
NASA Technical Memorandum 113158

ICOMP-97-12

Parallelizing Navier-Stokes Computations on a
Variety of Architectural Platforms

D.N. Jayasimha

Ohio State University

Columbus, Ohio

M.E. Hayder

Institute for Computational Mechanics in Propulsion

Cleveland, Ohio

S.K. Pillay

Lewis Research Center

Cleveland, Ohio

Prepared for

Supercomputing '95

cosponsored by ACM, SIGARCH, and the IEEE Computer Society

San Diego, California, December 3-8, 1995

National Aeronautics and

Space Administration





Parallelizing Navier-Stokes Computations on

a Variety of Architectural Platforms

D. N. Jayasimha *

Dept. of Computer and Information Science

The Ohio State University, Columbus, OH 43210

jayasim@cis, ohio-state, edu

M. E. Hayder

ICOMP, Ohio Aerospace Institute

NASA Lewis Research Center

Cleveland, OH 44142

fshyder@icomp, lerc. nasa. gov

S. K. Pillay

ScientificEngg. Computing Solutions Office

NASA Lewis Research Center

Cleveland, OH 44142

spillay@lerc, nasa. gov

*Part of this work was done while this author was a Visiting Senior Research Associate
at NASA Lewis Research Center during 1993-94.



Abstract

We study the computational, communication, and scalability characteristics

of a Computational Fluid Dynamics application, which solves the time ac-

curate flow field of a jet using the compressible Navier-Stokes equations, on

a variety of parallel architectural platforms. The platforms chosen for this

study are a cluster of workstations (the LACE experimental testbed at NASA

Lewis), a shared memory multiprocessor (the Cray YMP), distributed mem-
ory multiprocessors with different topologies-- the IBM SP and the Cray

T3D. We investigate the impact of various networks, connecting the cluster

of workstations, on the performance of the application and the overheads

induced by popular message passing libraries used for parallelization. The

work also highlights the importance of matching the memory bandwidth to

the processor speed for good single processor performance. By studying the

performance of an application on a variety of architectures, we are able to

point out the strengths and weaknesses of each of the example computing

platforms.



1 Introduction

Numerical simulations play an important role in the investigation of physical

processes associated with many important problems. The suppression of jet

exhaust noise is one such problem which will have a great impact on the

success of the High Speed Civil Transport plane. The radiated sound em-

anating from the jet can be computed by solving the full (time-dependent)

compressible Navier-Stokes equations. This computation can, however, be

very expensive and time consuming. The difficulty can be partially overcome
by limiting the solution domain to the near field where the jet is nonlinear

and then using acoustic analogy (see [1]) to relate the far-field noise to the
near-field sources. This technique requires obtaining the time-dependent flow

field. In this study we concentrate on such flow fields near the nozzle exit.

We solve the Navier Stokes equations to compute time accurate flow fields of

a supersonic axisymmetric jet. Our code is computationally very intensive

and requires many hours of CPU time on the Cray ¥-MP. With the advent of

massively parallel processors and networks of workstations (NOWs), scien-

tists now have the opportunity to parallelize computationally intensive codes

and reduce turnaround time at a fraction of the cost of traditional supercom-

puters. Recognizing this, a number of researchers [2, 3, 4, 5] have studied
CFD (Computational Fluid Dynamics) applications on specific parallel ar-

chitectures. Our goal in this study is to implement the numerical model

derived from the CFD application described above on a variety of parallel

architectural platforms.

The platforms chosen for this study, all from the NASA Lewis Research

Center, represent a spectrum of parallel architectures that have been pro-

posed to solve computationally intensive problems: a shared memory vector

multiprocessor (the Cray YMP), two distributed memory multiprocessors
with different topologies-- the IBM SP and the Cray T3D, and a cluster

of workstations connected via many networks (the Lewis Advanced Cluster
Environment (LACE) [6] experimental testbed). One important architec-

ture that has not been considered in our study is cache-coherent, massively

parallel processors typified by the DASH architecture [7].

