
m IIIIII nllllll~lllIlllllIlIlIll(
PB96-149711

AUTOMATIC ABSTRACTION IN PLANNING

STANFORD UNIV., CA

MAR 91

U.s. DEPARTMENT OF COMMERCE
National Technical Information Service

Mll-ch 1991 Report No. STAN-CS-91-13S7

Thesis

III 111111 Illfl /111111 1111111111
PB9E -149711

AUTOMATlC ABSTRACTION IN PLANNING

by

Jens Christensen

Department of Comput'2r Science

Stanforj University.

Stanford, Ca';fornia 94305

~I"OOUCID If . .ttn1
u. Dip.un",'" o} C:~(J

Nit"'" hctw1lC1W Irrfor~"'" ."~IC •
.... ~.'I1r lltA.

AUTOl\1ATIC ABSTMCTION1N PLANNING.

A DISSE:RTATION

SUBMITTE:D TO TilE DEPARTMENT OF COMPUTER SCIENCE

AND 'tilt coMMITTEE oN GRADUATE STUDItS

OF STANFORD UNlVERSITY

IN PARTIAL FULFILLMENt OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Jens Christensen

March 1991

© Copyright 1991 by Jens Christensen

All.Rights Reserved

liTIS II 11IIhorized 10 rtproduCl Iild •• Ulhla
rlllOr). PnrlnlCilon fUt furtb.r re~Rduttl~n
.. illllIt obliln,d from Ih' cOpyright own.t.

ii --------

I certify that I have read this dissertation and that in my

opinion it. is fully adequate, in scope and in quality, as a

dissertation. for the degree of Doctor of Philosophy.

Prof. Nils J. Nilsson
(Principa.l Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in qHality, as a

dissertation for the degree of Doctor of Philosophy.

Prof. Yoav Shoham

I certify that I have l'ead this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Dr. David E. \Vilkins

Approved for the Clliversity Comttlittee oil Graduate

Studies:

Dean of Graduate Studies

iii

Abstract

Traditionally, abstraction in planning has been.accomplished by either state abstrac

tion or operator abstraction, neither of which has been fully automatic. We present

a new method, predicate reiax4tion, for automatically performing state abstraction.

Predicate relaxation generates abslJaction hierarchie.~ that, for some domains, can be

more useful than those generated. by previous abstractiotl mechanisms. PABLO, a

nonlineat hierarchical planner, implements predicate relaxation. Theotetical, as well

as empiri~al results are presented. which demonstrate the potentia! advantages of us

ing predicate relaxation in planning. Rela).ed predicates can also be used by EABLO
to achieve a limited form of reactivity, whereby an executable.sequence of actions is

constructed in case of interruption.

We also present a neW definition of hierarchical operators that allows us to guar

antee a limited form of completeness. This new definition is shown to be,.in some

ways, more flexible than previous definitions of.hierarchical operators. The ability to

plan using such operators. has been incorpotated into PABLO.

Finally, a Classical Truth Criterion is ptesented that is p.roven to· be sound and

complete for a pJanning formalism that is general enough to include most classical

planning formalisms that are based on tht! STRIPS assumption.

iv

Acknowledgements

First and foremost I would like to thank Neguine, .whom I met, courted, and married

during.the five years I spent in the Ph.D. program at Stanford. She helped make the

eXperience a pleasant and memorable one.

The research itself would have been impossible without the enlightened guidance.

of Nils Nilsson whose encour"'gem\.!nt and insights became indispensable. I would also

like to thank my other two advisers, David Wilkins and Yoav Shoham, who brought

different viewpoints to. the problems I was tackling, and made many thoughtful con

tributions along the way.

The Principia group provided all excellent forum for airing ideas. SpeCial thanks

go to Adam Grove, without whose help the chapter on the Classical Truth Criterion

could .not have been written. Andrew- Kosoresow, Karen Myers, Rith Washington,

Eunok Paek, and Alon Lev.y reviewed the work and.made valuable suggestions. Matt

Ginsberg also made many useful suggestions along the way.

No acknowledgements would be complete without mentioning my parents whose

insistence. on my coming to Stanford as well as their support and encouragement

along the way are a tn<1jor reason for the successful completion Ot this thesis.

Finally, I wouldJike to acknowledge the suppOrt Qf NASA through NASA Grant

NCC2-494 and T~xas Instruments through Contract No. 7554900.

Contents

Abstract

Acknowledgements

1 :Review of Abstraction in Planning

1.1 Basic Concepts

1.2 Previous Work

1.2.1 STRIPS Assumption_ .

1.2.2 Macro Operators

1.2.3 ' Hierarchical,Operators

1.2.4 State Abstraction .

1.2.5 - JJiscuSSion ... -.

1.3 Theoretical R.esults on Abstraction

1.4 Conclusion. ~---. .

2 Predicate Relaxation

2.1 Introduction....

2.2 Computing Predicate Relaxation

2.3 PrediCate Relaxation Example ...

2.4 Discussion of Predicate Relaxation

2.4.1 Context-dependency' __ -,_,

2.5 Summary

VI

.. ~.. . .. - .. . -

.

iv

v

1,

2

3

3

4

4

5

S

8

10

11

11

12

14

11

18

18

3 PABLO.

3.1 Introduction. .-.

3.1.1 Post-NOAH Planners .

3.2 ., Planning Terminology

3.3 Overview ,of PABLO

3.4 Underlying Planning Algorithm .

3...4.1 Plan .Representation . ~.

3.4.2 Rela.xation Phase

3.4.3 Planning Phase

3.4.4 Truth Criterion

3.5 Examples of planning with PABLO. . .

3.5.1 Towers of Hanoi '

3.5.2 COIIlparjson with Other Planners

3.6 Blocks World'.. .

3.6.1 Example Problem

3.6.2 Another Example

3.7 Extensions to Predicate Relaxation . . .

3.7.1 Associating Costs. with Operators

3.1.2 Limit Relaxation Operators

3.1.3 Relaxation over Hierarchic-a! Operators ...

3.8 Conclusion......

4 Complexity Analysis.,.

4.1 Introduction..............

4.2 Previous Work.

4.3 Complexity Analysis .. ~ ... ' ..

4.3.1 Planning at one level

4.4 Discussion

5 Empirical Analysis

5.1 Introduction ...

5.2 Towers of HanoL. -...

vii

20

20

23

24

25
26

29
29

30.

30
31

31

33

34

34
35
38

38
39
39
39

40.

40

40

41

41

46

48

48

48

5.3 Blocks World ..

5.4 Robot Domain

5.5 Eight Puzzle.

5.6 Discussion......

6 Using Abstractions.to Achieve Reactivity

6. L .. -Introduction

6.1.1 Universal Plans

6.1.2 Action Nets

6.1.3 Situated Action Rules

6.1.4 Subsumption Architecture

6.1.5 Discussion.........

6.1.6 Classical Approaches to Reactivity

6.1. 7 Forward Search

6.1.8 Left R(utsive Wedge Planning

6.2 Reactive Reasoning with PABLO

6.3 Identifying.Executable Actions ... ~

6.3.1 Constructing Incomplete Plan~

6.3.2 Comparison With other Classical Approaches

6.4 Comparison to Reactiv.ePlans ..

6.5 Conclusion...........

7 Operator Hierarchicalization

'Z.1 Introduction

7.1.1 MACROPS

7.1.2 SOUP op~i'ators

7.1.3 Procedural Net Operators

7.1.4 Formalized Reduction.Schemata

7.1.5 Problems with Hierarchical Operators.

7.2 Generalizing STRIPS-style operators

7.3 Representation.

7.4 . Hierarchical TWEAK -. .

viii _

. _ ...

49
52

53

54

56

56

56

57.

57

58.

58

59

60

·.61

. 61

62 .

65

67

68

69

71
71

71

72

74

75

75

77

78

79

704.1 Selt~ting Hierarchical Operators. _ ..

7.5 . Differences with Other Hierarc.:hital Operators

7.6 PABLO .Implementation. _

7.7 RetainiIlg useful plans

7.7.1 Towers of Hanoi .

7.8 Conclusion........

8 COl7.lbining Abstraction Methr. js

8.1 Introduction

8.2 Robot World Example

8.2.1 One Level of Abstraction

8.2.2 Two Levels of Abstraction . .

8.3 Generalizing Predicate Relaxation • ~

8.3.1 Shift of SemiJ,ntics _

804 ABSTRIPS domain .. _ -.-.

8.4.1 Managing the Size of Relaxation Expressions.

8.4.2 Example from ABSTRIPS

8.5 Sununary

9 Classical Truth Criterion

9.1 IntroductioP..

9.2 Modal Truth Criterion

9.3 The Classiec..l Planning Ontology

9.4 Classical Plan Logic

9.4.1 STRIPS A ~sumpti('l~

9.4.2 Lemmas........

£.4.3 First attempt at defining a new truth criterion ..

9.5 Classical Truth Criterion

9.6 Algorithm for checking truth criterion

9.7 Sununaty

ix

80

80

87
88

89

92

93

93

93

96

98.

98..

.99

lOG

101

105

108

109

109_

110

114

115

117

118

119

119

128

132

10 Further Work

10.1 Real World Applications

10.2 Extensions to Predieat.e Relaxation

10.3 ImplementatioIi of the Classical Truth Criterion

10.4 Real-time Extensions _

10.5 Operator Abstraction.

10.6 Concluding Remarks

Bibliography

x

123

133

133

134

134

135

135

136

List .. of Tables

3.1 Base Level Control Structure of PABLO

3.2 fuse Level Control Structure continued.

8.1 First half of relaxation expression.

8.2 Second half of relaxation .expression.

8.3 Relaxed expx:ession using the simplification filters. .

9.1 Algorithm for checking truth criterion.

xi

27

28

103

104

105

130

List of Figures

1.1 State space graph. .. 2

1.2 ABSTRIPS'Example ftom Tenenberg 7

3.1 Towers of Hanoi 32

3.2 Trace of PABLO solving the Towers of Hanoi. _. 32

3.3 Blocks World . . • 34

3.4 Blocks world trace. ~ ~ .. ~ 35

3.5 Blocks World Problem. _ ~ .. 36

3.6 Nonlinear blocks world trace. ..•.................... 37

4.1 Abstraction Space 42

5.1 Towers of Hanoi. 49

5.2-Running times of PABLO for the Towers of Hanoi (in seconds).. 50

5.3 Running times of PABLO for the Blocks World (in seconds). . . . 51

5.4 Robot World Domain-. 52

5.5 Running times of PABLO for the Robot World {in seconds). . . . 53

5.6 Eight Puzzle. 54

5.7 Running times of PABLO for the Eight Puzzle (in seconds). ... 55

6.1 A piece of a Universal Plan repre3ented as a decision tree-. 57

6.2 Planning Problem. 59

6.3 Classic Planning Trace .. 60

6.4 Pablo's Planning Trace .. 63

6.5 Level 2 Plan..'-. 64

..
~m

6.6 Incomplete Plan.

6.7 Sussnian's Anomaly.

6.8 Reactive plan for On;Cl(X,y)

7.1 A STRIPSMACROP ..

7.2 A NOAH operator

1.3 A SIPE opet:ator

7.4 (a) A plan with seemingly unresolvable conflicts (b) Resolution of COIl:--

66
61
69

72

73
74

flicts after. reduction. _'77
7.5 Diagram of Hierarchical Operators 79

7.6 Example of interleaving a p1aJLwith a hierarchical operator. -81

7.7 Yang's problem revisited. -....... _.. 82

7.8 Partition Graph. 83

7.9 Temporal Distance 85

7.10 SIPE plan example ~ 87

7.11 Hierarchical Operators for the Robot Domain 88

7.12 Robot Domain Problem. (a) Initial State, (b) Goal State. 89
1.13 Solution using hierarchical operators.

7.14 Operator Abstraction Solution Trace .

8.1 Robot World Problem

8.2 Plan at first level of abstraction .

8.3 Plan at base level

8.4 Plan at the second .abstI'action level . .

8.5 Problem that ABSTRIPS solves .

8.6 PABLO's solution

9.1 Restricted Range ~ai1
9.2 Deductive Plan

9.3 A plan with restricted ranges on vatiables

xiii

·
. ·
·
·

.

· . .
. .. .
·
· ...

.

90
92

96

97
98
99

106

107

112
113

131

Chapter 1

Review of Abstraction in Planning

One of the powerful tools employed by planners to deal with the complexity of plan

ning problems is aostraction. Although widely used, and in many guises, abstraction

remains relatively poorly understood. Because of this, systems employing abstrac

tion have usually left the definition of the abstractions up to the user of the system..

This thesis introduces a new method for performing abstractions automatically and

presents results related to abstraction in planning which should help to clarify the

potential benefits, as well as drawbacks, of using abstraction in planning. In this chap

ter, we present the different methods of abstraction employed up until now, pointing

out some potential problems along the way.

The rest of the thesis is organized.aS follows. Cha.pter 2 introduces predicate re
lazatitJn, a new method for performing a.utomatic abstraction .in planning. Chapter 3

presents PABLO, a nonlinear planner that implements predicate relaxation. Chapter

4 discusses theoretical results pertaining to the complexity of. using predicate relax

ation in planning. Cha.pter 5 presents empirical results deIilonstratifig the inct~ased -

efficiency gained when using predicate relaxation in planning. Chapter 6 discusses

how an extellsion to predicate relaxation cao. be used to achieve a limited form of

reactivity in planIiing. Chapter 1 discusses a method fot performing operator hietar

chicalizatiort in planning, which guarantees a limited fottn of completeness. Chapter 8

describes how both abstraction techniques cail be used effectively in planning. Chap

tet-9 describes a fiew.truth criterion for planning which is based oli a very_general

1

2 CHAPTER 1. REVIEW OF' A.BSTRACTION IN PLANNING

planning formalism. Finally, chapter 10 discusses open problems and further work

that needs to be done in the area of abstraction in planning.

1.1 Basic Concepts

When thinking about abstraction it is often uSeful to do so in the context of a state

space graph.. In such a graph each node corresponds to a particular world, state,

and eacb directed arc to a particular operator which transforms that world state into

another. Figure 1.1 is.an example of a general state space graph.

Figure 1.1: State space graph

It is the taSk of a planner, when given a description of a patticular initial state in

the state space gtaph as well as a descriptipn of one or nlore desired goal states, to -

discover.oile or more paths from the initial state to one of the goal states. Of course

the state space graph h. often p-tohibitively large, possibly infinite, and is therefore

not usually explicitly represented. Rather I the state sp'ace graph is implicitly defined

by a set of operators, i.e. functions from states to state,s. Parts of the state sp,ace

gJ'ap ~ can be const.tucted from the set of operators and a given state by applying

all pOf!~nlle operators to the given state, repeating the process for all newly created

state6~Fof a planning problem to be solvable it is iiecessary that one of the goal

state.~ can be constructed in this manner from the initial state.

Genetally, When we speak 6f abstraction in planning, it is implied that one or more

1.2. PREVIOUS WORK 3

elements of a planning PX9Q.1em is being abstracted, i.e. either the initial state, One

or more of the oper.ators, Or the goal states. As we shall see, it has generally been th€'

case that pl~ning systems have concerned themselves with abstracting operators.

Abstraction has been used as a mechanism in planning for two reasons. First, it is

a natural extension, and one. which people often use when doing everyday planning.

Second, it is likely that planning with abstractions improves the efficiency of the

plannet.

1.2 Previous Work

1.2.1 STRIPS Assumption

Early work in planning [Green, 69] led to the discovery of severe deficienCies in trying

to apply theorem proving to the planning problem. One of the main problems Was

the need for frame axioms [McCarthy and Hayes, 1969], axioms. which stated what

remained true from one state to the next. As it turns out many. such axiom.s_ are

generally needed for most planning problems.

STRIPS-~Fikes and NilSson, 1971] embodied one approach for dealing with this

problem. In STRIPS, operators were structures consisting of a precondition list, a

delete list, and a.n add list. States Wece sets of well-formed fotniulas. An operator

was applicable in a state if all the items in the precondition list could be unified with

members-of the state. The result of applying an operator was that jtems in the delete

list were deleted from the state, and items in the add list were added to the state.

These operators embodied what has come to be known as. the STRIPS assumption

- that whatever is not explicitly listed as an effect in an operator is automatically

copied to the neW state. The STRIPS assumption has proven ail effective approach

to the frame problem, obviating the need for time consuming ftame axioins. Virtually

all subsequent planners make use of the STRIPS assumption in some form. Some

of the neWer pljinners relax the STRIPS assumption somewhat in return for more

flexibility..in opera.tor tcpre'Sentation [Wilkins, 1988].
Wheft subsequently we refer to oi!.etatots we.will nieafi STRIPS style operators,

4 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

unless we specify o~herwise. We now discuss some of the p~evious work on abstracting

planning problems.

1.2.2 Macro Operators

One wayan implicit state space graph cail be abstraded is by defininKnew operators ..

One useful mechanism is to create new macro operators, each of which is the result

of composing a sequence of two or more operators. Doing so allows the planner

to traverse the state space graph more quickly, since intermediate, and presumably

unimportant states, can be bypassed when transforming one state into another state.

The use of maCro operators can be.found in one of the earliest discussions on the

use of abstraction in problem solving, namely Amarel's classic paper [Amarel, 1968].

Amarel traces a solution to the Missionaries and Cannibals problem which involves

the introduction of macro operators, as .well as other forms of abstraction which we

will discuss later. Thtough these methods Amarel demonstrates how a seemingly com

plicated problem can be transformed into a trivial One by exploitiT'g useful properties

of the state space graph.

Oile of the first examples of an abstraction method being impl,~mented in a pla~aer

is the use of MACROPS· in STRIPS [Fikes et aI, 1972]. A MACROP is a macro.

operator, composed automatically by STRIPS from a successful plan. This is done

by storing the plan in a triangle table and then generalizing it. by turning constants

int.o variables. This-generalized plan becomes a MACROP and can then be used by

STRIPS to speed up planning considerably.

1.2.3 Hierarchical Op~rators

Although macro opera.tors proved successful in STRIPS, their sequential was a limita

tion.-NOAH [Sacetdoti, 1971) introduced the idea of least commitment to planning.

Plans in NOAH were no longer represented simplY as linear sequences of operators,

but rather as partial.orders of operators, compactly representing a set of total ordets.

These partiai orders were represented in a procedural net. NOAH is the first example

of a planner that searches iii a space of partially ordered plans rather than the base

1.2. PREVIOUS WORK 5

state space provided by ~he domain. Strictly spealsing, NOAH did not search this

spate, since no backtracking mechanism wa,; incorporated.

In NOAH, macro operators were generalized, so that they no longer Were simply

compositions of sequ~nces of operators, but rather were procedural entodings which,

when executed, would ptod1!<;;~ a portion of a procedural net .. These operators are

termed hierarchical operators, and executing their procedural encodings is referred

to as ezpanding an operator. The actual result otan operator expansion in NOAH

might depend on the situation in which the operator is I'!xpanded, $0 there is not a

simple one to one relationship between the hieraIchical operators and partial orders

of base level operators.

The llse of hierarchical operators has. been by far the most commonly used abstrac

tion mechanism in planning since the advent of NOAH. Almost all ensuing planners

e:upJoy some form of hierarchical operators, includingJ'~'QNtlI~L[Tate, 1977} and SIP~

[Vvilkins, 19S5}.

Unlike MACROPS in STRIPS"there is no example of a planner which learns

hierarchical operators from the basic domain operators. Rather, they must be encoded

by the user of the planner.

Because macro operators and hierarchical operators are defined in terms of other

operators, these mechanisms will be termed operator abstraction mechanisms.

1.2.4 State Abstraction

Another planner that utilizes abstraction is ABSTRIPS [Sacerdoti, 19741:.. It is based

on.STRIPS (Fikes and Nilsson, 1971) and utilizes a.different abstraction mechanism

from operator abstraction. Before proceeding.it is important to have an undetstaildin~

of the basic planning mechanism employed by ABSTRIPS.

ABSTRIP8 abstracts by assigning, criticalities to predicates . .A criticality indicates

the relative difficulty of making the particular predicate ttUe in the domain, with the

highest cr~ticalities being assigned to predicates which cannot be affected by_the

planner.

Planning ;'1, A BSTIUPS proceeds in a "length-first" maniler. At each stage. a

threshold criticality is determined. The planner then performs a complete STRIPS

6 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING..

planning procedure, the sole difference being that .. predicates which have criticalities

less than the current threshold. are assumed to hold. The idea. behind this is that

those predicates can in some senSe be considered details and can be achie-ted relatively

easily. After each pasS ABSTRIPS lowers the criticality threshold and proceeds to

refine the current pla.n by attempting to achieve .predicates which are..nOw above

the threshold. Planning is complete once the threshold is less than the smallest_

criticality .. Using this method, Sacerdoti .was able to achieve great speedup on sorne

problems when compared to the bare-bones STRIPS syst~rti. The criticality values

were generated in a semi-automatic manner, with the user proyiding a partial order __ ..

of predicates which AHSTRIPS would use in assigning cr:ticality values.

Since at any planning lev~l, the preconditions of operators that have a criticality

lower than the threshold will be dropped, each planning level conSists of a new,

abstract set of oper~tors. Because an operator at one level is applicable in a superset

of states from its corresp<;>nding operators at lower le¥els, this form of abstraction is

termed state abstraction.

Tenenberg [Tenenberg, 1988] extends the ABSTRIPS representation by including

criticality levels in the add and delete lists of operators. This, combined with a

restricted method for computing the ctiticalities .of predicates, produces a system

which guarantees that planning at all levels of abstraction is consistent, whieh Was

not the case in the original ABSTRIPS system.

The problem is that if one is not careful when assigning criticality values it is

possible to generate plans at higher levels of abstractior. which result in inconsistent

states. For example, Tenenberg presents the problem depicted in figure 1.2 in his

thesis.

In the .example the. set L-defines the language of the system, the set E is the

set of essential predicates, namely those predicates which can be manipulated by the

operators, 0 is the set of operators, K is a set of domain axioms, and crit is the set

of criticality tnappi~gs on the predicates.

If the initial situation is described by

{On(A, B), Clear(A), Holding(Cn _

1.2. PREVIOUS WORK

L: (constants = {A,B, C}), (variables::: {x, y, z}) (functions = 21),
(predicates = {On, Clear, HandEmpt:', Holding, a})

E = {On, Clear, Hand~mpty, Holding}.

0= {unstack(x, y)

P:{On(x, Y), Clear(x), HandEmpty},
D:{On(x, y). Clear(x), HandEmpty},
A:{Holdingtx), Clear(y)},

K:: { Holding(x) 1\ yax :J ., Holding(y),
HandEmpty ::l -, Holding(x),
Cleanx) :J -'On(y, x),
On(x, y) :J -,On(y, x),
-, On(x, x),
AaB, BaC. AaC}.

stack(x, y)
P:{Clear(y), Holding(x)}.
D:{Clear(y), Holding(x)},
A:{On(x, y), Clear(x), HandEmptyH

erit =-{ < On. 1 > ,_ <:: Clear. 1>, < HandEmpty, 0>, <:: Holding, 0 ~}

Figure 1.2: ABSTRIPS Example from Tenenberg

7

then the plan < unstack(A, B) > is applicable since the preconditions with -criticality

levell are satisfied. However, applying-the pll'u results in the state

{Holding(C),H olding(A) , Clear(B)}

which is inconsistent with the domain axiom which states that two blocks cannot be

held at the same time.

Tenenberg proposes a way of assigI.1ing criticality values which guarantees that

such inconsistencies do not occur. As We shall see later, out technique of predicate

relaxation avoids this problem as well; albeit in a different manner.

Knoblock [Knoblock, 1990] uses a graph theoretic technique to identify depen- -

dencies among predicates in order to remove progressively more predicates at higher

levels (l abstraction. This results in abstractions which guarantee that if there is a

plan at a high level of abstractioil! there will be one at a lower level ail well.

8 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

1.2.5 Discussion

In actuality, there is not such a dear dichotomy between the state. and op'~rator

abstraction in their implementations . .Hierarchical operators can be uSed to achieve

state abstraction. This can be done by deflning hierarchical operators w.hich.do .not

reference all the necessary predicates referenced by the operators, Or their refinements,

in their bodies. This is similar to the ABSTRIPS approach, but differs in that there is

no enforcement of explicit-abstract levels, as is the case with the .explicit assignments

of criticalities. Although more flexible, this lack of explicit criticality levels gives

rise to "hierarchical promiscuity" [Wilkins, 1988], which can result in unnecessary

planning. The problem arises when the planner tries to determine the truth value

of a predicate, call it P. This is generally done by backchaining through the plan

looking for places where P is changed. If operators are represented at different levels

of abstraction there might be .cases where the rennement of an operator results in a

change to P, but this is not apparent at the current level of abstraction. In such cases,

the truth value of P cannot b~ correctly determined. As we shall see later, there are

several possible solutions to hierarchical promiscuity, but it remains a serious issue in

planning with abstraction.

Furthermore, state a.bstraction generally results in the generation of new opera

tors, which. are used to generate the abstract state space. Although the exact dif

ferences .between state and operator abstraction are not alway~ obvious it-remains a

useful concept,for distinguishiqg the two types of abstraction.

1.3 Theoretical Results ott Abstraction

One mighLask by how much abstraction improves planning efficiency. Empirically; ___ ... _ _

it.seems abstraction can be of -great help. ABSTRIPS waS able to achieve significant
•

speedups ii!. planning titne' as compared to STRIPS. The adherence to hierarchical

operators in post-NOAH planners indicates that they are of great value in improving

planning efficiency. There are also a few theoretical results to back up the value of

abstraction in pl~IlIiing.

