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1.0 SUMMARY

This is the final report for a research project aimed at developing planar laser-

induced fluorescence (PLIF) techniques for quantitative 2-D species imaging in fuel-lean,

high-pressure combustion gases, relevant to modem aircraft gas turbine combustors. The

program involved both theory and experiment. The theoretical activity led to a

spectroscopic models that allow calculation of the laser-induced fluorescence produced in

OH, NO and 02 for arbitrary excitation wavelength, pressure, temperature, gas mixture
and laser linewidth. These spectroscopic models incorporate new information on line-

broadening, energy transfer and electronic quench rates. Extensive calculations have

been made with these models in order to identify optimum excitation strategies,

particularly for detecting low levels (ppm) of NO in the presence of large 02 mole

fractions (10% is typical for the fuel-lean combustion of interest). A promising new

measurement concept has emerged from these calculations, namely that excitation at

specific wavelengths, together with detection of fluorescence in multiple spectral bands,

promises to enable simultaneous detection of both NO (at ppm levels) and 02 or possibly

NO, 02 and temperature. Calculations have been made to evaluate the expected
performance of such a diagnostic for a variety of conditions and choices of excitation and

detection wavelengths.

The experimental effort began with assembly of a new high-pressure combustor

to provide controlled high-temperature and high-pressure combustion products. The non-

premixed burner enables access to postflame gases at high temperatures (to 2000K) and

high pressures (to 13 atm), and a range of fuel-air equivalence ratios. The chamber also

allowed use of a sampling probe, for chemiluminescent detection of NO/NO2, and

thermocouples for measurement of gas temperature. Experiments were conducted to

confirm the spectroscopic models for OH, NO and 02.



2.0 BACKGROUND AND MOTIVATION

This research program was motivated by a critical need for a quantitative,

nonintrusive diagnostic method for monitoring nitric oxide (NO) in laboratory studies of

advanced low-emissions aircraft combustors. Such measurement capability was regarded

as crucial to the evaluation of new, high-pressure combustor designs which were being

designed to yield lower NO emissions than previous combustors. The objective of the

Stanford research was to investigate the suitability of planar laser-induced fluorescence

(PLIF) as a measurement approach, and in particular to establish quantitative

methodologies and limits for monitoring low levels of NO at the high-pressure, fuel-lean

conditions anticipated for the combustor designs of interest.

While PLIF was relatively mature as a diagnostic method at the time this research

program was initiated, having first been demonstrated at Stanford in 1982, nearly all past

experience with the method was at near-atmospheric (or lower) pressures. Thus the first

phase of our NASA research involved design and assembly of a new combustor, intended

to provide a realistic test environment for research on fluorescence spectroscopy of
combustion gases at pressures up to 13 atmospheres. The burner is described in Section

3.1 below. Once the burner was operational and calibrated, research was focused on a

variety of issues relevant to quantitative fluorescence measurements at high pressures. In

particular, attention was given to the influence of laser linewidth, absorption linewidths

and shifts, spectral overlap of absorption features, and collisional phenomena including

electronic quenching and rotational transfer rates and their dependence on mixture

composition, temperature and pressure. Initial work emphasized quantitative

fluorescence measurements of OH, owing to the availability of relevant data for the

absorption spectrum, line-broadening (and shifts) and quenching rates of OH, and to our

ability to make comparative absolute OH measurements by alternate methods.

Subsequently, emphasis was placed on extending the OH fluorescence model to O2 and

NO. Although the goal was to monitor NO via fluorescence, our research revealed that

the UV absorption and fluorescence spectra of high-pressure (and high-temperature) 02

and NO overlap strongly, leading to a requirement that detailed spectral models be

developed for the absorption and fluorescence spectra of both species.

Following development of detailed spectral models for NO and 02, we performed

high-resolution absorption and fluorescence experiments in the high-pressure burner to

improve and validate the computer codes. We then used the codes to explore candidate

schemes for quantitative fluorescence measurements of NO. The most important

outcome of that research was the development of novel multi-spectral-zone strategies for

detection of ppm levels of NO in the presence of a large excess of 02. With these

strategies, a single excitation wavelength is selected, and multiple (two or three) spectral

zones of fluorescence are detected. If these spectral channels are properly selected, it

appears possible to determine absolute levels of NO, with reasonable independence of

temperature and 02 concentration, or to simultaneously determine NO, 02 and possibly
temperature.
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3.0 TECHNICAL DISCUSSION (Note: all figures referred to in Section 3
follow at the end of this section)

In the following sections we provide summary accounts of the primary elements

of research conducted in this program, including: fabrication of a high-pressure

combustor for spectroscopic studies; development and evaluation of fluorescence

spectroscopy models for OH, 02 and NO; and development of multi-spectral-zone

concepts for fluorescence measurements of NO and 02 at high-pressures and

temperatures.

3.1 High-Pressure Combustor

A small-scale combustor was designed and fabricated as a means of providing a

spatially uniform and steady sample of combustion gases at known temperatures and

pressures. The burner was a non-premixed flat flame burner (Research Technologies,

Inc., Pleasanton, CA) incorporating 460 small diffusion flames in a 1-inch square region,

surrounded by an outer co-flow (usually nitrogen). The burner was mounted on

translation stages (for horizontal and vertical motion) and installed inside a square (4.5

inch x 4.5 inch) containment duct, with windows on four sides for spectroscopic

observations. The containment vessel was water cooled, and the static pressure was

controlled by choking the flow at the exit of the chamber. Multiple ports were available

for thermocouples and sampling probes. Mass flow meters were used for accurate

control of fuel, oxidizer and additive compounds. The system was used successfully to

13 atm, with measured postflame temperatures in methane-air (or oxygen) systems to

2200K. Following assembly, an extensive series of tests was run to verify that the burner

provided reproducible samples of uniform and steady combustion products, and to

calibrate the burner, establish temperature profiles, and measure the concentrations of

both OH and NO as a function of height above the burner. Further details of the burner

construction and performance may be found in papers I and 3 in Section 5.0.

3.2 Fluorescence Spectroscopy of OH

Initial work to develop high-pressure fluorescence models for quantitative species

measurements focussed on OH. This species had the benefits of a strong spectroscopic

data base and the fact that the postflame levels of OH could be either calculated or

measured accurately, thereby providing accurate comparisons with fluorescence-based

models and measurements. The basic relation for the laser-induced fluorescence (LIF)

signal, in the linear-excitation limit (applicable here) is given by

S = C(E/hv)(kAx)tp

where S is the signal, in photons collected per laser pulse, E/hv is the number of incident

photons, kAx is the fraction of photons absorbed over the measurement distance Ax, with

k the effective spectral absorption coefficient (cml), _b is the fluorescence yield, i.e. the

fraction of absorbed photons which are reemitted as fluorescence, and C is a constant for

the optical arrangement which accounts for the efficiency of collecting the fluorescent



emission. It is useful to rewrite this result in a form which highlights the influence of

pressure,

S/_ottock" p'g'¢

where S/;( is the signal per unit mole fraction of the absorbing species, k' is a fundamental

quantity known as the line strength (cm -2 atm 1) for the transition excited, g is the

convolution integral (cm) which combines the effects of the laser lineshape and the

molecular absorption lineshape. Details of this development may be found in paper 3

(Section 5.0, reproduced in Section 6.1 of this report).

The quantity k' depends on the temperature and on the excitation transition (or

transitions, in the case of overlapping absorption lines) and hence may be taken as known

(from existing tabulations or using simple computational codes), and the overlap function

is also easily calculated if the laser linewidth (and spectral shape) and absorption

linewidth (and shape) are specified, so that the only remaining quantity needed to

quantitatively predict the fluorescence signal per unit OH is the fluorescence yield. This

is the quantity which normally limits the use of fluorescence for quantitative

measurements. Our approach was to calculate the fluorescence yield, using a

combination of literature values for collisional quenching cross-sections and reasonable

estimates, for a range of postflame pressures, temperatures and combustion gas mixtures

(using equivalence as a principal parameter). We then combined these calculations with

computed overlap integrals for representative laser linewidths (i.e., typical values for

pulsed dye lasers and/or achievable through laser modifications) and absorption

lineshapes. For the latter quantity, we utilized the body of absorption line-broadening

data for OH collected at Stanford over the past decade, which represents both highly

accurate and state-of-the-art data. A typical plot which combines these quantities to

indicate the variation of SIx versus temperature and pressure, for an equivalence ratio of

0.4 (methane-air), a laser linewidth of 1.0 cm -1, and for a specific OH transition, is shown

in Fig. 1. Note that the signal does indeed range vary strongly with pressure, as might be

expected, but is relatively insensitive to temperature. The results are also not highly

sensitive to equivalence ratio in the important fuel-lean regime. The implication of Fig. 1

is that quantitative measurements of OH could be made, without accurate knowledge of

temperature, if pressure is known.

The fluorescence model was tested in the high-pressure burner, using a combination

of calculated and measured values of OH for comparison. Typical results for single-point

LIF measurements of OH are shown in Fig. 2, for pressures between 1.2 and 10.2 atm.

The agreement is excellent, thereby providing high confidence in the ability to perform

quantitative fluorescence measurements of this species at high pressures. The success of

this work (see paper 3) provided a measure of confidence that the same strategy might be

usefully employed for the target species NO.

3.3 Fluorescence Spectroscopy of NO and 02

The primary goal of this research was to establish quantitative PLIF imaging

techniques for detection of low levels of NO in high-pressure, fuel-lean combustion
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products. In order to generate sufficiently strong fluorescence signals for NO, it is

necessary to excite the Ae--X bands (the)'-bands) in the UV, even though it is known that

these NO bands overlap the B4--X bands of 02 (Schumann-Runge bands). What was not

realized at the initiation of this research program is that the interference problems, while

difficult at 1 atm for the relative proportions of 02 and NO of interest (10,000 to I for the

case of 10% 02 and 10 ppm NO) escalate rapidly with increasing pressure. In order to

assess this difficulty and to establish optimum excitation-detection strategies, we first

compiled detailed spectroscopic models for absorption and fluorescence of the two

species, NO and 02. The absorption models allow calculation of the complete absorption

spectra for the bands of interest, subject to specified temperature, pressure, and line-

broadening (and line-shift) parameters. These are relatively standard models, in concept,

which included the most current data for absorption line positions and strengths, as well

as line-broadening and shift parameters which, in the case of NO, were taken from data

acquired in our own laboratory under separately funded programs. The fluorescence

models are more complex and less common, since they must combine specified

excitation wavelengths (and hence depend on laser linewidth and must allow for

overlapping collision-broadened absorption lines) with complex fluorescence spectra.

The latter depend on specified energy transfer models, e.g. state-dependent rates for

rotational, vibrational and electronic transfer, for which little data are available, as well as

transition-dependent spontaneous emission rates. Thus, the computation of the emitted

fluorescence spectrum, for specified excitation, is both complex and somewhat uncertain,

suggesting the need for validation experiments.

The severity of the spectral interference problem is illustrated in Figs. 3 and 4

which present the calculated excitation spectra (assuming broadband fluorescence

collection) for 02 and NO for 2000 K, fuel-lean combustion gases with mole fractions of

10% for 02 and 10 ppm for NO. Figure 3 provides a broad picture of the interference

problem, for P = 10 atm, showing that there are no available spectral regions in which

NO can be excited without generating a large signal from 02. These results suggest that

the optimum region for NO excitation is near 226.0 nm, since the relative 02 to NO

signal is smallest here. Figure 4 provides a similar plot, for P = 20 atm, but shown with

an expanded scale. These results confirm the severity of the interference problem and

also illustrate the critical importance of utilizing detailed codes of this type in the

development and evaluation of candidate schemes for quantitative detection of NO at
these conditions.

