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TECHNICAL MEMORANDUM

INTERNATIONAL SPACE STATION PROGRAM PHASE IH

INTEGRATED ATMOSPHERE REVITALIZATION

SUBSYSTEM TEST FINAL REPORT

INTRODUCTION

Testing of the International Space Station (ISS) U.S. Segment baseline configuration of the

Atmosphere Revitalization Subsystem (ARS) by NASA's Marshall Space Flight Center (MSFC) was

conducted as part of the Environmental Control and Life Support System (ECLSS) design and develop-

ment program. This testing was designed to answer specific questions regarding the control and perfor-

mance of the baseline ARS subassemblies in the ISS U.S. Segment configuration. These questions

resulted from the continued maturation of the ISS ECLSS configuration and design requirement changes

since 1992.

The test used pressurized oxygen injection, a mass spectrometric major constituent analyzer

(MCA), a Four-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA), and a Trace

Contaminant Control Subassembly (TCCS) to maintain the atmospheric composition in a sealed cham-

ber at ISS specifications for 30 days. Human metabolic processes for a crew of four were simulated

according to projected ISS mission time lines. The performance of a static feed water electrolysis

(SFWE) Oxygen Generator Assembly (OGA) was investigated during the test preparation phases;

however, technical difficulties prevented its use during the integrated test.

The Integrated ARS Test (IART) program built upon previous closed-door and open-door inte-

grated testing conducted at MSFC between 1987 and 1992. It is the most advanced test of an integrated

ARS conducted by NASA to demonstrate its end-to-end control and overall performance. IART test

objectives, facility design, pretest analyses, test and control requirements, and test results are presented.



BACKGROUND

Past Space Station ARS Testing

Testing of ECLSS subsystems and subassemblies for the ISS has been ongoing at NASA's MSFC

since 1987. ECLSS development testing has followed a multiphased program that has gradually in-

creased in complexity as the ECLSS design has matured. Each phase accounts for the various redesign

and restructuring activities that have occurred during the ISS development.

Phase I of the development program, which began in 1987, includes subassembly demonstration,

comparative testing, and long-duration testing. Phase I is designed to provide the necessary information

to demonstrate basic subassembly performance, select the baseline subassemblies to be used on board

the ISS, and assess their long-duration performance and maintainability. Primary products of Phase I are:

(1) Basic subassembly performance data that can be used for ECLSS design and
modeling purposes.

(2) Selection of subassemblies for the ISS ECLSS baseline. 1

(3) Long duration operational data that are necessary for determining the useful life and

maintainability requirements for the ECLSS subassemblies. 2-4

In parallel with Phase I, early integrated ARS testing was conducted under Phases II and III of

the development program. Much experience was gained by NASA with the candidate subassemblies and

their integrated operation during these tests. Phase II testing included a simplified integrated test (SIT)

that was conducted in June 1987 to check out the predevelopment ECLSS system and an extended-

duration metabolic control test that was conducted in November 1987. Hardware tested during Phase II

included a 4BMS CDRA, a TCCS, a SFWE OGA, and a Sabatier Carbon Dioxide Reduction Assembly

(CDReA).5-8

Phase HI simplified integrated testing was conducted in August 1989 to prepare for fully inte-

grated ARS and water recovery tests. The primary difference between the Phase II and Phase llI inte-

grated tests was the use of the Bosch CDReA in place of the Sabatier process. 9-11 The Bosch process

had been selected as the initial station baseline process; however, at the conclusion of Phase I compara-

tive testing, the Sabatier process was the final baseline selection. Hardware used during Phase Ill was of

higher maturity than that of Phase II.

Additional integrated testing was conducted by Boeing at MSFC facilities under Phase IV. The

Predevelopment Operational Systems Test (POST) built upon the knowledge obtained during NASA's

tests. This testing was conducted during February through April 1992 using a SFWE OGA, 4BMS

CDRA, Sabatier CDReA, and TCCS. All subassemblies were at prototype maturity levels. The primary

objectives of this testing were to evaluate subassembly operating characteristics, demonstrate software

and control functionality, and demonstrate remote control of the ARS. 12' 13



Other integrated ARS testing conducted by NASA before 1996 was a part of the Early Human

Test Initiative Phase II program. This testing, conducted at NASA's Johnson Space Center, was similar

in scope to the ISS Phase II test conducted at MSFC in 1987. Although this test served to reinforce the

results obtained during MSFC's testing program, no ISS-related issues were addressed during the test.

Neither hardware maturity nor test system architecture was representative of the ISS configuration. 14

ISS ARS Testing

Upon completing the redesign of the space station and its transition to the ISS Program in 1994,

changes to the ARS design and its operation were identified that required additional testing to validate.

To address these issues and to advance the ARS maturity to its next step, Phase HI integrated testing was

extended to the ISS Program. The IART was defined in January 1994 as part of the ISS development

program and conducted beginning in March 1996. The Phase HI IART draws upon the experience and

knowledge gained during all previous ARS tests and uses the most mature ARS subassemblies available.

It is a direct follow-on to the Phase 1II SIT and Phase IV POST with respect to its complexity and

overall control approach.

The 4BMS CDRA, SFWE OGA, and TCCS were the primary subassemblies investigated. They

were supplemented by a mass spectrometric MCA. This hardware complement represents the ARS

configuration to be deployed on board the ISS U.S. Habitation Module. Scars are included in the test to

accommodate carbon dioxide reduction. The primary purpose of the test was to provide the data neces-

sary to assess the ARS's capability to control oxygen and carbon dioxide partial pressures within ISS

specifications at operational conditions representative of ISS crew metabolic profiles and cyclic opera-

tion to minimize power consumption. 15, 16

The test hardware used during the IART is, in most cases, the same hardware used during the

Phase IV POST. The MCA, CDRA, and OGA were all used during the Phase IV POST; however, im-

provements and modifications were made to these subassemblies in order to reflect the most up-to-date

design. The TCCS used during IART is the same that has been used during the earlier Phases II and III

testing. It was also used for high temperature catalyst life testing. This unit was built by Lockheed in the

mid-1970's; however, it is more advanced than the unit used during Phase IV POST and is considered to

be the most advanced ground-test TCCS available to NASA. More details on each subassembly and

improvements made as part of the IART are provided in the test configuration discussion.



ISS REQUIREMENTS

The ISS ARS must control the station cabin atmospheric pressure and composition within speci-

fied limits. These limits are based upon crew health considerations and are designed to provide a com-

fortable living and working environment. Specific details of these requirements are the following:

(1) Atmospheric pressure must be maintained between 92.9 kPa (14.2 psia) and 102.7 kPa

(14.9 psia), with a minimum allowable pressure of 95.8 kPa (13.9 psia).

(2) Nitrogen partial pressure must be maintained below 80 kPa (11.6 psia).

(3) Oxygen partial pressure must be maintained between 19.5 kPa (2.83 psia) and 23.1 kPa

(3.35 psia).

(4) Carbon dioxide partial pressure must be maintained below a daily average partial pressure of

706.6 Pa (5.3 mmHg), with the peak partial pressure not exceeding 1,013 Pa (7.6 mmHg).

(5) Trace chemical contaminants must be maintained below their spacecraft maximum allowable

concentration.

The carbon dioxide and oxygen production rates necessary to meet these requirements are based

upon a total ISS crew of six, with each person generating 1 kg (2.2 lb) of carbon dioxide per day and

consuming 0.83 kg (1.84 lb) of oxygen per day. Trace contaminant removal must be capable of support-

ing an offgassing load from spacecraft hardware and metabolic production from six crew members. This

load is split between the U.S. and Russian on-orbit segments of the ISS. The U.S. Segment ARS must be

capable of supporting four crew members while the Russian Segment must be capable of supporting

three. These control levels must also be maintained during crew exchanges. Loads from animals used in

biological experimentation must also be accommodated by the U.S. Segment at a rate of 1.2 kg (2.7 lb)

of carbon dioxide per day and 1.08 kg (2.38 lb) of oxygen per day. To achieve this, the U.S. Segment

ARS must be able to remove the carbon dioxide load and provide oxygen for up to 5.29 crew members

under normal conditions. 17, 18 The U.S. Segment TCCS design must be capable of handling the

offgassing load for 75,000 kg (34,019 lb) of spacecraft hardware and the metabolic load from 5.25 crew
members.

All of the ISS requirements pertaining to the capabilities that the ARS provides must be achieved

with a limited amount of the resources available on board the ISS. Primary resources include electrical

power and crew time for maintenance. To minimize power requirements during the dark portions of the

orbit, some ARS subassemblies are required to transition to a standby mode. This approach adds control

complexity and challenges the capabilities of the hardware. By implementing an optimized control

scheme, electrical power and maintenance time may be minimized while achieving the specified

atmospheric control requirements. Such a control scheme must be demonstrated. The Phase III IART

objectives are designed to provide this demonstration and to ensure that the ARS can meet the ISS

atmospheric composition control and revitalization requirements.
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TEST OBJECTIVES

To determine whether the U.S. Segment ARS can adequately achieve ISS requirements, the

primary Phase III IART test objectives were the following:

(1) Demonstrate integrated ARS operation under remote automatic control.

(2) Provide performance data on oxygen and carbon dioxide partial pressure control for crew
of four.

(3) Demonstrate automated oxygen partial pressure control using the MCA signal as control

input to the OGA.

(4) Demonstrate cyclic operation of the OGA and CDRA on a day/night orbital cycle

to accommodate ISS power allocations.

(5) Demonstrate OGA performance using reclaimed water from ISS water processor testing.

(6) Determine the MCA water vapor measurement accuracy through a remote sample delivery

system.

These objectives are designed to address specific issues associated with the operation and control of the

baseline U.S. Segment ARS configuration and its capability to achieve ISS program requirements.

It should be noted that these objectives do not include an investigation of trace chemical

contaminant control. Based upon the complexity of such a test, it has been defined as a follow-up to the

IART. Objectives for the contaminant injection test include investigating the effects of humidity,

temperature, and the control assist provided by the CDRA and the temperature and humidity control

system.

An additional note is that during independent testing to address objectives 4 and 5, the OGA

encountered technical difficulties. 19 Although the OGA successfully demonstrated its ability to operate

in a cyclic power-saving mode using reclaimed water from the ISS water processor, it could not be

repaired in a timely manner to allow it to participate in the integrated test. For this reason, oxygen

injection from a pressurized source was used during the IART in place of the OGA.

Specific ISS Program concerns drove objective 6. Orbital Sciences Corporation, the

subcontractor responsible for building the MCA, has expressed a concern to the ISS developer, Boeing,

regarding whether the MCA would be able to measure the water vapor percentage in the cabin due to the

long tubing lengths found in interfacing with the Sample Delivery System (SDS). The SDS is made of

stainless steel, which has an affinity for water. To investigate and document the extent to which the SDS

impacts the accuracy of the water vapor measurement, a simulation of sampling among the various



lengthspossiblethroughtheSDSwasaddedto theIART.This simulationwasconductedin 7.6-m
(25-ft) increments,with dewpointsensorsplacedat eachincrementto compareto theMCA water
reading.Originally,TeflonTM tubing was considered for the SDS due to this problem with the water

reading, but the increased offgassing from Teflon TM would have had a greater impact on readings for

the Trace Contaminant Monitor (TCM), which was also to use the sample lines.
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TEST CONFIGURATION

Test Facility Description

The Phase In IART was conducted in the Core Module Simulator (CMS), a 175-m 3 (6,180-ft 3)

sealed chamber that provides a closed working volume and connections to facility power and

consumable resources. Test control, data acquisition and management, and process monitoring

capabilities are also provided by the facility. The entire test facility, called the Core Module Integration

Facility (CMIF), includes the CMS, resource distribution network, and control room. Bench test stands

that support ongoing Phase I testing, the End-Use Equipment Facility (EEF), and Water Processor Test

facility are located near the CMIF. Figure 1 depicts the CMIF floor plan.
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FIGURE 1.--Simplified CMIF layout.

Facility support hardware is provided to simulate human metabolic production of water vapor

and carbon dioxide, human metabolic consumption of oxygen, and space vacuum. Facility temperature

and humidity control are provided in the CMS to maintain the temperature and humidity conditions

inside the CMS within ISS specifications. Additional facility gas analysis capability is provided by a gas
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chromatograph(GC) andaninfraredCarbonDioxide Analyzer(CDA). These instruments are designed

to not only provide a continuing verification for MCA results, but also to study the CDRA process in

detail.

The ARS hardware is mounted inside the CMS, with control and data acquisition provided from

remote workstations located in the control room. The MCA, gas chromatograph, and infrared CDA are

mounted externally to the CMS. Figure 2 shows the arrangement of the IART hardware.
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FI6URE 2.---Simplified CMS hardware layout.

ECLSS Subassembly Description

The IART is designed to test the ISS ARS configuration planned for the U.S. Habitation Module

(Hab). This hardware complement includes an OGA, CDRA, TCCS, and MCA. Allowance is made for

the addition of a Sabatier carbon dioxide reduction assembly as specified by the ISS design. The ARS

configuration tested is shown schematically by figure 3. 2o A more detailed IART process and instrumen-

tation diagram for the IART is provided by figure 4. Although pressurized oxygen injection was used

during the test, both the OGA and pressurized oxygen injection are shown to emphasize the facility's

capabilities.
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FIGURE 3.--Simplified IART process flow diagram.

FmuRE 4.--Detailed IART process and instrumentation diagram.
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Carbon Dioxide Removal Assembly

The CDRA utilizes silica gel, zeolite 13X, and zeolite 5A to dry the inlet air to the system and

then remove carbon dioxide. Air enters the system and passes through one of two beds containing silica

gel and zeolite 13X. These adsorbents remove water vapor that can inhibit the removal of carbon diox-

ide. Next, the air is cooled and passes through one of two beds filled with zeolite 5A to remove carbon

dioxide. On a regular cycle, the zeolite 5A bed is isolated, heated, and exposed to vacuum to regenerate

it. During this time, the second zeolite 5A bed is adsorbing carbon dioxide. The processed air flows out

of the adsorbing zeolite 5A bed through the second bed filled with silica gel and zeolite 13X. Water is

desorbed from the second bed by the exiting air. The CDRA process is shown schematically by figure 5.
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FIotrP.E 5.---4BMS CDRA.