Architectures such as LACE (an example of NOW) are becoming increasingly
popular because they show promise as a low cost alternative to expensive

supercomputers and massively parallel processors. We have therefore laid

more emphasis on this aspect of the study in this paper. An earlier paper

by the authors [8] presented the initial results of a study on LACE and the

Y-MP. This paper differs from the earlier one in two important aspects: i)
It is comprehensive covering a gamut of architectures, ii) It focuses on the

relationship of the computation and communication characteristics of the

application, and hence its performance, to the architectural aspects of the

networks and the processing nodes.

In the next two sections we briefly discuss the governing equations and the
numerical model of the application. Section 4 has a discussion of the par-

allel architectures used in the study and the tools used for parallelizing the

application. The parallelization of the application is the subject of Section

5. Section 6 describes the experimental methodology. Section 7 presents a



detaileddiscussionof the results. The paperconcludeswith a brief discussion
of the lessonslearnedfrom this study.

2 Governing Equations

We solve the Navier-Stokes and the Euler equations to compute flow fields

of an axisymmetric jet. The Navier-Stokes equations for such flows can be
written, in polar coordinates as

LQ = S

OQ OF OG
o--i + o--i= s

where

Q = r pu

F_-r
pu 2 - rxx q-p

puv - Txr

pull - UTxx -- Vrxr -- _Tx

V_r

pv

p_V -- Txr

Pv 2 - rrr + p

pvH - Urxr - vrr_ - aTr

I°lS= 0
p - TOO

0

F and G are the fluxes in the x and r directions respectively, and S is the

source term that arises in the cylindrical polar coordinates, rij are the shear
stresses and _Tj are the heat fluxes. In the above equations p, p, u, v, T,

e and H denote the pressure, density, axial and radial velocity components,

temperature, total energy and enthalpy. For a perfect gas,

p 1
E= (V 1) +_p(u +v 2)

H= E+p

P

where 7 is the ratio of specific heats. One obtains the Euler equations from

the above equations, by setting _ and all T_j equal to zero.



3 Numerical Model

We use the fourth order MacCormack scheme, due to Gottlieb and Turkel [9],
to solve the Navier-Stokes and the Euler equations. This scheme uses predic-
tor and corrector steps to compute time accurate solutions. It uses one sided

differences (forward or backward) to compute spatial derivatives at each pre-

dictor or corrector step. For the present computations, the operator L in
the equation LQ = S or equivalently Qt + Fz + G_ = S is split into two

one-dimensional operators and the scheme is applied to these split operators.

We define L1 as a one dimensional operator with a forward difference in the

predictor and a backward difference in the corrector. Its symmetric variant

L2 uses a backward difference in the predictor and a forward difference in

the corrector. The predictor step in L1Q for the one dimension model/split
equation Qt + Fz = S is written as

Q, = Q_ + 6_x{7(F_l - _) - (F_ - F__I)} + AtSi

and the corrector step as

Q_+I 1[_ ,.,= i+Q_ - zxt {7(P,- _,__)- (g,__- -P,-2)}+ Ats,]
6Ax

Similarly in L2 the predictor step is

At (7(F_- G-l) - (F_-I- F/"-2)} + AtSi
6Ax

and the corrector step is

Q,_+I= ½[¢),+Q7+ 6_---_t{7(P,- P_+,)- (r,+l- P,+_)}+ Ats,]

This scheme becomes fourth-order accurate in the spatial derivatives when

alternated with symmetric variants [9]. For our computations, the one di-
mensional sweeps are arranged as

Qn+l = LlxL1,.Q"

Qn+2 = L2_l_axQ,_+l

This scheme is used for the interior points. In order to advance the scheme

near boundaries the fluxes are extrapolated outside the domain to artificial

points using a cubic extrapolation to compute the solution on the boundary.

We use the characteristic boundary condition at the outflow. In our imple-

mentation, we solve the following set of equations to get the solution at the
new time for all boundary points.