Following completion of the code, experiments were conducted in the high-

pressure combustor to evaluate critical elements of the spectroscopic models. These

experiments, conducted at pressures up to 12.6 atm and temperatures up to 2200K,

involved detailed comparisons of excitation and fluorescence spectra, for both 02 and

NO. Gas mixtures were varied (away from the fuel-lean conditions of Figs. 3 and 4) to

allow separation of the spectra of these species; i.e., the fuel-oxidizer mixtures were

modified to remove or minimize either NO or 02. Examples of excitation spectra are

given in Figs. 5 and 6, for 02 and NO respectively. Agreement between the model results

and the data were generally very good, though some discrepancies were found, such as

that indicated in the region 225.85-225.90 nm in Fig. 5. We attribute this particular

difference to the need to include more high-lying rotational transitions (above N = 45) in



the absorptionspectrumof 02. Although there are limited or no data for the absolute

wavelengths of these high-N transitions, it should be possible to estimate their positions

using reasonable extrapolations of the parameters which enter into these calculations, but

such changes in the 02 model have not yet been made.

Similar spectral scans have been made to evaluate the fluorescence codes.

Example results for 02 and NO for specific excitation wavelengths are shown in Figs. 7

and 8. Generally good agreement is found with the 02 spectra, Fig. 7, though close

inspection reveals that under some circumstances the relative positions of overlapping

absorption lines may not yet be correct to the level desired. Adjustments of the

calculated positions of 02 lines would, however, require considerable additional

experimentation and analysis. The results in Fig. 8 are interesting in that they clearly

show the implications of different energy transfer models on the fluorescence spectra of

NO. Note that, for these experimental conditions, the observed spectrum falls somewhat

closer to the zero-RET (zero rate of rotational energy transfer) model than the fulI-RET

(infinite rate for rotational energy transfer). Data for these rates are not currently

available in the literature, though spectra of the type recorded here could be used for that

purpose.

Results of the type shown here indicate the status of our computational models for

the spectroscopy of NO and 02. Details of the models and the validation experiments are

provided in papers 4-6 listed in Sec. 5.0. For convenience, the key paper, number 6, is

reproduced in Sec. 6.2 of this report. In addition, the spectral codes developed in this

program, and described in paper 6, may be accessed as described in Sec. 6.3.

3.4 Multi-Spectral-Zone Detection Strategy

The strong spectral interference between the NO and 02 fluorescence spectra,

together with the requirement to detect ppm levels of NO, essentially precludes the usual

approach for PLIF, namely the use of a single excitation wavelength and single spectral

detection channel. In steady combustion flows, it would be possible to tune the excitation

laser and collect multiple broadband fluorescence signals, thereby allowing separation of

the contributions of NO and 02 using a computer model for the excitation spectra of each

species. Unfortunately, most of the flows of interest are unsteady, thereby preventing

such a strategy. This difficulty led to a new concept, namely the use of a fixed excitation

wavelength and separation of the fluorescence signals into multiple-spectral-zones. We

used our computational codes to evaluate this strategy, seeking to find an optimum

excitation wavelength (and laser linewidth) and optimum spectral collection channels (or

zones). Of course there are practical constraints which must be considered, such as the

need for sufficient signal level in each zone, the desirability of maximizing the NO

signal, the availability and performance of high-efficiency spectral filters, and the need to

acquire signals with proper sensitivity (or insensitivity) to variations in temperature and

pressure, The value of the code to perform such an optimization, rather than to do this

empirically in the laboratory, cannot be overemphasized.

Although it is possible to consider use of more than two zones, we focus here on

the performance of a dual-zone-strategy. Shown in Fig. 9 are the fluorescence spectra for



oneparticularly promisingselectionof spectralzones. The conditionsarenominally 10
atm,2000K, with fuel-leancombustionproductsandlaserlinewidth of 0.5cm1. In this
example,theNO signalis measuredin zone1 alongwith an interferencefrom 02. Zone
2 providesameasureof the02 interferencesignal,which thencanbesubtractedfrom the
total signal in zone 1. Of course,one can alsouse the signal in zone 2 by itself as a
meansof inferring the02 concentration.With thisdual-zonestrategy,it is importantthat
therelativesignalsof 02 in zones1and2 bereasonablyindependentof temperature,asis
shown in Fig. 10. In addition, it is desirablefor the NO signal to be reasonably
independentof temperature,unlessan independentmeasureof temperatureis made. As
shouldbeclear from Fig. 10,the excitationwavelengthand detectionchannelsselected
meetour constraintsquite well. Otherchoicesfor theseparameterswereevaluated(see
paper6, in Sec.6.2),but generallywith somewhatpoorerperformance.

Finally, it is importantto estimatetheprobablydetectionlimits of thedual-zone
scheme. Toward this objective, we used reasonableestimates of the relevant
experimental parameters(particularly laser energy and linewidth and quantities
characterizingtheoptical collectionefficiency andconversionto electrical signals),and
concluded that it shouldbepossibleto detectNO at ppm levels(in thepresenceof 10%
O2),with acceptablesignal-to-noiseratios for all the pressuresconsidered(to 20 atm).
Unfortunately,no time remainedin theprogramto evaluatethe multi-zonestrategyand
verify thepredictedperformance.

It shouldbe noted that thereare obviousvariations in the multi-zone scheme
which maybeattractive. For example,therearewaysin whichthreezonescouldbeused
for simultaneousimagingof NO, O2andtemperature.This couldbeachievedsimply by
addinga third, temperature-sensitive,channelat shortwavelengths(below 220 nm, and
hencesensitiveto 02 alone),or by othercombinationsof spectralchannels.We havenot
conductedfurther researchto broadlyevaluatesuchoptionsor to validate them in the
laboratory.

Furtherdetailsof this workmaybe foundin paper6.
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LASER-INDUCED FLUORESCENCE MEASUREMENTS OF

NO AND OH MOLE FRACTION IN FUEL-LEAN,

HIGH-PRESSURE (l-10atm) METHANE FLAMES:

FLUORESCENCE MODELING AND EXPERIMENTAL

VALIDATION
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Abstract--A method for quantifying laser-induced fluorescence (LIF) signals and planar
laser-induced fluorescence (PLIF) images of the OH and NO radicals in high pressure flames
is presented. The fluorescence signal per unit radical mole fraction is modeled as a function
of temperature, pressure, overall flame stoichiometry and laser spectral bandwidth. A recently
developed model (JQSRT, 51, 511, Appl. PAys. B, 57, 249) 1"2for electronic quenching
cross-sections of OH and NO is utilized to express the fluorescence yield as a function of these
parameters. The models are confirmed using single-point measurements in the burnt gas region
of a flat flame burner at up to 10 arm. The measurements are performed at points in the flame
where the temperature, pressure, OH and NO mole fraction are all known. For fuel-lean flames
at elevated pressure, interference from the O., Schumann-Runge system was found with NO
A ,- X(0, 0) fluorescence measurements. This interference must be considered when selecting
an appropriate NO transition in this type of environment.

INTRODUCTION

The advent of commercially available lasers has resulted in variety of new spectroscopic techniques

of importance to the field of combustion. For example, quantitative measurements of radical and

minority species concentrations are essential to the development of accurate flame chemistry

models, and non-intrusive, real-time measurement techniques for nitric oxide (NO), a primary

pollutant, are crucial in developing prototype low emission propulsion systems. The ubiquity of

the hydroxyl radical (OH) in combustion environments has led to its use for marking flame zones,

for discerning flow structures, and for determining temperature. The work described herein is

motivated by the need for non-intrusive ways to measure the concentrations of these species. Of

candidate laser-based methods, laser-induced fluorescence has proven to be a particularly robust
and sensitive technique.

Many experimental results can be found in the literature regarding both single-points LIF

and PLIF imaging. '-6 Most prior work on LIF diagnostics has focused on atmospheric or sub-

atmospheric pressure application. However, many propulsion devices operate at elevated pressure

and this poses unique challenges to fluorescence diagnostics. In particular, quantitative interpret-

ations of linear (i.e., non-saturated) laser-induced fluorescence require accurate accounting of

collision-induced phenomena.: These phenomena, which include absorption lineshape broaden-

ing, radiative trapping and collisional de-activation or quenching, can be severe at elevated

pressure. Proper understanding of the fluorescence yield often requires an accurate accounting

of the electronic quench rate including species-dependent and temperature-dependent collision
cross-sections.

+To whom all correspondences should be addressed. Current address: McKinsey and Co.. 133 Peachtree Street. Suite 2300.

-Mlanta. GA __0303. U.S.A.
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The major goals of the work reported here are: (a) to develop straightforward quantitative
models of the fluorescence signal, for OH and NO; (b)to investigate the experimental

obstacles in making measurements at high pressures; and (c) to confirm the models in 10 atm
flat flames.

FLUORESCENCE SIGNAL MODELING

Fluorescence Equation

Laser-induced fluorescence occurs via a multi-step process: absorption to an upper (excited)
quantum state, followed by relaxation through either radiative or non-radiative steps, back to the

ground state. The fluorescence signal can be modeled by generating the steady-state solution to the
population rate equations for the states involved. For a weak non-perturbing laser pulse the total
number of fluorescent photons/time striking a photodetector can bc expressed as:

Sr = Co,rio(k, _',-rPZ,b,)g(4)_,;4,,_,)®, (!)

where

St-fluorescence signal (photons/see);

C,_--group of experimental constants including laser int=nsity/area, measurement
volume and collection solid angle;

qc(2)--transmission efficiency of optical detection system (wavelength dependent);
k,.s.,.r---absorption line strength (cm -2 atm-');

p--total pressure (atm);
g,_--absorbing species mole fraction;

g--overlap of laser lineshape (_,,) and molecular absoption lineshape (4_,b,);
q)--fluorscence yield (the fraction of absorbed photons which are emitted as

fluorescence).

Note that this formulation makes no assumptions regarding the relative widths of the laser and

absorption spectral lineshapes.
Expressing the fluorescence signal on a per unit absorber mole fraction basis, and removing the

experimental constants results in the following proportionality:

Sf

or. k,. s.,..rpg(_,_,;c_,_)dL (2)

Equation (2) also removes t/:, the detection transmission efficiency, for simplicity.

Model Formulation

The goal in modeling the fluorescence signal is to express Eq. (2) in terms of known, or easily
measureable global parameters. The parameters chosen for this work are temperature, press-
ure, laser bandwidth (A),_,) and overall flame equivalence ratio which will be denoted by r. The
model can then be validated in flows where these parameters are known or have been previously
measured.

Absorption line strength--k,j.,-r. The absorption line strength represents the intensity of the
coupling between the lower and upper quantum states. This term is a function of temperature
(through the Boltzmann population fraction) and lower rotational level? As an example, Fig. 1
shows OH line strengths in the A ,-- _Y(I, 0) band for several different lower state rotational levels
(J") transitions, as a function of temperature.

Overlap integral (g). The overlap of the laser and absoption lineshapes is included in this
formulation of the fluorescence signal so that no assumptions need to be made regarding their
relative spectral widths. In high-pressure combustion environments, the molecular absorption

iinewidths of OH and NO are greater or at least equal to the typical spectral bandwidths of most

18
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commercially available lasers (e.g., 0.5 cm-'). The overlap term is the product of the laser and

absorption lineshapes, integrated over all frequencies:

g=f_, c#,_(v,*'o, Av._b,)'cb,,,(V, vo,Av,,,)dv, (3)

where v o is the central frequency and Av is the spectral FWHM (in cra -_) of either the laser or

absoption transition. The laser lineshape (_,,) for the work decribed herein is assumed to be
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Gaussian on average so that zhe lineshape can readily be calculated based on the laser FWHM
and the central frequency. The molecular absorption lineshape, however, is generally a function

of temperature, presssure, and composition of the surrounding environment.
Various experimental studies can be found in the literature which express molecular absorption

lineshapes as a function of temperature, pressure and rotational level. 9-13In this work we have used
the results given in Ref. 9 for OH lineshape and the results of Ref. 12 for NO lineshape expressions.

