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Abstract 

Traditionally, abstraction in planning has been.accomplished by either state abstrac

tion or operator abstraction, neither of which has been fully automatic. We present 

a new method, predicate reiax4tion, for automatically performing state abstraction. 

Predicate relaxation generates abslJaction hierarchie.~ that, for some domains, can be 

more useful than those generated. by previous abstractiotl mechanisms. PABLO, a 

nonlineat hierarchical planner, implements predicate relaxation. Theotetical, as well 

as empiri~al results are presented. which demonstrate the potentia! advantages of us

ing predicate relaxation in planning. Rela).ed predicates can also be used by EABLO 
to achieve a limited form of reactivity, whereby an executable.sequence of actions is 

constructed in case of interruption. 

We also present a neW definition of hierarchical operators that allows us to guar

antee a limited form of completeness. This new definition is shown to be,.in some 

ways, more flexible than previous definitions of.hierarchical operators. The ability to 

plan using such operators. has been incorpotated into PABLO. 

Finally, a Classical Truth Criterion is ptesented that is p.roven to· be sound and 

complete for a pJanning formalism that is general enough to include most classical 

planning formalisms that are based on tht! STRIPS assumption. 
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Chapter 1 

Review of Abstraction in Planning 

One of the powerful tools employed by planners to deal with the complexity of plan

ning problems is aostraction. Although widely used, and in many guises, abstraction 

remains relatively poorly understood. Because of this, systems employing abstrac

tion have usually left the definition of the abstractions up to the user of the system.. 

This thesis introduces a new method for performing abstractions automatically and 

presents results related to abstraction in planning which should help to clarify the 

potential benefits, as well as drawbacks, of using abstraction in planning. In this chap

ter, we present the different methods of abstraction employed up until now, pointing 

out some potential problems along the way. 

The rest of the thesis is organized.aS follows. Cha.pter 2 introduces predicate re
lazatitJn, a new method for performing a.utomatic abstraction .in planning. Chapter 3 

presents PABLO, a nonlinear planner that implements predicate relaxation. Chapter 

4 discusses theoretical results pertaining to the complexity of. using predicate relax

ation in planning. Cha.pter 5 presents empirical results deIilonstratifig the inct~ased -

efficiency gained when using predicate relaxation in planning. Chapter 6 discusses 

how an extellsion to predicate relaxation cao. be used to achieve a limited form of 

reactivity in planIiing. Chapter 1 discusses a method fot performing operator hietar

chicalizatiort in planning, which guarantees a limited fottn of completeness. Chapter 8 

describes how both abstraction techniques cail be used effectively in planning. Chap

tet-9 describes a fiew.truth criterion for planning which is based oli a very_general 

1 



2 CHAPTER 1. REVIEW OF' A.BSTRACTION IN PLANNING 

planning formalism. Finally, chapter 10 discusses open problems and further work 

that needs to be done in the area of abstraction in planning. 

1.1 Basic Concepts 

When thinking about abstraction it is often uSeful to do so in the context of a state 

space graph.. In such a graph each node corresponds to a particular world, state, 

and eacb directed arc to a particular operator which transforms that world state into 

another. Figure 1.1 is.an example of a general state space graph. 

Figure 1.1: State space graph 

It is the taSk of a planner, when given a description of a patticular initial state in 

the state space gtaph as well as a descriptipn of one or nlore desired goal states, to -

discover.oile or more paths from the initial state to one of the goal states. Of course 

the state space graph h. often p-tohibitively large, possibly infinite, and is therefore 

not usually explicitly represented. Rather I the state sp'ace graph is implicitly defined 

by a set of operators, i.e. functions from states to state,s. Parts of the state sp,ace 

gJ'ap ~ can be const.tucted from the set of operators and a given state by applying 

all pOf!~nlle operators to the given state, repeating the process for all newly created 

state6~Fof a planning problem to be solvable it is iiecessary that one of the goal 

state.~ can be constructed in this manner from the initial state. 

Genetally, When we speak 6f abstraction in planning, it is implied that one or more 
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elements of a planning PX9Q.1em is being abstracted, i.e. either the initial state, One 

or more of the oper.ators, Or the goal states. As we shall see, it has generally been th€' 

case that pl~ning systems have concerned themselves with abstracting operators. 

Abstraction has been used as a mechanism in planning for two reasons. First, it is 

a natural extension, and one. which people often use when doing everyday planning. 

Second, it is likely that planning with abstractions improves the efficiency of the 

plannet. 

1.2 Previous Work 

1.2.1 STRIPS Assumption 

Early work in planning [Green, 69] led to the discovery of severe deficienCies in trying 

to apply theorem proving to the planning problem. One of the main problems Was 

the need for frame axioms [McCarthy and Hayes, 1969], axioms. which stated what 

remained true from one state to the next. As it turns out many. such axiom.s_ are 

generally needed for most planning problems. 

STRIPS-~Fikes and NilSson, 1971] embodied one approach for dealing with this 

problem. In STRIPS, operators were structures consisting of a precondition list, a 

delete list, and a.n add list. States Wece sets of well-formed fotniulas. An operator 

was applicable in a state if all the items in the precondition list could be unified with 

members-of the state. The result of applying an operator was that jtems in the delete 

list were deleted from the state, and items in the add list were added to the state. 

These operators embodied what has come to be known as. the STRIPS assumption 

- that whatever is not explicitly listed as an effect in an operator is automatically 

copied to the neW state. The STRIPS assumption has proven ail effective approach 

to the frame problem, obviating the need for time consuming ftame axioins. Virtually 

all subsequent planners make use of the STRIPS assumption in some form. Some 

of the neWer pljinners relax the STRIPS assumption somewhat in return for more 

flexibility..in opera.tor tcpre'Sentation [Wilkins, 1988]. 
Wheft subsequently we refer to oi!.etatots we.will nieafi STRIPS style operators, 
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unless we specify o~herwise. We now discuss some of the p~evious work on abstracting 

planning problems. 

1.2.2 Macro Operators 

One wayan implicit state space graph cail be abstraded is by defininKnew operators .. 

One useful mechanism is to create new macro operators, each of which is the result 

of composing a sequence of two or more operators. Doing so allows the planner 

to traverse the state space graph more quickly, since intermediate, and presumably 

unimportant states, can be bypassed when transforming one state into another state. 

The use of maCro operators can be.found in one of the earliest discussions on the 

use of abstraction in problem solving, namely Amarel's classic paper [Amarel, 1968]. 

Amarel traces a solution to the Missionaries and Cannibals problem which involves 

the introduction of macro operators, as .well as other forms of abstraction which we 

will discuss later. Thtough these methods Amarel demonstrates how a seemingly com

plicated problem can be transformed into a trivial One by exploitiT'g useful properties 

of the state space graph. 

Oile of the first examples of an abstraction method being impl,~mented in a pla~aer 

is the use of MACROPS· in STRIPS [Fikes et aI, 1972]. A MACROP is a macro. 

operator, composed automatically by STRIPS from a successful plan. This is done 

by storing the plan in a triangle table and then generalizing it. by turning constants 

int.o variables. This-generalized plan becomes a MACROP and can then be used by 

STRIPS to speed up planning considerably. 

1.2.3 Hierarchical Op~rators 

Although macro opera.tors proved successful in STRIPS, their sequential was a limita

tion.-NOAH [Sacetdoti, 1971) introduced the idea of least commitment to planning. 

Plans in NOAH were no longer represented simplY as linear sequences of operators, 

but rather as partial.orders of operators, compactly representing a set of total ordets. 

These partiai orders were represented in a procedural net. NOAH is the first example 

of a planner that searches iii a space of partially ordered plans rather than the base 
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state space provided by ~he domain. Strictly spealsing, NOAH did not search this 

spate, since no backtracking mechanism wa,; incorporated. 

In NOAH, macro operators were generalized, so that they no longer Were simply 

compositions of sequ~nces of operators, but rather were procedural entodings which, 

when executed, would ptod1!<;;~ a portion of a procedural net .. These operators are 

termed hierarchical operators, and executing their procedural encodings is referred 

to as ezpanding an operator. The actual result otan operator expansion in NOAH 

might depend on the situation in which the operator is I'!xpanded, $0 there is not a 

simple one to one relationship between the hieraIchical operators and partial orders 

of base level operators. 

The llse of hierarchical operators has. been by far the most commonly used abstrac

tion mechanism in planning since the advent of NOAH. Almost all ensuing planners 

e:upJoy some form of hierarchical operators, includingJ'~'QNtlI~L[Tate, 1977} and SIP~ 

[Vvilkins, 19S5}. 

Unlike MACROPS in STRIPS"there is no example of a planner which learns 

hierarchical operators from the basic domain operators. Rather, they must be encoded 

by the user of the planner. 

Because macro operators and hierarchical operators are defined in terms of other 

operators, these mechanisms will be termed operator abstraction mechanisms. 

1.2.4 State Abstraction 

Another planner that utilizes abstraction is ABSTRIPS [Sacerdoti, 19741:.. It is based 

on.STRIPS (Fikes and Nilsson, 1971) and utilizes a.different abstraction mechanism 

from operator abstraction. Before proceeding.it is important to have an undetstaildin~ 

of the basic planning mechanism employed by ABSTRIPS. 

ABSTRIP8 abstracts by assigning, criticalities to predicates . .A criticality indicates 

the relative difficulty of making the particular predicate ttUe in the domain, with the 

highest cr~ticalities being assigned to predicates which cannot be affected by_the 

planner. 

Planning ;'1, A BSTIUPS proceeds in a "length-first" maniler. At each stage. a 

threshold criticality is determined. The planner then performs a complete STRIPS 
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planning procedure, the sole difference being that .. predicates which have criticalities 

less than the current threshold. are assumed to hold. The idea. behind this is that 

those predicates can in some senSe be considered details and can be achie-ted relatively 

easily. After each pasS ABSTRIPS lowers the criticality threshold and proceeds to 

refine the current pla.n by attempting to achieve .predicates which are..nOw above 

the threshold. Planning is complete once the threshold is less than the smallest_ 

criticality .. Using this method, Sacerdoti .was able to achieve great speedup on sorne 

problems when compared to the bare-bones STRIPS syst~rti. The criticality values 

were generated in a semi-automatic manner, with the user proyiding a partial order __ .. 

of predicates which AHSTRIPS would use in assigning cr:ticality values. 

Since at any planning lev~l, the preconditions of operators that have a criticality 

lower than the threshold will be dropped, each planning level conSists of a new, 

abstract set of oper~tors. Because an operator at one level is applicable in a superset 

of states from its corresp<;>nding operators at lower le¥els, this form of abstraction is 

termed state abstraction. 

Tenenberg [Tenenberg, 1988] extends the ABSTRIPS representation by including 

criticality levels in the add and delete lists of operators. This, combined with a 

restricted method for computing the ctiticalities .of predicates, produces a system 

which guarantees that planning at all levels of abstraction is consistent, whieh Was 

not the case in the original ABSTRIPS system. 

The problem is that if one is not careful when assigning criticality values it is 

possible to generate plans at higher levels of abstractior. which result in inconsistent 

states. For example, Tenenberg presents the problem depicted in figure 1.2 in his 

thesis. 

In the .example the. set L-defines the language of the system, the set E is the 

set of essential predicates, namely those predicates which can be manipulated by the 

operators, 0 is the set of operators, K is a set of domain axioms, and crit is the set 

of criticality tnappi~gs on the predicates. 

If the initial situation is described by 

{On(A, B), Clear(A), Holding(Cn _ 
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L: (constants = {A,B, C}), (variables::: {x, y, z}) (functions = 21), 
(predicates = {On, Clear, HandEmpt:', Holding, a}) 

E = {On, Clear, Hand~mpty, Holding}. 

0= {unstack(x, y) 

P:{On(x, Y), Clear(x), HandEmpty}, 
D:{On(x, y). Clear(x), HandEmpty}, 
A:{Holdingtx), Clear(y)}, 

K:: { Holding(x) 1\ yax :J ., Holding(y), 
HandEmpty ::l -, Holding(x), 
Cleanx) :J -'On(y, x), 
On(x, y) :J -,On(y, x), 
-, On(x, x), 
AaB, BaC. AaC}. 

stack(x, y) 
P:{Clear(y), Holding(x)}. 
D:{Clear(y), Holding(x)}, 
A:{On(x, y), Clear(x), HandEmptyH 

erit =-{ < On. 1 > ,_ <:: Clear. 1>, < HandEmpty, 0>, <:: Holding, 0 ~} 

Figure 1.2: ABSTRIPS Example from Tenenberg 

7 

then the plan < unstack( A, B) > is applicable since the preconditions with -criticality 

levell are satisfied. However, applying-the pll'u results in the state 

{Holding(C),H olding(A) , Clear(B)} 

which is inconsistent with the domain axiom which states that two blocks cannot be 

held at the same time. 

Tenenberg proposes a way of assigI.1ing criticality values which guarantees that 

such inconsistencies do not occur. As We shall see later, out technique of predicate 

relaxation avoids this problem as well; albeit in a different manner. 

Knoblock [Knoblock, 1990] uses a graph theoretic technique to identify depen- -

dencies among predicates in order to remove progressively more predicates at higher 

levels (l abstraction. This results in abstractions which guarantee that if there is a 

plan at a high level of abstractioil! there will be one at a lower level ail well. 
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1.2.5 Discussion 

In actuality, there is not such a dear dichotomy between the state. and op'~rator 

abstraction in their implementations . .Hierarchical operators can be uSed to achieve 

state abstraction. This can be done by deflning hierarchical operators w.hich.do .not 

reference all the necessary predicates referenced by the operators, Or their refinements, 

in their bodies. This is similar to the ABSTRIPS approach, but differs in that there is 

no enforcement of explicit-abstract levels, as is the case with the .explicit assignments 

of criticalities. Although more flexible, this lack of explicit criticality levels gives 

rise to "hierarchical promiscuity" [Wilkins, 1988], which can result in unnecessary 

planning. The problem arises when the planner tries to determine the truth value 

of a predicate, call it P. This is generally done by backchaining through the plan 

looking for places where P is changed. If operators are represented at different levels 

of abstraction there might be .cases where the rennement of an operator results in a 

change to P, but this is not apparent at the current level of abstraction. In such cases, 

the truth value of P cannot b~ correctly determined. As we shall see later, there are 

several possible solutions to hierarchical promiscuity, but it remains a serious issue in 

planning with abstraction. 

Furthermore, state a.bstraction generally results in the generation of new opera

tors, which. are used to generate the abstract state space. Although the exact dif

ferences .between state and operator abstraction are not alway~ obvious it-remains a 

useful concept,for distinguishiqg the two types of abstraction. 

1.3 Theoretical Results ott Abstraction 

One mighLask by how much abstraction improves planning efficiency. Empirically; ___ ... _ ..... _ 

it.seems abstraction can be of -great help. ABSTRIPS waS able to achieve significant 
• 

speedups ii!. planning titne' as compared to STRIPS. The adherence to hierarchical 

operators in post-NOAH planners indicates that they are of great value in improving 

planning efficiency. There are also a few theoretical results to back up the value of 

abstraction in pl~IlIiing. 

Kotf (Korf, 1981] proves that under certain restrictive assumptions the optimum 
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abstraction hierarchy of a state-space of size n consists of In n levels of abstraction. 

Further, such an abstraction can reduce the eXpected search time from O(n) to O(IOL 

n). If n grows exponentially Ylith the length of the plan, as is often the case, this.-

result imp'lies that the state space can be searched in linear time, given the abstraction 

hierarchy. 

However, Korf makes one especially restrictive assumption, namely that a plan 

at one .level maps directly to a_plan at a lower. level. This is usually. not the case in 

planning, e.g. in ABSl'RIPS. Rather, once a plan has been found at a higher level, 

more planning is necessary to develop the plan at the lower level. The plan at the 

higher level acts as a guide and proposes subpr_oblems to be solved. 

Knoblock [Knoblock, 1990] has analyzed this more general problem. liowever, it 

is difficult to arrive at useful results unless several new assumptions are made. The 

assumptions are as follows. First, if there is a solution at an abstract level, there is one 

at a lower level. This property is referred to as downwards-compatibility. Second, at 

one level of abstraction, each subproblem defined by the abstract level is independent., 

so that no backtracking is necessary. Third, every subproblem of an abstraction level 

is of the same size. Finally, the abstract planner produces the shortest solution. 

Given these assumptions Knoblock derives that the worst case complexity of plaIi

ning is reduced from O(b' ) to 0(1), where b is the branching factor ofthe search space, 

and I is the length of the solution plan. This is analogous to._Korf~.result. 

