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Summary

This is a user's manual of the CMOTT turbulence module, version 2.0, developed for

the NPARC code. The module is written in a self-contained manner so that the user can

use any turbulence model in the module without concern as to how it is implemented mad

solved. Three two-equation turbulence models have been built into the module: Ckien,

Shih-Lumley and CMOTT models, and all of them have both the low Reynolds number

and wall function options. Unlike Chien's model, both the Skih-Lumley and CMOTT
models do not involve the dimensionless wall distance V+ in the low Reynolds number

approach, an advantage for separated flow calculations. The Van Driest transformation

is used so that the wall functions can be applied to both incompressible and compressible

flows. The manual gives the details of the turbulence models used and their numerical

implementation. It also gives two application examples, one for subsonic and the other

for transonic flow, for demonstration. The module can be easily linked to the NPARC

code for practical applications.
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1 Introduction

This manual describes the version 2.0 of the CMOTT turbulence module developed at

the Center for Modeling Of Turbulence and Transition (CMOTT) for the NPARC code

(Cooper and Sirbangh, 1989 and 1990). The present version differs from the previous

one (Zhu and Shlh, 1995) in the following two major aspects: 1) use of the delta form of

turbulence transport equations, and 2) inclusion of the wall function approach.

The purpose of developing the turbulence module is to enhance the turbulence modeling

capability of NPARC. The module is written in such a way that it, on the one hand, can be

easily linked to NPARC for practical calculations, and on the other hand, can be updated
in time to include the state of the art of turbulence models suitable for applications in

aerospace and aero-propulsion systems. With the aid of the module, turbulence model

developers can also take the advantage of the well-established and sophisticated CFD

code to test turbulence models under development for a variety of complex flows which

are intractable with simple research codes.

Under the widely used Boussinesq's isotropic eddy-viscosity concept, the Reynolds-

averaged equations governing turbulent flows are of the same form as those governing

laminar flows, except that the laminar viscosity/z is replaced by the effective viscosity

= + m (i)

Therefore, a mean flow solver can be used to calculate turbulent flows once the turbulent

eddy-viscosity pt is available. For most CFD codes, especially those for compressible

flow calculations, the laminar viscosity p is a variable not a constant. In this case, few

changes axe required for a mean flow solver to use the turbulence module. The input

to the module are the mean flow variables, boundary and geometric information which

axe to be provided by a mean flow solver. The output of the module are the turbulent

eddy-viscosity #t and relevant turbulent source terms which are needed for the mean flow
calculation. The interaction between the mean flow solver and the turbulence module will

give the final turbulent flow solution.

In the module, the three low Reynolds number K-e turbulence models have been im-

plemented: Chien (1982), Shih-Lumley (1993) and CMOTT realizable models (Yang et

al., 1995; Zhu and Shih, 1995). Chien's model is one of the well-known low Reynolds

number K-e models. However, it has some undesirable deficiencies. First, a neax wall

pseudo-dissipation rate is introduced to remove the singularity in the dissipation rate

equation at the wall. The definition of the near wall pseudo-dissipation rate is quite ax-

bitrary. Second, the model constants axe different from those of the standard K-e model

(Launder and Spalding, 1974), making the near wall model less capable of handling flows

containing both high Reynolds number turbulence and near wall turbulence. Patel et

al. (1985) required as the first criterion, the ability of the near wall models to be able

to predict turbulent free shear flows. Third, the dimensionless wall distance y+ is used

in the damping function f_, for the eddy-viscosity. Because the y+ involves the friction

velocity U_ which is equal to zero at separation or reattachment points, any model using
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y+ may have difficulties for separated flows. The Shih-Lumley and CMOTT models are

free of these defldencies. The two models differ from one another in the C_, formulation,

one using the standard constant and the other a new formulation. The new C_, has the

following desirable features: (a) It is derived from a rigorous realizability analysis (Shih et

al., 1994) that requires the non-negativity of the turbulent normal stresses and Schwarz'

inequality between any fluctuating quantities. As a result, unlike most of the existing

modes, it satisfies the realizability conditions. (b) It accounts for the effect of the mean

deformation rate by which the eddy-viscosity will be significantly reduced to an adequate

level to mimic complex flow structures. (c) It is easier to use, as compared with other

formulations. Simplicity is of great value for practical engineering applications. Successful

applications of this new C u formulation can be found in Shih et al. (1994 and 1995). The

module with these turbulence mode.Is has been applied to a number of flows including

flows over a flat plate, in an ejector nozzle, in a transonic diffuser, and a boat-tail nozzle

flow (Yang et al., 1995). For all the flow cases tested so far, it has been found that both

the Shih-Lumley and CMOTT models produce improved or similar predictions compared

with the Chien modE. The CMOTT mode with variable C_ turns out to be more com-

putationally robust than the other two. It was able to give numerical solutions in cases

where the modes with constant Cu suffered from numerical instability.

The major problems or difficulties associated with the low Reynolds number turbulence

models are: 1) They require very fine grid spacing in near-wall regions, thus increasing

considerably computational burden, espedally in three-dimensional cases. Moreover, the

highly stretched nature of mesh distribution may have an adverse impact on numerical

stability. 2) Most of models are not of tensorial invariant form, that is, they contain a dis-

tance para.meter normal to the wail. The wall-distance dependency causes inconvenience

for model applications in complicated geometries. Currently, great effort is being given in

the area of near-wall turbulence mode.ling to remove this dependency, but no satisfactory

result has been obtained yet. 3) Most of the low Reynolds number turbulence modes

were fine-tuned against attached flows, which is, of course, not suflldent to guarantee

their good performance for separated flows.

An alternative is to use the high Reynolds number turbulence models. Here, the

governing equations are integrated to a point far outside the viscous sublayer rather

than down to the wall, and the near-wall region is bridged over with the wall functions.