Pt -- pcut= 0

Pt + pout = R2
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pt - c2 pt = R3

Ut -" R4

where Ri is determined by which variables are specified and which are not.

Whenever the combination is not specified, R_ is just those spatial deriva-

tives that come from the Navier-Stokes equations. Thus/?4 contains viscous

contributions even though the basic format is based on inviscid characteris-

tic theory. In implementing these differential equations we convert them to

conservation variables p, m = pu, n = pv, and E. Assuming an ideal gas,

v, = (7- 1)(Et+
u 2 + v 2

Pt - umt - vnd
2

mt upt
U t _- _ _

P P

nt v pt
-vt--

P P

For subsonic outflow, we calculate R2, R3,/bi from the Navier-Stokes equa-
tions. For supersonic flows, all the/?4 at the outflow boundary can be calcu-

lated from the Navier-Stokes equations or by extrapolation of all the char-

acteristic variables from the interior. This framework of outflow boundary

condition implementation is discussed by Hayder and Turkel [10]. Further
discussions of our numerical model including other boundary treatments are

given in Hayder et al. [11] and Mankbadi et al. [12].

In this study, we consider a jet with the mean inflow profile

_]r= u_¢+ (uc- uo_)gr

:_,= To+ (Too- T,)g,+ _@1M_(1- g,)g,

1g, = [1+ tanh(-qy-) ]

where 0 is the momentum thickness. The subscripts c and c_ refer to the

centerline and free stream values respectively. At inflow, we assume the

radial velocity is zero and the static pressure is constant. The size of our
computational domain is 50 radii in the axial direction and 5 radii in the

radial direction. We excite the inflow profile at location r and time t as

U(r,t) = U(r) + cRe(Lrei_s't)

P(r,t) = P(r) + _Re(Pe i'_s_t)

p(r,t) = Z(r)+ ,Re(_e'_s't)

V(r, t) = eRe(fZe i's't)

U, V, /_ and P are the eigenfunctions of the linearized equations with the

same mean flow profile, e is the excitation level and St is the Strouhal number.
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Figure 1: Axial momentum in an excited axisymmetric jet

We consider a case with _ = !4, TOOTc= ½' momentum thicknessfl --

and Strouhal number,St = ! The jet center Mach number is 1.5 while
8"

the Reynolds number based on the jet diameter is 1.2 million. Our present
mean flow and eigen function profiles are same as those in Scott et al. [16].

In Figure 1 we show a contour plot of axial momentum from the solution of
the Navier Stokes equations. A grid of size 250x100 was used in this compu-
tation. This result was obtained after about 16,000 time steps. For all other

results in this paper, we have used the same grid, but ran the experiments

for 5000 time steps to keep the computing requirements reasonable.

4 Parallel Computing Platforms

This section contains a brief discussion of the various platforms used in the

study together with the parallelization tools used.

4.1 NOW

The LACE testbed is continually upgraded. The present configuration has

32 RS6000 processor nodes (nodes 1-32) and an RS6000/Model 990 (node 0)
which is the file server. These nodes or subsets of them are connected through

various networks with different speed and connection characteristics. All the

nodes are connected through two Ethernet networks (10 Mbits/sec (Mbps)),

one of them is for general use and the other is dedicated to "parallel" use.