Korf's and Knoblock's results are very encouraging in. that they suggest abstrac

tion .can transform intractabJe combinatorial problems into.. tractable ones . .However, 

in . .practice, the.restrictive assumptions made may not h?Id, and. the results may 

not always be as spectacular.. Specifically; the. abstraction spaces may not. satisfy 

downward-compatibility, meaning that a plan at a higher level has no expa.nsion at 

a lower level. It is also possible that the subproblems defined at lower levels ate not 

really independent,. thus necessitating backtracking across subproblems at one level of 

abstraction .. Nonetheless, these results provide an impetus. for continued research on 

abstraction. It is also clear that human problem :ccolving of ten. makes use of abstrac

tions when plannillg. Capturing this ability rein.jns a strong motivation for pursuing 

research oil abstraction. 
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1 .. 4 Conclusion 

Previous work on abstraction in planning falls under one of two rubrics, either op~ra" 

tor abstraction, the most commonly used, or state abstraction. Hierarchical operators 

are gederally considered useful for performing operator abstraction, although they can 

be used for state abstraction as well. ABSTRIPS . ...was able to successfully perform. 

state abstraction by ~signi~g .criticality values to predicates.in the preconditions of 
operators. Finally, theoretical results suggest that planning can, in the best case, 

reduce planning time from exponential in the length of the plan down to linear. 



Chapter 2 

Predicate Relaxation 

2~1 Introduction 

In this chapter, we introduce predicate relaxation, a method for aut(lmatically per

forming state abstraction. The motivation for defining predicate relaxation is the 

need for determining whether a predicate should be considered a detail in a particu- _ 

130: situation. As we have seen, ABSTR!~S accomplishes this by associating criticality 

values with p~edicates. However, whenever a predicate has a criticality value lower 

than the current planning threshold that predicate is true in all states of the search 

space. We will argue that whether " p~edicate should be considered a detail depends 

on the situation in which we are evaluating the predicate. 

Consider the following example. Suppose we are planning a bus trip from one 

location in a city. to another .. When planning at a high level of abstraction, we 

wodd generally ignore the .issue of whether or .not We have adequate bus fares and 

concentrate 011 the route plc~.nning aspects of the problem. At high levels of abstraction 

we 'Nould like to consider having a bus fare a detail. However, if our plan is to be 

executed fairly soon, and we do. not have exact change in our pockets, getting the 

exact bus far~ might not be trivial, and we should not tr.:at having the bus fare as a 

detail. However, if the first bus stop is close to a token booth, it should be relatively 

easy to obtain the bus fare, in which case it becomes a detail again. This, of course, 

preSUppOses that we have enough mOIley to buy. a token. If 1;.ot, having bus fate ceases 

11 
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to be a detail again. 

The point should be obvious. Whether or not having the bus fare should be 

considered a detail depends on the situation. In some situations obtaining the bus 

fare is trivial, in others iUs more involved and requir~s some planning. ABSTRIPS's . 

approach of using criticality values is unable to capture this context-dependency, and 

we.areJed to defining p.redicate relaxation. 

The basic idea behind predicate relaxation is that, given a base level predicate P, 
a new predicate P;cl is defined which is true in a superset of statE."S in which P holds. 

We say that Picl is a rclazed version of P. 

The above process can be repeated by defining Piel from Picl' and so Oli, creating 

a hierarchy of predicates. Of course, once_a predicate has been relaxed to the point 

that it holds in all states, there is no need to relax it further. 

When we plan, if instead of using the original predicates, we use the newly defined 

relaxed ?redicates, we can decide if a predicate should be considered a detail by . 

checking its relaxed definition. If the relaxation holds we say that the predicate is a . 

detail and we do not plan for it. We will see later how this satisfies our requirement 

of context-depe..ndency. 

2.2 Computing Pre!iicate Relaxation 

Predicate relaxation defines a new predicate Pf'~, from a predicate P in such a way

that. P;(d holds in all states in which P holds and in all states in which P can be 

achieved by the application of one operator. 

In order to precisely define predicate relaxation, regression must be introduced. 

Waldinger [Waldinger, 1917] introduced the technique 01 regression-in the AI liter

ature, although he credits [Mantia, 1968, Hoare, 1969, King, 1969] with the original 

discovery. 

Deflnitiort 1 The regression Reg(o,p) of predicate P over action 0 is the weakest 

relation that ensures the subsequent truth oj P after executing o. 

Regression can noW be used to define predicate relaxation. 
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In..a. domain with m operators, given a predicate P, we define P::el as follows: 

P~el - P 
m 

P~l - P~,lVReg(Opi,P:ell) 

where Reg(OPi, P) is the regression of predicate P through operator OPi. 

In general, P will have a non-zero arity, e.g. Clear(x) or On(A, B). When 

computing predicate relaxation, we will usually only do so once for each predicate, 

and replace its arguments with schema variables. For example, after comp~ting the 

relaxation of On(x, y), the result can· be instantiated to the predicates On(A, B), 

On(C, D), etc. There is no need to compute the relaxation.expresstonseparately for 

each different predicate. 

It is also the case that Pr~l becomes more complex as n grows. It should be 

noted that the regression of P"~l is always computable, although the complexity of 

the computation may increase with the complexity of Pr"el' 

To improve the efficiency of comput~tion one can check before regressing a pred

icate P that it appears in the add list of the operator. If it does not the regression is 

not necessary (the resulting expression would simply be subsumed by P). This does 

not-mean that we never regress predicates through op~ra.tors where they do not ap

pear in the add lisL If we are regressing P 1\ Q throu!h an operator where P appears 

in the add list, we must also tegressQ. through the same operator, even though it 

might not a~pear in the add list .. 

In many cases the regression of a predicate through an operator wHl he eqy.ivalent 

to the preconditions of the operator with the appropriate variable instantiatioils. 

However, . there are possi hIe complications. For example, suppose we are regressing 

the predicate P(:t) through and operator and P(y) appears in the delete list of the 

operator, but not in the add list. Then, one of the conjuncts in t lte resulting expression 

will be x :f:. y, to guarantee that P(x) is fiot deleted by_theappUcation ofthe operator. 

We will see later how we cali use relaxed predicates to considerably speed up plan

ning. We noW provide an example to help the teati~r become faiTliliar with predicate 
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relaxation. 

2.3 Predicate Relaxation Example 

Suppose we have a blocks-world .system with the following four operatots, where P is 
the precondition list, D is the delete list, and A is the add list. 

Pickup(x) 

P: {Clear(x) ,Handempty } 

D:{ Clear(x),Handempty} 

A: {Holding(x)} 

Putdown(x) 

P:{Holding(x)} 

D:{Holding(x)} 

A:{ Clear(x),Handempty} 

Stack(x,y) 

P: { Clear(y ) ,Holding( x) } 

D:{Clear(y),Holding(x)} 

A:{On(x,y),Clear(x),Handempty} 

Unstack(x,y) 

P:{ On(x,y ),Clear(x),Haildempty} 

D:{ On(x,y),Clear(x),Handerrtpty} 

A: {Holgipg(x),Clear(y) }_ 

1'0 simplify the example We assUme only two block~ A-and B. 

The predicates would be relaxed as follows: 

HandemplY:c:l =- Handempty V HoJding(x) V (Holding(y) A ctear(z)) 
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which can be simplified to: 

HartdemptY!el == Handempty V Holding(x) 

which in turn catl be reduced to: 

1 . 
H andemptYre/ = T 

assuming normal domain constraints. 

Here we see that l1 a:naempty can easily be guaranteed to. hold. 

Proceeding, 

Clear:el(x) = C{ear.(~) V Holding(x) V (Clear(y) A Holding(x)) 

V(On(z, x) A Clear(z) A Handempty) . 

Clear~el(x) = Cl~ar(x) V Holding(x) V (On(z,x) A Clear(z) A Handempty) 

Although it might not be obvious at first glance, using appropriate domain con

straints and the fact that we have only two blocks the above formula reduces to: 

Next we relax H olding(x): 

Holding:el(X) = Holding(x) V (Clear(x) A Handempty) 

V(On(x, y) A Clear(x) A H andempty) 

H oldi71g~eJ.X) = Holding(x) V (Clear(x) A Handempty) 

At the next stP.p we-relax Cleat(x) A Handempty: 

Holding:c/(:r) = Holding(x)V 
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((Qlear(x) V Holding(x)) A (Handempty VHolding(z))) 

Note that unlike our independent derivation of Clear:el We could not use-the 

preConditions of the Unstack operator, since Unstack clobbets Handempty. 

We can simplify: 

Ht>lding~el(X) = Holding(x) V C/ear(x) 

Holding~el(X) = Holding(x) V Clear(x) V (On(z,x) A Clear(z) A Handempty) 

Using the fact that we have only two blocks this reduces to: 

Holdin9~el(x) = T 

All that .remains is to-relax On(x, y). 

On!et(x,y) = Oti(x,y) V (Clear(y).A Holding(x)) 

As before we can replace Clea'r(Y) A Holding(x) by Holding(x). 

On!el(X,y) = On(x,y) V Holding(x) 

'then, relaxing Holding(x), 

On~el(X,y) = On(x,y) V Holding(x) V (Clear(x) A ilandempty) 

Relaxing Clear(x) A Handempty, 

On~el(X,y) = On(x,y) V Holding(z) V (Clear(z) 1\ Handempty) V liolding(y) 

Finally, relaxing H olding(y) We get, 

On:el(x,y) = On(x,Y) V Holding(x) V (Clear(x) A liandempty) 

VHulding(y) V (Clea'r(Y) A~liandempty) 

til our simple two blocks domaih this reducCS-to: 



2.4. JJISCUS5ION.oF PREDICATE RELAXATION 17 

2.4 Discussion of Predicate Relaxation 

It should be obvious .that if Pr~' holds in a state, there is a plan which can achieve P 
in n steps or less. The plan is j~st the sequence of operators through which P was 

regressed to arrive at the expression that holds in the current state. However., because 

we likely Simplified the regressed expression along the. way, we do not necessarily know 

what this plan is. We just know that there is indeed such a plan. By the definition of 

regression, this expression being true guarantees that P will hold after the application 

of that sequence of operators. 

If P:el holds, but Q~el does not, one can say that P:e, is more of a "detail" than 

Q~eh since P can be achieved more easily than Q. Predicate relaxation provides a 

gradual Widening of th~ states in which a predicate holds. In ABSTRIPS, a predicate 

can either hold in those states in which it was intended to hold, or, when its criticality 

value is less than the current threshold, hold in all states of the domain. This change in 

the semantics of a predicate cali be quite sharp. Predicates abstracted.with predicate 

relaxation, however" avoid this, semantic cliff, since the set of states in which they 

hold is gradually enlarged at each relaxation level. 

Unlike ABSTRIPS, the abst~action hierarchy is computed automatically. In AB

STRIPS the_user had,.to supply a partial order of predicates which was used to 

compl,1te criticality values. It is not..always obvious what this Rartial order should be. 

Also, besides the semantic cliff that ABSTRIP's method suffers 1rom there is a 

mOre SUbtle problem. ' Because of the way criticality values are cornp4ted by AB

STRIPS it often happens that one predicate will have different criticality values in 

the precondit,ions, of different operators. For example, in the example pr~ented in 

[Sacerdoti, 1974] the following operators are pres¢ut(;)d: ' __ ,__ ",_,_, 

Gothrudr(R,d,ry) 

P: {[6]Type( d,Door l,[5]Intoom(R,rx ),[6]Connects( d,tx,ry), 

[2]Status( d,Open),[6]type(ry,noom)} 

D:{Nextto(R,$l),Intoom(R,rx)} 

A: {Ihtoom(R,ry)} 
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Close(lt,d) 

P:{[6]Type(d,Door),[5]Nextto(R,dW5]Status(d,Open)L 

D:{Status( d,Open)} 

A:{Status( d,Closed)} 

In the Gothrudr operator the Status( d,Open) precondition has a criticality value 

of 2, whereas iIi the Close(R,d) it has a criticality of 5. This means that iIi the same 

situation,..when planning at a criticality threshold between 2 and 5, ABSTRIPS treats 

Status(d,Open) as a detail for one operator,.but as an important predicate that needs 

to be plannE>d for in another operator. This type of inconsistency does not happen 

with predicate relaxation. 

In the next chapter we will have more to say about the differences between plan

ning with predicate relaxation and.ABSTRIPS. 

2.4.1 Context-dependency 

It should be clear that predicate relaxation can be used to satisfy our requirement 

that the detailness of a predicate should depend on the situation in which the pred

icate is being evaluated. Using our previous example of the.bus fate,.at abstraction 

level 1'1,. We will consider H ave(BiJ.sFare) to be a detail in any situations. in which 

HcitJe~e,{Bu.sFare) holds. In this manner, H ave(BusFare) will. be considered a de

tail only in. those situations in which there is a.p~an.of length n or less to achieve 

HCive(BusFare). This seems to be a reasonable criterion for determining when a 

predicate should be considered a detail. 

2.5 Summary 

We have introduced predicate .teJaicWon, a tilethod fot defining hierarchies of predi· 

cates. Predicate relaxat;on is a technique fot performing state abstraction. We have 

also cotalpared predicate rclaxatioil to ABSTRIPS's technique of computing critiCality 
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values~ The basic motivation lor using relaxed predicates is the context-dependency 

of detaUness. Using. predicate relaxation gives us a means for determining in which 

situations a predicate should be considered a detail. 

In the next chapter we will see how the hierarchies generated by predicate relax~ 

ation can be used tb significantly improve planning efficiency~ 
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PABLO 

3.1 Introduction 

Since the advent of NOAH [Sacerdoti, 19771 much of planning research has concerned 

itself with developing representationally powerful planners. Researchers have pro

duced planners that are quite encompassing in the domains they can represent, in

corporating resource-based rea.sonin~temwal reasoning, and other techniques to 

facilitate the encoding of domains. 

NOAH has had a gt~t influence on modern day' planning research. Virtually all 

subsequent planners employ some-ef the techniques introduced in NOAH, the most 

distinguishing one being the encoding of plans in procedural netS. Procedural nets 

provide a cOnYenient representation for plans. They allow.the planner to..represent 

pJans as partial orders, rather than as. linear sequences as, had p.reviously been the. 

case, which allows NOAH to postpone commitment to.any particular action ordering 

until absolutely necessary. 

One important characteristic of the procedural net is that it encodes procedural 

as well as declarative information .. The procedural data is stored in terttlS of user 

defined functions (SOUP code functions, in the case of NOAH) for expanding nodes 

in the procedural network at the next planning level.. 

A procedural net is .procedural precisely because it not only encodes information 

about the problem at, hand, but also because it encodes iIlformation on how the 

20 
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problem is to be solved. . 

However, with this focus on repr~~nt~tional power, there has. also been a shift ____ _ 

away from g~neral, domain independent problem-solving. NOAH signaled this shift 

by providing nO backtracking search capability. Thus, if NOAH mistakenly chose a 

wrong operator_with which to expand a subgoal, it had no provision for backing up 

and attempting another operator. 

Because of its lack of backtracking, a plan in NOAH is basically unfolded. from 

the operator definitions. It is the responsibility of the user to provide NOAH with 

correct and detailed enough SOUP functions so that the planning problem can be 

solved without backtracking. NOAH _can be viewed as a programming language for 

writing programs that compute plans composed of primitive actions. 

It is important to note that NOAH~s lack of a backtracking mechanism, which at 

first glance appears to be a serious omission, is closely tied to the planning philoso

phy embodied in NOAH. Of course, the least-commitment principle embodied in the 

procedural net, allowed NOAH to avoid many dead-ends that purely linear planners 

would have encountered, thus further reducing the need for a search capability. 

However,just as importantly, unlike previous planners, the aim was to p1:ovide a 

framework wherein the user could apply domain-specific knowiedge to Sol'\Te complex 

planning problems. 

NOAH shifted a major part of the problem-solving resp<;msibility from the planner, 

where it.had previously resided, squarely.onto the shoulders of the user. This had the 

advantage of greatly. enhancing the computational efficiency of NOAll as compared 

to previous planners .. 

Of course, not all the pt9blem-solving responsibility lies with. the .user. There is, 

after all, Ihuch declarative infotmation in the procedural net that NOAH makes use 

of. Specifically, after each le'\Tel is expanded a set of critics examines the current state 

of the plan and modifies it in case of difficulties, e.g. the ·possible clobbering of a 

precondition by an action. 

It has generally been assumed that this division of labour between the dOfilain

specific SOUP {unctions and the domain-independent critics provided ail adequate 

compromise .between .the conflicting requite-merits .of Completeness and efficiency in 
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pl@Jlning~ We will argue that this position needs to be..re.,.examined. We .believe there 

is still much to be dOne in the area of developing powerful planners and that it might 

be necessary to eventually endow planners with more powerful domain independent 

techniques. 