Calculated results of the overlap integral are shown in Fig. 2 for OH. The observed trends are
also typical for NO albeit the NO linewidths are about twice those of OH. The plots show

variations with temperture, pressure, and laser bandwidth. The overlap integral is highly pressure
dependent, shown in Fig. 2(a), owing to the pressure broadening of the absorption lineshape, while

only slightly temperature dependent. The variation in the overlap integral with laserbandwidth is
shown in Fig. 2(b). As indicated, the pressure dependence is reduced when larger bandwidths are

used. Large bandwidth lasers also arc experimentally more convenient in that they are easier to
tun_ to line center in high-pressure environments and the resulting overlap with the molecule of

interest is less sensitive to fluctuations in the laser output wavelength. They do, however, tend to
reduce the overall magnitude of the recorded signal. Typical bandwidths of standard commercial
Nd:YAG and excimer-pumped dye lasers are on the order of 0.05--0.4 ern -t in the u.v.

Fluorescence yield (_)

The fluorescence yield or Stern-Vollmer ration, 0, represents that fraction of absorbed laser
photons which are re-emitted in the form of fluorescence. For a simple two-level system the
fluorescence yield is given by:

= AIz (4)
Atz + Q=

where A 12is the Einstein spontaneous emission coefficient and the Q=is the collisional quench rate.

The quench rate can be written as:

Q_---"7_X,_,v,, {5)
i

2.0

Eo_ 1.5

g

0

0.5

i I _ ' I , * _ , I , , I I I I I i i [ I I I I I _ ,

0.4 0.6 0.8 1.0 1.2

LaserBandwidth{cm1)

Fig, 2(b). OH overlap integral at 2100 k, 1-10 atm. as a funcuon of laser bandwidth.
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where

n--total number density = p/kT;

;(,----collider species mole fraction:
a,------collision cross-section:

v,--mean molecular speed between the absorbing species and colliding species.

The summation is over all i species which can collide and de-excite the absorbing species. While
molecules are in reality multi-level systems, this simpler formulation for • provides accurate
results.

For OH and NO in flame environments at atmospheric (or greater) pressure, Q_ is typically
much greater than A_:. _4Furthermore, the Einstein coefficient represents a known constant which

can be included in the proportionality expressed in Eq. (2). The fluorescence yield can than be
written as;

1

cx: ¢SkT _°S" (6)

where/_, is the reduced mass of the ith collider.

Colliding species raolefraction. For either OH or NO the identity of the pertinent colliding species
must first be established to perform the summation in Eq. (6). Downstream of the flame zone, in

the burnt gas region, the product gases consist predominantly of the major combustion product

species. For lean hydrocarbon flames, these are CO:, HsO, Ox and N 2.
In lean flames the major product species mole numbers are therefore, mole fractions, can be

uniquely specified by the overall flame equivalence ratio, r:

rCH, + 2(0:) + qNz--, rCO: + 2rHsO + 2(1 - r)Oz + qNs, (7)

for q moles of N, in the reactants. This is shown above for CH_ but is applicable to any
hydrocarbon fuel. This approach constrains the model's applicability to burnt gas regions of lean

hydrocarbon flames in favor of experimental and mathematical simplification. However, the same
approach is applicable in other regions or flow fields as long as the collider species mole fractions
(and cross-sections) are satisfactorily known or can be determined.

Collision cross-sections. Electronic quenching of flame radicals has been extensively studied,
particularly for OH. In general, collision cross-sections are species, temperature, and quantum-
state dependent. Several reports of OH and NO measurements can be found in the literature for

various values of these parameters. Unfortunately, no comprehensive experimental study exists
which reports cross-sections at flame temperatures, over a wide range of quantum states and
species.

For OH, several detailed studies can be found regarding collisions with H,.O) _-17These data are
illustrative in that the trends that exist with H:O are representative of many other collider species.
Two trends are evident. First, the rotational level dependence diminishes as the level (J") increases.

Second. the cross-sections tend to be only weakly temperature dependent at elevated temperatures.
These trends and data typify the other important collider species: CO,, 02 and Ns.

Less experimental data for NO than for OH can be found. However, NO quenching
measurements are currently an active area of research due to the importance of measuring NO in
a variety of applications. The present experimental evidence indicates that electronic quenching

cross-sections for NO are independent of rotational level, at least above room temperature. _8t9
Similar to OH. NO cross-sections also exhibit weak temperature dependencies at elevated
temperatures with the exceptions of quenching by N,.

Analytical models of the quenching cross-sections for OH and NO would be convenient for

incorporation into Eq. (6). Models found in the literature -'° typically predict an inverse power law
for the cross-section temperature dependence. This type of temperature dependence is in good
agreement with experimental results at low temperatures but not so at temperatures likely to be
encountered in flame environments.
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Recently, however, Paul and co-workers 1"_have reported the development of models for NO and
OH cross-sections which show good agreement with a wide range of experimental observations.
This model overcomes the main shortcomings of previous models, namely the proper treatment

of cross-section temperature dependence. These treatments arc based on the electron transfer or

"'harpoon" mechanism and are found to adequately describe the experimentally observed
behaviour of collision quenching of OH and NO.
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The results of these models are reproduced in Fig. 3(a) for OH and Fig. 3(b) for NO. Note that
for the range of temperatures and collider species pertinent to this work (approx. 1600-2300 K)
the cross-s_tion for collisions with both NO and OH change very little with temperature.

Model Formulation Summary

Each term in Eq. (2) has now been specified in terms of known, or easily measurable global
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parameters. The completed model of the fluorescence signal per unit absorber mole fraction can
be written as:

S, I
._c(k,.-j-,.._.p)g(_,b,;¢,_,,) (8)

_,b, p k T o.5"

Note that the pressure terms in the numerator and denominator cancel in this formulation

(i.e., with the absorbing species expressed as mole fraction) so that the overlap integral, g, is the

only remaining term which is pressure-dependent. Hence, the overlap integral must be prop-

erly accounted for in modeling the signal. Equation (8) is plotted in Figs. 4 (OH) and 5 (NO).
Figure 4 shows the OH (1, 0)P_ (8) transition while Fig. 5 shows the NO (0, 0)P21 + Q_ (14)/R_2 +

Q2(21) + P, (23) feature.

EXPERIMENTAL DESIGN

The nature of high pressure combustion environments poses unique challenges in fluorescence
experiments. These including:

• Beam attenuation due to high number density.

• Reduced signal due to increased quenching.
• Difficulty in finding an isolated transition.

These items affect the choice of transition to use, the way in which the signal is recorded and the
anticipated signal-to-noise ratio.

Attenuation

High number densities can often cause considerable attenuation of the incident beam. Substantial
beam attenuation results in a variation in the incident energy at each point along the beam path.

This can be experimentally problematic. Therefore an absorption transition should be chosen which
does not produce substantial attenuation over the path lengths (~ 2 cm) and number densities likely
to be found in this work. For NO, nascent mole fractions (< 1000 ppm) are not large enough to

produce 25% cm attenuation if strong (0, 0) transitions are used. Therefore, weaker OH (1, 0) lines
are used to reduce incident beam attenuation. This band is also experimentally convenient in that
the majority of the fluorescence is emitted at longer wavelengths which are well separated from
a large portion of the emission. A long pass filter can then be used to reject laser scattering while

still passing a substantial portion of the emitted signal.

Reduction in signal

At elevated pressures, the fluorescence signals for OH and NO are lower than at 1 atm to due
to both increased quenching and the effect of the overlap integral. Since the flat burners used in
this work are nearly steady, we have chosen to work with time-averaged data, collecting

fluorescence signals over multiple laser shots (typically 30 shot averages).
As well. we have chosen to use simple long-pass collection filtering for the LIF model validation

experiments. This type of spectral filtering, employing glass filters, helps to increase the amount
of light collected and is easily integrated with planned fluorescence imaging measurements. The

resulting large spectral band pass does, however, pose some problems with regard to discrimination
of the fluorescence signal, as described later.

Laser bandwidth

An additional aspect of the experimental design is the choice of laser bandwidth. This parameter

impacts the fluorescence signal model via the overlap integral [see Fig. 2(b)].
The variation in signal as a function of pressure is reduced as the laser bandwidth is increased.

For OH. there is less than 20% difference in the model calculation from 1 to 10 atm for a bandwidth

of 2.0 cm _ If a large enough laser bandwidth is used the variation in fluorescence signal per unit
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mole fraction with pressure could become negligible. As well, large laser bandwidths relax the
precision with which the laser must be tuned to line center. This is convenient when the molecule
to be measured has an appreciable collision-induced shift of the line center frequency, as doesNO.
However, as the laserbandwidth increasesthe emitted signal decreases for the same amount of laser
energy.

We have chosen to use a large bandwidth system for the OH work (,-- 1.0 cm- _) and a somewhat
narrower system ( .,, 0.4 cm - _) for the NO work. For NO, this produces enhanced signals at elevated

pressures at the cost of having to make sure that the laser is always tuned to the transition's central
frequency.

-t"

[nterference

Potential interference with the spectral feature chosen can come from two sources--adjacent
lines from the same species or underlying lines from other molecules. The increased line broaden-

ing at elevated pressures can cause extensive merging of adjacent spectral features. Lines at Iatm
that are well resolved may not be so at I0 atm. A well isolated line is desirable although not
essential.

For the OH ( 1, 0), band the line spacing is sufficiently large so that several isolated features exist.

Figure 6 shows a portion of the calculated OH (i, 0) spectrum near 285 nm. There appears to be
no underlying interference from other molecules under the conditions encountered in this work.

The well-isolated P, (8) line, at 285.685 nm, was chosen for validating the OH model.
For NO, several potential lines in the (0, 0) band exist which are sufficiently isolated for adjacent

NO lines. However, the NO (0, 0) band is overlapped by high-lying lines of the Oz Schumann-
Runge system. 2t Interference form Oz becomes important under two conditions--high 02 con-
centrations and elevated pressures. Figure 7 shows portions of both the NO and O,. spectra around
226 nm.

As indicated, the NO absorption coefficient is generally much larger that for Oz. However, in
fuel-lean hydrocarbon/air flames the Oz concentrations can often be several orders of magnitude

greater than the NO concentrations. For instance, a lean CH(/air flat flame, equivalence ratio = 0.4,

can produce Oz concentrations near 12% with NO levels less than 50 ppm.
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This presents two problems. First, depending on wavelength, the beam attenuation at elevated
pressure resulting from 02 can be on the order of 30%/cm. Second, the resulting fluorescence signal
emitted from 02 can be many times greater than that emitted from NO. For the Oz transitions in

this region, at the pressure pertinent to this work (l-10atm), predissodation is the dominant
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excited state loss mechanism? _ Unlike collisional quenching, this mechanism is independent of

pressure. Therefore, the 02 fluorescence yield, and thus the emitted signal, does not decrease with

pressure as does NO; in fact, the 02 fluorescence increases nearly linearly with pressure. These
factors are obstacles in making LIF measurements of low NO concentrations in lean flames at

elevated pressures.

A well-defined NO feature is needed which is free from 02 interference. As seen in Fig. 7 there

are portions of the 02 spectra where the absoption coefficient is close to but not quite zero. Several

NO features coincide with these "holes". We have chosen the (0, 0)P2, +Ql(14)/Rt2 +Q,(21)+

P_ (23) feature, located at 226.034 nm (vacuum), to use for high pressure measurements. This

feature, shown in detail in Fig. 8(a), is not a single transition but can still be treated in the model.

02 absorption at this wavelength is only a few percent per cm even for very lean flames so that

beam attenuation is not a problem in small-scale laboratory flows.

Figure 8(b) presents the results of an excitation scan near this wavelength region in a l atm

flame with equivalence ratios of 0.4 and 1.0. In the lean flame, the large peaks are attributable to

02 while the NO spectra around 226.000 nm are much smaller than the Oz features. In this flame,

the O, mole fraction was 21% and the NO level, 32 ppm. The recorded signal in the stoichiometric

flame agrees well with the calculated NO spectra based on the observed line positions of Engleman
et al. -'3 As expected, the 02 lines diminish in the stoichiometric flame.

Calculation and excitation scans confirm that the 02 fluorescence signal at the wavelength of

interest (226.034 nm) is minimized but not completely eliminated. The effects of the O5 interfer-

ence on the NO measurements can easily be dealt with as long as the fluorescence signal from

NO is substantially greater than that from 02 . The lowest NO concentrations encountered in the

10 atm flames used in this work were approximately 50 ppm. These levels produced sufficiently large

NO fluorescence signals that the O2 signal was essentially a frequency-independent background

signal. In this work, the laser was tuned off-line, to record both the NO and the O2 background
signals.