Nodes9--24are interconnectedthrough a FDDI interface with a peakband-
width of 100Mbps. It is convenient,for our purposes,to considerthe nodes
to be partitioned into a lowerhalf (nodes1-16) andan upperhalf (nodes17-
32). The lowerhalf hasRS6000/Model590CPUs (the CPU hasa 66.5MHz
clock,256KBdata- and32KB instruction caches)with the followingnetworks
interconnecting the nodes: an ATM network capableof a peak bandwidth
of 155Mbps and IBM's ALLNODE switch, referredto asALLNODE-F (for
fast), capableof a peak throughput of 64Mbps per link. The upper half has
the slowerRS6000/Model560CPUs (the CPU has a 50 MHz clock, 64KB
data- and 8KB instruction caches)and is connectedthrough IBM's ALLN-
ODE prototype switch, referredto asALLNODE-S (for slow), capableof a
peak throughput of 32 Mbpsper link. The ALLNODE switch is a variant
of Omegainterconnectionnetwork and is capableof providing multiple con-
tentionlesspaths betweenthe nodesof the cluster (a maximum of 8 paths
canbe configuredbetweensourceand destination processors).The present
setup doesnot permit the useof more than 16processorsusing the faster
networks.The nodeshavevarying main memorycapacity (64MB, 128MB,
256 MB, and 512 MB). We have used the popular PVM (Parallel Virtual
Machine) messagepassinglibrary (version3.2.2) to implement our parallel
programs. We will refer to the LACE cluster with RS6000/Model560pro-
cessorsasthe LACE/560 and thosewith the RS6000/Model590processors
asthe LACE/590.

4.2 Shared Memory Architecture

We used the Cray Y-MP/8, which has eight vector processors, for this study.

The Cray Y-MP/8 has a peak rating of approximately 2.7 GigaFLOPS. It

offers a single address space and the communication between processes ex-

ecuting on different processors is through shared variables. We parallelized

the application by using explicit DOALL directives in addition to exploiting
the features of the parallelizing compiler on the Cray.

4.3 Distributed Memory Architecture

We parallelized the application on two distributed memory multiprocessors-

the IBM SP1 and the Cray T3D. The IBM SP1 has 16 processing nodes (the
CPU at each node is a RS6K/370- the CPU has a 50 MHz clock, 32KB data

and instruction caches). The original system has been software upgraded

to make it function like a SP2. We will refer to this system as the IBM
SP in the paper. The nodes of the SP are interconnected through a variant

of the Omega network [14]. This network, similar in topology to ALLN-

ODE, permits multiple contentionless paths between nodes. We parallelized

the application using MPL (Message Passing Library), IBM's native mes-

sage passing library and PVMe, a customized version of PVM (version 3.2)
developed by IBM for the SP.

The Cray T3D is also a distributed memory multiprocessor with the topology
of a three dimensional torus [15]. The machine used in our study has 64
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nodes (8 x 4 x 2) (eachnode has a CPU with a clock speedof 150 MHz
and a direct mappedcacheof 8KB) of which only 16wereavailablein single
user mode. Though the T3D supports multiple programmingmodels, we
programmedthe machineusing the messagepassingparadigm resorting to
Cray's customizedversionof PVM (version3.2).

5 Parallelization

The factors which affect parallel performance are listed below.

1. Single processor performance: we will explain various optimizations which
resulted in 80% improvement in performance.

2. Communication cost: this cost depends on both the number of communi-

cation startups and the volume of data communicated. Usually, the startup

cost is 2-3 orders of magnitude higher than the per word transfer cost. One

method to reduce the effect of startup cost is to group data to be commu-

nicated into long vectors.

3. Overlapped communication and computation: it is desirable that com:

munication be overlapped with computation as far as possible. Increasing

the amount of overlapping, however, usually leads to finer granularity of

communication which then leads to a higher number of startups.

4. Bursty communication: such communication could overwhelm the net-

work's throughput capacity temporarily leading to increased communication

cost and process waiting time. Some amount of burstiness is inevitable since

parallel programs are usually written in the SPMD (single program multiple

data) style. There is also usually an inverse relationship between bursty data
and the number of communication startups.

From the above discussion it is clear that there is a subtle relationship among

communication startup cost, overlapping communication with computation,

and bursty communication. After some experimentation, we chose to decom-
pose the domain by blocks along the axial direction only.

For the solution of Navier-Stokes equations, hereafter referred to as Navier-

Stokes, each internal subdomain exchanges its two flux values, velocity, and

temperature along the boundary with its appropriate (left or right) neighbor.
To reduce the number of communication startups, we group communication-

first, all the velocity and temperature values along a boundary are calculated

and then packaged into a single send. We use a similar scheme for the flux
values that need to be communicated.

