the Decision Support Problem Technique through the use of linguistic entities describing
the same type of formulations. It is shown that the underlying linguistics of the solution
approaches are the same and can be coalesced into a homogeneous framework with which
to base the research, application, and technology of MDO upon. Identifying linguistic
entities is only the first step in designing complex systems. These terms must be embodied
on a computer according to a parsing and translation scheme. Identification of these terms

facilitates the development of a complete system and process taxonomy for MDO.

In Sections 4.1.1 and 4.1.2, the foundational principles of this chapter are presented.
These include the background of the B-S scheme and the Decision Support Problem
Technique (DSP Technique). The game theory foundation is presented in Sections 1.2.3
and 3.3.3. In Section 4.3, these concepts are integrated and their continuity illustrated in
complex systems design. The DSP Technique approach is mapped into the B-S scheme
and the synergy between the two approaches is illustrated. This chapter is closed with

some assertions concerning the implementation and application of the taxonomy in complex

159

system design. The mindset of this chapter is one of description as opposed to
prescription. The lexicon is presented as a means to describe the necessary product and
process issues that designers, researchers, and engineers must handle in complex systems

design as opposed to prescribing a specific method that designers must follow.

4.1.1 The Balling-Sobieski Scheme
A brief overview of the classification to MDO problems presented in (Balling and Sobieski,
1994) is given in this section. The classification scheme is rooted in the following

assumptions:
* that complex systems consists of distinct disciplinary subsystems which may or may
not overlap,
+ and that these systems can be represented by a mathematical model.

The validity of these assumptions is returned to in Section 4.3. As a frame of reference, in

Figure 4.1 a generic representation of a coupled, three-discipline system is shown.

Discipline 1

X, X1

~-

4,9 e |

81 r

I

Y12 y21

Discipline 2
X, x2 e———

]

12, 92] Y13 | ¥31

S

r2

[

Y23 Y32

Discipline 3
Xy XY D]

]

5
)

I

Figure 4.1. A Three-Discipline Coupled System (Balling and Sobieski, 1994)

160

Depending on the level of analysis, the modules in Figure 4.1 may refer to disciplines,
components, or processes. This figure is representative of a typical three-discipline
coupled system. It is the decomposition of the system, subsystem coupling and solution,
and system synthesis that pose major research and application problems in MDO. The
terms used in the figure, as well as other common terms are defined below (see also

Nomenclature) and taken from (Balling and Sobieski, 1994).

S1, 2, s3: disciplinary state variables which comprise the state equations

I, 2, 13: residuals in the state equations

Y12- Y13 Y21, ¥23, ¥31, ¥Y32: coupling functions, yij contains those function computed
in discipline i which are needed in discipline j.

yi25, y13%, y215, y23*, y31”, y32™: coupling variables

X: system design variables needed by more than one discipline

X1, X2, X3: disciplinary design variables

g1, g2, g3: design constraint functions

f1, f2, f3: design objective functions

Disciplinary analyzers seek values for the state variables that reduce the residuals in the
state equations to zero. That is, analyzers try to establish equilibrium
conditions by changing the state variables.

Disciplinary evaluators find the residuals in the state equations for given values of the
state variables. That is, evaluators are usually sets of equations that only
evaluate the values of the equations for a set of constant state variables.

The primary task at hand is summarized as follows:
Determine the values of the design, state, and coupling variables that satisfy the state
equations, the coupling equalities, the design constraints, and the design objective

functions.
Based on this, six classifications for fundamental approaches to MDO problem formulation

and solution are presented by Balling and Sobieski, which depend on three criteria:

161

1) System vs. Multilevel decomposition

2) Simultaneous (SAND) vs. Nested Analysis and Design (NAND) at the system
level

3) Simultaneous (SAND) vs. Nested Analysis and Design (NAND) at the
subsystem or discipline level

At the discipline level, SAND implies that the disciplinary design and state variables are
determined simultaneously by the optimizer, while NAND implies that the optimizer
determines only the disciplinary design variables and requires determination of the state
variables at each iteration. Thus, at each iteration of the optimizer, disciplinary evaluators
are called for SAND while disciplinary analyzers are called for NAND. At the system
level, SAND implies that the system design variables and coupling variables are determined
simultaneously by the system optimizer, while NAND implies that the system optimizer
determines only the system design variables and requires calls to a system analyzer to
determine the coupling variables at each iteration. The "optimizers" at the system level or
discipline level could be gradient based or heuristic in nature, depending on the problem
formulation. Further classifications can be generated if these approaches are combined or

linked sequentially within one design problem.

Each approach has a three-part name consisting of the overall decomposition descriptor, the
solution approach at the system level, and the solution approach at the subsystem level.
The first part indicates whether the approach is a single-level or multi-level approach. The
middle and last parts of the name indicate whether the SAND or NAND approach is used at
the system and discipline levels, respectively. The B-S scheme has inherently assumed
cooperation is the only possible form of communication among design teams. In reality
this is not the case (See Sections 1.1.2 and 3.3.2). Therefore, the B-S scheme is extended

using game-theoretic entities. In (Rao and Mistree, 1995), SAND and NAND bilevel

162

models are explored using game theory formulations and constructs. This work extends
the integration of game theory into MDO. In the B-S scheme, if a single-level approach is
used, the game is cooperative, as the disciplinary problems are combined into one single-
level problem. Therefore, a set of Pareto solutions are ideally available. If a multi-level
approach is used, then the disciplines must be designated a status in the design game. The
possible designations are:

* cooperative: each disciplinary design team cooperates and has a representation of
the other teams’ information. If the representation is exact, then it is full
cooperation. If it is approximate, then it is an approximate cooperation scenario,

* noncooperative: each disciplinary design team has to make assumptions about the
other teams,

* leader: a discipline either decides first or dominates a process, assuming the
followers behave rationally,

* follower: a discipline either waits on another discipline or is dominated by another
one.

The theoretical and mathematical descriptions of each designation in the context of game

theory are given in Section 3.3.3.

4.1.2 A Decision-Based Perspective

Decision-Based Design (DBD) is offered as a starting point for the creation of design
methods that are based on the notion that the principal role of an engineer, in the design of
a product or process, is to make decisions. An introduction to DBD is presented in Section
1.2.1. Independently of the approaches or methods used to plan, establish goals and
model systems, designers are, and will continue to be involved in two primary activities,
namely, processing symbols and making decisions. Therefore, it is asserted that the

process of design, in its most basic sense, is a series of decisions. By focusing upon

163

decisions, a description of the processes is available which is written in a common
“language” for teams from the various disciplines -- a language that can be used in the

process of designing.

It is recognized that the implementation of DBD can take many forms; the implementation
used is the Decision Support Problem (DSP) Technique. It is being developed and
implemented to provide support for human judgment in designing systems that can be
manufactured and maintained. It was indicated that this approach to engineering design is
embodied in the DSP Technique and the principal support for human designers is provided
through the formulation and solution of Decision Support Problems (DSPs). The
software to solve DSPs on the computer is called DSIDES (Decision Support in the Design
of Engineering Systems) (Mistree, et al., 1993a). Details about the mathematical structure
of the DSPs are presented in (Mistree, et al., 1993a, Mistree, et al., 1993c). Entities from
the computer implementation of the DSP Technique are used to model processes (Bras and
Mistree, 1991, Mistree, et al., 1990b). These entities, called Support Problems, are
shown in Figure 4.2. It is these entities that are integrated with the linguistic entities of the

B-S scheme from Section 4.1.1 in the classification system of this dissertation.

Phase
Event
.~ O Compromise
Task 7 Decision
Decision’ 0 Selection
RN Decision
System ~~ . D Heuristic
~- Decision

Figure 4.2. Potential Support Problem Entities

164

The phase entity is used to represent pieces of a partitioned process. Events occur within a
phase. Tasks and decisions are used to model phases and events. Tasks and decisions
require direct involvement of human designers and/or systems. Phases and events are
accomplished by performing tasks and making decisions. A task is an activity to be
accomplished. The design process itself is a task for the design team, namely, “design a
suitable product”. A task itself may contain other tasks and decisions, even phases and
events, as in the design task. However, simple tasks like “run computer program A” do

not involve decisions.

In this chapter, the focus is on decisions, which are only a small portion of the DSP
Technique, but the primary notion in DBD. More specifically, the focus is on coupled
DSPs. By focusing on coupled DSPs, they can be mapped into the B-S scheme as coupled
approaches to MDO problems. Examples of coupled DSPs include coupled selection-
compromise and compromise-compromise formulations. The solution algorithm for
continuous Decision Support Problems is the Adaptive Linear Programming (ALP)
Algorithm (Mistree, et al., 1993a) (see Sections 1.2.2 and 3.4.4). Decision Support
Problems and the ALP Algorithm are based on the notion of satisficing solutions, or
solutions that are "good enough”, as opposed to optimizing solutions (Simon, 1982). In
the B-S scheme, optimizers are used extensively in the classification. However,
throughout this chapter, the ALP Algorithm is referred to as a solver instead of an
optimizer. In Section 4.2, a classification scheme is presented which consists of terms
from both the B-S scheme, game theory, and the DSP Technique. Domain-independent
terms inherent in complex systems design which embody certain open research areas are

also integrated.

165

4.2 A DECISION-BASED CLASSIFICATION

Scientific lexicons, or classification structures generally consist of a number of levels of
identification. For example, consider the field of biology. Any living entity can be
classified according to the accepted framework in biology. This framework begins at the
kingdom level and continues to the species level, getting more specific with the lower
levels. The levels of the taxonomy presented in this section also correspond to a given
level of detail, but in addition to the system, classification of the process is included as
well. Each level classifies a portion of the design process and product. The taxonomy is
rooted in the notion of Integrated Product and Process Design (IPPD) where issues
concerning the design product and the process to required to reach the final product are
simultaneously addressed. The taxonomy proposed has three levels as shown in Figure

4.3. Each level is explained in the following sections.

PROCESS SYSTEM
DESCRIPTORS DESCRIPTORS

SAND/NAND
LEVELI game theory

Classification

Domain

Independent

Ten.ns Inherent | LEVEL2Z2
m =

Decision Support
Problem
LEVEL 3 Technique

entities

Figure 4.3. General Taxonomy

166

4.2.1 Level 1: Overall System and Process Formulation

Level 1 consists of the scheme proposed by Balling and Sobieski with game theoretical
extensions. In this scheme, the overall analysis and solution scheme for the problem at
hand is identified (Balling and Sobieski, 1994) and the interaction structure is identified
using terms from game theory to classify the roles of the disciplines. By using the B-S
scheme, insight into the structure of the system is apparent, but classification of the
solution process is the primary focus. Once the first level terms have been determined, the

second level of the classification is used to classify the problem and process further.