Kotf (Korf, 1981] proves that under certain restrictive assumptions the optimum

1.3. THEORETICAL RESULT5...0N ABSTRACTION 9

abstraction hierarchy of a state-space of size n consists of In n levels of abstraction.

Further, such an abstraction can reduce the eXpected search time from O(n) to O(IOL

n). If n grows exponentially Ylith the length of the plan, as is often the case, this.-

result imp'lies that the state space can be searched in linear time, given the abstraction

hierarchy.

However, Korf makes one especially restrictive assumption, namely that a plan

at one .level maps directly to a_plan at a lower. level. This is usually. not the case in

planning, e.g. in ABSl'RIPS. Rather, once a plan has been found at a higher level,

more planning is necessary to develop the plan at the lower level. The plan at the

higher level acts as a guide and proposes subpr_oblems to be solved.

Knoblock [Knoblock, 1990] has analyzed this more general problem. liowever, it

is difficult to arrive at useful results unless several new assumptions are made. The

assumptions are as follows. First, if there is a solution at an abstract level, there is one

at a lower level. This property is referred to as downwards-compatibility. Second, at

one level of abstraction, each subproblem defined by the abstract level is independent.,

so that no backtracking is necessary. Third, every subproblem of an abstraction level

is of the same size. Finally, the abstract planner produces the shortest solution.

Given these assumptions Knoblock derives that the worst case complexity of plaIi

ning is reduced from O(b') to 0(1), where b is the branching factor ofthe search space,

and I is the length of the solution plan. This is analogous to._Korf~.result.

Korf's and Knoblock's results are very encouraging in. that they suggest abstrac

tion .can transform intractabJe combinatorial problems into.. tractable ones . .However,

in . .practice, the.restrictive assumptions made may not h?Id, and. the results may

not always be as spectacular.. Specifically; the. abstraction spaces may not. satisfy

downward-compatibility, meaning that a plan at a higher level has no expa.nsion at

a lower level. It is also possible that the subproblems defined at lower levels ate not

really independent,. thus necessitating backtracking across subproblems at one level of

abstraction .. Nonetheless, these results provide an impetus. for continued research on

abstraction. It is also clear that human problem :ccolving of ten. makes use of abstrac

tions when plannillg. Capturing this ability rein.jns a strong motivation for pursuing

research oil abstraction.

10 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

1 .. 4 Conclusion

Previous work on abstraction in planning falls under one of two rubrics, either op~ra"

tor abstraction, the most commonly used, or state abstraction. Hierarchical operators

are gederally considered useful for performing operator abstraction, although they can

be used for state abstraction as well. ABSTRIPSwas able to successfully perform.

state abstraction by ~signi~g .criticality values to predicates.in the preconditions of
operators. Finally, theoretical results suggest that planning can, in the best case,

reduce planning time from exponential in the length of the plan down to linear.

Chapter 2

Predicate Relaxation

2~1 Introduction

In this chapter, we introduce predicate relaxation, a method for aut(lmatically per

forming state abstraction. The motivation for defining predicate relaxation is the

need for determining whether a predicate should be considered a detail in a particu- _

130: situation. As we have seen, ABSTR!~S accomplishes this by associating criticality

values with p~edicates. However, whenever a predicate has a criticality value lower

than the current planning threshold that predicate is true in all states of the search

space. We will argue that whether " p~edicate should be considered a detail depends

on the situation in which we are evaluating the predicate.

Consider the following example. Suppose we are planning a bus trip from one

location in a city. to another .. When planning at a high level of abstraction, we

wodd generally ignore the .issue of whether or .not We have adequate bus fares and

concentrate 011 the route plc~.nning aspects of the problem. At high levels of abstraction

we 'Nould like to consider having a bus fare a detail. However, if our plan is to be

executed fairly soon, and we do. not have exact change in our pockets, getting the

exact bus far~ might not be trivial, and we should not tr.:at having the bus fare as a

detail. However, if the first bus stop is close to a token booth, it should be relatively

easy to obtain the bus fare, in which case it becomes a detail again. This, of course,

preSUppOses that we have enough mOIley to buy. a token. If 1;.ot, having bus fate ceases

11

12 CHAPTER 2. PREDICATE RELAXATION

to be a detail again.

The point should be obvious. Whether or not having the bus fare should be

considered a detail depends on the situation. In some situations obtaining the bus

fare is trivial, in others iUs more involved and requir~s some planning. ABSTRIPS's .

approach of using criticality values is unable to capture this context-dependency, and

we.areJed to defining p.redicate relaxation.

The basic idea behind predicate relaxation is that, given a base level predicate P,
a new predicate P;cl is defined which is true in a superset of statE."S in which P holds.

We say that Picl is a rclazed version of P.

The above process can be repeated by defining Piel from Picl' and so Oli, creating

a hierarchy of predicates. Of course, once_a predicate has been relaxed to the point

that it holds in all states, there is no need to relax it further.

When we plan, if instead of using the original predicates, we use the newly defined

relaxed ?redicates, we can decide if a predicate should be considered a detail by .

checking its relaxed definition. If the relaxation holds we say that the predicate is a .

detail and we do not plan for it. We will see later how this satisfies our requirement

of context-depe..ndency.

2.2 Computing Pre!iicate Relaxation

Predicate relaxation defines a new predicate Pf'~, from a predicate P in such a way

that. P;(d holds in all states in which P holds and in all states in which P can be

achieved by the application of one operator.

In order to precisely define predicate relaxation, regression must be introduced.

Waldinger [Waldinger, 1917] introduced the technique 01 regression-in the AI liter

ature, although he credits [Mantia, 1968, Hoare, 1969, King, 1969] with the original

discovery.

Deflnitiort 1 The regression Reg(o,p) of predicate P over action 0 is the weakest

relation that ensures the subsequent truth oj P after executing o.

Regression can noW be used to define predicate relaxation.

2.2. COMPUTING PREDICATE RELAXATION 13

In..a. domain with m operators, given a predicate P, we define P::el as follows:

P~el - P
m

P~l - P~,lVReg(Opi,P:ell)

where Reg(OPi, P) is the regression of predicate P through operator OPi.

In general, P will have a non-zero arity, e.g. Clear(x) or On(A, B). When

computing predicate relaxation, we will usually only do so once for each predicate,

and replace its arguments with schema variables. For example, after comp~ting the

relaxation of On(x, y), the result can· be instantiated to the predicates On(A, B),

On(C, D), etc. There is no need to compute the relaxation.expresstonseparately for

each different predicate.

It is also the case that Pr~l becomes more complex as n grows. It should be

noted that the regression of P"~l is always computable, although the complexity of

the computation may increase with the complexity of Pr"el'

To improve the efficiency of comput~tion one can check before regressing a pred

icate P that it appears in the add list of the operator. If it does not the regression is

not necessary (the resulting expression would simply be subsumed by P). This does

not-mean that we never regress predicates through op~ra.tors where they do not ap

pear in the add lisL If we are regressing P 1\ Q throu!h an operator where P appears

in the add list, we must also tegressQ. through the same operator, even though it

might not a~pear in the add list ..

In many cases the regression of a predicate through an operator wHl he eqy.ivalent

to the preconditions of the operator with the appropriate variable instantiatioils.

However, . there are possi hIe complications. For example, suppose we are regressing

the predicate P(:t) through and operator and P(y) appears in the delete list of the

operator, but not in the add list. Then, one of the conjuncts in t lte resulting expression

will be x :f:. y, to guarantee that P(x) is fiot deleted by_theappUcation ofthe operator.

We will see later how we cali use relaxed predicates to considerably speed up plan

ning. We noW provide an example to help the teati~r become faiTliliar with predicate

14 CHAPTER 2. PREDICATE RELAXATION _.

relaxation.

2.3 Predicate Relaxation Example

Suppose we have a blocks-world .system with the following four operatots, where P is
the precondition list, D is the delete list, and A is the add list.

Pickup(x)

P: {Clear(x) ,Handempty }

D:{ Clear(x),Handempty}

A: {Holding(x)}

Putdown(x)

P:{Holding(x)}

D:{Holding(x)}

A:{ Clear(x),Handempty}

Stack(x,y)

P: { Clear(y) ,Holding(x) }

D:{Clear(y),Holding(x)}

A:{On(x,y),Clear(x),Handempty}

Unstack(x,y)

P:{ On(x,y),Clear(x),Haildempty}

D:{ On(x,y),Clear(x),Handerrtpty}

A: {Holgipg(x),Clear(y) }_

1'0 simplify the example We assUme only two block~ A-and B.

The predicates would be relaxed as follows:

HandemplY:c:l =- Handempty V HoJding(x) V (Holding(y) A ctear(z))

2.3. PREDICATE RELAXATION EXAMPLE

which can be simplified to:

HartdemptY!el == Handempty V Holding(x)

which in turn catl be reduced to:

1 .
H andemptYre/ = T

assuming normal domain constraints.

Here we see that l1 a:naempty can easily be guaranteed to. hold.

Proceeding,

Clear:el(x) = C{ear.(~) V Holding(x) V (Clear(y) A Holding(x))

V(On(z, x) A Clear(z) A Handempty) .

Clear~el(x) = Cl~ar(x) V Holding(x) V (On(z,x) A Clear(z) A Handempty)

Although it might not be obvious at first glance, using appropriate domain con

straints and the fact that we have only two blocks the above formula reduces to:

Next we relax H olding(x):

Holding:el(X) = Holding(x) V (Clear(x) A Handempty)

V(On(x, y) A Clear(x) A H andempty)

H oldi71g~eJ.X) = Holding(x) V (Clear(x) A Handempty)

At the next stP.p we-relax Cleat(x) A Handempty:

Holding:c/(:r) = Holding(x)V

16 CHAPTER 2. PREDICATE RELAXATION

((Qlear(x) V Holding(x)) A (Handempty VHolding(z)))

Note that unlike our independent derivation of Clear:el We could not use-the

preConditions of the Unstack operator, since Unstack clobbets Handempty.

We can simplify:

Ht>lding~el(X) = Holding(x) V C/ear(x)

Holding~el(X) = Holding(x) V Clear(x) V (On(z,x) A Clear(z) A Handempty)

Using the fact that we have only two blocks this reduces to:

Holdin9~el(x) = T

All that .remains is to-relax On(x, y).

On!et(x,y) = Oti(x,y) V (Clear(y).A Holding(x))

As before we can replace Clea'r(Y) A Holding(x) by Holding(x).

On!el(X,y) = On(x,y) V Holding(x)

'then, relaxing Holding(x),

On~el(X,y) = On(x,y) V Holding(x) V (Clear(x) A ilandempty)

Relaxing Clear(x) A Handempty,

On~el(X,y) = On(x,y) V Holding(z) V (Clear(z) 1\ Handempty) V liolding(y)

Finally, relaxing H olding(y) We get,

On:el(x,y) = On(x,Y) V Holding(x) V (Clear(x) A liandempty)

VHulding(y) V (Clea'r(Y) A~liandempty)

til our simple two blocks domaih this reducCS-to:

2.4. JJISCUS5ION.oF PREDICATE RELAXATION 17

2.4 Discussion of Predicate Relaxation

It should be obvious .that if Pr~' holds in a state, there is a plan which can achieve P
in n steps or less. The plan is j~st the sequence of operators through which P was

regressed to arrive at the expression that holds in the current state. However., because

we likely Simplified the regressed expression along the. way, we do not necessarily know

what this plan is. We just know that there is indeed such a plan. By the definition of

regression, this expression being true guarantees that P will hold after the application

of that sequence of operators.

If P:el holds, but Q~el does not, one can say that P:e, is more of a "detail" than

Q~eh since P can be achieved more easily than Q. Predicate relaxation provides a

gradual Widening of th~ states in which a predicate holds. In ABSTRIPS, a predicate

can either hold in those states in which it was intended to hold, or, when its criticality

value is less than the current threshold, hold in all states of the domain. This change in

the semantics of a predicate cali be quite sharp. Predicates abstracted.with predicate

relaxation, however" avoid this, semantic cliff, since the set of states in which they

hold is gradually enlarged at each relaxation level.

Unlike ABSTRIPS, the abst~action hierarchy is computed automatically. In AB

STRIPS the_user had,.to supply a partial order of predicates which was used to

compl,1te criticality values. It is not..always obvious what this Rartial order should be.

Also, besides the semantic cliff that ABSTRIP's method suffers 1rom there is a

mOre SUbtle problem. ' Because of the way criticality values are cornp4ted by AB

STRIPS it often happens that one predicate will have different criticality values in

the precondit,ions, of different operators. For example, in the example pr~ented in

[Sacerdoti, 1974] the following operators are pres¢ut(;)d: ' __ ,__ ",_,_,

Gothrudr(R,d,ry)

P: {[6]Type(d,Door l,[5]Intoom(R,rx),[6]Connects(d,tx,ry),

[2]Status(d,Open),[6]type(ry,noom)}

D:{Nextto(R,$l),Intoom(R,rx)}

A: {Ihtoom(R,ry)}

18 CHAPTER 2. PltEDICATE RELAXATION

Close(lt,d)

P:{[6]Type(d,Door),[5]Nextto(R,dW5]Status(d,Open)L

D:{Status(d,Open)}

A:{Status(d,Closed)}

In the Gothrudr operator the Status(d,Open) precondition has a criticality value

of 2, whereas iIi the Close(R,d) it has a criticality of 5. This means that iIi the same

situation,..when planning at a criticality threshold between 2 and 5, ABSTRIPS treats

Status(d,Open) as a detail for one operator,.but as an important predicate that needs

to be plannE>d for in another operator. This type of inconsistency does not happen

with predicate relaxation.

In the next chapter we will have more to say about the differences between plan

ning with predicate relaxation and.ABSTRIPS.

2.4.1 Context-dependency

It should be clear that predicate relaxation can be used to satisfy our requirement

that the detailness of a predicate should depend on the situation in which the pred

icate is being evaluated. Using our previous example of the.bus fate,.at abstraction

level 1'1,. We will consider H ave(BiJ.sFare) to be a detail in any situations. in which

HcitJe~e,{Bu.sFare) holds. In this manner, H ave(BusFare) will. be considered a de

tail only in. those situations in which there is a.p~an.of length n or less to achieve

HCive(BusFare). This seems to be a reasonable criterion for determining when a

predicate should be considered a detail.

2.5 Summary

We have introduced predicate .teJaicWon, a tilethod fot defining hierarchies of predi·

cates. Predicate relaxat;on is a technique fot performing state abstraction. We have

also cotalpared predicate rclaxatioil to ABSTRIPS's technique of computing critiCality

2.5. SUMMARY

values~ The basic motivation lor using relaxed predicates is the context-dependency

of detaUness. Using. predicate relaxation gives us a means for determining in which

situations a predicate should be considered a detail.

In the next chapter we will see how the hierarchies generated by predicate relax~

ation can be used tb significantly improve planning efficiency~

Chapter.3

PABLO

3.1 Introduction

Since the advent of NOAH [Sacerdoti, 19771 much of planning research has concerned

itself with developing representationally powerful planners. Researchers have pro

duced planners that are quite encompassing in the domains they can represent, in

corporating resource-based rea.sonin~temwal reasoning, and other techniques to

facilitate the encoding of domains.

NOAH has had a gt~t influence on modern day' planning research. Virtually all

subsequent planners employ some-ef the techniques introduced in NOAH, the most

distinguishing one being the encoding of plans in procedural netS. Procedural nets

provide a cOnYenient representation for plans. They allow.the planner to..represent

pJans as partial orders, rather than as. linear sequences as, had p.reviously been the.

case, which allows NOAH to postpone commitment to.any particular action ordering

until absolutely necessary.

One important characteristic of the procedural net is that it encodes procedural

as well as declarative information .. The procedural data is stored in terttlS of user

defined functions (SOUP code functions, in the case of NOAH) for expanding nodes

in the procedural network at the next planning level..

A procedural net is .procedural precisely because it not only encodes information

about the problem at, hand, but also because it encodes iIlformation on how the

20

3.1. INTRODUCTION 21

problem is to be solved. .

However, with this focus on repr~~nt~tional power, there has. also been a shift ____ _

away from g~neral, domain independent problem-solving. NOAH signaled this shift

by providing nO backtracking search capability. Thus, if NOAH mistakenly chose a

wrong operator_with which to expand a subgoal, it had no provision for backing up

and attempting another operator.

Because of its lack of backtracking, a plan in NOAH is basically unfolded. from

the operator definitions. It is the responsibility of the user to provide NOAH with

correct and detailed enough SOUP functions so that the planning problem can be

solved without backtracking. NOAH _can be viewed as a programming language for

writing programs that compute plans composed of primitive actions.

It is important to note that NOAH~s lack of a backtracking mechanism, which at

first glance appears to be a serious omission, is closely tied to the planning philoso

phy embodied in NOAH. Of course, the least-commitment principle embodied in the

procedural net, allowed NOAH to avoid many dead-ends that purely linear planners

would have encountered, thus further reducing the need for a search capability.

However,just as importantly, unlike previous planners, the aim was to p1:ovide a

framework wherein the user could apply domain-specific knowiedge to Sol'\Te complex

planning problems.

NOAH shifted a major part of the problem-solving resp<;msibility from the planner,

where it.had previously resided, squarely.onto the shoulders of the user. This had the

advantage of greatly. enhancing the computational efficiency of NOAll as compared

to previous planners ..

Of course, not all the pt9blem-solving responsibility lies with. the .user. There is,

after all, Ihuch declarative infotmation in the procedural net that NOAH makes use

of. Specifically, after each le'\Tel is expanded a set of critics examines the current state

of the plan and modifies it in case of difficulties, e.g. the ·possible clobbering of a

precondition by an action.

It has generally been assumed that this division of labour between the dOfilain

specific SOUP {unctions and the domain-independent critics provided ail adequate

compromise .between .the conflicting requite-merits .of Completeness and efficiency in

22 CHAPTER 3. PAJ3LO

pl@Jlning~ We will argue that this position needs to be..re.,.examined. We .believe there

is still much to be dOne in the area of developing powerful planners and that it might

be necessary to eventually endow planners with more powerful domain independent

techniques.

This is based.on the belief that planners should strive to p1;'ovide as much problem

solving a.id as possible to the user attempting to solve a planning problem. The more

burden we place .on the encoder of the domain, the less valuable a tool the planner

becomes. Ideally, when faced with a new domain, the user should not have to discover

the efficient algorithms for solving problems in that domain, but should be able to

simply provide the planner with a naive encoding of the domain objects and primitive

actions.

For example, if faced with the Towers of Hanoi pr9blem. for the first time it does

not seem reasonable to expect the encoder of the domain to know about efficient

algorithms for solving the problem. If she did indeed know such algorithms it would

probably be more reasonable to encode them directly in a general programming lan

guage.

Rather, we can expect the encoder of the domain to provide descriptions of the

objects and relations oLthe domain, e.g. pegs, disks, dear (disk), on(diskl,disk2),

smaller(diskl,disk2); etc ... The only action the encoder is likely to be aware of is the

Move(diskl,pegl,peg2) action, namely move diskl to .peg! from peg2. This level of ..

information is. realistically ~ll that can be expected from. the encoder of the domain.

It is then up to the planner to make use of this domain description to facilitate the

development of plans for .solving problems in this dOIilain. .

Clearly, because of its lack of backtracking, NOAH is likely to fail to produce plans

in this domain. Given only the naive encoding of t.he domain, search is inherently

necessary in arriving .. ~ a flolution. Of course, search is not the whole answer. If the

planner merely provides a blind search capaQility, e.g. complete breadth-first search,

it is not aiding the user of the .. system appreciably.

Ther. :"re, it is not simply enough that the planner take responsibility for the

problem-solving in a domain, it must do so in a non-trivial way to be of aid to the

Us~r.

3.1. INTRODUCTION 23

Many of the advancements in planning since NOAH hav.e .been in the area of

allowing more· representational power by the encoder of the domain, but very few

have .been in the area of improving ~he_basic probl~m.solving capabilities of planners ..

Blind search still seems to be the default for most planners._

3.1.1 Post-NOAH Planners

The next major planner after NOAH was NONLIN [Tate, 1977] developed by Austin

Tate at Edinburgh. NONLIN imprQ.ved on NOAH in several ways. Unlike NOAH, it

searched the space of partial plans. It also provided a more perspicuous langua~e in

which to represent operators, as well as typed ptetonditions. However, its search is

blind, making its usefulness somewhat questionable. Tate states [Tate, 1977]:

We expect that the first choice taken should lead to a solution .. .if

failure occurs with the first plan being considered, our experience is that

backtracking can lead to long searche~ ___ .

Unless the pJ;oblem domain was encoded in such a way that the solution could.

be directly unfolded from the operator definitions, there was a. slim hope of finding a

solution in a reasonable amount of time.

SIPE [Wilkins, 1984] represents the state of the art in classical pJanning. In addi

tion. to the planning features discussed to this point, StIlE extends the plan represen

tation.in several. ways. It allows for a deductive causal theory which greatly reduces

the complexity of the operator descriptions. It provides. capabilities for reasoning

with resources, including time. IIi addition to. this it provides a powerful constraint

language which allows it to partially specify objects.

SIPE achieves a high level of efficiency and is the first planner to successfully be

applied. to real-world applications [Wilkins, 1988]. However, even SIPE could benefit

from advancements in domain-independent problem-solving techniques-to improve its

search capability, since, as in previous planners, it remains blind, and is guided to a

large extent by the user defined operators.

24 CHAPTER 3. PABLO

TWEAK) develop~d by Chapman [Chapman, 1987], is a formalization of earlier

non-linear_planners. Chapma.n introduces a.sound and complete Modal Truth Crite

rion for determining the truth of predicates at any point in a non~linear pl~. TWEAK .

is guaranteed to. find a solution to a planning problen'l.if one exists_

The above is by no meanS an exhaustive review. of earlier -work ·on planning;

just.a selection of some major systems, chosen to contrast the traditional .planning

research with our resear.ch on PABLO. For a good overview of planning systems see
[G~tgeff, 19.87, Di"ummond ar.d Tate, 1989, Allen et al, 1990].

3.2 Planning Terminology ..

To facilitate the description of PABLO we will_use the TWEAK terminology. In this

section we present some important definitions. A more extensive description can be

found.in [Chapman, 1987].

A planner is said to be sound if whenever it finds a solution to a planning problem,

the solution plan is a correct plan for solving the problem. A planner is said to be

complete if whenever there is a solution.. to a planning problem the planner can find

it.

At the core of any nonlinear .planner is the algorithm for determining the truth of

predicates at a p~rticular point in the plan. The condition under which a predicate is

said to hold is known as a truth criterion. TWEAK introduced the first such criterion,

namely the Modal Truth Criterion. In cha.p~er 9 we introduce a new. truth criterion.

Two variables are said t.o c()designate if they are constrained to always refer to __ . __ .

the same domain object .. Similarly, two predicates are said to codesignate if they are

of the same type and their respective arguments codesigllate. For example, On(x, y)

and On(v, w) codesignate if :t and v as well as. y and w codesignate. -'

Each action in -a plan is an instantiated operator.. Each action defines two sit

uations, namely the situation immediately preceding the action and the situation

immedicately following the action. A plan is a partial order of actions with an initial

situa.tion and a final situation.

A predicate is said to be asserted in a situation if it codesigttates with a member of

3.3. OVERVIEW OF PABLO 25

the add list of the attion immediately preceding the situation. A predicate is asserted

in the initial.situation if it .. codesignates with a member of the initial situation. A

predicate is denied in a situation if it codesignates with a member of tDP. delete list

of the action imniediately preceding ~he situation.

A goal is a pair c9nsisting of a p~edicate and a situation in which that predicate

must hold. An .action is said to establish a goal if the predicate of the goal is asserted

in the situation immediately following the action.

An action is said to clobber a goal if it Occurs after the establisher of the goal and

before the situation in which the goal predicate must be true and it denies the goal

predicate.

An action is said to be a white knight if. it occurs after a clobberer and before

the situation in which. the goal predicate must be true, and whenever the clobberer

clobbers the goal pI:.«:.dicate the white knight establishes it ..

This brings us to the notions of necessity and possibility. A plan can g~nerally be

completed in many ways, depending.ou which temporal and codesignation constraints

are added to it. If a property of the plan holds in all completions we say it necessarily

holds. If it holds in some completions we say it possibly holds. For example, if an

action clobbers a goal in all completions of a plan we say that the action necessarily

clobbers the goal in the plan. If it only clobbers the goal in some completions of the

plan, we say the action possibly clobbers the goal.

3.3 Overview of PABLO

We can provide more -problem-solving capability in a domain-independent pla.nner

and thereby shift the burden of problem solving from the user to the planner, by

analyzing the encoding of the domain before beginning the actual planning process.

At one extreme, the planner could simply generate the whole search space ahead

of time, thus trivializing the planning process. This is essentially the approach taken

in Universal Planning [Schoppers, 1987]. There are several problems in attempting

this, which we shall return to later in this thesis.

Another approach is to einploy predicate relaxation. By relaxing predicates in

26 CHAPTER 3. PABLO

the domain, we discover relevant facts about each predicate's difficulty. This is the

r.pproach taken by PABLO.

3.4 Underlying Planning AIgo.rithm

PABLO. uses iterative-deepening_seatch [Korf, 1985] coupled with TWEAK's Modal

Truth Criterion as its underlying planning alggrithm. We chose this algorithm pri

marily because of its provable correctness and completeness. A breadth first imple- ._

mentation requires too much space so an iterative deepening approach Was adopted.

See table 3.1 for a high level description of the algorithm.