The CDRA used during the IART was the same unit tested during the Phase IV POST. Several

modifications were made to the CDRA before its use in the IART. These modifications included repack-

ing the desiccant beds, installing instrumentation in one desiccant bed and one sorbent bed, removing

excess 5A zeolite material from both sorbent beds and replacing the material with glass beads, installing

new sorbent bed material containment screens and frames, and installing thermocouples into the sorbent

beds to allow for temperature control from an internal reference point rather than an external reference

point. Modifications to the packing of all beds provided the same volumetric quantity of silica gel,
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13X zeolite, and 5A zeolite as the flight CDRA. In addition, the silica gel and 13X zeolite used were

from the same production lot as the flight CDRA materials. Control software modifications were also

made to allow the CDRA to be operated in a day/night mode. Final software modifications were made in

the CDRA flowrate, sorbent bed operating temperature setpoint, and half-cycle time before integrated

testing.

Oxygen Generator Assembly

The OGA consists of an electrolysis module, a fluids control assembly, a pressure control assem-

bly, and a thermal control assembly. Electrolysis of water processed during ISS water processor testing

occurs in the electrolysis module, which consists of 24 cells. Each cell contains a water feed compart-

ment, an oxygen compartment, and a hydrogen compartment. The water and hydrogen compartments are

separated by a selectively permeable membrane, and the two gas compartments are separated by an

aqueous potassium hydroxide and electrode assembly. The electrolysis process produces a water defi-

ciency in the electrolyte that causes water to diffuse from the water feed compartment through the

hydrogen compartment into the electrolyte. Water is replenished in the feed compartment by maintaining

a static pressure at the feed tank. This process occurs as long as power is supplied to the cell stack.

Figure 6 shows a schematic of the OGA.

Modifications to both software and hardware were made to the OGA before testing. Software

additions were made to allow for day/night cyclic operations, a higher operating temperature setpoint to

prevent condensation in gas passages, and an increased current level to allow for the lag time during the

transition between standby and normal operating modes. These changes were necessary to provide for

smooth operations using a 53-min daylight and 37-min night cycle, using a nitrogen supply interface

pressure of 689 + 69 kPa (100 + 10 psia). Hardware modifications were made to the electrochemical

module, the Pressure Control Assembly (PCA), the Fluids Control Assembly (FCA), and the Thermal

Control Assembly (TCA). The electrochemical module modifications included the addition of filter/

barrier cells with heaters, temperature sensors, and thermostat; the addition of an extra nonoperating cell

for thermal control; the relocation of pressure taps directly into the module; the addition of two pressure

switches in the product gas streams; and the elimination of unneeded passages in the fluids insulation

plate and structural insulation plate. The PCA was modified by changing the regulator poppets from a

spherical to a conical geometry and using a steep conical sealing surface rather than a shallow conical

surface. Two check valves, a filter, and an orifice were eliminated from the FCA, and four solenoid

valves, two pressure sensors, and two nitrogen holding tanks were added. The TCA was modified by

eliminating a diverter valve, a solenoid valve, and a check valve, and adding one three-way solenoid

valve. The heat exchanger and pump were also relocated to the exterior of the TCA body. The TCA

pump was replaced with a commercial gear pump using Teflon TM gears and bushings. The entire system

was retrofit with two low-pressure relief valves, a deiodinator, a deionizer, two fill-and-drain valves, and

a conductivity sensor.
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Trace Contaminant Control Subassembly

The TCCS utilizes activated charcoal adsorption, high temperature catalytic oxidation, and

lithium hydroxide (LiOH) chemisorption to remove trace chemical contaminants and acidic oxidation

products from the chamber atmosphere. In this process, air enters the activated charcoal bed to remove

high molecular weight contaminants. After the charcoal bed, the process stream splits, with approxi-

mately one-third of the flow passing through a recuperative heat exchanger, catalytic reactor, and

postsorbent bed. The catalytic reactor is packed with 0.5 percent palladium (Pd) catalyst supported on

cylindrical alumina pellets. The postsorbent bed is filled with granular LiOH. Total airflow through the

TCCS is 15.29 m3/hr (9 ft3/min) with 4.59 m3/hr (2.7 ft3/min) airflow through the high-temperature

oxidizer. Figure 7 shows a schematic of the flight TCCS process.
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FIGURE 7.--Flight TCCS process flow diagram.

It should be noted that the TCCS hardware used in the IART has several differences from the

flight TCCS. As can be seen in figure 8, these differences include the use of two blowers rather than one

and the existence of a regenerable charcoal bed and a LiOH presorbent bed. Also, the charcoal bed

contains 21.8 kg (48 lb) as compared to the 22.7 kg (50 lb) provided by the flight unit. In order for the

TCCS tested to provide the same function as the flight unit, the regenerable charcoal bed does not have

any packing and serves only as a duct. The LiOH presorbent bed functions only to remove sulfide

compounds that are produced in a spacecraft cabin at extremely low levels. As a result, the presence of

the LiOH presorbent bed is considered insignificant. For the scope of the test, the lower charcoal weight

is also an insignificant factor; however, it will have to be addressed for future contaminant injection

testing. The test unit is also capable of providing up to a 59.5 m3/hr (35 ft3/min) flowrate. However, the

flight TCCS design has only a 15.3 mafrtr (9 ft3/min) inlet flowrate. An orifice was added to the TCCS

inlet to provide the proper inlet flowrate. Functionally, the TCCS tested is an exceptionally high-fidelity

unit capable of providing the full range of ISS contamination control capability.
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Major Constituent Analyzer

The MCA utilizes a single-focusing, fixed-magnet scanning mass spectrometer to analyze the

chamber atmosphere for nitrogen, oxygen, carbon dioxide, methane, hydrogen, and water vapor.

Samples are pumped from remote locations in the chamber to the MCA via a sample distribution system.

The MCA sample pump first purges the sample line and then introduces a very small portion of the

sample into the mass spectrometer via an inlet leak. The sample gas is ionized by an electron beam and

the resulting positively charged ions are directed into a magnetic field where they are separated accord-

ing to their mass-to-charge ratios. The separated ion beams are focused through resolving slits along a

focal plane into Faraday current collectors. The number of molecules admitted in the gas sample is

directly proportional to the collected current. This current is processed and utilized for controlling

atmospheric composition in the test chamber. The mass spectrometer vacuum is maintained by an ion

pump, while initial roughing vacuum is provided by a facility vacuum system. Sample and bypass

streams exhaust into the CMS to minimize gas losses. Data collected by the MCA are processed and

relayed to the OGA to regulate the rate of oxygen production. Figure 9 shows a pneumatic schematic of

the MCA, while figure 10 shows a more detailed diagram of the mass spectrometer. 21, 22

Sam)lePorts

Vacuum

VerificatGo;

I Spectro I
Mass

VlBj

' Vent

FIGURE 9.--Simplified MCA pneumatic diagram.

For the [ART, the sample distribution system consisted of a single 30.6-m (100-ft) long, 3.2-mm

(0.125-in) diameter sample line. This line had dewpoint sensors located at 30.6 m (100 ft), 22.9 m

(75 ft), 15.3 m (50 ft), and 7.6 m (25 ft) away from the MCA inlet. A dewpoint sensor was also located

adjacent to the MCA sample inlet. Samples were taken using the various sample line lengths during the
IART.
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The MCA used for the IART was also used during Phase IV POST. It is included in a package of

instruments designed to monitor different analytes of the ISS cabin atmosphere. This package includes a

carbon monoxide analyzer (COA) and a TCM in addition to the MCA. A particulate counting monitor

(PCM) was also included earlier. Together, these instruments comprised the Atmosphere Composition

Monitor Assembly. During the space station redesign, the MCA was the only instrument retained for

monitoring the cabin atmosphere. Therefore, the COA, TCM, and PCM were not used during the IART,

and the unit was configured to use only the MCA.

Integrated ARS Description

The CDRA, OGA, TCCS, and MCA were integrated with the CMS as shown previously by

figures 3 and 4. During the test, a facility-provided condensing heat exchanger (CHX) removed water

vapor from the CMS atmosphere and controlled its temperature. To approximate the metabolic contribu-

tion of four crew members, water vapor was injected into the central part of the chamber volume as a

mist, while carbon dioxide was injected into the Temperature and Humidity Control System (THCS) air

circulation duct according to rates projected by ISS crew activity time lines. Oxygen consumption by the

crew was simulated by a facility-provided oxygen concentrator. This concentrator adsorbed oxygen from

the chamber atmosphere and vented it outside the facility according to the same projected crew activity

time line. Metabolic simulation was controlled by the facility host computer.

The CDRA inlet interfaced with the facility-provided THCS downstream of the CHX, and air

processed by the CDRA exhausted into the THCS upstream of the CHX. The TCCS inlet interfaced

directly with the CMS atmosphere, and its exhaust combined with the CDRA exhaust before it was
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returned to the THCS. The inlet to the TCCS had a facility-provided orifice installed to control its inlet

flowrate to the ISS design. The MCA was located outside the CMS because of its size. Air samples were

pumped to the MCA and exhausted back into the CMS to minimize gas losses. During OGA operations,

feed water collected from ISS water processor tests was pumped from an externally mounted tank, and

the oxygen product was vented to the THCS while the hydrogen product was vented out of the facility.

In the event that the OGA was not available for testing, the facility host computer was also capable of

conditioning the MCA oxygen partial pressure signal and sending commands to a solenoid valve to

allow oxygen injection from a pressurized source. Normally, the MCA oxygen partial pressure signal

would be used by the host computer to command the OGA to operate at 90, 100, or 110 percent of its

rated capacity. Humidity condensate was collected in a drip pan located beneath the CHX and recycled

into the metabolic simulator. Facility-provided nitrogen was used to help maintain the chamber total

pressure slightly above the prevailing ambient barometric pressure. This approach precluded the poten-

tial for diluting the carbon dioxide partial pressure in the chamber with ambient air.

Test Control Description

Test facility control was provided by both remote and local process controllers. Although flight

software was not used for the test, the control scheme mimicked the command-and-control architecture

of the ISS as closely as possible. The facility provided for subassembly control setpoint designation,

metabolic simulation, day/night cycling, and overall system-level control.

Day/Night Power Cycling Control

Pretest analysis of the planned ISS orbit established a worst case day/night cycle of 53 min of

daylight operation and 37 min of nighttime operations. The day/night control signal was initiated by the

facility host computer. This signal instructed the CDRA and OGA to initiate their power-saving mode

during the nighttime portion of the cycle and resume normal operations during the daylight portion of

the cycle.

Metabolic Simulation Control

Simulation of the principal metabolic functions of four crew members was provided by facility-

supplied hardware and software. Respiration was the primary metabolic function simulated. This simula-

tion, controlled by the facility host computer, involved injecting carbon dioxide and water vapor, while

removing oxygen at rates that mimicked a representative ISS crew activity timeline. Carbon dioxide was

injected from a facility-provided pressurized bottle, while makeup water was provided from the facility's

deionlzed water system. The water was injected into the CMS as a mist after being mixed with conden-

sate water from the THCS. Oxygen removal was provided by a regenerable adsorption system located

inside the CMS. The metabolic simulation duration was 24 hr and was repeated on a daily cycle.

Chamber Total Pressure Control

Total pressure control was maintained between 0.40 and 0.93 kPa (3 and 7 mmHg) above the

prevailing barometric pressure (gauge pressure). Chamber venting occurred if the pressure reached

1.6-kPa (12-mmHg) gauge pressure. At less than 0.40-kPa gauge pressure, nitrogen injection was
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initiated. Injection stopped at 0.93-kPa gauge pressure. This control approach ensured that no dilution

from the ambient atmosphere occurred and that the atmospheric composition inside the test chamber was

purely the result of ARS subassembly operations. Figure 11 summarizes the CMS total pressure control

logic.

y__O N
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!
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I

I Nitrogen I
-= Injection 4
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I Oxygen
Injection
Complete

FIGURE 11.--CMS total pressure and oxygen partial pressure control logic.

Oxygen Partial Pressure Control

The oxygen partial pressure control range was set between 20.3 and 20.9 kPa (2.95 and

3.03 psia). To achieve this control, the oxygen partial pressure signal from the MCA was conditioned by

the host computer and used to open and close a facility-provided valve that allowed oxygen to flow into

the chamber at 0.0454 to 0.0907 kg/min (0.1 to 0.2 lb/min). Oxygen partial pressure could also be

regulated by using this same conditioned MCA oxygen partial pressure signal to control the OGA oxy-

gen production rate; however, technical difficulties prevented the OGA from being used in the test. In

the event that oxygen partial pressure became too high, additional nitrogen would be injected into the

chamber to dilute it. This approach is shown schematically by figure 11.
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Subassembly Control

Subassembly control was provided by dedicated personal computers with a system interface to a

host computer. The host computer provided the means for changing control setpoints and provided the

signals for daytime and nighttime operating mode initiation and termination. All facility and subsystem-

level control was provided by the host computer. For example, the CDRA was controlled by its own

computer with input from the host computer for daytime and nighttime cycling. The MCA and TCCS

operated continuously according to the current 1SS operational approach. Although the IART did not use

flight software, the overall control approach used during the IART was consistent with that to be used on

board the ISS in that high-level commands are initiated from a central control console, while detailed

subassembly control is provided at the rack level.

Data Acquisition

Data acquisition was provided by the facility. Data from both facility sensors and each individual

subassembly were collected by Systems and Components Automated Test System (SCATS) and stored

in files on a mainframe computer. These data file names were logged into the master SCATS log for

reference. Upon completing a data file, it was transmitted electronically to be loaded into the Functional

ECLSS Data System, the ECLSS test database. These data were then accessed, reduced, and analyzed.
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PRETEST ANALYSIS SUMMARY

Day/Night Cycle Duration

An assessment was conducted to determine the daylight and nighttime period duration for the

ISS orbit. This assessment considered the effects of parameters such as orbital altitude and beta angle.