4.2.2 Level 2: System Definition

Level 2 contains domain independent linguistic terms that are used to define the system and
the structure of the disciplines. These terms are inherent in complex systems design and
MDO. A sample of these terms is shown at the top level in Figure 4.4. The process of
identifying the domain independent terms involves surveying the relevant work, both
research and application, in the field of MDO. Of course, there are countless terms used by
different contributors, but the aim is to identify fundamental terms which are intrinsic to
and define MDO as an emerging field of research and application. The domain independent
terms do not connote any type of technological information concerning specific
optimization algorithms, analysis packages, approximation techniques, etc. These terms
are independent of time-based developments such as technology. The domain independent
terms should act as an umbrella to the specific system developments in academia,
government, and industry, while the other taxonomy levels encompass the process
developments. Within this framework it is espoused that there are various "open"
linguistic statements, such as "solution method", or "level of approximation”. The
"solution method" used varies according to problem requirements, system characteristics,

researcher background, and so on. It is within these types of open statements that the

167

individual research and applications evolve in academia, industry, and government. In
Figure 4.4 it is illustrated where many of the research topics and practical applications of
MDO fit into some of the domain independent entities. For instance, under "solution",

research areas include discrete methods, continuous methods, and multiple objective

techniques.
‘Approximation I Solutloﬁ Decomposition Analysis Human Facto

Besponse | (piscrete Methods | Hierarchical

Surfaces Genetic Algorithms Nonhisrarchical
Taylor Series Integer Programming Mixed
Regression Continuous Methods
CONMIN
DOE SLP System Analysis Codes Recision Support
Muttipie Objective Response Surface Equations TaM
Iechniques Computing Interfaces
v,

Figure 4.4. Examples of Linguistic Research Terms in MDO

4.2.3 Level 3: Process Definition

Level 3 contains the process independent base entities of the DSP Technique (Bras and
Mistree, 1991) which are introduced in Section 4.1.2. These are the basic entities for a
designer that are independent of the system or process at hand. These entities classify the
type of action that must be made in order to perform the terms of level 2. Then, based on
the action that must be made, the appropriate support tool, whether it be computer-based,

experiment-based, or rule-based, can be used to help designers make decisions.

As technology continues to expand and better and faster approaches are developed,
taxonomies should not change. If they do change, then they do not represent a robust,
time-independent description of a set of entities. It is asserted that any lexicon in technical
fields must be independent of technology. For instance, the Balling-Sobieski framework is

independent of technology. In the B-S framework the simple classification of "evaluators”

168

could include crude Simpson's integration of strain energy to detailed finite element
analysis and simulation. Therefore, the framework is independent of time-based
developments, such as technology. A similar analogy is found in the area of chemistry. In
chemistry, the framework is in the form of the periodic table. All research and technology,
no matter how advanced, can be referred in some sense back to this table, and this will
always be true. The pure sciences have set the standard for classifications of some sort.
Granted, in design, or even multidisciplinary design, this type of framework is difficult
due to the inherent lack of structure. In this chapter, value is added to this evolving
framework of MDO to stimulate its acceptance as a basis for communication. In Section
4.3, the verification for Hypothesis I is provided by linguistically mapping the
classification of three example problems using the B-S scheme and entities from the DSP
Technique. Further verification of Hypothesis I is provided in Section 4.3 by classifying

these example problems using the complete classification system of Section 4.2.

4.3 MAPPING OF APPROACHES: AN INTEGRATION OF IDEAS

In this section, it is illustrated how various applications of the DSPT to designing complex
systems can be mapped into the B-S scheme. In particular, the design of a passenger
aircraft, a thermal energy system, and a pressure vessel subject to design and
manufacturing requirements are used to illustrate the mapping. The classification of these
examples are also given, as further support for Hypothesis I. In Figure 4.5, a roadmap of
the general mapping is given for this section. Problem formulations using coupled DSPs
are mapped into the Balling-Sobieski formulations. In Figure 4.5, examples are given of
both formulations including all coupling functions. This mapping includes comparing the

linguistic entities of the formulations and illustrating the consistency among the entities.

169

The objective function in coupled DSPs is in the form of a deviation function, which
characterizes the deviation from the goal achievements and the goal aspirations. The
objective function in the B-S framework is either a standard objective function or a
discrepancy function which is used to characterize the discrepancy in the goals, constraints,
and coupling functions. In both frameworks, the form of the objective function is
minimized. Using coupled DSPs, interactions between subsystems are modeled using
lateral interaction constraints (LI), and interactions between the system and subsystems are
modeled using reverse and forward interaction constraints (RVI, FVI). In the B-S
framework, coupling is modeled using coupling functions (yij) and cumulative design
functions (c;). This mapping also represents the highest and lowest level of the taxonomy
presented in Section 4.2 and establishes the continuity between the levels of classification
in the taxonomy. Throughout this section, after the linguistic terms from the classification

presented, the equivalent linguistic terms from the B-S scheme are given in parentheses.

DSPs Balling - Sobieski
 Given | Find
Find | o X di
Xi, di % - Satisfy
~ Satisfy ! - gi< di
G0 | o fi-f<d;
QUL gRVL gFVI<O | Y- vi<dy
| fi+d -d*t=0 ‘ Locr-ci<di
. Minimize 3 . Minimize «
g ; L *

coupled DSPs <«——P B-S classification
d;, deviation function <@¢——¥®> d;, discrepancy function

LI, FVI,RVI, «@———® yij, coupling functions
coupling functions ci, cumulative design function

Figure 4.5. Overall Mapping of DSPs into B-S Framework

170

DSPs have been used to design many complex systems, including aircraft, ships, damage
tolerant structural and mechanical systems, and thermal energy systems. Three of these

examples are used in this section to support Hypothesis I.

Aircraft: Single-SAND-SAND-cooperative
In (Lewis, et al., 1994), technical, economic, and quality issues are addressed in the

design of a passenger aircraft. The problem statement for the study is as follows:

A three engined subsonic jet transport is to be acquired. To ensure that the aircraft is
operational from many airports the take-off field length should be less than 6,500 ft
and the landing field length should be as close to 4,500 ft as possible. It is required
that the range of the aircraft exceed 2,000 nmi.

It is desirable that the airplane carry about 190 passengers, have a useful load
fraction of 0.5, an endurance of 0.03 hours, and a range of 2,400 nmi. It is also
desirable that the missed approach climb gradient be as large as possible.

At this early stage, the variables to be determined are the wing span and area,
fuselage diameter and length, installed thrust, take-off weight, airfoil thickness
location parameter, wetted area to planform area ratio, useful load fraction, airfoil
form factor, fuselage form factor, airfoil thickness ratio. The solution should
provide information on the size of the aircraft based on geometrical parameters,
aerodynamic considerations, the Federal Air Regulations, quality considerations,
and economic issues.

In Figure 4.6, the framework of this single level compromise DSP approach is given along

with the systems descriptors of the compromise DSP and the technical, economic, and

quality evaluation routines.

171

SYSTEM /PARENT LEVEL PROBLEM

GIVEN
Details from probh
FIND
Wing Area Instalied Thrust
Fuselage Length Take-off Weight
Wing Span Fuselage Diameter
Devistion variabies associated with goais
SATISFY
Technical, Economic, and Quality constraints
MINIMIZE .
Deviation Function from Technical, E
and Quality goais
TECHNICAL I ECONOMIC QUALITY
CONSTRAINTS | CONSTRAINTS CONSTRAINTS
AND GOALS | AND GOALS AND GOALS
CONSTRAINTS . CONSTRAINTS . CONSTRAINTS
Thrust for Climb ~ Wing Loading Take-off Field Length Missed Approach Climb Gradient, OEI
Fuel Weight Thrust Loading Landing Field Length Second Segment Climb, OEI
Thrust for Climb Wing Area (o Fuselage Area) GOALS GOALS
Missed Approach Fuselage Form Factor Useful Load Fraction Mean on Target for Weight Matching
Take-off Field Aspect Ratio Return on Investment Standard Deviation for Weight Matching
Second segment climb Productivity Index Signal to Noise Ratic for Weight Matching
Range Landing Field Length
GOALS
Landing Field Endurance
Missed Approach Weight Matching
Cruise Range Number of Passengers

Figure 4.6. Multiobjective Aircraft Compromise DSP

In Figure 4.7, this single level solution approach is presented in the B-S framework. The
first level of classification, single or multilevel approach, is considered. Since the system
problem is formulated at a single system level, the first classification level is "Single.”
Since a single level is used, the game designation is cooperative. The second level of
classification, SAND or NAND at the system level is considered next. In the current
compromise DSP formulation, the computation of the design variables and the variables
describing aircraft technical, economic, and quality performance (state variables) by the
system solver is simultaneous. As indicated earlier, the system solver is the ALP
Algorithm (Mistree, et al., 1993a), which is the solution algorithm for compromise DSPs.
In the ALP Algorithm (system solver), the design and coupling variables are found and the

constraint violations (residuals) and deviation function (residuals) are minimized based on

172

the constraint, goal, and coupling function information from the various disciplinary

evaluators. Therefore, at the system level, the approach is classified as SAND.

Solver (Controls Calculation of f, g)

XXnX2Xs | X XpX3X3 l TREXE
Technical Economic Quality
Residual Residual Residual

Computation Computation Computation

(Analyzer) (Analyzer) (Analyzer)

ry l r J l r3
»le

Figure 4.7. Single-SAND-SAND Formulation

The third level classification, SAND or NAND at the subsystem or discipline level is then
considered. The compromise DSP formulation in this case is decomposed into three
disciplines, technical, economic, and quality performance. Evaluator subroutines are called
from the ALP Algorithm (system solver) for the technical, economic, and quality constraint
and goal calculations. These subroutines may be part of the compromise DSP or may be
separate subroutines depending on their sizes. At the discipline level, only evaluation is
performed, and the deviation variables and constraint violations (residuals) are returned to
the ALP Algorithm (system solver) along with values for the constraints, goals, and
coupling functions. Therefore, at the discipline level, the classification is SAND. The
classification of this approach at level 1 of the classification is given as Single-SAND-

SAND-cooperative.

173

A representative of the full classification of the aircraft example is shown in Figure 4.8. At
level 2, different linguistic terms can be used, but it is assumed in this example that the
representative term at the second level is solution, as the model must be solved by
performing a type of decision. As shown in Figure 4.8, multiple terms must be used at
level 2 to classify the nature of the product being designed, but only solution is
demonstrated here. The third level classification is given as decision. In this example, a
compromise DSP is formulated and solved. Using the classification, the aircraft problem
and process to solve it have been structured according to linguistic entities. A single-level
cooperative formulation is used and solved using simultaneous analysis and design. The

solution of the single-level formulation is found by solving a compromise DSP.