Although in theory the wall function approach is only valid for certain attached flows with

no pressure gradient and mass transfer, it has been applied in practice to many separated

flows with varing degree of success. For those flows where maximum shear stresses occur

far away from the wall, the near=wall turbulence modeling is not critical for overaU flow

simulations. In these cases, use of the wall functions has a very beneficial effect on the

stability and economy of computations. Although the principle argument for originally

adopting the wall function approach (economy of grid points) has been weakened as larger

and faster computers have become available, it will still find its applications in predicting

complex flows, especially for large scale engineering problems.

In the present work, we extend the turbulence module by including the wall functions.



For incompressible flows, the universal law of the wall may be expressed as

U lln(PU,.y _ +C (2)
U,-

where _ - 0.41 and C = 5.2. The derivation of Eq. (2) is based on the assumption that

the shear stress in the region close to the wall is constant and equal to the wall shear stress.

It has been shown (Viegas et al., 1985; Huang and Coakley, 1993) that the same form

also exists for compressible flows with the velocity U being replaced by the Van Driest

transformed velocity U¢ (Van Driest, 1951). For the K-e turbulence models, the convection

and diffusion terms of their transport equations are negligible in the inertial sublayer so

that local equilibrium prevails, which implies that the production of the turbulent kinetic

energy K is equal to the dissipation rate ¢ of K. The local equilibrium condition leads

to two simple relations which can be used as boundary conditions for K and e for both

incompressible and compressible flows.

Although the wall functions look simple, their numerical implementation is not trivial.

The main difficulty comes from the logarithmic law in which both U and U, are unknown,

and U, cannot explicitly be solved for. It is prone to being numerically unstable if one uses

Eq. (2) and iteratively solves U_. to obtain the boundary conditions for the Navier-Stokes

equations. In the module, we use an implicit procedure which directly incorporates Eq. (2)

into the Navier Stokes equations. In this way, there is no need to solve Eq. (2) for U,

by sub-iteration. The implicit method turns out to be more stable than the explicit one.

Another important issue is the artificial viscosity. Chitsomboon (1994) found that the

artificial viscosity originally implemented in the NPARC code totally spoiled the solution

of the wall functions. This was because the artificial viscosity became unrealistically large

in the vicinity of walls due to very steep velocity gradients resulting from the coarseness

of grid spacing as required by the wall function approach. He fixed up this problem

by extrapolating velocities at the wall rather than using the physical values of no-slip

velocities, when calculating the artificial viscosity. In the module, we simply turn off the

artificial viscosity in the near-wall region.

In general, turbulence model equations require special treatment to ensure numerical

realizability such as the positiveness of K and ¢. They are also often of source-dominate

nature, which sometimes makes the linearization of source terms crucial for computational

stability. Due to these considerations, we used the non-delta form of the transport equa-

tions in the previous version of the module (Zhu and Shih, 1995). The non-delta form

leads to simpler linearization and is more effective to ensure the positiveness of the turbu-

lent kinetic energy and its dissipation rate than the delta form. However, the non-delta

formulation requires 8 additional arrays in the three-dimensional code, and the above ad-

vantages did not manifest themselves to be obvious in all the test cases computed so far,

which may be due to the fact that, on the one hand, the stability of solution process is

constrained largely by the mean flow solver, and on the other hand, positivity for models

of K-e type can be ensured by simple numerical measure such as clipping. Therefore, the

present module uses the delta form, which is in line with the NPARC code.
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2 Turbulence Models

2.1 General Form

In accordance with the NPARC code, a non-dimensional form of equations is adopted. The

three low Reynolds number two-equation turbulence models built into the module have

the following common form in which the Reynolds stresses r_j(= -p_) are calculated

by

2u _pK6,j (3)_-_= R;_m(V_j + V_,_- -_ k,k)--

where R, is the reference Reynolds number. The turbulent eddy viscosity #t, the turbulent

kinetic energy K and its dissipation rate c are calculated by the following equations

_t = P_f.C_pK2/c (4)

where

(pK),, + [pUjK - R:I(_ @ _)Kj],j _-- P -- p_5 -_- D

_t e e2

(pc): + [pV: - R:I(, + _)_,_]z = flCl_P - AC, p_ + E

(5)

(6)

.t' = r,_v,,_ (v)

I1 = 1, f2 = 1- 0.22exp[-(P_/6)2], R,- R, pK" (8)
#e

P is the turbulent production. For high Reynolds number models, fu = fl = f2 = 1 and

D = E = 0. The differences in the three models axe given below.

2.2 Low Reynolds Number Form

Chien's K-e model.

C u = 0.09, C1 = 1.35, C, = 1.8, aK ---- 1, o'_= 1.3

f_ = 1 - exp(-0.0115y+),

(9)

y+ _ R,p_u. (10)
#

D = -2R_l#y K

2R-[l #e , ,,, +
E- _ expk-v.oy )

(ii)

(12)



At the wall, the values of K and e are both set to zero.

Shih-Lumley's K-e model.

6', = 0.09, C1 = 1.44, C2 = 1.92, o'K = 1, o', = 1.3 (13)

fu = [1 - exp(--a_Rk -- a_R] - asR_)] _12,

a1=1.7.10 -3, a3=10 -°, as=5.10 -1°

RK--
R, pKll2y_,

(14)

D = 0 (15)

_#t -

E = -_s,s,, (16)
1 1

The wall boundary conditions for K and e are

_4

K =0.250_, _=0.251P_p _ (lS)
#

CMOTT K-e model. This model is the same as the Shih-Lumley model, except that

C, is calculated by

6'. = mini0.09, (Ao + A.U*K/e) -1] (19)

where

Ao=4, A.=v_cos¢ (20)

U" = .Is" S" + _q_qv lj iJ

1
¢= _,,_¢os(vrgw), w- s_-shs;,(s')'

1U.s'= v/-s-_s;_,a,j = _( ,.j- uj.,)
In the above formulas, y. refers to the normal distance from the wall.