For the chosen NO feature this can be _iccomplished by tuning to approx. 226.015 nm where

the NO spectra is near zero (see Fig. 8). Across this wavelength range (226.015-226.034 nm) the

02 signal is nearly constant so that the O z contribution is effectively a background signal. This
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Fig. 9. Method for subtracting offthe Oz background signal by tuning away from the NO peak wavelength
to 226.014nm. This procedure results in small error for lean flames at 10atm as long u the NO

concentration is above about 10ppm.

is shown schematically in Fig. 9. This technique is used to remove the Oz signal contribution in

the fluorescence measurements described herein.

However, the error in this method is large for lean flames, at elevated pressure, with NO levels

below l0 ppm. Here, the resultant 02 signal at the minima of the O5 spectra at 226.034 nm is much

larger than that from the low NO concentration at the peak of its spectra. This has severe

implications for LIF or PLIF measurements of low NO levels in these environments. Alternatively,

it is possible to record very strong LIF or PLIF images of O, mole fraction (and quite possibly

temperature) in lean, high pressure flames, and to use the known 02 level to correct the NO signal.

The modeling of O, fluorescence at this wavelength and methods by which low (e.g., less than

10 ppm) NO concentrations can be measured will be discussed in a later publication.

SUMMARY

We conclude that the OH(I, 0)Pt(8) line and the NO(0,0)P:I +Qt(14)/Rtz+Q2(21)+PI(23)

feature are both suitable for single-point fluorescence at the conditions to be encountered in this

work. These transitions are also suitable for PLIF imaging. Each feature is strong enough to

provide adequate signal at elevated pressures while not causing consequential attenuation of the

incident beam. Each feature is also su_ciently isolated such that the laser can easily be tuned to

the cental frequency of the feature. For NO, the selected line minimizes interference from O,. As

well. for those situations where the O., background signal cannot be neglected, the laser can be

tuned off the NO feature so that the background signal can be resolved.

MODEL VALIDATION EXPERIMENTS

E._:perimental method

The models developed for NO and OH can be validated by making experimental measurements

in flames where the model parameters are known and then examining the behavior of the measured

signal with that of the model. This involves:

I. Measuring temperature at a single point in the flow.

2. Measuring or calculating the absorbing species concentration at that point.

3. Acquiring single-point LIF signals at that point.
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4, Measuring the laser bandwidth.

5. Using the model to infer a concentration from the LIF signal and comparing with known
concentration.

6. Evaluating the comparison over a range of global parameters.

MEASURING MODEL PARAMETERS

The test facilityused has been previously reportedz4 and willonly be summarized here. A

non-premixed flatflame burner (Research Technologies, Inc.Pleasanton, CA, U.S.A.) isused to

provide a spatiallyuniform and temporally steadysourceof post-flamegases.The burnerislocated

in a pressure vessel, square in cross-section, with optical access from all four sides. Enclosed within

the vessel are translation stages for positioning the burner. The flames are produced from metered

flows of CH4, 02 and N2 diluent. Additionally, there is an N 2 shroud flow around the burner. The

burner is square with an active area of approx. 22 x 22 ram. The system can operate at pressures

up to l0 atm with post-flame gas temperatures up to 2300 K.

Temperatures are measured using fine-gauge thermocouples which are corrected for radiation

losses. Temperature are varied by changing the reactant and diluent flow rates. Pressure is measured

using digital pressure transducer located below the burner.

The model validation is accomplished by making single-point measurements at the center axis

of the flame, approx. 6 mm above the burner surface. At this point, the OH concentration has

reached near equilibrium levels for all the conditions encountered in this work. Therefore, the OH

concentration for each flame used can be determined by first measuring the temperature at this

location then calculating the equilibrium composition from the known pressure and reactant mole
numbers.

NO concentrations are measured with a sampling probe and chemiluminescent analyzer (CLA).

The probe was fabricated from a 4 mm OD quartz tube which was drawn down to a taper and

cut to produce an approx. 200 #m orifice. All NO measurements are of nascent levels in the flames

used.

The sample was directed to the CLA (Thermo Electron 10-AR) through an un-heated line which

included a molecular sieve water trap. The line pressure was maintained below 30 torr.

Single-point LIF meaauremems

For the NO work, the excitation source used was a XcCI excimer-pumped dye laser (Questek

2200 pumped Lambda Physik FL2002). Coumarin 450 dye was used and the beam frequency-

doublcd to --,226 nm in BBO, to access the NO A ,--X(0, 0)P:t +Ql(14)/Rt2 + Q,(21)+ Pt(23)
feature. For this laser, the spectral bandwidth, measured with a u.v. etalon, -'s was --0.4cm-'.

For the OH work, the excitation source was an Nd:YAG-pumped dye laser (Lumonics-YM 1200

pump laser, HD 500 dye laser). This system holds several advantages over that used with NO. The

Nd:YAG output power is an order of magnitude larger than that of the excimcr laser, important

for future PLIF imaging experiments. Also, the dye laser was customized with additional cavity

optics to produce broader spectai bandwidths. This system typically was operated with an output
bandwidth near I cm _ Rhodamine 590 dye was used and the beam was doubled in BBO to

generate an u.v. output beam near 285 nm, to access the OH A *---,Y(I, 0}P_ (8) line.

The optical scheme for single-point LIF is depicted in Fig. 10. Each beam was loosely focused

over the center of the burner using a I m spherical lens. A portion of this beam was split and used

in conjunction with a photodiode to monitor the incident pulse energy. The incident beam was

attenuated ( < 100 _(J,'pulse) to always ensure that the fluorescence was well within the linear regime.

which was experimentally verified. Both lasers were operated at 10 Hz by using a master oscillator

that also triggered the detection electronics.

The emitted fluorescence was focused with a 10cm lens (1:1 imaging) onto a photomul-

tiplier tube (PMT). For OH. a IP28 tube (Hammamatsu) was used. For NO. and RI66UH

(Hammamatsul was used. A l mm aperture was placed in front of the tubes to define the

spatial extent of the collected signal. For OH. the recorded signal was filtered through 2 mm UG5

and WG305 Schott glass filters. For NO. a 4 mm UG5 filter was used. The PMT output signa[
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Fig. 10. Single-point LIF schematic of arrangement used to validate the fluorescence models
for OH and NO.

was recorded using a gated integrator/boxcar averager (SRS 245). All single-point LIF data
reported are 30 shot averages. The photodiode used to track the incident energy was also moni-

tored in this manner. Both output signals were recorded by an i486 laboratory computer via
GPIB interface.

The laser was scanned on and off line for each measurement so that a peak signal and a

background signal could be recorded. For OH, the background signal was small, representing
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mostly laser scattering. For NO, the background signal was somewhat larger, representing
both laser scattering and residual Oz fluorescence. Background signals were subtracted in all
experiments.

Model validation results---OH

The results of the OH model validation experiments are shown in Fig. 1! for pressures ranging
from I to 10 atm. The OH mole fraction inferred from the model-corrected and fluorescence signal

is compared to the calculated OH equilibrium concentration based on the known temperature,
pressure, and composition. The nominal flame equivalence ratio is 0.4. However, there is a slight

variation in the product mole fractions at each point due to varying amounts of N= diluent flow.

This is accounted for in the model calculation at each point. A single point (1 atm, 1872 K) is used
as calibration for all the data.

The model-derived OH concentrations are in good agreement with the calculated equilibrium
levels. This agreement, as the pressure is increased (by a factor of 10), indicates that the overlap
integral has been accurately handled in the model. The agreement at any given pressure, as the

temperature is changed (over a few hundred degrees K) indicates the temperature variation of both
the absorption line strength and fluorescence yield have been accurately accounted for as well.

Model validation resultsmNO

The single-point results from the NO measurements are shown in Fig. 12. The flame conditions
at each measurement point in this figure are the same as those in Fig. 1I. Here, the comparison
is made with the CLA-measured NO mole fractions. Again, all LIF-derived data are calibrated

to the CLA at a single point. As described above, the underlying Oz signal has been subtracted
from the peak NO signal. Each data point shown represents the average of several measure-
ments. The vertical error bars indicate the average RMS difference betw_n the LIF data and the
CLA data.

The model-inferred NO concentrations match very closely those measur_ independently with

the CLA. The agreement with changing temperature and pressure again indicates the accuracy of
the treatment of the various components of the model.
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SUMMARY AND CONCLUSIONS

In this work we have developed a quantitative model of the fluorescence signal per unit absorber

mole fraction for OH and NO. The models are aimed at making quantitative corrections to

fluorescence measurements in the product region of lean hydrocarbon flames at elevated pressures.

The models are based on known or easily measured global parameters (temperature, pressure,
overall flame equivalence ratio, and laser spectral bandwidth) and utilize the most recent published

analytical studies of OH and NO collision cross-sections. Appropriate handling of the overlap

integral, requiring expressions for the collision broadening, are essential in applying the model

across a range of pressures.
The model agrees well with single-point measurements from 1 to 10 atm for both NO and OH.

Validations were performed by making single-point fluorescence measurements approx. 6ram

above the flame front of lean (r ,-, 0.4) CH4/O2/N2 flames from 1 to 10 attn. Interference from 02

Schumann-Runge transitions was minimized by judicious selection of the NO feature (226.034 nm)

and by an off-line background subtraction (226.014nm). These measurements confirmed the

suitability of the models as means by which fluorescence measurements, single-point or multi-

dimensional, can be used to infer species mole fraction, assuming approximate knowledge of key

global parameters. This represents an important asset for the combustion scientist in that important
radical concentrations can be readily inferred from fluorescence measurements.

Investigations are underway to determine methods to eliminate the 02 contribution to the

recorded signals in the NO experiments, without the need for tuning off line, and ways by which

the ratio of NO to O, fluorescence can be improved. Included in these studies is a model of the

O, fluorescence signal as a function of temperature, pressure, laser bandwidth and stoichiometry,

at'this wavelength. These efforts will aid in measuring low NO concentrations at elevated pressures
in either LIF or PLIF imaging experiments. Other NO transitions, for example the (0, !) band at

longer wavelengths, show potential for reducing the O2 interference. We are also exploring the use

of high-performance special filters for separating NO and O5 fluoresence. Such filters would

possibly allow for the simultaneous recording of spectrally discriminated NO and O2 signals in

high-pressure combustion environments.
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We report new models of absorption, excitation, and fluorescence spectra for joint excita-
tions of the A.-X(O,O) band of NO and the B*-X bands of 02. Supporting measurements
obtainedfromtheburnedregionsof flamesoperatedat pressuresfrom 1to 10armare also
presented. As developed through these models, a strategy appropriate for imaging planar
laser-induced flourescence is proposed that, for lean combustion environments, should afford
sensitive measurements of NO concentration through the use of a single excitation
wavelength despite the photolytic interference from 0 2 that intensifies with increasing pres-
sure and temperature.

Keywords: NO;O2; gamma bands; Schumann-Runge bands; laser-induced flourescence; com-
bustion

INTRODUCTION

The method of laser-induced flourescence (LIF) has found extensive use in

its capacity to measure non-intrusively and with good spatial resolution the

concentration of nitric oxide (NO) as formed by combustion. Whether for

point-wise (Westblom et al., 1994; Williams and Fleming,1994) or two-di-

mensional measurements [through an extension of LIF to planar laser-

induced fluorescence, or PLIF (Hanson et al., 1990)] of the concentration

field of NO, the method traditionally employs a pulsed laser tuned to excite

NO by one-photon transitions within its strong A.--X(0,0) electronic sys-
tem, which is centered near 225 nm. The resulting flourescence cascades in

vibronic bands A(v'= 0)-. X from roughly 220 to 300 rim. Though various

257
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factors influence and ultimately moderate the spectral extent over which the

fluorescence can be collected, it holds generally that the greater signals

accompanying a broader collection bandwidth will improve the spatial res-

olution and detectivity of the measurement. For PLIF imaging especially,

broad collection of the fluorescence distribution of NO is imperative if the

method is to achieve for single-shot images a spatial resolution of

~0.1 mm 3 (McMillin et al., 1993).