Single-level cooperative formulation

System Classification: SAND

Level 1
Subsystem Classification: SAND
Level 2 Approximation Selution Decomposition
| | |
B I} b
Decision Decision Decision
Level 3

Selection Compromise Selection

Figure 4.8 Representative Classification: Aircraft Example

Thermal Energy System: Multi-SAND-SAND-cooperative
In Kuppuraju (Kuppuraju, et al., 1985a), an approach at multilevel system decomposition
and solution is presented using hierarchical compromise DSPs. The problem statements

for the parent and subsystem problems are given.

174

Parent level: It is necessary to determine the quantity of raw materials (Ash A and
Ash B) that have to be purchased each day to run a power plant. Information on
the amount of Ash A, Ash B, and acid, and the yield of each Ash is given. The
Junds available to buy raw materials are limited to $17,000/day. The Ash is subject
lo storage space restrictions in the factory.

Subsystem level-Coal Problem: Based on the amount of raw materials purchased
and hence the daily production quota, the exact amounts of Coal A and Coal B
needed to fire the furnaces is to be determined. It is desirable that the cost of coal
not exceed $600/day. The fuels have to satisfy the heat requirements and in
addition conform to the pollution regulations and the handling constraints in the

factory.

Subsystem level-Beam Problem: Given the amount of finished product produced in
a day, it is desired to design supports for the centrifuge that can withstand this load.
It is important to increase the surface area of the beam by as much as possible in
order to enhance heat dissipation. The materials available for the beam are
malleable cast iron, gray cast iron, and steel. Parameterized dimension of the beam
along with information on the operation of the motor are given. The dimensions of
the beam are limited by the volume of material available, a surface area limit, and a
safety factor of 2.

In Figure 4.9, the hierarchical framework of this multilevel compromise DSP approach is
given along with the systems descriptors of each compromise DSP. In Figure 4.10, this
multilevel solution approach is presented in the B-S framework. The approach in Figure
4.9 is certainly mulri-level as disciplinary design problems exist at the subsystem level. At
the system level, there is a system level compromise DSP that is solved using the ALP

Algorithm (system solver).

175

SYSTEM /PARENT LEVEL PROBLEM

GIVEN
Details from problem statement
FIND
Quantity of raw material A to be purchased, Y o
Quantity of raw material B to be purchased, Yg
Deviation variable associated with
amount of zinc sulphate to be manufactured
SATISFY

Purchasing power constraint
Storage capacity constraint
Bounds on system variables
Zinc sulphate goal
MINIMIZE
Underachievement of goal (maximize amount of
zinc sulphate)

FVI
(Y1,Y2)

FVI
(Y1,Y2)

SUBSYSTEM 1: SUBSYSTEM 2:

COAL PROBLEM BEAM PROBLEM
GIVEN GIVEN

Details from probiem statement Details from pml?lun statement
FIND Material properties

Amount of Coal 1 to purchase FIND

Amount of Coal 11 to purchase Material of centrifuge

Deviation variables associated with Cross section dimensions of beam

fuel requirement goal Length of beam
cost goal Deviation variables associated with

SATISFY LI material selection goals

Smoke emission constraint = — ! surface area goal

Loading constraint SATISFY

— . Material selection constraint

verizing constraint

Sulphur oxide emission constraint Stress constraint

Cost constraint gl;lqel:incy coastraint

Bounds on system variables Volumeomi::m

Fuel i t i

C::g ::ulnremen goa Bounds on system variables

Material selection goals

MINIMIZE

Deviation function, preemptive form Surface ares goal

MINIMIZE
Deviation function, preemptive form

Figure 4.9. Multi-Level Thermal System: Coupled Compromise DSPs and
Interactions

Then at the discipline, or subsystem, levels there are disciplinary compromise DSPs.
Included in this approach are lateral, forward, and reverse interaction functions that dictate
the coupling between the system and subsystems and among the subsystems. These
interaction functions allow the formulation to be a cooperative one, because even though
the disciplinary problems are distinct, the interactions are modeled and accounted for using

interaction functions. That is, the subsystems are not acting on their own, and neither is

176

dominating the process. The linguistic entities of this approach are mapped to their

equivalents in the B-S scheme are given.

Lateral interactions, LI ———p» Yij» coupling functions
¢j, cumulative design function

Forward and reverse > f ohioot]
interactions, FVI and RVI xogjeifg; iaf?ir;%ﬁlgsn

dj, deviation function —————P» d;, discrepancy function

System Solver: Solution of
Compromise DSP

X T’ di, dz

X [, yi* System Compromise DSP

Disciplinary Solver: Solution of

Compromise DSP
[}
X, X1, X2 l X, X1, X2
Coal Purchasing Beam Dimensional
Compromise DSP Synthesis DSP

r l "2

Figure 4.10. Multi-SAND-SAND Formulation

In Figure 4.10, the lateral interaction coupling functions, LI, are represented by the
disciplinary design variables X1 and X3. Additional coupling considerations in this
approach are the reverse and forward interactions, RVI and FVI, between the system and
subsystem levels. The reverse and forward coupling functions between the system level
and subsystems are denoted by objective functions, f, or design variables, x. These denote

information passed from the system to the subsystems. Each subsystem compromise DSP

177

(which may depend on the solution of the system compromise DSP) is solved using the
ALP Algorithm. The ALP Algorithm (disciplinary solver) of each subsystem is used to
minimize the deviation function (discrepancy function) and finds the subsystem design
variables. At the system level, the ALP Algorithm (system solver) is used to solve for the
system design variables and system deviation function (residuals). The system solution
depends on the deviation functions (discrepancy functions, d;) from the subsystem
problems, which may be in the form of reverse coupling functions (RVI), as in Figure 4.9.
This multilevel approach is classified as Multi-SAND-SAND-cooperative at level 1 of the
classification. A representative of the full classification of the thermal energy example is
shown in Figure 4.11. Since a multi-level formulation is used, Figure 4.11 only shows
one subsystem classification at levels 2 and 3. The other subsystems would have their own
classifications at level 2 and 3 describing their subsystems. At level 2, different linguistic
terms can be used, but it is assumed in this example that the representative term at the
second level is solution, as the model must be solved by performing a type of decision. As
shown in Figure 4.11, multiple terms must be used at level 2 to classify the nature of the
product being designed, but only solution is demonstrated here. The third level
classification is given as decision. In this example, a compromise DSP is formulated and
solved. Using the classification, the thermal energy problem and process to solve it have
been structured according to linguistic entities. A multi-level cooperative formulation is
used and solved using simultaneous analysis and design. The solution of the problems in

the multi-level formulation are found by solving compromise DSPs.

178

r~ ™
Multi-level cooperative formulation
Level 1 System Classification: SAND
Subsystem Classification: SAND
Level 2 Subsystem 1
ve o . .
Approximation Solution Decomposition
| | |
b ! |
Decision Decision Decision
Level 3
Selection Compromise Selection
" v

Figure 4.11. Representative Classification: Thermal Example

Pressure Vessel: Multi-SAND-SAND-cooperative

In (Karandikar and Mistree, 1992a, Karandikar and Mistree, 1992b, Karandikar and
Mistree, 1992¢, Karandikar and Mistree, 1993) the design of a pressure vessel,
considering both design and manufacturing issues is presented. The problem statement for

the pressure vessel is given below.

Design a cylindrical composite material pressure vessel with hemispherical and

closures and having a volume of 10 mm3. Two materials (carbon/epoxy
composites) are available for fabricating the pressure vessel. The pressure vessel
is to be manufactured by filament winding and the specifications for the filament
winding operation need to be determined. The pressure vessel is subjected to
internal pressure loads and a constant temperature difference across its thickness.

The pressure vessel should not fail under the given loading conditions and
should be manufacturable using the available filament winder. The performance
Jactor of the pressure vessel is to be maximized. There is experimental evidence
10 suggest that is advantageous to keep the ratios of the boss opening diameter to
the chamber diameter between 1/10 and 1/5. On manufacturing, the volume
Jraction of fibers and the degree of cure across the body of the pressure vessel
should be uniform and the residual stresses in the vessel should be minimized. It
is desirable that the fabrication time and the material cost be kept to a minimum.

179

The solution process involved simulation of the technical performance and manufacturing
considerations. The technical (design) variables and the manufacturing variables are found
using separate compromise DSPs, but the compromise DSPs are coupled through the
system variables, both design and manufacturing. This approach is similar to the previous
approach to the thermal energy system, but at the system level, the compromise DSPs feed
into a selection DSP where the best concept is selected based on the information from the
compromise DSP solutions. The mode! of the system using entities from the DSP

Technique is shown in Figure 4.12.

SELECTION DSP
OPTION TO CHOOSE
MATERIALS
Laminate Laminate
FVI, RVI FVI, RVI
(Y1) (Y2)
COMPROMISE DSP COMPROMISE DSP
Subsystem 1 Subsystem 2
DIMENSIONAL SYNTHESIS MANUFA RE
FIND X1) FIND
Dimensionil of ﬂ;e > Péoco_ss \g:;:gll:ls
Pressure Vesse . . uring €
SATISFY Dimensions, LI Mandrel Speed
Constriants SATISFY
Failure Criteria Fabrication Constraints
Geometry Mandrel Critical Speed
L/D ratio Degree of Cure
d/D ratio X Fabrication Goals
Angles (X2) Residual Stresses
Goals < - Fiber Motion
Volume Process Variables, LI Processing Time
Deflection match Bounds
Performance factor MINIMIZE
Bounds Deviation Function
MINIMIZE
Deviation Function

Figure 4.12. Multi-Level Pressure Vessel: Coupled Selection-Compromise
DSPs and Interactions

180

Rating Alternatives: Solution of
Selection DSP

4
X r di, d2

X.f 55" | [Material Compromise DSP

Disciplinary Solver: Solution of

Compromise DSP
X, X1, X2 X X, X;
Dimensio?al Manufacturing
Synthesis Compromise DSP
Compromise DSP
r; rz

Figure 4.13. Multi-SAND-SAND Formulation

The corresponding schematic in the B-S scheme is shown in Figure 4.13. The solution
approach is multi-level, since the model includes subsystem compromise DSPs. At the
system level, the decision is a selection Decision Support Problem. This type of decision
is distinctly different from a compromise DSP, as it involves choosing the best alternative
from a pool of candidates. The solution of a selection DSP involves determining the
alternative with the highest merit function. A selection DSP can be formulated as a linear
goal programming problem and solved using the ALP Algorithm (system solver). The
merit function in a selection DSP consists of evaluation criteria that includes information
about the system goals, f, désign variables, x, and coupling variables, yij*. This
information is passed to the subsystems (FVI in Figure 4.12). At each iteration,
information from the subsystems is passed to the system level (RVI in Figure 4.12) which
characterizes how well the subsystem goals are met (discrepancy functions, d; in Figure