(21)

(22)

(23)



2.3 Wall Functions

The compressible law of the wall (Huang and Coakley, 1993) is used in the turbulence

module. Following the NPARC nondlmensionalization, this law can be written as

_+_ uo _ I h(E_+) (24)
U_

where

u_-=q(,,-/p),,,:,,

_s+= __G,.y(pl_,),,,_,

= 0.41, E = 8.4317

and Uc is the Van Driest transformed velocity defined by (Van Driest, 1951)i

U= = v/B [sia-l ( A + U_, ) -.in-' (_-)]

where

(25)

(26)

q

B= 2T_=u (27)
('_- I)P,,

D = Vf_ + B

In the near-wall region, with the convection neglected the energy equation can be

reduced to give an expression for the total heat flux

q = q_,,.u+ Ur (28)

and with the local equilibrium assumption (Launder and Spalding, 1974), the turbulent

kinetic energy K and its dissipation rate e can be calculated by

K- r_,.u/p
0.3 (29)

(n,,:.lp) _1_
= (30)

Icy

In the above expressions, the subscript wall refers to the value of the corresponding

function at the wall. Equations (24) and (28)- (30) form the wall functions which are

used to bridge over the first grid point and the solid wall.



3 Calculation Procedure

The following presentation is only restricted to the numerical aspects related to the tur-

bulence module. Refer to Cooper and Sirbaugh (1989 and 1990) about the details of the
NPARC code.

3.1 General Form of Turbulence Equations

The turbulent transport equations (5) and (6) in general curvilineax coordinates (_, ,7, _)

may be written in the following form:

OtQ + O_F1 + c%F2 + cgcFa = O_G1 + c%G2 + acO3 + S (31)

where

(32)

UI = U, U2 = V, Us = W (33)

fl=f, f_=v, f_=¢

_K = R_'I(I z + #__.___t)
O"K

u. = R:I(_ + _)
O"c

(34)

(35)

(36)

v_.v¢ = (_ + ,_ + ,,_)o,¢

+ (_.,7.+_,,,_ +_.,7.)o,,¢+(_._. +_,,i,, + _/.)oc¢
(37)

v,7. v_ = (,7_+ ,7_+ ,?.)o,,¢

+ (,7.5,+,7,,_,,+,_._.)o_¢+(,7._. +,7,,_, +,7._.)o,¢
(38)

re. v¢ = (¢_'+i_ +¢_)o_¢

+ (_._. +_,,_+_._.)o_¢+(_.,_:+_,,,_,, +_.,_)o,,¢
(39)

J is Jacobian of coordinate transformation, U, V and W are the contravarient velocities,

= K or e, and S contains the source terms in Eqs.(5) and (6), respectively.

9



3.2 Time Differencing

By using Euler backward differencing, Eq.(31) can be written as

AQ+ at[O_F?+1+ 0,,_+_+ Ocfrl _(O_+ _+ 0,_+_ + 0_+1 + _+_)] =0 (40)

where

AQ _- Q.+I _ Q. (41)

A_ = _:,_+1_ _,_

and the superscript n refers to the time ]eve].

(42)

3.3 Time Linearization

Eq.(40) can be lineaxized by expressing all flux vectors in terms of the conservation

variable vector Q

F('+I= F? + AtO, Fi = F_' + A_AQ (43)

G_ +1 = O'_ + Atc%Oi = G_ + BIAQ (44)

where

S "+_ = S" + AtO,S = S" + CAQ (45)

cOFi [U_ 0 ] (46)_=o_ = o _,

oo, [b'_ o ] (4r)B,- gO- o bh

os [_ c_=] (48)C- OQ- c21 c=,_

10



(49)

_ = j-l,_(_ + _ + _),

_ = j-',_((2 + ¢_+ ¢_),

-1 2 2 2Z_=J ,,(_ + _ + _,)

Z_= J-_,(¢2 + ¢_+ ¢2)

(50)

A£te_introducingEqs.(43)-(45),_,q.(40)becomes

{_+ A_[O_A1+ O,A_+ O_A_- (O_B1+ 0_B_+ 0_ + C)]}AQ= R_S (5_)
_he_e

I is an identity matrix.

3.4 Approximate Factorization

By using the approximate factorization method, the three-dimensional equation (51) can

be reduced to the following three uaidimensional equations

[i + _(O_A1- O_B_)]_Q'"= _S (53)

[I + At(O,A__- O,_B_)]AQ* = AQ** (54)

[I ÷ At(OeAs - OeBs - C)]AQ = AQ*

Solving sequentially these equations finally gives the solution of Eq.(31)

Q.+I = Q. + AQ

(55)

(56)
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3.5 Space Differencing (LHS)

For steady-state computations, differencing the left-hand side (LHS) of Eqs.( 53)-(55) is

not crucial to the accuracy of final solutions. Therefore, the first-order accurate upwinding

is used for the inviscid flux terms and the central-differencing is used for all the other
terms.

With the first-order upwinding, the inviscid terms in Eq.(53) can be written as

A,= A++ A_, A+= 0 U+ ' A_= 0 U-

u + = o.5(u + IUI), u- = o.5(u-IuI) (58)

o_uaq1= u+aqj - u+__aq__,+ u;+,Aqh,- vr aq_

c_UAq2= V?Aq_-- U?_IAq2_I÷ U;.I_IAq2+I- U;Aq2
(59)

where Aq 1 and Aq 2 are the components of the intermediate vector AQ**.