With the parameters requisite for quantitative detection of NO through

LIF now fairly mature (Change et al., 1992; Di Rosa and Hanson, 1994a; Di

Rosa and Hanson, 1994b; Paul et al., 1995; Paul et al., 1993), attention has

turned toward assessing spectral interferences from species that have ab-

sorption and fluorescence spectra overlapping those of the A- X bands

(the "t-bands) of NO. In lean combustion environments, a notable spectral

interference is presented by molecular oxygen, the Schumann-Runge bands

(B - X) of which encroach upon the A*--X(O,O) absorption spectrum of NO

toward high temperatures (Di Rosa and Hanson, 1994a; Wysong et al.,

1989) and subsequently fluoresce within the A(v' =0)---,X progression of

NO. The impact of this interference is then potentially twofold, a partial

attenuation of the laser beam (or sheet, in the case of PLIF) and a corrup-

tion of the NO fluorescence signal. Both effects, however, can be greatly

minimized by a judicious choice of excitation wavelength while maintaining

high signal levels of NO fluorescence.

Such a selection is best made by a comparison of excitation spectra,

which, as a preview of the models described herein, is provided by Figure 1

for an assumed post-flame environment of 2000K, 1atm, 100ppm NO,

10% 0 2, plus major combustion products of CO2, H20 and N2 in the

respective percentages 9%, 18%, and 63%; also assumed were a tophat

spectral bandpass from 230-290 nm and a Gaussian profile 0.5 era-t wide

(the full width at half the maximum value, or FWHM) for the spectral
distribution of the laser. Between 226.0-226.1 nm there occurs a pronounced

minimum in the absorption spectrum of O2, fortuitously located where

strong features of NO appear. Within this minimum and for the case repre-

sented by Figure 1, the excitation of NO at any of the five peaks labeled a

through e would yield a signal ratio of NO to 0 2 fluorescence of better than

one hundred. Yet what appears to be a decided advantage for the broad-

band LIF signal of NO quickly erodes when either the pressure increases,

the temperature increases, the concentration of NO relative to O2 is sub-

stantially less, or some combination thereof. Particularly challenging, then,

will be the advance of PLIF-imaging of NO to the fuel-lean, high-pressure

(> 10 atm), and high-temperature (---2000 K) environments of gas-turbine

B
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FIGURE 1 Excitation spectra of NO A-X and O z B-X as calculated for products of lean

combustion (a _ = 0.63 reactant mixture of CHdOz/N2 in the proportion 1/3.2/6.8) at 2000K

and I atm that include 100ppm NO and 10% 02. A laser FWHM of 0.Seth -t and a tophat

fluorescence bandpass from 230- 290 nm were assumed. The five labeled peaks of NO co-

incide with a broad, pronounced minimum in the B _-X absorption spectrum of O 2.

combustors (Locke et at., 1995) or their experimental analogues (Allen et al.,

1995), conditions for which an indiscriminate choice of excitation wave-

length might severely restrict the measurement's sensitivity to NO concen-
tration.

Because existing spectroscopic models for 0 2 (Lee and Hanson, 1986) are

inappropriate for very high temperatures, and because no models have

apparently been assembled for the LIF spectroscopy of NO, efforts to date

in the detection of NO by narrow-band LIF within the burned regions of

lean, high-pressure flames have largely been empirical (Reisel et ai., 1994).

Past work (Battles et al., 1994) in PLIF conducted in our combustion

facility, approached the problem of spectral interference from O 2 at high

pressures by acquiring separate, sequential images of the fluorescence result-

ing from two different excitation wavelengths (Battles and Hanson, 1995).
One image was 'on-line', obtained for an excitation wavelength at a peak of

NO A,--X(O,O), and the other was 'off-line' with an excitation wavelength in

a nearby minimum of NO A,--X(0,0). The off-line image, primarily of O 2
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fluorescence, was considered a measure of the interference background

that could be subtracted from the on-line image. Fairly simple to imple-

ment, this approach to PLIF imaging of NO in lean-combustion environ-

ments is nonetheless better suited to conditions of moderate pressure

(_< 5 arm) with levels of NO above 50ppm and is intrinsically a time-

averaged method unless the complexity of an additional laser system and
camera is incurred.

Concern over the photolytic interference of 02 would be eliminated by

resorting to two-photon excitation of NO A*-X(0,0) (unlike NO A,--X,

02 B,--X is two-photon forbidden), but it is preferable to exploit the

joint excitation of NO and 02 in ways that would enable not only

single-shot, planar measurements of NO at ppm levels but the simulta-

neous measurements of the 02 concentration and 02 vibrational tem-

perature as well. The method is guided by our newly-developed models

for the absorption, excitation, and fluorescence spectra of NO and 02,

which are reported here together with supporting data obtained from the

burned-gas regions of CH_/Oz/N 2 and CHJO2/Ar flames operated from
1 to 10atm.

SPECTROSCOPIC MODELS

Component formulae of the absorption and fluorescence processes are

given, from which excitation spectra are synthesized. For a weak excitation

by a UV laser of energy density E o [J/L 3] and of center frequency coL[rad/s],

the number of absorption transitions per unit volume [L3] from lower state

i to upper state k [each state a specific InvJQSA_E) (Zare, 1988)] is ex-

pressed by

F
NOb= = (Ax/hogL)n i x |deJtrk,,i .... _ ,_p(.... ),

J

(1)

where Ax is a length ILl traversed by the beam, h [Js] is the Planck

constant divided by 2n, n( is the number density [L-3] of the lower state

(derived from the Boltzmann fraction of the state multiplied by the number

density of the species), ak_,_........ _ [L 2] is the cross section of absorption

with center frequency ogk.i and
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is the laser's spectral energy density [J/LS/(rad/s)] of Gaussian distribution

_bt, normalized such that

bL,o__,tjd_o = 1. (2)

The cross section for an absorption transition k,--i derives from

ak_.o,_= (hO_k.i/c)Bk.,Sk_, Ckk..._, (3)

where Sk_ , is the normalized HiSnl-London factor for absorption, calculated

from Earls (1935) for NO and Tatum and Watson (1971) for O z, and B_,, is
the band Einstein B coefficient between the vibronic levels to which states k

and i belong, related to the band Einstein A coefficient A_., Is-t] and the

electronic degeneracies, g_, of the connecting states through (Hilborn, 1982)

Bk.,_ _= (gk/ gi) (_2 C3 / Fi(O3 i) Ak. i . (4)

In Eqs. (3) and (4), c is the speed of light through vacuum. The Ak_ _for both

NO and O2 are from Laux and Kruger (1992). An outgrowth of the Born-

Oppenheimer assumption, the use of HSnl-London factors for purposes of

calculating the rotational line strength is entirely appropriate for the 7-

bands of NO (Scheingraber and Vidal, 1985) but only mildly so for the

Schumann-Runge bands of 0 2 (Gies et al., 1981). At present, however, the

data and theory available on the rotational dependence of line strengths

within 02B_X are too incomplete to justify a switch from Eq. (3).

The transition line shape, _bk._,for both NO and 02 is the Voigt profile as
computed by the algorithm of Drayson (1976) with the normalization con-

dition of unity area, as in Eq. (2). The collision widths and collision shifts of

the A,--X(0,0) band of NO are known from measured relations (Chang

et al., 1992; Di Rosa and Hanson, 1994a; Di Rosa and Hanson, 1994b) for

perturbers Ar, N z, 0 2, and H20 - four of the six major constituents of the

product gases considered here. The other two species, CO and CO z, lack

comparable studies but can be, to a very good approximation, assumed

identical to N2 in the broadening and shift they collisionally induce in the

A,--X(0,0) transitions of NO. For transitions of the Schumann-Runge

bands of O2, the homogeneous width for the conditions investigated is

primarily from predissociation, and account is taken here of the vibrational,
rotational, and fine-structure dependence of the predissociation linewidths
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(Lewis et al., 1994). Collisional broadening (Av,) and shift (Av,) of transitions

within the Schumann-Runge bands become evident toward high pressures

(P) and are currently estimated from the relations

Av,l_-wuMo2[cm- 1] = (0.21) x (P[atm]) x (273.2/T[K]) °'_

Av,lo2 [cm-t] = (_ 0.063) x (P[atm]) x (273.2/T[K]) °'7

which comprise the room-temperature coefficients of Lewis et al. (1988) and

their extrapolation in temperature (T) as drawn from simple theory (Breene,

1961; Di Rosa and Hanson, 1994b). The line shape of a transition in the

direction of fluorescence is assumed equal to the line shape in abosrption.

Line-shape parameters for the A(v' = O)_ X(v" > 0) fluorescence transitions

of NO are set equal to those of the A-X(0,0) band.

With reference to Eq. (1), the number of LIF photons per unit volume

and per unit frequency occuring by spontaneous emission from upper state

k to a lower state j may be experessed (in the limit of zero energy transfer

within the upper state) by

--. FI"I NabsN_s(_._d k-j k.-.,_osL)wk,j(o,) , (5)

where the dimensionless quantity

is the fluorescence quantum efficiency. A relation alternate to Eq. (5), and

perhaps a more useful one from a practical standpoint, is formed by setting

the dimension ILl to centimeters, the length Ax to 1 cm, the laser energy

density (Eo) to I mJ/cm a, integrating Eq. (5) over a volume I cm a (1 cm

pathlength x 1 cm: cross section) through which passes 1mJ of laser energy,
and including a divisor or 4n (the surface area of the unit sphere). The net

result is termed here the 'spectral LIF yield', which gives the number of LIF

photons per mJ of laser energy per cm of path length per unit bandpass

(either frequency or wavelength, depending on how one integrates over _bk.j)

and per unit solid angle.
As written, Eqs. (5) and (6) omit influences of non-radiative processes

other than electronic quenching and predissociation, the rates for which are

represented by Qct_:and Qpred' respectively. The summation over Ak_ , is, for
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both NO and O 2 at the conditions of interest here, a very minor term in the

denominator of Eq. (6) and appears for completeness only. For the A(v' = 0)

level of NO, Qp_d= 0, Q,_,¢is calculable for flame environments (Paul et al.,
1995; Paul et al., 1993), and vibrational relaxation is safely ignored. Rota-

tional relaxation within the A(v' = 0) level of NO is discernible in the envi-

ronments studied but incomplete enough to justify its omission for present

purposes. The electronic quenching rate for the B-state of O2 is unknown,
but it is suspected that the predissociation of O2-B, with a rate of roughly

5(10tO)s-l, predominates quenching for pressures up to 10atm [for com-

parison, Qe_ for NO A(v'= 0) in the burned region of a CHJair flame at

10atm is only one tenth the nominal predissociation rate of the B-state of

02]. Still, as a crude account, the quenching rate of any ro-vibrational level

of O2-B is assumed equal to that affecting rotational states within the

A(v' = 0) level of NO. Rates of rotational and vibrational relaxation of the

B-state 02 are also unknown, and their absence from the model is justified

solely empirically from measurements of dispersed fluorescence for press-

ures up to 10atm at temperatures of nominally 2000 K. Apparently, for the

conditions and excitations particular to these measurements, processes of

rotational-energy and vibrational-energy transfer are still masked by predis-

sociation.

Transition energies for the B3E_ - X3Y-_- bands of 02 were calculated by
the formulae of Miller and Townes (1953) with spectroscopic constants

drawn from Nicolet et al. (1989), Creek and NichoUs (1975), and Fang et al.

(1974). These sources, along with minor interpolations and extrapolations,

permitted calculations of line positions connecting 0_<v"_< 19, O<<.N" _<45
with 0 _<v' _<14, 0 _<N' _<46. Line positions of the A(v' = O) - X(O <_v" <<.7)

bands of NO were determined for 0 <<.J"_<65 by methods outlined else-

where (Chang et al., 1992), along with supplemental spectroscopic constants

from Engleman et al. (1970) and Engleman and Rouse (1971) [see DiRosa

(1996) for details].