The computational and communication requirements of the application are

shown in Table 1. It is seen that the solution of Euler equations, hereafter

referred to as Euler, has roughly 50% of the computation and roughly 75% of
the communication requirements of Navier-Stokes. Note that the commu-

nication requirements are shown on a per processor basis. To give some idea

of the effects of communication, consider Navier-Stokes to be executing on
a network of 10 workstations connected via Ethernet. Assume a reasonable

throughput of 20 MFLOPS per processor and the maximum throughput of

7



Table 1: Application Characteristics

Appln Total Comp.
(in FP Ops (x 106))

Comm./Processor
Start-ups Volume (MB)

N-S 145,000 80,000 125(1000Mb)
Euler 77,000 60,000 95 (760Mb)

Table 2: Computation-CommunicationRatios

No. of Procs.

1
2 580
4 290
8 145

16

FPs/Byte

Nav-Stokes Euler

405

203

101

73 51

FPs/Start-up
Nav-Stokes Euler

oo oo

906K 642K

453K 321K

227K 161K

l13K 80K

10 Mbps for Ethernet. The computation time will then be approximately 725

seconds (145,000/(10 x 20)) while a lower bound on the communication

time, ignoring the effect of startups, is 1000 seconds (1000 x 10/10)! Table

2 shows the ratio of computation to communication for the application in

units of floating point operations/byte transferred per processor and floating

point operations/startup per processor.

The parallelization on the Cray Y-MP was done differently (it was much

easier also) since it is a shared memory architecture: we did some hand opti-

mization to convert some loops to parallel loops, used the DOALL directive,
and partitioned the domain along the orthogonal direction of the sweep to

keep the vector lengths large and to avoid non-stride access to most of the
variables.

6 Experimental Methodology

The performance indicator is the total execution time for Navier-Stokes

and Euler. All experiments were conducted in single user mode. In almost

all the experiments, Navier-Stokes and Euler show similar trends; hence,

unless otherwise mentioned, quantitative comments refer to Navier-Stokes.

Experiments using a single processor were done on an IBM RS6K (Model

560) workstation of LACE. The performance of the original code for both
applications is shown in Figure 2.

We found that most parts of the application were limited by the poor perfor-

mance of the memory hierarchy involving the cache and the main memory.

8
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Improved cache performance was the key and this was achieved by access-

ing arrays in stride-1 fashion wherever possible (using the loop interchange
optimization). The modified program, called Version 3 (the optimizations

were performed in a different order than presented in the paper), resulted

in this version running faster by approximately 50%, compared to Version

2. We experimented with a number of other modifications, the following of

which yielded some improvement: better register usage by collapsing multiple
COMMON blocks into a single one (Version 5), strength reduction (replace

exponentiations by multiplications wherever feasible-Version 2), replace di-

vision by multiplication wherever feasible since the former are relatively ex-

pensive (a reduction from 5.5 × 109 divisions to 2.0 × 109 was achieved- Version

4). All these optimizations yielded an overall improvement of roughly 80%

(from 9.3 MFLOPS to 16.0 MFLOPS) as illustrated in Figure 2. (The op-

timizations were incorporated in sequence so that Version 5 contains all the

above mentioned optimizations).

We parallelized Version 5 on different computing platforms in accordance

with the ideas presented in the last section. On each platform, we measured
the execution time as a function of the number of processors (up to 8 with

Cray Y-MP, up to 16 with LACE, IBM SP, and Cray T3D). One important

goal of the study has been to examine the scalability of NOW. Toward this
end, we have studied the performance of LACE with four networks of differing

characteristics using "off-the-shelf" PVM as the message passing library.

With the IBM SP, we have studied the impact of parallelizing the application

with two message passing libraries- IBM's native MPL and a customized
version of PVM called PVMe.