This is based.on the belief that planners should strive to p1;'ovide as much problem

solving a.id as possible to the user attempting to solve a planning problem. The more 

burden we place .on the encoder of the domain, the less valuable a tool the planner 

becomes. Ideally, when faced with a new domain, the user should not have to discover 

the efficient algorithms for solving problems in that domain, but should be able to 

simply provide the planner with a naive encoding of the domain objects and primitive 

actions. 

For example, if faced with the Towers of Hanoi pr9blem. for the first time it does 

not seem reasonable to expect the encoder of the domain to know about efficient 

algorithms for solving the problem. If she did indeed know such algorithms it would 

probably be more reasonable to encode them directly in a general programming lan

guage. 

Rather, we can expect the encoder of the domain to provide descriptions of the 

objects and relations oLthe domain, e.g. pegs, disks, dear ( disk), on( diskl,disk2), 

smaller(diskl,disk2); etc ... The only action the encoder is likely to be aware of is the 

Move( diskl,pegl,peg2) action, namely move diskl to .peg! from peg2. This level of .. 

information is. realistically ~ll that can be expected from. the encoder of the domain. 

It is then up to the planner to make use of this domain description to facilitate the 

development of plans for .solving problems in this dOIilain. . 

Clearly, because of its lack of backtracking, NOAH is likely to fail to produce plans 

in this domain. Given only the naive encoding of t.he domain, search is inherently 

necessary in arriving .. ~ a flolution. Of course, search is not the whole answer. If the 

planner merely provides a blind search capaQility, e.g. complete breadth-first search, 

it is not aiding the user of the .. system appreciably. 

Ther. :"re, it is not simply enough that the planner take responsibility for the 

problem-solving in a domain, it must do so in a non-trivial way to be of aid to the 

Us~r. 
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Many of the advancements in planning since NOAH hav.e .been in the area of 

allowing more· representational power by the encoder of the domain, but very few 

have .been in the area of improving ~he_basic probl~m.solving capabilities of planners .. 

Blind search still seems to be the default for most planners._ 

3.1.1 Post-NOAH Planners 

The next major planner after NOAH was NONLIN [Tate, 1977] developed by Austin 

Tate at Edinburgh. NONLIN imprQ.ved on NOAH in several ways. Unlike NOAH, it 

searched the space of partial plans. It also provided a more perspicuous langua~e in 

which to represent operators, as well as typed ptetonditions. However, its search is 

blind, making its usefulness somewhat questionable. Tate states [Tate, 1977]: 

We expect that the first choice taken should lead to a solution .. .if 

failure occurs with the first plan being considered, our experience is that 

backtracking can lead to long searche~ ___ . 

Unless the pJ;oblem domain was encoded in such a way that the solution could. 

be directly unfolded from the operator definitions, there was a. slim hope of finding a 

solution in a reasonable amount of time. 

SIPE [Wilkins, 1984] represents the state of the art in classical pJanning. In addi

tion. to the planning features discussed to this point, StIlE extends the plan represen

tation.in several. ways. It allows for a deductive causal theory which greatly reduces 

the complexity of the operator descriptions. It provides. capabilities for reasoning 

with resources, including time. IIi addition to. this it provides a powerful constraint 

language which allows it to partially specify objects. 

SIPE achieves a high level of efficiency and is the first planner to successfully be 

applied. to real-world applications [Wilkins, 1988]. However, even SIPE could benefit 

from advancements in domain-independent problem-solving techniques-to improve its 

search capability, since, as in previous planners, it remains blind, and is guided to a 

large extent by the user defined operators. 
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TWEAK) develop~d by Chapman [Chapman, 1987], is a formalization of earlier 

non-linear_planners. Chapma.n introduces a.sound and complete Modal Truth Crite

rion for determining the truth of predicates at any point in a non~linear pl~. TWEAK . 

is guaranteed to. find a solution to a planning problen'l.if one exists_ 

The above is by no meanS an exhaustive review. of earlier -work ·on planning; 

just.a selection of some major systems, chosen to contrast the traditional .planning 

research with our resear.ch on PABLO. For a good overview of planning systems see 
[G~tgeff, 19.87, Di"ummond ar.d Tate, 1989, Allen et al, 1990]. 

3.2 Planning Terminology .. 

To facilitate the description of PABLO we will_use the TWEAK terminology. In this 

section we present some important definitions. A more extensive description can be 

found.in [Chapman, 1987]. 

A planner is said to be sound if whenever it finds a solution to a planning problem, 

the solution plan is a correct plan for solving the problem. A planner is said to be 

complete if whenever there is a solution.. to a planning problem the planner can find 

it. 

At the core of any nonlinear .planner is the algorithm for determining the truth of 

predicates at a p~rticular point in the plan. The condition under which a predicate is 

said to hold is known as a truth criterion. TWEAK introduced the first such criterion, 

namely the Modal Truth Criterion. In cha.p~er 9 we introduce a new. truth criterion. 

Two variables are said t.o c()designate if they are constrained to always refer to __ . __ . 

the same domain object .. Similarly, two predicates are said to codesignate if they are 

of the same type and their respective arguments codesigllate. For example, On(x, y) 

and On( v, w) codesignate if :t and v as well as. y and w codesignate. -' 

Each action in -a plan is an instantiated operator.. Each action defines two sit

uations, namely the situation immediately preceding the action and the situation 

immedicately following the action. A plan is a partial order of actions with an initial 

situa.tion and a final situation. 

A predicate is said to be asserted in a situation if it codesigttates with a member of 
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the add list of the attion immediately preceding the situation. A predicate is asserted 

in the initial.situation if it .. codesignates with a member of the initial situation. A 

predicate is denied in a situation if it codesignates with a member of tDP. delete list 

of the action imniediately preceding ~he situation. 

A goal is a pair c9nsisting of a p~edicate and a situation in which that predicate 

must hold. An .action is said to establish a goal if the predicate of the goal is asserted 

in the situation immediately following the action. 

An action is said to clobber a goal if it Occurs after the establisher of the goal and 

before the situation in which the goal predicate must be true and it denies the goal 

predicate. 

An action is said to be a white knight if. it occurs after a clobberer and before 

the situation in which. the goal predicate must be true, and whenever the clobberer 

clobbers the goal pI:.«:.dicate the white knight establishes it .. 

This brings us to the notions of necessity and possibility. A plan can g~nerally be 

completed in many ways, depending.ou which temporal and codesignation constraints 

are added to it. If a property of the plan holds in all completions we say it necessarily 

holds. If it holds in some completions we say it possibly holds. For example, if an 

action clobbers a goal in all completions of a plan we say that the action necessarily 

clobbers the goal in the plan. If it only clobbers the goal in some completions of the 

plan, we say the action possibly clobbers the goal. 

3.3 Overview of PABLO 

We can provide more -problem-solving capability in a domain-independent pla.nner 

and thereby shift the burden of problem solving from the user to the planner, by 

analyzing the encoding of the domain before beginning the actual planning process. 

At one extreme, the planner could simply generate the whole search space ahead 

of time, thus trivializing the planning process. This is essentially the approach taken 

in Universal Planning [Schoppers, 1987]. There are several problems in attempting 

this, which we shall return to later in this thesis. 

Another approach is to einploy predicate relaxation. By relaxing predicates in 
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the domain, we discover relevant facts about each predicate's difficulty. This is the 

r.pproach taken by PABLO. 

3.4 Underlying Planning AIgo.rithm 

PABLO. uses iterative-deepening_seatch [Korf, 1985] coupled with TWEAK's Modal 

Truth Criterion as its underlying planning alggrithm. We chose this algorithm pri

marily because of its provable correctness and completeness. A breadth first imple- ._ 

mentation requires too much space so an iterative deepening approach Was adopted. 

See table 3.1 for a high level description of the algorithm. 

One thing to note about the above algorithm is that .for every call to plan we only 

consider resolving one outstanding goal, even though there might be several which are 

unachieved. The reason we can do this, is that if we fail in solving for one.goal, trying 

to solve for any of the other outstanding goals first can have no synergistic effect in 

solving the original goal. This is because the order in which goals are attempted 

is irrelevant, as all possible establishers are available to the algorithm at anyone 

point in the form of operator templates which we can instantiate.into the weakest 

form of an action. Adding const.raints to an action can never result in the possible 

. establishment of a proposition that could not already be possibly established by' the 

action as it was . first instantiated. Therefore, if we fail to solve an unachieved. goal, 

we might as well backtrack, since continued work on other goals will not result in the 

possible achievement of the original goal. 

For reasons of simplicity. we have omitted dec10bbering by white knight in the 

overall control structure. See [Chaptllan, 1987] for an extensive discussion of the-I'ole 

of white knights in planning. This procedure is complicated and omitting it does not 

affect the completeness of the planner. The reason for this is that final plans always 

have all their variables. codesignating with exactly one constant. Therefore, a white 

knight either asserts the proposition, in which case we would Use it as an establisher, 

01' it does not, in which case we can use separatioil tq declobbct.J.he goal. 
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CallPlan 0 
maxdepth +- 1 
loop forever 

plan(O maxdepth) 
maxdepth +- maxdepth + 1 

Plan (opcount maxdepth) 
g +- any unachieved goal in the plan 
if g then 

for s one of all possible situations that can establish g 
constrain s to be before the situation g.p has to hold 
fot p One of all the predicates asserted in s 

add codesignation constraint p ~ g.p 
declob ber(g,s,opcount ,maxdepth) 
remove codesignation constraint p ~ g.p. 

remove constraint that s be before the situation g.p has to hold_ 
if (opcount < maxdepth) then, 

for op one of the possible operators that.tan establish g 
instantiate and, insert op into the plan 
constrain op to be before the situation g.p has to hold 
for p one of all the predicates asserted by' op 

add codesignation constraint.p ~ g.p 
declobber(g,s,opcount+ 1 ,maxdepth) 
remove codesignation constraint p ~ g.p) 

remove op from pIal} 
else print(plan) 

break 

Table 3.1: Base Level Control Structure of PABLO 
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Declobber (g,establish~t ,opc<>unt,maxdepth) 
tlobberer .-- any step in the plan which clobbers g 
if clobberer then 

else 

constrain clobberer to be.before establisher 
declob ber(g,establisher ,opcount,maxdepth) 
remove constraint that clobberer be before establisher 
constrain clobberer to be after situation in which ghas to hold 
declobber(g,establisher ,opcount,maxdepth) 
remove constraint that clobbeter be after 
situation in which g has to hold 
for p one of the possible predicates asserted by 
clobberer which.can deny g.p 

add eodesignation constraint p ~ g.p 
dec1obber(g,establisher ,opcoun t,ma.xdepth) 
remove codcsignation constraint p ¢ g.p 

plan ( opcount,maxdepth) 

Table 3.2: Base Level Control Structure continued. 
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:lA.1 Plan Representation 

PABLQuses a mo.dified version.of TWEAK's mo.dal truth criterion during planning. 

Its plan representation is based o.n the TWEAK plan repr~_sentation. In chapter 7 

we .will extend this representatio.n to..include hierarchical operators. In_the name 6f 
efficiency so.me extensions have been pr~vided to. the. o.perato.r..representation. Spedf" 

ically,_preco.nditio.ns can be specified so. as no.t to. be planned for by ~ABLO, but 

rather, just checked befo.re the applicatio.n.o.f an o.perato.r .. Further, pro.Po.sitio.ns in 

the add list o.f an o.perato.r can be specified to. be side effects o.f the operato.r and 

sho.uld not be co.nsidered as Po.ssible establishers fo.r unachieved go.als. Finally, vari

ables of pro.Po.sitio.ns in delete lists can be specified to. be global, resulting in a simple 

fo.rtn o.f universal quantification. Each.of these extensio.ns is completely o.Ptio.nal, but 

can .be -used to. significantly impro.ve efficiency. 

3.4.2 Relaxation Phase . 

Befo.re the planning process hegins, PABLO performs a relaxatio.n phase, wherein it 

creates the relaxed definitions fo.r the predicates appearing in the postco.nditions and 

precpnditio.ns of opera.tors. This need o.n1y be do.ne once fo.r each domain. 

The user of PABLO specifies the level to which the p~edicates should be relaxed. 

PABLO creates a. relaxatio.n definition fo.r each different type of predicate in the 

do.main.. This definitio.n is a relaxatio.n schema and is instantiated every time a 

predicate is iI1stQ~tiated during planning. 

Fo.r exainple, jjJ.st as was do.ne in the blocks wo.rld example of chapter 2; relaxatio.n-.

schetnas would be created fo.r the predicates Clear(x), Handempty, lio.lding(x) and 

On(x,y). Then, during planning, a particular predicate instance, say On(A,B) would 

hav~ associated with it an instance o.f the relaxatio.n schema for Ofi(X,y) whet(;! x has 

been bo.und to A, and y bas been bound to. B. 

As Was done in the example presented during the description o.f predicate relax

ation cOflsiderable simplificatio.n cail be accomplished with the use of do.main con

sttaints. We will return to. the issue of simplifying predieaic relaxatio.n expressions in 

chapter 8. 
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3.4.3 . Planning Phase 

The genera.l idea during planning is that PABLO first consider the most important 

predica.tes, and then .. consider successively less important p.redicates. This is accom

pli$hed by associating each planning level with a rela.xation level, and planning with 

relaxed predicates of that level. At any particular. planning level, any ptedicate Whose 

rela.xation definition is true at thatJevel is considered a detail and is not specifically 

planned for. 

The operator Pickup(x), previously discussed, becomes at levell, 

Pickup(x) 

P:{Clear~(x),Handcmpty~} 

D:{ Clear(x),Handempty} 

A:{Holding(x)} 

When moving down abstraction levels, if newly created subgoals appear in dif

ferent sections of the plan, PABLO attempts to achieve them independently. The 

ratiorale for this being that these predicates were considered "details" at the higher -

level and presumably do not have global consequences. In cases where this assump

tion .fails, the consequences can, of course, be costly, in terms of computation time. 

However, in OUr experience the increased efficiency outweighs.this risk. 

The above is accomplished by.pe6inning with the initial situation and any instan

tiated operators that do not have another instantiated . operator necessarily between 

the initial situation and itself. PABLO plans for any outstanding preconditions or -

goals in this segment. of the plan. Once this is done the plan is augmented with 

the next set 01 instantiatf!d operators which do ilot have another operator which is 

necessarily before. themselves. This process is tepeated until the final situation is 

included in. the plan. Once the full plan has been expanded we can move on to the 

next abstraction level. 

3.4.4 Truth Criterion 

At the cote of any planning system is the procedure fot determining the truth of 

predicates. Because PABLO has a restricted plan representation. the introduction o£----
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abstract predicates complicates this computation somewhat. If arbitrary first order 

sentenCes were.allowed.in the postcondition of operators, the definition for each.a.b

stract predicate could be included in the initial situation. This rule would then be 

propagated to every sit.uation in the plan. No extra mechanism would then have to 

be provided in the planner to deal with abstract predicates. 

Due to the restriction oILPABLO's representational capability we extend the def

inition of asserts to include abstract predicates. lILa base level system, a predicate is

asserted in a particular situation if one of two conditions holds. H the situation is the 

initial situation then the predicate must be contained in the situation description. 

Otherwise, the predicate must be contained in the add list of the operator imme

diately preceding the situation. We extend these conditions as follows in order to 

accommodate for relaxed predicates. 

Definition 2 A relaxed predicate Pr~' is asserted in situation s iff7(s) r p:e" where. 

7(s) is the theory consisting oj the base level predicates which are necessarily true in 

s. 

The computation of the preriicates that necessarily hold in s is then done with 

TWEAK's modal truth criterion. This 'criterion is somewhat conservative itt deter

mining the truth of. abstract predicates but has proven quite adequate in practice. 

We shall later define a new truth criterion which is valid for a. Itlore expressive plan 

representation. 

3.5 Examples of planning with PABLO 

3.5.1 Towers of Hanoi 

A well known problem with many inherent abstractions is the Towers of Hanoi prob

lem. The operatot given t.o PABLO is the following:-

Move(x,z) 

P: {Sit1aller(x,z),~ lovable(x),OIi( x,y ),Clear(x ),Clear(z)} 

D;{ Ofi(x,y),Clear(z)} 
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! t: I I 
Figure 3.1: Towers of Hanoi 

A:{ On(x,z),Clear(y)} 

See figure 3.2 for a trace of PABLO solving the three disk Towers of Hanoi problem. 

The plan at the highest level of abstraction consists of Move(C,P3). At this level all 

its preconditions are satisfied (Clear~(C) is satisfied since it can be achieved in two 

steps). 

Abstraction Ltve! 2 

AbN'dioD Levell 

BaH Ltv.! 

Figure 3.2: Trace of PABLO solvin.g the Towers of Hattoi_ 
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When We move down to- the next.abstraction level Clear~(q) becomes Cleat~.1(C) 

which is not satisfied in ouLinitial state, since we cannot clear C :n one step. PABLO 

therefore pla!).s to achieve Clear~el(C) by adding the action Move(B,P2) to_the plan. In 

doing so it undoes On~~(B, C), which PABLO then plans to reachieve, using the action 

Move(B,C). At this point the plan at. the first level of abstraction .is complete. since 

all the first level relaxations of the goals and preconditions are s",tisfied. Planning is 

then completed at the base level using the original predicates of the domain. 