One thing to note about the above algorithm is that .for every call to plan we only

consider resolving one outstanding goal, even though there might be several which are

unachieved. The reason we can do this, is that if we fail in solving for one.goal, trying

to solve for any of the other outstanding goals first can have no synergistic effect in

solving the original goal. This is because the order in which goals are attempted

is irrelevant, as all possible establishers are available to the algorithm at anyone

point in the form of operator templates which we can instantiate.into the weakest

form of an action. Adding const.raints to an action can never result in the possible

. establishment of a proposition that could not already be possibly established by' the

action as it was . first instantiated. Therefore, if we fail to solve an unachieved. goal,

we might as well backtrack, since continued work on other goals will not result in the

possible achievement of the original goal.

For reasons of simplicity. we have omitted dec10bbering by white knight in the

overall control structure. See [Chaptllan, 1987] for an extensive discussion of the-I'ole

of white knights in planning. This procedure is complicated and omitting it does not

affect the completeness of the planner. The reason for this is that final plans always

have all their variables. codesignating with exactly one constant. Therefore, a white

knight either asserts the proposition, in which case we would Use it as an establisher,

01' it does not, in which case we can use separatioil tq declobbct.J.he goal.

3.4. UNDERLYING PLANNING ALGORITHM

CallPlan 0
maxdepth +- 1
loop forever

plan(O maxdepth)
maxdepth +- maxdepth + 1

Plan (opcount maxdepth)
g +- any unachieved goal in the plan
if g then

for s one of all possible situations that can establish g
constrain s to be before the situation g.p has to hold
fot p One of all the predicates asserted in s

add codesignation constraint p ~ g.p
declob ber(g,s,opcount ,maxdepth)
remove codesignation constraint p ~ g.p.

remove constraint that s be before the situation g.p has to hold_
if (opcount < maxdepth) then,

for op one of the possible operators that.tan establish g
instantiate and, insert op into the plan
constrain op to be before the situation g.p has to hold
for p one of all the predicates asserted by' op

add codesignation constraint.p ~ g.p
declobber(g,s,opcount+ 1 ,maxdepth)
remove codesignation constraint p ~ g.p)

remove op from pIal}
else print(plan)

break

Table 3.1: Base Level Control Structure of PABLO

27

28 CHAPTER 3. PABLO

Declobber (g,establish~t ,opc<>unt,maxdepth)
tlobberer .-- any step in the plan which clobbers g
if clobberer then

else

constrain clobberer to be.before establisher
declob ber(g,establisher ,opcount,maxdepth)
remove constraint that clobberer be before establisher
constrain clobberer to be after situation in which ghas to hold
declobber(g,establisher ,opcount,maxdepth)
remove constraint that clobbeter be after
situation in which g has to hold
for p one of the possible predicates asserted by
clobberer which.can deny g.p

add eodesignation constraint p ~ g.p
dec1obber(g,establisher ,opcoun t,ma.xdepth)
remove codcsignation constraint p ¢ g.p

plan (opcount,maxdepth)

Table 3.2: Base Level Control Structure continued.

3.4. UNDERL YING PLANNING ALGORITHM "" ... '" 29

:lA.1 Plan Representation

PABLQuses a mo.dified version.of TWEAK's mo.dal truth criterion during planning.

Its plan representation is based o.n the TWEAK plan repr~_sentation. In chapter 7

we .will extend this representatio.n to..include hierarchical operators. In_the name 6f
efficiency so.me extensions have been pr~vided to. the. o.perato.r..representation. Spedf"

ically,_preco.nditio.ns can be specified so. as no.t to. be planned for by ~ABLO, but

rather, just checked befo.re the applicatio.n.o.f an o.perato.r .. Further, pro.Po.sitio.ns in

the add list o.f an o.perato.r can be specified to. be side effects o.f the operato.r and

sho.uld not be co.nsidered as Po.ssible establishers fo.r unachieved go.als. Finally, vari

ables of pro.Po.sitio.ns in delete lists can be specified to. be global, resulting in a simple

fo.rtn o.f universal quantification. Each.of these extensio.ns is completely o.Ptio.nal, but

can .be -used to. significantly impro.ve efficiency.

3.4.2 Relaxation Phase .

Befo.re the planning process hegins, PABLO performs a relaxatio.n phase, wherein it

creates the relaxed definitions fo.r the predicates appearing in the postco.nditions and

precpnditio.ns of opera.tors. This need o.n1y be do.ne once fo.r each domain.

The user of PABLO specifies the level to which the p~edicates should be relaxed.

PABLO creates a. relaxatio.n definition fo.r each different type of predicate in the

do.main.. This definitio.n is a relaxatio.n schema and is instantiated every time a

predicate is iI1stQ~tiated during planning.

Fo.r exainple, jjJ.st as was do.ne in the blocks wo.rld example of chapter 2; relaxatio.n-.

schetnas would be created fo.r the predicates Clear(x), Handempty, lio.lding(x) and

On(x,y). Then, during planning, a particular predicate instance, say On(A,B) would

hav~ associated with it an instance o.f the relaxatio.n schema for Ofi(X,y) whet(;! x has

been bo.und to A, and y bas been bound to. B.

As Was done in the example presented during the description o.f predicate relax

ation cOflsiderable simplificatio.n cail be accomplished with the use of do.main con

sttaints. We will return to. the issue of simplifying predieaic relaxatio.n expressions in

chapter 8.

30 CHAPTER 3. PABLO

3.4.3 . Planning Phase

The genera.l idea during planning is that PABLO first consider the most important

predica.tes, and then .. consider successively less important p.redicates. This is accom

pli$hed by associating each planning level with a rela.xation level, and planning with

relaxed predicates of that level. At any particular. planning level, any ptedicate Whose

rela.xation definition is true at thatJevel is considered a detail and is not specifically

planned for.

The operator Pickup(x), previously discussed, becomes at levell,

Pickup(x)

P:{Clear~(x),Handcmpty~}

D:{ Clear(x),Handempty}

A:{Holding(x)}

When moving down abstraction levels, if newly created subgoals appear in dif

ferent sections of the plan, PABLO attempts to achieve them independently. The

ratiorale for this being that these predicates were considered "details" at the higher -

level and presumably do not have global consequences. In cases where this assump

tion .fails, the consequences can, of course, be costly, in terms of computation time.

However, in OUr experience the increased efficiency outweighs.this risk.

The above is accomplished by.pe6inning with the initial situation and any instan

tiated operators that do not have another instantiated . operator necessarily between

the initial situation and itself. PABLO plans for any outstanding preconditions or -

goals in this segment. of the plan. Once this is done the plan is augmented with

the next set 01 instantiatf!d operators which do ilot have another operator which is

necessarily before. themselves. This process is tepeated until the final situation is

included in. the plan. Once the full plan has been expanded we can move on to the

next abstraction level.

3.4.4 Truth Criterion

At the cote of any planning system is the procedure fot determining the truth of

predicates. Because PABLO has a restricted plan representation. the introduction o£----

3.5. EXAMPLES OF PLANNING WITH PABLO 31

abstract predicates complicates this computation somewhat. If arbitrary first order

sentenCes were.allowed.in the postcondition of operators, the definition for each.a.b

stract predicate could be included in the initial situation. This rule would then be

propagated to every sit.uation in the plan. No extra mechanism would then have to

be provided in the planner to deal with abstract predicates.

Due to the restriction oILPABLO's representational capability we extend the def

inition of asserts to include abstract predicates. lILa base level system, a predicate is

asserted in a particular situation if one of two conditions holds. H the situation is the

initial situation then the predicate must be contained in the situation description.

Otherwise, the predicate must be contained in the add list of the operator imme

diately preceding the situation. We extend these conditions as follows in order to

accommodate for relaxed predicates.

Definition 2 A relaxed predicate Pr~' is asserted in situation s iff7(s) r p:e" where.

7(s) is the theory consisting oj the base level predicates which are necessarily true in

s.

The computation of the preriicates that necessarily hold in s is then done with

TWEAK's modal truth criterion. This 'criterion is somewhat conservative itt deter

mining the truth of. abstract predicates but has proven quite adequate in practice.

We shall later define a new truth criterion which is valid for a. Itlore expressive plan

representation.

3.5 Examples of planning with PABLO

3.5.1 Towers of Hanoi

A well known problem with many inherent abstractions is the Towers of Hanoi prob

lem. The operatot given t.o PABLO is the following:-

Move(x,z)

P: {Sit1aller(x,z),~ lovable(x),OIi(x,y),Clear(x),Clear(z)}

D;{ Ofi(x,y),Clear(z)}

32 CHAPTER 3. PABLO

j I •
r

I I A. I
I • I

! t: I I
Figure 3.1: Towers of Hanoi

A:{ On(x,z),Clear(y)}

See figure 3.2 for a trace of PABLO solving the three disk Towers of Hanoi problem.

The plan at the highest level of abstraction consists of Move(C,P3). At this level all

its preconditions are satisfied (Clear~(C) is satisfied since it can be achieved in two

steps).

Abstraction Ltve! 2

AbN'dioD Levell

BaH Ltv.!

Figure 3.2: Trace of PABLO solvin.g the Towers of Hattoi_

3.5. EXAMPLES OF PLANNING WITH PABLO 33

When We move down to- the next.abstraction level Clear~(q) becomes Cleat~.1(C)

which is not satisfied in ouLinitial state, since we cannot clear C :n one step. PABLO

therefore pla!).s to achieve Clear~el(C) by adding the action Move(B,P2) to_the plan. In

doing so it undoes On~~(B, C), which PABLO then plans to reachieve, using the action

Move(B,C). At this point the plan at. the first level of abstraction .is complete. since

all the first level relaxations of the goals and preconditions are s",tisfied. Planning is

then completed at the base level using the original predicates of the domain.

In -this case PABLO has discovered and made use of the inherent abstractions

in the domain. Including the time it takes to generate the relaxation definitions,

which in this example is negligible, PABLO solves the problem oVer 100 times faster

using the abstractions than without USing them. In chapter 5 we will present more

comprehensive empirical results of PABLO.

3.5.2 Comparison with Other Planners

All planners of which we are aware, with the exception of ABSTRIPS, would have to

revert to a full backward search of the state space if given this example.

Planners using operator abstraction ~an reason abstractly about this problem only

if new operators are defined by the encoder of the domain, a. task which might be

both time-consuming and p.rone to errors. As we have pointed out earlier, in this

research. we ate striving to provide powerful problem-solving capabilities given simple

encodings of the domain.

ABSTRIPS assigns the follOWing criticality values to the predicates in the domain:

Move(x,z)

P: { {3 }Smaller(x,z),{3} Movable(x),{2}On(x,y), {2}Clear(x), {2}Clear(z) L
O:{ On(x,y),Clear(z)}

A:{ On(x,z),Cleat(y)}

ABSTRIPS creates only- one level of abstraction in this domain. When solving the

problem, after finishin&-the abstract level, the plan consists of orte action Move(C,P3).

Although this is of some aid in developing the plan at the base level it is not as useful

as PABLO's hierarchy.

34 CHAPTER 3. PABLO

ABSTRIPS's hierarchies are .domain .. dependent _but problem-independent. The

number of different criticality values, and therefore the number of. abstraction levels,

of ABSTRIPS is constrained by the number of different pr~gicates of the domain. For

the 4 disk Towers of Hanoi, ABSTRIPS still has only.one abstraction level, whereas

PABLO generates 3 abstraction levels. In general, for the rLdisk Towers of Hanoi

problem, PABLO. generates n 1 abstraction levels, whereas ABSTRIPS still creates

only one abstraction level.

3.6 Blocks World.

3.6.1 Example Problem

A c

I D

c I:

lnitl&1 State Goal

Figure 3.3: Blocks World _

This version of the blocks world has two operators:

PUTON(x,y)

P:{ Clear(x),Clear(y),On(x,z)}

D: {Clear(y), On(x,z)}

A:{ Clear(z),On(x,y)}

TABLEOPR(x,y)

P:{ Clear(x),On(x,y)}

D:{On(x,y)}

A:{Clear(y),On(x,TABLE)}

The goals are On(A,B), On(B,C), On(C,D), and On(D,E). PABLO begins plan

ning at abstraction level 2. See figure 3.4 for a trace of PABLO solving this problem.

At-abstraction level 2 the only goal not satisfied is On:.c.(C, D). PABLO platts to

achieve this goal using the action Puton(C,D). All its preconditiQns are satisfied at

this level of abstraction.

At abstraction levell the precondition Clear~el(C) is not satisfied so PABLO adds

3.6. BLOCl(S WORLD 35

the action Tableopr(B,C) to achieve it....]; then reachieves. O~(B, C) by adding the

a.ction Puton(B,C).

The plan is then completed at the base level using the base level predicates ..

Notice that the resulting plan is nonlinear. PABLO solved this problem 130 times

faster with .the abstractions than without them, including the time to generate the

predicate relaxation definitions.

Abstractioll 1.\'01 2

Tableopr(B,C) 1------1

Abstrat~ioll Levell

Tableopt(A,B)

Figure 3.4: Blocks world trace.

3.6.2 Another Example

The .following example shows the effect of nonlinear plans at higher levels of abstrac

tion. See figure 3.5 for an iIlustra.tion of the problem.

36

F

E

D

C

B

A

Initial State Goal

FigYre 3.5.: Blocks WQrld Problem.

CHAPTER 3. PABLO

The goals of the problem are On(A,D) and On(C,F). A trace of PABLO salving

this problem. ~an be found in figure 3.6. At abstraction level 2 PABLO satisfies the

goal O~(A,D) by introducing the action Puton(A,D). Its preconditions and the goal

O~(C,F) are now satisfied at this level of abstraction.

At abstraction level 1 the preconditions Clear~(A) and Clear~(D) of the ac

tion Puton(A,D) are no longer satisfied. PABLO at this point inserts the actions

Tablec1?r(x,A) and Tableopr(y,D). There is no reason to order these actions so they

remain unordered. At this point the first half of the plan is completed. PABLO now

considers the second half which includes the final situation. This has the effect of

introducing the goal On~(C, F) to this level. However, this goal is satisfied at this

level of abstraction so no action is inserted to achieve it.

At the base level PABLO proceeds in three steps .. The first step considers the

preconditions to.the two actions Tableopr(x,A) and Tableopr(y,D). PABLO first cOn

siders the precondition On(x,A), which is not satisfied at the base le\teLsince x is a

variable. The variable x is then instantiated with OI1(B,A). At this point Clear(B) is

considered since it is not satisfied at the base level. This is satisfied by inserting the

op~rator Tableopr(C,B) to the p.l~n. An analogous proce~ure ensues to satisfYJhe p-re

conditions of Tableopr(y,D), resulting in the insertion of the operator 1'ableopr(F,E)_

and the.instaniiation of variable y. with block E.

At this p.oint this segment of the pl~ is fully satisfied and the preconditions to

operator PutoIi(A,D) are now considered. However, these are all satisfied at the baae

level. Finally, the goals of the final situation are considered. 'the rema.ining goal

On(C,F) is. unsatisfied at the base level; so the operator Puton(C,F) is inserted. Its

precoil(Uti9i;lsj~tClear(C) and Clear(F) cali be satisfied by constraining the operators

3.6.-BLOCKS WORLD 37

PutOn(A.D) I
Abstraction Level 2

Tableopr(x,A)

PutOn(A,D)

Tableopr(y,D)

Ahetrattion Level 1

PutOn(C,t)

Tableopr(F ,E)

Tableopr(E,D)

Ta.bleOpr(C,B) Pu\on(A,D)

Tableopr(B,A)

Base Level

Figure 3.6: Nonlinear blacks world trace.

Tableopr(F,E) and Tableopr(C,B) to appear belate Puton(C,F). At this point the

plan is complete at the base level and PABLO terminates.

It should be nated. that because of the partitioning of the plaIt at each level into

seli-contailled Bubprablems that the possibility of SUboptimal plans is introduced. In

this example, PABLO produces a pla.n that is one step longer than optimal, since it

could have satisfied the goal. On(C,F) by the operator Putan(C,F) and at the same

time satisfied the preconditian Clear(Bl, thus olwiating the need for the opera.tot

'I'ableopr(C,B). The teason PABLO did not rec\Jgnize this passibility is precisely. b~

cause it did not work on th~ goal On(C,F) until the base level. When the action

38 CHAPTER 3. PABLO

Tableopr(y,D) was inserted at abstraction level 1 , On~el(0, F) was satisfied so there

was nO need to consider the action Puton(C,F), although. it would have resulted in .

a legal plan at that level. of abstraction. This is an example of. the trade-off between

efficiency ,and optimality that planning with relaxed predicates introduces.

3.7 Extensions to Predicate Relaxation

3.7.1 Associating Costs with Operators

One way in which predicate relaxation can be extended is to associate costs with

operators and define predicate rela.xation levels in terms of p~rticular costs and not

simply in terms of the number uf operat.9rs.

Before We elaborate on this idea, it is important to be aware. of two distinctions.

First, basic predicate relaxation provides a measure of how difficult it will be to plan

to achieve a certain predicate. It does not provide a measure for how difficult it will

actually be for the executor of the plan to achieve that predicate. The reason the

former measure is of value to us, is that it is planning time we are trying to minimize.

Therefore, it seems reasonable: to concentrate' on the predicates for which a simple

plan ,doeS not exist.

The second ,distinction is that predicate relaxation rela.xes predicates over u~n

stantiated operators, i.e. over the oper~tor teIllplates .. Therefore, if we are interested

in the cost associated with executing an operator.it migp.t not be available . ..For ex~

ample, if in our domain we have a drive operator, the cost associated with it will not

be known until it is instantiated, and might vary considerably. The cost.of drivbg

two miles to sthool-is significantly different from driving across-the country.

Given these distinctions we can generalize predicate relaxation to relax predicates

over operator templates with costs associated with them. For example, in a travel

domain, the hight!Bt cost might be associated with the fly operator and ..the lowest

with the drit'e oper~,tor ._Then, instead of relaxing p',redicates ;n terms of the number

of opera.tors necessary to achieve them, we relax in terms of cost threshold. e.g. In the

travel domain; at a particular relaxati9n level, we would allow more drive operators

3.8. CONCLUSION 39

in.a relaxation of a particular predica.te than fly operatorS. This would have the effect

of introducing f.he fly operators into the plan at a higher level of a.bstraction than the

drive operators.

3.7.2 Limit Relaxation Operators

Another possible extension is to limit the regression of predicates.during the relaxation

phase to a subset of possible operators, thus creating smaller relaxation definitions.

For example, we might limit the relaxation definitions to only include commonly used

operators. Also, certain operators might c..chieve a predicate as a side effect. We might

limit the relaxation definitions to only those operators which have a predicate which

is being regressed as a main effect. We will see later, in chapter 8 how this and other

techniques can .be used to significantly reduce the size of th~ predicate relaxations.

3.7 .3 Relaxation over Hierarchical Operators

In chapter 8 we will see how we can extend the PABLO operator representation to

include hierarchical operators. It will then be possible to plan using both types of

abstractions. We will give an example 'where it will be desirable to relax predicates

oVer hierarchical oper~tors, so there is no longer a one to one correspondence between

the relaxation level and the number 01 primitive actions over which we regress.

3.8. Conclusion

We have presented PABLO, a non~linear hierarchicalplanner that automatically gen

erates abstraction spaces using predicate relaxation. PABLO is able to solve some

problems, e.g. Towers of Hanoi, making full use of the abstractions inherent in the do

main, something which previous planners could not. The resulting abstraction spaces

can gr&tly increase planning efficiency. Predicate relaxation has several advantages

over ABSTRIPS's abstraction technique. It is fully automated, it ptO¥ides a gradual

abstraction of predicates, and the number of abstraction levels can be tailored to the

particular problem to be solved.

Chapter ·4

Compl~x.ity Analysis

4.1 Introduction

We might ask what we can gain by using predicate relaxation. I<orf [Korf, 1987],

and later Knoblock [Knoblock, 1990] have shown that planning with abstractions can

reduce worst-case planning complexity from exponential in the length of the resulting

plan, to linear in the length of the plan.

In this chapter we review this work, and' then show a complexity analysis of
planning with predicate relaxation.

4.2 Previous Work

One of the first analyses of abstraction waS made by Korf.[Korf, 1987]. lie was able to

show that with a propetly constructed abstraction hierarchy it is possible to reduce

planning time from exponentiaLto linear complexity in the length of the resulting

plan. However, in the context of traditional planning, the construction used by Kort

is somewhat non-standard in that it assumes that if there. is a. path between. two

states at a high .level of abstraction, we automatically kilow what the path is-at a

lower level of abstradion. In hierarchical planning this is normally not the case, and

we must generA.lly plan at the lower level in order to determine the lower level path.

The upper ~h.~tril~UQnJeyels...provide the lower levels with islands which guide the

40

4.3. COMPLEXITY ANALYSIS 41

planning process.

Knbblock_[Knoblock, 199uj has analyzed abstraction in planning without this as

sumption, showing again that it is possible to...teduce worsLcase plan..ning complexity

from exponential to linear in .the length of.the final plan. In our analysis of planning

with relaxed predieates we make use of this result.

,

4.3 Complexity Analysis

4.3.1 Planning at one level

We will define P(/) to be the worst case complexity of finding a plan consisting

of 1 actions. . In the case of a state-space planner P{l) = E~=o bi , where b is. the

branching factor of the state space. This is the model used by both Korf [Korf, 1987]

and Knoblock [Knoblock,1990]. However, most planners are plan-space planners

[Sacerdoti, 1977, Wilkins, 1984, Chapman, 1987], including PABLO. Computing the

worst case complexity of a plan-space planner is still an open problem, although it is

likely to be at least exponential in the length of the resulting plan.

See figure.4.1 for an illustration of a.planner planning hierarchically. The branch

ing factor corresponds to the-number of subproblems that each level generates at a.

lower level. In the figure this branching factor is 2. We refer to this branching factor

of the abstractionspace as c. If the final plan is of length 1; the height of the tree will

be loge 1.
The complexity of planning using n levels of abstraction, assuming the complexity

of planning does not. vary with the abstraction level is

£(c) + cF(c) + c2 P(c) + ... + c'ogc' P(c)

where c is the branching factor .of the abstraction space.

However, if we want to compute the. complexity of planning with relaxed predicates

we need to take into account the greater _amount of time it takes to determine the

trut h of a predicate at a high level.of abstraction.

As we relax a predicate frorn .. one level to another we disjoin the predir.ate with its

regression through each operator in the domain. There friight actually be more than

42

,
" ,

CHAPTER 4. COMPLEXITY ANALYSIS

,
" , I

I
I ,

Figure 4.1: Abstraction Space

" "

n

" " " " "

4.3. COMPLEXITY ANALYSIS 43

one regressed expression for a particular .operator since. the. predicate might match .

more than one predicate in the.add list. It we have -lJ operators in the domain, and at. __

most s predicates in the add list, each predicate's regression can consists of at most

os conjunctions Therefore, if a particular conillnction consists .of p predicates, the

resulting regression will consist of at most osp conjunctions.

Notice that as we proceed. with. the-regressions from level to level that the size

of the conjunctions will in(.rease, assuming we do not perform simplifications. If
we take d to be the maximum size of any precondition of the operators, then the

maximum number of predicates at regression level n is bounded by nd.1 Note that

the size of the conjunction might actually be larger since we might generate equality

and inequality predicates. However, these are simply passed from level to level and

do not generate any new regressed expressions. Therefore, at relaxation level n the

number of new. conjunctions generated by regressing a conjunction at level n - 1 is

bounded by os(n - 1)d.2 If at level n - 1 we have Cn-I conjunctions, at level n we

will have at most os(n - -1)den-l conjunctions. Therefore, at level n, the number of

conjunctions is bounded by (osd(n - 1))n. Renaming osd to be k we get (k(n - 1»)n.

For simplicity of exposition we will use the weaker bound of (kn)fl which is valid for

n > O. For n = 0 there are only individual predicates so the bound is 1.

Given that the number of conjuI1ctions in a relaxed predicate is bounded by (kn)n

we must also establish the complexity of computing the truth of each conjunction.

We set z to be the maximum number of predicates in a particular situation. In the

worst case, we might have to try every possible instantia.tion of each. predicate in a

conjunction-of length p which takes zp. Since the rnalCirnuirt I1umber of predicates

in a conjunction that need to be checked in a situation (i.e. not the eqqality and

inequality constraints) is bounded by dn at level n this becomes zan. The equality

and inequality constraints-Can each be checked in constant time atld their number is

bounded .by 0(712).3

lIn what follows we assume n > O.
2This is only valid for n > 1
3This is because at level fl, the number of;new equality constraints generated by regressing a

conjurtction from level n - 1 is bounded by Id(n - 1), where I is the maximum size of the delete liBt
of any operator. attd den - 1) is the maximum number of i:!onequality predicates in a conjunction at
level n - 1. The expression E7=2/d(i - 1) is bounded by kn2 for some k.

44 CHAPTER 4. COMPLEXITY ANALYSIS

Therefore, the complexity of computing the truth of an abstract prediea.te at

abstraction level n is Q(zdn(kn)*). SitnplifYi~g we get O(zeikn.)'i) which is O«/<n)ri)

for.K == zdk.

Given .this, we can now derive an expression for the complexity of planQjng with

relaxed predicates.

We can. write the above as

Moving the constants out of the sum We get

The sum. is bounded by 1 + (9n)rl for some g.

Simplifying

Renaming cg to G and noting that n is logel we have

Which is equivalent to

Which can be simplified to

4.3. COMPLEXITY ANALYSIS 45

By noting that G and c are constants and renaming logeG to ytbis r~duces to

The expression y+ loge,loYcl..grows very slowly and is therefore very close to being

a constant, so the complexity has been reduced to neatly polynomial in the size of the

final plan . .It should be noted that if we can guarantee that the.number of conjunctions

at each abstraction level grows exponentially, as opposed to being bounded by (kn)",

we can reduce the planning complexity to polynomial in the length of the final plan.
As we shall see this occurs in several domains in which we test PABLO.