By using the central-differendng and neglecting cross-derivative terms in Eq.(49), the

viscous terms in Eq.(53) can be written

O_b_lAq 1 = 0.5{(a}+ 1 + a})[(J/p)j+,Aq_+, - (J/p)jAq_]

-(@ + _L1)[(J/p)_aqJ- (J/p)5-,aqL,]}

Oeb_,Aq _ = 0.5{(_+, + _J)[(J/p)j+,Aq_+, - (J/p)jAq_]

After introducing Eqs.(59) and (60) into Eq.(53), we have

(6o)

where

A**A-_ ** -* C*2A-* r:B_ A_ + ,.,j __+_"*j "_¢/j-1 ÷ =

(61)

A_ 1 = -At[U+_1 + 0.5(a__ 1 + a_)(J/p)y_l]

BJ_=1+a_[U+- U; +o.5(-L_+2@+ @__)(J/p)_]

C_ _ = At[U;+, - 0.5(a_+1 + a))(J/p)_+,]

(62)
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A_ 2 -At[U+ l -t- 0.5(fl__1 +fl_)(J/P)_-l]

s__= 1+ A_[U+- U; + o.5(_L1+ 2ZJ+ ZL,)(:/P)_] (63)

C_ 2 = At[Uf+l - 0.5(/_+1 + fl_)(J/p)_+l]

and r 1 and r 2 are the components of the vector RHS.

The same procedure can be used for Eqs.(54) and (55), except that for Eq.(55), the

coe_ients B in Eqs. (62) and(63) are replacedby

B_1 = B_1 - c11At

B__ = B_2 - c12At

B_1 = B_1 - C_lAt

B_2 = B_ _- c,_At

(64)

3.6 Space Differencing (RHS)

To ensure both accuracy mad stability of numerical solutions, the hybrid linear/parabolic

approximation (ttLPA) scheme (Zhu, 1991) is used to calculate the convection terms of the

right-hand side (RtIS)in Eq.(52). It has been shown (Zhu, 1992) that the tILPA scheme of

second-order accuracy works nearly as well as the third-order accurate SMART (GaskeU

and Lau,1988) and SHARP (Leonard,1988) schemes in terms of eliminating numerical

diffusion while retaining boundedness of numerical solutions. Consider the inviscid flux

in the _ direction. The HLPA scheme evaluates the value of variable ¢ at the cell-face

j - 1/2 as follows

(65)

where

+ _ 1 _ I(¢s - 2¢j-1 + ej-2)/(¢j - ej-,)l < 1

aJ-1/2 = _ 0 otherwise

1 if{(¢j_l--2¢j+¢j+l)/(¢j-l-¢j+l)] < 1a-j-ll2 = 0 otherwise

(67)
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and U + and U- are defined in Eq.(58).

It can be seen that Eq.(65) is in fact the result of the first-order accurate upwinding

with an additional term 5¢ added. The additional term may be viewed as an antidiffusive

correction to the upwinding. The conventional central differencing scheme is used to

calculate all the other terms in RHS.

3.7 Source Terms

For the source term in Eq.(31), we have

$1 ] $1 = j-l[p _ pe + D]s = ] , (68)$2 $2 = J-I[(C,P - f2C2pe)e/g + E]

and the elements in the source term Jacobian matrix C in Eq.(48) are calculated by

OS1 0S1 0S2 c_$2 (69)
-- , = --, C21 = --, C22 --cll OQ1 c_2 OQ2 OQ,1 OQ_

where

Q1 = J-lpK, Q2 = J-lpe

From the stability requirement for the type of Eq.(61), we have

(70)

cn, cn, c21, c22 _<0 (71)

Noting that certain degree of freedom exists in dealing with the left-hand side terms of

Eq.(51) for steady-state calculations, we tested the following two linearization methods:

Method 1. By "exactly" calculating the derivatives in Eq.(69), we obtain

=2t' , O(J-_D)

c n p K -1----_l

P O(J-ID)

c12 -_ 1 + OQ2

I e e2 4R_

c,_= c_p_-_+ c_[I. + -_(£ - 1)]+

2 _ PJ O(J-_E)
c. = - C_[A + _(1, - 1)]+ OQ_

which do not satisfy the stability requirement Eq.(71).

cg(J-1E)

OQ1

(72)
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Method 2. Neglecting the D and E terms, we can write the source term as

$1 -- j-1p _ "-_Q1

1 e f, C2_,_
S_ = J- C1P_ _ ,.c,-

and the derivatives can be formally written as

C11 --- ____
K

(73)

C12 ---_ 0

e21 _ 0

(74)

_c2c
c22 = K

which meet the stability requirement Eq.(71).
Numerical tests conducted so far have shown that both methods produce little differ-

ence in terms of both convergence rate and accuracy. Therefore, only the method 2 which

leads to a rather simple implementation is adopted in the present module.

3.8 Wall Function Implementation

In the NPARC code, the following nondimensional,

equations are solved:

Reynolds-averaged Navier-Stokes

where Q, P_ and G_ (j = 1,2,3) are the conservation variable vector, inviscid flux vectors

and viscous flux vectors, respectively. Because only the viscous flux vectors need to be

modified with the use of the wall functions, their detailed forms are given below:

g12

g13 ,

g14

91s

gll _ 0

g_ = ÷_3= j-_(_._ + _= + _)

g_5 = u÷_ + v'7"_2+ w{'_3 - J-_(_=ql + _,_q_ + _zq_)

(76)
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gn ]

g22

(_2 "-- g23 ,

.q24

g25

g21=O

gn = ÷2_ = J-_(_=n_ + _n2 + _=n_)

g2s = u¢'n + v¢'2_ + w¢'_s - J-l(rl, ql + rlvq_ + rl_q3)

(77)

[gsl ]

932

G3 = 933

g34

g3s

g31 =0

g32= ÷3_= J-_((:. + (:. + (:13)

g33= ÷32= J-_(_:21 + ¢:. + I:23) (78)

OT OT OT 1 # #t ) (79)
ql = -a_-_z, q2 = -a-_y, q3 = -a_-_z, a - (7 - 1)R, (P-_ + P_,

From Eqs. (24) and (25), the near-wall shear stress can be written as

_, u (80)

where #, is an effective turbulent viscosity connecting the wall and the first grid point

y+ lz,,,,a_U¢ (81)
_'- UU2

An advantage of Eq. (80) in calculating separated flows is worthy of note: the direction of

the wall shear stress r,_=u is determined by that of the flow velocity U while r,o,al calculated

from Eq. (24) or (2) can only have a positive sign.