EXPERIMENTAL VALIDATION

The experiment, diagrammed in Figure 2, includes a windowed high-press-
ure combustion facility and Nd:YAG-pumped laser system (a Lumonics

Model YM-1200 Nd:YAG laser, a Lumonics Model HD-500 dye laser

running Coumarin 430 dye and pumped by the 3rd harmonic of the

ND:YAG laser, and a Lumonics Hyper Trak 1000 for single-pass fre-

quency-doubling of the dye-laser fundamental) that delivers 10 ns pulses at

4O
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FIGURE 2 Experimental schematic for measurements of excitation spectra. Measurements of
the fluorescence spectra were approached similarly but with a monochromator in place of the
filtered PMT.

10Hz of laser light tunable from 220--230nm. Operable from 1 to 12atm,

the combustion facility consists of a non-premixed burner centered within a

stainless steel pressure vessel of square cross section i 1 x 11 cm. On each
side of the chamber and centered about the rim of the burner is a mount of

clear aperture 4.5-cm square to which either a window (9.5-ram-thick UV-

grade fused silica plates) or a thermoeouple probe (as sealed to an alumi-

num blank) can be secured. The burner (from Research Technologies, Inc.),

a 2.5 x 2.5 cm honeycomb grid of separate channels for fuel and oxidizer

arranged hexagonally with each fuel channel touching six oxidizer channels,

flows CH4 and Oz with either N z or Ar as a diluent. All gases are of

research grade (purity >199%) and are metered individually by mass flow

controllers. The roughly 200 diffusion flamelets generated by the burner

merge to form a dimpled but contiguous flame sheet close to the burner

surface, above which the gases mix and homogenize to yield laterally-uni-

form product distributions at temperatures of up to 2000K. A uniform

shroud of N z purges the peripheral area of combustion products, mainly to

displace the cold NO and ensure the outer regions are transparent at the

laser wavelength but also to shield the windows from deposits of soot. The
laser beam, of -_ 1mm waist, traverses the chamber at a height of roughly

I cm above the burner surface, its energy reduced as necessary to operate

well within the weak excitation limit (i.e. within the 'linear-fluorescence'
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regime, where the laser energy and fluorescence signal are directly propor-
tional). At the burner, laser energies are typically 30 _/pulse.

The laser-induced fluorescence is collected at 90 ° from a small segment of

the beam directly above the burner's center. At this location the tempera-

ture is measured with a Pt/Pt-13% Rh (type R) thermocouple of bead diam-

eter~250tam. Inclusive of a correction for radiation losses (Bradley and

Matthews, 1968), the thermocouple voltage is converted to a measurement

of the gas temperature with an estimated uncertainty of +40K. For

producing excitation scans, the laser frequency is scanned, and the fluor-
escence is imaged onto a photomultiplier tube (PMT) after passing through

a spectral filter. The fluorescence spectrum for a fixed laser frequency is

obtained through use of a 0.5m monochromator, equipped with a 2400

groove/mm grating and a PMT at the exit plane, that is calibrated for

wavelength accuracy and spectral sensitivity.

Serving as a reference for the laser frequency is the record of an excitation

scan of NO at room temperature--simultaneous with excitation scans

of the flame environment, anterior to measurements of the fluorescence

spectra--produced by directing a small portion of the incident beam

through a cell filled to --,300 tort with a mixture NO/N z and detecting the

fluorescence with a PMT. A comparison of the reference excitation spectra

with a synthetic one based on known line positions (Engleman et al., 1970)
determines the laser frequency to an accuracy of better than 10.1cm-11.

Incident (Io) and transmitted (IT) energies of the laser beam are monitored in
order to account for the minor attenuation of the beam on its way to the

measurement volume. All signals are recorded by gated integrators (Stan-

ford Research Systems Model SR250) and then transferred to a computer

for analysis.

Excitation Spectra

Examples of measured excitation spectra of the B,---X bands of O2 zre

shown in Figures3 and 4 for conditions of 1920K/1.2atm and 2020K/

10.4arm, respectively. Both conditions were generated by lean CH,/Oz
flames with Ar as the diluent (as opposed to N2) in order to examine the 02

spectra without complications from NO; flowrates of the reactants were
nominally 0.9slpm for CH4, 5.9slpm for 02, and 6.6slpm for Ar. In both

figures, the abscissa is the vacuum laser-wavelength, and the ordinate is the
(normalized) fluorescence signal as filtered in wavelengt h by a bandpass

extending in FWHM from approximately 240-270 nm, defined by the spec-
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FIGURE 3 Measured and modeled excitation spectra of O: B-X for fl_nc conditions of
1920 K and 1.2 atm, a spectral bandpass from 240-270 nm, and a laser FWHM of 0.5 cm-t.
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FIGURE 4 Measured and modeled excitation spectra of O 2 B-X for flame conditions of
2020 K and 10.4 atm, a spectral bandpass from 240-270 nm, and a laser FWHM of 0.5 cm- t

tral response of the PMT and the transmission function of the interference

filter preceding it. Each excitation spectrum was modeled by evaluating, for

a given discrete step of the laser wavelength and for each transition promo-

ted by the laser, whose spectral distribution was reasonably estimated as a

Gaussian of 0.5 cm- t FWHM, the integral over co of Eq. (5) weighted by the

known spectral bandpass. The vertical scale of the synthesized spectrum

was then multiplied by a constant as required to match the measurement at

a prominent feature. In Figure 3, for instance, the model was normalized

relative to the measured peak at ~225.915nm, composed mainly of the
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triplet 2.4Pt(23) plus 2.4P2(23) plus 2,4P_(23), abbreviated in Figure 3 by

2,4PI2a(23). [Transitions are described by the conventional shorthand v',

v" AJ(N"), with P, Q, and R for AJ = J'-J"= -1,0, and I, respectively.]

Main contributors of three other peaks are also labeled.

The overall exceptional agreement seen in Figure 3 between the measured

and modeled spectra lends confidence in the spectroscopic parameters in-

corporated for calculations of the absorption and fluorescence spectra of the

B-X bands of 02. Especially important is an account of the spin-depend-

ence of the predissocation widths (Lewis et al., 1994), without which the

modeled excitation spectra would err significantly, possessing structure and

peak ratios irreconcilable with the measurements. Toward high pressures,
where collisional broadening becomes evident by the increased blending of

features, the model maintains its good overall agreement with the measure-

ment as seen in the (,-- 10 atm) case of Figure 4. The disparity between the

model and measurement near and about 225.87 nm, seen more pronounced

in the higher-temperature case of Figure 4, is likely from the emergence of

high-lying rotational states that are beyond the limits and safe extrapola-
tion of the current data base.

Excitation spectra of sections of the A_-X(0,0) band of NO were ob-

tained similarly, though fuel-rich stoichiometries of CH4JO_N2 were in-

stead used to minimize the concentration of O 2 in the post-flame gases. For

cases at 1 to 10atm, the measured spectra were capably predicted by the

model, thus confirming the collision widths and collision shifts of the

A,--X(O,O) transitions of NO measured previously (Chang et al., 1992; Di

Rosa and Hanson, 1994a; Di Rosa and Hanson, 1994b). An example of their

comparison is shown in Figure 5 for conditions of 1840K and 10.6atm,

with some of the peaks labeled and by nomenclature similar to that paren-

thetically described for transitions of 0 2.

Fluorescence Spectra

A complement to broadband excitation spectra, which are compounds of

the absorption spectra and the fluorescence quantum yield, fluorescence
spectra serve to test more precisely the modeled fluorescence distribution

and also to reveal possible routes of energy redistribution in the upper state.
At flame conditions similar to those used for measurements of the excitation

spectra, the fluorescence spectra of 02 and NO were examined separately

by fixing the laser wavelength, typically on a prominent absorption feature,

and scanning the monochromator. The relative spectral response (RSR) in
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FIGURE 5 Measured and modeled excitation spectra of NO A-X for flame conditions of

184OK and 10.6atm. a spectral bandpass from 240-270nm, and a laser FWHM of 0.5era-1.

the UV of the monochromator, collection lens, and chamber window com-

bined was established through the use of a calibrated D2 lamp. Converted

to a basis of signal/photon, the RSR of the complete system peaked at

325 nm, falling smoothly to 1/3 and 2/3 of this peak value at 230 nm and

360 nm, respectively. For measurements of the fluorescence spectra, the slit

widths of the 0.5 m monochromator were each set to 200 pan, which with its
2400 groove/ram gating lent a measured FWHM instrument width of 1.84/_.

Because the Schumann-Runge bands near 226nm are an overlapping
assemblage of vibronic bands with lines of large (~ 3 cm-l) predissociation

widths, a laser beam with a wavelength in this vicinity quite generally

excites dozens of 0 2 transitions. There are, however, many instances where
the laser excites primarily just two or three rotational lines and therefore

engenders a fluorescence spectrum that is easier to interpret. One instance is

depicted in Figure 6, which shows a segment of the calculated absorption

spectrum of 0 2 B-X and the two constituent 'lines', the b/ended features of

7,6R123(25) and 2,4 R123(25), that compose the peak at 226.821 nm. In the
absence of energy transfer within the upper state, an excitation at

226.821 nm would then give rise to a fluorescence spectrum stemming main-

ly from upper-state levels (v'= 7, N'= 26) and (v'-= 2, N'= 26). The meas-

ured fluorescence spectrum of 02 induced by this excitation wavelength.

and for conditions of 2020K, 10.6atm, is shown in Figure 7a, this to be

compared with Figure 7b, a synthetic fluorescence spectrum based on the

same experimental conditions, convolved with the known instrument width,

and normalized at 260nm to the measured spectrum. Though the highly
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FIGURE 6 Calculated absorption spectrum of 0 2 B-X at 2020K and 10.6atm showing the
constituent lines excited by a laser at 225.821 rim.
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FIGURE 7 Fluorescence spectrum of O z B-X for conditions 2020K and 10.6atm as in-
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non-diagonal Franck-Condon matrix of the B-X system of 02 makes for

an LIF spectrum that extends from the vacuum UV through the visible,

measurements were limited to those sections of interest in the '2-zone" ap-

proach to PLIF discussed in the next section.
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In terms of line position and overall envelope, the model satisfactorily

predicts the measured fluorescence spectrum of Figure 7. Also, the absence
in the measured distribution of structure extraneous to the model indicates

that predissociation, at least for the upper states involved here., still outstrips

processes of energy transfer in the B-state of O z in combustion environments

at 10atm. A closer inspection of the two spectra, provided by Fig-

ure 8, reveals however a disparity between the measured and modeled mag-
nitudes of fluorescence. Relative to the fluorescence emanating from upper

state (v' = 2, N' = 26), the fluorescence stemming from (d ffi7, N' ffi26) is, for

each band observed, underpredicted by (roughly) a factor of two. Possible

contributors to this disparity include the inaccuracy for the O: B-X system

of H_nl-London factors for determining the rotational line strength and a

slight (< 1cm- t) difference between the truc and calcolated frequency separ-

ation of absorption transitions 7,6 Rt23(25) and 2,4Rta3(2_

In a similar fashion, the dispersed I.£F of the A(v' = 0) _ X system of NO

was measured at conditions 1900K and 10.6atm for an excitation

wavelength of 226.036 nm, a wavelength near the central peak labeled in

Figure 5. A portion of the measured spectrum is shown in Figure 9 along
with modeled results of the LIF distribution for the two limiting cases of

rotational energy transfer (RET), the solid line for zero RET within A(v' = (3)

and the dashed line for full rotational equilibration (termed full RET), an

assumption appropriate only when the rate of PET it very much larger

than rates of other processes of relaxation or de-excitation. Compared with

the full- and zero-RET models, the measured LIF spectra shows the strut-

FIGURE 8
LIF spectra.