4.13). The information in the selection DSP may be imprecise and objective in many

181

cases, but nonetheless the information is valuable to designers in complex system design
(Mistree, et al., 1994, Mistree, et al., 1988). Due to the formulation and solution of
selection DSPs, the system level classification is SAND. At the subsystem levels, a
separate compromise DSP is formulated for each subsystem. The compromise DSPs are
solved using the ALP Algorithm (disciplinary solver), similar to the thermal energy
example. Therefore, at the subsystem level, the classification is SAND. Since the
coupling variables are used and are being passed between the subsystem models, this
problem is a cooperative one. That is, the subsystems are not acting on their own, and
neither is dominating the process. The complete level 1 claséiﬁcation is Multi-SAND-
SAND-cooperative. A representative of the full classification of the pressure vessel
example is shown in Figure 4.14. Since a multi-level formulation is used, Figure 4.14
only shows the system level classification at levels 2 and 3. The subsystems would have
their own classifications at level 2 and 3 describing their own subsystems. At level 2,
different linguistic terms can be used, but it is assumed in this example that the
representative term at the second level is solution, as the model must be solved by
performing a type of decision. As shown in Figure 4.14, multiple terms must be used at
level 2 to classify the nature of the product being designed, but only solution is
demonstrated here. The third level classification is given as decision. In this example, a
selection DSP is formulated and solved. Using the classification, the pressure vessel
problem and process to solve it have been structured according to linguistic entities. A
multi-level cooperative formulation is used and solved using simultaneous analysis and
design. The solution of the system problem in the multi-level formulation is found by

solving a selection DSP.

182

[Multi-level cooperative formulation
Level 1 System Classification: SAND
Subsystem Classification: SAND
System
Level 2 Approximation Solution Decomposition
i | i
! I !
Decision Decision Decision
Level 3
Selection Selection Selection
e

Figure 4.14. Representative Classification: Pressure Vessel

According to the assumptions of Balling and Sobieski (see Section i.1), the B-S
classification is useful when a mathematical model is available. In the approach to
designing a pressure vessel, imprecise information (information not based on mathematical
models, for instance) is used in selection DSPs. This type of information can and must be
used in complex system design. In the later stages of a design process, the information
may be completely precise, but in the earlier stages, designers must have the capability to
classify imprecise approaches. To facilitate this, designers can move to the second and
third levels of the classification presented where domain independent MDO terms can be
used to describe the system and decision types can be classified. By only using the B-S
scheme, designers are not able to discern between selection and compromise decisions,
although they are completely different in philosophy and application. In the pressure
vessel example, by using the extended taxonomy, the selection and compromise DSPs can
be identified which would allow designers to apply the appropriate formulation and

solution tools for each.

183

In this section, the synergy between Support Problem entities of the DSP Technique and
the B-S classification is presented by mapping the approaches into the each other in order
to add value to the classification system. They are both domain-independent, and by
integrating game theoretic principles and the DSP entities, the classification is extended to
being independent of time as well. Representative classifications for various examples are
presented as further verification of Hypothesis I. The work supporting Hypothesis I is not
meant to prescribe a new way of designing complex systems, but is used as a way to
linguistically describe the common entities among different approaches to complex design

processes. This mindset is illustrated in the next section.

4.4 THE MINDSET TAKEN IN THIS CHAPTER

The mindset of this chapter is one of description as opposed to prescription. The lexicon is
presented as a means to describe the necessary product and process issues that designers,
researchers, and engineers must handle in complex systems design. Ideally, the lexicon
presented could be integrated into a computer-based design guidance system to guide a
design teams through a design from problem formulation to final product design. This
would require a parser to 1) identify the linguistic entities of a problem or process
statement, and 2) embody the entities on a computer. The embodiment of these terms on a
computer involves embedding a set of information characteristic to each term in the lexicon.
For instance, in Figure 4.15, a prototypical interface for such a system is given. The
discipline shown, the structures discipline, is identified as the leader in a multilevel
formulation. This identification is often determined by a project manager, or may be

prescribed based on organizational design or information barriers. Many times, disciplines

184

are not given a choice of being a leader or a follower or even cooperating. The

relationships among disciplines is typically dictated by existing organizational constructs.

The system classification for the aircraft problem in Figure 4.15 is SAND, and the
subsystem classification is NVAND. The level 1 classification is shown at the top of Figure
4.15. At the second level, the solution (MDO term) of this disciplinary problem requires
the solution of heuristic DSP (third level classification using DSP entities). A set of
algorithms could be linked to the heuristic classifier to solve the structures problem using a
leader/follower game theory protocol. Also, at the second level, the term approximation is
shown in Figure 4.15. This term is classified at the third level as a selection decision, as a

selection must be made for the level of approximation and approximation technique to use.

The designer ideally would be able to "click on" a given box, and be given information
about the box, as illustrated in Figure 4.15. A parser could interpret the entries and then be
linked to support tools which embody the entries in terms of computer entities. So,
embedded within each box could be a set of computer-based tools, such as mathematical
models, approximation techniques, or solution algorithms which could be invoked

interactively or automatically by a designer.

The information in the lexicon is independent of domain and time, and would feed into the
domain-specific methods, algorithms, and techniques. The developments of this chapter
have been presented and implemented in a descriptive mindset as a means to lay the

foundation for future prescriptive implementations.

185

Decision-Based Taxonomy for a Passenger Aircraft

LEVEL 1 Classification

TUTTTTTTTTTTTN
Single Level

System Classification: SAND

Subsystem Classification: NAND

I R e R
Subsystem 1: i Cooperative \Noncooperatlve,
Structures (\
structure 1 Follower
e T
7 | solutio
CLICK ON A BOX MRO Term © ‘
FOR FURTHER
INFORMATION 7
D i | Decision | . Decision
Entity /!
Classification ! Selection |
/ N
/0B \
o= " / .
~ r g 7 - \
Ve / } \
P / / A
. . In Subsystem 1, we are
iubgystem 1 domﬁ?ate: this approximating the rational
tizlgf;;g;fessIsggé??;:rZa;Z reaction set. A designer must
. - Select the level of
;heory prgtﬁsol is followed approximation and the design
or a Stackelberg game. of experiment technigque to be
v used.
/ /

/

Subsystem 1 includes discrete
and continuous variables, thus
solution of the model requires
a hueristic-based solution
technique.

Figure 4.15. Typical User Interface of the Classification System

4.5 A LOOK BACK AND A LOOK AHEAD

In this chapter, MDO is approached from a game-theoretic, decision-based perspective and

classification schemes are explored for designing complex systems and processes. A

186

game-theoretic, decision-based approach to design is mapped into the previous
classification schemes proposed in (Balling and Sobieski, 1994, Cramer, et al.,, 1994).
Each is independent of technology and together they classify the processes necessary in
MDO. By integrating different levels of process and system descriptors into a lexicon,
value is added to the B-S classification scheme by enhancing its breadth and depth in
system and process classification. It is asserted in order to facilitate future communication
in the field, computer implementation of this lexicon is needed. Implementation of this
lexicon on a computer and the models (words or mathematical) supporting the system and
process would aid application of this taxonomy to complex systems. It is acknowledged
that the work of this chapter is only a precursor for a bigger goal. To be fully functional, a
parser is needed to 1) identify the linguistic entities of a problem or process statement, and
techniques are needed to 2) embody the entities on a computer to aid designers in the
design of complex systems in MDO. The embodiment of these terms on a computer
involves embedding a set of information characteristic to each term in the lexicon. This
information is independent of domain and time, and feeds into the domain-specific

methods, algorithms, and techniques.

Ideally, a designer would use the lexicon to examine and identify the key activities and
characteristics of the system and processes at hand. Identification of these terms would
help create models of the system and process in terms of domain independent terms. Then
these models of the system and process can be solved, analyzed, synthesized, etc., in the
context specific to the application. In this chapter, it is attempted to lay the foundation for
further developments in this area. Establishing a common lexicon among researchers and
developers in the area would facilitate communication and aid designers in establishing the
structure of both a system and a process. Establishing a lexicon would allow designers

either to rapidly change the classification of the approach or effectively introduce new

187

technology within an entity. Establishing this structure based on a common lexicon could

increase the efficiency of the process and effectiveness of design decisions.

In this chapter, the first step of the algorithm presented in Section 3.1.1, is explored and
developed. In the first step, the overall structure of the problem and solution process is
classified. The work of this chapter is provided to support posits 1.1 and 1.2 which relate
to Hypothesis I presented in Section 3.1.1. The observations relating to each posit are

discussed.

Posit 1.1: Entities from the Decision Support Problem Technique provide a domain-

independent lexicon for multidisciplinary design.
The lexicon presented in this chapter has been applied to various design problems
from various domains. The entities in the DSPT are not dependent on any time-
based developments such as technological improvements. Designers will continue
to make decisions, and design will continue to be a sequence of phases and events.
The DSPT entities have been integrated with linguistic terms from multidisciplinary
design optimization and game theory to provide an encompassing framework for
problem and process classification. The DSPT entities are discussed in Section
4.1.2 and are illustrated in various examples in Section 4.3. The linguistic entities
of the DSP Technique are shown to be equivalent to those in the B-S scheme,
establishing the linguistic synergy of the classification.

Posit 1.2: Game Theory principles can be used to extend problem formulation in

multidisciplinary design.
The linguistic entities of game theory are used in Section 4.2 to expand the previous
work in classifying product formulation into domains where the disciplinary models
and their design teams may or may not cooperate. Noncooperation in theory is not
advantageous in design, but in practice it is common. Also, true concurrency is
rare; many times subsystems are designed sequentially. Game theory entities are
used to describe these scenarios. The precise role of a discipline in a complex
design process can be identified, which helps structure the process and allocate

188

resources. Therefore, game theory is used to extend problem classification for
realistic complex design product and process formulations.

The classification of Chapter 4, as shown in Figure 4.16, provides the framework for the
overall algorithm, presented in Chapter 3. This framework rests upon the foundation
established in Chapters 1 and 2. The developments of Chapter 4 support Phase II of the
strategy for verification and testing of the hypotheses. In Chapters 5 and 6 the two
remaining steps of the algorithm and associated hypotheses are presented to fill out the

complete algorithm.