In -this case PABLO has discovered and made use of the inherent abstractions 

in the domain. Including the time it takes to generate the relaxation definitions, 

which in this example is negligible, PABLO solves the problem oVer 100 times faster 

using the abstractions than without USing them. In chapter 5 we will present more 

comprehensive empirical results of PABLO. 

3.5.2 Comparison with Other Planners 

All planners of which we are aware, with the exception of ABSTRIPS, would have to 

revert to a full backward search of the state space if given this example. 

Planners using operator abstraction ~an reason abstractly about this problem only 

if new operators are defined by the encoder of the domain, a. task which might be 

both time-consuming and p.rone to errors. As we have pointed out earlier, in this 

research. we ate striving to provide powerful problem-solving capabilities given simple 

encodings of the domain. 

ABSTRIPS assigns the follOWing criticality values to the predicates in the domain: 

Move(x,z) 

P: { {3 }Smaller( x,z),{3} Movable(x),{2}On( x,y), {2}Clear(x), {2}Clear(z) L
O:{ On(x,y ),Clear(z)} 

A:{ On(x,z),Cleat(y)} 

ABSTRIPS creates only- one level of abstraction in this domain. When solving the 

problem, after finishin&-the abstract level, the plan consists of orte action Move(C,P3). 

Although this is of some aid in developing the plan at the base level it is not as useful 

as PABLO's hierarchy. 
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ABSTRIPS's hierarchies are .domain .. dependent _but problem-independent. The 

number of different criticality values, and therefore the number of. abstraction levels, 

of ABSTRIPS is constrained by the number of different pr~gicates of the domain. For 

the 4 disk Towers of Hanoi, ABSTRIPS still has only.one abstraction level, whereas 

PABLO generates 3 abstraction levels. In general, for the rLdisk Towers of Hanoi 

problem, PABLO. generates n ...... 1 abstraction levels, whereas ABSTRIPS still creates 

only one abstraction level. 

3.6 Blocks World. 

3.6.1 Example Problem 

A c 

I D 

c I: 

lnitl&1 State Goal 

Figure 3.3: Blocks World _ 

This version of the blocks world has two operators: 

PUTON(x,y) 

P:{ Clear(x),Clear(y ),On(x,z)} 

D: {Clear(y), On( x,z)} 

A:{ Clear(z),On(x,y)} 

TABLEOPR(x,y) 

P:{ Clear(x),On(x,y)} 

D:{On(x,y)} 

A:{Clear(y),On(x,TABLE)} 

The goals are On(A,B), On(B,C), On(C,D), and On(D,E). PABLO begins plan

ning at abstraction level 2. See figure 3.4 for a trace of PABLO solving this problem. 

At-abstraction level 2 the only goal not satisfied is On:.c.(C, D). PABLO platts to 

achieve this goal using the action Puton(C,D). All its preconditiQns are satisfied at 

this level of abstraction. 

At abstraction levell the precondition Clear~el(C) is not satisfied so PABLO adds 
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the action Tableopr(B,C) to achieve it....]; then reachieves. O~(B, C) by adding the 

a.ction Puton(B,C). 

The plan is then completed at the base level using the base level predicates .. 

Notice that the resulting plan is nonlinear. PABLO solved this problem 130 times 

faster with .the abstractions than without them, including the time to generate the 

predicate relaxation definitions. 

Abstractioll 1.\'01 2 

Tableopr(B,C) 1------1 

Abstrat~ioll Levell 

Tableopt(A,B) 

Figure 3.4: Blocks world trace. 

3.6.2 Another Example 

The .following example shows the effect of nonlinear plans at higher levels of abstrac

tion. See figure 3.5 for an iIlustra.tion of the problem. 
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D 

C 

B 

A 

Initial State Goal 

FigYre 3.5.: Blocks WQrld Problem. 
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The goals of the problem are On(A,D) and On(C,F). A trace of PABLO salving 

this problem. ~an be found in figure 3.6. At abstraction level 2 PABLO satisfies the 

goal O~(A,D) by introducing the action Puton(A,D). Its preconditions and the goal 

O~(C,F) are now satisfied at this level of abstraction. 

At abstraction level 1 the preconditions Clear~(A) and Clear~(D) of the ac

tion Puton(A,D) are no longer satisfied. PABLO at this point inserts the actions 

Tablec1?r(x,A) and Tableopr(y,D). There is no reason to order these actions so they 

remain unordered. At this point the first half of the plan is completed. PABLO now 

considers the second half which includes the final situation. This has the effect of 

introducing the goal On~(C, F) to this level. However, this goal is satisfied at this 

level of abstraction so no action is inserted to achieve it. 

At the base level PABLO proceeds in three steps .. The first step considers the 

preconditions to.the two actions Tableopr(x,A) and Tableopr(y,D). PABLO first cOn

siders the precondition On(x,A), which is not satisfied at the base le\teLsince x is a 

variable. The variable x is then instantiated with OI1(B,A). At this point Clear(B) is 

considered since it is not satisfied at the base level. This is satisfied by inserting the 

op~rator Tableopr( C,B) to the p.l~n. An analogous proce~ure ensues to satisfYJhe p-re

conditions of Tableopr(y,D), resulting in the insertion of the operator 1'ableopr(F,E)_ 

and the.instaniiation of variable y. with block E. 

At this p.oint this segment of the pl~ is fully satisfied and the preconditions to 

operator PutoIi(A,D) are now considered. However, these are all satisfied at the baae 

level. Finally, the goals of the final situation are considered. 'the rema.ining goal 

On(C,F) is. unsatisfied at the base level; so the operator Puton(C,F) is inserted. Its 

precoil(Uti9i;lsj~tClear(C) and Clear(F) cali be satisfied by constraining the operators 
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PutOn(A.D) I 
Abstraction Level 2 

Tableopr(x,A) 

PutOn(A,D) 

Tableopr(y,D) 

Ahetrattion Level 1 

PutOn(C,t) 

Tableopr(F ,E) 

Tableopr(E,D) 

Ta.bleOpr(C,B) Pu\on(A,D) 

Tableopr(B,A) 

Base Level 

Figure 3.6: Nonlinear blacks world trace. 

Tableopr(F,E) and Tableopr(C,B) to appear belate Puton(C,F). At this point the 

plan is complete at the base level and PABLO terminates. 

It should be nated. that because of the partitioning of the plaIt at each level into 

seli-contailled Bubprablems that the possibility of SUboptimal plans is introduced. In 

this example, PABLO produces a pla.n that is one step longer than optimal, since it 

could have satisfied the goal. On(C,F) by the operator Putan(C,F) and at the same 

time satisfied the preconditian Clear(Bl, thus olwiating the need for the opera.tot 

'I'ableopr(C,B). The teason PABLO did not rec\Jgnize this passibility is precisely. b~ 

cause it did not work on th~ goal On(C,F) until the base level. When the action 
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Tableopr(y,D) was inserted at abstraction level 1 , On~el( 0, F) was satisfied so there 

was nO need to consider the action Puton(C,F), although. it would have resulted in . 

a legal plan at that level. of abstraction. This is an example of. the trade-off between 

efficiency ,and optimality that planning with relaxed predicates introduces. 

3.7 Extensions to Predicate Relaxation 

3.7.1 Associating Costs with Operators 

One way in which predicate relaxation can be extended is to associate costs with 

operators and define predicate rela.xation levels in terms of p~rticular costs and not 

simply in terms of the number uf operat.9rs. 

Before We elaborate on this idea, it is important to be aware. of two distinctions. 

First, basic predicate relaxation provides a measure of how difficult it will be to plan 

to achieve a certain predicate. It does not provide a measure for how difficult it will 

actually be for the executor of the plan to achieve that predicate. The reason the 

former measure is of value to us, is that it is planning time we are trying to minimize. 

Therefore, it seems reasonable: to concentrate' on the predicates for which a simple 

plan ,doeS not exist. 

The second ,distinction is that predicate relaxation rela.xes predicates over u~n

stantiated operators, i.e. over the oper~tor teIllplates .. Therefore, if we are interested 

in the cost associated with executing an operator.it migp.t not be available . ..For ex~ 

ample, if in our domain we have a drive operator, the cost associated with it will not 

be known until it is instantiated, and might vary considerably. The cost.of drivbg 

two miles to sthool-is significantly different from driving across-the country. 

Given these distinctions we can generalize predicate relaxation to relax predicates 

over operator templates with costs associated with them. For example, in a travel 

domain, the hight!Bt cost might be associated with the fly operator and ..the lowest 

with the drit'e oper~,tor ._Then, instead of relaxing p',redicates ;n terms of the number 

of opera.tors necessary to achieve them, we relax in terms of cost threshold. e.g. In the 

travel domain; at a particular relaxati9n level, we would allow more drive operators 
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in.a relaxation of a particular predica.te than fly operatorS. This would have the effect 

of introducing f.he fly operators into the plan at a higher level of a.bstraction than the 

drive operators. 

3.7.2 Limit Relaxation Operators 

Another possible extension is to limit the regression of predicates.during the relaxation 

phase to a subset of possible operators, thus creating smaller relaxation definitions. 

For example, we might limit the relaxation definitions to only include commonly used 

operators. Also, certain operators might c..chieve a predicate as a side effect. We might 

limit the relaxation definitions to only those operators which have a predicate which 

is being regressed as a main effect. We will see later, in chapter 8 how this and other 

techniques can .be used to significantly reduce the size of th~ predicate relaxations. 

3.7 .3 Relaxation over Hierarchical Operators 

In chapter 8 we will see how we can extend the PABLO operator representation to 

include hierarchical operators. It will then be possible to plan using both types of 

abstractions. We will give an example 'where it will be desirable to relax predicates 

oVer hierarchical oper~tors, so there is no longer a one to one correspondence between 

the relaxation level and the number 01 primitive actions over which we regress. 

3.8. Conclusion 

We have presented PABLO, a non~linear hierarchicalplanner that automatically gen

erates abstraction spaces using predicate relaxation. PABLO is able to solve some 

problems, e.g. Towers of Hanoi, making full use of the abstractions inherent in the do

main, something which previous planners could not. The resulting abstraction spaces 

can gr&tly increase planning efficiency. Predicate relaxation has several advantages 

over ABSTRIPS's abstraction technique. It is fully automated, it ptO¥ides a gradual 

abstraction of predicates, and the number of abstraction levels can be tailored to the 

particular problem to be solved. 
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Compl~x.ity Analysis 

4.1 Introduction 

We might ask what we can gain by using predicate relaxation. I<orf [Korf, 1987], 

and later Knoblock [Knoblock, 1990] have shown that planning with abstractions can 

reduce worst-case planning complexity from exponential in the length of the resulting 

plan, to linear in the length of the plan. 

In this chapter we review this work, and' then show a complexity analysis of 
planning with predicate relaxation. 

4.2 Previous Work 

One of the first analyses of abstraction waS made by Korf.[Korf, 1987]. lie was able to 

show that with a propetly constructed abstraction hierarchy it is possible to reduce 

planning time from exponentiaLto linear complexity in the length of the resulting 

plan. However, in the context of traditional planning, the construction used by Kort 

is somewhat non-standard in that it assumes that if there. is a. path between. two 

states at a high .level of abstraction, we automatically kilow what the path is-at a 

lower level of abstradion. In hierarchical planning this is normally not the case, and 

we must generA.lly plan at the lower level in order to determine the lower level path. 

The upper ~h.~tril~UQnJeyels...provide the lower levels with islands which guide the 

40 
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planning process. 

Knbblock_[Knoblock, 199uj has analyzed abstraction in planning without this as

sumption, showing again that it is possible to...teduce worsLcase plan..ning complexity 

from exponential to linear in .the length of.the final plan. In our analysis of planning 

with relaxed predieates we make use of this result. 

, 

4.3 Complexity Analysis 

4.3.1 Planning at one level 

We will define P( /) to be the worst case complexity of finding a plan consisting 

of 1 actions. . In the case of a state-space planner P{l) = E~=o bi , where b is. the 

branching factor of the state space. This is the model used by both Korf [Korf, 1987] 

and Knoblock [Knoblock,1990]. However, most planners are plan-space planners 

[Sacerdoti, 1977, Wilkins, 1984, Chapman, 1987], including PABLO. Computing the 

worst case complexity of a plan-space planner is still an open problem, although it is 

likely to be at least exponential in the length of the resulting plan. 

See figure.4.1 for an illustration of a.planner planning hierarchically. The branch

ing factor corresponds to the-number of subproblems that each level generates at a. 

lower level. In the figure this branching factor is 2. We refer to this branching factor 

of the abstractionspace as c. If the final plan is of length 1; the height of the tree will 

be loge 1. 
The complexity of planning using n levels of abstraction, assuming the complexity 

of planning does not. vary with the abstraction level is 

£(c) + cF(c) + c2 P(c) + ... + c'ogc' P(c) 

where c is the branching factor .of the abstraction space. 

However, if we want to compute the. complexity of planning with relaxed predicates 

we need to take into account the greater _amount of time it takes to determine the 

trut h of a predicate at a high level.of abstraction. 

As we relax a predicate frorn .. one level to another we disjoin the predir.ate with its 

regression through each operator in the domain. There friight actually be more than 
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one regressed expression for a particular .operator since. the. predicate might match . 

more than one predicate in the.add list. It we have -lJ operators in the domain, and at. __ 

most s predicates in the add list, each predicate's regression can consists of at most 

os conjunctions Therefore, if a particular conillnction consists .of p predicates, the 

resulting regression will consist of at most osp conjunctions. 

Notice that as we proceed. with. the-regressions from level to level that the size 

of the conjunctions will in(.rease, assuming we do not perform simplifications. If 
we take d to be the maximum size of any precondition of the operators, then the 

maximum number of predicates at regression level n is bounded by nd.1 Note that 

the size of the conjunction might actually be larger since we might generate equality 

and inequality predicates. However, these are simply passed from level to level and 

do not generate any new regressed expressions. Therefore, at relaxation level n the 

number of new. conjunctions generated by regressing a conjunction at level n - 1 is 

bounded by os(n - 1)d.2 If at level n - 1 we have Cn-I conjunctions, at level n we 

will have at most os(n - -1 )den-l conjunctions. Therefore, at level n, the number of 

conjunctions is bounded by (osd( n - 1))n. Renaming osd to be k we get (k( n - 1»)n. 

For simplicity of exposition we will use the weaker bound of (kn)fl which is valid for 

n > O. For n = 0 there are only individual predicates so the bound is 1. 

Given that the number of conjuI1ctions in a relaxed predicate is bounded by (kn)n 

we must also establish the complexity of computing the truth of each conjunction. 

We set z to be the maximum number of predicates in a particular situation. In the 

worst case, we might have to try every possible instantia.tion of each. predicate in a 

conjunction-of length p which takes zp. Since the rnalCirnuirt I1umber of predicates 

in a conjunction that need to be checked in a situation (i.e. not the eqqality and 

inequality constraints) is bounded by dn at level n this becomes zan. The equality 

and inequality constraints-Can each be checked in constant time atld their number is 

bounded .by 0(712).3 

lIn what follows we assume n > O. 
2This is only valid for n > 1 
3This is because at level fl, the number of;new equality constraints generated by regressing a 

conjurtction from level n - 1 is bounded by Id( n - 1), where I is the maximum size of the delete liBt 
of any operator. attd den - 1) is the maximum number of i:!onequality predicates in a conjunction at 
level n - 1. The expression E7=2/d(i - 1) is bounded by kn2 for some k. 
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Therefore, the complexity of computing the truth of an abstract prediea.te at 

abstraction level n is Q(zdn(kn)*). SitnplifYi~g we get O(zeikn.)'i) which is O«/<n)ri) 

for.K == zdk. 

Given .this, we can now derive an expression for the complexity of planQjng with 

relaxed predicates. 

We can. write the above as 

Moving the constants out of the sum We get 

The sum. is bounded by 1 + (9n)rl for some g. 

Simplifying 

Renaming cg to G and noting that n is logel we have 

Which is equivalent to 

Which can be simplified to 



4.3. COMPLEXITY ANALYSIS 45 

By noting that G and c are constants and renaming logeG to ytbis r~duces to 

The expression y+ loge,loYcl..grows very slowly and is therefore very close to being 

a constant, so the complexity has been reduced to neatly polynomial in the size of the 

final plan . .It should be noted that if we can guarantee that the.number of conjunctions 

at each abstraction level grows exponentially, as opposed to being bounded by (kn)", 

we can reduce the planning complexity to polynomial in the length of the final plan. 
As we shall see this occurs in several domains in which we test PABLO. 