1.0 _ _ M.e,_mnm_ v'..2---, v'=S

• 0.8 I _ Model
0.6

0.4

0.2

0

2.57 258 259 260 261

Fluorescence Wavel_ngth, nm (vacuum)

Portion of Figure 7 providing a closer inspection of the measured and modeled
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FIGURE9 Fluorescence spectrum of NOA-X for conditions 1900K and 10.6arm at in-

duced by laser excitation at 226.073nm and of 0.Scra -t FWHM. (a) mvatutement. (b) syn-
thetic spectra for assumptions of zero RET and full rotational equilibration (full RET} in
NO-A.

turc of a partial equilibration and a shape closer to the case of zero-RET.

This closer accord with the zero-RET assumption is not surprising. While

for the A(v' = 0) level of NO the state-to-adjacent-state rate of PET in theae

flames is roughly ten times (Mallard et al., 1982) the rate of electronic

quenching (Paul et al., 1995; Paul et al., 1993), this advantage is hardly

sufficient for thermalizing through the sequential process of RET a singular

deposit of energy in the time allotted by quenching. Though observed for

the specific case of 10.6 atm, the better applicability of the zero-RET for NO
model holds for flame environments in general because the ratio of the rate

of RET to quenching is independent of pressure.

MULTI-ZONE DETECTION

For excitations of the A*-X(0,0) band of NO in the presence of 02 at high

temperatures, a broad bandpass filter positioned spectrally to capture the
fluorescence of NO will invariably collect fluorescence from 02, which ex-

tends quite broadly over the fixed cascade of NO A(v' = O)_ X(v") as well as

to wavelengths much shorter and longer. Possibly, then, the signal from 02

in a second spectral region exclusive of NO would provide an indirect
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measure of oxygen's portion of the total signal captured by a bandpass

intended for NO. Under certain conditions, a measure of the vibrational

temperature of 0 2 might too be derived, this by a ratio of fluorescence

signals obtained from regions flanking the LIF distribution of NO.

With regard to the detection of trace amounts of NO in high-pressure

flames by (P)LIF-based methods that rely on broadband collection for high

signal levels, fixed nonetheless is the primary goal of minimizing as much as

possible the interference posed by 02. This requirement we maintain while

in addition offering a method for achieving, if necessary, ppm sensitivity of

NO at flame conditions of 10 atm through spectral division of the fluor-

escence generated with each laser pulse.

A measurement of the broadband LIF signal of NO, one with a simulta-

neous account of the interference signal from 0 2, requires the minimum

acquisition of two separate spectral channels or regions, the assignment of

which is straightforward from a practical standpoint. One region must

encompass the bulk of the LIF from NO (while rejecting laser scatter at

~ 226 nm), and the other should enclose fluorescence from 0 2 exclusively.

This second region we choose at wavelengths longer rather than shorter

than the first to remain where losses through transmissive optics are low

and absorption by the gas negligible. As denoted by the shaded areas of

Figure 10, which shows the modeled LIF spectra of NO and 02 for a

particular excitation wavelength near 226 nm, we demarcate the two regions

by ideal 'tophat' bandpasses, with region 1 covering 230-290 nm and region

2 from 310-400nm. Put simply, the fluorescence signal from region 2 re-

lates the amount of signal from 02 contained by region 1, an approach

termed here the '2-zone' method.

The remaining consideration is that of excitation wavelength, chosen to

excite NO at a peak within its A*--X(O,O) band but also with criteria of

minimizing i) the signal ratio of 0 2 to NO within region I, ii) the tempera-

ture dependence (from 1800 - 2200 K) of the ratio of 0 2 signals in regions 1

and 2, and iii) the temperature dependence (from 1800-2200 K) of the NO

signal. Our calculations indicate that, for combustion environments at

10 atm, a good compromise among these criteria is offered for an excitation

wavelength of 226.073 nm (an excitation of peak d of Fig. 1), the LIF spectra

induced by which (for a laser of spectral width 0.5 cm- t FWHM) is shown

on an absolute scale in Figure 10 for conditions 2000K, 10atm, 10%O2,

10ppm NO, and a balance of the major products CO 2, H20, and N2 in the

respective percentages 9%, 18%, and 63%.

The variation with temperature of what would be proportional to the

broadband LIF signals of NO and 0 2 appears in Figure 11, which, for
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FIGURE 10 Calculated fluorescence spectra of NO A-X (top panel) and 0 2 B-X (bottom
panel) for an excitation wavelength of 226.073 nm, a laser of spectral width 0.5 cm - t FWHM,
an ambient gas of major combustion products at 2000K and 10atm including 10ppm NO

10% 02, and a FWHM collection bandwidth of I _. Widths of shaded areas demarcate zones
of fluorescence collection.
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FIGURE 11 Temperature variation of the LIF yields of NO and 0 2 as spectrally-integrated
across regions 1 and 2 shown in Figure 10. Other than the variable temperature, the gas
conditions stated in the caption of Figure 10 apply.

conditions otherwise identical to those assumed for Figure 10, gives the

component LI1_ yields of NO and 0 2 as spectrally-integrated over regions 1

and 2. As seen. the LIF yield of NO in region 1 exceeds that from 0 2 over
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most of the temperature range 1800-2200K. Also, the LIF yields from 02

in regions I and 2 maintain a nearly constant ratio of 4:1. By extension, the

component LIF signals from 0 2 would also remain fixed in proportion. The

interference lent by 0 2 to the total signal of region 1 is then subtracted as

simply a constant of the signal measured for region 2, and the LIF signal

from 10ppm of NO in region 1, obscured in this case by signal of nearly

equal strength, becomes fairly unshrouded.

Systematic errors are thus greatly reduced. For illustration, we assume

the overall conditions are those associated with Figure 11, that the tempera-

ture ranges randomly (as a uniform variate) and unknowingly between

1800-2200K, and that the detection system has been calibrated at 2000 K

for what are presumed to be constants of i) the conversion of NO signal to

NO mole fraction (in region I) and i0 the signal ratio of 02 as split between

the two regions. If not removed, the signal from 02 in region would present,

converted to a basis of NO mole fraction, a minimum systematic bias of

8 ppm. The gradual decline in the signal of NO with increasing temperature

would be unwittingly compensated by the attendant increase in signal from

O2, mitigating the random 'noise' to a perceived + 1ppm (an intrinsic lower

bound and not one inclusive of experimental sources, such as shot noise).

However, because the ratio "linking the signals of 0 2 in regions 1 and 2

varies with temperature less than + 1% from its value at 2000 K, the inter-

ference may be subtracted with very good certainty based on the signal of

region 2. Detectivity would then improve to levels of a few ppm of NO from

its former limit of one to two times the unaccounted systematic bias of

8 ppm. What remains for error (again apart from experimental sources) is

the uncertainty incurred by assuming the signal from NO is independent of

temperature. As referenced to 2000 K, we find from Figure 11 that the LIF

signal from NO varies + 15% from 1800 to 2200 K. Levels of 10ppm of NO
could thus be measured in 10-atm fuel-lean combustion environments with,

in principle, as little error as + 2 ppm, this while maintaining the high-signal

levels afforded by broadband collection, the simultaneity requisite of "single-

shot' methods, and an economy of laser use.

Applied to PLIF-imaging, the 2-zone method could proceed with two

cameras, each appropriately filtered, that would oppose one another and

image the fluorescence sheet from either side. If optical access for imaging is

limited to a single port, the arrangement presented in Figure 12 might be

used instead. A dichroic filter, one that (when aligned at a 45 ° angle-of-
incidence) reflects 2 > 300nm but transmits 2 < 300nm, is inserted first,

followed by the cahaeras with their associated filters positioned accordingly

along the reflected and transmitted legs.

51



LIF SPECTROSCOPY OF NO

_ Region2Camera

310<_.<400_

02 Bandpass Resion I

Fluorescence
Dichroic NO Bandpass

FIGURE 12 Proposed implementation of the 2-zone method.
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As described, the 2-zone method is applicable to environments of variable

oxygen mole fraction because of the constant proportionality, independent

of temperature, maintained by the oxygen signals in regions 1 and 2. Taken

individually, however, the magnitude of each oxygen signal is strongly de-

pendent on temperature, increasing twofold for the 20% increase in tem-

perature from 1800-2200 K (see Fig. 11). Therefore, the Oz signal of region

2 may be converted to temperature for cases where the mole fraction of O z

is reasonably uniform across the imaged area. The temperature so inferred

(for the specified excitation wavelength) is strongly tied to the ground-state

population of v"= 5; the fluorescence in region 2 (and in region 1) stems

primarily from vibrational level v'= 4 as populated by absorption transi-
tions within the manifold of v' = 4 _ v" = 5. The mole fraction of NO would

be determined as before but now more precisely with use of the measured

temperature.
Positioned at 226.073 nm, the laser wavelength also promotes 0 2 transi-

tions within the absorption manifolds of v' = 7 .-- v" = 6 and v' = 13 *--v" = 8,

the upper states of which, unlike v' = 4, fluoresce primarily at wavelengths

shorter than that of the laser. Thus, if oxygen's fluorescence from

190- 220nm were collected as yet a third region, its signal when ratioed

against that from region 2 would provide a measure of the vibrational

temperature in a manner independent of the local mole fraction of oxygen, a

quantity now resolvable from this temperature measurement and either of

the two signals that compose it; the mole fraction of NO follows as before.
For the excitation wavelength of 226.073 nm in particular, the ratio between

regions 3 and 2 as defined would increase by 50% over the temperature

range 1800- 2200 K. Though promising, this '3-zone' approach is limited in

application realistically to cases where the medium is of small enough di-

mension to appear optically thin at the wavelengths captured by region 3,

where high-temperature 02 presents a strong absorption coefficient

(through its B,-X system).
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PARAMETRIC RELATIONS

For the sole purpose of imaging NO as present within fuel-lean high-

pressure combustion environments, not every situation will warrant use of
the 2-zone technique, especially if the conditions were such that the excita-

tion of NO at any of the five candidate peaks labeled in Figure I yielded a

favourably large signal ratio of NO to 0 2 in region 1. To help the reader

gauge the conditions in this regard and also to quantify the dependence of

the fluorescence signals on temperature and pressure, we provide coeffi-

cients and formulae of empirical, parametric fits to our model's calculation

of i) the absorption coefficient at the peak of each NO feature labeled in

Fig. 1, it') the location in frequency of each peak, and iii) the ratio of NO to

O z fluorescence in region I (a tophat bandpass from 230-290nm).

Each parametric expression is valid in temperature from 1800- 2200 K,

in pressure from 1 - 10 atm, and derives from a least-squares fit to the 20

points resulting from a calculational grid of (1800, 1900, 2000, 2100, 2200 K)

by (1, 2, 5, 10arm). Invariants in the calculations were the spectral distribu-
tion of the laser, assumed Gaussian with a FWHM of 0.5 cm-t, and the gas

composition of 10ppm NO, 63%N=, 10%O=, 9%COz, and 18%H=O.
This distribution of major products of fuel-lean hydrocarbon combustion is

an arbitrary compromise between those resulting with air as the oxidizer,

where for a stoichiometry of t_=0.5, for example, the products

N_JO2/CO2JH20 occur in the nominal percentages 75%/10%/6%/9% and

those producible in settings, such as a laboratory, where the reactants N=,

O2 and fuel are of variable proportion. Nonetheless, the parametric fits as

developed for the specified product distribution can be scaled quite easily
for use with others. The calculated signal ratio of NO to O=, for example,

would be multiplied by the factors (0.1/Xo,) and (XNo/10-s) if the mole

fractions of O2(Xo2) and NO (Xso) were known or suspected to be other

than 10% and 10 ppm, respectively. If the percentages of the major constitu-

ents differed significantly from those assumed here, the calculated signal

ratio could be adjusted for what would amount to a different quenching

rate of NO through the muitiplicative factor

yX=(1 + m.,qo/m_J°'sa,

R e = ZX,( l + mNo/mi)°'sa_ '

where X_, m j, and a t are, respectively, the mole fraction, molecular mass,
and quenching cross section for species j. The numerator of R e pertains to
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the assumed (a) product distribution and the denominator to the one of

interest (i). Between 1800-2200K, the quenching cross sections for NO-

A(v = 0) in collisions with N2, 02, CO2, and H20, are essentially constants
and may be assigned the respective values 0.7 ,_2, 25 ,A,2, 56 ,_2, and 29 _2

(Paul et al., 1995, Paul et al., 1993). Also across this span of temperature, the

coefficients of collision broadening and collision shift (Chang et al., 1992; Di

Rosa and Hanson, 1994a) of the A*-X(O,O) transitions of NO are sufficient-

ly similar for perturbers N 2, 02, H20 , and, very likely, CO 2, that the peak
absorption coefficients and frequencies calculated for the candidate features

will be reliable without correction for product distributions even very differ-
ent from the one assumed.