Chapter 4

Chapter 3

Figure 4.16. Frame of Reference: Chapter 4

189

CHAPTER 5§

GAME THEORY IN COMPLEX SYSTEMS DESIGN: A
CONCEPTUAL BASIS

Design is a process of decisions which are made by multiple decision makers, design
teams, or organizations. In complex systems such as aircraft, the decisions are typically
made by design groups organized by discipline. Ideally, a seamless Concurrent
Engineering philosophy could be applied to a company's design process among
disciplines. In reality, however, the simultaneous nature of information flow and
cooperation, inherent in CE, among design teams makes concurrency difficult, if not
impossible. M.L. Dertouzos and the Massachusetts Institute of Technology (MIT)
Commission on Industrial Productivity, in their report Made in America (1989), found that
six recurring weaknesses were hampering American manufacturing industries. The two
weaknesses most relevant to product development were 1) technological weakness in
development and production, and 2) failures in cooperation. The remedies to these
weaknesses are considered the essential twin pillars of CE: 1) improved development
process, and 2) closer cooperation (Schrage and Gordon, 1992). In the MIT report, it was
recognized that total cooperation among teams in a CE environment is rare in American
industry, while the majority of the research in mathematically modeling CE has assumed

total cooperation.

190

Therefore, the focus of this work is on this notion of ~S@pl Hypothesis |
cooperation. Much has been written about the design of
complex systems based on the implicit assumption that the

design teams cooperate. There is a paucity of work Wop ypotheses Tan

dealing with strategic interactions in which the teams do ¢, of Design
Solutions

not, or more directly, cannot cooperate. In this chapter, it

is asserted that a complex design process with multiple designers or design teams can be
abstracted as a series of games among design teams and that applying game theoretic
principles to these processes can generate rich insights into design process and product
structure. The use of game theory in engineering design is of relatively recent origin;
therefore, the use of game theory within the context of Decision-Based Design requires
further definition. This chapter provides the foundation for Step 2 of the overall algorithm

introduced in Chapter 3. It provides support and verification for Hypothesis II (Figure

1.7) and Posits 2.1, 2.4, and 2.5 presented in Section 3.1.3 and shown below.

Hypothesis II: Game theoretic principles can be applied to accurately model and
describe the interactions in complex systems design.

Posit 2.1: Design processes can be abstracted as games where the players are multiple
designers or design teams and their associated analysis and synthesis tools.

Posit 2.4: Second order response surfaces can be used to approximate the Rational
Reaction Sets of the disciplinary players in a design game.

Posit 2.5: The compromise DSP can be used as the fundamental construct to develop

the game theory protocols and techniques.

191

5.1 FOUNDATIONS OF GAME THEORY IN DESIGN
Designing complex systems includes the difficult task of integrating disciplinary design
teams each with their own analyses, syntheses, and decision processes. Optimizing such a
system on a global scale is realistically impossible, but finding a solution which is "good
enough"” and robust is achievable. With only one decision maker (or design team), the
problem becomes a scalar or vector optimization problem. However, in Multidisciplinary
Design Optimization (MDO), many decision makers (design teams) may exist, and each
decision maker's strategy to optimize his reward(s) often depend on the strategies and
decisions of other decision makers. Therefore, the focus in this chapter is on problems
characterized by:

* multiple decision makers who each have single rewards, and

* multiple decision makers who each have multiple rewards.
This focus in the context of optimization theory is shown as the shaded region in Figure
5.1. The modeling of strategic and optimal behavior based on the actions of other

individuals is known as a game and the study of the strategic behavior is game theory.

Number of Rewards per Decision Maker

r=1 r=2
o
% Scalar Vector
= n=1 | Optimization | Optimization
5 Problems Problems
]
(2]
-]
Q
°
=~ Vector
Q >
2 n22 Games Games
£
=}
2

Figure 5.1. Various Formulations in Optimization Theory (Mesterton-Gibbons,
1992)

192

Typical courses in optimization focus on the upper-left quadrant, namely scalar
optimization problems with one objective and one decision maker. In rare instances,
problems in the upper-right quadrant, namely vector optimization problems with one
decision maker are covered in advanced courses. In this chapter, the focus is on the lower
two quadrants as a means to expand the application of optimization theory to problems that

frequently occur in complex system design.

As mentioned before, the use of game theory in engineering design is of relatively recent
origin; its usefulness in many other decision-making sectors is well-established. For
instance, the 1994 Nobel Prize in Economics was awarded to two economists and a
mathematician for their work in game theory. In awarding the prize to John F. Nash, John
C. Harsanyi and Reinhard Selten, the Swedish Academy said the following in its citation:
"Everyone knows that in games (such as chess and poker), players have to think ahead and
devise a strategy based on countermoves from other players. Such strategic interaction also
characterizes many economic situations, and game theory has therefore proved to be very
useful in economic analysis.” Although in games such as chess, there is a winner and a
loser, this type of strategic interaction also occurs in complex system design, but the
primary, overriding goal is the same for each player in the game: to meet the requirements
and objectives as well as possible. The interactions, conflicts, and resolution processes in
design parallel those in economics, board games, or any other strategic environment. In
the next section then, it is asserted that a complex design process with multiple designers or

design teams is simply a series of games.

193

5.2 DESIGN AS A GAME

In a general sense, a "game" is a set of rules completely specifying a competition, including
the permissible actions of and information available to each participant, the criteria for
termination of the competition, and the distribution of payoffs (1984). From a systems
perspective, a "game" consists of multiple decision-makers or players who each control a
specified subset of system variables and who each seek to minimize their own cost
functions subject to their individual constraints (Myerson, 1991). This definition can also
be applied to a design process; the design of a complex system is performed by multiple
designers, who make decisions, and who each control their own design variables and are
trying to minimize their objective functions subject to some technical and economic
constraints. It is clear at least at a conceptual level, a design process and a typical game are

similar in formulation.

To illustrate further, assume that a complex system such as an aircraft has been
decomposed into disciplinary subsystems such as propulsion and structures. It is
commonly accepted that a model such as

minimize fix,p) = {fi(x.p)....f{x,p)} 5.1
xe X(p)c F*

is the typical starting point for much of the current research and practice in systems
modeling and applied optimization. And yet in specific design instances, this assertion
should be boldly challenged. For example, since the propulsion designer only controls x
and the structures designer controls p, how is p chosen in the propulsion design? Can the
propulsion designer assume that the structural designer will always select the vector that is
most advantageous to the propulsion design? If not, how should the propulsion designer

respond to this conflict? This scenario describes a two-player strategic game where one

194

player controls x and the other player controls p, and where p represents all decisions
which are outside the scope of the designer controlling x (Aubin, 1979, Dresher, 1981,

Von Neumann and Morgenstern, 1944).

In processes of designing complex systems, the situation described is a Very common
practice. That is, complex design processes are performed many designers, each of which
only controls a subset of the entire system variables. However, each designer certainly is
not in isolation. The design of complex systems necessitates the coordination of multiple
disciplines and designers, each with their own interests, goals, requirements, constraints,
and analysis routines. At best, their state is one of semi-isolation; their decisions affect the
outcome of the other disciplines through subsystem interfaces, which may be geometric,
functional, behavioral, or logistical. There is extensive overlap and interaction of variables,
constraints, and goals (hierarchically and nonhierarchically) which requires coordination
and/or heuristic ordering. Since each designer has multiple objectives, and these objectives
may conflict with the objectives of the other designers, there results a continual strategic
interaction among designers or design teams. Ideally, complete cooperation occurs and
each designer is aware of all the others and the decisions made by each. In well-controlled
design problems, the typical research assumption of perfect or approximate communication
is extrernely beneficial (Sobieszczanski-Sobieski, 1988). Realistically, this is not always
the case. In some cases, a Nash noncooperative formulation models a system and the lack
of interaction among design teams more accurately (Nash, 1951). Although design teams
may not explicitly choose to "not cooperate”, due to the lack of information available to
them, the scenario can be modeled as a noncooperative formulation. Each design team will
have to make worst case assumptions concerning the other teams. Further, in many cases,
a Stackelberg leader/follower formulation more accurately models the sequential

interactions among design teams throughout a design process. Stackelberg formulations

195

are also effective in modeling the presence of a dominating design team which often makes

their decisions first while assuming the other design teams will behave rationally.

So in essence, complex design processes can be abstracted as forms of a game among
various players. These forms of games in design are quite unique applications of game
theory, however. This uniqueness of applying game theory to design processes for

complex systems is described and defined in the remainder of this chapter.

5.3 A DESIGN GAME DEFINED

Before full definitions are given, the assumptions under which this work operates are

given.

Assumption 1: Models of players are mathematically explicit. That is, there
exist full mathematical relationships in the form of equations. This does include
use of fuzzy set theory and stochastic variables, as they can be represented by
equations.

Assumption 2: The common link among each designer is the hypothetical single
company under which they all work. Therefore, the notion of noncooperation
is not intuitive. They each strive to act in the company's best interests, but
information availability prevents full compliance.

Assumption 3: Disciplinary analysis and synthesis packages are not shareware.
That is, each discipline does not have access to the other disciplinary software,
even though each discipline may depend on the design information from other
packages.

Assumption 4: The design variables of various designers or design teams do not
overlap. The local control of each designer is exclusive. That is, if one
designer controls x!€ E™ and the other controls x2e ES, then

EmUES=EandEMNES=0.

196

Given these assumptions, the definitions of game theory in the context of engineering

design are now presented.

Definition 5.1. In design, a player in a game is the decision maker, which is embodied by

a designer or design team and his associated analysis and synthesis packages.

Classically, players in a game may be people, groups of people or more abstract entities
like computer programs or "nature”. A principal tenet in game theory is the inherent or
allocated decision-making ability or capability of each player in a game. A motivating tenet
of this work is the notion of Decision-Based Design (DBD), where the principal role of a
designer is to make decisions. In DBD, a computer may support a game player in making a
decision, but the final decision is that of the player. Therefore, it is asserted that a decision
maker in a design process (embodied by a designer or design team) is equivalent to a player
in a game. The associated analysis routines, computer software and hardware in this game
do not make decisions. They do not play the game. They support the decision-making
strategy of a designer from a mathematical perspective. It is asserted that only the human

decision makers play the game in design.

Definition 5.2. A strategy of a designer is the motivating principle of a decision

formulation.