In all experiments, wherever feasible, we have separated the execution time

into two additive components: processor busy time and non-overlapped

communication time. The processor busy time is itself composed of the
actual computation time and the software overheads associated with sending

and receiving messages. An accurate separation of these components is not

possible, however, unless we have hardware performance monitoring tools.

The non-overlapped communication time could also include the idle time of

a processor waiting for a message.

Version 5 of the application does not make any special attempts to overlap
communication with computation. Version 6 does overlapping by comput-

ing the stress and flux components of the interior part of each subdomain

while the processor is waiting for the velocity and temperature vectors from

its neighbors. As mentioned earlier, the two "flux columns" nearest each

boundary are combined into a single send. We have experimented with send-

ing the flux columns one at a time to avoid bursty communication. This
variant is called Version 7.

We found that the execution time improvement with Versions 6 and 7 were

either minimal or even worse in many experiments. Hence all our experiments

were conducted with Version 5. We do mention, however, the impacts of these
versions on different networks of LACE.

The next section presents a detailed discussion of the results of our experi-
ments.
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7 Results

The execution times of Navier-Stokes and Euler have been plotted as a

function of the number of processors for each computing platform, using a

log-log scale to facilitate meaningful presentation.

7.1 Performance of LACE

10 4

10_

E

t-
O

X

U.I

10 2

101

ALL.NODE-F
[3- - -E ALLNODE-S
z2........¢xLACF_F'_0 Ethemet

10

Number of Processors

Figure 3: Navier-Stokes execution time on LACE

Figures 3 and 4 show the performance of Navier-Stokes and Euler re-

spectively on different networks of LACE- ALLNODE-F, ALLNODE-S, and

the upper-half Ethernet. The performance of the ATM and the FDDI net-

works are almost identical with ALLNODE-F and ALLNODE-S respectively.
Hence the performance of the ATM and FDDI networks are not shown.

The close performance of ALLNODE-F and ATM, and ALLNODE-S and

FDDI can be attributed to the following reason: the slower link speed of

ALLNODE (64 Mbps/32 Mbps) is balanced by its ability to set up multiple

contention-free paths while ATM (155 Mbps) or FDDI (100 Mbps) with their

faster links do not permit multiple physical paths in the network.

The execution time falls almost linearly with increasing number of proces-

sors with ALLNODE- sublinearity effects begin to show, however, beyond 12
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processors.The LACE setupdoesnot permit theuseof more than 16proces-
sorsusing the faster networks.ALLNODE-F is about 70%-80%faster than
ALLNODE-S. This can be attributed to both an improved network (which
is twice asfast) and the superiorperformanceof the 590 model (33%faster
clock, data and instruction cacheswhich are4 timesbigger,and memorybus
which is 4 times wider than the 560- thesecontribute to faster instruction
execution,better cachehit ratios, and lowercachemisspenalty respectively).

Not surprisingly, Ethernet performancereachesits peak at 8 processorsfor
Navier-Stokes and at 10processorsfor Euler. Beyondthis, the communi-
cation requirementsof the application overwhelmthe network. The inability
of Ethernet to handle traffic beyond8 processorsis shownby the following
simple argument: Table 2 showsthat with 8 processors,Navier-Stokes,
on the average,producesa byte for communicationafter it has completed
145 floating operations on the average. Consider a 1 secondinterval and
eachprocessoroperating at 20 MFLOPS. During this interval, eachproces-
sor produces0.14MB or 1.12Mb for communication,on the average.This
translatesto approximately9Mbsfrom all the 8 processors.Ethernet is capa-
ble of supporting 10Mbpspeak;-it is not surprising, therefore,that Ethernet's
performancegetssteadily worsebeyond8 processors.

lo'

10 _

A

Q)

E
F_

10 2

10'

(3-"....... [:_ " _

LACE/590 Processor busy time

[3- - -E::]ALLNODE-F Non-overlapped Comm.
LACEFo60 Processor busy time

A - - ,_ ALLNODE-S Non-overlapped Comm.
......._ Non-overlapped Comm. (Ethemet)

' ' ' 1'0

Number of Processors

Figure 5: Components of execution time (Navier-Stokes; LACE)

Figures 5 and 6 aid in a more in depth analysis of the performance of LACE.
The execution time is separated into two additive components as explained

in the previous section. It is seen that the processor busy time falls linearly

13



with the numberof processors.With Ethernet, the non-overlappedcommu-
nication time increasessuperlinearlywith the number of processors.With

104

(D

_D

E
!=

103

10 =

101

L3

El. _'C3

(3"° "-EY

LACE/590 Processor busy time
E_-- -E3 ALLNODE-F Non-overlapped Comm.