From Eq. (80), the general form of shear stress at the first grid point can be expressed

as

_= e_, = _r_, (82)
where

A = _ #,/(R,An) if y+ > 11.6
(8_)( #,_._/(R, An) otherwise

[?t and An are the tangential component of the resultant velocity and the normal distance

from the w_l, respectively. Eqs. (82) and (83) simply treat the near-wall region as a

16



laminar sublayer (y+ < 11.6) and a fully turbulent layer (y+ > 11.6). This treatment

prevents the wall function procedure from producing abnormal results when y+ tends to

zero, such as in the vicinity of separation or reattachment points.

Similarly, the total heat flux at the first grid point can be written as

where

q = -a(T - T_..) (84)

V[(_ - 1)P.,] if y+ > 11.6
a / _l[(e- 1)P,] otherwise

and the heat flux at the wall can be calculated by

(85)

q_.,,= -_(r - T_,) - 0,. e.°,, (86)
Consider the wall of r/=constant. In this ease, only the viscous flux vector G2 in

Eq. (75) needs to be modified with the use of the wall functions. In the NPARC code, it

is calculated by

c9g22

at/ - g22,.. - g22,.

0g23

at/ -- g_-3,,_- g2_,o

0924

Or/ g24,n gz4,,

Ogr_

Or1 - g2s,,_ - g2s,,

(87)

where the subscripts s and n refer to the south and north cell faces at j-1/2 and j+1/2.

From Eq. (77), the components of the vector G2 can be written as

'_ _l#t°t Oug,, = j-_(_ ÷ _ ÷ , _ _ ÷""
2 _2_#totOV

g_ = J-_(,7:+_,+ "J-E-._ + ""
(88)

2 _2_#totOW

g,, = j-l(_ +_, +,.)_ + ...
2 2", OT

g_ = _÷_1+ _2_ + _÷_ + J-_(_ + _ + _,)_ +...

with

/riot = # + #t
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From geometrical consideration, we have

2

j_l(rl _ + % + 71_) = J-2(_l_ + r& + rl_) AS 2 AS (A_2 ASAn) (89)

where A_ and AS are the volume and face area of the control volume, respectively.

In the wall function approach, all the stresses acting on the cell face considered are

replaced by the wall shear stress given by Eq. (82). Therefore, for the south wall, Eqs. (88)

are replaced by

(90)

g2s,. = ug:2,. + vg2s,. + wg24,. + ASa(T - T._al)

where u_,., ut,u, ut,_ are the x-, y-, z-component of the tangential velocity (_t, respectively.

If n_, nu and n_ are the Cartesian components of the unit normal vector at the wall, ut,.,

ut,_, ut,_ can be calculated by

_tt,z = It -- TbzV n

ut,u= v - nvV. (91)

with

Y. -- nffiU + n_V -Jr n_W

Similarly, for the north wall, we have

(92)

g2s,. - ug22,. + vg2s,. + wg24,. - ASa(T - T_,.lz)

Walls in the other two directions can be treated in the same way.
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The sequence in which the above equations are solved together with the Navier-Stokes

and turbulence equations in the code is as follows:

a. Initialize all field values.

t,. Calc,a , v+  sing Eq . a,,d (25).

c. Fix the values of K and e at the first grid points using Eqs. (29) and (30).

d. Solve the turbulence equations.

e. Calculate qw_u using Eq. (86).

f. Calculate U¢ and U + using Eqs. (26) and (24).

g. Update #t using Eq. (81).

h. Update cz using Eq. (85).

i. Update 922,92s,924 and g2s using Eq. (90) or (92).

j. Solve the Navier-Stokes equations.

k. Return to step b with updated field values.

The sequence of steps b to k are repeated until the calculation converges.

Note that by definition, the turbulent eddy-viscosity #, is zero at the wall, such as in

the case of the low Reynolds number turbulence models. When using the wall functions,

Eq. (81) introduces the effective turbulent viscosity which is defined at the wall in the

turbulence module. Therefore in post-processing, the wall friction coefficient C I can be

calculated in the same way as for laminar flows, except that the molecular viscosity # is

replaced by the turbulent viscosity gt at the wall.
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4 Module Usage

The present turbulence module (version 2.0) is written based on the NPARC version 2.2.

The following are those parts of the code which may require user's attention when using
it.

4.1 Module

To facilitate identification, all the subroutine names in the module start with CM. In order

to use the module, the user only needs to call its three subroutines: CMA0, CMALL and

CMVRHS, in the NPARC code.

• Subroutine CMA0. This subroutine transfers from NPARC to the module the param-

eters to define flow, geometric and boundary conditions. In addition, it has the following

user-specified parameters:

JWFAV, KWFAV, LWFAV -- Number of grid points above J-, K-, and L-walls at which

the artificial viscosity is turned off when using the wall function approach. These numbers

should cover the near-wall region within y+ _ 1000. Currently, they are set to

JWFAV=5, KWFAV=5, LWFAV=5

FDEFER -- Blending factor in the convection scheme. Its value may vary from 0 to 1

with the limiting value 0 for the first-order accurate upwind and 1 for the second-order

accurate HLPA scheme. The solution tends to be more stable, but also more diffusive
when this factor is reduced.