The beta angle is the angle of the orbital plane relative to the Earth-Sun line. The minimum ISS altitude

will be approximately 175 +_5 nautical miles. This accounts for reboost and subsequent orbital decay.

Once reboost occurs, however, it is estimated that the ISS will remain in its higher orbit for approxi-

mately 1 yr. The beta angle for the ISS orbit ranges between zero and _+27 ° for more than 2 wk each

month. During that time, the nighttime period of the orbit varies by only about 1.5 min for any altitude.

Given these parameters, the duration of the nighttime period of the orbit accounts for approximately

41 percent of the orbit duration. With a 90-rain orbit, the nighttime period duration was determined to be

37 min, while the daylight period duration was 53 min. This cycle was used as the basis for the IART. 23

Oxygen Partial Pressure Control

With the use of an OGA for oxygen partial pressure control, it was necessary to investigate the

CMS response while considering atmospheric leakage and OGA operating capacity. This assessment

was necessary to determine whether the CMS atmosphere would need to be conditioned to within the

specified control band before starting the OGA. Late in the preparation for the IART, it became apparent

that technical difficulties would prevent the OGA from being used for the test. As a result, an additional

analysis was conducted to investigate oxygen partial pressure control via a pressurized source. The need

for preconditioning the CMS atmosphere also had be to reassessed. The results from these analyses are

summarized by the following discussion. 24

Oxygen Partial Pressure Control Using the OGA

During initial test planning, the OGA was to be used to supply oxygen by electrolyzing water.

Given that the OGA was limited to producing oxygen at a four-human metabolic equivalent rate and that

it would be in normal operations for 59 percent of the time, it became apparent that CMS leakage would

be important to maintaining the chamber oxygen partial pressure within specified limits. Oxygen pro-

duction rate and removal rate would also work together to provide the resulting test system response

time. An analysis was conducted that investigated the ability of the OGA to maintain the oxygen partial

pressure within the CMS at various leakage rates and also determine the response time for the CMS to

reach steady-state oxygen partial pressure control at various leakage rates.

The nominal metabolic simulation profile for oxygen consumption to be used in the test was

employed for the analysis. Also considered was the ability of the OGA to produce oxygen at a four-

human-metabolic equivalent plus or minus 10 percent. For nominal OGA operation at 100-percent

capacity, the analysis found that the CMS response would be slow. More than 14 days would be required

before the control band would be reached. This response was not acceptable since the total test duration

was scheduled for 30 days.
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Othermeansfor morerapidly reachingtheoxygenpartialpressurecontrolrangewereinvesti-
gated.By operatingtheOGA at 90-percentcapacity,thecontrolbandcouldbe reachedwithin 7 daysat
0.91kg/day (2 lb/day)leakageandwithin 5 daysfor 1.81kg/day(4 lb/day)leakage.Theprojected
averageoxygenpartialpressurecontrol level for 90-percentOGAoperatingcapacitywas19.96kPa
(2.895psia) with a lowerboundof approximately19.89kPa(2.885psia),which is within theallowable
ISS operational range of 19.5 to 23.1 kPa (2.83 to 3.35 psia).

As a result of this study, it was recommended that the CMS atmosphere be preconditioned to the

predicted control band before initiating OGA operations. Such an approach reduced the time to achieve

oxygen partial pressure control to less than 48 hr.

As an extension of this analysis, two additional cases were investigated to assess the effects of

higher leakage rates on steady-state oxygen partial pressure. First, at 110-percent OGA operating capac-

ity, the average projected oxygen partial pressure was found to be approximately 15.5 kPa (2.25 psia) for

a 2.27 kg/day (5 lb/day) leakage rate. This level is well below the allowable ISS range and indicates that

for the OGA to be used for the IART, leakage greater than about 1.81 kg/day (4 lb/day) was not accept-

able. Fortunately, static leakage tests of the CMS determined the leakage to be approximately 0.69 kg/

day (1.52 lb/day). Second, a case was investigated to project the response for a six-human metabolic

equivalent loading with oxygen production also at a six-person rate. This case showed that at

100-percent capacity, the OGA would be able to maintain oxygen partial pressure between 20.28 and

20.32 kPa (2.942 and 2.948 psia) for 0.45- and 2.72-kg/day (1.0- and 6.0-1b/day) leakage rates, respec-

tively. This result demonstrated that the OGA, when operating in a day/night power-saving mode, most

likely is capable of maintaining the oxygen partial pressure of the ISS cabin within the required 19.5-kPa

(2.83-psia) to 23.1-kPa (3.35-psia) range even with up to 0.45-kg/day (1.0-1b/day) leakage from each

U.S. Segment module. These results reinforce the approach of sizing the nominal ISS oxygen generation

capacity to accommodate the impacts from leakage.

Oxygen Partial Pressure Control Using Pressurized Injection

After it became apparent that technical difficulties with the OGA would prevent it from being

used during the IART, pressurized injection became the primary means for oxygen partial pressure

control. This configuration approximated that of the U.S. Laboratory (USL) in which oxygen is injected

at a rate of 0.0454 to 0.0907 kg/min (0.1 to 0.2 lb/min). A valve in the USL pressure control assembly is

opened to allow oxygen flow when the lower bound of the oxygen partial pressure control band is

reached. To understand the CMS response to this approach to oxygen partial pressure control, an addi-

tional analysis was conducted using an injection flowrate of 0.068 kg/min (0.15 lb/min). Oxygen flow

was initiated at an oxygen partial pressure of 20.34 kPa (2.95 psia) and stopped at 20.68 kPa (3.00 psia).

Leakage for the analysis was set at 0.69 kg/day (1.52 lb/day) based upon CMS static leakage tests. The

resulting response, shown by figure 12, indicated that oxygen partial pressure control would be main-

tained very close to 20.68 kPa (3.00 psia) with little difficulty. Essentially no time lag was observed,

which indicated that the CMS oxygen partial pressure would not need to be conditioned upon test

startup.
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FIGURE12.--Predicted oxygen partial pressure control using pressurized injection.

Metabolic Simulation

Metabolic simulation parameters were derived from a representative daily crew activity time line

for the ISS configuration at assembly flight 14A. This time line, shown by figure 13, tracks the activities

of six crew members through a 24-hr day according to their major activities and location within the ISS

cabin. Crew member movement throughout the ISS and the effects of intermodule ventilation (IMV) and

IMV short-circuiting are important to the metabolic simulation. The effects of Russian carbon dioxide

removal equipment are also important and were approximated in the simulations of crew member

metabolic activity. As the crew members' activity levels change during the day and they move through

the ISS cabin between various workstations, the atmospheric composition in the USL will change. Since

the ARS will use the local conditions within the USL to control the atmospheric composition in the ISS

cabin, the metabolic input to the USL as a function of the crew activity time line was needed.

To obtain a representative USL metabolic input profile, a carbon dioxide mass balance simula-

tion of the entire assembly flight 14A configuration was conducted. 25 This simulation used the metabolic
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carbon dioxide production of six crew members according to the activity time line shown by figure 13.

An analysis was conducted that also considered the metabolic contribution of experimental animals. The

carbon dioxide mass influx to U.S. modules for the two cases are shown by figures 14 and 15.

For the IART, the USL mass influx profile with animal contribution served as the basis for the

metabolic simulation. This profile was approximated as a series of step increases and decreases relative

to the 24-hr average loading for the USL. This loading was scaled from the level of six crew members

plus research animals to four crew members plus 1.23 metabolic equivalents for research animals to

more adequately address the program requirements placed upon the U.S. ARS system. Figure 16 shows

the profile schematically while table 1 lists the percentage deviation from the mean for each phase of the

profile.26, 27
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TABLE 1.--Deviation from 24-hr average carbon dioxide loading.

24

Time

(hr)

0.0

0.5

2.5

9.0

11.0

12.5

14.5

21.0

23.0

Deviation, t_

(%)

-5.30

18.96

-5.30

1.94

-5.30

18.96

-5.30

1.94

-5.30

A scaling factor, e, equal to 2.243, was used to vary the amplitude of the steps without changing

the average flowrate over the 24-hr period. This factor accounted for the difference in volume of the

CMS relative to the USL. Originally, the profile in figure 16 was used to approximate the metabolic

loading from four crew members and 1.23 human metabolic equivalents for research animals as def'med

by equation (1).

(100 + ecr) 2.2 lb

rhco2 - 100 (5.23) 24---_ (1)
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However, since the OGA to be used for IART was sized to accommodate a metabolic loading for

only four crew members, equation (1) was adjusted to remove the contribution from research animals.

Equation (2) shows the final form for the carbon dioxide mass loading equation.

I100 + 5.23 1
-- EO"

4 (4.0) 2.2 lb
rhco2 = 100 24 hr

(2)

Both water vapor and oxygen removal rates can be correlated to the carbon dioxide production

rate. 28 The resulting equation for water vapor loading is shown by equation (3), with further definition

provided by equations (4) and (5).

XLHEAT lb
rhH20 - , (3)

1,056.7 hr

TMET )XLHEAT = TMET-430 + _-10 (TcMs - 60),
1,000

(4)

TMET 11,200 BTU- ,hCO2 -- (5)
2.2 hr

Again, since the OGA was not capable of supporting more than the nominal four crew members,

the carbon dioxide loading used to calculate the oxygen removal was modified to remove the research

animal load. The resulting equation for oxygen removal rate is shown by equation (6).

"4"

th02 = 100

11,200-0.000163 lb

24 hr
(6)

Applying these equations, using a scaling factor of 2.243, to the normal CMS operating condi-

tions of 22 °C (72 °F) and 99.97 kPa (14.5 psia), the injection rates for carbon dioxide and water and

removal rates for oxygen were derived. These rates are listed in table 2.
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TABLE 2.--Metabolic simulation injection rates.

Time

(hr)

0.0-0.5

0.5-2.5

2.5-9.0

9.0-11.0

11.0-12.5

12.5-14.5

14.5-21.0

21.0-23.0

23.0-24.0

CO2 Injection

Rate (kg_r)

0.14

025

0.14

0.18

0.14

0.26

0.14

0.18

0.14

02 Removal

Rate (kg/hr)

0.12

0.21

0.12

0.15

0.12

0.21

0.12

0.15

0.12

H20 Injection

Rate (kg/hr)

0.55

1.13

0.55

0.72

0.55

1.13

0.55

0.72

0.55

/
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FACILITY AND SUBASSEMBLY PRETEST SUMMARY

Chamber Leakage Test

Static leakage tests of the CMS were conducted as part of the overall system checkout. Pretest

analysis had indicated that up to 1.81 kg/day (4 lb/day) of leakage could be tolerated before chamber

atmospheric composition control would be compromised. As shown by pretest analysis, when leakage

approaches greater than 2.27 kg/day (5 lb/day), the OGA could maintain only a steady-state oxygen

partial pressure of 15.6 volume percent. 29 The static leakage test results showed that the chamber leak-

age of 0.69 k_/day (1.53 lb/day) was well within the allowable limit. This rate was obtained by analyz-

ing the pressure and temperature conditions between 11.3 and 17.3 hr of the leakage test. 3° Figure 17

shows the leakage and temperature profiles for the chamber static leakage test. The major leakage path

for the test facility was determined to be the MCA. Leakage from the MCA was difficult to eliminate

because of its overall complexity, the large number of tubing connections and valves used in its design,

and the fact that it was located outside the test chamber.

105

104.5

104

103.5
m

=" 103

_ 102.5
102

.=
CZ.

101.5

101

100.5

100

D

D

D

I

1 Pressure

_ Temperature

25

24

23

22
=l

21 "=

- 20_

-- 19 _

-- 17

-- 16

15
2(1

m

m

I l I

5 10 15

Time (hr)

FIGURE 17.--Test chamber leakage.

Carbon Dioxide Removal Assembly

Baseline CDRA operations were demonstrated using several operational modes before the test to

ensure acceptable performance with new operating conditions and to compare the performance of the

recently modified CDRA to its past performance. These tests ensured that the CDRA performance had

not degraded as a result of any refurbishment work conducted and provided preliminary information on

its performance using two different power-saving operational modes. Test conditions are summarized by

tables 3, 4, 5, and 6.
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TABLE 3.--CDRA baseline test 1 conditions and performance summary.

4BMS BaselineTest I Summary StartTime: 10:05 StartDate: 02/09/96

EndTime: 24:00 EndDate: 02/11/96

Purpose:

I Verifythatthe continuousoperationof two heatersduringdesorbandhalf-cycletime of 160 rainwill provide greaterthan
the ISS requiredlevelof performance.Thistest will determineif theCDRAsatisfiesthe first part (continuousheater
operation)of para.3.2.1.1 ofthe ISSCDRAEnvelopeDrawing(683-10009, Rev.G)

Operation:

Power
Usage Average Peak

Mode: Day/NightWithCont. Day

HalfCycle: 160 rain
HeaterSetting: 390 to 400 °F
HeaterPower: 500 W Primary

500 W Secondary

Total
Heaters
Blower

Vacuum Pump

774
642
104
28

1,299 W
990 W
111W
379 W

Usingthe ISSCDRAEnvelopeDrawing(683-10009, Rev.G):

Air Inlet Conditions

Temperature
Dewpoint
Inlet ppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
20 ft3/min

Target

5O
50
#N/A
20

Actual
Raw Data Calibrated

52.27
48.40

0.711 0.507
20.16

Error(%)

4.5
-3.2
#N/A

0.8

Reference

TableII, sh 15
TableII, sh 15
Fig.3, sh 17
N/A

PracoolerCoolantWater

Actual Reference

Temperature
Flowrate

Range

38 to 42 °F
0.5 to 0.54

gal/min

Target

42
0.5

46.34
0.4916

Error (%)

10.3 Par.3.2.1.5, sh 18
-1.7 Par.3.2.1.5, sh 18

CO2 Removal Calculations (Boldtypedenotesdatapointsplottedin figs. 18 and19.)