Suppose, for example, that we bound the maximum size of any conjunction iii

the relaxation expression to e. Then, the maximum number of conjunctions at level

n is bounded by I:?:o(ose)i, where we recall that 0 is the number of operators in

the domain and s is the maximum size of the add list. The maximum number of

conjunctions in a relaxation expression at level n is therefore bounded by O((ose)fi).

We refer to the constant ose as m. Determining the truth of a conjunction in a

situation with a maximum of z predicates is bounded by ze _ which is a constant.

Therefore, the complexity of determining the truth of a relaxed predicate at level n

is bounded by Q(mti).,

Our expression for the cost of planning now becomes

o (mnp(c) + cmn- 1 P(c) + ... ~(c))

We can write the above as

Moving the constants out of tht sum we get

o (P(C)Cn i:Jm/c)j)
3=0

Solving the sum we arrive at

o (P(c)cti((m/c)"+t - l)/((m/c) -l})

46 CHAPTER 4. COMPLEXITY ANALYSIS

Simplifying

But 1i is logel.so We have

Which is equivaleIit to

o (P(c)(ml108cm - cl)/(m - c))

Since c is a constant this becomes

This reduces to O(lk) where k = max(l, loge m).

Therefore, if We can bound the growth 01 the relaxed expressions to be expo

nential in the number of abstraction levels We can reduce planning complexity froin

exponential to polynomial iIi the length of the final plan.

4.4 Discussion

As we have seen, it is possible to reduce exponential pla.nning time to nearly polyno

mial in certain Circumstances. However, this is only. the. case if certain assumptio_ns

we have made along the. way hold. First, it must be the case that there is. no back

tracking across abstraction leyels. Second, within ail. abstraction level, there must be

no backtracking across the subproblems of that abstraction leveL Each subproblem

must be solved independently of the others. Third, the length. of the final plan of.

the abstraction planner must be the same as the length of the plan found by the

non-abstracting planner. Finally, there must be a uniform branching factor of the

abstraction space. IT any of the'se assumptions fail, the a.nalysis no longer holds and

the planning reverts to possibly exponential cOmplexity. Note that these Are the same

assumptions that I(lieblock makes in his complexity ~n~Jysis [Knoblock j 1990].

4.4. DISCUSSION 47

As we shall see in the next section, in practice these assumptions generally hold __ .

fairly well for the domains. we have attempted. The more amenable a domain is to

being abstracted, the better these assumptions hold. .

Further~ore, the complexity of planning grows with the size of y. It is therefore.

in our intereSt to reduce the size of the relaxed predicates as much as possible to

reduce the time to .comput~ their truth value. This can be dOne by simplifying, as

well as invoking domain constraints to rule out impossible expressions. Even though

theoretically the complexity is considerably improved when using relaxed predicates,

in practice it is important that they not become unwieldy, since this IIlight result in

an impractically large constant in the complexity formula. We will r.ave more to say

about this. in future chapter'S.

Chapter 5

Empirical Analysi~

5 .1 Introduction

In this chapter we present empirical results .of applying PABLO to four domains.

In each of the domains we compare the perf.Q,rmance of PABLO without relaxed .

predicates to PABLO with relaxed predicates. The domains we test P A:aLO in are

Towers.of Hanoi, Blocks World, Robot World, and the Eight Puzzle.

From our. theoretical analysis we should expect potential gains in pla.nning ef

ficiency when applying predicate relaxation. As we shall show, this is indeed the

case ..

The data presented in this chapter ate from an. implementation of PABLO on

a Symbolic8 3620, under .Genera 7.1. It should be noted_that very little optimiza

tion Was performed on PABLO. The numbers should serve as. a. mean.sof evaluating

the usefulness of predicate relaxation, not as a testament to the ultimate speed of

planning.

5.2 Towers of Hanoi

To show the power of using predicate rela,,:ation in the Towers of Hanoi domain, we

generated seven problems in the 3 disk problem, each successive problem reqlJiring

a solution with a length of one more operator than the previous one. We ran the

48

5.3. BLOCKS WORLD

I
.1

49

t I •
I
" I I B I I

Figure·5.1: Towers of Hanoi

problems on PABLO with predicate relaxation and without. A plot of the respective

planning times can be seen in figure 5.2.

As can be seen from the graph,_ the time it take PABLO to find a solution when

using predicate relaxation grows linearly with the number of operators in the plan.

Without the use of predicate relaxation the running time grows exponentially. These

results conform to our theoretical analysis of predicate relaxation. Notice that each

of the assumptions of the complexity analysis holds in this example: no backtracking

across abstraction levels; no backtracking across subproblems; the optimal solution

is generated; and a uniform abstraction-space branching factor. This results in the

utility of the relaxed predicates being maximized in this example.

The Tow.ers of Hanoi is in some sense the canonical example for testing reasoning

with abstraction, and the gains seen therein are therefore unusually large. Any system

that reasons with abstractions should be able to show similar gains for the Towers of

Hanoi.

5.3 Blocks World

PABLO was tested on every distinct four·blotks problem. The optimal solution length

of the problems range from 1 to 6 steps. We ordered the p'roblemsaccording to the

optimal solution length, and then averaged the time to solve the problems of each

length. This was done both with the use of relaxed predicates, as well as without

their use. The results are presented in. figure 5.3. -- --
As can be seen we see Significant speedups in the blocks world as well.. It should

be noted that the optimal solution was not always discovered when using the relaxed

50

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
1 2

CHAPTER 5. EMPIRICAL ANALYSIS

Towers of Hanoi

3 4 5
Operators

6 7

-II- Without Abstractions

0- With Abstractions

Figure 5.2: Running tiDies of PABLO for the Towers of Hanoi (in seconds).

5.3. BLOCKS WORLD

Blocks World

1200

1000

800

600

400

200

1 2 3 4

operators

5 6

.. Without Abstractions

~ With Abstractions

Figure 5.3: Running times of PABLO for the Blocks World (in seconds).

51

52 CHAPTER 5. EMPIRICAL ANALYSIS

predicates. Out of 223 problems, PABLO generated plans that were One step longer

than optimal when using abstractions 15 times. No other .suboptjxr.al plans were

generated. -As we.have pointed out earlier. this is one of the tradeoffs that is made

when using_abstractions, namely optimality for efficiency. In general, we believe this

to be a worthwhile tradeoff.

The. gains ill the blocks world were not as spectacular as those in the Towers of

Hanoi. This is because the blocks world is not as amenable to abstraction as the

Towers of Hanoi. It is interesting though th.at ~ignificaJit gains were still observed.

5.4 Robot Domain

The third domain tried was the robot world domain similar to that used by STRIPS

and ABSTRIPS. See figure 5,4 for a typical example. A Foblem in this domain might

involve movIng the robot from.room G to room A and also push two boxes next to

each other. A plan for solving this problem might involve opening doors and pushing

boxes from one room into another. Typical operators for this domain can be found

in. chapter 8.

A

o
E

o

o

.0

I
Ole

Figure 5.4: Robot World Domain

. D

Random problems were generated and ordered according to their optimal solution

length, as in the blocks world. The times to solve problems of each solution length

1

I
I
I
I

i
I
I

5.5. EIGHT PUZZL!

1400

1200

1000

800

600

400

200

1 2.

Robot World

3 4

Operators

5

/-

6 7

.. Without Abstractions

-0- With Abstractions

Figure 5.5: RUnning times of PABLO for the Robot World (in seconds).

53

were averaged with and without using predicate relaxation. The results can be seen

in figure 5.5.

5.5 Eight Puzzle

The fourth and final domain in which PABLO was tested was the eig~t puzzle. This

puzzle entails sliding eight tiles on a square grid, where there are nine locations.

Fig.ure 5.6 shows.a typical initial state and goal configuration for the eight puzzle.

As in the previous two domains we ordered the p..I:Qblerns according to the optimal

solution length and averaged the times to solve the problem wi~h relaxed predicates

and without. 'rhe results can be seen in figure 5.7.

54 CHAPTER 5. EMPIRICAL ANALYSIS

-

1 3

8 2 5

4 _ 7 6

Initial State

1 2 3

4 5 6

7 8

Goal

Figure 5.6: Eight Puzzle

5.6 Discussion

As can be soon from the empirital results, PABLO improved its performance signifi

cl.lJltly with the use of relaxed predicates. The only drawback was a slight overhead

on easier problems, and the possibility of suboptimal soluC,,"'::.s.

It should be noted that all the domains in which we have tested PABLO are so

t.ruled toy domains, i.e. they are unrealistically simple. The reason this was..necessaty

is that the underlying planning algorithm used by PABLO, due to its completeness,

is inherently- slow, and ill suited to real world tasks. As we have explained earlier,

there ate good reasons for using an underlying algorithm that is complete when

experimenting with abstractions. With a complete planner it is much easier to gauge

the effects introducing abstractions has on the planner. It is of great interest to see

if the ideas scale up to real world problems.

5.6. DISCUSSION

Sliding Puzzle

3000

2500

2000

1500

1000

500

o~~~~~~~~~~
1 2 3 5

Operators

55

... Without Abstractions.

.0 With Abs:ractlons

Figure 5.7: Running tiIiies oi PABLO for the Eight Puzzle (in seconds).

Chapter 6

Using Abstractions to Achieve

Reactivity

6.1 Introduction

There is a growing body of research concetned with.tackling the problem of planning

in unpredictable, uncertain, and time stressed environ.ments. One of the oft cited

shortcomings of the classical planning approach is that it assumes a benign envi

ronment, of which .. the planner has complete knowledge,. nothing untoward happens

during execution and the planner has yirtually infinite time in. which to plan. As.a

result, most of the new approaches have eschewed classicaltechniq~es in favor of more

radical approaches. We will present a brief overview of some .of the main techniques

p.roposed to deal with more complex environments.---

6.1.1 Universal Plans

Schoppcrs [Schoppers, 1987] has proposed that rather t.han plan, an agent should use

Universal Plans in unpredictable, time stressed envirofiments. A Universal Plan is

a function from sensor inputs to actions which computes the appropriate actioi1 to.

perform in a situation •.. Thus, the agtmt has a precomputed action fot every possible

6.1. INTRODUCTION 57

situation it-can find .itself in. One way to store such a universal plan is as a deci

sion tree .. Clearly, having such an action cache . guarantees very fast response time.

However, as we shall discuss later there are some problems with it.

OD(a,lI) ?
T) at. (top) ,

T) IO-OP
F) ~hold1DI(a) ?

T) RAISE
. F) OPEl
F) Clear (II) ?

T) ho141DI(a) ?
T) o"er(tI) ?

T) LOWER
F) at(t.op) ?

T) LATERAL
P) RAISE

. F) [8ullplaD to CRASP a]
r) .{ntlplan t.o CLEARorF til

Figure 6.1~.A piece of a Universal Plan represeJ?,ted as a decision tree

In figure 6.1 we See a Universal Plan for guaranteeing that On(a,b) holds. The

plan is represented as a decision tree. Each condition in the tree is tested until a leaf

is.reached. The leaf specifies. the appropriate action to perform.

6.1.2 Action Nets

Nilsson has. proposed Action Nets as an architecture in which to implement reactive

systeIIiS [Nilsson. et ai, 1990]. An.action net is a. network of units, each of which has

some inputs (preconditions; a trigger, and a goal), and one. output. The output is

connected to another unit or .to a.switch of some kind which activates an action in

the external :world. As with the preVious approaches an action network g~arantees

vety fast response times. FurtherIIiOte, there are facilities fot dynamically expanding

the network at tun-time, a feature other approaches lack. But, t.o date; it is not cleat

how action nets might interface with an autotnatic..planning system.

6.1.3 Situated Action Rules

Agre and ChapIIiaIi [Agre and Chapman, 1987] have developed Pengi, a program de

signed to play the Pengo vid~ game .. This game requirell quick response times. Pengi,

58 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

unlike-a.. Universal Plan, is not purely functional, but retains some state-in its "vi

Lion" system.-Even with relatively simple rules, quite complex playing behaviour.

is achieved by'. Pengi. For a. discussion of. the differences between Pengi and other

reactive a.m>roaches see [Chapman, 1989].

6.1.4 Subsumption Architecture

Brooks [Brooks, 1986] proposes the subsumption architecture for controlling an agent.

The main idea in this proposal is to organize the agent vertically according to levels

of task-behaviors, with higher levels performing mote complex tasks. When a higher

level completes its comput~tion it can subsume all lower lev-els. Presumably, higher

level computations are on the. average more time consuming. When pressed for time,

the agent uSes the result of its lowest level behaviors. However, if given more time,

one of the higher levels can subsume the lower levels with an action of higher quality.

This is by no means an exhaustive listing of the approaches proposed for reac

tivity. Other interesting ones include [Rosen schein and Kaelbling, 19S7, l"irhy, 1987,

Drummond and Currie, 1988].

6..1.5 Discussion

We will take the liberty of referring to the above a.pptoaches as· reactive pla'llp.ers.

Ginsberg [Ginsberg, 1989] points out .several serious problems. with reactive plans.

The most serious oLthe problems is that the size of reactive plans grows exponentially

with_ the size of the domain .. Although it remains to be shown, it is likely that the

domains which At concerns itself with will be complex enough that reactive plans will

grow prohibitively large.

It seems clear that some amount of tun-time inference is_necessary fot any agent

to act successfully in an environment. However, it is also necessary to pt6yide some

mechanisms for reactiVity, for situations where there simply is no time for complex

ded uctioIiS.

6.1. INTRODUCTION 59.

6.1.6 Classical Approaches to Reacthdty

Suppose a planner is gi~en the following problem to solve (see figure 6.2 for an illus

tration of the proQlem.)

GJ [!]
~

1- itl&! State

I

C

D

Goal

Figure 6.2: Planning Problem

We are given the following two operators: .

PUTON(x,y)

P: {Clear(x),Clear(y),On(x,z)}

D: {Clear(y),On(X,Z)}

A:{ Clear(z),On(x,y)}

TABLEOPR(x)

P:{ Clear(x),On(x,y)l

D:{On(x,y)}

A:{Clear(y),On(x,TABLE)}

Using the classic non-linear .planning method a trace of the plan at various stages

of development might look as in figure 6.3.

One notable feature of this trace is that until the final plan is produced the classical

planner is not aware of any executable actions to perform in the initial state ... The

actions Puton(B,C) and Puton(C,D) are not. directly executable in our initial state.

Should the planner be interrupted at any time during pl~nnjng with the need to start

executing immediately it would not have a reasonable action to perform.

The problem is that the classir.al planning approaches ha~e invariably been back

ward chaining. This is a per.Wctly reasonable strategy given that in illost planning

dotnains the branching factor is considerably reduced when reasoning from the goal

back to the initial state. However, it has the dl. _wback that untH the final plan has

been developed, there is no guarantee that the plan will actually be applicable in the

initial state.

This is one reason traditional planning methods have generally been regarded

60 CHAPtER 6. USING ABSTRACTIONS TO ACffIEVE REACTIVITY

Ih\on(c,D) 1· ----II PIl'OI1(~'C) 1-1 --~I ~ioD(A,B) I

Figure 6.3: Classic Planning Trace

as unsuitable for real-time tasks. Besides the reactive planning methods mentioned

earlier, sev.eral other alternatives within the classical planning context have been

suggested.

6.1.7 Forward Search

Some favor abandoning backward chaining plan-space search in lavor of a forward

search of the state space [Washington, 1989] .. The advantage of this approach is that

an executable action is available as sOoIi. as an action has been found applicable in the

initial state._Unfottunately, until we encounter the final solution during the forward

search we have no gUarantee that. out current sequence of actions will eventually. lead

to the goal. Further, we cannot take advantage of theJeast-comtnitment implicit

in the non-linear representation of plans. Finally, a forward search, so as not to

be completely blind, needs a domain-specific heuristic, thereby reducing domain,

independence.

6.2. REACTIVE REASONING WITH PABLO 61

6.1.8 Left.. Recursive Wedge Planning

Another approach one can take is that of planning down a -left-recursive wedg~ of

the parti~l plan in case of an interruption.[Wilkins, 1988]. The idea is to rep~tedly .

expand the leftmost_outstanding p.reconditions until an action is . .encountered with

all its .pJeconditions satisfied. In some circumstances this approach . might be suc

cessful. Unfortunately, the time to plan in this manner is pQssibly unbounded, since

interactions might be enCountered that necessltate backtracking.

The method we propose retains the power of partially ordered plan repI:~enta

tions, but also allows the planner to identify plausible executable actions early in the

planning process.

0.2 .Reactive Reasoning with PABLO

The problem we are addressing is that of providin.g a plausible executable action

should PABLO. be interrupted before it has formed a complete plan. Ideally, we

would like to provid~ as long a sequence of executable actions as possible.

Toward this end, we can store, alon.~_with each relaxed pr~dicate, the operators

through which. the predicate was regressed during the relaxation process. Then,

during pla,.nning, when a relaxed predicate is determined to hold in a situation, the

operator through which the predicate was last regressed is automatically identified.

e.g. this is the first level relaxation of On(x,y):

On~(z,y)

On(x,Y) D
(y = 'fABLE) A Clea.t(x) A 3 z .On(x,z) ['fabloopt(x)]

(y #: TABLE) A C1<!ar{x) A Cletu(y) A 3 z On(x,z) [Puton(x,y)]

The logical expressions ate conditions .uilder which the predicate should be deter

mined to hold. The operators through whiCh the predicate was regressed to arrive at

the expression_are shown in the right side of the table. In this case, since it is a first

level relaxation, only sequences having oIie operator are iududed.

62 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTNITY

During planning, the relaxation table is examined from top t~. bottom. When an

expression is found that. l!!. satisfied in the current state, the-relaxed pr¢dicate is said

to.be asserted in that state. We also say the relaxed predicate is grounded in this

state. This is irnportant because a relaxed predicate that is grqunded in a state must.

have a sequence of operators that is executable in. that state, which guarantee that

the predicate with hold as a reSult of their execution.

6.3 Identifyif:lg Executable Actions

Once PABLO has completed a plan at one level of abstraction, and.is working at the

next lower level, it can utilize the extra information stored along ~ith the relaxed

predicates that hold.at the higher level, should it be interrupted.

PABLO chooses.a plausible action by examining the preconditions of the p.arliest

action (s) of the plan. If one of these .actions has all its preconditions satisfied at the

base level, the action is obviously executable. .

If no such action exists, PABLO can choose from among the leftmost operators.

associated with the satisfied predicate rt~laxations that are grounded in the initial

situation; All relaxed predicates must be sa.tisfi~d since the plan was completed at

the higher level. Furthermore, at least one of the relaxed predicates must be grounded

in the initial state. To see this note that there must be. at least One action such that

no action is necessarily between it and the final..situation. If all its preconditions were

satisfied at the base level the action itself would be.executable. If not, every predicate

that is abstractly satisfied in the precondition must be grounded in the initial state.

Any of the actions collected in this manner are executable.

See figure 6.4 for a trace of PABLO solving the previous .example. It. should. be

noted that PABLO solves the example twice as fast using the predicate relaxations

than without, since reasoning w.ith the abstractions allows it to prune substantial

portioos of the search space.

After completing planning at the second level of abstraction the plan consists

of .one operator: Puton(B,C). This is because all preconditions of Puton{B,C) are

satisfied at this level of abstraction, and beCause the remaining goals, On(A,B) and

6.3. IDENTIFYING EXECUTABLE ACTIONS

I Puton(B,C)1

Abatrac\iou Level 2

Abe'ractiOIl Level 1

Bue Level

Figure 6.4: Pablo's Planning Trace

.

--------- 63----- ..

On(C,D) a.~ also satisfied (at this level of abstraction). See ngure 6.5 for a detailed

description of the planning state at this point.

As PABLO· moves down to the first abstraction level, the goai On(C,D) is. no

longer satisfied since it requires two steps to accomplish. PABLO. grows the plan by

adding the.operator Puton(C,D) to achieve this. goal. Notice that at the first level of

abstraction all preconditions. to Puton(C,D) hold, since D is cleai and block C can

be cleared in one step. PABLO thet, completes the plan at the base- i~vE"l.

Now, sup-pose PABLO is interrupted after it has completed planning s.t.t abstrac-.

tion level 2. At this level there are three predicates that hold abstractly, i.e. the

components of their relaxed definitions that are satisned have non-null operator lists

associated with them. These are Clear~d(B), Clear~(C), and On~(C, D).

To see this, examine the second level predicate relaxation of Clear(x).

64 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTNITY

OIl(A,B)

OIl(D,C) ..

On(c/rABLE)

OIl(B,TABLE)

CI.areA)

Ol.ar(D)

Cl.u-(TABLE) .

biUal State

Clear(x)

Clear-2(8)
n1 I Puton(B,C) I

Clear-2(C)
n1

Figure 6.5: Level 2 Plan

Clear~(3:)

0
3 y On(y.x) 1\ Clear(y). [Tableopr(y.)]

On:JB,C)

OllrJ°'O)

Goal

3 y,z On(y,z) 1\ Clear(y) 1\ On(z,x) [TabIE!Opr(y), Tableopt(z)]

The above. table has been simplined by removing subsumed expressions. e.g. th€

result of regressing Clear(x) through Puton(y,z) is

3y, z On(y, x) A Clea.r(y) A Clear(z)

This expression. is not. included in the table. since it is .subsumed by the regression

of.Clear(x) through Tableopr(y). When Clear~(x) is instantiated in our plan, with

variable x bound to C, Clear~(C) becomes:

Clear~l(C)

Clea.r(C) 0
On(D,C) 1\ CleareD) [Tableopt(D II

.3 Y,t. On(y,z) 1\ Clear(y) 1\ O~(2,C) [Thbleopr(y); Tableopt(z)]

6.3. IDENTIFYING EXECUTABLE ACTIONS 65

As .. can be seen from the predicate relaxation definition Clear.:el(C) holds because

On(D,C) A Clear(D) is true at the base lev.el, and the leftmost regressed oper~tor

associated with this regressed expression is Tableopr(D). In brief, the .three relaxed

predicates hold in the initial state for the follOWing reasons:

Clear~(C.)

Clea.r~(B)

O~(C,D)

On(b,C) A. Clear(D)

On(A,B) A Clear(A)

Clear(D) A On(D,C)

[Tableopr(D)]

[Tableopr(A)]

[Tableopr(b), Puton(C,D)]

The above relaxed predicates are grounded in the initial state. If PABLO is

interrupted after having completeJi planning at abstraction level 2, it can choose

from among the identified action sequences that are executable in the initial state.

In this case it can propose executing Tableopr(D), Tableopr(A), or Tableopr(D) -

Puton(C,D). This can be determined as soon as the first level of abstraction has been

completed - early in the planning process. In this example it is done after only 15%

of .the total planning time.

6.3.1 Constructing Incomplete Plans

If necessary, PABLO can construct a substantial portion of the plan, even at this

early stage. The outline of the algorithm is as follows:

1. current-plan +- Nil.

2. current-state +- Sinitital.

3. op-lists +- set of lists of operators associated with the predicates that are ab

stractly satisfied ifi the plan.

4. op-sequence +-longest tail of the lists in op-lists that is executable in the current

state. "---

5. if op-sequence = Nil then op-sequence +- any action in the plan that is exe

cutable. If no such action exists~ break, returning current-plan.

66 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTNITY .

6. op-lists +- oplists - op-sequence.

7. current-plan current-plan lop-sequence.

8. current-state Sout of last action in op-sequence.

9. Goto step 4.

This algorithm will produce a linear sequence of actions to execute in the current

state. See figure 6.6 for the incomplete plan constructed using this technique.

LJ---i Tableopr(D) 10---4 1----1 Tableopr(A)I----I PG~Il(B,C) /'-' --()
'------..I

Figure 6.6: Incomplete Plan

The plan is almost complete, the only remaining action is Puton(A,B). Once.

PABLO commits to the first portion of the plan, developing the remaining portion

can be considerably easier.

In this case there islittle.interaction among the executable alternatives. Therefore,

the order in which the algorithm places the operator sequeg,ces does not matter, and

any of the resulting seqt,lences will be a subsequence of a complete, linear plan for the

problem. However, there are obviously cases where such interactions exist..-.

For example, given Sussman's anomaly) presented in ngure 6.7 [Sussman, 1973],

the plan, after planning at the first level of abstraction has been completed, wHl con

sist of Puton(A,B). There are two opetator sequences associated with the two pred

icates that are abstractly asserted in the plan at this level. The first is Tableopr(C)

associated with Clear~(A). The second is Puton(.B,C) associated with On:e.CB, C).

These arehoth executable in the initial state, and the algorithm has no a priori rea

Son for choosing between theta. Therefore, it might choose to first insert Puton(B,C)

6.3. I]).ENTIF'YING EXECUTABLE ACTIONS 67

Ini~ial S~i.~e Goal

Figure 6.7: Sussman's Anomaly

into the plan, after_.which no more actions are possible. H'it inserts Tableopr(C)

first, then the next sequence inserted will be Puton(B,C), which will be followed by

P.uton(A,B).