In classical game theory, players chose their strategies based on the information available to
them. These strategies may change as more information becomes available. In design,
however, the strategy is usually explicitly dictated in the decision formulation as the
motivating principle. In a design process, a designer's motivation is to design a product
that meets all requirements, technical, economic, safety, quality, etc. At some point in a

design process, a formulation of a decision is typically given in terms of the system or

197

subsystem variables, constraints, and objectives. At this level of detail, a designer's
motivation typically becomes embodied in the system objectives, such as "minimize cost”
or "maximize quality." It is asserted that at a fundamental level, designers make one of two
decisions, selection or compromise (Mistree, et al., 1993c). The strategy implied in the
selection DSP is to maximize the merit function (Mistree, et al., 1994). The strategy
implied in the compromise DSP is to minimize the deviation function (see Section 1.2.1)
(Mistree, et al., 1993a). The deviation function is a measure of the difference between
what can be achieved and what is desirable. It is asserted in (Mistree, et al., 1994) that
this form of a strategy is generic and domain independent. It also encompasses single

objective models such as "minimize weight."

Definition 5.3. A payoff is the value of the motivating function at a given move.

In the context of the compromise DSP, a payoff value is the value of the deviation function
for a given set of values of the system variables. While, in most applications of game
theory the players strive to maximize the payoff, in the context of the compromise DSP, the
payers strive to minimize the payoff to each of them. Therefore, in the compromise DSP,
the payoff can be viewed as the cost incurred. The deviation function of a designer can be

viewed as the cost incurred by the designer.

Definition 5.4. The state of a player is described completely by the system variables and
state variables.

A player's model is defined by the system variables, state variables, constraints, goals, and
deviation function. In this chapter, one of the goals is to illustrate the equivalency of a
player in game theory and a designer or design team in systems design. It is asserted that

the following terms are equivalent in this work.

198

Game Theory Design

Iterated Game --------------- > Design Process

Player > Designer/design team and their
associated analysis/synthesis routines

Player's problem ----------- > Disciplinary design model

Cost Incurred -----=---=es--- > Deviation Function

In the context of complex systems design, a player's model is defined by the disciplinary
problem. For instance, a structural design team's model is defined by the physics of a
structural problem and the finite element codes, weight approximations, and any other
associated analysis and synthesis codes. But the decisions of a structural design team are
dependent on the decisions of other disciplinary design teams (and more generally,
assumption number three at the start of this section). Certainly, the structural design
problem depends on the size of the wing, the amount of thrust available, etc., and
conversely, the structural design affects the other disciplinary design problems. However,
the complexity of the overall system design problem warrants additional considerations
when applying game theoretical principles. Typically, in game theory, the only information
that is transferred is the values of the local design variables to another player. Yet in
complex systems design, there is a need for transferring more than just design variables.
Each designer or design team ideally would like not only the information concerning the

design variables, but also the state variables describing the state of the other designers.

Consider again the structural design problem. The structural designer ideally would like to
know the values of the systems variables of the aerodynamic designer such as the wing
area and wing span. This is where classical game theory would stop. However, the

structural designer would also need the values of the state variables such as the lift-to-drag

199

ratio on take-off, landing, and cruising. These are state variables which are functions of

the design variables. So, someone schooled in functional analysis could ask:
If the state variables are functions of the design variables, why not just transfer the
design variables?

This question in effect asks, why not just transfer the design variables, and allow the other
disciplines access to the analysis codes where the state variables are calculated? Doing this
may make sense in small problems, but in complex design problems where the analysis
codes are large, expertise and judgment may be required to use the codes, and designers
may be geographically separated, this is not practical, if even feasible. Therefore, the

control vectors of each designer are defined in Def. 5.6.

Def 5.5. The control vector of a designer consists of the design variables and the state
variables.

Mathematically, this is equivalent to

X := {x,s} (5.2)
where X is the control vector, X is the design variable vector, and s is the state variable
vector. These terms are formally defined in Section 4.1. Throughout the remainder of this

chapter, the vector notation X will infer {x,s} unless specified.

The discussion of design variables thus far has not addressed the fype of design variables
that may exist in the control variable vector of each player. Often in complex systems
design, design variables are continuous, discrete, integer, and Boolean in the same
problem. Depending upon the type of design variable, the type of game and solution
technique may change dramatically. Therefore, in order to use constructs from game
theory, the basis of discrete, continuous and mixed games must be established. In the next

section, the distinction between discrete and continuous games is presented including the

200

types of analysis and solution techniques required by each. Section 5.4 is concluded by

addressing the notion of a mixed game in the context of the compromise DSP.

5.4 DISCRETE, CONTINUOUS, AND MIXED GAMES

The application of game theory has taken two primary paths. The problems in each path
are distinctly different, but the applied theory is the same. These two paths are discrete and
continuous games. Discrete games occur when the players' decision variables are found by
making a selection among a discrete number of alternatives, such as the choice of materials.
The Prisoner's Dilemma (Axelrod, 1984, Gleick, 1986, Hofstadter, 1985, Luce and
Raiffa, 1957) is an example of classical discrete game and has been studied extensively
using game theoretical techniques. Continuous games occur when the players' decision
variables can take any real value, such as size of a beam. Application of game theory
principles to these two types of problems is similar, but the method of solution can be
completely different. The work in this thesis focuses on a third type of game, a mixed
game where the control variables are both discrete and continuous. The method of solution
of this type of game can vary greatly from the solution of purely discrete or continuous

games.

5.4.1 Discrete Games

To illustrate a discrete game, consider the following problem.

Assume there are two designers (or design teams) working on the conceptual design of a
passenger aircraft. They each control one discrete (configuration) variable that can have 2
values. For instance, the propulsion player could choose either 2 or 4 engines, and the
aerodynamics player could choose single or double delta wing formations. The propulsion
design player's objective is to bring the range of the aircraft as close to 5000 nmi as

201

possible, while the aerodynamics player's objective is to bring the lift-to-drag ratio of the
aircraft as close to 20 as possible. Each player's objective is a function of the decision
made by both players. The compromise DSPs of the two players are as follows:

Player I: Propulsion Player 2: Aerodynamics

Given Given
Range = f(X;, X?) Lift-to-Drag = (X, X3)

Find Find
X1 € [Xia, XiBl, dp X2 € [X24, X2B], da”

Satisfy Satisfy
Range + dp~ = RangeTarge: = 5000 Lift-to-Drag + do~ = L/DTarget = 20
Z = Deviation from Range Target Z = Deviation from L/D Target
Z=dp = {(X1,X3) Z=dp = f(X,X2)

The payoff matrix of this game is shown in Table 5.1 and the four possible solutions are
plotted in Figure 5.2. In the payoff matrix, the deviation functions of each player are given
for each possible configuration. As formally defined in Section 5.3, a player's deviation
function can be viewed as the cost incurred to a player. For instance, if Player Propulsion
chooses X and Player Aerodynamics chooses X7, the deviation function of Player

Propulsion is 3000 (a Range of 2000) and Player Aerodynamics is 10 (an L/D of 10).

Table 5.1. Deviation Functions of 2 Players

Player Aerodynamics
XoA X2B
Player Xi1a (3,000, 10) (2,000, 8)
Propulsion | X)B (4,000, 4) (1,000, 6)

202

X2A -+

Figure 5.2. Possible Discrete Solutions

In this simple game, the solution depends on the protocol of the game (i.e., if cooperation
exists, or if a sequential order exists). Each player wants to minimize his entry in the
matrix. The different solutions are explored to illustrate the effects the different protocols

have on the resulting solution of the problem.

Cooperative Solution

The cooperative solution for this game depends on the importance placed on the two
objectives. If the range is considered to be the more important objective, then the solution
is (1,000, 6) (point B in Figure 5.2), as this maximizes the range. If the lift-to-drag ratio is
considered more important, then the solution is (4,000, 4) (point D in Figure 5.2), as this
maximizes the lift-to-drag ratio. At these two solutions, both players cannot
simultaneously improve upon their solutions. As is defined in Section 3.3.3, this is the

definition for a cooperative or Pareto solution.

203

Noncooperative Solution

The noncooperative solution of this game is constructed by formulating each player's
rational reaction sets. Construction of the rational reaction set assumes that information
about the other player's strategy is not known and mathematically answers the following
question: "No matter what decision player B makes, what deciston can player A make to
ensure that he does as well as possible?” In this problem, the rational reaction set of Player
Aerodynamics is

X,,ifX, =X, (pointDin Figure 5.2)

D(Aerodynamics) = .
(Aerodynamics) {Xz,, ifX, =X, (pointA in Figure 5.2) (>-3)

and the rational reaction set of Player Propulsion is -
X,,ifX,=X,, (point Cin Figure 5.2)

D(Propulsion) = 5
(Propulsion) {Xm ifX,=X,, (point B in Figure 5.2) G4

Both of these RRS's are shown in Figure 5.2. The noncooperative solution, if it exists, is

the intersection of the two rational reaction sets. In this game the intersection is
D(Aerodynamics) N D(Propulsion) =& . (5.5)

In other words, no solution exists for the noncooperative protocol. This is evident from

Figure 5.2; the two rational reaction sets do not intersect.

Stackelberg Leader/Follower with Player Propulsion as the Leader

In the Stackelberg formulation, the leader has the advantage of knowing how the follower
will react to his decision. In other words, the leader knows the rational reaction set of the
follower. Therefore, Player Aerodynamics' (follower) strategy is to choose X3p if Player
Propulsion (leader) chooses X, and to choose X»p if Player Propulsion chooses Xja.
Since the leader in this game knows this information about the follower, the leader chooses
XA to minimize his deviation function, so the payoff for the players is (2,000, 8) at the

point (XA, X2B) (point A in Figure 5.2).

204

Stackelberg Leader/Follower with Player Aerodynamics as the Leader

Player Propulsion's (follower) strategy is to choose X ;g if Player Aerodynamics (leader)
chooses X7, and to choose X 4 if Player Aerodynamics chooses X74. Since the leader in
this game knows this information about the follower, the leader chooses X2B, so the payoff
for the players is (1,000, 6) at the point (X|g, X2B) (point B in Figure 5.2). It is not
necessarily an advantage to be a leader or follower. In this game, player Aerodynamics

would prefer to be the leader, but player Propulsion would prefer to be the follower.

Obviously, this is an exaggerated simplification of a design decision. In design, many
variables are continuous. That is, they can take on any positive real value. In the next

section, the solution of various protocols is illustrated for a continuous game.

5.4.2 Continuous Games

Continuous games occur when the decision variables are continuous. Payoff tables such as
Table 5.1 cannot be constructed with an infinite set of variable values. In addition, the
solution of a particular protocol of a continuous game requires more than a simple
exhaustive search or inspection, which may be adequate in the discrete domain. Therefore,
methods to solve continuous games borrow from the field of nonlinear optimization. To

illustrate, consider the following problem.