Range Target

CalculatedFromInlet and Outletto 4BMS:

Inlet ppCO2
CO2 Removal
Efficiency

2 to 4 mmHg
0.28 to 0.58 Ib/hr

#N/A
0.561

CalculatedWith CO2 InjectionandModuleCO2 Le,re/:
I

ModuleppCO2 2to4 mmHg / #N/A
CO2 njecton 0.28to0.58 b/hr I 0,562

Actual
Raw Data Calibrated

5.288 3.771
0.614
87.8%

5.03

Error(%) Reference

#N/A
9.4

Fig.3, sh 17
Fig.3, sh 17

4.013 #N/A Lab PID fig. 65, p. 100
0.547 -2.7 LabPID fig. 65, p. 100

PeriodUsedfor Calculations

I From 1.67 to 6.99 hr Startingon JulianDay 42TotalTime of 5.33 hr or 320 min
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TABLE 4.--CDRA baseline test 2 conditions and performance summary.

4BMS BaselineTest 2 Summary Start Time: 14:00 Start Date: 02/22/96

EndTime: 24:00 EndDate: 02/24/96

Purpose:

Verifythattheoperationof two heatersduring desorband half-cycle time of 160 rainwill providegreaterthan the/SS required J
levelof performance.Thistestwill determine if theCDRAsatisfiesthe secondpart(day/nightheater operation)of par.3.2.1.1 Iof the ISSCDRAEnvelopeDrawing(683-10009, Rev.G)

Operation:

Power Average Peak
Usage

Mode: Day/Night
Halfcycle: 160 min
HeaterSetting: 390 to 400 °F
HeaterPower: 460 W Primary

500 W Secondary

Total
Heaters
Blower

Vacuum Pump

636
506
102
28

1,434 W
957 W
106 W
389 W

Usingthe/SS CDRA EnvelopeDrawing(683-10009, Rev.G):

Air Inlet Conditions

Temperature

Dewpoint
Inlet ppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
20 ft3/min

Target

50
50
#N/A
20

Raw Data

53.74
49.67
0.576

20.65

Actual
Calibrated

0.365

Error (%)

7.5
-0.7
#N/A
3.2

Reference

TableII, sh 15
TableII, sh 15
Fig.3, sh 17
N/A

PracoolerCoolantWater

Temperature
Flowrate

Range

38 to 42 °F
0.5 to 0.54

gal/min

Target

42
0.5

Actual

47.31
0.4744

Enor(%)

12.6
-5.1

Reference

Par.3.2.1.5, sh 18
Par.3.2.1.5, sh 18

CO 2 RemovalCalculations (Bold typedenotesdata points plottedin figs. 18 and 19.)

Range Target

CalculatedFrom Inlet and Outlet to 4BMS:

Inlet ppCO2
CO2 Removal

Efficiency

2 to 4 mmHg
0.28 to 0.58 Ib/hr

#NIA
0.395

Calculated With CO2 InjectionandModuleCO2 Level:

ModuleppCO2 2 to 4 mmHg 2.762

CO2 njecton 0.28 to 0.58 b/hr 0.367

Actual
Raw Data

4294

3.60

Calibrated

2.720
0.447

86.7%

2.933
0.365

Ewor(%)

#N/A
13.3

-6.2
-0.5

Reference

Fig.3, sh 17
Fig.3, sh 17

LabPID fig.65, p. 100
LabPID fig.65, p. 100

PeriodUsedfor Calculations

I From 17.01 to 40.99 hr Startingon JulianDay 54TotalTime of 24.00 hr or 1,440 min
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TABLE 5.--CDRA baseline test 3A conditions and performance summary.

4BMS BaselineTest3A Summary StartTime: 15:25 Start Date: 03/01/96

EndTime: 13:00 EndDate: 03/04/96

Purpose:

Verifythat the "power-save" operationoftwo heatersduringdesorb andhalf-cycletime of 144 min willprovidegreaterthan I
the ISS requiredlevelof performance.Thistestwill determineif the CDRAsatisfiesthe secondpart(day/nightcycleheater Ioperation)of par.3.2.1.1 of the ISSCDRAEnvelopeDrawing(683-10009, Rev.G)

Operation:

Mode: Day/Night
HalfCycle: 144 min
HeaterSetting: 225-260 °F
HeaterPower: 480 W primary

480 W secondary

Power

Usage

Total
Heaters
Blower

Vac. Pump

Usingthe ISSCDRAEnvelopeDrawing(683-10009, Rev.G):

Average

449
307
110
31

Peak

1,141W
961W
115W
392W

Air Inlet Conditions

Temperature
Dewpoint

Inlet ppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
22.2 ft3/min

Target

50
50
#N/A
22.2

Actual
Raw Da_

50.07
43.88
0.559

23.73

Calibrated

0.349

Enor(%)

0.1
-12.2

#N/A
6.9%

Reference

TableII, sh 15
TableII, sh 15
Fig.3, sh 17
N/A

PrecoolerCoolantWater

Temperature
Flowrate

Range

38 to 42 °F
0.5 to 0.54

gal/min

Target

42
0.5

Actual

42.56
0.4677

Error(%)

1.3
4.5

Reference

Par.3.2.1.5, sh 18
Par.3.2.1.5, sh 18

CO2 Removal Calculations (Bold typedenotesdata pointsplottedin figs. 18 and 19.)

Range Target

CalculatedFromInlet and Outletto 4BMS:

Inlet ppCO2
CO2 Removal
Efficiency

2 to 4 mmHg #N/A
0.28 to 0.58 Ib/hr 0.374

CalculatedWithCO2 InjectionandModuleCO2Level:

ModuleppCO2 2to4 mmHg / 2.762

CO2 Injection 0.28 to 0.58 Ib/hr_ 0.367

Actual
Raw Data

4.151

3.39

Calibrated Error (%) Reference

2.569
O.432

79.0%

_/A
15.5

Fig.3, sh 17
Fig.3, sh 17

2.749 g.5 LabPIDfig. 65, p. 100
0.665 -0.5 LabPIDfig. 65, p. 100

PeriodUsed far Calculations

From 1.91 to 13.89 hr Startingon JulianDay 62
Totaltime of 12.00 hr or 720 rain
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TABLE 6.--CDRA baseline test 3B conditions and performance summary.

4BMS BaselineTest 3B Summary Start Time: 14:37 StartDate: 03/08/96

EndTime: 08:00 End Date: 03/11/96

Purpose:
Verifythat the "power-save" operationof two heaters during desorb and half-cycle time of 144 min will provide greater than i
the ISS required level of performance. This test will determine if the CDRAsatisfies the second part (day/night cycle heater Ioperation) of par. 3.2.1.1 of the ISS CDRAEnvelopeDrawing (683-10009, Rev.G)

Operation:

Power

Usage Average Peak

544.16Mode: Day/Night
HalfCycle: 144 min
HeaterSetting: 225-260 °F
HeaterPower: 480 W Primary

480 W Secondary

Total
Heaters
Blower

Vacuum Pump

W
W
W
W

Usingthe ISSCDRA EnvelopeDrawing (683-10009, Rev.G):

Air Inlet Conditions

Temperature
Dewpoint

InletppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
22.2 ft3/min

Target

50
50
#N/A
22.2

Actual
Raw Data

50.51
47.26
0.554
23.57

Calibrated Error(%)

1.1
-5.5
#N/A
6.2

Reference

0.409

PracoolerCoolant Water

Range Target Actual Reference

Table II, sh 15
Table II, sh 15

Fig.3, sh 17
N/A

Temperature
Flowrate

38 to 42 °F
0.5 to 0.54

gal/min

42
0.5

42.24
0.4879

Error (%)

0.6
-2.4

Par.3.2.1.5, sh 18
Par.3.2.1.5, sh 18

CO2 RemovalCalculations (Bold type denotes datapointsplottedin figs. 18 and 19.)

Actual

Range Target Raw Data Calibrated Error (%) Reference

CalculatedFrom Inlet and Outletto 4BMS:

Inlet ppCO2 2 to 4 mmHg #N/A
CO2 Removal 0.28to 0.58 Ib/hr 0.457

Efficiency

Calculated With CO2 Injection and _fodule CO2 Level:
ModuleppCO2 2 to 4 mmHg | #N/A 0.84
CO2 Injection 0.28to0.58 Ib/hr| 0.458

!

4.214 3.115
0.537

82.7%

0.770
0.456

#N/A
17.5

#N/A
-0.5

Fig.3, sh 17
Fig. 3, sh 17

Lab PIDfig. 65, p. 100
Lab PIDfig. 65, p. 100

PeriodUsed for Calculations

From 0.01 to 23.99 hr Startingon JulianDay 70
Totaltime of 24.00 hr or 1,440 min
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As part of the IART, new control software was provided for the CDRA to allow it to operate in a

power-saving day/night cycling mode. In this mode, airflow is maintained through the CDRA but the

heaters used during the desorption cycle are shut off. Baseline performance runs were conducted in the

closed chamber to assess the CDRA performance for continuous operation and two power-saving

modes. The first power-saving mode cycled the adsorbent bed heaters on and off according to facility

day/night power cycling commands using a desorption temperature setpoint of 204 °C (400 °F), a half

cycle time of 160 min, and an air flowrate of 40.8 kg/hr (90 lb/hr). The second used a similar approach

but with a temperature setpoint of 121 °C (250 °F), a half cycle time of 144 min, and an air flowrate of

45.5 kg/hr (100 lb/hr). The second day/night power-saving mode proved to be most efficient while still

meeting the ISS carbon dioxide removal system performance specification. The first power-saving

operational mode realized a savings of approximately 138 W over the continuous operation mode's

774.5 W. Up to an additional 92 W of power savings were observed for the second power-saving mode.

Overall, the 121 °C temperature setpoint and 144-min half cycle time provides a total power savings of

approximately 230 W over the continuous operation mode using the 204 °C setpoint and 160-min half

cycle. As a result, the 121 °C temperature setpoint and 144-min half cycle was selected for the integrated

test. Figures 18 and 19 summarize the CDRA performance for the various baseline runs compared to ISS

carbon dioxide removal specifications. In figures 18 and 19, baseline run 1 corresponds to operating the

CDRA with no power-saving mode, baseline 2 corresponds to the first power-saving mode, and

baselines 3A and 3B correspond to the power-saving mode used during the IART. More detailed infor-

mation summarizing the performance observed during these pretest runs is presented in appendix A.

It was noted during this testing that the 121 °C heater setpoint and 144-min half cycle may not

allow recovery from conditions in which the CDRA accumulates large quantities of water in the desic-

cant beds. Normal water loading can be accommodated; however, recovery from high-water loading that

could result from prolonged periods between CDRA operation may require the use of the 204 °C desorp-

tion temperature setpoint and 144-min half-cycle time.
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FIGURE 18.--CDRA performance at inlet condition.
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Oxygen Generator Assembly

The SFWE OGA was operated independently from June 21, 1995, to November 29, 1995, to

determine whether it could produce oxygen at the required rate under ISS operating conditions. These

conditions included day/night power cycling in which the OGA was placed into a standby mode during

the dark portion of the orbital cycle and used feedwater produced by the ISS water processor. The new

ISS nitrogen interface pressure of 620 kPa (90 psia) to 758 kPa (110 psia) was also tested. During the

test period, 26 days of testing were accumulated with one period of uninterrupted operation from

August 12-18, 1995, and a second period from September 29 to October 14. Command and control

signals to change OGA operational modes between day and night cycles were successfully demon-

strated, and it was capable of producing oxygen using feedwater obtained from previous 1SS water

processor testing. Also, control signals to change oxygen production rate from 90 to 110 percent of

nominal were sent to the OGA via the facility control console. These control tests were a precursor to

integrating the OGA with the MCA oxygen partial pressure signal to control the oxygen production rate.

At the conclusion of independent testing, problems with the OGA PCA were investigated from Novem-

ber 1995 through January 1996. Before integrated testing began, however, it was determined that the

technical problems could not be solved to allow the IART to be conducted in a timely manner. This

prevented its participation in the test; however, the majority of the IART test objectives regarding the

OGA were satisfactorily addressed during the checkout testing phase. 31
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INTEGRATED TESTING SUMMARY

Integrated testing began on March 12, 1996, and continued until April 18. During this time, a

cumulative total of 30 days of operation with two periods of uninterrupted operation were obtained. The

first uninterrupted period lasted 7 days (March 22 through 29) while the second period continued for a

12-day duration (March 30 through April 12). An additional 4 days of testing was conducted on the

MCA to investigate its response to transient humidity changes in the chamber. All testing was completed

on April 18.

Test Condition Summary

Chamber Total Pressure and Temperature

Test chamber total pressure was maintained greater than 0.40 kPa (3 mmHg) above ambient

pressure (gauge pressure) and did not exceed 1.6 kPa (12 mmHg) gauge pressure except on March 30

after the metabolic simulation program had malfunctioned. The excess pressure was vented. After this

event, the total pressure was maintained within the specified range of 0.40 to 0.93 kPa (3 to 7 mmHg)

gauge pressure. The test chamber temperature was maintained between 21 and 22 °C (70 and 72 °F)

during the entire test. Figures 20 and 21 show representative total pressure and temperature profiles

during the uninterrupted test segments. More extensive data plots may be found in appendix B.
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Chamber Atmospheric Composition

During the entire test, the CMS atmospheric composition was monitored by several means.

These included measurements from the MCA, an in-line gas chromatograph (GC), an in-line infrared

CDA, and several facility-provided single gas sensors mounted inside the CMS. A comparison of data

gathered by the various instruments used during the IART is provided in appendix C.