Of course, the only way to discover and resolve conflicts based on such interactions

is to continue planning. Until a complete plan is produced, we cannot guarantee that

the optimal action will be chosen by PABLO (or any other planner), should it be

in.terrupted .. This technique, as opposed to the traditional planning algorithm, pro

duces viable alternatives.early on in the planning process. Given more time, PABLO

will complete plans at succeedingly lowel' levels, thereby tesolving conflicts not dis~

covered at higher levels, and so producing more reliable answers. Our method, in

effect, provides a primitive anytime algorithm for planning IDean and Boddy, 1988J

6.3.2 Comparison With other Classical Approaches

Unlike a forward search of the state space, PABLO can take advanta~ of the ~east

commitment implicit in non-linear plans. Rather than being committed to one p~th

in the state space at any_one time, the partial order of actions represents a set of

possibie paths that are curreiltly valid. In NOAlI, the non-linear repre~entatioi1 was

found to be successful enough that no backtracking Was deemed necessary.

Furthermore, wfiep it is interr'lpted, its choice for a plausible executable a.ction

i~ derived from a cOfnplete abstract plan, which provides a .global constraint on this

action. An interrupted fotw8,rd state-space search on the other hand, can only provide

local constraints on its choice ot executable actions.

68 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

Unlike the technique of continuing planning down the leftmost wedge of the plan

after an .interruption, our approach .requires emly a bounded computation time to .pro

duce an executable action after an interruption. To.see thiS, note that the executable

actions are automatically identified after planning at the highest lev.el of abstraction

has been completed.

6.4 Compa;r~son to Reactive Plans

The trace of the relaxation of a predicate can be thought of as a reactive plan for

achieving that predicate. See figure 6.8 for an illustration of the definition of the

On;el (x, y) predicate as a reactive plan. Notice .that some predicates in the reactive

plan are not further regressed, this is because these are preconditions to the operator

that we do not wish to plan to achieve, but rather just check that they hold. These

predicates.are specified-in the operator definitions given to PABLO. During planning,

when a relaxed predicate is determined to hold, the path through _the reactive plan

that will lead ~,o the establishment of the predicate, is automatically identified.

Our technique is a method for handling these small reactive plans. We believe that

this is a more promising approach to reactivity than constructing large, unwieldy re

active plans which risk succumbing to space restrictions very quickly. Each individual

plan is restricted in size and can be reused by the planner on different instantiations

of the same predicate.

Each reactive plan in our system has a clear purpose, namely to achieve a particu~

lat predicate. Unlike other reactive planning techniques which must construct a new

reactive plan for each combination of goals encountered (modulo some parameters to

the reactive plan), PABLO can re-utilize the reactive plan definitions for any goah,

r;pecified in the domain.

If our domain is lar.ge.efiough We risk creating abstraction definitions that are too

large, although they will always be cOilsiderably l!maller than reactive plans created for

entire domains,. since we are only considering reactive plans for individual predicates.

With PABLO, We can extend the planning method to restricted reactive plans,

e.g. allow only commonly encountered conditions in the relaxed definitions. Although

6.5.. CONCL USION 69

o·V(')
~T(r)

Clear l~lt) On~lxl')

PutOil(X,y)

Figur~&,8; __ Reactive plan fot O~(x,y)

this reduces the number of abstractions identified at the higher levels, each predicate

can be more qUickly identified to hold abstractly. PABLO is robust in the sense that

if a predicate is not deemed to hold abstractly, it can plan to achieve it. This is

something systems which rely solely on rea.ctive plans cannot do.

6.5 Conclusion

Using the method presented in this chapter, we can utilize predicate relaxations to

produce a plausible executable action should PABLO be interrupted before the final

plan has been completed. The only' requirement foi' identifying a plausible action is

that planning have been completed at t.he highest abstraction level. This happens

early-in the planning process.

Tile method can be viewed as an anytime algorithm for planning. During planning,

harmful interactions ate identified and resolved as PABLO plans at succeedingly lower

70 CHAPTER 6. USING ABSTRACTIONS.:rO ACHIEVE REACTIVITY

levels. of abstraction, thus increasing t.he quality of the response ill case of interruption.

Each automatically generated abstraction is actually' a small reactive plan for.

achieving that predicate. PABLO ~rovides a mechanism for combining these small

reactive plans dYl!amically. Besides the inherent advantag~s of reasoning abstractly.

we can also achieve some measure of reactive behavior, shodd the planner be inter

rupted during planning. We believe this is a more promising approach to readivi l,y

than tlie reasoning with large, unwieldy re~Gtive plans.

Chapter 7

Operator Hierarchicalization

7 .1 Introduction

The abstraction of-operators has been a prevalent theme in the history_.Qf planning.

Researchers early realized the value of being able to define abstract operators in

terms of other, less abstract, operators. Doing so. allows the planner to "jump" from

one part of the state space to another with one step, potentially bypassing much

pla.nning. However there have been some problems with the proposed abstraction

representations which we hope will become apparent.

7.1.1. MACROPS

The first Use of what we will label "hierarchical operatots" is in STRIPS, with the

MACROPS extension [Fikes and Nilsson, 1971]. As the name suggests, this extension

a.llowed S'rR.IPS to learn and uSe macro operators, for significant computation tifue

savings.

STRIPS would store a plan in a triangle table and then apply a. procedUre to "lift"

a generalized MACitOP from the triangle table.

MACROPS is interesting fat several reasons. It is the first use of hierarchical

op~tatots-in planning, and it is an example of a planner learning abstractions to

speed up problem solving. An example is shoWil iil ngure 7.1.

7i

72 CHAPTER 7. OPERATOR HIERARCHICALIZATION

• unullUM*)T • pal
1

.OOMMICTS(,3.pa.,lO) oorHRU(~,pa,.lO)

·IKRCOM(IOX1.plO)

.~ICts(,.,Rl.pl0)

2 elMlOOK (RDIOT. plO)
eCONNICTS(a."a) ~

COIIJfEfI(a.a.r' PUIHTKROUGM(1OI1,,.. ,lO.RU

IMRDaI(ROIOT,Rl)
elQl(.a&U

oIWIDQM(IDK1.al)

Figure 7.1: A STRIPS MACROP

7.1.2 SOUP operatol"s

With NOAH ca.me the next major advance in hierarchical operators. Operators in

NOAH were defined in So.UP (Semantics of User's Problem) code, which.. allowed

for quite. gene.-al operator deruutions. With NOAH came also the term hierarchica.l

pl~ning. See figUte 7.2 for an example of a NOAH operator.

The SOUP. code in the body of the op.erator provided instructions to NOAH for

how an operator should_be expanded to the next level of detail. As has . .heen.pointed

out by several researchers,. a-NOAH op¢tator is not necessarily hierarchicaL For

example, in the blocks world, each operatot is defined only in terms of a primitive

operator and its. preconditions. When combined with the NOAH methodology of

producing a plan by expanding all the expandable operators in a plan and then

critiquing it, a particular ordering in the expansion of gc;>als was imposed.

There is one major draWback with defining operators in this mannet. Sacerdoti

states [Sacerdoti, 19171:

7.1. INTRODUCTION

(PUTON
(QLAMBOA

(ON ~X ~V)

(PANO
(PGOAL lClear IX)

(CLEARTOP IX)
APPLV
(CLEAR))

(PGOAl (Cl~ar IV)
(CLEAR TOP IV)
APPLV
(CLEAR))

(* Clear IX and IV, then put
1)(on IV)

(PGDAL (Put IX on top of IV)
(ON IX IV)
APPLV NIl)

(POENV (CLEARTOPSY)))

Figure 7.2: A NOAH operator

The most serious deficiency in·the current system is its. lack of aware

ness about the auxiliary computa.tions specified in the proceduraLseman ...

tics (the SOUP code) of a task domain. The procedural net representation

lets the system be. Aware of the go.als and subg9als that the plA1lner has.

decided to tackle, but it does not preserve any information about.the

computation that resulted in those decisions.

73

Beca.use the semantics of NOAH operators are opa.qt,1e to NOAH their usefulness

is limited. Primarily, the operators mu,t be defined by the userj it would be very

difficult tor NOAH to genera.te new ones. Furthermore, only it. minimal amount of

error checking can be done by NOAH, which leaves an additional burden on the USer

of the system.

74 CHAPTER 7. OPERATOR HIERARCHICALIZATION

7 .1.3 Procedural Net Operators

The state of the art in hierarchical operators is found in SIPE [Wilkins, 1988]. SIPE

solves the problem_ of semantic Opaqueness by defining the plots .. of hierarchical oper

ators inthe same language as that used for its internal proc~duralnet representation.

This provides a powerful language in which to define hierarchical operators.

Operator: Puton
Argument.: blockl, object! ta Not blockli
PurpOH: (On ~loc:kl objectl)i
Plot:
Parallel

BrUlch 1:
Goala: (Clear objectl)i

Branch 2:
Goala: (Clear block1);

End Parallel

Procell
Action: Puton.Primitivei .
Argumentl: blockl,objectlj
ReIourcelt blockl;
Etfectl: (On block1 objectl);

Elld Plot End Operator

Figure 7.3: A SIPE operator

Defining hierarchital operators in terms of a procedural net facilitates not only

the design of the planner, in that another la.nguage need not be added on top of the

existing plan language, but also error checking ~LDd the leanling of neW opera.tors.

Although SIPE does not currentlr.le&i11 new operators, its operator tepresentatitJn

language provides the infrastructure for transferring knowledge in plan form into

operator form.

7.1. INTRODUCTION 75

7.1.4 . Formalized Reduction Schemata

In his thesis [Yang, 1989], Yang formalized_a version of hierarchical operators similar

to thoseiound in SIP-B. He defines action templates, which consist simply of precondi

tions and effects. He then defines a set of action reduction schemata each of which is a

function that takes an .a.ction templ~te as inpu~ and returns a set of partially ordered

action templates, with protection intervals between them. The reduction schemata

are analogous to plots in SIPE operators.

7.1.5 Problems with Hierarchical Operators

Incorrect Spe<;ific::ation of Opera.tors

One problem with the current definition of hierarchical operators is that they might be

incompletely or inaccurately ~pecified, i.e. their preconditions and effects might not

reflect the actual preconditions or effects of the operator after it has been eXp'anded.

One possibility is that the user simply encodes the wrong effects in the postconditions

of an operator .. e.g. the encoder of the domain might include a proposition in the

add list of a hierarchical operator that is not added by any action in its expansion.

However, even if the encoder is very careful and only includes effects that are

guaranteed to hold after the expansion of a hierarchical operator, there are still pb

tf"ntial p,roblems. This is because a hierarchical operator might have several P9ssible

expansions, some of which result in Some proposition holding, and others which result

in the proposition not holding.

Hierarchical Promiscuity

A related, though slightly different problem, is one that Wilkins [Wilkins, 1988] terms

hierarchical promiscuity. The problem occurs when operators are described abstractly,

using different sets of predicates for each level of abstraction. It is po.ssible then, when

the planner expands different parts of the plan at different rates, that one part will

be referring and modifying predicates at a much lower level than a part of the plan

previous to it. In such situat\ons it is possible that potentially harmful side effects at

76 CHAPTER 7. OPERATOR. HIERARCHICALIZATION

the lower level of abstractions will not be recognized until much later in the planning

process, resulting in unnecessary planning.

There have been several solutions proposed for this problem. SIPE has a mechA

anism fOr enforcing. ~n ABSTRIPS-like ordering in expanding the operators down

to different abstraction levels. Further, it allows the spetiftcation of special delaying

op¢rators, which cause SIPE to refrain from planning for cer.tain goals until some con

ditions have been satisfied in its state. Yang [Yang, 1989] proposes a solution wherein

syntactic restrictions are computed for operators ahead of time which guarantee that

harmful side-effects will not occur after expansion of an operator.

Unrecognized resolutions.

However, even when the operators are spedfied_completely accurately there are still

potential problems. For example, take the pro9lem in figure 7.4 proposed by Yang

[Yang, 1989}. Part (a) represents a plan with two.actions, each of.which dobbers the

other action's precondition .. There is seemingly no. legal ordering to the two action.

However, when the plan is further expanded in (b) each action has become two actions

and a legal ordering exists among the resulting four actions ..

This is an instance of a "bouble Cross" d~cribed by Sacerdoti [Sacerdoti, 1977).
In this situation a seemingly unresolvable conflict at one point in the plan can be

resolved when the plan is further expanded. Thus, a planner using the traditional

hierarchical op~rator specification might give up and backtrack when plan (a) is

encountered, missing a potential solution.

Incompleteness

Another problem, less serious, but still interesting from a theoretical point of view is

that of completeness. There has as yet not been a planner proposed which supports

hierarchical operators and yet is complete. The reason this is not such a serious prob

lem is .that completeness in any planner implies intractability. Hence, any planner of

practical value must make use of some sort of heuristic information to cut substantial -

portions of the search space. However, from a theoT{;tical point of view, a complete

ness result provides a useful point of reference and starting point fot discussing in

7.2. GENERALIZING STRIPS~STYLE OPERATORS 77

(a)

(b)

Figure 7.4: (a) A plan with seemingly unresolvable conflicts (b) Resolution of conflicts
after reduction.

What ways a planner deviates trom a cOinruete algorithm.

7.2 Generalizing STRIPS-style. operators

Although it allows for the formalization of restricted non-linear plaIl-ning, the STRIPS

style operators used by 'tWEAK fail to capture one important aspect of most major

non-linear plcgmers, namely their hierarchical natut.e. It is no accident that NOAH,

SIPE, etc. are generally referred to as hierarchica.l plann~rs - this has traditionally

been their defining characteristic and a source of much of their power.

In this chapter we present a generalization of the STRIPS-style operators tha,t

captures much of the hierarchical nature of previous planners. We then demonstrate

a control strategy for reas()Il~Hg with this generalized representation that guarantees

a limited form of completeness.

78 CHAPTER 7. OPERArOR HIERARCHICALIZATION

7.3 Representation

We generalize STRIPS-style operators by defining hierarchical operators to_be dis
tinguished plans. An operator is simply a plan which has been deemed useful enough __ .

tClstore and use in problem sQlving. Obviously, S.1'RIPS .. style operators are.special

cases, namely they are plans limited to one action and_possibly some codesignation.

constraints. More formally:

Definition 3 (Operator) An operator is a triple (O,T,Cl where 0 is a set of ac

tions, 7 is a set of temporol tonstraints, and C is a set of codesignation~onstraints.

An oper~tor is vety much like a plan. A primitive. operator is a specialization of

operator.

Definition 4 lPrimitive Operator) A primitive operator.is an opemtot_(0,7,C)

where 0 is a unary set consisting of one ac.tion, T is an empty set, and C is a set oj

codesignation constraints.

Be{o':e an operator (0,7,C) can be used in a plan it must be instantiated. This

is done by creating a new operator (0', 7', C') where

• 0' is a copy of 0 where every variable of every-action of 0 is replaced with a

new variable in the corresponding action of 0;.

• 7' is a copy of T where every action in a temporal coustraint is replaced by its

corresponding copy.

• C' is a copy ofC whe~'e every variable in the codesignation constraints is replaced

by its corr~ ponding copy.

After instantiating an operator we need to insert it into a plan. Given a plan

'P (0;" Tp, Cp, Sinitil11, S/inI11) and an instantia.ted operator ("0' To, Co) the new plan

created by inserting .the instantiated operator is ("pUC> 0' T"U1;" CpUCo, SinWol; S/inol)'

In figure 7.5 we give a graphical illustration of two hierarchical operators. Iil the

fig-ute, one of the hierarchial operators has been chosen to be insetted into the plan.

7.4. HIERARCHICAL TWEAK 79

,--- - ._, - - - l,o- ---I

L 0 II
1 I. L.

__ .J ,~. ____ -

1

1
__ .J

Figure 7.5: Diagram of Hierarchical Opetators

This definition of hi~rarchical operators readily lends itself to the creation of new

ones. The planner can create new operators simply by storing old plans which it

deems to he potentially useful. Of course, only some plans will be particularly useful

so the planner must ha.ve some means of deciding on the usefulness of particular

hierarchical operators.

7.4 Hierarchical TWEAK

.\n important feature of our hierarchical opl'rators is that. at any point during plan

ning\. our plan is always composed solely of primitive' actions. This feature allows us

to Use the TWEAK modal truth criterion to determine the necessary truth of goals

lWd preconditions.

However, We need to. extend T\\'EAK's control stratt:;~ to include hierarchical

operators. As it turns out we only have to make a few minor changes to the alg'Jtithrn

in order to handle abstract operators.

80 CHAPTER i. OPERATOR HIERARCHICALIZATIQN __ _

7.4.1 Selecting Hierarchical Operator~

One imp~rtant issue we need to address is that of selecting hierarchical operators for

instantiation into a plan .. Previously, an_operator was selected on .the basis of whether

any proposition in its add list could p6ssibly codesignate with the proposition which

needed to be achieved. Now that each op~rator is composed.of.a partial-Order of

operators We need to decide what..criteria to use when selecting an oper~tor.

One solution is to choose only hierarchical operators for which the proposition 01
the current goal is possibly asserted in a hypothetical situation placed after all the

primitive actions in the operator. Although this sulution is intuitively appealing it is

somewhat restrictive. Figure 7.6 illustrates a situation where we should have chosen

a hierarchical operator even though, as a unit, it does not possibly assert the current

goal. .

In figure 7.6 if we need.an action to achieve the precondition p of the plan in part

(a), we can choose the hierarchical operator.A and insert it into the plan as shown.iT.l.

part (b) of the figure .. Note that We should choose operator A even though p is :Qot

possibly true after its application.

The solution we have chosen is to choose an operator for instantiation into a plan

if any of its actions possibly asserts the current goal, even though one its later actions

might deny it. Using this approach, Hierarchical TWEAK would .have chosen to

expand operator A because its subaction At possibly asserts the goal proposition.

Hierarchical TWEAK is. then simply T\VEAK augmented with the hierarchical

operator selection strategy outlined above, plus facilities for properly instantiating

and inserting hieratchical operatots.

7.5 Differences with Other Hierarchical Oper~

tors

Incomplete Specification of Operators

The problem oi incorrectly specifying preconditions and effects of hierarchical oper

ators is not an issue since our operators do not have expliCit preconditions or effects

"Page missing from available version"

82 CHAPTER. 7. OPERATOR HIERARCHICALIZATION

(al. o~·---------------o

r: - - - - -::-.pl

(h)

(c)

Figure 7.7: Yang's problem revisited

Completeness

~n interesting_question to cOIisider is whether completeness is preserved with .the

new hierarchical operators. Clearly, if we retain as a condition that every primitive

operator of the domain be represented by one hierarchical operator. the new algorithm

will remain complete t since any plan that would have been found without hierarchical

operators will still be discovered.

However, if we relax this condition, we cannot guarantee completeness in the

sense that if there exists a plan compos¢d of primitive operators, one...will be found.

using only hierarchical operators. One obvious counterexample is the case where the

only final solution consists of exactly one primitive action, but every operator in the

domain consists of at least two actions.

We can, though, guarantee a weaker form of completeness. Namely, if a plan that

is a solution to a problem ca.n be fully partitioned into sets of actions, each set beifig

an instantiation of a hierarchical operator, Hierarchical TWEAK will discover it. We

7.0. DIFfERENCES WITH OTHER HIERARCHICAL OPERATORS 83

will refer to such a partition as a hierarChical partition.

Figure 7.8: Partition Graph

This is most clearly explained in graph theoretic terms. We will think of the

pm:.titioned plan as a graph, where one partition points to another if the former

contains a primitive action ~vhich establishes a proposition that is a precondition for

an action of the latter. Further, a partition points to.. the final situation if Some action

in the partition establishes a proposition in the final situation. We will refer to this

graph as the partition graph.

Definition 5 (&panning Property) A hierarchical pqrtition of a plan satisfies the

spanning property iff there is a path from every partition to the fina.l situation.

Lemma 7.5.1 A hierarchical partition satisfying the spanning property has some par

tition that can be temofJed, such. that the resulting plan still satisfies the spanning

properly.

Proof (by contradiction):

84 CHAPTER 7. OPER.ATOR HIERAR.CHICALIZAT!ON

Assume lemma 7.5.1 does not hold. Then it must be the Case .for every partition ________ ""

that removing it results in some partition no 16nger.~having a path to the final situ-

ation. This implies that for every_partition. PI there is some partitioIi P2 that points

to it such that all the paths from P2 to the final situation contain Pl' We will refer

to partitions such as P2 ~ dependent partitions.

Now, we start at the final situation_ Vie choose any p~rtition that establishes

a proposition in the final situation. Vie mark- it. \Ve then traverse the partition

graph, by choosing a partition that is dependent on the current one. We mark it

and repeat the procedure. Note that we cannot revisit a marked partition since we

already knQw there is a path from every marked p.artition to the final situation that

does not contain any unmarked partitions. Therefore, a marked partition cannot be

dependent on an unmarked one. Since the graph is finite, it must be the case that

for some partition we will be unable to find another partitiofi that i~ dependent on

it. But this violates our assumption that such a partition exists for every partition.

Therefore lenuna .7.5.1 musLhold. 0

Lemma 7.5.2 Every hierarchical l'Clrtition of 0. plan generated by Tn~EAl(satisfies ___ _

the spanning property.

Proof:

Define the temporal distance of a primitive action to b,. the longest path from the

primitive action to the final situation over the temporal constr&.ints in the plan.

Define the temporal distance of a partItion to be the minimal temporal distance

of its primitive actions. ?ve prove that there rIlust be a path from every partition to

the final situation by induction on the temporal distance of pal LitiClns.

Base step: In the null plan there are no partitions and therefore the lemma holds

trivially. In. all.other plans, if a partition '5 temporaLdistance is 1 it must be the

case that one of its primitive actions establishes a proposition in the .final sit,uatioii.

(a primitive action_must be necessarily before any-situation in which it establishes a

proposition), Of. it would fiot r..a.ve been inserted by TWEAK. This means that the

partition points t.O-the final situation and therefore there is a path from the pal'titioll_

to the final situation.

7.5. DIFFERENCES WITH OTHER HIERARCHICAL OPERATORS 85

Figure "1.9: Temporal .bistante

Induction step.: Assume that ror every partition with a temp(>ral distance.of n-l

or less there is a path in the partition graph to the final situation .. We will prove

that there is a path in the partition graplt for all partitions with a temporal distance

of .n. !n the partition there must be some primitive action such that its temporal

distance is n. Furthermore, it must be the establisher of a proposition of either the

final situation or the precondition or another primitive action. In the former case it

is ()bvious that there is a path from the.partition to the final situation. In the latter

case it. mu!'t be the case that the other primitive action is p~rt of a different. partition

which Must have a temporal distance of n -1 or less. But by the induction hypothesis

there must exid a path.from_that partition to the flnal situt.tion. Therefote, there is

a path from the Original partition to the final situation. Cl

We want to prove that every plan. that is. a solution to a problem and can be

leg~lly parti.tioned cali be constructed. by' Hierarthicai TW-EAK. Since TWEAK is

complete it cali consttuct every such plan. But by leth.fila 7 .5.2~y such plan must

satisfy the spaqning property. Therefore, it suffices to ~ho""'·:

Theorem '7.5.3 (Limited Compl~tel'less) 1/ a plan can.be fu.lly partitioned.into n

mutually exclusive sets of actions, each set being an instantiation of some hierarchical

operator, such that the spanning property holds, the Hierarchical TWEAK algorithm

will construct it.

Proof (by induction oil 71, the number of partitions):

86 CHAPTER 7. OPERATOR HIERARCHICALIZATION

Base step: n = 0

If the plan can only be fully partitioned into 0 partitions then the plaILmust be

the null plan. This is the plan that Hierarchical TWEAK begiq~_.wit.h .. __ . ___ _

Induction step:

Assume the-theorem holds for plans that can be partitioned into n - 1 hierarchical

operators such that the ..sp~nning property. holds. We will show it must hold for all

plans that can be partitioned into n hierarchical operators such that the spanning

property holds.

By lemma 7.5.1 there must be Some partition that can be removed from. the plan

such that the spanning property holds in the resulting partitioning, But because this

is a plan of n -1 partitions and the spanning property holds, the induction hypothesis

guarantees that hierarchical TWEAK will construct it. It now remains to be shown .

that the temoved partition would be added. But since every partition is, by definition,

an instantiation of a hierarchical operator, and since the spanning property holds, it

must be the case that there is some primitive action of the partition that estab

lishes a proposition of a situation outside the partition. Therefore, since Hierarchical

TWEAK, in its complete breadth-first search, inserts all hierarchical operators which

have some primitive action which can possibly establish some unachieved proposi

tion in the plan, the .hierarchical op'erator corresponding to the partition would also

be inserted into the p'lan. Since the TWEAI(declobbering strategy guarantees that

all possible alternatives. will be constructed, temporal and co designation constraints

would be added to the plan, such that one of the reSUlting plans was identical to the

original pl~n. 0

Therefore, if-a solution exists to a. problem, such that the resulting plan can be

partitioned into n hierarchical opetat('l~'s, then Hierarchical TWEAK will find it.

Shuffiing of Operators

Another, more subtle difference \',:t,h the other hietarch~.:al operator formalisms is that

using the ttaditionaL.hietarchi.cal operators, once a hierarchical operator is inserted

iilto a plan, .its expansions must satisfy its higher level temporal .. Coiistraints. Fat
example, in figure 7 . .10 we have the expansion of a SIPE hierarchieal operator.

7.6. PABLO IMPLEMENTATION 87

B

/ \ \ ,.
/ \ \

,
\ '\.

/ \ ,
/

,

Figl.lre 7.10: SIPE plan example

In this example, all the subactions of action B must be placed after all the sub

actions of action A and before all the 'subactions of action C. Using our definition

of hierarchical operators it is. possible that the plan could expand such that some of '

the subactions of an action could be shuffled with some of the 5ubactions of.another

action. e.g. as we saw earlier, figure 7.6 provides an illustration of this. This feature

provides Hierarchical TWEAK with more flexibility when expanding a plan.