Assume the same two designers (or design teams) are working on the conceptual design of
a passenger aircraft. They each control one variable which can take on any real value. For
example, the propulsion player could control the installed thrust, and the aerodynamics
player could control the wing area. The propulsion design player wants to maximize the
range of the aircraft, and the aerodynamics design player, wants to maximize the lift-to-
drag ratio of the aircraft. It is assumed, for illustration purposes that the deviation
functions of each player can be approximated by quadratic functions. Each player's
objective is a function of the decision made by both players. The two players compromise

DSPs are as follows:

205

Player Propulsion Plaver Aerodynamics

Given Given
Range = (X, X2) Lift-to-Drag = f(Xy, X7)
Find Find
Xy, dp X2, da”
Satisfy Satisfy
Range + dp~ = RangeTarget Lift-to-Drag + dao™ = L/DTarget
Minimize Minimize
Z = Deviation from Range Target Z = Deviation from L-to-D Target
Z =dp = (X - 2)? +X2? Z=dp = (X1 - X2)?

This problem is the same as the discrete problem in Section 5.4.1, except the control
variables are now continuous. That is, they can take on any real value, whereas in Section
5.4.1, they could only take on one of two values. In addition, each player has an explicit
mathematical form of the deviation function. Solving this type of game is quite different
from simply analyzing a payoff table. Knowledge of optimization theory or more
frequently, nonlinear programming techniques now become a necessity in order to find a
solution. In Figure 5.3, the level sets of the deviation functions of each player, da and dp,
are plotted as functions of the design variables of each player, X and X3. Each player
wants to bring his deviation function to zero. In Figure 5.3, this occurs along the line X =
X for player aerodynamics (da), and at the point X1 = 2, X» = 0 for player propulsion
(dw). Obviously, both conditions cannot be simultaneously met. Therefore, solution of

this problem again depends upon the protocol and interactions between the players.

Cooperative Solution
The cooperative solution for this game depends on the importance placed on the two
objectives. The set of Pareto solutions can be constructed by using a composite deviation

function,

206

d=ad, +a,d, = [(X, -2)* + X]]+ a,[(X, - X,)*]. (5.6)

To find the set of solutions to this problem, the partial derivatives are taken

ad
8—X,=2X' 20X, -4a,=0 (5.7)
od
_aX2 =2X,-20,X,=0 (5.8)
where

0<q <l 05,51, ,+a,=1.

Solving these equations, the set of solutions are

2a,
(1- o)
X, = ﬂ_
P (1-o)

] =
(5.9)

This set of solutions (which depend on the weights assigned to the two objectives) is
shown in Figure 5.3 as the line between points A and B. Along this line, both players
cannot simultaneously improve upon their solutions. As presented in Section 3.3.3, this is

the definition for a cooperative or Pareto solution.

Noncooperative Solution
The noncooperative solution of this game is constructed by formulating each player's
rational reaction sets. To formulate the RRS of the aerodynamics player, it is necessary to
determine what value of X; would be advantageous for the aerodynamics player for any
value of X;. For any value of X}, the aerodynamics player can minimize his deviation (to
a value of zero) by setting X» = X;. Therefore, the rational reaction set for the
aerodynamics player (shown in Figure 5.3) is

D(Aerodynamics)={(X,,X,) € E*X, = X,}. (5.10)
To formulate the RRS of the propulsion player, it is necessary to determine what value of

X1 would be advantageous for the propulsion player for any value of X,. For any value of

207

X, player propulsion can minimize his deviation function by setting X = 2. Therefore,
player propulsion's rational reaction set (shown in Figure 5.3) is

D(Propulsion) = {(X,,X,) € E11X, = 2}. (5.11)
From Figure 5.3, it is clear that the intersection of the two sets occurs at (2, 2) with a
payoff of (dp, da) = (4,0). This corresponds to the solution with the Aerodynamics player

as the leader, and is shown as point C in Figure 5.3.

X2 da =1 da=0 da=1

A

dp

increasing
B
f >

/o)

D(aerodynamics) o B
D(proputsion)

Figure 5.3. Solutions for Various Protocols

Stackelberg with Player Propulsion as the Leader
Since the leader in this game knows the strategy of the follower in the form of player

aerodynamics' rational reaction set, the leader (propulsion) chooses X; = 1 to minimize

Range[X,, X,(X)]=(X, -2)" + X} (5.12)

208

and subsequently, player aerodynamics chooses X2 =Xj = 1, and the solution is (I, 1)

and the payoff for the players is (dp, da) = (2, 0). This is shown as point A in Figure 5.3.

Stackelberg with Player Aerodynamics as the Leader
Since the leader in this game knows the strategy of the follower in the form of player
propulsion’s rational reaction set, the leader (aerodynamics) chooses X2 =2 to minimize
Lift — to — Drag[X,, X (X,)]=(2- X,)’ (5.13)
and subsequently, player propulsion chooses X; = 2, and the solution is (2, 2) and the
payoff for the players is (dp, da) = (4, 0). This is shown as point C in Figure 5.3. With
these simple examples, it is obvious that the solutioﬁ to the problem differs depending upon
the protocol between the players. In order to ensure the best overall solution in design, it is
paramount to explore and understand the results and implications of each protocol. This

exploration is presented in Chapter 7.

In complex systems design, and engineering design in general, many times the design
variables are not all discrete or continuous, but are a mixture of continuous and discrete

variables. In this case, the game becomes a mixed game.

5.4.3 Mixed Games: Application to Design

In complex systems design, designers or design teams usually control multiple system
variables that are not all discrete, but are continuous, integer, and discrete. They also have
state variables, equality and inequality constraints on the design, and multiple objectives to
meet as closely as possible. A typical game in the design of a complex system combines
aspects of discrete and continuous games. The focus in this work is not on discrete or
continuous games, but on mixed discrete/continuous games. Although the developments in

this work can certainly be used for discrete or continuous games, in this thesis, they are

209

illustrated primarily using mixed games. The examples presented in Sections 5.4.1 and
5.4.2 are simple illustrations of the principles of game theory. The foundation for game
theoretic principles in complex system design are developed and applied to a representative
system in this thesis. The departure from the previous game theory examples can be

summarized by:
« presence of discrete (including integers) and continuous variables,
+ presence and coupling of state variables,
» multiple objectives within each problem,
» multiple disciplinary nonlinear constraints, and
 the use of extensive disciplinary, platform-dependent analysis routines.

Formulating models for each player and finding the various protocol solutions, as in
Sections 5.4.1 and 5.4.2, is a much more difficult problem with the introduction of these
aspects commonly found in the design of complex systems. The general form of a mixed
discrete/continuous compromise DSP is given in Section 3.4.4, Figure 3.15. When two or
more compromise DSPs are coupled, certain aspects of the general compromsie DSP may
be augmented. For the case of a 2-player game, the compromise DSP of player lincludes

the following changes:
« Possible given information from the other player, X2
+ Constraints and Goals are functions of the control variables of the other player,

g(X1, X2), (X1, X2)
« Deviation Function is also a function of the control variables of the other player,
Z2(X1, X2).

The different protocols, formulations, and solutions of a mixed discrete/continuous game,

involving multiple mixed compromise DSPs, in complex systems design are illustrated and

explored in Chapter 7.

Although the definitions in Section 5.3 and examples in this section have been specified for

abstracting design as a form of a game, the fundamental principles of game theory remain

210

the same. There are many protocols in game theory that are used to model various
situations among the game players. It is asserted that three of these protocols have
relevance to the situations often found in design processes among the designers or design
teams. The mathematical basis for these various protocols is presented in Section 3.3.3,

and the implementation strategies for each protocol are presented next.

5.5 GAME PROTOCOLS IN DESIGN

As introduced in Section 3.3, the focus in this dissertation is on three primary protocols
applicable to design processes: cooperative, noncooperative, and leader/follower. In all
three protocols, some form of approximation is used to generate a useful solution. The

approximation tools used for each protocol are shown in Table 5.2.

Table 5.2. Protocol Approximation

Protocol What is Approximated? Approximation Tool

Cooperative Nonlocal State Variables GSE and Taylor's Theorem

Noncooperative Rational Reactions Sets Design of Experiments and
Response Surfaces

Stackelberg Rational Reactions Sets Design of Experiments and
Leader/Follower Response Surfaces

The implementation of each approximation strategy is discussed in this section. The
cooperative formulation is constructed at two distinct levels, full cooperation and
approximate cooperation, and their application to complex systems design is presented in

the Section 5.5.1.

211

5.5.1 The Cooperative Formulations

If the players cooperate, they can be expected to obtain better solutions than when they do
not. This is the typical optimization approach: to assume total cooperation among decision
makers, disciplines, or subsystems. Previous work in multidisciplinary design has
assumed cooperation exists among the players (Bloebaum, et al., 1992, Renaud and

Gabriele, 1994).

Full Cooperation
The steps to construct and solve the full cooperative protocol are as follows:

© Combine each players’ model into one encompassing model.
® Solve the model using appropriate continuous, discrete, or mixed solution technique.

The full cooperation protocol is illustrated in Figure 5.4. The disciplinary compromise
DSP of Player 1 and Player 2 are combined into one compromise DSP in Figure 5.4 and
solved using the cumulative design variables, constraints, goals, and deviation variables of
both players. It must be stressed that determining priorities on the goals when the
encompassing compromise DSP is formulated is not a trivial matter unless a simple
Archemedean scheme with equal weighting is used. Insight into the customer and problem

requirements must be used when establishing weights or priorities.

Although conceptually the full cooperative protocol is simple and theoretically sound,
Pareto solutions are very difficult to compute in complex systems designs since the models
of the different disciplinary players (designers, or design teams) utilize different analysis
packages and many times are solved at different points in a process using approximate or
incomplete information. In other words, a single objective which combines the objectives

from players A, B, and C using a weighted sum such as

212

Player 1

Player 2

J

ﬁmd
xy, d,*.dy

Satisfy
constraints
ﬁl(xl'SIIXZ'SZ)ZO'O
1(X1,81,%5,8,)=0.0
goals
f1(x1,51,%,8)+d,~d *=1.0
Minimize

ﬂ-‘ind

_ Z,(x1,%.%2,5,)

constraints
8,(X,8,,%,8,)20.0
h,(x,,8,,%,,8)=0.0
goals
£5(x,,5,%,,8)+d; -d,*=1.0
Minimize

),
G
"

— &

~

Xy.Xy dy* dy dydy

Satisfy
constraints
ﬁl(x,,s,,xz,sz)Z0.0
1(X),81,%,,8,)=0.0
ﬁz(xusv"vsz)?o-o
2(X81,%,5,)=0.0
goals
i’l(x‘,sl,x.‘,,sz)+d1 -d,*=1.0
fo(xy,81,%y,85)+dy-d;*=1.0
Minimize

G Z,(X,,51,%5))

L Z(x1,51,%.8;))

Figure 5.4. Full Cooperation: Pareto Solutions

F(Xa,XB,Xc) = wafa + wpfp + wefc

where

Swi=1

0<sw; <1,

Approximate Cooperation

213

is typically impractical. Furthermore, combining separate models is often computationally
impossible due to the sheer size of the models and analysis routines. Therefore, the
definition of a cooperative solution in complex systems design can be extended to
approximate cooperation where models can remain separate but linked through

approximations of the coupling variables which are needed by more than one discipline.