LACE/560 Processor busy time
/_ - - z_ALLNODE-S Non-overlapped Comm.

.......-_ Non-overlapped Comm. (Ethernet)

1'0

Number of Processors

Figure 6: Components of execution time (Euler; LACE)

both ALLNODE switches, this time remains steady up to 10 or 12 processors

beyond which it begins to rise. For Navier-Stokes with 16 processors, the

communication time is comparable to the computation and PVM setup time
while the ratio is about 60% for Euler. The difference in processor busy

times and the communication times between the two ALLNODE configura-

tions can be attributed to the superior node and the network respectively.
A detailed examination of the data shows that both of these enhancements

together contribute to the overall improved performance.

Figures 7 and 8 show the performance of Versions 5, 6, and 7 with Ethernet
and ALLNODE-S (the trends are similar with ALLNODE-F). The perfor-

mance of Version 6 (with overlapped communication and computation as

explained in Section 6) is very close to that of Version 5 for both Ethernet
and ALLNODE-S. Overlapping does not increase the number of communi-

cation startups. With Version 6, since computations for the subdomain have

to be broken into separate ones for the interior and the boundary (only the
former computations can be overlapped with communication), the loop setup

overheads are higher. Further, the cache performance also degrades slightly

due to loss of temporal locality. Consequently, these overheads offset any

gain due to overlapping.

Version 7 attempts to reduce bursty communication at the cost of increased
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number of communication startups. Not surprisingly, Ethernet performs
better with Version 7 than with Version 5. The performance of ALLNODE-

S is appreciably worse than Version 5, however. Since ALLNODE-S can
handle the communication requirements of the application, reducing bursty

communication only harms the performance since the number of startups

increase.

7.2 Comparative Performance

Figures 9 and 10 show the performance of the application on the four com-
puting platforms we have chosen for this study- LACE, Cray Y-MP, Cray

T3D and IBM SP. The performance of LACE is reported for ALLNODE-F
and ALLNODE-S.
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Figure 9: Execution time of Navier-Stokes on computing platforms

Surprisingly, LACE, even with ALLNODE-S, outperforms SP even though
the former uses off-the-shelf PVM and the latter uses MPL, IBM's native

message passing library. With (our version of) MPL, we were forced to
use either blocking send or a constrained form of non-blocking send (for

our communication requirements, both of the send primitives give similar

results). This could possibly be one contributing factor to the relatively poor

performance. The CPU on the SP is intermediate in speed (62.5 MHz clock)

between the 560 (50 MHz) and the 590 (66.6MHz). Another contributor to
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the poor performanceof the SP is attributable to the data cachewhich is
just 32KB (comparedto 64KB on LACE/560 and 256KB on LACE/590).

For a comparisonof ALLNODE-F and ALLNODE-S, seeSection7.1 (Fig-
ures3, 4, 5, and 6).
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Figure 10: Execution time of Euler on computing platforms

Another surprising result is the relatively poor performance of Cray T3D

which is consistently worse than ALLNODE-F and is worse than ALLNODE-

S for less than 8 processors. The T3D's CPU has a peak rating which is 2.3X

and 3X the rating of the 590 and 560 models respectively. We attribute the

T3D's poor performance to the small direct-mapped cache of 8KB size (both
the 560 and 590 have 4-way set-associative date caches of sizes 64KB and
256 KB respectively; in addition they have 2-way set associative instruction

caches of sizes 8KB and 32KB). Poor single processor performance on the

T3D has also been reported elsewhere [17]. Beyond 8 processors, T3D with its

superior network speed (150 MB/sec peak transfer rate and a relatively small

setup cost) performs better than ALLNODE-S. The T3D is still superior to
the IBM SP.