Suppose, for example, that we bound the maximum size of any conjunction iii 

the relaxation expression to e. Then, the maximum number of conjunctions at level 

n is bounded by I:?:o( ose)i, where we recall that 0 is the number of operators in 

the domain and s is the maximum size of the add list. The maximum number of 

conjunctions in a relaxation expression at level n is therefore bounded by O((ose)fi). 

We refer to the constant ose as m. Determining the truth of a conjunction in a 

situation with a maximum of z predicates is bounded by ze _ which is a constant. 

Therefore, the complexity of determining the truth of a relaxed predicate at level n 

is bounded by Q(mti )., 

Our expression for the cost of planning now becomes 

o (mnp(c) + cmn- 1 P(c) + ... ~(c)) 

We can write the above as 

Moving the constants out of tht sum we get 

o (P(C)Cn i:Jm/c)j) 
3=0 

Solving the sum we arrive at 

o (P(c)cti((m/c)"+t - l)/((m/c) -l}) 
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Simplifying 

But 1i is logel.so We have 

Which is equivaleIit to 

o (P(c)(ml108cm - cl)/(m - c)) 

Since c is a constant this becomes 

This reduces to O(lk) where k = max(l, loge m). 

Therefore, if We can bound the growth 01 the relaxed expressions to be expo

nential in the number of abstraction levels We can reduce planning complexity froin 

exponential to polynomial iIi the length of the final plan. 

4.4 Discussion 

As we have seen, it is possible to reduce exponential pla.nning time to nearly polyno

mial in certain Circumstances. However, this is only. the. case if certain assumptio_ns 

we have made along the. way hold. First, it must be the case that there is. no back

tracking across abstraction leyels. Second, within ail. abstraction level, there must be 

no backtracking across the subproblems of that abstraction leveL Each subproblem 

must be solved independently of the others. Third, the length. of the final plan of. 

the abstraction planner must be the same as the length of the plan found by the 

non-abstracting planner. Finally, there must be a uniform branching factor of the 

abstraction space. IT any of the'se assumptions fail, the a.nalysis no longer holds and 

the planning reverts to possibly exponential cOmplexity. Note that these Are the same 

assumptions that I(lieblock makes in his complexity ~n~Jysis [Knoblock j 1990]. 
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As we shall see in the next section, in practice these assumptions generally hold __ . 

fairly well for the domains. we have attempted. The more amenable a domain is to 

being abstracted, the better these assumptions hold. . 

Further~ore, the complexity of planning grows with the size of y. It is therefore. 

in our intereSt to reduce the size of the relaxed predicates as much as possible to 

reduce the time to .comput~ their truth value. This can be dOne by simplifying, as 

well as invoking domain constraints to rule out impossible expressions. Even though 

theoretically the complexity is considerably improved when using relaxed predicates, 

in practice it is important that they not become unwieldy, since this IIlight result in 

an impractically large constant in the complexity formula. We will r.ave more to say 

about this. in future chapter'S. 



Chapter 5 

Empirical Analysi~ 

5 .1 Introduction 

In this chapter we present empirical results .of applying PABLO to four domains. 

In each of the domains we compare the perf.Q,rmance of PABLO without relaxed . 

predicates to PABLO with relaxed predicates. The domains we test P A:aLO in are 

Towers.of Hanoi, Blocks World, Robot World, and the Eight Puzzle. 

From our. theoretical analysis we should expect potential gains in pla.nning ef

ficiency when applying predicate relaxation. As we shall show, this is indeed the 

case .. 

The data presented in this chapter ate from an. implementation of PABLO on 

a Symbolic8 3620, under .Genera 7.1. It should be noted_that very little optimiza

tion Was performed on PABLO. The numbers should serve as. a. mean.sof evaluating 

the usefulness of predicate relaxation, not as a testament to the ultimate speed of 

planning. 

5.2 Towers of Hanoi 

To show the power of using predicate rela,,:ation in the Towers of Hanoi domain, we 

generated seven problems in the 3 disk problem, each successive problem reqlJiring 

a solution with a length of one more operator than the previous one. We ran the 

48 
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Figure·5.1: Towers of Hanoi 

problems on PABLO with predicate relaxation and without. A plot of the respective 

planning times can be seen in figure 5.2. 

As can be seen from the graph,_ the time it take PABLO to find a solution when 

using predicate relaxation grows linearly with the number of operators in the plan. 

Without the use of predicate relaxation the running time grows exponentially. These 

results conform to our theoretical analysis of predicate relaxation. Notice that each 

of the assumptions of the complexity analysis holds in this example: no backtracking 

across abstraction levels; no backtracking across subproblems; the optimal solution 

is generated; and a uniform abstraction-space branching factor. This results in the 

utility of the relaxed predicates being maximized in this example. 

The Tow.ers of Hanoi is in some sense the canonical example for testing reasoning 

with abstraction, and the gains seen therein are therefore unusually large. Any system 

that reasons with abstractions should be able to show similar gains for the Towers of 

Hanoi. 

5.3 Blocks World 

PABLO was tested on every distinct four·blotks problem. The optimal solution length 

of the problems range from 1 to 6 steps. We ordered the p'roblemsaccording to the 

optimal solution length, and then averaged the time to solve the problems of each 

length. This was done both with the use of relaxed predicates, as well as without 

their use. The results are presented in. figure 5.3. -- --
As can be seen we see Significant speedups in the blocks world as well.. It should 

be noted that the optimal solution was not always discovered when using the relaxed 
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Figure 5.2: Running tiDies of PABLO for the Towers of Hanoi (in seconds). 
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Figure 5.3: Running times of PABLO for the Blocks World (in seconds). 
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predicates. Out of 223 problems, PABLO generated plans that were One step longer 

than optimal when using abstractions 15 times. No other .suboptjxr.al plans were 

generated. -As we.have pointed out earlier. this is one of the tradeoffs that is made 

when using_abstractions, namely optimality for efficiency. In general, we believe this 

to be a worthwhile tradeoff. 

The. gains ill the blocks world were not as spectacular as those in the Towers of 

Hanoi. This is because the blocks world is not as amenable to abstraction as the 

Towers of Hanoi. It is interesting though th.at ~ignificaJit gains were still observed. 

5.4 Robot Domain 

The third domain tried was the robot world domain similar to that used by STRIPS 

and ABSTRIPS. See figure 5,4 for a typical example. A Foblem in this domain might 

involve movIng the robot from.room G to room A and also push two boxes next to 

each other. A plan for solving this problem might involve opening doors and pushing 

boxes from one room into another. Typical operators for this domain can be found 

in. chapter 8. 

A 

o 
E 

o 

o 

.0 

I 
Ole 

Figure 5.4: Robot World Domain 
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were averaged with and without using predicate relaxation. The results can be seen 

in figure 5.5. 

5.5 Eight Puzzle 

The fourth and final domain in which PABLO was tested was the eig~t puzzle. This 

puzzle entails sliding eight tiles on a square grid, where there are nine locations. 

Fig.ure 5.6 shows.a typical initial state and goal configuration for the eight puzzle. 

As in the previous two domains we ordered the p..I:Qblerns according to the optimal 

solution length and averaged the times to solve the problem wi~h relaxed predicates 

and without. 'rhe results can be seen in figure 5.7. 
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Figure 5.6: Eight Puzzle 

5.6 Discussion 

As can be soon from the empirital results, PABLO improved its performance signifi

cl.lJltly with the use of relaxed predicates. The only drawback was a slight overhead 

on easier problems, and the possibility of suboptimal soluC,,"'::.s. 

It should be noted that all the domains in which we have tested PABLO are so

t.ruled toy domains, i.e. they are unrealistically simple. The reason this was..necessaty 

is that the underlying planning algorithm used by PABLO, due to its completeness, 

is inherently- slow, and ill suited to real world tasks. As we have explained earlier, 

there ate good reasons for using an underlying algorithm that is complete when 

experimenting with abstractions. With a complete planner it is much easier to gauge 

the effects introducing abstractions has on the planner. It is of great interest to see 

if the ideas scale up to real world problems. 
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Chapter 6 

Using Abstractions to Achieve 

Reactivity 

6.1 Introduction 

There is a growing body of research concetned with.tackling the problem of planning 

in unpredictable, uncertain, and time stressed environ.ments. One of the oft cited 

shortcomings of the classical planning approach is that it assumes a benign envi

ronment, of which .. the planner has complete knowledge,. nothing untoward happens 

during execution and the planner has yirtually infinite time in. which to plan. As.a 

result, most of the new approaches have eschewed classicaltechniq~es in favor of more 

radical approaches. We will present a brief overview of some .of the main techniques 

p.roposed to deal with more complex environments.---

6.1.1 Universal Plans 

Schoppcrs [Schoppers, 1987] has proposed that rather t.han plan, an agent should use 

Universal Plans in unpredictable, time stressed envirofiments. A Universal Plan is 

a function from sensor inputs to actions which computes the appropriate actioi1 to.

perform in a situation •.. Thus, the agtmt has a precomputed action fot every possible 
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situation it-can find .itself in. One way to store such a universal plan is as a deci

sion tree .. Clearly, having such an action cache . guarantees very fast response time. 

However, as we shall discuss later there are some problems with it. 

OD(a,lI) ? 
T) at. (top) , 

T) IO-OP 
F) ~hold1DI(a) ? 

T) RAISE 
. F) OPEl 
F) Clear (II) ? 

T) ho141DI(a) ? 
T) o"er(tI) ? 

T) LOWER 
F) at(t.op) ? 

T) LATERAL 
P) RAISE 

. F) [8ullplaD to CRASP a] 
r) .{ntlplan t.o CLEARorF til 

Figure 6.1~.A piece of a Universal Plan represeJ?,ted as a decision tree 

In figure 6.1 we See a Universal Plan for guaranteeing that On(a,b) holds. The 

plan is represented as a decision tree. Each condition in the tree is tested until a leaf 

is.reached. The leaf specifies. the appropriate action to perform. 

6.1.2 Action Nets 

Nilsson has. proposed Action Nets as an architecture in which to implement reactive 

systeIIiS [Nilsson. et ai, 1990]. An.action net is a. network of units, each of which has 

some inputs (preconditions; a trigger, and a goal), and one. output. The output is 

connected to another unit or .to a.switch of some kind which activates an action in 

the external :world. As with the preVious approaches an action network g~arantees 

vety fast response times. FurtherIIiOte, there are facilities fot dynamically expanding 

the network at tun-time, a feature other approaches lack. But, t.o date; it is not cleat 

how action nets might interface with an autotnatic..planning system. 

6.1.3 Situated Action Rules 

Agre and ChapIIiaIi [Agre and Chapman, 1987] have developed Pengi, a program de

signed to play the Pengo vid~ game .. This game requirell quick response times. Pengi, 
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unlike-a.. Universal Plan, is not purely functional, but retains some state-in its "vi

Lion" system.-Even with relatively simple rules, quite complex playing behaviour. 

is achieved by'. Pengi. For a. discussion of. the differences between Pengi and other 

reactive a.m>roaches see [Chapman, 1989]. 

6.1.4 Subsumption Architecture 

Brooks [Brooks, 1986] proposes the subsumption architecture for controlling an agent. 

The main idea in this proposal is to organize the agent vertically according to levels 

of task-behaviors, with higher levels performing mote complex tasks. When a higher 

level completes its comput~tion it can subsume all lower lev-els. Presumably, higher 

level computations are on the. average more time consuming. When pressed for time, 

the agent uSes the result of its lowest level behaviors. However, if given more time, 

one of the higher levels can subsume the lower levels with an action of higher quality. 

This is by no means an exhaustive listing of the approaches proposed for reac

tivity. Other interesting ones include [Rosen schein and Kaelbling, 19S7, l"irhy, 1987, 

Drummond and Currie, 1988]. 

6..1.5 Discussion 

We will take the liberty of referring to the above a.pptoaches as· reactive pla'llp.ers. 

Ginsberg [Ginsberg, 1989] points out .several serious problems. with reactive plans. 

The most serious oLthe problems is that the size of reactive plans grows exponentially 

with_ the size of the domain .. Although it remains to be shown, it is likely that the 

domains which At concerns itself with will be complex enough that reactive plans will 

grow prohibitively large. 

It seems clear that some amount of tun-time inference is_necessary fot any agent 

to act successfully in an environment. However, it is also necessary to pt6yide some 

mechanisms for reactiVity, for situations where there simply is no time for complex 

ded uctioIiS. 
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6.1.6 Classical Approaches to Reacthdty 

Suppose a planner is gi~en the following problem to solve (see figure 6.2 for an illus

tration of the proQlem.) 

GJ [!] 
~ 

1- itl&! State 

I 

C 

D 

Goal 

Figure 6.2: Planning Problem 

We are given the following two operators: . 

PUTON(x,y) 

P: {Clear(x),Clear(y ),On(x,z)} 

D: {Clear(y ),On(X,Z)} 

A:{ Clear(z),On(x,y)} 

TABLEOPR(x) 

P:{ Clear(x),On(x,y)l 

D:{On(x,y)} 

A:{Clear(y),On(x,TABLE)} 

Using the classic non-linear .planning method a trace of the plan at various stages 

of development might look as in figure 6.3. 

One notable feature of this trace is that until the final plan is produced the classical 

planner is not aware of any executable actions to perform in the initial state ... The 

actions Puton(B,C) and Puton(C,D) are not. directly executable in our initial state. 

Should the planner be interrupted at any time during pl~nnjng with the need to start 

executing immediately it would not have a reasonable action to perform. 

The problem is that the classir.al planning approaches ha~e invariably been back

ward chaining. This is a per.Wctly reasonable strategy given that in illost planning 

dotnains the branching factor is considerably reduced when reasoning from the goal 

back to the initial state. However, it has the dl. _wback that untH the final plan has 

been developed, there is no guarantee that the plan will actually be applicable in the 

initial state. 

This is one reason traditional planning methods have generally been regarded 
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Ih\on(c,D) .... 1· ----II PIl'OI1(~'C) 1-1 --~I ~ioD(A,B) I 

Figure 6.3: Classic Planning Trace 

as unsuitable for real-time tasks. Besides the reactive planning methods mentioned 

earlier, sev.eral other alternatives within the classical planning context have been 

suggested. 

6.1.7 Forward Search 

Some favor abandoning backward chaining plan-space search in lavor of a forward 

search of the state space [Washington, 1989] .. The advantage of this approach is that 

an executable action is available as sOoIi. as an action has been found applicable in the 

initial state._Unfottunately, until we encounter the final solution during the forward 

search we have no gUarantee that. out current sequence of actions will eventually. lead 

to the goal. Further, we cannot take advantage of theJeast-comtnitment implicit 

in the non-linear representation of plans. Finally, a forward search, so as not to 

be completely blind, needs a domain-specific heuristic, thereby reducing domain, 

independence. 
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6.1.8 Left.. Recursive Wedge Planning 

Another approach one can take is that of planning down a -left-recursive wedg~ of 

the parti~l plan in case of an interruption.[Wilkins, 1988]. The idea is to rep~tedly . 

expand the leftmost_outstanding p.reconditions until an action is . .encountered with 

all its .pJeconditions satisfied. In some circumstances this approach . might be suc

cessful. Unfortunately, the time to plan in this manner is pQssibly unbounded, since 

interactions might be enCountered that necessltate backtracking. 

The method we propose retains the power of partially ordered plan repI:~enta

tions, but also allows the planner to identify plausible executable actions early in the 

planning process. 

0.2 .Reactive Reasoning with PABLO 

The problem we are addressing is that of providin.g a plausible executable action 

should PABLO. be interrupted before it has formed a complete plan. Ideally, we 

would like to provid~ as long a sequence of executable actions as possible. 

Toward this end, we can store, alon.~_with each relaxed pr~dicate, the operators 

through which. the predicate was regressed during the relaxation process. Then, 

during pla,.nning, when a relaxed predicate is determined to hold in a situation, the 

operator through which the predicate was last regressed is automatically identified. 

e.g. this is the first level relaxation of On(x,y): 

On~(z,y) 

On(x,Y) D 
(y = 'fABLE) A Clea.t(x) A 3 z .On(x,z) ['fabloopt(x)] 

(y #: TABLE) A C1<!ar{x) A Cletu(y) A 3 z On(x,z) [Puton(x,y)] 

The logical expressions ate conditions .uilder which the predicate should be deter

mined to hold. The operators through whiCh the predicate was regressed to arrive at 

the expression_are shown in the right side of the table. In this case, since it is a first 

level relaxation, only sequences having oIie operator are iududed. 
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During planning, the relaxation table is examined from top t~. bottom. When an 

expression is found that. l!!. satisfied in the current state, the-relaxed pr¢dicate is said 

to.be asserted in that state. We also say the relaxed predicate is grounded in this 

state. This is irnportant because a relaxed predicate that is grqunded in a state must. 

have a sequence of operators that is executable in. that state, which guarantee that 

the predicate with hold as a reSult of their execution. 