Because the MCA, GC, and infrared CDA's operated at different sampling frequencies, a com-

plete set of samples was not collected at the same time using all of the instruments. The MCA and

GC samples were generally collected within a few minutes of each other because the MCA collected a

sample once per minute. Internally mounted oxygen and carbon dioxide monitors recorded gas concen-

trations every 15 sec. In general, the internally mounted sensor measurements reported are within a few

minutes of the time grab samples were taken. Statistical analysis of the data provided in appendix C

indicates consistently close atmospheric composition monitoring results as seen by the relatively small

standard deviation from the mean. A more detailed discussion of these results is provided as part of the

MCA performance summary.

In addition, grab samples were collected for independent laboratory analysis. A summary of

these grab sample data is provided in appendix D. Analysis of the grab sample results shows that the

CMS atmosphere averaged 78 percent nitrogen, 21.1 percent oxygen, and 0.35 percent carbon dioxide
for the IART.

Samples were also collected and analyzed for nitrogen dioxide and ozone. These compounds

were monitored because there was concern that they could be produced by the electrical systems (such

as electric motors) and the TCCS. Ozone can be produced from arcing when operating electrical sys-

tems. Nitrogen dioxide may result from the oxidation of nitrogen in the atmosphere in the TCCS high-

temperature oxidizer. Although a previous bench-scale test of the TCCS high-temperature catalyst's

ability to oxidize nitrogen in the atmosphere showed no production of nitrogen oxides, a system-level

analysis was conducted to confirm the results. 32 As seen in appendix E, the ozone concentration in the

CMS was typically comparable to or lower than ambient levels, and no nitrogen dioxide was
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produced. 33 This latter result confirmed the results of the earlier study. The methods used to analyze

both ozone and nitrogen dioxide had detection limits of 0.05 parts per million (ppm). Results within the

CMS were below the detection limit during all samples.

Subassembly Operations Summary

Overall, the ARS operated smoothly with no major subassembly anomalies. Three subassembly

anomalies were experienced during the course of the test, with two leading to temporary shutdowns of

the CDRA and MCA. Details on these anomalies and their resolution are summarized by reference 33.

Summaries for these shutdowns are provided by the following discussion. The TCCS did not experience

any anomalies.

The MCA experienced a single shutdown on March 21 due to a high electrical current to its ion

pump. This shutdown was traced to a failed delay circuit that was not flight-like and, therefore, not

necessary for conducting the test. The circuit was bypassed and the MCA operated with no problems for
the remainder of the test.

The CDRA experienced two anomalies. The first occurred on March 21 and caused the unit to

shut down. The cause for the shutdown was traced to an airflow selector valve that was not in the proper

position. The CDRA was restarted and the problem did not repeat during the remainder of the test. It is

thought that a facility power surge or voltage decay may have caused an inadequate current to the valve

resulting in its improper positioning. The second anomaly occurred on April 3 when one of the sorbent

bed heaters did not receive electrical power for approximately 3 hr. This problem corrected itself and no

explanation could be found. The CDRA sorbent beds are to be refurbished following the test, and atten-

tion will be given to possible electrical shorts and other potential causes for this problem.

Facility Operations Summary

Facility anomalies accounted for several problems encountered during the test. Details on test

problems and their resolution are provided by reference 34. Most facility-related anomalies were minor

and were corrected quickly. A summary of the test facility operations is provided by the following

discussion.

The first anomaly occurred on March 16 when the facility electrical power failed. This caused

the entire test facility to shut down temporarily. Approximately 1.5 hr of processing time were lost

before the test could be restarted. The power failure also resulted in CDRA operation to reset to local

control. This caused the CDRA to ignore the day/night commands from the host computer. This problem

was discovered and corrected on March 20; however, the test days between March 16 and 20 did not

meet the IART requirements for day/night cyclic operations.

Facility-provided gas monitors were responsible for several interruptions in the metabolic simu-

lation program. During calibration of the gas chromatograph, communication errors with the host com-

puter caused the metabolic simulation program to shut down. These shutdowns had no impact to the test
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other than a brief interruption of the metabolic simulation. The program was quickly restarted in each

case. On one occasion, however, this problem caused the water injection tank to completely empty. As a

result, the test chamber had to be opened on March 30 to prime the injection pump. This caused an

interruption in the consecutive uninterrupted test days; however, it could be argued that entering the

chamber was of no greater impact to the test than a pressure relief event since the oxygen and carbon

dioxide partial pressure control was not affected.

The test chamber was also opened on March 13 and March 16 to make other repairs to the water

injection system. On March 13, the water injection system failed. It was found that a metering valve was

set too tightly and became blocked with debris. The valve was opened wider and control parameters

were reset. After the facility power failure on March 16, water injection system setpoints for the injec-

tion tank scale had to be reset. The test chamber was entered to reset the scale setpoints and connect it to

an uninterruptable power supply to prevent a recurrence. In both instances, oxygen and carbon dioxide

partial pressure control was not affected.

The final test facility anomaly occurred on April 8 when the daily rate of oxygen injection into

the chamber began to decline from its normal 3 to 4 kg/day (7 to 9 lb/day) to 0.7 kg/day (1.5 lb/day).

At the same time, the nitrogen injection rate increased. Analysis of the test data indicated that total

pressure control had lost its assist from the oxygen injection system. A possible cause for this was

oxygen removal subassembly failure. The gas removal rate for the oxygen removal subassembly did not

change; however, an analysis of the gas composition from the subassembly showed a composition of

73.6-percent nitrogen and 25.1-percent oxygen. The normal outlet gas composition for this device is

99-percent oxygen and 1-percent nitrogen; therefore, it was confirmed that the unit had failed. Since the

oxygen removal unit failure occurred near the end of the test and it did not affect the operations of the

MCA, the test was not shut down to repair it.

Overall Test Operations Assessment

The IART had the fewest problems of any integrated test conducted. With very few exceptions,

the test facility operated flawlessly, allowing a very accurate assessment of the integrated USL ARS and

atmosphere control and supply (ACS) functions under automated control. Day/night cyclic operations

for both the CDRA and OGA were demonstrated during the course of independent subassembly and

integrated subsystem testing.
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DISCUSSION OF RESULTS

CDRA Performance Resul_

The CDRA operated durin_e test with only the two previously mentioned anomalies. The first

involved a valve position error, while the second was a loss of power to a carbon dioxide adsorbent bed

heater. As noted earlier, these anomalies were short-lived and did not recur. During the test, the partial

pressure of carbon dioxide within the chamber was maintained between 333.3 and 400 Pa (2.5 and

3 mmI-Ig). This was well below the I$S maximum allowable of 706.6 Pa (5.3 mmHg).

Since very little variation in the chamber carbon dioxide partial pressure was experienced, 3 days

of CDRA operations were analyzed to assess its performance. Twenty-four-hr periods on March 14-15,

March 27, and April 11 were considered to investigate performance early in the test, midway through the

test, and at the end of the test, respectively. Tables 7, 8, and 9 summarize the conditions under which the

CDRA was operating during these three periods and how closely they comply with ISS CDRA design

specifications. As can be seen by examining the test conditions, very little change was observed and

good agreement with ISS design specifications was obtained. Coolant water flowrate experienced the

highest deviation; however, the CDRA precooler design is not highly sensitive to flowrate. The coolant

temperature was maintained very well, but was near the upper range of acceptability. The CDRA perfor-

mance is more sensitive to this temperature and the test results were, therefore, obtained under a worst-

case condition for coolant temperature.

Average power required by the CDRA ranged from a high of 550.09 W to a low of 532.12 W,

with an average of 540.6 W for the three periods assessed. This compares with the observed 544.2 W

from pretesting. Compared to the 774.5 W required for the continuous operation baseline with no day/

night power cycling, the observed test results represent a savings of approximately 203.9 W.

Carbon dioxide removal rate was assessed at both the CDRA inlet and chamber-level conditions.

Performance based upon the CDRA inlet conditions exceeded the ISS specification requirements at the

three periods for which data were analyzed, as shown by figure 22. An average of 0.198 kg/hr (0.437 lb/

b_r) at an average CDRA inlet concentration of 349.8 Pa (2.624 mmHg) was observed. Performance

based upon module-level conditions was very close to the ISS requirement, as shown by figure 23. At

the module level, the CDRA removed an average of 0.166 kg/hr (0.365 lb/hr) of carbon dioxide at an

average chamber partial pressure of 371.7 Pa (2.788 mmHg). Since the chamber conditions were main-

tained with very little fluctuation during the remainder of the test, it can be concluded that the CDRA's

performance consistently met or exceeded ISS requirements. Supporting data on the CDRA's perfor-

mance during these three periods is provided in appendix E

As noted during CDRA baseline testing, concern existed with respect to possible desiccant bed

breakthrough by water vapor. Because the carbon dioxide bed regeneration temperature was signifi-

cantly lower than any previously tested and the day/night power cycling could result in incomplete
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desiccantbedregeneration,possiblewatervaporbreakthroughandsubsequentsorbentbedpoisoning
wasanticipated.Althoughsignificantsorbentbedpoisoningwasnot indicatedby a decreasein carbon
dioxideremovalefficiency(it actuallyincreased),theincreasingwaterbreakthroughin desiccantbeds1
and2 wasobservedasthetestprogressed.Althoughthesefiguresshowdatafor a singlehalf-cycle,the
trendsandmagnitudesarerepresentativefor the indicatedtimeperiods.

As thetestprogressed,it wasobservedthatthebaselineoutletdewpointincreasedby a magni-
tudeof 2.2to 2.8 °C (4to 5 °F).Theexactbaselinedewpointcouldnotbedeterminedbecauseof a small
leakin theCDRA thatwasdiscoveredattheconclusionof thetest.Althoughtheleakdid not affect
overallperformance,it is possiblethatthebaselinedewpointmeasurementcould havebeenaffected
slightly.Therefore,its actualmagnitudecouldnot beaccuratelydetermined.Evenwith this small leak,
theaccompanyingoccurrenceof progressivelygreaterwaterbreakthroughestablishesthat waterreten-
tion graduallyincreasedwith thelower heatersetpointtemperatureof 121°C (250 °F).For thisreason,
it is desirableto retainthecapabilityfor sorbentbedregenerationat204°C (400°F) asa meansto
periodicallyregeneratethebedsmorecompletely.
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TABLE 7.--CDRA operating conditions early during integrated testing.

IARTEarly Phase StartTime: 06:00 Start Date: 03/14/96

EndTime: 06:00 EndDate: 03/15/96

Purpose:

Verifythat the "power-save" operationof the CDRAwith metabolicsimulationand day/nightoperationwillprovidegreater I
thanthe ISS requiredlevelof performance.Thistestingwilldetermineif theCDRAsatisfiesthe secondpart(day/nightcycle Iheateroperation)of par. 3.2.1.1 of the ISSCDRA EnvelopeDrawing(683-10009, Rev.G)

Operation:

Power Average Peak
Usage

Mode: Day/Night
HalfCycle: 144 min
HeaterSetting: 225-260 °F
HeaterPower: 480 W Primary

480 W Secondary

Total
Heaters
Blower

VacuumPump

55O
403
108
39

1,768 W
983 W
111W

417W

Usingthe/SS CDRAEnvelopeDrawing(683-10009, Rev.G):

Air Inlet Conditions

Temperature
Dewpoint
Inlet ppCO2
FlowRate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
22.2 ft3/min

Target

50
50
#N/A
22.2

Actual
Raw Data

50.65
49.27

0.528
21.99

Calibrated Error (%)

1.3
-1.5
#N/A
-1.0

Reference

TableII, sh15
TableII, sh15

Fig.3, sh 17
N/A

0.355

PracoolerCoolantWater

Actual Reference

Temperature
Flowrate

Range Target

38 to 42 °F 42
0.5 to 0.54 0.5

gal/min

42.31
0.6536

Error (%)

0.7
30.7

Par.3.2.1.5, sh 18
Par.3.2.1.5, sh 18

CO2 RemovalCalculations(Boldtype denotesdata pointsplottedin figs. 22 and23.)

Range Target

CalculatedFromInlet andOutletto 4BMS:

inletppCO2
CO2 Removal

Efficiency

2 to 4 mmHg
0.28 to 0.58 Ib/hr

#N/A
0.389

CalculatedWithCO2 InjectionandModule CO2 Level:

ModuleppCO2 2 to 4 mmHg 2.761

CO2 njecton 0.28 to 0.58 b/hr 0.367

Actual
Raw Data Calibrated

3.989 2.685
0.428

81.5%

3.21

Error(%) Reference

2.840
0.365

#N/A
10.1

-2.8
-0.6

Fig.3, sh 17
Fig.3, sh 17

LabPIDfig. 65, p. 100
LabPIDfig. 65, p. 100

PeriodUsedfor Calculations

i From 6.02 to 29.98 hr Startingon JulianDay 74TotalTimeof 24.00 hr or 1,440 min
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TABLE 8.--CDRA operating conditions midway through integrated testing.

IARTMid-TestPhase StartTime: 00:00 Start Date: 03/27/96

EndTime: 24:00 EndDate: 03/27/96

Purpose:

Verifythatthe "power-save" operationof the CDRAwithmetabolicsimulationand day/nightoperationwill providegreater I
than the ISS requiredlevelof performance.This testingwilldetermineif the CDRAsatisfiesthesecondpart (day/nightcycle Iheateroperation)of par.3.2.1.1 of the ISSCDRAEnvelopeDrawing(683-10009, Rev.G)

Operation:

Power Average Peak
Usage

Mode: Day/Night
Half Cycle: 144 min
HeaterSetting: 225-260 °F
HeaterPower: 480 W Primary

480 W Secondary

Total
Heaters
Blower

VacuumPump

532
387
109
36

1,689 W
975 W
113W
415W

Usingthe/SSCDRA EnvelopeDrawing(683-10009, Rev.G):

Air Inlet Conditions

Temperature
Dewpoint

Inlet ppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
22.2 tt3/min

Target

50
5O
#N/A
22.2

Raw Data

51.60
50.05
0.509

21.93

Actual
Calibrated Enor(%)

3.2
0.1

#NIA
-1.2

Reference

0,338

PrecoolerCoolantWater

Actual Reference

Table II, sh 15
Table II, sh 15
Fig. 3, sh 17
N/A

Temperature
Flowrate

Range

38 to 42 °F
0.5 to 0.54

gal/min

Target

42
0.5

43.27
0.5612

E.or(%)

3.0
12.2

Par.3.2.1.5, sh 18
Par. 3.2.1.5, sh 18

CO 2 RemovalCalculations(Bold type denotesdatapointsplotted in figs. 22 and23.)