The above results stress the importance of superior cache design to the overall

performance.

Both T3D and SP exhibit very good speedup characteristics, with an almost

linear drop in the execution time- indicating that the corresponding net-

works can sustain the communication requirements of the application. With
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ALLNODE, a flattening of the speedupis seenbeyond 12 processors.It is
only reasonableto expect this trend to continuewith increasingnumber of
processors.
With architectureswhich usemessagepassinglibraries, the relatively poor
performancecan be attributed to large setup overheadsand the resulting
increase in processorwaiting times with increasingnumber of processors.
Theseoverheadsarisemainly from the multiple times that data to be com-
municated is copiedand from the context switchingoverheadsthat arise in
transferring a messagebetweenthe application level and the physical layer
of the network for transmissionor reception. If NOW architecturesare to be
feasibleas massivelyparallel processors,it is clear that both the intercon-
nection network and the messagepassinglibrary be implementedefficiently.
Sucheffort is alreadyunder way [18].

CrayY-MP hasby far the bestperformance.Theexecutiontime shownis the
connect time in singleusermode (this includesthe I/O time also which we
werenot able to separatefrom the computation time). The performanceof
LACE/590 with 16processorsis comparableto the singlenodeperformance
of the Y-MP. The Y-MP (with a maximum of 8 processors)scalesquite well
for the applications.

7.3 Comparison of Message Passing Libraries

Figures 11 and 12 compare the performance of the PVMe and the MPL mes-

sage passing libraries on the SP. The graphs show that MPL is consistently
faster than PVMe by approximately 75% for Navier-Stokes and approx-

imately 40% for Euler. Observe also that the amount of non-overlapped
communication is not only negligibly small but that it decreases with the

number of processors though the actual communication increases. This is an

interesting phenomenon since it implies that there is increased overlapping
of computation and communication with the number of processors. Note

however that the computation part also includes the setup overheads of com-

munication. This phenomenon is not seen in case of LACE (see Figures 3

and 4) where the non-overlapped communication increases, further attest-

ing to our previous observation that the MPL (and PVMe) library does not

perform as well as PVM does on LACE.

7.4 Load Balancing

Finally, how well is the application load balanced? The amount of com-

putation for the application is evenly distributed but this may not always
translate to a load balanced execution. We were able to measure the proces-

sor busy times (this time does not include the processor waiting time) for
Navier-Stokes on each processor of the SP. Figure 13 shows that we were

able to achieve almost perfect load balancing.
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8 Conclusion

In this paper we have studied the computational, communication, and scal-

ability characteristics of a typical CFD application on a variety of architec-

tural platforms. The study indicates that NOW have the potential to be

cost-effective parallel architectures if the networks are made reasonably fast

and message passing libraries are efficiently implemented to circumvent the

traditional overheads involved in transferring a message between the appli-

cation level and the physical layer of the network.

The study also highlights the importance of single processor performance to

achieve good performance. With fast, off-the-shelf RISC processors available,
the bottleneck seems to be the performance of the cache and the memory

hierarchy. A proper cache design is critical to good performance. We believe

that the reason for relatively poor performance of the T3D, in spite of a fast

processor, is the small, direct-mapped cache.

A traditional vector multiprocessor still outperforms multiprocessors of mod-

est to medium size. Parallelizing an application using message passing li-

braries is rather tedious and even error-prone but with distributed memory

multiprocessors, this effort is worthwhile since good scalability is achievable.

Resource limitations have forced us to limit our study to 16 processors. We

hope to extend the study to larger multiprocessors and to other paralleliza-
tion tools as resources become available. We will then explore other problem

decompositions such as blocking along the radial direction, for example, and

study their impact on the performance.
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