7.6 PABLO Implementation

We have extended the PABLO operator representation to include hierarchical oper

ators. We present ail. example. that should help clarify the usefulness of hierarchiCal

Operators. We will use the robot domain used in STRIPS and ABSTRIPS. :Before

presenting an example problem we define two hierarchical operators.

Operator 1 allows the robot to get to an adjacent room even wheIi the door is

closed. Operator 2 is similar aIid allows the robot to push a box into another toom

88 CHAPTER 7. OPERATOR HIERARCHICALIZATION

-,
I 0 r CCIl6(D)] --... -it Opu(DI ""'"'I--·~· I Cotu.cU(D,RI J~! ---0 I

--~--

r--------------

I o--GO:(;l·" _ I Opca(D) H Gotob(B) H' PliU'lInadr(B,n,RI I
~!~2 ___________ _

-~

---,
o I

_ --..J

Figure 7.11: . Hierarchical Operators to~ the Robot Domain

when the door is closed.

Vve will demonstrate.PABLO on the problem depi~ed in figure 7.12.

See figure 7.13 for the final plan. PABLO solves the problem considera.bly faster

when using the hierarchical operators than it does without.

7.7 Retaining useful ~p.=.::la=.:n~s~ __ _

One useful consequence· of our pJafifier teasbfiing with hierarchical operators whose.

semantics afe petspicuous to itself.is that learfiing new hierardiical operators in cOIi

siderably facilitated. In fact, to generate a neW hierarchical.operator the planIier.

need only copy' a current plan and store it a!Ofig with its other operatots. OC course,

some criteria must be applied to decide which operators might be generally useful,

and which might not.

7.7. RETAINING USEF'UL PLANS. 89

1<
D

c::
0

I r E G

(a)

D

E F (]

• . (b) . .
Figure 7.12: Robot Domain Problem. (a) Initial State, (b) Goal State.

7.7.1 Towers of Hanoi

HoW' can hierarchical operators be learned and used effectively in .planning? Here is

one possible scenario in the Towers ot Hanoi doma.in. The strateg~' of the planner is

to solve. progressively niOre difficult problems within the domain.

Suppose the planner is given the three. disk Towers of Hanoi problem. First,

it orders the subgoals independently in terms of difficulty. One way this could be .

done is by using the predicate relaxationdeflnitions and applying them to the three

goals. The reSUlting order would then be (1) Onpeg(A,P3), (2) Onpeg(S,P3), (3)

Onpeg(C,P3).t The plai1iH~r would then plan first fat achieving Onpeg(AJ>3). This

1 Note the different notation (rom before, Olipeg(x,yJ iilitead of Oii(X,y). ThiS change was made
to facilitate the exposition of this particular approach.

I

90 CHAPTER. 7. OPERATOR HIERARCHICALIZATION

--""----------------

Figure 7..13: Solution using hierarchical operators.

is trivial and does not generate a new operator. It would then plan t-o achieve the

conjunction of (1) and (2). This would be slightly more difficult and would gener

ate the plan Move(A,P2)-Move(B,P3)-Move(A,P3). This plan would be stored

away for further use. But how should it be generalized? Clearly, "ne should not just

convert all the constants in the plan into variables.

One possible.geperalization mechanism is to consider the hulk preconditions of .

the plan [prummond and Currie, 1988) .. The.bulk preconditions ate those that must

hold in the state where the hierarchical operator will be applied to guarantee that

every primitive action in the operator is applicable .. It these preg>.UditiQIis.ha.v.e.mote.. __ ._. __ ._

than ODe consistent instantiation they should be genetalized.

In the plan fot solving goals (1) and (2) the bulk preconditions aiid their possible

instantiations are as follows:

7.7. RETAINING USEFUL PLANS 91

..

Clear(dl) Clear(A) Clear(A)

Onpeg(dl ,pI) Onp¢g(A,Pl) Onpeg(A,Pl)

Movable(d 1) Movable(A) Movable(A}

Onpeg(dl,d2) Onpeg(A,B) Onpeg{A,B)

Onpeg(d2,pl) Onpeg(B,Pl) Onpeg(B,Pl)

Movable(d2) Movable(B) Movable(B)

Onpeg(d3,p2) Onpeg(BASE2,P2) Onpeg(BASE3,P3)

Smaller(d 1 ,d3) Smaller (A,BASE2) S maIler (A,BASE3)_

Clear(d3) Clear(BASE2) Clear(BASE3)

Onpeg(d4,p3) Onpeg(BASE3,P3) Onpeg(BASE2,P2)

Smaller(d2,d4) Smaller(B,BASE3) Smaller(B,BASE2)

Clear(d4) Clear(BASE3) Clear(BASE2)

There are two possible instantiations of the bulk preconditions in the initial state.

In these instantiations p2, p3, d3, and d4 are instantiated to different values. The

variable p2 is either instantiated to P2 or P3, p3 is either instantiated to P3 or P2,

d3 is either instantiated to BASE2 or BASE3, and d4 is either instantiated to BASE3

or BASE2. The fact that only these variables vary suggests that only these variables

should be generalized.

After generalizing them the plan for solving goals (1) and (2) becomes Move(A,x)

_. Move(B,y) - Move(A,y.). Finally! the planner proceeds to solve goals (1), (2),

and (3).. The actual. solution trace can be seen in figure 7.14. The plallner uses the

newly g¢nerated hierarchical operator for moving the two top blocks .twice, once to

move them to the middle peg and finally to move them to the last peg.

The key to this appto~ch isJirst to order the goals in terms of difficulty. Predicate

relaxation provides a mechanism for doing so. Secondly~ using the initial situation

to determine the possible instantiations of the bulk preconditiofiS of the generated

hierarchical operator, to decide which variables should be generalized. We believe

this to be a promising approach to automatic operator abstraction, but more work ..

temains to be doneJn this area..

92 CHAPTER 7. OPERATOR HIERARCHICALIZATION

I MOVe/C,PS)\

(al

(e)

Figure';" 4: Operator Abstraction Solution Trace

7.8 Conclusion

\Ve have presented an elegap.t definition of hierar.chical operators which overcomes

marty of the problems associated with earlier hierarchical operator definitions, and

proven that it is possible to .guarantee limited completeness when using them in

planning. A mechanism for using hierarchical operators has been incorporated into

PABLO.

Chapter 8

Combining Abstraction Methods

8.1 Introduction

In this chapter we demonstrate several ways to USe state abstraction and operator

hierarchicalization simultaneously for effective problem solving. Recall that PABLO.

achieves a form. of state abstraction through predicate relaxation and operator hier

archicalization through the use of hier.1.rchical operators.

8.2 Robot World Example

In this first example We will use predicate telaxation and hierarchical operators in the

manner in.which they have been presented. We will see later how p.redicate relaxation

can be extended to include relax.\tion of predicates over hierarchical operators ..

We will p'res~T1t an eXa.mple in some detail and. describe the problem -solving that

PABLO does to solve it. The domain of the example is the familiar robot world, with

rooftis, doors, boxes. In addition to. these we also include keys and add the operators

to lock and.unlock doors. Furthermore, keys can be dropped into boxes, in which

case they can no longer be retrieved by the robot.

In the follOWing operator descriptions some atguments t.o predicates. in some. nf -

the delete-lists are preceded by a $. These variables are special. in. the sent::. that

they ate treated as. global variables. For example; if there is a predicate ~($1) in a

93

94 CHAPTER 8. COMBINING ABSTRACTION METHODS

delete list, and two predi¢ates .E(A) and PCB) in the situation description, then both

predicates will be deleted frbm the s!tuation d~cription, instead of just one. These

are the-operators used:

Pickup-key(R,k)

P: {Type(k,Key}:Nexttb(R,k) ,Graspable(k)}

D:{Nextto(R,k)}

k{Hoiding(R,k)}

Put-key-in-box(R,k, b)

P: {Type(k,Key) ,Type(b,Box),Nextto(R,b) ,Holding(R,k)}

D: {lIolding(R,k), Gr:,spable(k)}

A:{In(k,b)}

Goto-ob~ect (R,o)

P:{Type(o,Object),Im-oom(R,rx),Inroom(o,rx)}

D:{Nextto(R,$l)}

A:{Nextto(R,o)}

Goto-door(R,d)

P:{Typ~(d,Door),Inroom(R,rxl,Connecls(d,rx,ry)}

D:{Nextto(R,$l)}

A:{Nextto(R,d) }

Qothru-door(R,d)

P: {Type(d,Door) ,Ir room(R,rx) ,Connects (d,rx,ty),Status(d,Open)}

D:{Nextto(R,$l),Inroom(R,rx)}

A:{Inroom(R!ry)} .

Open-door(R,d)

P:{ Type(d,Door-),N\,xtto(R.~),Status(d,Closed)}

D:{Status(d,Closed)}

A: {Status(d,Open)}

Close-doot(R,d)

P:{Type(d,Doot),N extto(R,d),Status(d,Open)}

D:{Status(d,Open)}

8.2. ROBOT WORLD EXAMPLE

A:{Status(d,Closed)}

Lock-door(R,d,k)

P:{Type(d,Door),Nextto(R,d),Status(d,Closed),Holding(R,k),Type(k,Key)}

D:{Status(d,Closed)}

A:{Status(d,Locked)}

Unlock-door (R,d ,k)

P: {Type(d,Door),N extto(R,d) ,Stat us (d,Locked) ,Holding(R,k), Type(k,Key) }

D:{Status(d,Locked)}

A:{Status(d,Closed)}

In addition we have defined the following hierarchical operators:

Goto-and-Pickup-key(R,k)

Goto-object(R.,k), Pickup-key(R,k)

Goto-and-Put-key-in-box(R,k,b)

Goto-object(R,b), Put-key-in-box(R,k,b)

Goto-and,.Lock-door(R,ktd)

Goto-door(R,d), Lock,.door(R,k,d)

Goto-and-Unlock-door(R,k,d) .

Goto-door(R,d), Unlock-door(R,k,d)

Goto-and-Close-door{R,d)

Goto-door(R,d); Close-door(R,d)

Goto-and-OpE!n-door(R;d)

Goto-door(R,d), Open·door(R,d)_

Pitkup-and-Put-key-in-box(R,k,b)

Goto-object(R,k), Pickup(R.,k), Goto-object(R,b), Put-key-in-box(R,k,b)

Pickup-ll.ndwLock-doot(R,k,d)

Goto-object(R,k), Pickup(R.,k), Goto-doot(R,d), Lock-door(R.,k,d)

95

96 CHAPTER 8. COMBINING ABSTRACTION METHOD8.._

Each of the abov.e operators is a linear sequence of primitive operator.s .. The.

codesi~ation constraints between their. arguments is made explicit by substituting

the same...va.riable name for co designating arguments. __ _

Rt

Figure 8.1: Robot World Problem

We will solve the problem in figure 8.1 The goal of the.problem. is to achieve

Status(D, Locked) and. In(I(, B). This pI:oblem is an example of very strong interac

tion. This type of.interaction is more serious than the strong interaction encountered

in Sussman's Anomaly [Sussman, 1973]. The difference is that in Sussman's AnomalYt

once a plan has been developed to achieve.ea.ch_goal independently, it is possible to

correct the plan simply by adding new actions; in this .case the action of putting block

C on the table. However, in the robot example we have presented it is not possible

to repair the plan in this manner, just given the two plans for achieving each goal.

8.2.1 One Level of Abstraction

8.2. ROBOT WORLD EXAMPLE 97

Goto-objett(R.K) CotO'dOor(Il,D)

LOck400r(R,D,K) Coco-objeet(R,B)

Figure 8.2: Plan at first level of abstraction

We first solve the problem using only one level of predicate relaxation abstraction.

The resulting plan at the first level of abstraction can be seen in figure 8.2. PABLO

has. used two hierarcnicaLoperators, Pickup-.and-Put-key-in .. box and Goto .. and

Lock-door. Furthermore, it has interleaved the primitive actions. of the two op

erators.. This is. something most other hierarchical operator formalisms do not al

low. There.are two predicates in this plan. that are abstractly satisfied. They are

Status:el(door,Closed) and Inroom:cl(Robot,R2).

In figure 8.3 we have the result of planning at the base level of abstraction. Not,ice.

that both abstract predicates have been satisfactorily _achieved. Furthermore, the

optimal pla.n is produced. It should be pointed out that problems with very strong

iliteraction .P9se difficulties fot many planners. ABSTRIPS would not be able t.o solve

the above problem.

98 CHAPTER 8. COMBINING ABSTRACTION METHODS

CQb400r(R,D)

CICleMloor(R,D) Lock~QQt(R,D,K) Go~bject(R,B)

Figure 8.3: Plan at base level

8.2.2 Two Levels of Abstraction.

Instead of just relaxing one. level of abstraction we tan relax the predicates two levels.

Doing so results in the plan seen in figure 8.4. The relaxed predicates that hold are

Inroo~(Robot,R.2), Holding~(k), Status~l(door,Locked).

Continued planning at the first.level of abstraction and at the base level results in

the same plans as.in our previous eXan'lple, albeit achieved using different hierarchical

operators .. PABLO arrived at the.correct plan in two different.way~ gepending on the

amount the predieates were relaxed.

8.3 Generalizing Predicate Relaxation

It is also possible to generalize predicate relaxation so that predicates &re regressed

over hierarchical operators. To determine the desired regressed exprellsiufi, we build

a hypothetical abstract operator whose a.dd list is the union of the add lists of the

B.3. GENERALIZING PREDICATE RELAXAfION 99

Figure 8.4: Plan at the second abstraction level

primitive actions of the hierarchical operator. The preconditions..of the operator

are the bulk preconditions [DruIhmond and CUrrie, 1988] of the hierarchical operator.

Tht!' bulk preconditions are those that must hold in the state where the hierarchical

operator will be applied to guarantee that every primitive action in the operator

is applicable .. Therefore, the precondition of the hierarchical operator becomes the

conjunction or the preconditions of the primitive actions that are not necessarily true.

For our purposes the delete list is not important, since any expr~ssion resulting from

the regression that contains a proposition from the delete list is subsumed by the

proposition itself.

Having. created this operator,.it can be used as a primitive action, for the purpose

of regressing predicates through it.

8.3.1 Shift of Semantics

Now. that We have modified predicate relaxation. it.is important to discuss the iin-

plications. Before, if a relaxed predicate held at level n we were guaranteed that

there existed a plan of n actions or less that achieved. that predicate. Now, we are

guataIit\~d that t.here exists a plan of n hietarchical operators or less. But. this is rea

sonablp. i.a ~ight of the fart.that the predicate reltl.lCatioti is a measure of the difficulty

of-planning to ",chieve a particular predicate. The number of hierarchical operators

nece88at~ to ~.chicvc a pteditate is a. gdod measure of this difficulty.

100 CHAPtER 8. COMBINING ABSTRACTION METHODS

8.4 ABSTRIPS domain

We will demonstra.te the relaxation of predicates over hierarchiCal operators in the

ABSTRIPS domain. The operators .are those described in [SaCertioti, 1974] which

are essentially the same as those described. in [F.ikes and Nilsson, 1971], with the

exception of two which are not used in the following examples.

Gotob(R,b)

P:{Type(b,Box),InrooItl(R,rx),lntQpm(b,rx)}

D:{Nextto(R,$l}}

A:{Nextto(R,b)}

Goto(R,d}

P: {Type(d,Ooor) ,Inroom(R,rx) ,Connects(d,rx,ry)}

D: {Nextto(R,$l)}

A: {Nextto(R.,d)} .

Pushb(R,bx;by)

P: {Type(by,Object),Pushable(bx),Nextto(R,bx),Inroom(bx,rx),

Inroom(by,rx),lnroom(R,rx)

D:{Nextto(R,Sl),Nextto(bx,$2),Nextto(S2,bx)}

A:{Nextto(bx,by),Next.to(by,bx),Nextto(R,bx)}

Pushd(R.,dx,bx)

P:{Type(dx,Door),Pushable(bx),Nextto(R,bx),Inroom(bxft'x),

Connects(dx ,rx,ry) ,IIirOoth(R,t,,)

D:{Nextto(R,Sl),Nextto(bx,$2),Nextto($2,bx)}

A:{Nextto(bx,dx),Nextto(R,bx)}

Gothrudr(R,d,ry)
P..: {Type(diDeet) ,Intootrt(R,rx),Coiulects(d,tx,ry);8tatus(d,bpcn)}

D: {Nextto(R,$l),lIiroom(R,rx)}

A:{Inroom(R,ry)}

Pushthrudr(R.;bx;dx,rx)
P:{Pushahle(bx),TyPc(dx,Deot);Typc(tx;R6om),Nextto(bx,dx),

8.4. ABSTRIPS DOMAIN 101

Nextto(R»x) ,Inr60nt(bx,ry),lnroom(R,ry) ,Connects(dx,ry,rx),Status(dx,Open)} ___ ,_

D:{Nextto(R,$l),Nextto(bx,$.1),Nextto($l ,bx),lnr06m(R,ry),Inroom(bx,ry)} _

A: {Inrootn(bx,rx),lnrcom(R,rx),Nextto(R,bx)}

Open(R,d)

P:{Type(d,Door).Nextto(R,d),Status(d,Closed)}

D:{,Status(d,Closed)}

A:{Status(d,Open)}

Close(R,d)

P:{Type(d,D.oor),Nextto(R,d),Status(d,Open)}

D: {Status(d,Open)}

A: {Status(d,Closed)}

We have also defined the following hierarchical operators:

Gothrucloseddr(R,dx,ry)

Goto(R,dx), Open(dx), Gothrudt(R,dx,ry)

Gotob .. and-Pushb(R,bx,by)

Goto(R,bx), Pushb(R,bx,by)

8.4.1 Managing the Size of Relaxation Expressions

As the number of operators grows in a domain it is important t<.\ consider ,way?> to

limit the size of the relaxation eXpressions. There are several methods PABLO uses

to limit these sizes.

Removing Subsumed Dlsjuncts

The relaxation definitions ate.kept in disjunctive normal torm. Duting the relaxutiofi

it often happens that oile disjunct sUbsumes another ODe. In sUch situations PABLO

retm",/CS the subsumed disjunct. There is no reason fot retaining it, since whenever

it holds, the disjunct which subsumes it will also hold. See chaptef6 for an example

102 .. CHAPTER 8. COMBINING ABSTRACtION METHODS

where this is done for the Clear(x) predicate in the blocks world. Once hierarchical

op~rators are introduced the 'frequen,cy of subsumed expressions naturally rises and

this operation can lead to substantial savings.

Using Dom~n Knowledge

Another useful method to limit the size of the relaxed expressions is to uSe domain

axioms to collapse disjuncts. For example, in the Robot World domain without locked

doors we have the axiom Status(x,Closed) => ..., Status(x,Open). The result of relaxing

the Status predic;ateone level is the following:

.. Sta.tus~(z,y) ..

Status(x,y) 0
Nextto(Robot,x) A Type(x,Ooot) A Status(x,Open) [Close(x)]

Nextto(Robot,x) A Type(x,Door) A Status(x,Closed) [Open(x)]

However, using the domain axiom, the above can be collapsed to:

Status~l(Z,y)

Status(x,y)

Nextto(Robot,x) A Type(x,J)0or) [Close(x) V Ope.n(x)]

This technique can lead to considerable simplification in the relaxed expressions.

Example in the ABsTn.IPS DOmain

To demonstrate how these techniques cai1 lead to substantial savings we show the

result of applying them to the relaxatiOi1 expr¢ssiQfi .. 6f the Inrootn(x,y) predicate.

Without aily simplification the result of relaxing lnrootn(x,y) t\VO levels, over the

ABSTIUPS operators, can be seen in tables 8.1 and 8.2.
Obviously this expression is unacceptably large. Rowever; if we make lllSe of the

techniques {or managing the siZe of relaxed expressions the resulting exptc'!"Ssion, in

table 8.3 is Consider.ably more compact.

8.4. ABS'rRIPS DOMAIN 103

lnroom;~1 (x, 11)
lnroom(x,y) v
connecttl(z,r,y) A type(z,door) A status(i,Closed) A type(y,room) A type(f,door) j)

type(r,room) A connects(f,g,r) A status(f,open) A inroom(robot,g) V

connects(z,r,y) A type(z,door) A status(z,closed) A type(y,room) A inroom(robot,g) A
conneets(f,g,r) A type(f,door) A status(f,closed)A type(r,room) V

type(v,door) A type(y,room) A connects(v,w,y) A status(v,open) A type(f,door) A
type(w,room) A conneets(f,g,w) A status(f,open) A. inroom(robot,g) V
type(v,door) A ty'pe(y,room) A. connects(v,w,y) A inroom(robot,w) A type(v.,door). A
status(v,closed) A nextto(robot,v) V
type(v,doot) " type(y,room) A ctmnects(v,wS) " status(v,open) " inrocm(robot,g) A
connects(f,g,w) A type(f,door) A status(f,closed) A type(w,room) V ..

pushable(x) " nextto(x,k) " nextto(tobot,x) A type(k,door) A type(y,room) A sta
tus(k,open) A inroom(x,s) A <:onneets(k,s,y) " type(t,door) A type(s,room) A con.
nects(f,g,s) A status(f,open) A inroom(robot,g) V
pushable(x) A nextto(x,k) A nextto(robot,x) A type(k,door) A type(y,room) A in
room(robot,s) A inroom(x,s) 1\ connects(k,s,y) IA. type(k,door) A status(k,elosed) A
nex.tto(robot.k) V
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A btatus(k,open} A
inroom(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) A pushable(x) /\
nextto(robot,x) A ,inroom(x,g)-" conneets(k,g,h) " inroam(robot,g) V
pushable(x) A nextto(x,k) A type(k,door) A. type(y,room) A status(k,open) A in-.
room(robot,s) A intoom(x,s) A connects(k,s,y) A type(x,door) " pushable(robot) A
nextto(robot,robot) A inroom(tobot,g) A connects(x,g,h) A inroom(robot,g) V
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A
inroom(robot,s) A ifitoom(x,s) A connects(k,s,y) A type(k,obiect) A pushahle(x) A
neXtto(robot,x) A inroom(x,g) A intbom(k,g) A iIiroom(tobot,g, V
pusha.ble(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A
inroom(robot,s) " intootfi(x,s) A conneets(k,s;y) A type(x,object) A pushable(k) A
nextto(robot,k) A inroom(k,g) A inroom(x,g) A inroom(robot,g) V
pushable(x) A nextto(x,k) A type(k,door) A type(y,toom) A status(k,open) A in-.
toom(robot,s) A irttoom(x,s) A connects(k,s,y) A type(x,Object) A pushable(robot) A
nextto(rohot,robot) A into6th(robot,g) A inrootn(x,g) " inroom(tobot,g) v

Table 8.1: First half of relaxation expreasion.

104 CHAPTER 8. COMBININCLABSTRACTION METHODS

pushable(x) A nextto(x,k) A type(k,door) A type(y,room) A stat'Us(k,open) A in"
room(robot,s) A bttoom(x,s) A conneds(k,s,y) 1\ type(robot,object) A pushable!x) A
nextto(robot,x) A inroom(x,g) A iilroom(robot,g) A inroom(robot,g) V .
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,opan) A in· ..
roo!n(robot,s) A. inroom(x,s) A connects(k,s,y) A type(k,})ox) A inroom(k,g) A in
r6om(robot,g) V .

. pushable(x) A nextt6(x,k) A type(k,door) A type(y,room) 1\. status(k,opeli) 1\ in-.
room(robot,g) A intoom(x,s) A connects(k,s,y) A type(x,box) A itl.room(~,g) A in
rOOm (robot ,g) V
pushable(x) A nextto(tobot,x) A type(k,door) A type(y,room) A status(k,open) A in
toom(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) /\ connects(k,g,h) A in
room(robot,g) V

pushable(x) A nextto(x,k) A type(k,door) A type(y,room.) A status(k,open) A in
room(robot,s) 1\ inroom(x,s) 1\ cpnnects(k,s,y) A type(x,door) A connects(x,g,h) A in
room(robot,g) V

pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) 1\ status(k,open) 1\ in
room(robot,s) A inroom(x,s) 1\ connects(k,s,y) A inroom(robot,g) 1\ inroom(x,g) 1\

type(x,box) 1\ inwom(k,h) A pushable(x) A type(k,object) V
pushable(x) A nextto(robot,x) 1\ type(k,door) A type(y,room) 1\ status(k,open) 1\ in
room(robot,s) A iJlroom(x,s) A cOJ.l.n.ects(k~,y) 1\ inrOOm(robot,g) 1\ inroom(k,g) A
type(k,box) A inroom(x,h) 1\ pushable(k) A ~ype(x,object) V
pushable(x) A nextto(x,k) 1\ type(k,door) A. typt;~y,room) A status(k,open) A in
room(:robot,s) A mroom(x,s) A conneets(k,s,y) " inroom(robot,g) A type(robot,box) A
inrOOD.l(x,h) 1\ pushable(roDot) 1\ typ~(x,object) V
p~!hable(x) 1\ nextto(x,k) 1\ type(k,d60r) A type(y,room) 1\ status(k,open) A in
room(robot,s) 1\ inroom(x,s.) 1\ connects(k,s,y) A inroom(robot,g) 1\ intoom(x,gLA
type(x,box) 1\ pushable(x) 1\ type(robot,object) V
pushabl~{x) A nextto(x,k) 1\. nextto(robot,x) A type(k,door) A type(y,room) A sta
tus(k,open) 1\ inroom(x,s) A comiects(k,s,y) " inroom(robot,g) A connecU(f,g,s) A
type(f,doot) A sta.tus(f,closed) A type(s,l'oom) V
pushable(x) 1\ nextto(x,k) A nextt6(robot,x) A type(k,door) 1\ type(y,rOOfil) A sta
t~s(k,Opeil) 1\ inroom(robot,s) A inrooni(x,s) A ~onnects(k,s,y) V
type(v,door) A type(y,toOm) A connetts(v,WS) A status(v,open) A hir06m(tohot;w) V
hiroom(robot.r) A connects(z,r,y) 1\ type(z,doot) A status(z,dosed) A type(y,toom)

Table 8.2: Second half of relaxation expression.