Range Target

CalculatedFrom Inlet and Outlet to 4BMS:

Inlet ppCO2
CO2 Removal

Efficiency

2 to 4 mmHg
0.28 to 0.58 Ib/hr

#NIA
0.371

Calculated With CO2 Injectionand ModuleCO2 Level:

Module ppCO2 2 to 4 mmHg 2.762

CO2 Inject on 0.28 to 0.58 b/hr 0.367

Actual
RawData Calibrated

3.874 2.567
0.435

86.6%

3.09

Error (%) Reference

2346
0.365

#N/A
17.3

0.6
-0.5

Fig.3, sh 17
Fig.3, sh 17

LABPIDfig. 65, pg 100
LABPIDfig. 65, pg 100

Period Usedfor Calculations

I From 0.02 to 23.98 hr Starting on Julian Day 87Totaltime of 24.00 hr or 1,440 min
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TABLE 9.--CDRA operating conditions at the end of integrated testing.

IART Late TestPhase StartTime: 0:00 Start Date: 04/11/96

EndTime: 24:00 EndDate: 04/12/96

Purpose:

Verifythat the"power-save"operationof the CDRAwith metabolicsimulationand day/nightoperationwill provide greater I
than the ISS requiredlevel of performance. Thistestingwilldetermineif the CDRAsatisfiesthesecondpart(clay/nightcycle rheateroperation)of par.3.2.1.1 of the ISS CDRAEnvelopeDrawing(683-10009, Rev.G)

Operation:

Power Average Peak
Usage

Mode: Day/Night
Half Cycle: 144 min
HeaterSetting: 225-260 °F
HeaterPower: 480 W Primary

480 W Secondary

Total
Heaters
Blower

Vacuum Pump

539
396
107
36

1,315 W
985 W
111W
393 W

Usingthe ISSCDRAEnvelopeDrawing(683-10009, Rev.G):

Air Inlet Conditions

Temperature
Dewpoint

Inlet ppCO2
Flowrate

Range

40 to 50 °F
40 to 50 °F
0.4 to 0.5%
22.2 ft3/min

Target

5O
50
#N/A
22.2

Actual
Raw Data Calibrated

52.34
50.42
0.510 0.346

21.62

Error(%)

4.7
0.8

#N/A
-2.6

Reference

TableII, sh 15
TableII, sh 15
Fig.3, sh 17
N/A

Precooler CoolantWater

Range Target Actual Reference

Temperature
Flowrate

38 to 42 °F
0.5 to 0.54

gal/min

42
0.5

43.12
0.4947

Error(%)

2.7
-1.1

Par.3.2.1.5, sh18
Par.3.2.1.5, sh18

CO2 Removal Calculations(Boldtype denotesdatapointsplottedin figs. 22 and 23.)

Actual

Range Target Raw Data Callbreted

CalculatedFromInlet andOutletto 4BMS:

Inlet ppCO2 2 to 4 mmHg #N/A 3.858 2.620
CO2 Removal 0.28 to 0.58 Ib/hr 0.379 0.448
Efficiency

88.0%

Calculated WithCO2 InjectionandModuleCO2 Level:
I I

ModuleppCO2 I 2 to 4 mmHg I 2.761 3.11 2.777

CO2 Injection I 0.28 to 0.58 Ib/hr I 0.367 0.364

Error(%) Reference

#N/A
18.2

-0.6
-0.6

Fig.3, sh 17
Fig.3, sh 17

Lab PID fig. 65, p. 100
LabPID fig. 65, p. 100

Period Used for Calculations

I From 0.02 to 23.98 hr Startingon JulianDay 102Total time of 24.00 hr or 1,440 rain
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FIGURE 23.---CDRA performance with respect to module specification.

As noted above, despite increased water breakthrough, the carbon dioxide removal efficiency

increased over the test, from 81.5 to 86.6 to 88 percent on March 14, March 27, and April 11, respec-

tively. A possible cause is that increased water saturation decreases carbon dioxide adsorption capacity

of the desiccant beds. Any carbon dioxide stored on the desiccant beds is returned to the cabin on the

subsequent cycle, decreasing overall efficiency. Since the carbon dioxide sorbent beds are not saturated

with carbon dioxide for this mode of operation, the small amount of water passing through the desiccant

beds during this test did not affect overall performance. However, if this test had continued, desiccant

breakthrough would likely continue to increase, and the carbon dioxide sorbent bed water poisoning
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wouldeventuallyadverselyaffectoverallperformance.Basedon thereasoningabove,anideal cycle
mightallow avery slightwaterbreakthroughwithout aprogressiveincreasein thedesiccantbedwater
retention.High-temperatureregenerationwouldstill be requiredfor periodicdryoutof thecarbon
dioxidesorbentbed.

MCA Performance Results

The MCA performed nominally throughout the entire test, with the only exception being the

shutdown experienced on March 21 due to a high electrical current to the ion pump. As previously

related, this shutdown was traced to a failed delay circuit that was not flight-like and, therefore, not

necessary for conducting the test. The circuit was bypassed and the MCA operated with no problems

for the remainder of the test.

The MCA performance was verified by comparison to other in-line instruments mounted both

inside and outside the test chamber. Periodic grab samples were also analyzed off-fine by the Boeing

Analytical Services laboratory. Overall results of these analyses are summarized in the following discus-

sion, and a tabular comparison of results from the different analytical methods for each individual gas is

provided by appendix C. Overall the MCA readings correlated very well with those from all of the other

sensors. The low standard deviation for the readings from all the sensors used indicate a high degree of

accuracy and measurement reliability during the test.

CMS Oxygen Partial Pressure Monitoring and Control

The oxygen partial pressure was monitored by the MCA, an in-line GC, dally grab samples, and

an internally mounted dumbbell-type paramagnetic oxygen monitor. Chamber oxygen levels averaged

20.6 percent from all sources of data, with a standard deviation of 0.64. A comparative listing of oxygen

analytical results is provided in appendix C. Figure 24 compares the MCA oxygen composition reading

to that from the in-line paramagnetic monitor. It was observed that the MCA tracks the trends from the

in-line monitor very well.

Real-time assessment of the response of the various sensors for oxygen is provided by figure 25.

In this figure, the MCA output converted to percent is compared with the response of the facility oxygen

sensor and discrete data points obtained via the on-line GC. The data tabulated in appendix C were taken

from readings from all three instruments at the time GC measurements were made. As seen by figures 24

and 25, the MCA output has considerable scatter but tracks the atmospheric composition trends very

well. MCA results were typically lower than those obtained via the GC but much closer to those ob-

tained from the facility sensor. The median oxygen percentage for the results shown by figure 25 are

20.78, 20.59, and 21.29 percent for the facility sensor, MCA, and on-line GC, respectively.

Oxygen was controlled to an average partial pressure of 20.6 kPa (3 psia or 155 mmHg). Peaks

in oxygen partial pressure were observed during every injection sequence as shown by figure 26. Like-

wise, decreases in partial pressure were observed as a function of the metabolic oxygen consumption

profile. As shown by figure 27, the rate of oxygen partial pressure decrease is most steep during the high

metabolic loading period and less severe during the lowest loading period, as would be expected. The

stable system response shown by figure 24 demonstrated that using the MCA oxygen partial pressure
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signal for maintaining control works very well. Similar results provided by appendix G were obtained

during the entire test.
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CMS Nitrogen Partial Pressure Monitoring and Control

The nitrogen level in the test chamber was analyzed by the MCA, the in-line GC, and daily grab

samples. The average nitrogen concentration from the three different analyzers was 78.7 percent, with a

standard deviation of 1.9. A comparative listing of these results is provided in appendix C.

Nitrogen partial pressure control was provided by periodic injection. This injection also affected

the chamber total pressure. An example of these effects is provided by figure 28. The total nitrogen

46



partial pressure and chamber total pressure were also affected by oxygen injection. By comparing

figure 28 with figure 26, it can be seen that the total pressure peaks correspond directly to oxygen

injection events; therefore, the oxygen injection tended to produce the most dynamic variability in

chamber atmospheric composition and total pressure over time. Similar results were observed through-

out the test as can be seen by data plots provided in appendix H.

FP60(ChamberPressure)andNF20(MSANitrogenFlow)

Date,Time

FIGURE 28.--Effects of nitrogen injection on CMS total pressure.

CMS Carbon Dioxide Partial Pressure Monitoring.

Overall, the CMS carbon dioxide response was stable, as seen by figure 29. This allowed a

comparison between carbon dioxide sensors to be made with good reliability. The MCA carbon dioxide

response was very similar to that of the internally mounted nondispersive infrared sensor and tracked

chamber profiles well. As can be seen by figure 30, the chamber carbon dioxide partial pressure was

sensitive to the metabolic input. However, little variability was observed as a result of the day/night

cycle and CDRA operating mode as shown by figures 31 and 32, respectively. Similar results were

observed for the entire test for carbon dioxide partial pressure. Additional data plots for the CMS carbon

dioxide response and effects of metabolic simulation on carbon dioxide partial pressure are provided in

appendix I.

Since carbon dioxide level is a significant design factor for ISS ECLSS performance, its level

was monitored by several instruments. Some of these instruments had been installed to gather more

detailed data for improved CDRA modeling and performance enhancement studies, but since they were

currently available they were utilized in this testing also. The carbon dioxide was monitored by the

MCA, the in-line GC, dally grab samples, internally mounted nondispersive infrared carbon dioxide

monitors, and the external Horiba carbon dioxide analyzer. Results of analyses conducted by each

method are tabulated in appendix C. These results reflect readings taken at various times during the test

very close to the time that in-line GC measurements were taken. The average value for carbon dioxide

from all analyzers for these tabulated values was 0.37 percent, with a standard deviation of 0.03. Carbon

dioxide levels reported by the internally mounted monitor were almost always the highest value, with an

individual sensor average of 0.41 percent.
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A real-time comparison of carbon dioxide results for the MCA, two facility-provided sensors,

and the in-line GC is provided by figure 33. These results are normalized around facility sensor FG69 as

shown by figure 34. As seen by these results, the tabular listing of appendix C is confirmed. The MCA

results were consistently lower than those obtained from the on-line GC and facility-provided sensors.

Median values for the real-time data presented by figure 33 are 0.33, 0.40, 0.36, and 0.39 percent for the

MCA, FG61 facility sensor, FG69 facility sensor, and in-line GC, respectively.
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acpp (MCA Carbon Dioxide Partial Pressure) and mdns (CDRA Day/Night Cycle)

FIGURE 31.---Effects of day/night CDRA cycling on CMS carbon dioxide partial pressure.
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FIGURE 32.--Effects of CDRA operational mode on CMS carbon dioxide partial pressure.
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CarbonDioxide Sensor Comparison
MCAData Converted With FPSO
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FIGURE33.--IART carbon dioxide sensor comparison.
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CMS Water Vapor Monitoring

Water vapor was analyzed by the MCA, the in-line GC, and by dewpoint sensors located in the

test chamber and at various points in the SDS lines. Only the MCA and GC data were correlated since

the dewpoint sensors actually measure in terms of dewpoints, not percentages as do the MCA and GC.

A comparative listing of MCA and GC water vapor measurements is provided in appendix C. The

average water vapor concentration for both of these instruments was 1.24 percent, with a standard

deviation of 0.21. However, it should be noted that water vapor concentrations varied throughout the

test based on metabolic simulation loads. This variation was increased during the off-nominal humidity

test that followed the initial IART to demonstrate the quickness of the MCA response to off-nominal

conditions.

Since the chamber response to water vapor loading was shown to be stable throughout the test,

further real-time comparison of water vapor results from the MCA, GC, and a facility-provided

dewpoint sensor was possible. Figure 35 shows this comparison with all readings converted to dewpoint.

In this comparison, the MCA and in-line GC results agree very well, while the facility-provided sensor

has an offset of about 1.1 °C (34.98 °F). The median dewpoint responses for the instruments compared

during this 24-hr period are 11.13 °C (52.03 °F), 11.36 °C (52.44 °F), and 9.84 °C (49.71 °F) for the

MCA, in-line GC, and facility dewpoint sensor, respectively.

m
o

zc
ID

+'s

54

53

52

51

50

49

Humidity SensorComparison
MCA Data ConvertedWith FP60

IART Day 30 on 4-11-96

i •

#

i . .:.: ..o °
.................................................................................................... •.........--..',,-'++.-.-.,............... ..
+* ..._2 ":.o .. _ ._...
•-_-_. "+" + _.o+2¢_o° • ' _ .. *- +e '_*"*+ +""+*- "at". •o.+ m, + 0+ . . i_ oo_ ° roll. °.. o •° + o e,o

_ _ _ °°,.°° °° °I,+ ° i,m °_,$ ,,,. °.
_* "°" + "+ " °+" _*"+'_ -t. - + °

+ . l°ll........• + • +

48 I
0

-- -e--AD61 °F

o awpp °F
• kb% 2at Cabin

i i i + i , i _ i I i l I i i i i !, , I I I

5 10 15 20

Time (hr)

25

FmtmE 35.--IART water vapor sensor comparison.

51



Effects of Sample Delivery System on MCA Water Vapor Measurement

The investigation of SDS line lengths was conducted in two parts. First, the water reading was

monitored during the nominal part of the test. Sample line lengths were changed at strategic times

during that portion of the testing. Second, follow-on testing was conducted to monitor the cabin humid-

ity as it was varied among the extremes possible in the test-bed.