Across the stated calculational grid, the peak absorption coefficient kv, k
(as convoived with the assumed spectral distribution of the laser) of each

candidate feature is recovered to within +3% by the expression

kink [cm- tatm- t] = kl/[ln(P + k2)]k, x et-k'jr_/T 2, (7)

where P is the pressure in atmospheres, and Tis the temperature in kelvin.

For each feature, labeled a through e in Figure I, Table I lists the fit par-

ameters k i as well as the dominant features composing each peak. An

example of the parametric fit expressed by Eq. (7) is shown in Figure 13 by

its match to the absorption coefficient calculated for peak d along the

isobars 1, 2, 5, and 10atm. The positional frequency of each peak, which

shifts with temperature and pressure, is fit by

o_, k[cm- t] = v* -ft[PZ,(2OOO/T) °'s6 - 1], (8)

with _'* designating the feature's peak frequency at 2000K and 1 atm and

the remainder of the expression constituting its shift from this reference

position. With the parameters listed in Table I, Eq. (8) fits the calculated
peak frequencies to within + 0.03 cm- t. While the collision-induced shift of

individual transitions is directly proportional to pressure for the conditions

of interest here, the shift of a peak in the over all absorption spectrum can

scale nonlinearly with pressure as the constituent lines blend among them-

selves and neighbouring transitions.

In the limit of 'linear fluorescence', the number of fluorescence photons
ft

N_,_ emitted into 4_ steradians can be estimated from Eq. (7), combined

with the calculable quenching rate of the A(v' =0) state of NO [6,9],
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FIGURE 13 Discrete, calculated values of the spectrally-integrauxt absorption coefficient of
peak d compared with the parametric fit provided by Eq. (7) and Table I.

through

N_, = kp_kP XN°(Ad)E°(AV) x I_ Ao.s/ Q,_I , (9)2.0 x 10-23 x v_.a

where A_' [cm'listhe pathlength of the laserbeam (oflocalenergy density

Eo) through the volume AVovcr which the fluorescenceisconected.Given

by the lastterm, the quantum efficiencyof fluorescenceassumes, as appro-

priatefor combustion environments, that Q_ greatlyexceeds the total

spontaneous emission rate.The summation over the Ao,scan be restricted,

of course,to those vibronic bands encompassed by a particularspectral

bandpass. Because the cross sectionsfor quenching are weak functionsof

temperature between 1800- 2200 K, and because Qc_oc P, Eqs. (7)and (9)

then relatethe temperature- and pressure-dependence of the fluorescence

signalof the candidate peaks of NO as simply k_,(P,T) x T °'5.

From 1800- 2200 K and I - I0atm, the calculatedration(Rfa)ofNO to

02 fluorescencein region I isgiven to within +6% by

e(Rd T)R It = Rt/[ln(P + R2)] a3 x (10)

As with Eqs. (7) and (8), Eq. (10) pertains to peaks a through e labeled in

Figure 1, with the appropriate fitting parameters (the Rt) found in Table I.
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The calculations present an upperbound of the fluorescence ratio since, as

discussed in connections with Figures 3 and 4, the model for 02 cannot rea-

sonably include the abosrption transitions from high-lying rotational states,

greater than N" = 45, that are beyond the current data base and contribute to

the fluorescence signal toward high temperatures. Also, a realistic spectral

bandpass will not appear as the tophat assumed for the calculation of R/_.

Still, Eq. (10) should provide a fair estimate, within a factor of two, of the

relative amounts of NO and 02 fluorescence within a broad collection

bandpass that resides within the A(v'= 0)---X bands of NO.

The many combinations of temperature, pressure, and gas composition

that might constitute an imaged environment prevent the singular recom-

mendation of a candidate feature, and the foregoing relations are therefore

offered to assist the reader's decision. However, of the five candidate fea-

tures, peak d is calculated to afford the greatest R/_ over the range of

conditions considered. Figure 14 displays the parametric fit (and, for com-

parison, the discrete points of the model output) of R Ir for peak d, primarily

to illustrate expected trends of the NO-to-O 2 signal ratio for flame environ-

ments. The noticeably swift degradation of R/_ with increasing pressure is

typical to the excitation of any peak of NO, a generalization easily reached

by examining the distinct trends of the individual signals. As mentioned in

connection with Eq. (9), the LIF signal of NO depends on pressure solely

through the absorption coefficient, which for a given peak of NO (as excited

by a laser of spectral width ---0.5cm -t) is reduced through collisional

broadening by a factor of 2-3 as the pressure increases from 1 to 10atm.

•-_ 200 I I I I ' I /

_: 100 t o Modal Output

_.__.._ -- Parametric i_t l
tot

Z 0S _ I i I i t i I _ I

1800 1900 2000 2100 2200

Temperature, K

FIGURE 14 NO-to-O: fluorescence ratio (R y+) for peak d as calculated by the LIF model

and expressed through the parametric fit provided by Eq. (10) and Table 1.
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The LIF signal from O: displays the opposite trend and increases roughly

linearly with pressure up to 10atm because the predissociation rate of the

B-state of O z prevails over collisionai influences in the controlling par-

ameters of absorption coefficient and quantum efficiency of fluorescence.

These opposing trends indeed combine for 75% of the total reduction from

1 to 10 atm of the R :t of peak d plotted in Figure 14. The remainder is owed

to the change in the absorption coefficient of O,, which, local to peak d,

grows with increasing pressure as collision broadening extends neighbour-

ing transitions into the minimum that underlies peaks a through e. From

1800- 2200K, R :_ for each candidate feature falls by about 65*/0 indepen-

dent of the pressure, owed largely to a diminishing Boltzmann fraction of

the absorbing states of NO compounded by a sharp increases in population

of the absorbing states of O z, resident as they are with upper vibrational
levels.

CONCLUSIONS

New models of the absorption, excitation, and fluorescence spectra for laser

excitations of the 7(0,0) band of NO and the Schumann-Runge (B-X)

bands of O z at high temperatures and pressures were developed and shown,

by their comparison with measurements, to have good predictive capabili-

ties for conditions extending to 2000 K and 10 atm. Motivating their devel-

opment was the application of PLIF imaging of NO as formed in lean,

high-pressure combustion environments, conditions under which 0 2 can

present a troublesome photolytic interference for one-photon excitations

within the 7-band of NO.

Identified for excitation were five strong features of the 7(0,0) band of NO

that lay within a broad minimum in the B_X spectrum of 02, a coinci-
dence necessary for suppressing the interference from 0 2 and minimizing

the absorptive loss of the laser beam. The advantage in NO signal enjoyed

for excitations of these features at moderate temperatures and pressures

quickly succumbs, however, to the interference from 0 2 as the temperature

and pressure increase. At such point, and as illuminated by our models, a

strategy of spectrally dividing into two regions the fluorescence induced by

a single excitation wavelength may restore to PLIF the capability of

measuring NO mole fractions with a sensitivity otherwise possible in the

absence of the O z interference. Further partitioning the fluorescence dis-

tribution might, in certain cases, allow for simultaneous measurements of

NO concentration. O: concentration, and O z vibrational temperature. Fu-
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ture work should include an experimental validation of the 2-zone method

followed by its application to the PLIF imaging and measurement of the NO

concentration generated by high-pressure, lean combustion. Additional data for

the B-X bands of 0 2- particularly regarding line positions originating with

N"> 45, collisional broadening and shift, and processes of energy transfer

within and quenching of the B-state-- will be required if the models are to be

exercised as effectively for conditions exceeding 2000K and 10atnt
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SECTION 6.3:NO/O2 Computer Code

Codes for absorption, excitation, and fluorescence spectra of NO A-X and 02 B-X are

available to assist in the design of absorption-based or LIF-based experiments. The use

of each code (six total, 3 apiece for NO and 02) should be self-explanatory from the

annotated input file, and so only general features are listed here. Overviews and sample

output from the codes, and the literature they draw upon, are available from M. D. Di

Rosa, K. G. Klavuhn, and R. K. Hanson, Combustion Science and Technology, vol. 118,

pp. 257-283 (1996) and M. D. Di Rosa, High-Resolution Line Shape Spectroscopy of

Transitions in the Gamma Bands of Nitric Oxide, Topical Report T-327, Mechanical

Engineering Department, Thermosciences Division, Stanford University, Stanford CA

(1996). The codes are offered without assistance from the aforementioned authors in

their compilation, use, and interpretation.

Absorption [NO A4--X(0,0), 02 B4--X]

• Returns the absorption spectrum in units of cm -1 atm-' (right column) versus cm -1 (left

column) for the specified conditions and wavelength range.
• Accommodates Gaussian laser width

• Calculates collision broadening for a given mixture.

• Lists all transitions composing the absorption spectrum.

Excitation [NO A4--X(0,0), 02 B4--X]

• Returns the excitation spectrum versus cm-' (left column) in units (right column) of

total fluorescence photons through the spectral bandpass and emitted into 4n sr per mJ

of laser energy, per mm of path length, and per unit partial pressure of the absorber.

• Accommodates Gaussian laser width

• Accounts for collision broadening and electronic quenching.

• Provides bandpass filters of common PMT/Schott Glass combinations. Allows user-

specified bandpasses as well.

• Calculates NO spectra in specified limit of zero or complete RET in NO-A(v=0).

Fluorescence [NO A(v=0)--_X, 02 B--_X]

• Returns the fluorescence spectrum versus cm -I (left column) for a specified excitation

wavelength in units (right column) of total fluorescence photons through a specified

instrument width and emitted into 4n sr per mJ of laser energy, per mm of path length,

and per unit partial pressure of the absorber.

• Accommodates Gaussian laser width and arbitrary instrument width (i.e., spectrometer

resolution).

• Lists all transitions overlapped with the excitation frequency.

• Accounts for collision broadening and electronic quenching.

• Calculates NO spectra in specified limit of zero or complete RET in NO-A(v=0).

Limits

• NO spectra: T < 2500 K, p _<5 Amagat (1 Amagat = 2.7x1019 cm -3)
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• 02 spectra: T < 2000 K, P < 10 atm

Source Files and Compilation

Codes for the absorption, excitation, and fluorescence spectra are compiled separately for

NO and 02. All are written in Fortran 77 and have been compiled successfully on a Dec

Alpha (with an f90 compiler) and Microsoft Fortran PowerStation 4.0. Each is

constructed similarly, with a driver (.f extension) that accesses common routines in a

main program (??main.f) that, in turn, retrieves spectroscopic parameters from several

'include' files (.lb suffix). Input files have an .inp suffix.

NO Codes: Common to all are the main source program (nomain.f), the line-shape

function voigt.f, and the 'include' files A ul no.lb, no-A_state.lb, no-X_state.lb, and

noA-Xengl.lb. Absorption, excitation, and fluorescence codes require the following pairs

of [driver/input] files: Absorption [noabs.f/in_noabs.inp]; Excitation

[noexcit.f/in_noex.inp]; Fluorescence [nofluor.f/in_nofl.inp].

02 Codes: Common to all are the main source program (o2main.f), the line-shape

function voigt.f, and the 'include' files 02 X spec.lb, 02 B spec.lb, o2_BtoX_EinA.lb,

and lewis.lb. Absorption, excitation, and fluorescence codes require the following pairs

of [driver/input] files: Absorption [o2b-xabs.f/in_o2abs.inp]; Excitation

[o2excit.f/in_o2ex.inp]; Fluorescence [o2fluor.f/in_o2fl.inp].

Instructions for Downloading via ftp

1. connect via ftp to navier.stanford.edu

2. login: anonymous; password: guest

3. cd/pub/spectra

4. retrieve routines of interest
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