6.3 Identifyif:lg Executable Actions 

Once PABLO has completed a plan at one level of abstraction, and.is working at the 

next lower level, it can utilize the extra information stored along ~ith the relaxed 

predicates that hold.at the higher level, should it be interrupted. 

PABLO chooses.a plausible action by examining the preconditions of the p.arliest 

action ( s) of the plan. If one of these .actions has all its preconditions satisfied at the 

base level, the action is obviously executable. . 

If no such action exists, PABLO can choose from among the leftmost operators. 

associated with the satisfied predicate rt~laxations that are grounded in the initial 

situation; All relaxed predicates must be sa.tisfi~d since the plan was completed at 

the higher level. Furthermore, at least one of the relaxed predicates must be grounded 

in the initial state. To see this note that there must be. at least One action such that 

no action is necessarily between it and the final..situation. If all its preconditions were 

satisfied at the base level the action itself would be.executable. If not, every predicate 

that is abstractly satisfied in the precondition must be grounded in the initial state. 

Any of the actions collected in this manner are executable. 

See figure 6.4 for a trace of PABLO solving the previous .example. It. should. be 

noted that PABLO solves the example twice as fast using the predicate relaxations 

than without, since reasoning w.ith the abstractions allows it to prune substantial 

portioos of the search space. 

After completing planning at the second level of abstraction the plan consists 

of .one operator: Puton(B,C). This is because all preconditions of Puton{B,C) are 

satisfied at this level of abstraction, and beCause the remaining goals, On(A,B) and 
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I Puton(B,C)1 

Abatrac\iou Level 2 

Abe'ractiOIl Level 1 

Bue Level 

Figure 6.4: Pablo's Planning Trace 

. 
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On(C,D) a.~ also satisfied (at this level of abstraction). See ngure 6.5 for a detailed 

description of the planning state at this point. 

As PABLO· moves down to the first abstraction level, the goai On(C,D) is. no 

longer satisfied since it requires two steps to accomplish. PABLO. grows the plan by 

adding the.operator Puton(C,D) to achieve this. goal. Notice that at the first level of 

abstraction all preconditions. to Puton(C,D) hold, since D is cleai and block C can 

be cleared in one step. PABLO thet, completes the plan at the base- i~vE"l. 

Now, sup-pose PABLO is interrupted after it has completed planning s.t.t abstrac-. 

tion level 2. At this level there are three predicates that hold abstractly, i.e. the 

components of their relaxed definitions that are satisned have non-null operator lists 

associated with them. These are Clear~d(B), Clear~(C), and On~(C, D). 

To see this, examine the second level predicate relaxation of Clear(x). 
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OIl(A,B) 

OIl(D,C) .. 

On(c/rABLE) 

OIl(B,TABLE) 

CI.areA) 

Ol.ar(D) 

Cl.u-(TABLE) . 

biUal State 

Clear(x) 

Clear-2(8) 
n1 I Puton(B,C) I 

Clear-2(C) 
n1 

Figure 6.5: Level 2 Plan 

Clear~(3:) 

0 
3 y On(y.x) 1\ Clear(y). [Tableopr(y.)] 

On:JB,C) 

OllrJ°'O) 

Goal 

3 y,z On(y,z) 1\ Clear(y) 1\ On(z,x) [TabIE!Opr(y), Tableopt( z)] 

The above. table has been simplined by removing subsumed expressions. e.g. th€ 

result of regressing Clear(x) through Puton(y,z) is 

3y, z On(y, x) A Clea.r(y) A Clear(z) 

This expression. is not. included in the table. since it is .subsumed by the regression 

of.Clear(x) through Tableopr(y). When Clear~(x) is instantiated in our plan, with 

variable x bound to C, Clear~(C) becomes: 

Clear~l(C) 

Clea.r(C) 0 
On(D,C) 1\ CleareD) [Tableopt(D II 

.3 Y,t. On(y,z) 1\ Clear(y) 1\ O~(2,C) [Thbleopr(y); Tableopt( z)] 
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As .. can be seen from the predicate relaxation definition Clear.:el(C) holds because 

On(D,C) A Clear(D) is true at the base lev.el, and the leftmost regressed oper~tor 

associated with this regressed expression is Tableopr(D). In brief, the .three relaxed 

predicates hold in the initial state for the follOWing reasons: 

Clear~(C.) 

Clea.r~(B) 

O~(C,D) 

On(b,C) A. Clear(D) 

On(A,B) A Clear(A) 

Clear(D) A On(D,C) 

[Tableopr(D)] 

[Tableopr( A)] 

[Tableopr(b), Puton(C,D)] 

The above relaxed predicates are grounded in the initial state. If PABLO is 

interrupted after having completeJi planning at abstraction level 2, it can choose 

from among the identified action sequences that are executable in the initial state. 

In this case it can propose executing Tableopr(D), Tableopr(A), or Tableopr(D) -

Puton( C,D). This can be determined as soon as the first level of abstraction has been 

completed - early in the planning process. In this example it is done after only 15% 

of .the total planning time. 

6.3.1 Constructing Incomplete Plans 

If necessary, PABLO can construct a substantial portion of the plan, even at this 

early stage. The outline of the algorithm is as follows: 

1. current-plan +- Nil. 

2. current-state +- Sinitital. 

3. op-lists +- set of lists of operators associated with the predicates that are ab

stractly satisfied ifi the plan. 

4. op-sequence +-longest tail of the lists in op-lists that is executable in the current 

state. "---

5. if op-sequence = Nil then op-sequence +- any action in the plan that is exe

cutable. If no such action exists~ break, returning current-plan. 
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6. op-lists +- oplists - op-sequence. 

7. current-plan ..... current-plan lop-sequence. 

8. current-state ...... Sout of last action in op-sequence. 

9. Goto step 4. 

This algorithm will produce a linear sequence of actions to execute in the current 

state. See figure 6.6 for the incomplete plan constructed using this technique. 

LJ---i Tableopr(D) 10---4 1----1 Tableopr(A)I----I PG~Il(B,C) /'-' --() 
'------..I 

Figure 6.6: Incomplete Plan 

The plan is almost complete, the only remaining action is Puton(A,B). Once. 

PABLO commits to the first portion of the plan, developing the remaining portion 

can be considerably easier. 

In this case there islittle.interaction among the executable alternatives. Therefore, 

the order in which the algorithm places the operator sequeg,ces does not matter, and

any of the resulting seqt,lences will be a subsequence of a complete, linear plan for the 

problem. However, there are obviously cases where such interactions exist..-. 

For example, given Sussman's anomaly) presented in ngure 6.7 [Sussman, 1973], 

the plan, after planning at the first level of abstraction has been completed, wHl con

sist of Puton(A,B). There are two opetator sequences associated with the two pred

icates that are abstractly asserted in the plan at this level. The first is Tableopr( C) 

associated with Clear~(A). The second is Puton(.B,C) associated with On:e.CB, C). 

These arehoth executable in the initial state, and the algorithm has no a priori rea

Son for choosing between theta. Therefore, it might choose to first insert Puton(B,C) 
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Ini~ial S~i.~e Goal 

Figure 6.7: Sussman's Anomaly 

into the plan, after_.which no more actions are possible. H'it inserts Tableopr(C) 

first, then the next sequence inserted will be Puton(B,C), which will be followed by 

P.uton(A,B). 

Of course, the only way to discover and resolve conflicts based on such interactions 

is to continue planning. Until a complete plan is produced, we cannot guarantee that 

the optimal action will be chosen by PABLO (or any other planner), should it be 

in.terrupted .. This technique, as opposed to the traditional planning algorithm, pro

duces viable alternatives.early on in the planning process. Given more time, PABLO 

will complete plans at succeedingly lowel' levels, thereby tesolving conflicts not dis~ 

covered at higher levels, and so producing more reliable answers. Our method, in 

effect, provides a primitive anytime algorithm for planning IDean and Boddy, 1988J 

6.3.2 Comparison With other Classical Approaches 

Unlike a forward search of the state space, PABLO can take advanta~ of the ~east

commitment implicit in non-linear plans. Rather than being committed to one p~th 

in the state space at any_one time, the partial order of actions represents a set of 

possibie paths that are curreiltly valid. In NOAlI, the non-linear repre~entatioi1 was 

found to be successful enough that no backtracking Was deemed necessary. 

Furthermore, wfiep it is interr'lpted, its choice for a plausible executable a.ction 

i~ derived from a cOfnplete abstract plan, which provides a .global constraint on this 

action. An interrupted fotw8,rd state-space search on the other hand, can only provide 

local constraints on its choice ot executable actions. 
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Unlike the technique of continuing planning down the leftmost wedge of the plan 

after an .interruption, our approach .requires emly a bounded computation time to .pro

duce an executable action after an interruption. To.see thiS, note that the executable 

actions are automatically identified after planning at the highest lev.el of abstraction 

has been completed. 

6.4 Compa;r~son to Reactive Plans 

The trace of the relaxation of a predicate can be thought of as a reactive plan for 

achieving that predicate. See figure 6.8 for an illustration of the definition of the 

On;el (x, y) predicate as a reactive plan. Notice .that some predicates in the reactive 

plan are not further regressed, this is because these are preconditions to the operator 

that we do not wish to plan to achieve, but rather just check that they hold. These 

predicates.are specified-in the operator definitions given to PABLO. During planning, 

when a relaxed predicate is determined to hold, the path through _the reactive plan 

that will lead ~,o the establishment of the predicate, is automatically identified. 

Our technique is a method for handling these small reactive plans. We believe that 

this is a more promising approach to reactivity than constructing large, unwieldy re

active plans which risk succumbing to space restrictions very quickly. Each individual 

plan is restricted in size and can be reused by the planner on different instantiations 

of the same predicate. 

Each reactive plan in our system has a clear purpose, namely to achieve a particu~ 

lat predicate. Unlike other reactive planning techniques which must construct a new 

reactive plan for each combination of goals encountered (modulo some parameters to 

the reactive plan), PABLO can re-utilize the reactive plan definitions for any goah, 

r;pecified in the domain. 

If our domain is lar.ge.efiough We risk creating abstraction definitions that are too 

large, although they will always be cOilsiderably l!maller than reactive plans created for 

entire domains,. since we are only considering reactive plans for individual predicates. 

With PABLO, We can extend the planning method to restricted reactive plans, 

e.g. allow only commonly encountered conditions in the relaxed definitions. Although 



6.5.. CONCL USION 69 

o·V(') 
~T(r) 

Clear l~lt) On~lxl') 

PutOil(X,y) 

Figur~&,8; __ Reactive plan fot O~(x,y) 

this reduces the number of abstractions identified at the higher levels, each predicate 

can be more qUickly identified to hold abstractly. PABLO is robust in the sense that 

if a predicate is not deemed to hold abstractly, it can plan to achieve it. This is 

something systems which rely solely on rea.ctive plans cannot do. 

6.5 Conclusion 

Using the method presented in this chapter, we can utilize predicate relaxations to 

produce a plausible executable action should PABLO be interrupted before the final 

plan has been completed. The only' requirement foi' identifying a plausible action is 

that planning have been completed at t.he highest abstraction level. This happens 

early-in the planning process. 

Tile method can be viewed as an anytime algorithm for planning. During planning, 

harmful interactions ate identified and resolved as PABLO plans at succeedingly lower 
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levels. of abstraction, thus increasing t.he quality of the response ill case of interruption. 

Each automatically generated abstraction is actually' a small reactive plan for. 

achieving that predicate. PABLO ~rovides a mechanism for combining these small 

reactive plans dYl!amically. Besides the inherent advantag~s of reasoning abstractly. 

we can also achieve some measure of reactive behavior, shodd the planner be inter

rupted during planning. We believe this is a more promising approach to readivi l,y 

than tlie reasoning with large, unwieldy re~Gtive plans. 



Chapter 7 

Operator Hierarchicalization 

7 .1 Introduction 

The abstraction of-operators has been a prevalent theme in the history_.Qf planning. 

Researchers early realized the value of being able to define abstract operators in 

terms of other, less abstract, operators. Doing so. allows the planner to "jump" from 

one part of the state space to another with one step, potentially bypassing much 

pla.nning. However there have been some problems with the proposed abstraction 

representations which we hope will become apparent. 

7.1.1. MACROPS 

The first Use of what we will label "hierarchical operatots" is in STRIPS, with the 

MACROPS extension [Fikes and Nilsson, 1971]. As the name suggests, this extension 

a.llowed S'rR.IPS to learn and uSe macro operators, for significant computation tifue 

savings. 

STRIPS would store a plan in a triangle table and then apply a. procedUre to "lift" 

a generalized MACitOP from the triangle table. 

MACROPS is interesting fat several reasons. It is the first use of hierarchical 

op~tatots-in planning, and it is an example of a planner learning abstractions to 

speed up problem solving. An example is shoWil iil ngure 7.1. 

7i 
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• unullUM*)T • pal 
1 

.OOMMICTS(,3.pa.,lO) oorHRU(~,pa,.lO) 

·IKRCOM(IOX1.plO) 

.~ICts(,.,Rl.pl0) 

2 elMlOOK (RDIOT. plO) 
eCONNICTS(a."a) ~ 

COIIJfEfI(a.a.r' PUIHTKROUGM(1OI1,,.. ,lO.RU 

IMRDaI(ROIOT,Rl) 
elQl(.a&U 

oIWIDQM(IDK1.al) 

Figure 7.1: A STRIPS MACROP 

7.1.2 SOUP operatol"s 

With NOAH ca.me the next major advance in hierarchical operators. Operators in 

NOAH were defined in So.UP (Semantics of User's Problem) code, which.. allowed 

for quite. gene.-al operator deruutions. With NOAH came also the term hierarchica.l 

pl~ning. See figUte 7.2 for an example of a NOAH operator. 

The SOUP. code in the body of the op.erator provided instructions to NOAH for 

how an operator should_be expanded to the next level of detail. As has . .heen.pointed 

out by several researchers,. a-NOAH op¢tator is not necessarily hierarchicaL For 

example, in the blocks world, each operatot is defined only in terms of a primitive 

operator and its. preconditions. When combined with the NOAH methodology of 

producing a plan by expanding all the expandable operators in a plan and then 

critiquing it, a particular ordering in the expansion of gc;>als was imposed. 

There is one major draWback with defining operators in this mannet. Sacerdoti 

states [Sacerdoti, 19171: 
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(PUTON 
(QLAMBOA 

(ON ~X ~V) 

(PANO 
(PGOAL lClear IX) 

(CLEARTOP IX) 
APPLV 
(CLEAR) ) 

(PGOAl (Cl~ar IV) 
(CLEAR TOP IV) 
APPLV 
(CLEAR)) 

(* Clear IX and IV, then put 
1)( on IV) 

(PGDAL (Put IX on top of IV) 
(ON IX IV) 
APPLV NIl) 

(POENV (CLEARTOPSY))) 

Figure 7.2: A NOAH operator 

The most serious deficiency in·the current system is its. lack of aware

ness about the auxiliary computa.tions specified in the proceduraLseman ... 

tics (the SOUP code) of a task domain. The procedural net representation 

lets the system be. Aware of the go.als and subg9als that the plA1lner has. 

decided to tackle, but it does not preserve any information about.the 

computation that resulted in those decisions. 

73 

Beca.use the semantics of NOAH operators are opa.qt,1e to NOAH their usefulness 

is limited. Primarily, the operators mu,t be defined by the userj it would be very 

difficult tor NOAH to genera.te new ones. Furthermore, only it. minimal amount of 

error checking can be done by NOAH, which leaves an additional burden on the USer 

of the system. 
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7 .1.3 Procedural Net Operators 

The state of the art in hierarchical operators is found in SIPE [Wilkins, 1988]. SIPE 

solves the problem_ of semantic Opaqueness by defining the plots .. of hierarchical oper

ators inthe same language as that used for its internal proc~duralnet representation. 

This provides a powerful language in which to define hierarchical operators. 

Operator: Puton 
Argument.: blockl, object! ta Not blockli 
PurpOH: (On ~loc:kl objectl)i 
Plot: 
Parallel 

BrUlch 1: 
Goala: (Clear objectl)i 

Branch 2: 
Goala: (Clear block1); 

End Parallel 

Procell 
Action: Puton.Primitivei . 
Argumentl: blockl,objectlj 
ReIourcelt blockl; 
Etfectl: (On block1 objectl); 

Elld Plot End Operator 

Figure 7.3: A SIPE operator 

Defining hierarchital operators in terms of a procedural net facilitates not only 

the design of the planner, in that another la.nguage need not be added on top of the 

existing plan language, but also error checking ~LDd the leanling of neW opera.tors. 