BDMAX(i), BDMIN(i)- Upper and lower bounds for the values of g (i=l), e (i=2) and

#t (i=3). These bounds are introduced for numerical purposes only, that is, to prevent the

corresponding turbulence quantities from becoming negative or abnormally large during

the solution process. Currently, they are set to

BDMAX(1)-I.0E+6, BDMIN(1)=I.0E-8

BDMAX(2)=I.0E+6, BDMIN(2)=I.0E-8

BDMAX(3)=I.0E+4, BDMIN(3)=I.0E-3

which should cover a wide range of the physically meaningful values of K, e and #t. It is

to be noted that these values are only valid for the non-dimensional turbulence quantities,
as defined in the NPARC code.

• Subroutine CMALL. This is the main subroutine to control the solution sequence

in the module. The array variable VIST is the turbulent viscosity #t which is needed in

NPARC for calculating turbulent flows. The array variables TE, ED and YPS are K, e

and y+, respectively, which can be used for post-processing. Normally, there is no need

for user to change this subroutine.

• Subroutine CMVRHS. This subroutine which is the counterpart of the subroutine

2O



VISRHS in NPARC is for introducing the wall function modificationsinto the fight-hand
sideviscous flux terms. There is no need for user to change this subroutine.

4.2 NPARC

The authors have made all the modifications necessary for NPARC to use the module.

The following shows where these modifications are in NPARC. All the alterations are
marked between C<< and C>> in the code.

• Namelist TURBIN. The integer parameter IMUTR2 is used to select the turbulence
models in the module with

IMUTR2=I01

102

103

Chien model

Shih-Lumley model

CMOTT model

A new integer parameter MWALF is introduced to select the near-wall approach with

MWALF=0 low Reynolds number approach

1 wall function approach

Correspondingly, a new statement is added

in the include file NPARC.INC:

COMMON/CMOTT/MWALF
and in the subroutine TURBIN:

CALL NLGETI('MWALF',MWALF).

• Subroutines FILTI_ FILT2_ FILTER. An array FAV01 has been introduced into

each of these subroutines to eliminate the artificial viscosity in the near-wall region when

using the wall function approach.

• Subroutine DEPOIN. For using the module, an additional array whose name is

IPWCM1 is added to IPWLST, and MEMSIZ in NPARC.INC must be increased corre-

spondingly.

• Subroutines INITIA_ WREST. The model identifier ITURB for each K-e turbu-

lence model in the module is given an integer value greater than 100. To reflect this

expanded choice for turbulence models, the read and write statements for the turbulent

quantities in these two subroutines are modified as

IF(ITURB.EQ.4 .OR.

& ITURB.EQ.5 .OR.

a ITURB.EQ.7 .OR.

& ITURB.GT.100)

& READ(2)orWPdTE(4)(valuesofK, Us)
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• Subroutine MUTURB. Here, the subroutines CMA0 and CMALL of the module
are called as follows:

C<<

C

C>>

• .° eee

ELSE IF(ITURB.EQ.7) THEN

CALL TKWSTEP(BIGA(IPWR),BIGA(IPWAK),BIGA(IPWEPS)

&,BIGA(IPWS1))

ELSE IF(ITURB.EQ.101 .OR. ITURB.EQ.102 .OR. ITURB.EQ.103) THEN

CALL CMA0(JMAX,KMAX,LMAX,NMAX,NTURB,NRLX,NSPRT,ITURB

&,MWALF

&,RE,C2B,CAMMA,RPR,RPRT,DT,DTCAP,IVARDT

&,TUIN1,TUIN2,TUIN3,TMUINI,TMUIN2,TMUIN3

&,NJPAT,JPJ2,JPJM,JPK2,JPKM,JPL2,JPLM

&,NKPAT,KPJ2,KPJM,KPK2,KPKM,KPL2,KPLM

&,NLPAT,LPJ2,LPJM,LPK2,LPKM,LPL2,LPLM

&,NJSEG,JLINE,JKLOW,JKKIGH,JLLOW,JLHIGH,JTYPE,JSIGN,JEDGE

&,TEMPJ

&,NKSEG,KLINE,KJLOW,KJHIGH,KLLOW,KLHIGH,KTYPE,KSIGN,KEDGE

&,TEMPK

& ,NLSEG,LLINE,LJLOW,LJHIGH,LKLOW,LKHIGH,LTYPE,LSIGN,LED GE

&,TEMPL)

IPWR3=IPWSI+2*NXYZ

IPWR4=IPWR3+NXYZ

CALL CMALL(BIGA(IPWX ),BIGA(IPWY ),BIGA(IPWZ )

&,BIGA(IPWXX ),BIGA(IPWXY ),BIGA(IPWXZ )

&,BIGA(IPWYX ),BIGA(IPWYY ),BIGA(IPWYZ )

&,BIGA(IPWZX ),BIGA(IPWZY ),BIGA(IPWZZ ),BIGA(IPWQ )

&,BIGA(IPWR ),BIGA(IPWRU ),BIGA(IPWRV ),BIGA(IPWRW )

&,BIGA(IPWE ),BIGA(IPWAK ),BIGA(IPWEPS),BIGA(IPWTMU)

&,BIGA(IPWR3 ),BIGA(IPW28 ),BIGA(IPW29 ),BIGA(IPWR4 )

&,BIGA(IPWVDT),BIGA(IPWS1 )

&,BIGA(IPWS1 + 4*NXYZ ),BIGA(IPWSPT),BIGA(IPWCOF)

&,NC,SUMN,TMAX)

ELSE

°°.,°°

END IF

• Subroutine STPF3D. The subroutine CMVRHS of the module is called here.
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5 Demonstration Examples

Two examples are given here to demenstrate how to use the NPARC code with the

turbulence module. Other application examples can be found in Yang et al. (1995).