8.4. ABSTIUPS DOMAIN 105

lnroom:el (x, y) .
connetts(i,r,y) 1\ type(z,door) 1\ type(Y,toom) 1\ in.rOOm(robot,g) 1\ connects(f,g,r) 1\

type(f,door) 1\ type(r,room) V
pushable(x) A nextto(x,k) 1\ nextto(robot,x) 1\ type(k,door) 1\ type(y,room) 1\ in
room(robot,s) 1\ inrootn(x,S) I_tonnects(k,s,y) 1\ nextto(robot,k) V
pusha.ble(x) 1\ nextto(x,k) 1\ type(k,door) 1\ type(y,room) /\ status(k,open) ~ in
room(robot,s) 1\ i.nroom(x,s) 1\ cotmects(k,s,y) /\ type(x,box) V
inroom(robot,r) 1\ connects(z,r,y) 1\ type(z,door) 1\ type(y,room) V

pushable(x) A nextto(x,k) 1\ nextto(robot,x) 1\ type(k,door) A typ~(Yfrooml-" sta
tus(k,open) 1\ inroom(robot,s) 1\ inr",u.:1(x,s) 1\ connects(k,s,y)

Table 8.3: Relaxed exp_ression using the simplification filters.

While simplifying the expression we made use of the domain constraint

Status(x, closed) :=} Status(x, open)

Notice th;;..t by using this constraint. PABLO can capture the notion that it does

not matter whether a door is open or closed, since PABLO has operators for either

case (Gothrudr and Gothrucloseddr). All that is important is that there is a door

between two rooms.

We can see tha.t with a few simple techniques it is possible to achieve a sitable

reduction in the size of the relaxed expressions. If the e>q)r.ession becomes unman'"

ageably.large even using these simpHfication techniques, PABLO stops relaxing the

predicate. The user cali set a threshold for. the maximum allowable size for. each

relaxation. pteditate. This might result iIi PABLO performing additional. planning

at a higher level than it otherwise would, but this might be preferable to having an

enormous and unwieldy relaxation expression to evaluate.

8.4.2 Example from ABSTRIPS

We gave PABLO the problem presented in [Sacerdoti, 19741 for purposes of compar

ison. The problem can be seen in figure 8.5. tIi this figure (a) represents the initial

state arid (b) is the goal state.

106 CHAPTER 8. COMBINING ABSTRACTION METHODS

A -(J" D

[i] ~. GJ I, Gl 10 E

(k)

~

-(J"
[i]GJ

, F

UJ
E 0

(11)

Figure 8.5: Problem that ABSTRIPS solves

PABLO begins planning at abstraction level 3. The plans g~~erated after each

absttaction level can be seeILin figure 8.6. ABSTRIPS also uses four levels of ab

stractions for this problem ..

The plans generated at each abstraction level by PABLO and ABSTRIPS are

remarkably similar .. This is ptobably due mostly to the nature of the problem. and

domain. ABSTRIPS is a linear pl~nner .. and this is a linear problem, without strongly

interacting subgoals. It is not surprising that both planners would genera.te similar

plaIts at different levels of abstraction.

Givetl-h...difrerent problem in a similar domain, such as the previous problem with

8.4. A13STRlPS DOMAIN

Go&ob(R,IX&l) H Pullb(R,8w.,B0.x2U

LneU

G~b(R,Baxl) t-l PlIIllb(R,Baxl,Bad) H ~lnclz(R,Dab,A) I
LtY.12

Gowaclz(R.D£e,E) Gowb(R.BCilIl) P6Ab(R.hl,9ax2) 1-----1 Gowadr(R,Dab,A)

Lev,II

Go~(R,DfI)

Co&lnclz(R,Dte,E) Ctw6b(R,Bod) Pullb(R,BcIlt1,BolI2)

Gollndr(R.Deb,B) ~--....t-;;G:o':::ln::;dr(:;;a,:Da:b:'A~)

Figure 8.6: PABLO's solution

107

very strongly interacting goals the- similarity obviously ends, since ABSTIUPS is

unable to solve the problem .. Also, given a different .domain, such as the Towers of

Hanoi, the two-planners' behaviour might differ considerably. In the-Towers of Hanoi.

domain, ABSTRIPS can use only one. level of abstraction, jIO matter the complexity

of the problem given, whereas PABLO g~ijJ!.rC!t~ .. n - 1 levels of abstraction for n

disks.

108 CHAPTER 8. COMBINING ABSTRACTION METHODS

8.5 Summary

We have present"!d two examples where state and opera.tor abstraction are combined

to pro<hlce interesting planning behaviour. We have extended predicate relaxation to

include the relaxation of predi~tes over hierarchical operators. Finally, we demon

strated techniques whereby the size of predicate relaxation expressions can be sub

stantially reduced.

Chapter 9

Classical Truth Criterion

9.1 Introduction

A truth criterion defines the conditions under which a predicate is true in a particular

situation of a plan. Such a criterion is important since a planner must often check

the truth of propositions during planning, e.g. to determine if a proposition of a

precondition is satisfied. Because the underlying plan representation varies from

planner to planner the, truth criteria of planners. have varied as well.

As we shall see, in some special plans, namely those, where the actions are lin

early ordered and where every pr,edicate is ground, defining a truth criterion is rela

tively straightforward. Once we introduce variables, nonlinearity, conditional actions,

deductive rules, typ~d variables t etc., defining a truth criterion becomes more cOin

pl,icated. _ For example, once we introduce nonlinearity, the truth of a predicate at

a certain point in the plan depends on-the possible orders of the actioIis p'receding

the point of interest. IIi this case we no longer speak simply about the truth of a

proPQsition, but about the possible,or necessary truth_of a .proposition.

The first formal definition of a truth criterion for partially ordered plans can.

be found in [Chapman, 1987]. Chapman refers to this criterion as the Modal Truth
Criterion. The Modal Truth Criterion was defined for a particular plan formalism:

Chapman's TWEAK forIualism. As Chapman pqints out, TWEAK is a very' re

stricted pJattning formalism. Further"even minor extensions to the formalism results

109

110 CHAPTER 9. CLASSICAL TRUTH CRITERION

in the truth criterion no longer being valid.

In this chapter., We discuss the p'!-,~vious work by Chapman, and then present.a.

new. pl~ning ontology that is powerful enough to capture most pl~nning formalisms

proposed uP. until now .. We then pr~ent. a new .. Classical Truth Criterion for this

planning formalism. This truth.ciiterion is proved. sound andC6IIiplete.~ Finally,

We discuss some of the implications of the Classical Truth Criterion, and present an

algorithm for checking the truth of a predicate in a plan.

9.2 Modal Truth Criterion

Chapman introduces the following truth criterion:

Definition 6 (Modal Truth Criterion) A proposition p is necessarily true in a

situation..s iff two conditions hold: there is a situation t equal Of' necessarily previous

to s in which p is necessarily asserted,. and for every step e possibly before sand

every proposition q possibly codesignatin.g with p which e denies, there is a step W
necessarily between e and $ which asserts r, a proposition such that rand p codesignate

whenever p OJ)d q codesign ate. The criterion for possible tr"th is exactly analogous,.

with all the modalities switched (read "necessary" for ('possible" and vice versa).

In Chapman's logical notation. the criterion reads as follows:

3t Ot -< s A Dassertedin(p, t)A

ve Os -< ev
'f/q O-.denies(C,q)V

Oq ¢ pV

3W Cle -<·W/\

OW -< sA

3r asserts(W, r) A p :::::: q =? P :::::: r

1 A truth criterion is sound it whenever it holds for a predicate p and a situation s the predicate
p is ttue in situation s. A truth criteth.n is complete if whenever p is true in situatiofi s the truth
criterion holds for predicate p in situation s.

9.2. MODAL TRUTH CRITERION 111 .

There is a typo in ChapmC!-n's logical formulation of the Modal Truth Criterion.

In order to make the formula conform to the English version_we need to replace

3r asserts(w, r) "p ~ q => p:::::: r.
with _

3r asserts(w,r) 1\ D(p ~ q => p ~ r).

In what follows we will refer to this criterion as MTC. The MTC is proven. by

Cha.pman to be valid for plans represented in TWEAK's formalism. Fot a..complete

description oLTWEAK see [Chapman, 1987]. An action in TWEAK has a precondi

tion and a postcondition! each of which are sets of predicate~ which must hold before

the application of the action and after the application of the action respectively.

Plans in T\VEAK are partial orders of actions. The TWEAK forma.lism explicitly

excludes restricting variables to a finite domain, conditional actions, and deductive

rules. Chapman notes that if TWEAK is extended in any of these ways the Modal

Truth Criterion fails. For example, in order to guarantee,

-.M1.'C => -.DH olds(p, s)

or

'tit Os --(t V O-'asserts(p, t)V

3c Oc...(sA

3q Odenie$(c,q)A

Oq~pA

'tiw Ow ~ cV

Os~wV

Yr -.asserts(w, r) V O(p:::::: q A P ¢ t)

=> -;OHolds(p,s)

iLmust be the case that if no action necesse.rily asserts p theil.p canuot ilecessarily

hold. Although this is the case fo\' the plan represerttatiortused in TWEAK it is not

the case for maliy representations which ate just someWhat mote-expt~sive. For

example, if we allow restricted ranges on variables we can have situations where no

step neccsl:lt' :-ily asserts a proposition but wher~ the propo!lition is asserted by soine

step in all ground lilip.at completions of the plan. Take the plan in figure 9.1.

112 CHAPTER 9. CLASSICAL TRUTH CRITERION

•

1-----1 Move(C,x,TABLE) Clear(x) MoVe (D,),.TAl3LE) Clearly) ,

x - {A.l} Y .. {A.B)

Figure 9.1: Restricted Range Plan.

In this plan Clear(A) holds in situation 5, however the Modal Truth Criterion fails

to determine this.

Restricting the range of variables can greatly rednce the planning time in ceet.ain

cases. SIPE is the- maln planner which makes use of this fe&tute for great compu

tational savings. A._truth criterion that can deal with this extension is thel'efore an

important contribution.

\Ve have a similar problem if we extend our plan tepresentatioIi to allow arbittary

deduction performed in situat\ons. Vie have to he careful when extending our 1,\,

guage to handle this. Lifschitz [Litschitz, 1986J has shoWil that for a planner 'Which

uses S~('pjPS style Gperators to remain 50u!ld it is o€cessar.y that an), axioms w~ Use

must hold in. all states. of the domain. Huwevet, if we allow such axioms in oUr pla.n

l;uiguage the completeness proof of the Modal Truth CriterioI'! fails sint::e We can now

have two actions which synergistically assert a ptoposlt;\ln in a way sitnilat tc. th~t of

figure 9.1.

9.2. MODAL TRUTH -;RITERION 113

For example, suppose we are in a blocks world which allows more than one block

on another. We might want to inciude a deductive rule which determines that if no

block is on top of a .. particular block then that block is clear. This rule would usually

be applied after a. block has ,been moved from one location to a.nother. This is not-

equiya.1ent to simply adding Clear(x) to the postcondition ot. the move:,block(y,x,2)

operator, since not all block moves result in x becoming dear.

Gl[9J
I c I

MOVl(A,C,TABLE)

MciVe(B,C,TABLE)

Figure 9.2: Deductive Plan

Take example 9.2. In this example each move operator has On(x,y) in the delete

list, where:t ~fl the block being moved. However, it does.fiot have Clear(y) ifl the add

list, since it might be the case that there are.tema.iIiiIig blocks on y. To determine if a

block 'Ii is deat the planner must use the following axiom (..,3x On(x, y)) => Clecif!(Y).

In OUr example, it is the case that clear(C) holds in.state S. The·Modal Truth Cri

terion would not recognize this since no action prior to s necessarily asserts clear(C).

Iii wha.t follows we present a planning formalism which generalizes most of the

powetful plafl tepresentatiofiS proposed ill the literatur(:! to date. We th~rt present a

114 CHAPtER 9. CLASSICAL TRUTH CR.ITER.ION

Classical Truth Criterion which is proven valid for this formalism, and as a. conse

quence, th~ formalisms which it subsumes.

9.3 The Classical Planning Ontology

In this section we present out ontology, upOn whith we will base our logic, and present

the b:uth criterion.

A plan consists of the. following components:

A {at, ... , an}, a set of n actions.

P A possibly infinite set of predicates.

W _< A part.ial order A x A.

W..asserts .A binary relation A x P.

W _denies A .binaty relation A x P.

W Jnitially A unary relation on P.

W..ground_ A unary relation on P.

W..holds A binary relation P x A.

Notice that we have said nothing about the structure of actions or predicates for

that matter, only that they exist. It is important to make the distinction at this point

between the predieates in P, which ate predicates On the particular domain the.planner

is operating in, e.g. ON(x1y); CLEAR(x) in the blocks world, and the predicates iii the

logica.1language used to desctib~ the truth criterion, e.g. asserts(W,t) in Chapman's

logic.

A model is a Kripke structure such that:

• The worlds are plans .

• At P, W JIiitially, and W.ground do fiot vary ftom wodd to world.

9.4. CLASSICAL PLAN LOGIC 115

We define some worlds as being GLP (ground-linear plans):

Definition 7 (GLP) GLP(w) iff in world w, W_< defines a total order on A and for

every predicate p such that there is some action a and Sbme pair (a,p) E (W -asserts

U W _denies) it is the case that P E_W..ground.

Rurther, the worlds in our Kri~~e s~ry~tur.~ ar~_related by the following two rela

tions:

Definition 8 (S) S(Wl! W2) is any reflexive, transitive relation such that whenever

GLP(Wt) then S(WhW2) = (WI = W2).

This completes our ontology. Notice that the relation S is not con'lpJetely sp"ecified.

The point is that any relation with the necessary properties we have defined will

be adequate for our purposes. The relation S will vary from planner to planner,

depending on the planner's particular method of specializing plans.

Further notice that this ontology can, be used to represent planning formalisms as

diverse as STRIPS, TWEAK, SIPE, NOAH. NONLIN, etc. This is because we impose

Jio ,constraints on the structure of actions, and allow the. telatlons W _<, W ~setts,

W.denies, to vary from world to world, thus allowing for Ilonlinearity, conditional

actions, deductive rules, etc.

9.4 Classical Plan Logic-

In order to reason with our ontology We need a language which will allow Us to make

prC!cise statements about our model. Not surprisinglY, we wiJl use a first-order modal

logic. We define symbols for the membets of A and P. For ~imp1icity of expQsition we

will Use the saine symbol nan'les in our logic as inJ.he modelj if a E A iii the model

then d is an adion in out logic. We then define the {ollowin~ti6ns:

116 CHAPTER 9. CLASSICAL TRUTH CRITERION

asserts asserts(a,p) iff (a,p) E W..AsSerts.

denies denies(a,p) iff (a,p) E W _denies.

initially initiaUy(p} iff peW Jnitially.

ground ground(p) iff peW .ground. .

holds holds(p, a) iff (p, a) E W -holds.

We intend holds(p, a) to be true if predicate P. is true just before action a is

executed; initially(p) is true if p is true in the initial situationj asserts(4, p) is true

if adion a asserts· predicate Pi denies(a, p) is true if action a denies predicate pj

ground(p) is true if predicate p contains no variables in its argument list; at -< a2 is

true if action at must be executed before action a2.

We also have two sets of modal-operators: os, <>s defined in the usual manner ott...---

the accessibility relation S, and 0, <> defined on the accessibility r.elation C.
We will need the following properties o£ our logic:

O(P 1\ Q) ..:... Op A OQ

o.(P V Q)::'" <>PV <>Q.
OP 1\ <>Q ~ O(P A Q).
Os.(1' 1\ Q) == 0sP A OsQ

<>$(P V Q) == <>"sP V <>-sQ
These are true in aU standard r.:todels of modal logic and the:\~~tore also tn oUrS.

VxoP ~ OVxP-{BMcan Formula)

3xOP =* o3:tP
VxosP ~ OsVzP (Ba.rcan..Fotmula)

3xosP :.} Os3tP

This follows frofil the fact that we ate using a fixed domain, Le. the objects in

out. domain (:i.C:ihnis and ptedicat.es) t.io not vary frO:-.l wodd to 'World. We tail prove

the BarC<\n fottnlila as follows. It, in a plan Cl,. VzoP thell it is the case thct.t OP is

true i11 ex fio matter what value x takes. But thf.'ll !<ir nll plaI&!j fJ such that {lCP it
is the ca"e tha.t P is true no matter what value :x tahes. But this means that V:tP

9.4. CLASSICAL PLAN LOGIC 117

is true.in plan (3. Which in turn means that o'VxP is true in plan Q. 2 The proof

for 3xClP => o3xP is_similarly straightforward, and the proofs for 0$ and Os are

analogous._

OsOP => oP

If Fa ~sOP .then there exists some plan a' and some plan (3 such that aSa'.and

a'C(3 and F=1l P.3 We_just need to show that aC/3. But this is .clearlytrue, since

clC(3 implies o'S/3, which by transitivity implies 0:8(3. Furthermore, GLP«(3) which

implies aC {3.

os£..=> OP

This follows directly from the definitions of C and S. Specifically, for all plans a

and /3 whever aC{3 it is the case that a8/3. Therefore, if Fw P for every w such that

aSw, it must be the case that Fe P for every (such that aC(.

O(OP::: P)

O(OP == P)

These two axioms follow from the facLthat the only ground linear completion of a

ground linear completion a is a. Therefore 1==" OP is equivalent to F=a P and E",-a =o:,oo..P ___ _
is equivalent to Fa P.

9.4.1 STRIPS Assumption

We are almost do::te with the definition .of our logic. It. turns out that to ptoye our

Classical Truth Criterion we need one axiom~ .

° (Holds(p, a) .==
(-,3b(b -< a) A initiaUy(p))V

3c«c -< a) A -,3d«c -< d) 1\ (d -< a))1\

(assetts(c,p) V (ltolds(p,c) A -,denies(c,p)))))

lnterestingly enough, if we take the ST.IUPS assumption to be:

~Fot a discussion of the Harcan formula see [Hughes and Cresswell, 1968] pp. 147-148.
3The notation Fa P means that F P in plan (wC)rld) Q.

(9.1)

118 CHAPTER. 9. CLASSICAL TRUTH CRITERION

Tlle truth value of a predicate does not ehange unless it lLexplicitly

asserted or denied by an 4.ct;on in the plan.

Then it should be clear that our axiOlil is merely a restatement of this principlejn"

our logic. Th~refore, we will refer to this axiom as the STRIPS Assumption Axiom.

9.4.2 Lemmas

In our proof of. the Classical truth criterion we will need the following lerrunas which

follow directly from the STRIPS Assumption Axiom.

Lemma 9.4.1

Lemma 9.4.2

Lemma 9.4.3

D((::,39..(b -< a) 1\ ...,Initially(p)) => ...,Holds(p, a))

0((3b (b ~ a) 1\ ...,3c ((b ~ c) 1\ (c -< a)) 1\ ...,Holds(p, b)

,,-,asserts(b,p)) => ...,Holds(p, a))

D((3b(b -< a) /\ ...,3c((b -< c) " (c -< a))./\ denies(b,p) /, ...,asserts(b,p)) _

Lemma 9.4.4

Lemma 9.4.5

=> -'Holds(p, at.:.)) ____ _

D(Initially(p) => (Holds(p, a) V 36(b -< a)))

0(3b(b -< a) A 3c((b -< c) 1\ (c -< a))/\

("asserts~) => Holds(p1b) A.:-tdeIiies(b,p»

=> ltolds(p, a))

9.5. CLASSICAL.T1l.UTH CRITERION

9.4.3 ---First attempt at defining a new truth criterion

One obvious truth criterion is the folloYling formula: .

OHolds(p, a) =
O((..,3b(b ~ a) A initially(p))v

3c((c -< a) A 7'3d((c ~ d) A (d -<.a))A

(asserts(c,p) V {Holds(p, c) A ..,denies(c,p)))))

119

(9.2)

This follows directly from the STRIPS Assumption Axiom. It should he obvious

that this definition is not particularly useful since it requir¢s us to examine every

ground linear completion of a plan to determine the truth of a prop'osit,on in a

situation.

We now present a new truth criterion which is powerful enough to correctly handle

an extended plan representation, yet allows. us t~ determine the truth of a proposition

more efficiently than simply examining every ground linear completion of the current

plan.

9.5 Classical Truth Criterion

In our language the Classical Truth Criterion is expressed as follows;

o Holds(p, a) ==
Ds (((..,3b O(b :< a)) =? ClInitia,lly(p))A

''fie (O(c -< a) A ..,3d O((c -< d) A (d -< a))) =>
(..,0 aSserts (c, p) =>

OHolds(p,c) A ..,Odenies(c,p)))

Proof: '

We will refer to the right hand side of the equivalence as TC. First We prove that

if p holds before all. actioIi a of all ground-linear completiollS of a plan then the truth

criterion m, .~t. hold for that plan .. This is done by proving the contrC!.R9sitive, natnely

that ..,TC(p; a)=> -;oHolds(p; a).

1
i

12()- CHAPTER 9. CLASSIOAL TR.UTH CRITERION

Os«-.3b O(b -< a) /\ -.OInitially(p») .

V3c (tJ(~ -< a) /\ -.3d O«~ -< d) f.\ (d '-< a))

/\...,Oasserts(c,p)/_-

(-.oHolds(p, c) V Odenies(~~p))))

=> -.OHolds(p, a)

Using Os(P V Q) == OsP V OsQ we can rewrite the above.

Os«-.3b O(b -< a) /\ ...,OInitially(p)))

VOs(3c (D(c -< a) /\ ...,3d O«c """ d) /\ (d -< a»
/\-,Oasserts(c,p)/\

(-.oHolds(p, c) V Odenies(c,p))))

=? -.oHolds(p, a)

Usin~P V Q =? R == (P::::} R) /\ (Q =?R):

We first show:

Os«-.3b O(b -< a) /\ -'OInitially(p»))

=? -.OHolds(p,a)

/\

Os(3c (D(c -< a) /\ -.3d O(.(c -< d) /\ (d -< a))

/\ -.Oasserts(c, p)/\

(-.tlHolds(p,c) V O.denies~p))))

=? ...,DHolds(p, a)

Os«-.3b O(b -< a) /\ -.OInitially(p)))

::;- -.oHolds(p, a)

Since ..,3bO(b -< a) == o-.3b(b -< a) We can rewrite the antecedent:

Os(O-,3b (b -< a) /\ -,O!nitially(p»

(9.3)

(9.4)

(9.5)

(9.6)

9.5. CLASSICAL TRUTH CRIT.c.~RION

Now, since -.op = O-.P:

Os(O-.3b (b --: a) A O-.Initially{p))

r,ecause Cp 1\ OQ ::} O(P A Q):

o .)¢.{ -.3b (b --: a) A -.InitiallY(p»

O(..,3b (b --: a) 1\ -,Initially(p))

O Rolds(p, a)

Which is cqy.ivalen~ to -,tlHolds(p, a) which is what we wanted to show.

We still need ~,\. ',hew par~. (~) ';of equat.ion 9.5.

Os~3c I~W(C --: a) 1\ -~3d O((c .4{ d) 1\ (d --: a))

/\,Oassert.s(.:'~ p)h

We distribute oVer V.

(-.OHoldr.(p, c) v. <) denie~(c,p))))

~ -uJIIolds(p,a)

Os(3c (O(c --: a) A ...,3d O((c --: d) 1\ (d ~ a))

1\ -.Oa.ssetts (c, p) 1\

-.OHolds(p"c))V

(O(c --: a) 1\ ...,3d O((c --: d) 1\ (d --: a))

1\ ...,Oasserts(c, p)A

Odenies(c,p)))

=* -;OHolds{p, a)

121

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

122 CHAPTER 9. CLASSICAL TRUTH CRITERION

We distribute 3c over V.

Qs(3c (O(c -< a) A ..,3d O((c -< d) A (d -< a))

A ~Oasserts(c, p)/\

..,OHolds(p, c))V

3c(o(c -< a)A ..,3d O((c -< d.) A (d -< a))

A "'Oasserts(c, p)A

Odenies(c, p)))

=> ""'OHolds(p, a)

Using Os(P V Q) = OsP V OsQ_ .. __ _

Os(3c (O(c -< a) A ..,3d O((c -< d) A (d -< a))

A ..,Oasse:. ts (c, p) A

..,OHolds(p, c)))V

Os(3c(CJ(c -< a) A ..,3d O((c -< d) A (d -< a)) .

A ..,Oasserts (c, p)A

Odenies(c,p)))

=> ..,OHolds(p, a)

Using P V Q => R = (P => R.) A (Q => R):

We noW show:

Os(3c (O(c -< a) A ..,3d O((c -<..d) " (d -< a))

1\ ..,Oasserts(c, p)A

..,OHolds(p,.c)).) => ..,OHolds(p, (1)

V

Os(3c(O(c -< a) "..,3d O((c -< d) A (d -< aD

A "'Oasserts (c, p) A

Odenies(c, p)))
=> ..,oHolds(p, a)

(9.14)

(9.15)

(9.16)

9.5. CLASSICAL TRUTH CRITERION

Os(3e (CJ(e ~ a)" ..,3d O«c ~ d)" (d ~ a))

"~Oasserts(e, 'P)"
..,OHolds(p, e))) => ..,oHolds(p, a)

:I xOP => 03 xP and ..,OP ~ o..,P ..