The notion of cooperation in complex systems design is one of approximate cooperation.

Approximate cooperation is achieved using approximations of the state variables, including

constraints and goals needed from the other players. However, approximation of every
constraint, goal, and state variable is unrealistic. Only, the coupled equations (i.e.,
equations which are functions of the design variables of two or more players) are
approximated. Therefore, required nonlocal information about the other players is
approximated in each player's model. This approximation is accomplished using the
Global Sensitivity Equations (GSE) method first proposed in (Sobieszczanski-Sobieski,
1988) and successfully used in the design of complex systems (Bloebaum, et al., 1992,
Renaud and Gabriele, 1991, Renaud and Gabriele, 1993, Renaud and Gabriele, 1994).
The fundamental constructs used in modeling approximate cooperation are introduced in
Section 3.3.4. In this work, the full derivatives frorﬁ the GSE method are used in a Taylor
series expansion to approximate nonlocal variables. The steps to modeling and solving an

approximate cooperation formulation are given as follows.

@ Construct approximations of nonlocal behavior vanables
@a. Perform an initial analysis and take partial derivatives of behavior variables 1)
with respect to the other behavior variables, matrix [M], and 2) with respect to the
local design variables, matrix [B].
©Ob. Set up and solve the GSE matrices.
©Oc. Use the full derivatives in a first-order Taylor series approximation.

S(X,, Xy, X,) = $° + ds (x° - xa)+—di(x§ -xb)+$(x: -x,) (5.14)
dx dx dx

a b c

® Solve disciplinary models using nonlocal approximations.
© If all models have converged, then stop. If not, update GSE matrices, and goto Step
Ob.

In effect, each player uses an approximation of the coupled equations of the other players.
This is the essence of approximate cooperation in design. In Figure 5.5, the schematic for
the implementation of approximate cooperation in the context of the compromise DSP is

shown. Step 1 is performed completely within the compromise DSP formulation of each

214

player. Once nonlocal approximations have been made, the ALP Algorithm is used to
solve the model in step 2. It is important to note that since derivatives are used to
approximate the variables, discrete or integer variables are not used in this protocol. In step

3, convergence of each player is checked, and if met, the solution is found.

Taylor’s series Matrix Solver

onstruct and solve : Player 1} i i
GSE equations at B : s:a;t:n?, xl:ms
current design point °
No
Both Players X1, S1
Converged? X2, 2 Compromise DSP

ALP continuous solver

Figure 5.5 Construction and Solution of the Approximate Cooperation
Formulation

In Figure 5.6, the compromise DSPs of two players in the approximate cooperative game
formulation are shown. The values of the required nonlocal design variables, x, are used,
along with approximations of the nonlocal state variables, s. With these representations,
Player I is able to solve his compromise DSP using xp; and an approximation of sy as part
of his given information (left side of Figure 5.6), and vice versa for Player II (right side of

Figure 5.6).

215

Player I Player 11

ﬁiven \ Giiven

sy =5° + Vsi(x-x°)

X Ny
Find Find
Xy, di*,d-l' X d“ ,d;'
Satisfy Satisty
constraints constraints
g1(xq.51,%q,51)20.0 s X s, 1200
hy(xy,s1,%0,50)=0.0 s, epi=g
goals i_;(ml.\
fi(XI,SI,Xn,S[I)'f'di"di*:1.0 £.00,5,%,500d, - dl‘ =1.0

Minimize

Ninimize

k Zi(x1,51,%0,51) / VATIE VTR

Figure 5.6 Compromise DSPs in Approximate Cooperation

5.5.2 Nash or Noncooperative solutions

The Nash or noncooperative formulation occurs when coalition among players is not
possible due to organizational, information, or process difficulties. Players in design
usually would not choose to "not cooperate” but because of the lack of information, the
scenario can be modeled using noncooperative notions. This is often the case in designing
large systems, and when players act independently and must make assumptions concerning
the other players' actions. This is also the case when information availability plays a role in
a design process. If the appropriate information is not available to the designers,
assumptions will have to be made. To ensure a functional and safe design, designers often
must construct a set of solutions according to any decision the other players make. In other
words, designers usually have to assume worst case scenarios of the other players. This
parallels the Nash formulation where players do not cooperate and must make decisions

assuming the other decision makers could make any decision.

Nash Solutions in the context of Complex Systems Design
Similar to the cooperative protocol where ideal and complete cooperation is not realistic in

the design of complex systems, finding the exact mathematical RRS of the two players is

216

not practical. Each player's model consists of multiple, nonlinear constraints and
objectives that require advanced nonlinear programming and/or heuristic techniques in
order to solve for the independent variables. To develop a closed form equation for one or
more independent variables as functions of other independent variables is computationally
difficult and theoretically extremely laborious. Therefore, the RRS of each player is found
by using approximation techniques. Specifically, the RRS of each player is approximated
by using design of experiments and second-order response surfaces. A response surface

equation is used to approximate

XIN = £(X2) (5.15)
as

Xps$, = f(X;,8,) = A-X, +B-5, + C-(x, XX,)+D- (5, x5,) + E-(x, x5,) (5.16)
In Eqn 5.16, the coupled design, x, and state, s, variables of player | are approximated
as functions of the required design, xj, and state, s;, variables of player 2. A response
surface is constructed for each variable, design and state, which is needed by another

player. The steps to construct the RRS of each player is as follows.

Constructing the Rational Reaction Set

© Use NORMANG® as the design of experiments driver.
la) Based on the number of input variables, set-up the Central Composite Face-

Centered Design.
1b) Set the input variables (variables of the other player which are required) constant
in P1's compromise DSP and call DSIDES.

® In DSIDES solve P1's compromise DSP using the ALP Algorithm and send the values
of the design and state variables to NORMAN®

® Determine if the full experiment is finished.
* If not, continue by moving to the next experiment point and repeat Step @.

* If so, construct the response surfaces.

It is stressed that the ALP Algorithm is used to solve a compromise DSP at each simulation

point. Even though the compromise DSP model may contain discrete and continuous

217

design variables (as illustrated in Chapter 7), to construct the RRS's the design variables
are assumed to all be continuous. Creating response surfaces of functions of discrete
variables is a difficult, if even feasible, task. To illustrate schematically, the specific steps
to construct the RRS approximation for P2 are shown in Figure 5.7. In step 1, based on
the range of the variables from P1, NORMAN® is used to construct an experimental
design to sample the design space of P1. In step 2, the ALP Algorithm in DSIDES is
called to solve P2's compromise DSP at each hypothetical poiﬁt in P1's design space. In
step 3, P2's solution information is used to construct response surfaces equations of P2's
control variables as function of Pl's control variables needed by P2. So, in effect,
NORMANR® is used to build a function that embodies how P2 will behave for any value of
P1's variables by sampling the design space as defined by the variable ranges and solving

P2's model throughout the space.

input variables
range of input variables
order of response surface

Se-up Design o
Experiments
Set input variables
constant

XP1, SP1

: Move to New
Experiment Point
§ Construct Response
Surfaces

>Experiments
done?

1y

STOP
Rational Reaction
Coefficients

Figure 5.7. NORMAN/DSIDES Interface

218

Conceptually, the idea of constructing an approximate rational reaction set is illustrated in
Figure 5.8. The aim is to construct the RRS of player 2, P2. Therefore, in step 1, points
are taken from player one, P1's, design space (defined by xp; and sp) through the CCD
experimental design. In step 2, at each of these points (xp;, sp1), P2's compromise DSP
is solved using the numerical values of (xpy, spj) as input parameters. Then in step 3, the
resulting set of solutions, [(xp7, sp2)] are taken as the output parameters to construct
response surface equations of the form xpy, spp = f(xpy, sp;) which approximate the

rational reaction set of P2.

P2’s Compromise
DSP

0 XP1, SP1 givn;n Xp2, SP2
. ; SE—
P1’s Design Space ila‘ugfy‘
nmuze
L1 ©
Xp1, SP1 . . .
Given | XP2, SP2 Rational Reaction Set
¢ EEEEE— |
Satisfy =
Minimize xP2- 5P2 f(xp1, sP1)
—
SP1 XP1, SP1 Given) xpa, Sp2
[S— Satisfy
= Minimize .
Response Surface Equations
‘\\ Xp1, SP1 g:r:n Xp2, Sp2
Satisfy
Xp1 Minimize

Figure 5.8 Conceptual Qutline of RRS Construction

In Figure 5.9, compromise DSPs of two players in a noncooperative formulation are
shown. The given information is that information required from the other player is
unknown. Therefore, a player's solution must be found using unknown variables.
Constructing an approximation of the RRS of each player is found using the compromise
DSPs of Figure 5.9. Construction of the RRS's is the first step to solving the
noncooperative game formulation. The steps to solve the noncooperative formulation are

as follows.

219

Player 1 Player 11

ﬁiven \ Given

unknown sy, Xy unknown s, x
Find Find
X1, di+ldi. A d‘_‘ ,dl'
Satisfy Satisty
constraints constraints
gl(XI,Sl,Xu,S“)ZO.O S sxgs)20.0
hy (x5, %q,5p)=0.0 hy(x,sxs)=0.0
goals goals
£ (xpspxp S +d-d;*=1.0 filx, sexps) i d -ds

Minimize AMinimize

\ Zy(xy,Sp X5 / ZiNps i sy)

Figure 5.9. Noncooperative Compromise DSPs

Solution to the Noncooperative Protocol

© Construct Rational Reaction Set of Each Player, D;

® Using appropriate technique, find the intersection points of the RRS's of each player.
X*=D;in Dy (5.17)

® Determine which solutions fall in the ranges of the design variables.

Finding the rational reaction sets of a player is paramount to game theory not only in the

noncooperative protocol, but also in the Stackelberg Leader/Follower protocol.

5.5.3 Stackelberg Leader/Follower solutions

In the Stackelberg leader/follower formulation (presented in Section 3.3.3), the leader may
be able to use knowledge of the followers' response to his advantage in minimizing his
own deviation function. The followers may also benefit from having a leader in that they
do not have to guess what the leader will do. Therefore, neither the leader nor the
followers necessarily have an advantage. This behavior of the follower is dictated by his
strategy an