5.1 Flat Plate

Turbulent boundary layer flow over a flat plate with zero pressure gradient was selected
as the first test case for code validation. The solutions of both the low Reynolds number

(LR) and the wall function (WF) approaches were compared with the experimental data

(Exp) of Wieghardt and TiUmann (1951). Fig.1 shows the flow geometry and boundary
conditions used in the calculation. For the wall function approach, grid points were

lllx55x5, the first grid points above the wall had the 9 + value of 60 and 14 grid points

in the x-direction were located before the leading edge of the fiat plate. For the low

Reynolds number approach, grid points were 111×81x5 with the distribution of x-points

being the same as in the wall function case and the first y+ being 0.3. Since the NPARC

code is for compressible flows while the experiment to be compared was for incompressible

flows, a freestream Mach number of 0.2 was chosen. All calculations started from an initial

field with U - 0.2, V = 0,pt = 1, K = 0.005 and c = 0.09R_K2/pt. The detailed NPARC

input data axe given in Appendix 2. Fig.2 shows the convergence history of the Chien

model. The other two models had the similar convergence behavior. For comparison,

the result of the Baldwin-Lomax model in the NPARC code is also given in Fig.2. The

low Reynolds number Chien model had a rather poor convergence behavior: its L2 norm

of residual was only reduced to 4.7x10 -s after 20000 iterations, and further down to

8.9x 10 -1° after another 60000 iterations. However, the solutions at both the 20000th

and 80000th iterations were almost identical. Fig.3 shows the wall friction coefficient C I

versus the Reynolds number based on the momentum thickness of boundary layer Ree.

It can be seen that for the the low Reynolds number approach, the results of both the

Shih-Lumley and CMOTT models are almost the same and slightly better than that of

the Chien model, while for the wall function approach, the results of both the Chien and

Shih-Lumley models are almost identical and slightly better than that of the CMOTT

model. Regarding the computational cost of the Chien model, 1000 iterations on the Cray

YMP computer took 1566 seconds for the wall function approach and 2320 seconds for

the low Reynolds number approach.

5.2 Transonic Diffuser

This case was taken from the experiment of Salmon et al. (1983). Fig.4 shows the

computational domain of the diffuser. In the experiment, different measurements were

taken, ranging from no-shock to strong-shock conditions. During the code validation, we

calculated three cases with no-shock, weak-shock and strong-shock, respectively. Here,

we only show the strong-shock case which is most di__cult to calculate accurately. All

calculations started from an initial field with U = 0.44, V = 0,p - 0.5143, #t - 10, K =
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0.0001 and e = O.09R¢K2/pt. For the low Reynolds number approach, the grid had

81 x81 x5 points and its x-point distribution was the same as that used by Dudek (1995),

and for the wall function approach, the grid had 81x51x5, differing from the former one

only in the y direction. The detailed NPARC input data are given in Appendix 2. Fig.5

shows the convergence history, and it can be seen that the wall function approach has

a better convergence behavior than the low Reynolds number approach. The pressure

distributions are shown in Fig.6 for the top wall and in Fig.7 for the bottom wall. For

the low Reynolds number approach, the CMOTT model gave the best results, especially

for the location of the shock wave and the pressure recovery after the shock wave, while

for the wall function approach, the results of the CMOTT model were slightly worse than

those of the other two K-e model. Fig.8 shows the streamwise mean velocity profile at the

section x/X,,l=4.6, and it can be seen that the results of all the three K-e modds with

the wall functions are nearly the same, and better than those of the low Reynolds number

counterpart. For the computational cost of the Chien model, 1000 iterations took 1088

seconds for the wall function approach and 1720 seconds for the low Reynolds number
approach.
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7 APPENDIX 2: NPARC Input Files

• Flat Plate Case, Wall Function Approach

$INPUTS

pref = 2116.80 ,

trefr = 519.0

vrat = 1.000001e+00 ,

tsuth = 0.198680e+03 ,

re = 5.000000e+06 ,

pr = 0.720000e+00 ,

dtcap = 5.0

pcqmax = 1.000000e+01 ,

splend = 0.500000e+00 ,

stopl2 = 1.000000e-15 ,

stoptr = 100.0

xmach = 0.200000e+00 ,

gamma =
dis2 =

dis4 =

SEND

STURBIN

imutur = I01,

imutr2 = i01,

mwalf = I,

nturb = 0,

order = 1.0,

nrlx = i,

ifmax = 3,

prt = 0.9,

tuinl = 0.02,

tmuinl = i0.0,

SEND

$BLOCK

invisc(1) = i,

lamin(1) = 0,

npseg = i,
SEND

$PRTSEG

jklpi (i, i, I) =

jklpi(l,2,1) =

jklpi(l,3, I) =

ipord(l, i) =

SEND

1 1

iIi Iii

1 14

15 iii

1 iii

1 iii

1 iii

1.400000e+00 ,

0.250000e+00 ,

0.640000E+00 ,

invisc(2) = i,

lamin (2) = I,

nbcseg = 7,

i, 55, 55,

I, 55, i0,

3, 3, I,

2, i, 3,

2 54 1 5 0 1

2 54 1 5 0 -i

1 1 1 5 50 1

1 1 1 5 60 1

55 55 1 5 50 -i

1 55 1 1 50 1

1 55 5 5 50 -I

nblock = 1 ,

nmax = I000 ,

nc = -i ,

nsprt = 50 ,

np = 960000,

ifxprt = 0 ,

ifxplt = 0 ,

12plot = -i ,

iplot = 0 ,

numdt = 0 ,

ivardt = 2 ,

ifiltr = 2 ,

ispect = 1 ,

lrest = 1 ,

mbord = 1 ,

ibord = 1 ,

invisc(3) = i,

lamin(3) = 0,

0.7345000 1.0080000

0.7143000 1.0000000

-I

0

5O
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• Flat Plate Case, Low Reynolds Number Approach