Os(3e (O(t -< a) AtJ-,3d «e ~ d) " (d -< a))

"O"'asserts(C, p)"

O..,Holds(p, e)))

oP" OQ :} O(P" Q)

Os(3e O«e ~ a) "..,3d «e ~ d) "(d ~ a))

" "'asserts (c, p)"

..,Holds(p, c)))

3c OP(c) => 03e P(e):

OsOP => OP:

OsO(3e (e ~ a) " ..,3d «e -< d) " (d ~ a))

""'asserts(e, p)"

..,Holds(p, c))

0(3c (c -< a) A ..,3d «c -< d~ " (d -< a))

""'asserts(c, p)" .

..,Holds(p, e))

Applying Lemma 9.:.4.2:

0-. Holds (p, a)

Which is equ,ivaleilt to -;OHolds(p, a).

We still need to show: .

123

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)1-__ _

124 CHAPTER 9. CLASSICAL TRUTH CRITERION

..,op => O..,P.

OS(!k(D(C ~ a) A ..,3d_O«c ~ d) A (d ~ a))

A ..,Oasserts(c, p) A

OdeIiies(c,p)JJ

=> ..,OHolds(p, a)

Os(3c(O(c ~ a) /\ O..,3d «c ~ d) A (d ~ a))

AChasserts(c,p)A

Odenies(c, p)))

of A OQ => O(P A Q): _

Os(3cO«c ~ a) A ..,3d «c ~ d) 1\ (d ~ a))

A "'asserts(c, p)1\ _

denies(c, p)))

3aOP(a) => 03aP(a)

OsOP => OP

OsO(3c(c -< a) A ..,3d-((c -< d) A (d -< a))

A "'asserts(c, p) A

denies (C; p))

O(3c(c -< a) A ..,3d «c -< d) I\. (d ~ a))

A ..,asserts(c, p) A

denies(c, p))

Using Lemma 9.4.3:

O..,Holds(p, a)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

VI him is equivalent to ..,tlHolds(pja)._ We are now done proving OHolds(p, a) =>
TC. We now show TC => OHolds(p, a).

9.0. CLASSICAL TR UTH CRITERION

Os (((..,3b O(~ -< a» ~ oInitia.lly(p»/\

'tc (O(c -< a) 1\ ...,3d O((c -< d) 1\ (d -< a))) =>
(...,0 asSerts(c,p) =>

OHolds(p~ 1\ ...,Odenies(c, p)))

Os(P /\ Q) => asp 1\ 0sQ:

Os ((...,3b.0(b -< a)) => OInitially(p))A

Os('tc (O(c_ -< a) 1\ ...,3d O((c -< d) 1\ (d -< a») =>
(...,0 asserts (c, p) =>

OHolds(p,c) 1\ ""10denies(c,p»)

We begin by showing:

0s((...,3b O(b -< a)) => OInitially(p))_

=> C(Holds(p, a) v 3b(b -< a)

3bO(b -< a) => 03b(b -< a):

0s((..,03b (b -< a)) => OInitiaUy(p))

0s((iJ...,3b (b -< a)) => Olnitially(p))

asp => OP:

iJ((0...,3b (b -< a)) => tllnitiaUy(p))

O(OP == P):

0((...,3b (b -< a)) => li1itially(p))

Rewriting;

125

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

126 CHAPTER 9. CLASSICAL TRUTH CRITERION

O({:lb (b ~ a)) V Initially(p)) (9.34)

Using lemma 9.4.4:

D(Initially(p),==> (3b(b -w< a)) V Holds(p, a)) (9.35)

Th~refore:

D«3b (b -< a)) V Holds(p, a)) (9.86)

We now show:

DS(Vc(D(c ~ a) A -,3d O((c ~ d) A (d ~ a))) :-;}

(-,Oasserts(c,p) => CtJHolds(p,(.) A-,Odeni(>s(c,p)))) (9.37)

=> O(Holds(p, a) V -,3e(e -(a))

-tOP = o-,p and 3xOP::} 03xP. .

OsP => OP:

D(DP =.P):

=:Js(Vc(O(c,"" a) 1\ O-,:3d «(c ...: d) A (d ~ a))) =>
(O-.,assetts(c,p) => (tlFioldc(p,~) A Chdeuies(ctp))))

O(Vc(tl(c ~ a) A O-,3d (c ~ d) A (d ~ a))) =>
(D-,as~erts(c,p) => (OHblds(p,~) A O-,denies(c,p))))

O(Vc«c ~ a) A -,3d «c --< d) A (d --< a))) =>
(-'asserts(c,p) => (Holds(p,c) A -tdenies(c,p))))

(3e(e .-< a) V ~3e(e ~ a)) A P => (3e(e ~ a) A P)V -,3e(e --< al~_

O«3e(e ~ a) A Vc«c ~ a) A -,3d «c ~ d) A (d ~ a))) =>

(9.38)

(9.39)

(gAO)

(-tasserts(c,p) => (lIolds(p,c) A -,denies(c,p)))) (9.41)

V(..,3e(e -< a)))

Since a ground ·linear plan is a total order the followiftg holds:

9.5. CLASSICAL TRUTH CRITERION 127

D(3e(e --{ a) ~ 3J(f --{ a) /\ -,3g(f --{ g) /\ (g_~ a))

Therefore~

CJ«~f(f --{ a) /\ -,3g«(J ..(g) A (g -< a)) /\ 'v'c«c -< a) A ~3d «c --{ d) /\ (d -< a))) ~

(-,asserts(c,p) => (Holds(ikC) /\ -,denies(c,p))

V(-,3e(e --{ a») __
(9.42)

We use universal instantiation and simplify:

D«3f(f --{ a) /\ -,3g«(1 -:< g)./\ (g -< a»/\

(-,asserts(f,p) ~ (Holds(p,j) /\ -,denies(f,p»)) (9.43)

V(-,3e(e -< a)))

Using lemma 9.4.5:

O(lIolds(p, a) V (-,3e(e -< a))) (9.44)

Therefore:

o (liolds(p, a) V 3b(b -< a)) /\ D(Holds(p, a) V ~3e(e --{ a» (9.45)

oP /\ DQ => O(P /\ Q):

D«lIolds(p, a) V 36(b -< a)) A (lIolds(Pi a) V ,:,3~(e -< a))) (9.46)

Rewriting:

D(Holds(p,li) V.(3b(lL-< a) /\ -,3e(e -< a)))

Which is equivalent to:

Dliolds(p, a)

o Q.E.D.
This completes out proof of the Cla.'isical Truth Criterion.

(9.47)

(9.48)

128 CHAPTER 9. CLASSICAL TR.UTH CRITERION

9.6 Algorithm for checking_.~rl.!th criterion

We can make use of two properties of the truth criterion to increase the efficiency of

a truth checking algorithm. The.first is that if. the truth criterion is non-trivially true

in a plan, then it is true for all spe<;iali~ati6ns of it. .

By nou-trivially true we mean that either a is the first action of the plan and

Cllnitially(p), or there is s~ action c immediately before a and

..,Oasserts(c,p) A ClHolds(p, c) 1\ ..,Odenies(c,p).

It is important to note that if there is SOme action c immediately before a there

can be. no other action immediately before a. This property guarantees that both

conditions imply the Classical Truth Criterion.

\Ve show,

Proot:

(((..,3b O(b --< a» 1\ Cllnitially(p»V

3c(D(c --< a) A ..,3d O((c --< d) A (d --< a)))A

(..,Oasserts(<;,.p) A ClHolds(p,c) A ..,Odenies(c,p)))

:::}

Cls.(((..,3b O(b.--< a) A Cllnitially(p)V

3c(Cl(c --< a) A ..,3d O((c --< d) A (d --< a)))A

(..,Oasserts(c,p) A ClHolds(p,c) 1\ ..,Odenies(c,p)))

Rewrite-the antecedent:

(((V'b Cl..,(b --< a» A Cllnitially(p))V

3c(Cl(c --< a) A V'd O..,((c --< d) A (d --< a)))A

(O..,asserts(c,p) 1\ OHo)ds(p,c) A O..,dcnies(c,p)))

Use oP :::} OsClP:

(((V'b ClsCl..,(b --< a» A ClsCllilitial1y(p~)V

3c(OsO(c --< a) A V'd OsO..,((c --< d) A (d --< a)))1\

(OsO..,assetts(c,p) A DsOHolds(p,c) A 0s0..,denies(c,p)))

(9,49)

(9.50)

(9.51)

9.6. ALGORITHM FOR CHECKING TRUTH CRITERION 129

Use the Barcan formula:.

«(OsV'b Ch(b ..(a» A OsOInitially(p»V

3c(DsD(c -cal A DsV'dO-,«c -< d) /\ (!l-< a»)A (9.52)

(Ds tJ-'assert5(c,p) A OstlHolds(p,c) A OsQ7denies(c,p»)

Use OsP" OsQ => Os(P" Q~J.:-: __ _

Os«V'b O-'(b ~~ a» A OInitially(p»V

3cOs(D(c -< a) A V'dD-.«c_ -< d) A(d -< a»))"
(O-.asserts(c, p) A OHolds(p, c) A O-'denies(c, p»)

Use the Barcan formula:

Os«V'b O-,(b -< a»" OInitially(p))V

Os3c(0(c -< a) A V'dO-.«c -< d) A (d -< a»)A

(O-.asserts(c,p) " ClHolds(p,c) A O-,denies(c,p»)

DsP V OsQ => Cls(P V Qt ...

Rewrite:

Os(«V'b 0-;(b -< a)) A OInitially(p))V

3c(tl(c -< a) A V'dO-,«c -< d) A.(d ~ a)))"
(Cbasserts(c,1U...6..0Holds(p,c) A O..,denies(c,p»))

Os«(..,3b_O(b -< a)) A OInitially(p))V

(9.53)

(9.54)

(9.55)

3c(0(c ~ a) A ..,3dO«c. -< d) A (d ~ a)))~ (9.56)

(-;Oassetts(c, p) " OHolds(p, c) A . ..,Odenies(c,p)))

Q.E.D.
The other is that only plans in which the following holds can possibly fail the

truth criterion:

..,3b O(b -< a.)V

3cD(c -< a) A ..,3d O«c -< d) " (d -< a)) A ..,Oasscrts(c,p)

An algorithm for checking the truth criterion then only has to examine the "weak

est;' specializations such that. the above condition holds to see if Oholds(p, c) "

130 CHAPTER 9. CLASSICAL TRUTH CRffERION

Holds(p,a)
For every distinct, minimal.specialization.lmch that there is an action c
inunediately before a and c does not possibly assert p

check that c does not posfl1bly deny p and neWlsarily Holds(p~c).
If theteJs a minimal flpecialization such that a is t.he first action

check that initia.lly(p) !lecessarily holds.

Table 9.1: Algorithm for checking truth criterion .

...,Odenies(c,p). The details of the algorithm. will vary fr':>Iil planner to planner de.

pending on their underlying plan representation, however a high-level description of

it can be found in table 9.1 .. A specialization Wl satisfying a condition is minimal. if

there is no other specialization W2 satisfying that condition such that S(W2' Wl).

This algorithm does not necessarily require that every ground linear completion

of the pl.an be checked. Suppose we are given the-plan in figure 9.3. In this eXam

ple we asSunie the TWEAK planning formalism, extended. with restricted ranges on

variables. We are interested in knowing whether the precondition, P(A,B) of action

3 necessa.rily holds, given that x E {A, B}, y E {A,B} and x ~ y. In this case the

algorithm will only have to. check two specializations of .the plan, namely the ones

where y rf. A and :t ~ Bt-which are added when we guar~ntee that action 2 not .. '

assert P(A,B). The reason We do. not have to check more specializations is. that We

cannot-generate any sp~cializations suchJ.hat action 1 does not assert P(A,B}, given

that action .2 cannot asSert P(A,B) either .. This is much more efficient tha.n having

to check every possible ground linear completion of this plaft.

However, we are still lett with the problems of the efficiency of const-ra.int propa

gation. We might ask how planners with extended representationaLca.pabilities deal

with these problems. SIP E is the best example of a planner with powerful represen

tational capabilities~ Furthermore, SIPE is the most efficient planner to date.

In SIPE, the combinatoria1.natute of constraint. propagatioii is handled by .. keeping

many of tlie constraint propagations local, Le. not performing a global constraint

check every time a cOIistraint is posted. Furthermore, cOfisttaifit computations are ,
not performed every time a constraint is added, but rather at regUlar intervals. This

9.6. ALGORITHM FOR CHECKING TRUTH CRITZliION 131

Figure 9.3: A plan with restricted ranges on variables

seems to .be an adequate. compromise, as the constraint comput~uons have seldom

led to a problem [Wilkins, 1988].

State indep~ndent axioms are handled by computing their derived effects only

when a new action is inserted into the plan. - The propositions .that are derived in

this manner are insetted in the add list of_the action that..is being inserted. By using

this method, checking whether an a.ction asserts a proposition is done trivially by

checking if it codesignates:with a. proposition in the add list. Of course this can lea.d

to-inconsistencies later in planning, but this has not proven to be a serious problem

with SIPE.

Relating this. method to out truth criterion we can see that it 'Would greatly speed

up the computation ever.ywhere we need to check if a particular situatioil.asserts a

proposition. Although it teql\ires the addition of.unsound methods, experience seems

to bear out that a richer representation makes up for the potential drawbacks.

132 CHAPTER 9. CLASSICAL TRUTH CRITERION

9.7 Summary

In this chapter we presented a new truth criterion for a pcwerful ,plan fOrnialism which

subsumes most planners proposed to date. In.fact, the only axiom in OUr formalism is

a. restatement 01 the STRIPS assumption. We p~ved it is sound and complete with

respect to this. representation. We t.hen show-ed how it gi.ves rise to an alg<?:rithm that

is. more efficient than simply checking every pOSSible completion of a plan.

Chapter 10

Further Work

In this chapter we point out some questions raised by this thesis and propose further

work that might help resolve these.

10.1 Real World Applications

The most important. question that needs to be answered is whether ~redicate relt>x

ation can scale up to real world appli:3.tions. Since the work presented in this thesis

was based on a complete planner., real world applications lVere not within its scope ..

One way to answer this is to apply predicate_relaxation.to an efficient .planner.

SIPE [Wilkins, 1984] is an obvious candidate .. In the early ~tag~s of this research SIPE

Was used for .. some experiments with .good results. We hope to Some day attempt to

integrate predicate relaxation into SIPE.

10.2 Extensions to Predicate Relaxation

Another interesting avenue to pursue is extending predicate relaxation. This ntight

involve trading off correctness for simplicity in generating the relaxed predicates. As

the efficiency of the planning process isJmproved it-is. likely that the complexity of
the relaxed predicates becomes the bottleneck. This then-Ieads us to new wa.ys of
simplifying relaxed predicates, so that they can be evaluated more quickly.

133

134 CHAPTER 10. FURTHER WORK

Another extension would be to define a new form of predicate relaxation which can

take into account the -more complex operators available in state of the art planners.

In this thesis we have ·assumed a planner which is based on STRIPS-style operators.

It woulcLbe interesting to come up with a definition which can handle conditional

operators, take into account resources, etc.

There is also the possibility of defininingJormula relaxation, namely the relaxation..

of conunonly occuring sub-formulas. This idea has been. prop9sed by Nilsson and

might result in definitions that are similar to tree plans [Nilsson, 1989).

10.3 Implementation of the Classical Truth Cri

terion

Another interesting project might be to build a planner based on the Classical Truth

Criterion. This planner would be able to support an ~xtended language for repre

senting operators, including conditional operators, as well as restricted domains for

variables.

It would be interesting to experiment with different ways of trading off complete

ness and correctness for efficiency in the truth criterion. ,The new truth criterion

would provide a good basis for performing such .experiments.

10.4 Real-time Extensions

Another area that should be exatnined is that of .improv~.ng real-.time performance.

The current extension to pi.'edicate relaxation allows a. limited form of reactivity, since

the planner is able t(' prop9se a pl~usible. action in case it is interrupt~d. One goal

of planning research should be to imbue planners with the capability to decide When

acting is indeed necessary, rather than having to rely on an outside agent to make

that decision. 'l'his is also closely tied to the problem of determining the quality of

the currently chosen action, since the tradeoff between the impi:ovement-of actions

reSUlting from.future planning and the possible gains of acting immediately i,s one the

10.5. OPERATOR. ABSTRACTION 135

planner should be aware of.

10.5 Operator Abstraction

More work needs to be dOne in the field of operator: abstraction. This might entail

automating .the process .of constructing.abstract op~rat.ors a la Nonlin and Sip~, but

might also involve designing new forms .of oRerator abstraction, uti1i~ing approxitna,.

tions of op~rators, and automatically a~stracting preconditions and effects of oper

ators. Opet?-tor.abstraction has been the prevalent form of abstraction. in planning

and automating the process would be a significant advante ... ___ _

10.6. Concluding Remarks

This thesis has explored new methods of performing abstradion in planning. We

hope that the. usefulness of abstraction has been clarified, and that the methods,

primarily predicate relaxation, provide a basis for future research in this area. State

abstraction has been somewhat overlooked in the planning literature, but is beginning

to see some resurgence. Furthermore, we! stress the impor.tance of exploring ways in

which to improve the problem. solving cap.abilities.of .pl~I!ners as opposed to their

representational prowess, an area that has already been much explored. Abstraction

and planning remain fascinating areas of tesea.rch that need to be further investigated.

Bibliography

136

BIBLlo..GRAPHY 137

[Agre and Chapman, 1987] Agre, P. and Chapman, D., "Pengi: An Implementation

of a Theory of Activity" AAAI-87, Morgan Kaufmann, Los Altos, California.

[Amarel, 1968] Amarel, S., "On Representations of Problems . .of Reasoning About Ac·

tions," Machine Intelligence 3, D. Michie (ed.), pp 131-171, Edinburgh University

Press, 1968.

[Allen et al, 199D] Allen, J., Hendler, J., and Tate, A. (Eds.), "Readings in Planning,"

Morgan Kaufman,~aL¥ateo, 1990.

[Brooks, 1986] Brooks, R. A., "A Robust Layered Control System for a Mobile

Robot," IEEE Journal of Robotics and Automation, Vol RA-2, No.1, March 1986.

[Chapman and Agre, 1985] Ohapman, D. and Agre, P. E., "Abstract Reasoning as

Emergent from Concrete Activity," Workshop on Planning and Reasoning abou.t

Action, Portland, Oregon, 1986.

[Chapman, 1987] Chapman, D., "Planning for Conjunctive Goals," Artificial Intelli

gence, v 32: 33.3-:-3.78, July 1987.

[Chapman, 1989] Chapman, D., "PengUins Can Make Cake", AI Magazine, vol. 10,

nO-A,1989.

[Dean and Boddy, 1988] Dean, T. and Boddy M., "An AnalysiS of Time-dependent

Planning," in Proceedings AAAI-88, pages 49-54, 1988.

[Drummond and Currie, 1988] Drununond,.M.t-and Currie, K., "Exploiting Tempo

ral Coherence in Nonlinear Plan. Construction," Comp~tation Intelligence, in press.

[Drummond and Tate,1989} Dtuttlinol1d, M. and Tate, A.; "Ai Planning: A Tutorial

and Revievt," Technical Report AIAI-TR-90, University of Edinburgh, U.K., 1989.

[Fikes and Nilsson, 1911] Fikes, R . .E. and Nilsson, N. J., "STRIPS: A New Apptoach

to the Applicat :OD of Theorem Proving to Problem Solving," A rtificial Inte71igenc~ ___ _

2(3-4): 189-208, 19'71.

138 BIBLIOGRAPHY

[Fik~ et aI, 1972] Fikes, R. E., Hart P., and Nilsson, N. J., "Learning and Executing

Generalized Robot Plans," Artificial Intelligence, 3(4): 251-288, 1972.

[Firby, 1987] firby, R. J., "An Investigation into Reactive Planning in Complex DO"

mains," in Proceedings AAAI-87.

[Georgeff, 1987] Georgeff, M. P., "Planning,'~Al1nuql Review of Computer Science, v

2: 359-400 t 1987.

[Ginsberg, 1989] Ginsberg, M.L., "Universal Planning: An (Almost) Universally Bad

Idea," AI Magazine, vol. 10, no. 4, 1989.

[Green, 69] Green, C., "The Application of Theorem Proving to Question-Answer.:ng

Systems," Ph.D. thesis, Stanford University, Stanford, 1969.

[Hararyand Palmer, 1973] Harary,. F. and Palmer., E. M., Graphical Enumeration,

Academic Press, New York, New York, 1973.

[Hoare, 19691 Hoare, C.A.R., "An Axiomatic Basis for Computer Programming,"

CACM 12, 10, 576-580,583.

[Hughes and Cresswell, 1968] Hughes, G.E. and Cresswell, M.J., "An Introduction to

Modal Logic," Methuen and Co, London~land.

[King, 1969] King, J.e., "A Program Verifier," Ph.D. Thesis, Department of Corn

puter Science,. Carnegie-Mellon University, 1969.

[Knoblock, 1990] Knoblock, C:, "A Theory of Abstraction for Hierarchical Planning,"

in D.P. Benjamin (Ed.), Change oJ Representation and Inductive Bias, Boston, MA:

Kluwct, 1990.

[Korf, 1985] Korf, R.E., "Depth-F'irst Iterative-Deepening: An Optimal Admissible

Tree Search," Artificial Intelligence, 27:97-111, 1985.

[Korf, 19811 Korf, R.E., "Planning as Search: A Quantitative Approach," Artifi¢i4l

Intelligence, 33:65-88, 1981.

BIBLIOGRAPHY 139

[Lifschitz, 1986] _Lifschitz, V., "On _the Semantics of STRIPS," Proceedings of the

Workshop on Reasoning about Actions and Plans, Timberline, Oregon, 1986.

[Lowry, 19S8].Lowry, M. R., "Invariant Logic: A Calculus for Problem Reformula·

tion," Proceedings of the Sevent,t National Conference on Artificial Intelligence,

Saint Paul, Minnesota, 1988.

[Manna, 1968] Manna, Z., "Termination of Algorithms," Ph.D. Thesis, Department

of Computer Science, Carnegie-Mellon. University,1968.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J., "Some Philosophical

Problems from the Viewpoint of ArtHkial Intelligence," in: Michi~J D .. (Ed.), Ma

chine Intelligence 7, 1969.

[Nilsson, 1989] Nilsson, N. J., "Teleo·Reactive Agents", Unpublished Draft, Stanford

Computer Sci~nce Department, 1989.

[Nilsson et aI, 1990] Nilsson, N. J., Moore, R., Torrance, M. C., "ACTNET: An

Action-Network Language and its Interpreter (A Preliminary Report)," Stanford

ComputeLS,dence Department Draft .Report, 1990.

[Rosenschein and Kaelbling, 1987] Rosenschein, S. J. and Kaelbling, L. P., "The Syn

thesis of Digital Machines with Provable Epistemic Properties," SRI Technical Not.e

412, Menlo Park, Ca, 1987.

[Sacerdoti, 19'7-4] Sacerdoti, E., "P.lanning in a Hierarchy of Abstraction Space!'l."

Artificial Intelligence, v 5: 115:135, 1974.

[Sacerdoti, 1917] Sacerdoti, E., A Structure Jor Plans and Behavior, Elsevier, North

Holland, New York, 1971.

[Schoppers, 1987] Schoppers, M. J., ."Universal Plans for Reactive Robots in Unpre

dictable Environments," in Proceedings AAAI-87 ..

[Shoham, 1989] Shah am, Y., "Time for Action: On the Relation between Time,

Knowledge and Adion," P.roceedings IJCA1~89, Detrqlt, MiChigan, 1989.

140 BIBLIOGRAPHY

[Sussman, 1973] Sussman,. G.J., "A Computational Model of Skill Acquisition,"

Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

[Tate, 1917] Tate, A., "Generating Project Networks," Proceedings IJCAI-71, Caln

bridge, Massachusetts, 1977, pp. 888-893.

[Tenenberg, 1988] Tenenberg, J. D.,. "Abstraction in Planning," Ph.D. Thesis, Tech

nical Report 250, University of Rochester, Rochester, New York, 1988.

[Vere, 1983] . Vere, S., "Planning in Time: Windows and Durations for Activities and

Goals," IEEE Transactions on Pattern Analysis and Machine Intelligence, v 5:

246-267, 1983.

[Waldinger, 1977] \Valdinger, R., "Achieving Several Goals Simultaneously," Ma

chine Intelligence 8:94-136, Elcock E. and Michie D. (Eds.), Ellis Horwood, 1977.

[WMhington,1989] Washington, R., "Abstraction Planning in Real Time," Ph.D.

Thesis Proposal, unpubHshed, 1989.

[Wilensky, 1980] Wilensky, R., "Meta-Pbnrting," Proceedings AAAI-BO, Stanford,

California, 198Q, pp. 334-336.

[WHkins, 1984] Wilkins, D. E., "Domain-independent Planning: Representation and

Plan Generation," Artificial Intelligence, v 22: 269-301, April 1984.

[Wilkins, 1988] Wilkins, D. E., Practical Planning, Morgart Kaufmann, San Mateo,

California, 1988.

[Yang, 1989] Yang, Q., "Improvin~e Efficiency of Planning," Ph.D. Thesis, Uni·

versity of Maryland, 1989.-