According to every aspect of ISS operations that was simulated, the SDS does not have an appre-

ciable effect on the accuracy of the water vapor measurement. During the nominal portion of the test, the

sample line length was varied among the four possible configurations. In each of these settings, the

MCA reading tracked exactly what was happening inside the module, whether it was the injection of

metabolic water, the regeneration of the CDRA desiccant beds, or a combination of both. Any lag in the

readings was only a matter of seconds.

A systematic effect on the dewpoint measurements made at various points in the SDS was ob-

served. The measured dewpoint was perceived to decrease slightly as the sample flowed through the

SDS. This effect, illustrated by figure 36, was fully systematic in origin and resulted from the pressure

dependence of the dewpoint measurement. Since a pressure drop was experienced as the sample was

pumped through the line, a corresponding perceived decrease in dewpoint was observed. The MCA,

however, does not measure dewpoint, but the volume percentage of water. This effect can be compen-

sated for by adjusting the MCA water reading to match the actual cabin pressure. The calculated

dewpoint from the MCA partial pressure reading and cabin pressure consistently agreed with cabin

dewpoint measurements. Appropriate pressure adjustments also reduced the perceived discrepancies

in the SDS dewpoint readings to within instrument accuracy ranges.
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FIGURE 36.--Effects of sample line length on dewpoint measurements.
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Fmtq_ 38.--Effects of CDRA operating mode on CMS dewpoint.

MCA Response to Humidity Fluctuations

During the follow-on testing, the humidity levels in the cabin were varied among the extremes

possible within the test chamber--from approximately 45-percent relative humidity at the low end to

80 percent at the high end of the range. During this testing, the humidity was reduced to the lowest

achievable level within the CMS; then the coolant flow to the CHX was shut off. This approach was

used because the ability to detect loss of humidity removal was considered to be the most likely failure

that the MCA should be required to recognize. A typical MCA response to several humidity swings is

shown by figure 39. As the humidity level rose, the MCA reading followed it within a matter of seconds.
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Figures 40, 41, and 42 isolate the first of the second set of dewpoint peaks to allow a better assessment

of the MCA's response time. As can be seen by these figures, the MCA response lags the chamber

sample system inlet dewpoint by approximately 30 to 60 sec. Based on these data and the baseline

gathered during the nominal portion of the test, it can be concluded that the MCA will perform reliably

onboard the ISS, and its water reading will be accurate and reliable for determining water removal

failure of THCS. Additional data plots are provided in appendix K.

awpp(MCAWater),ADS0(MCA100DP),ADS1(MCA75 DP),ADS2(MCA50DP),
AO63(MCA25DP),andADS4(MCAInletDP)

awppDewpointConvertedFromPartialPressureData

FIGURE 39.--Typical MCA response to CMS humidity swings.
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FIGURE 40.--MCA response during a single humidity cycle.
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TCCS Performance Results

The TCCS operated with no problems during the test. Its flowrates were stable at approximately

15.3 m3/hr (9 ft3/min) through the charcoal bed and 4.6 m3/b_r (2.7 ft3/min) through the catalytic oxi-

dizer. The catalytic oxidizer, however, operated at cooler conditions than during previous extended-

duration TCCS testing. The temperatures at points located just before the heating element 0t03), the

midpoint of the catalyst bed 0t04), and the exit of the catalyst bed (jt05) averaged 653.1 K (715.8 °F),

671.2 K (748.5 °F), and 672.8 K (751.4 °F), respectively, during previous testing.35 However, during the

IART, temperatures at these points averaged 648.2 K (707 °F), 665.4 K (738 °F), and 667.6 K (742 °F)

as shown by figure 43.

Appendix L documents an energy balance analysis of the catalytic oxidizer that shows that the

heat of reaction of 60 mg/m3 (90 ppm) of methane can account for up to a 2.3-K (4.2-°F) temperature

rise in the reactor. In other words, the catalytic oxidizer would operate 2.3 K cooler if no methane

oxidation occurred. Since no methane was injected into the CMS and the energy input of the heater

power was the same as was used previously, the entire reactor operated at the observed cooler condition.

An energy balance of the IART conditions shows that the observed temperatures result from the lack of

methane injection. This analysis is also provided in appendix L.
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FmURE 43.--Typical TCCS temperature conditions.
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CONCLUSIONS

Based upon the results obtained during subassembly pretests and 30 days of integrated, closed-

door subsystem testing, the following conclusions are drawn:

(1) The OGA is capable of producing oxygen at a four-crew person metabolic rate while operating

in a day/night power cycling mode and using feedwater from the ISS water processor.

(2) The CDRA is capable of operating in a day/night power cycling mode while meeting ISS carbon

dioxide removal specifications for a four-crew person metabolic rate.

(3) The MCA can be used in a feedback control loop for oxygen partial pressure control.

(4) The MCA water vapor signal is stable and is not affected by sample delivery system line length.

(5) The MCA is capable of responding rapidly to humidity changes in the cabin.

(6) The MCA response to carbon dioxide and oxygen are stable and track atmospheric trends well.

(7) Methane and other hydrocarbon oxidation in the TCCS high-temperature oxidizer contribute

significantly to the oxidizer operating temperature.

(8) No ozone or oxides of nitrogen are produced by the ARS subassemblies during normal

operations.
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RECOMMENDATIONS

Although the IART successfully addressed the general system-level and specific subassembly-

level operational and performance issues facing the ISS ARS design, some issues were raised by the

testing. Recommendations concerning these issues are the following:

(1) Operating the CDRA at a lower temperature and shorter one-half-cycle time contributes to

desiccant bed breakthrough. The CDRA operation on board the ISS should allow for the capa-

bility to operate at higher bed temperatures when necessary to periodically dry the desiccant

beds more thoroughly.

(2) Although the technical difficulties with the OGA prevented its use in the integrated test, its

abihty to operate using power cycling and feedwater quality conditions similar to those ex-

pected on board the ISS was demonstrated. It is recommended, however, that additional testing

be conducted to verify that the OGA oxygen production rate can be controlled using condi-

tioned signals from the MCA. The ability of the OGA to operate in this manner to successfully

control cabin oxygen partial pressure in an integrated test must be demonstrated.
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APPENDIX Am

CDRA PRETEST SUPPORTING DATA

Pretest Baseline lmContinuous Operations

(160-min half cycle, 204 °C regeneration temperature)
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FIGURE A-l.--Plot 1 : Carbon dioxide partial pressure 4BMS baseline 1 testing--

day/night mode, continuous day elapsed time from

2-11-96, 01:40:00.
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Pretest Baseline 2--Day/Night Operations

(160-min half cycle, 204 °C regeneration temperature)
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testing--day/night mode elapsed time from 3-2-96, 00:00:00.
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Fmty_ A-37.--Plot 4: 5A sorbent bed temperatures 4BMS baseline 3A testing--

day/night mode elapsed time from 3-2-96, 00:00:00.
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Pretest Baseline 3B--Day/Night Operations

(140-min half cycle, 121 °C regeneration temperature)
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FIGURE A-52.--Plot 5: Vacuum line pressures 4BMS baseline 3B testing--

day/night mode, elapsed time from 3-10-96, 00:00:00.
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APPENDIX B m

CMS TEMPERATURE AND PRESSURE DATA PLOTS

Test chamber temperature and pressure were maintained within the specified ranges during all

periods of uninterrupted operations between March 22 and April 12, 1996. A severe valley in the pres-

sure data was observed on April 8. This was caused by switching data acquisition files to accommodate

the time change to daylight savings time.
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APPENDIX C_

SUMMARY OF CMS ATMOSPHERIC SAMPLES

The following tables provide a summary of the test chamber atmospheric composition as

determined by several sampling and analysis techniques. Results for the major atmospheric constituents,

N2, 02, CO 2, and H20, are provided. Good agreement was obtained for measurements made by the
various methods.
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ND
NR

Not Detected

Not Reported

Test Oxygen(Percentageby Volume)

Day Grab MCA GC CMS

1

2

3

6

7

8

9

10

13

14

15

16

17

20

21

22

23

24

27

28

29

30

20.6

19,5

19.5

19.8

ND

20.4

20.5

20,1

19.5

20.5

20.4

19.7

20.6

19.7

20.0

19.9

19.5

21.0

20.3

20.4

20.8

20.2

20.2

19,7

20,3

20,1

20.7

20.5

20.9

20.3

20.3

20.5

20.8

20.2

20.4

20.4

20.5

20.2

20.6

20.8

20.7

20.4

20,3

20.6

21.4

21,7

21.7

NR

21.9

21.8

22,0

20.9

21.4

21.6

21.9

21.3

21.1

21.1

21.3

21.2

NR

20.4

21.4

21.0

21,1

21.2

Test

Day

1

2

3

6

7

8

9

10

13

14

15

16

17

20

21

22

23

24

27

28

29

30

Nitrogen (Percentage byVolume)

Grab MCA

87.2 77.9

78.6 79.1

75.7 78.1

76.3 77.4

ND 77.8

77.8 77.3

78.0 77.8

79.5 78.0

74.3 77.0

79.7 77.7

78.5 77.8

76.5 77.6

80.3 78.2

76.8 77.7

77.5 77.9

77.8 77.9

76.6 78.5

78.4 78.2

76.2 78,2

76.5 77.9

79.9 77.9

77.3 78.0

6C

82.1

80.8

80.8

NR

80.1

80.2

80,3

82.0

79.0

80.8

81.1

79.7

80.2

79.7

80.1

80.3

NR

77.7

79.8

79.3

80.2

80.4

20.0

19.5

20.2

20.3

20.6

20.7

20.7

20.7

20.9

20.9

21.1

20.6

20.6

20.7

21,0

20,7

20.9

20.8

20.6

20.8

20,8

20,8
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Teat CarbonDioxide (Percentage byVolume)

Day Grab MCA GC CMS IR Ext. IR

1

2

3

6

7

8

9

10

13

14

15

16

17

20

21

22

23

24

27

28

29

30

0.44

0.37

0.38

0.34

ND

0.35

0.34

0.36

0.31

0.38

0.34

0.34

0.37

0,34

0.35

0.39

0.35

0.33

0.33

0.33

0.32

0.36

0.39

0.34

0.34

0.33

0.35

0.29

0.33

0.33

0.35

0.37

0.33

0.33

0.32

0.33

0.34

0.37

0.32

0.33

0.36

0.33

0.33

0.40

NR

0.41

0.40

NR

0.37

0,35

0.37

0.44

0.36

0.38

0.36

0.38

0.36

0.36

0.36

0.40

NR

0.34

0.38

0.37

0.37

0.41

0,47

0.42

0.42

0.44

0.42

0.38

0.38

0.40

0.39

0.43

0.37

0.40

0.41

0.39

0.40

0.44

0.40

0.38

0.41

0.4

0.41

0.41

0.42

0.37

0.36

0.36

0.38

0,35

0.36

0.37

0.35

NR

NR

0.35

0.38

0.38

0.34

0.42

0.35

0.36

NR

0.36

0.36

0.35

Test Water Vapor (Percentage byVolume)

Day MCA GC

1

2

3

6

7

8

9

10

13

14

15

16

17

20

21

22

23

24

27

28

29

30

1.09

120

1.20

1.20

1.20

1.30

1.30

1.10

1.00

1.10

1,10

1.00

1.30

1.30

1.20

1.30

1.30

1.30

1.30

1,30

1.30

1.40

1.20

1.30

1.30

NR

1.40

1.30

1.30

1.40

1.30

1.40

1.40

1.40

1.40

1.20

1.20

1.30

NR

0.24

1.30

1.40

1.30

1.40

ND
NR

Not Detected

Not Reported

103





APPENDIX D--

CMS ATMOSPHERIC GRAB SAMPLE RESULTS

Given below is a summary of CMS atmospheric grab samples collected during the IART.

According to these samples, the CMS averaged 78 percent nitrogen, 21.1 percent oxygen, and

0.35 percent carbon dioxide.

Test Analyte (Percentage by Volume)

Day Carbon Carbon
Nitrogen Oxygen Oloxlde Hydrogen Methane Monoxide

1

2

3

6

7

8

9

10

13

14

15

16

17

20

21

22

23

24

27

28

29

30

87.2

78.6

75.7

76.3

ND

77.8

78.0

79.5

74.3

79.2

78.5

76.5

80.3

76.8

77.5

77.8

76.6

78.4

76.2

76.5

79.9

77.3

20.6 0.44

19.5 0.37

19.5 0.38

19.8 0.34

ND ND

20.4 0.35

20.5 0.34

20.0 0.36

19.5 0.31

20.5 0.38

20.4 0.34

19.7 0.34

20.6 0.37

19.7 0.34

20.0 0.35

19.9 0.39

19.5 0.35

21.0 0.33

20.3 0.33

20.4 0.33

20.8 0.32

20.2 0.36

NR

NR

NR

NR

ND

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

NR

<0.0003

<0.0003

<0.0003

<0.0003

ND

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0003

<0.0005

<0.0005

<0.0005

<0.0005

ND

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

ND Not Detected

NR Not Reported
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APPENDIX E---

CMS ATMOSPHERIC GRAB SAMPLE RESULTS

FOR OZONE AND NITROGEN DIOXIDE

These results demonstrate that the TCCS does not produce nitrogen oxides from the nitrogen in

the air during normal operations. Also, ozone is not produced by the operation of electric motors and

electronic equipment.

Test Day Sample Location Analyte Concentration(ppm)

16

17

17

28

28

30

30

30

CMS

CMS

HighBay

CMS

HighBay

CMS

High Bay

Outdoors

NitrogenDioxide

Ozone

Ozone

Ozone

Ozone

Ozone

Ozone

Ozone

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

0.05

FmtmE E-1.--CMS atmospheric sample results for nitrogen dioxide and ozone.
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APPENDIX Fm

CDRA INTEGRATED TESTING SUPPORTING DATA

Performance of the CDRA is documented by the following data plots obtained from early in the

integrated test (3-14-96), mid-test (3-27-96), and late in the test (4-11-96).

1. Early Test Phase

lO

A

_" 6E
E

E
s

=
4

gl.