Although SIPE does not currentlr.le&i11 new operators, its operator tepresentatitJn 

language provides the infrastructure for transferring knowledge in plan form into 

operator form. 
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7.1.4 . Formalized Reduction Schemata 

In his thesis [Yang, 1989], Yang formalized_a version of hierarchical operators similar 

to thoseiound in SIP-B. He defines action templates, which consist simply of precondi

tions and effects. He then defines a set of action reduction schemata each of which is a 

function that takes an .a.ction templ~te as inpu~ and returns a set of partially ordered 

action templates, with protection intervals between them. The reduction schemata 

are analogous to plots in SIPE operators. 

7.1.5 Problems with Hierarchical Operators 

Incorrect Spe<;ific::ation of Opera.tors 

One problem with the current definition of hierarchical operators is that they might be 

incompletely or inaccurately ~pecified, i.e. their preconditions and effects might not 

reflect the actual preconditions or effects of the operator after it has been eXp'anded. 

One possibility is that the user simply encodes the wrong effects in the postconditions 

of an operator .. e.g. the encoder of the domain might include a proposition in the 

add list of a hierarchical operator that is not added by any action in its expansion. 

However, even if the encoder is very careful and only includes effects that are 

guaranteed to hold after the expansion of a hierarchical operator, there are still pb

tf"ntial p,roblems. This is because a hierarchical operator might have several P9ssible 

expansions, some of which result in Some proposition holding, and others which result 

in the proposition not holding. 

Hierarchical Promiscuity 

A related, though slightly different problem, is one that Wilkins [Wilkins, 1988] terms 

hierarchical promiscuity. The problem occurs when operators are described abstractly, 

using different sets of predicates for each level of abstraction. It is po.ssible then, when 

the planner expands different parts of the plan at different rates, that one part will 

be referring and modifying predicates at a much lower level than a part of the plan 

previous to it. In such situat\ons it is possible that potentially harmful side effects at 
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the lower level of abstractions will not be recognized until much later in the planning 

process, resulting in unnecessary planning. 

There have been several solutions proposed for this problem. SIPE has a mechA 

anism fOr enforcing. ~n ABSTRIPS-like ordering in expanding the operators down 

to different abstraction levels. Further, it allows the spetiftcation of special delaying 

op¢rators, which cause SIPE to refrain from planning for cer.tain goals until some con

ditions have been satisfied in its state. Yang [Yang, 1989] proposes a solution wherein 

syntactic restrictions are computed for operators ahead of time which guarantee that 

harmful side-effects will not occur after expansion of an operator. 

Unrecognized resolutions. 

However, even when the operators are spedfied_completely accurately there are still 

potential problems. For example, take the pro9lem in figure 7.4 proposed by Yang 

[Yang, 1989}. Part (a) represents a plan with two.actions, each of.which dobbers the 

other action's precondition .. There is seemingly no. legal ordering to the two action. 

However, when the plan is further expanded in (b) each action has become two actions 

and a legal ordering exists among the resulting four actions .. 

This is an instance of a "bouble Cross" d~cribed by Sacerdoti [Sacerdoti, 1977). 
In this situation a seemingly unresolvable conflict at one point in the plan can be 

resolved when the plan is further expanded. Thus, a planner using the traditional 

hierarchical op~rator specification might give up and backtrack when plan (a) is 

encountered, missing a potential solution. 

Incompleteness 

Another problem, less serious, but still interesting from a theoretical point of view is 

that of completeness. There has as yet not been a planner proposed which supports 

hierarchical operators and yet is complete. The reason this is not such a serious prob

lem is .that completeness in any planner implies intractability. Hence, any planner of 

practical value must make use of some sort of heuristic information to cut substantial -

portions of the search space. However, from a theoT{;tical point of view, a complete

ness result provides a useful point of reference and starting point fot discussing in 
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(a) 

(b) 

Figure 7.4: (a) A plan with seemingly unresolvable conflicts (b) Resolution of conflicts 
after reduction. 

What ways a planner deviates trom a cOinruete algorithm. 

7.2 Generalizing STRIPS-style. operators 

Although it allows for the formalization of restricted non-linear plaIl-ning, the STRIPS

style operators used by 'tWEAK fail to capture one important aspect of most major 

non-linear plcgmers, namely their hierarchical natut.e. It is no accident that NOAH, 

SIPE, etc. are generally referred to as hierarchica.l plann~rs - this has traditionally 

been their defining characteristic and a source of much of their power. 

In this chapter we present a generalization of the STRIPS-style operators tha,t 

captures much of the hierarchical nature of previous planners. We then demonstrate 

a control strategy for reas()Il~Hg with this generalized representation that guarantees 

a limited form of completeness. 
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7.3 Representation 

We generalize STRIPS-style operators by defining hierarchical operators to_be dis
tinguished plans. An operator is simply a plan which has been deemed useful enough __ . 

tClstore and use in problem sQlving. Obviously, S.1'RIPS .. style operators are.special 

cases, namely they are plans limited to one action and_possibly some codesignation. 

constraints. More formally: 

Definition 3 (Operator) An operator is a triple (O,T,Cl where 0 is a set of ac

tions, 7 is a set of temporol tonstraints, and C is a set of codesignation~onstraints. 

An oper~tor is vety much like a plan. A primitive. operator is a specialization of 

operator. 

Definition 4 lPrimitive Operator) A primitive operator.is an opemtot_(0,7,C) 

where 0 is a unary set consisting of one ac.tion, T is an empty set, and C is a set oj 

codesignation constraints. 

Be{o':e an operator (0,7,C) can be used in a plan it must be instantiated. This 

is done by creating a new operator (0', 7', C') where 

• 0' is a copy of 0 where every variable of every-action of 0 is replaced with a 

new variable in the corresponding action of 0;. 

• 7' is a copy of T where every action in a temporal coustraint is replaced by its 

corresponding copy. 

• C' is a copy ofC whe~'e every variable in the codesignation constraints is replaced 

by its corr~ ponding copy. 

After instantiating an operator we need to insert it into a plan. Given a plan 

'P (0;" Tp, Cp, Sinitil11, S/inI11) and an instantia.ted operator ("0' To, Co) the new plan 

created by inserting .the instantiated operator is ("pUC> 0' T"U1;" CpUCo, SinWol; S/inol)' 

In figure 7.5 we give a graphical illustration of two hierarchical operators. Iil the 

fig-ute, one of the hierarchial operators has been chosen to be insetted into the plan. 
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Figure 7.5: Diagram of Hierarchical Opetators 

This definition of hi~rarchical operators readily lends itself to the creation of new 

ones. The planner can create new operators simply by storing old plans which it 

deems to he potentially useful. Of course, only some plans will be particularly useful 

so the planner must ha.ve some means of deciding on the usefulness of particular 

hierarchical operators. 

7.4 Hierarchical TWEAK 

.\n important feature of our hierarchical opl'rators is that. at any point during plan

ning\. our plan is always composed solely of primitive' actions. This feature allows us 

to Use the TWEAK modal truth criterion to determine the necessary truth of goals 

lWd preconditions. 

However, We need to. extend T\\'EAK's control stratt:;~ to include hierarchical 

operators. As it turns out we only have to make a few minor changes to the alg'Jtithrn 

in order to handle abstract operators. 
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7.4.1 Selecting Hierarchical Operator~ 

One imp~rtant issue we need to address is that of selecting hierarchical operators for 

instantiation into a plan .. Previously, an_operator was selected on .the basis of whether 

any proposition in its add list could p6ssibly codesignate with the proposition which 

needed to be achieved. Now that each op~rator is composed.of.a partial-Order of 

operators We need to decide what..criteria to use when selecting an oper~tor. 

One solution is to choose only hierarchical operators for which the proposition 01 
the current goal is possibly asserted in a hypothetical situation placed after all the 

primitive actions in the operator. Although this sulution is intuitively appealing it is 

somewhat restrictive. Figure 7.6 illustrates a situation where we should have chosen 

a hierarchical operator even though, as a unit, it does not possibly assert the current 

goal. . 

In figure 7.6 if we need.an action to achieve the precondition p of the plan in part 

(a), we can choose the hierarchical operator.A and insert it into the plan as shown.iT.l. 

part (b) of the figure .. Note that We should choose operator A even though p is :Qot 

possibly true after its application. 

The solution we have chosen is to choose an operator for instantiation into a plan 

if any of its actions possibly asserts the current goal, even though one its later actions 

might deny it. Using this approach, Hierarchical TWEAK would .have chosen to 

expand operator A because its subaction At possibly asserts the goal proposition. 

Hierarchical TWEAK is. then simply T\VEAK augmented with the hierarchical 

operator selection strategy outlined above, plus facilities for properly instantiating 

and inserting hieratchical operatots. 

7.5 Differences with Other Hierarchical Oper~

tors 

Incomplete Specification of Operators 

The problem oi incorrectly specifying preconditions and effects of hierarchical oper

ators is not an issue since our operators do not have expliCit preconditions or effects 
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(al. o~·---------------o 

r: - - - - -::-.pl 

(h) 

(c) 

Figure 7.7: Yang's problem revisited 

Completeness 

~n interesting_question to cOIisider is whether completeness is preserved with .the 

new hierarchical operators. Clearly, if we retain as a condition that every primitive 

operator of the domain be represented by one hierarchical operator. the new algorithm 

will remain complete t since any plan that would have been found without hierarchical 

operators will still be discovered. 

However, if we relax this condition, we cannot guarantee completeness in the 

sense that if there exists a plan compos¢d of primitive operators, one...will be found. 

using only hierarchical operators. One obvious counterexample is the case where the 

only final solution consists of exactly one primitive action, but every operator in the 

domain consists of at least two actions. 

We can, though, guarantee a weaker form of completeness. Namely, if a plan that 

is a solution to a problem ca.n be fully partitioned into sets of actions, each set beifig 

an instantiation of a hierarchical operator, Hierarchical TWEAK will discover it. We 
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will refer to such a partition as a hierarChical partition. 

Figure 7.8: Partition Graph 

This is most clearly explained in graph theoretic terms. We will think of the 

pm:.titioned plan as a graph, where one partition points to another if the former 

contains a primitive action ~vhich establishes a proposition that is a precondition for 

an action of the latter. Further, a partition points to.. the final situation if Some action 

in the partition establishes a proposition in the final situation. We will refer to this 

graph as the partition graph. 

Definition 5 (&panning Property) A hierarchical pqrtition of a plan satisfies the 

spanning property iff there is a path from every partition to the fina.l situation. 

Lemma 7.5.1 A hierarchical partition satisfying the spanning property has some par

tition that can be temofJed, such. that the resulting plan still satisfies the spanning 

properly. 

Proof (by contradiction): 
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Assume lemma 7.5.1 does not hold. Then it must be the Case .for every partition ________ "" 

that removing it results in some partition no 16nger.~having a path to the final situ-

ation. This implies that for every_partition. PI there is some partitioIi P2 that points 

to it such that all the paths from P2 to the final situation contain Pl' We will refer 

to partitions such as P2 ~ dependent partitions. 

Now, we start at the final situation_ Vie choose any p~rtition that establishes 

a proposition in the final situation. Vie mark- it. \Ve then traverse the partition 

graph, by choosing a partition that is dependent on the current one. We mark it 

and repeat the procedure. Note that we cannot revisit a marked partition since we 

already knQw there is a path from every marked p.artition to the final situation that 

does not contain any unmarked partitions. Therefore, a marked partition cannot be 

dependent on an unmarked one. Since the graph is finite, it must be the case that 

for some partition we will be unable to find another partitiofi that i~ dependent on 

it. But this violates our assumption that such a partition exists for every partition. 

Therefore lenuna .7.5.1 musLhold. 0 

Lemma 7.5.2 Every hierarchical l'Clrtition of 0. plan generated by Tn~EAl( satisfies ___ _ 

the spanning property. 

Proof: 

Define the temporal distance of a primitive action to b,. the longest path from the 

primitive action to the final situation over the temporal constr&.ints in the plan. 

Define the temporal distance of a partItion to be the minimal temporal distance 

of its primitive actions. ?ve prove that there rIlust be a path from every partition to 

the final situation by induction on the temporal distance of pal LitiClns. 

Base step: In the null plan there are no partitions and therefore the lemma holds 

trivially. In. all.other plans, if a partition '5 temporaLdistance is 1 it must be the 

case that one of its primitive actions establishes a proposition in the .final sit,uatioii. 

(a primitive action_must be necessarily before any-situation in which it establishes a 

proposition), Of. it would fiot r..a.ve been inserted by TWEAK. This means that the 

partition points t.O-the final situation and therefore there is a path from the pal'titioll_ 

to the final situation. 
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Figure "1.9: Temporal .bistante 

Induction step.: Assume that ror every partition with a temp(>ral distance.of n-l 

or less there is a path in the partition graph to the final situation .. We will prove 

that there is a path in the partition graplt for all partitions with a temporal distance 

of .n. !n the partition there must be some primitive action such that its temporal 

distance is n. Furthermore, it must be the establisher of a proposition of either the 

final situation or the precondition or another primitive action. In the former case it 

is ()bvious that there is a path from the.partition to the final situation. In the latter 

case it. mu!'t be the case that the other primitive action is p~rt of a different. partition 

which Must have a temporal distance of n -1 or less. But by the induction hypothesis 

there must exid a path.from_that partition to the flnal situt.tion. Therefote, there is 

a path from the Original partition to the final situation. Cl 

We want to prove that every plan. that is. a solution to a problem and can be 

leg~lly parti.tioned cali be constructed. by' Hierarthicai TW-EAK. Since TWEAK is 

complete it cali consttuct every such plan. But by leth.fila 7 .5.2~y such plan must 

satisfy the spaqning property. Therefore, it suffices to ~ho""'·: 

Theorem '7.5.3 (Limited Compl~tel'less) 1/ a plan can.be fu.lly partitioned.into n 

mutually exclusive sets of actions, each set being an instantiation of some hierarchical 

operator, such that the spanning property holds, the Hierarchical TWEAK algorithm 

will construct it. 

Proof (by induction oil 71, the number of partitions): 
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Base step: n = 0 

If the plan can only be fully partitioned into 0 partitions then the plaILmust be 

the null plan. This is the plan that Hierarchical TWEAK begiq~_.wit.h .. __ . ___ _ 

Induction step: 

Assume the-theorem holds for plans that can be partitioned into n - 1 hierarchical 

operators such that the ..sp~nning property. holds. We will show it must hold for all 

plans that can be partitioned into n hierarchical operators such that the spanning 

property holds. 

By lemma 7.5.1 there must be Some partition that can be removed from. the plan 

such that the spanning property holds in the resulting partitioning, But because this 

is a plan of n -1 partitions and the spanning property holds, the induction hypothesis 

guarantees that hierarchical TWEAK will construct it. It now remains to be shown . 

that the temoved partition would be added. But since every partition is, by definition, 

an instantiation of a hierarchical operator, and since the spanning property holds, it 

must be the case that there is some primitive action of the partition that estab

lishes a proposition of a situation outside the partition. Therefore, since Hierarchical 

TWEAK, in its complete breadth-first search, inserts all hierarchical operators which 

have some primitive action which can possibly establish some unachieved proposi

tion in the plan, the .hierarchical op'erator corresponding to the partition would also 

be inserted into the p'lan. Since the TWEAI( declobbering strategy guarantees that 

all possible alternatives. will be constructed, temporal and co designation constraints 

would be added to the plan, such that one of the reSUlting plans was identical to the 

original pl~n. 0 

Therefore, if-a solution exists to a. problem, such that the resulting plan can be 

partitioned into n hierarchical opetat('l~'s, then Hierarchical TWEAK will find it. 

Shuffiing of Operators 

Another, more subtle difference \',:t,h the other hietarch~.:al operator formalisms is that 

using the ttaditionaL.hietarchi.cal operators, once a hierarchical operator is inserted 

iilto a plan, .its expansions must satisfy its higher level temporal .. Coiistraints. Fat 
example, in figure 7 . .10 we have the expansion of a SIPE hierarchieal operator. 
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Figl.lre 7.10: SIPE plan example 

In this example, all the subactions of action B must be placed after all the sub

actions of action A and before all the 'subactions of action C. Using our definition 

of hierarchical operators it is. possible that the plan could expand such that some of ' 

the subactions of an action could be shuffled with some of the 5ubactions of.another 

action. e.g. as we saw earlier, figure 7.6 provides an illustration of this. This feature 

provides Hierarchical TWEAK with more flexibility when expanding a plan. 

7.6 PABLO Implementation 

We have extended the PABLO operator representation to include hierarchical oper

ators. We present ail. example. that should help clarify the usefulness of hierarchiCal 

Operators. We will use the robot domain used in STRIPS and ABSTRIPS. :Before 

presenting an example problem we define two hierarchical operators. 