$INPUTS

pref = 2116.80 ,

trefr = 519.0

vrat = 1.000001e+00 ,

tsuth = 0.198680e+03 ,

re = 5.000000e+06 ,

pr = 0.720000e+00 ,

dtcap = 1.0

pcqmax = 1.000000e+01 ,

splend = 0.500000e+00 ,

stopl2 = 1.000000e-15 ,

stoptr = i00.0

xmach = 0.200000e+00 ,

gamma =
dis2 =

dis4 =

SEND

$TURBIN

imutur = 2,

imutr2 = i01,

mwalf = 0,

nturb = 4001,

order = 1.0,

nrlx = 100,

ifmax = 3,

prt = 0.9,

tuinl = 0.02,

tmuinl = I0.0,

SEND

SBLOCK

invisc(1) = I,

lamin(1) = 0,

npseg = i,

SEND

SPRTSEG

1.400000e+00 ,

0.250000e+00 ,

0.640000E+00 ,

invisc(2) = i,

lamin (2) = I,

nbcseg = 7,

jklpi(l,l,l) = I, 81, 81,

jklpi(l,2,1) = I, 81, 10,

jklpi(!,3,1) = 3, 3, I,

ipord(l,l) = 2, I, 3,

SEND

1 1 2 80 1 5 0 1

iii iii 2 80 1 5 0 -I

1 14 1 1 1 5 50 1

15 iii 1 1 1 5 60 1

1 iii 81 81 1 5 50 -i

1 iii 1 81 1 1 50 1

1 iii 1 81 5 5 50 -i

nblock = 1 ,

nmax = i000 ,

nc = -I ,

nsprt = 50 ,

np = 960000,

ifxprt = 0 ,

ifxplt = 0 ,

12plot = -i ,

iplot = 0 ,

numdt = 0 ,

ivardt = 2 ,

ifiltr = 2 ,

ispect = 1 ,

irest = 1 ,

mbord = 1 ,

ibord = 1 ,

invisc(3) = i,

lamin (3) = 0,

0.7345000 1.0080000

0.7143000 1.0000000

-i

0

7O

33



• Transonic Diffuser Case, Wall Function Approach

$INPUTS

pref = 2819.5

trefr = 525.6

vrat = 0.I00000e+01 ,

tsuth = 0.198680e+03 ,

re = 1.339171e+06 ,

pr = 0.720000e+00 ,

dtcap = 0.5

pcqmax = i0.0

splend = 0.50

stopl2 = 1.000000e-15 ,

stoptr = 100.0

xmach = 0.10

gamma = 1.40

dis2 = 0.25

dis4 = 0.64

SEND

$TURBIN

imutur = 2,

imutr2 = 101,

mwalf = i,

nturb = 0,

order = 1.0,

nrlx = I,

ifmax = 2,

prt = 0.9,

tuinl = 0.02,

tmuinl = 10.0,

SEND

SBLOCK

invisc (1) =l, invisc(2)=l, invisc(3)=l,

lamin(1) =I, lamin(2) =I, lamin (3) =I,

npseg
SEND

$PRTSEG

=I, nbcseg =6,

jklpi(l, i,I) =

jklpi (l, 2,1) =

jklpi (l, 3,1) =

ipord(l,l) =

SEND

1 1 2 50

81 81 2 50

1 81 1 1

1 81 51 51

1 81 1 51

1 81 1 51

i, 41, 41,

i, 51, I0,

3, 3, i,

2, I, 3,

1 5 0 1

1 5 0 -i

1 5 60 1

1 5 60 -i

1 1 50 1

5 5 50 -i

nblock = 1 ,

nmax = 1000 ,

nc = -i ,

nsprt = 50 ,

np = 900000 ,

ifxprt = 0 ,

ifxplt = 0 ,

12plot = -i ,

iplot = 0 ,

numdt = 0 ,

ivardt = 2 ,

ifiltr = 2 ,

ispect = 1 ,

lrest = 1 ,

ibord = 1 ,

mbord = 1 ,

0.7143000 1.0000000

0.5143000 0.5000000

-i

0

25

25
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• Transonic Diffuser Case, Low Reynolds Number Approach

$INPUTS

pref = 2819.5 , nblock = 1 ,

trefr = 525.6 , nmax = i000 ,

vrat = 0.100000e+01 , nc = -I ,

tsuth = 0.198680e+03 , nsprt = 50 ,

re = 1.339171e+06 , np = 900000 ,

pr = 0.720000e+00 , ifxprt = 0 ,

ifxplt = 0 ,

dtcap = 0.5 , 12plot = -i ,

pcqmax = i0.0 , iplot = 0 ,

splend = 0.50

stopl2 = 1.000000e-15 , numdt = 0 ,

stoptr = 100.0 , ivardt = 2 ,

xmach = 0.10 , ifiltr = 2 ,

ispect = 1 ,

irest = 1 ,

ibord = 1 ,

mbord = 1 ,

gamma = 1.40
dis2 = 0.25

dis4 = 0.64

SEND

$TURBIN

imutur = 2,

imutr2 = I01,

mwalf = 0,

nturb = 0,

order = 1.0,

nrlx = I,

ifmax = 2,

prt = 0.9,

tuinl = 0.02,

tmuinl = 10.0,

SEND

SBLOCK

invisc (I) =i,

lamin (I) =i,

npseg =i,

SEND

SPRTSEG

jklpi (l, l, l)

jklpi (l, 2,1)

jklpi (l, 3,1)

ipord (i, I)

SEND

1 1 2

81 81 2

1 81 1

1 81 81

1 81 1

1 81 1

invisc(2)=l,

lamin(2) =i,

nbcseg =6,

= I, 41, 41,

= I, 81, i0,

= 3, 3, i,

= 2, i, 3,

invisc (3) =I,

lamin(3) =i,

80 1 5 0 1

8O 1 5 0 -i

1 1 5 60 1

81 1 5 60 -i

81 1 1 50 1

81 5 5 50 -i

0.7143000

0.5143000

1.0000000

0.5000000

-I

0

4O

41
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