0 MG60

-- 13- - MG61

- -_- -- FG61

Time (hours)

FIGURE F-l.--Plot 1: Carbon dioxide partial pressure 4BMS integrated air

revitalization testing elapsed time from 3-14-96, 00:00:00.
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2. Mid-Test Phase
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3. Late Test Phase
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APPENDIX G---

CMS OXYGEN PARTIAL PRESSURE RESPONSE

The following data plots show the test chamber oxygen partial pressure and the effects of various

perturbations on it. Oxygen injection had the major effect, while the removal rate to simulate metabolic

activity had a secondary effect.

Significant breaks in the data were caused by lost data when the host control computer shut down

on March 29, 1996. Approximately 10 min of data were lost during this time; however, all ARS subas-

semblies continued to operate normally. This shutdown caused the metabolic simulation setpoints to be

lost and oxygen was not injected as needed from 13:50 on March 29 to 14:15 on March 30. During this

time, nitrogen was injected to maintain the chamber total pressure. This problem was corrected on

March 29 by resetting the metabolic simulation setpoints.

A second loss of data was experienced on April 4, 1996. Again, the ARS subassemblies contin-

ued operating normally. The host computer was restarted, the metablic simulation setpoints reset, and the
test continued without incident.

The last loss of data occurred on April 8, 1996, when a new data acquisition file was started to

transition the control and data acquisition computers to daylight savings time.
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Integrated Atmosphere Revitalization Test
aopp (MCA Oxygen Partial Pressure) and NF40 (MSA Oxygen Flowrate)
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Integrated Atmosphere Revitalization Test
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APPENDIX H_

CMS RESPONSE TO NITROGEN INJECTION

The following data plots show the test chamber nitrogen partial pressure and the effect of nitro-

gen injection on it. Makeup of nitrogen via injection had the only measurable effect on the chamber's

nitrogen partial pressure.
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APPENDIX I--

CMS CARBON DIOXIDE PARTIAL PRESSURE RESPONSE

The following data plots show the test chamber carbon dioxide partial pressure during the

uninterrupted portions of the test. Periods of lost data were observed on March 29, April 4, and April 8,

1996, as a result of a host computer shutdown, a second host computer shutdown, and data acquisition

system transition to daylight savings time, respectively.

The primary factor that influenced the carbon dioxide partial pressure, other than CDRA

operation, was the metabolic injection. This can be seen by the carbon dioxide partial pressure response

relative to the metabolic simulation injection rate.
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APPENDIX J--

CMS DEWPOINT RESPONSE

The following data plots show the test chamber response for water vapor during the uninter-

rupted periods of the test. These data are shown as dewpoint and are compared to the metabolic simula-

tion water injection flowrate. As can be seen, the chamber dewpoint fluctuated as a directly with the

injection rate. Water injection was the strongest influence on the chamber atmopsheric water content.

The data are consistent throughout the test, with one exception. On March 28, 1996, the dewpoint

increases by approximately 2.5 °C. This increase was the result of recalibrating the MCA after its verifi-

cation cycle indicated that the water reading was running very close to its lower boundary of acceptabil-

ity. This was the only calibration made during the entire test. Gaps in data are shown on March 29, April

4, and April 8, 1996. The gaps on March 29 and April 4 were caused by host computer shutdowns, while

the gap on April 8 resulted from transitioning the data acquisition computer clock to daylight savings

time. In all cases, the ARS subassemblies continued to operate normally.

During the test, samples were collected by the MCA using various sample line lengths. Samples

were collected initially from the 30.5 m (100 ft) sample line length. A transition occurred on March 29

at 14:42 to the 15.2 m (50 ft) sample line length. When this occurred, the dewpoint sensor reading at

15.2 m quickly rose to the level previously reported by the sensor located at the 30.5 m sample port.

This further demonstrated the effects of pressure drop in the sample line on dewpoint readings. Follow-

ing sampling at 15.2 m, the sample line length was changed to 22.9 m (75 ft) at 13:51 on April 3. On

April 4 at 16:16, the host computer shutdown caused the sample line length to be reset at 15.2 m. This

was discovered on April 8 at 08:00 when the sample line length was changed to 7.6 m (25 ft). Since only

about 24 hr of sampling had occurred at the 22.9-m length, a second transition to this length was made at

12:00 on April 10, 1996. Sampling continued using this sample line length until 08:03 on April 12, 1996,

when the integrated test ended.

As can be seen by the data plots, no changes in the MCA water vapor response resulted from

changes in the sample line length. This result strongly indicates that the MCA water vapor readings are

not sensitive to sample line length, and adsorption of water vapor on the sample line internal walls does

not occur at a level significant enough to have a noticeable effect on the readings.
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APPENDIX K--

MCA RESPONSE TO HUMIDITY CYCLING

The following data plots show the MCA's response to humidity swings in the test chamber

atmosphere. The relative humidity in the chamber was varied between approximately 47 percent and

80 percent by temporarily disabling the condensing heat exchanger coolant flowrate.

During this testing, the samples were collected for analysis by the MCA at four different sample

line lengths. At least two complete cycles between the upper and lower relative humidity limits were

conducted while collecting samples at the four sample line lengths. Samples were collected using the

30.5 m (100 ft) sample line length initially and then transitioned to shorter lengths. Two humidity cycles

were completed and the sample line length changed to 15.2 m (50 ft) on April 16, 1996, at 11:00. Fol-

lowing two additional humidity cycles, the sample line length was changed to 22.9 m (75 ft) at 15:35 on

April 16. On April 17 at 12:07, the sample line length was changed to 7.6 m (25 ft) for the final two

cycles. These transitions can be seen in the data plots.

As an example, when the sample line length changed from 30.5 m to 15.2 m, the dewpoint

reading at 15.2 m (AD62) rose to the level previously seen by the sensor located at 30.5 m (AD60).

While the reading at 30.5 m continued to track the chamber humidity level, its response was sluggish

because it did not have active flow. Similar responses were observed as the sample line length changed.
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APPENDIX L---

TCCS ENERGY BALANCE CALCULATIONS

Energy Balance With Methane Injection

Hypothesis:

Temperature rise in the high-temperature oxidizer can be influenced by the presence of methane.

The heat of reaction liberated by oxidizing methane may be sufficient to cause a noticeable temperature
rise in the reactor.

Assumptions:

• Temperature rise in the reactor is caused by methane oxidation only

• Constant heater power input

• Neglect temperature changes since flowrates are reported at standard conditions

• Air composition is 79 percent by volume nitrogen and 21 percent by volume oxygen

• Nitrogen is inert and its molar flowrate is unchanged through the reactor.

Conditions:

• 3.38 mole/min or 2.72 standard cubic feet per minute (scfm) airflow at approximately 60 °C

(140 °F) at the reactor assembly outlet

• 0.0105 mole/min or 14 standard cubic inches per minute (scim) of 3 percent by volume

methane in air 22.2 °C (72 °F) is injected into the air stream before entering the reactor

assembly

• Total combined flowrate entering the catalytic reactor assembly is 3.37 mole/min (difference

between outlet molar flowrate and bleed flowrate)

• Inlet temperature to the catalyst bed is 360 °C (680 °F).
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Species Feed Produced Reacted Exhausted

NitroQen 2.63 0 0 2.63
lO0-Percent Oxidation

Methane

Oxygen
Carbon Dioxide

Water

0.000314
0.740256

0.001339
0

0.0003138
0.0006276

0.000314 0

0.000628 0.7396280
0 0.0016530
0 0.0006276

75-Percent Oxidation

Methane 0.000314 0

Oxygen 0.740256 0
CarbonDioxide 0.001339 0.000235

Water 0 0.000471
50-Percent Oxidation

Methane

Oxygen
CarbonDioxide

0.000314

0.740256

0
0

0.0001570.001339
Water 0 0.000314

25-Percent Oxidation
Methane 0.000314 0

0.740256 0Oxygen
CarbonDioxide 0.001339

Water 0

Methane 0.000314

Oxygen 0.740256
CarbonDioxide 0.001339

Water 0

0.000078

0.000157
Zero-Percent Oxidation

0.000235 0.000078

0.000471 0.739785
0 0.001574

0 0.000471

0.000157 0.0001570
0.000314 0.7399420

0 0.0015745

0 0.0003140

0.000078 0.0002350
0.000157 0.7400990

0 0.0014176

0 0.0001570

0 0.000314
0 0.740256
0 0.001339

FIGURE L-l.--Molar flowrates as a function of methane oxidation efficiency

(mole/rain).

Determine reactor energy losses:

From week 85 data of the TCCS life test (ref. NASA TM-108488)

• Catalyst bed inlet temperature of 654.07 K (715.85 °F)

• Catalyst bed midpoint temperature of 671.21 K (748.51 °F)

• Catalyst bed outlet temperature of 672.80 K (751.37 °F)

• Measured methane oxidation efficiency of 98.5 percent.

Molar flowrates are shown in figure L--2.

Species

Nitrogen
Methane

Oxygen
Carbon Dioxide

Water

Feed
2.63

0.000314

0.740256

0.001339
0.033124

Produced

0.000309

0.000619

Reacted

0.000309

0.000628

Exhausted

2.63

0.000004
0.739637

0.001648

0.033742

FmuREL-2.--Molarflowrates (mole/min).
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Using the following definitions of enthalpy (J/mole-K), the enthalpies:

Nitrogen
Methane

Oxygen
Carbon dioxide

Water

8.27 + 0.00100T

5.34+0.0114T

8.27 + 0.000258T

10.34+0.00274T

8.22 + 0.00015T

Enthalpy at the catalyst bed inlet

Enthalpy at the catalyst bed outlet

Energy input from heater

Heat of reaction (moles methane x-802,319 J/min)

36,934.21 J/min

39,030.25 J/min

9411.60 J/min

-248.22 J/min

Hinlet- AHrxn + qin = Houtlet + qlost

Solving for qlost results in a calculated energy loss of 7,563.78 J/min if the reactor outlet

temperature is the basis. An energy loss of 7,732.49 J/min is calculated if the reactor midpoint
temperature is used as the basis.

Applying the equations for enthalpy for each species to the different methane oxidation cases and

calculating the heat of reaction for methane for each case result tin the following equation for the energy
balance around the catalytic reactor bed:

100 percent methane oxidation

75 percent methane oxidation

50 percent methane oxidation

25 percent methane oxidation

0 percent methane oxidation

0.0059240T 2 + 98.3862T- 68878.97 = 0

0.0059255T 2 + 98.3846T- 68815.68 = 0

0.0059269T 2 + 98.3828T-68752.38 = 0

0.0059284T 2 + 98.3817T- 68689.10 = 0

0.0059299T 2 + 98.3798T-68625.81 = 0

Solving the energy balance equations for T provides a prediction for the outlet catalytic bed temperature
shown in figure L-3.

Efficiency
100

Kelvin Celsius Fahrenheit
672.83 399.68 751.42

75 672.24 399.09 750.36
50 671.65 398.50 749.30
25 671.05 397,90 748.22
0 670,46 397.31 747.16

FIGURE L-3.--Prediction for the outlet catalytic bed temperatures.
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Likewise, using the energy losses calculated by setting the catalyst bed midpoint temperature

as the basis results in the following energy balance equations and predicted catalyst bed midpoint

temperatures:

100 percent methane oxidation

75 percent methane oxidation

50 percent methane oxidation

25 percent methane oxidation

0 percent methane oxidation

0.0059240T 2 + 98.3862T-68710.26 = 0

0.0059255T 2 + 98.3846T - 68646.97 = 0

0.0059269T 2 + 98.3828T- 68583.67 = 0

0.0059284T 2 + 98.3817T-68520.39 =0

0.0059299T 2 + 98.3798T- 68457.10 = 0

Solving the energy balance equations for T provides a prediction for the outlet catalytic bed

temperature shown in figure L-4. Figure L-5 gives the TCCS high-temperature catalytic oxidizer

temperatures.

Efficiency
100

Kelvin

671.24

Celsius

398.09

Fahrenheit

748.56
747.5075 670.65 397.50

50 670.06 396.91 746.44

25 669.47 396.32 745.38
668.88 395.73 744.31

FICLr_ L--4.--Prediction for the outlet catalytic bed temperatures.

674

673

A
=1¢

=..
.P.,
t=
ID
a.

l=
o

In

672

671

670

869

668

_Catalyst BedOutlet I

0 0.25 0.5 0.75

Methane Oxidation (%)

Fmtr_ L-5.--TCCS high-temperature catalytic oxidizer temperatures.
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Energy Balance Without Methane Injection

TCCS Catalytic Oxidizer Energy Balance

Using the conditions experienced during the IART, a cooler condition was experienced because

the heater energy input was held constant. This resulted in an overall downward shift in reactor

temperature profile. This shift also resulted in changes in the overall energy losses. The energy balance

calculations conducted earlier were adjusted for this case.

• Catalytic bed inlet temperature

• Catalytic bed outlet temperature

• Inlet enthalpy

• Outlet enthalpy
• Heat ofreaction

• Heater energy input

648.15 K (707 °F)

667.59 K (742 OF)

36,407.27 J/min

38,472.72 J/min

0 (no methane injected)

9,411.60 J/min

Applying the energy balance lead to a predicted energy loss of 7,346.15 J/min.

Using the individual species definitions for enthalpy, the overall energy balance is found to be:

0.0059223T 2 + 98.37278T- 68313.74 = 0

Solving for temperature, T, results in a temperature of 667.61 K. This result checks with the

observed catalytic bed outlet temperature. As a result, the correlation of the temperature at the catalytic

bed outlet to methane oxidation efficiency must be adjusted. The resulting correlation is shown in

figure L-6. 674

673

A

E 672
.9=
1*
m
El.

t= 671
m
i.,-

m

o 670

=ID

669
m_
m

668

667 I i i

0.25 0.5 0.75

MethaneOxidationEfficiency

FIGURE L-6.--Effects of methane oxidation efficiency on catalyst bed outlet temperature.
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