Operator 1 allows the robot to get to an adjacent room even wheIi the door is 

closed. Operator 2 is similar aIid allows the robot to push a box into another toom 
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Figure 7.11: . Hierarchical Operators to~ the Robot Domain 

when the door is closed. 

Vve will demonstrate.PABLO on the problem depi~ed in figure 7.12. 

See figure 7.13 for the final plan. PABLO solves the problem considera.bly faster 

when using the hierarchical operators than it does without. 

7.7 Retaining useful ~p.=.::la=.:n~s~ __ _ 

One useful consequence· of our pJafifier teasbfiing with hierarchical operators whose. 

semantics afe petspicuous to itself.is that learfiing new hierardiical operators in cOIi

siderably facilitated. In fact, to generate a neW hierarchical.operator the planIier. 

need only copy' a current plan and store it a!Ofig with its other operatots. OC course, 

some criteria must be applied to decide which operators might be generally useful, 

and which might not. 
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Figure 7.12: Robot Domain Problem. (a) Initial State, (b) Goal State. 

7.7.1 Towers of Hanoi 

HoW' can hierarchical operators be learned and used effectively in .planning? Here is 

one possible scenario in the Towers ot Hanoi doma.in. The strateg~' of the planner is 

to solve. progressively niOre difficult problems within the domain. 

Suppose the planner is given the three. disk Towers of Hanoi problem. First, 

it orders the subgoals independently in terms of difficulty. One way this could be . 

done is by using the predicate relaxationdeflnitions and applying them to the three

goals. The reSUlting order would then be (1) Onpeg(A,P3), (2) Onpeg(S,P3), (3) 

Onpeg(C,P3).t The plai1iH~r would then plan first fat achieving Onpeg(AJ>3). This 

1 Note the different notation (rom before, Olipeg(x,yJ iilitead of Oii(X,y). ThiS change was made 
to facilitate the exposition of this particular approach. 

I 
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--""----------------

Figure 7..13: Solution using hierarchical operators. 

is trivial and does not generate a new operator. It would then plan t-o achieve the 

conjunction of (1) and (2). This would be slightly more difficult and would gener

ate the plan Move(A,P2)-Move(B,P3)-Move(A,P3). This plan would be stored 

away for further use. But how should it be generalized? Clearly, "ne should not just 

convert all the constants in the plan into variables. 

One possible.geperalization mechanism is to consider the hulk preconditions of . 

the plan [prummond and Currie, 1988) .. The.bulk preconditions ate those that must 

hold in the state where the hierarchical operator will be applied to guarantee that 

every primitive action in the operator is applicable .. It these preg>.UditiQIis.ha.v.e.mote.. __ ._. __ ._ 

than ODe consistent instantiation they should be genetalized. 

In the plan fot solving goals (1) and (2) the bulk preconditions aiid their possible 

instantiations are as follows: 
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.. 

Clear(dl) Clear(A) Clear(A) 

Onpeg( dl ,pI) Onp¢g(A,Pl) Onpeg(A,Pl ) 

Movable( d 1 ) Movable(A) Movable(A} 

Onpeg(dl,d2) Onpeg(A,B) Onpeg{A,B) 

Onpeg( d2,pl) Onpeg(B,Pl) Onpeg(B,Pl) 

Movable(d2) Movable(B) Movable(B) 

Onpeg(d3,p2) Onpeg(BASE2,P2) Onpeg(BASE3,P3 ) 

Smaller( d 1 ,d3) Smaller ( A,BASE2) S maIler ( A,BASE3)_ 

Clear(d3) Clear(BASE2) Clear(BASE3) 

Onpeg(d4,p3) Onpeg(BASE3,P3) Onpeg(BASE2,P2) 

Smaller( d2,d4) Smaller(B,BASE3) Smaller(B,BASE2 ) 

Clear(d4) Clear(BASE3) Clear(BASE2) 

There are two possible instantiations of the bulk preconditions in the initial state. 

In these instantiations p2, p3, d3, and d4 are instantiated to different values. The 

variable p2 is either instantiated to P2 or P3, p3 is either instantiated to P3 or P2, 

d3 is either instantiated to BASE2 or BASE3, and d4 is either instantiated to BASE3 

or BASE2. The fact that only these variables vary suggests that only these variables 

should be generalized. 

After generalizing them the plan for solving goals (1) and (2) becomes Move(A,x) 

_. Move(B,y) - Move(A,y.). Finally! the planner proceeds to solve goals (1), (2), 

and (3).. The actual. solution trace can be seen in figure 7.14. The plallner uses the 

newly g¢nerated hierarchical operator for moving the two top blocks .twice, once to 

move them to the middle peg and finally to move them to the last peg. 

The key to this appto~ch isJirst to order the goals in terms of difficulty. Predicate 

relaxation provides a mechanism for doing so. Secondly~ using the initial situation 

to determine the possible instantiations of the bulk preconditiofiS of the generated 

hierarchical operator, to decide which variables should be generalized. We believe 

this to be a promising approach to automatic operator abstraction, but more work .. 

temains to be doneJn this area.. 
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Figure';" 4: Operator Abstraction Solution Trace 

7.8 Conclusion 

\Ve have presented an elegap.t definition of hierar.chical operators which overcomes 

marty of the problems associated with earlier hierarchical operator definitions, and 

proven that it is possible to .guarantee limited completeness when using them in 

planning. A mechanism for using hierarchical operators has been incorporated into 

PABLO. 



Chapter 8 

Combining Abstraction Methods 

8.1 Introduction 

In this chapter we demonstrate several ways to USe state abstraction and operator 

hierarchicalization simultaneously for effective problem solving. Recall that PABLO. 

achieves a form. of state abstraction through predicate relaxation and operator hier

archicalization through the use of hier.1.rchical operators. 

8.2 Robot World Example 

In this first example We will use predicate telaxation and hierarchical operators in the 

manner in.which they have been presented. We will see later how p.redicate relaxation 

can be extended to include relax.\tion of predicates over hierarchical operators .. 

We will p'res~T1t an eXa.mple in some detail and. describe the problem -solving that 

PABLO does to solve it. The domain of the example is the familiar robot world, with 

rooftis, doors, boxes. In addition to. these we also include keys and add the operators 

to lock and.unlock doors. Furthermore, keys can be dropped into boxes, in which 

case they can no longer be retrieved by the robot. 

In the follOWing operator descriptions some atguments t.o predicates. in some. nf -

the delete-lists are preceded by a $. These variables are special. in. the sent::. that 

they ate treated as. global variables. For example; if there is a predicate ~($1) in a 

93 
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delete list, and two predi¢ates .E(A) and PCB) in the situation description, then both 

predicates will be deleted frbm the s!tuation d~cription, instead of just one. These 

are the-operators used: 

Pickup-key(R,k) 

P: {Type(k,Key}:Nexttb(R,k) ,Graspable(k)} 

D:{Nextto(R,k)} 

k{Hoiding(R,k)} 

Put-key-in-box(R,k, b) 

P: {Type(k,Key) ,Type(b,Box),Nextto(R,b) ,Holding(R,k)} 

D: {lIolding(R,k), Gr:,spable(k)} 

A:{In(k,b )} 

Goto-ob~ect (R,o) 

P:{Type(o,Object),Im-oom(R,rx),Inroom(o,rx)} 

D:{Nextto(R,$l)} 

A:{Nextto(R,o)} 

Goto-door(R,d) 

P:{Typ~( d,Door ),Inroom(R,rxl,Connecls( d,rx,ry)} 

D:{Nextto(R,$l)} 

A:{Nextto(R,d) } 

Qothru-door(R,d) 

P: {Type( d,Door ) ,Ir room(R,rx) ,Connects ( d,rx,ty ),Status( d,Open)} 

D:{Nextto(R,$l),Inroom(R,rx)} 

A:{Inroom(R!ry)} . 

Open-door(R,d) 

P:{ Type(d,Door-),N\,xtto(R.~),Status( d,Closed)} 

D:{Status( d,Closed)} 

A: {Status( d,Open)} 

Close-doot(R,d) 

P:{Type( d,Doot ),N extto(R,d),Status( d,Open)} 

D:{Status(d,Open)} 
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A:{Status( d,Closed)} 

Lock-door(R,d,k) 

P:{Type(d,Door),Nextto(R,d),Status(d,Closed),Holding(R,k),Type(k,Key)} 

D:{Status( d,Closed)} 

A:{Status( d,Locked)} 

Unlock-door (R,d ,k) 

P: {Type( d,Door),N extto(R,d) ,Stat us ( d,Locked) ,Holding(R,k), Type(k,Key) } 

D:{Status( d,Locked)} 

A:{Status( d,Closed)} 

In addition we have defined the following hierarchical operators: 

Goto-and-Pickup-key(R,k) 

Goto-object(R.,k), Pickup-key(R,k) 

Goto-and-Put-key-in-box(R,k,b) 

Goto-object(R,b), Put-key-in-box(R,k,b) 

Goto-and,.Lock-door(R,ktd) 

Goto-door(R,d), Lock,.door(R,k,d) 

Goto-and-Unlock-door(R,k,d) . 

Goto-door(R,d), Unlock-door(R,k,d) 

Goto-and-Close-door{R,d) 

Goto-door(R,d); Close-door(R,d) 

Goto-and-OpE!n-door(R;d) 

Goto-door(R,d), Open·door(R,d)_ 

Pitkup-and-Put-key-in-box(R,k,b) 

Goto-object(R,k), Pickup(R.,k), Goto-object(R,b), Put-key-in-box(R,k,b) 

Pickup-ll.ndwLock-doot(R,k,d) 

Goto-object(R,k), Pickup(R.,k), Goto-doot(R,d), Lock-door(R.,k,d) 

95 
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Each of the abov.e operators is a linear sequence of primitive operator.s .. The. 

codesi~ation constraints between their. arguments is made explicit by substituting 

the same...va.riable name for co designating arguments. __ _ 

Rt 

Figure 8.1: Robot World Problem 

We will solve the problem in figure 8.1 The goal of the.problem. is to achieve 

Status(D, Locked) and. In(I(, B). This pI:oblem is an example of very strong interac

tion. This type of.interaction is more serious than the strong interaction encountered 

in Sussman's Anomaly [Sussman, 1973]. The difference is that in Sussman's AnomalYt 

once a plan has been developed to achieve.ea.ch_goal independently, it is possible to 

correct the plan simply by adding new actions; in this .case the action of putting block 

C on the table. However, in the robot example we have presented it is not possible

to repair the plan in this manner, just given the two plans for achieving each goal. 

8.2.1 One Level of Abstraction 
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Goto-objett(R.K) CotO'dOor(Il,D) 

LOck400r(R,D,K) Coco-objeet(R,B) 

Figure 8.2: Plan at first level of abstraction 

We first solve the problem using only one level of predicate relaxation abstraction. 

The resulting plan at the first level of abstraction can be seen in figure 8.2. PABLO 

has. used two hierarcnicaLoperators, Pickup-.and-Put-key-in .. box and Goto .. and

Lock-door. Furthermore, it has interleaved the primitive actions. of the two op

erators.. This is. something most other hierarchical operator formalisms do not al

low. There.are two predicates in this plan. that are abstractly satisfied. They are 

Status:el(door,Closed) and Inroom:cl(Robot,R2). 

In figure 8.3 we have the result of planning at the base level of abstraction. Not,ice. 

that both abstract predicates have been satisfactorily _achieved. Furthermore, the 

optimal pla.n is produced. It should be pointed out that problems with very strong 

iliteraction .P9se difficulties fot many planners. ABSTRIPS would not be able t.o solve 

the above problem. 
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CQb400r(R,D) 

CICleMloor(R,D) Lock~QQt(R,D,K) Go~bject(R,B) 

Figure 8.3: Plan at base level 

8.2.2 Two Levels of Abstraction. 

Instead of just relaxing one. level of abstraction we tan relax the predicates two levels. 

Doing so results in the plan seen in figure 8.4. The relaxed predicates that hold are 

Inroo~(Robot,R.2), Holding~(k), Status~l( door,Locked). 

Continued planning at the first.level of abstraction and at the base level results in 

the same plans as.in our previous eXan'lple, albeit achieved using different hierarchical 

operators .. PABLO arrived at the.correct plan in two different.way~ gepending on the 

amount the predieates were relaxed. 

8.3 Generalizing Predicate Relaxation 

It is also possible to generalize predicate relaxation so that predicates &re regressed 

over hierarchical operators. To determine the desired regressed exprellsiufi, we build 

a hypothetical abstract operator whose a.dd list is the union of the add lists of the 
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Figure 8.4: Plan at the second abstraction level 

primitive actions of the hierarchical operator. The preconditions..of the operator 

are the bulk preconditions [DruIhmond and CUrrie, 1988] of the hierarchical operator. 

Tht!' bulk preconditions are those that must hold in the state where the hierarchical 

operator will be applied to guarantee that every primitive action in the operator 

is applicable .. Therefore, the precondition of the hierarchical operator becomes the 

conjunction or the preconditions of the primitive actions that are not necessarily true. 

For our purposes the delete list is not important, since any expr~ssion resulting from 

the regression that contains a proposition from the delete list is subsumed by the 

proposition itself. 

Having. created this operator,.it can be used as a primitive action, for the purpose 

of regressing predicates through it. 

8.3.1 Shift of Semantics 

Now. that We have modified predicate relaxation. it.is important to discuss the iin-

plications. Before, if a relaxed predicate held at level n we were guaranteed that 

there existed a plan of n actions or less that achieved. that predicate. Now, we are 

guataIit\~d that t.here exists a plan of n hietarchical operators or less. But. this is rea

sonablp. i.a ~ight of the fart.that the predicate reltl.lCatioti is a measure of the difficulty 

of-planning to ",chieve a particular predicate. The number of hierarchical operators 

nece88at~ to ~.chicvc a pteditate is a. gdod measure of this difficulty. 
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8.4 ABSTRIPS domain 

We will demonstra.te the relaxation of predicates over hierarchiCal operators in the 

ABSTRIPS domain. The operators .are those described in [SaCertioti, 1974] which 

are essentially the same as those described. in [F.ikes and Nilsson, 1971], with the 

exception of two which are not used in the following examples. 

Gotob(R,b) 

P:{Type(b,Box),InrooItl(R,rx),lntQpm(b,rx)} 

D:{Nextto(R,$l}} 

A:{Nextto(R,b)} 

Goto(R,d} 

P: {Type( d,Ooor) ,Inroom(R,rx) ,Connects( d,rx,ry)} 

D: {Nextto(R,$l)} 

A: {Nextto(R.,d)} . 

Pushb(R,bx;by) 

P: {Type(by,Object),Pushable(bx),Nextto(R,bx),Inroom(bx,rx), 

Inroom(by,rx),lnroom(R,rx) 

D:{Nextto(R,Sl),Nextto(bx,$2),Nextto(S2,bx)} 

A:{Nextto(bx,by),Next.to(by,bx),Nextto(R,bx)} 

Pushd(R.,dx,bx) 

P:{Type(dx,Door),Pushable(bx),Nextto(R,bx),Inroom(bxft'x), 

Connects( dx ,rx,ry) ,IIirOoth( R,t,,) 

D:{Nextto(R,Sl ),Nextto(bx,$2),Nextto($2,bx)} 

A:{Nextto(bx,dx),Nextto(R,bx)} 

Gothrudr(R,d,ry) 
P..: {Type( diDeet) ,Intootrt(R,rx),Coiulects( d,tx,ry );8tatus( d,bpcn)} 

D: {Nextto(R,$l ),lIiroom(R,rx)} 

A:{Inroom(R,ry)} 

Pushthrudr(R.;bx;dx,rx) 
P:{Pushahle(bx),TyPc(dx,Deot);Typc(tx;R6om),Nextto(bx,dx), 
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Nextto(R»x) ,Inr60nt(bx,ry),lnroom(R,ry) ,Connects(dx,ry,rx ),Status(dx,Open)} ___ ,_ 

D:{Nextto(R,$l ),Nextto(bx,$.1),Nextto($l ,bx),lnr06m(R,ry ),Inroom(bx,ry)} _ 

A: {Inrootn(bx,rx),lnrcom(R,rx),Nextto(R,bx)} 

Open(R,d) 

P:{Type(d,Door).Nextto(R,d),Status(d,Closed)} 

D:{,Status( d,Closed)} 

A:{Status(d,Open)} 

Close(R,d) 

P:{Type(d,D.oor),Nextto(R,d),Status(d,Open)} 

D: {Status( d,Open)} 

A: {Status(d,Closed)} 

We have also defined the following hierarchical operators: 

Gothrucloseddr(R,dx,ry) 

Goto(R,dx), Open(dx), Gothrudt(R,dx,ry) 

Gotob .. and-Pushb(R,bx,by) 

Goto(R,bx), Pushb(R,bx,by) 

8.4.1 Managing the Size of Relaxation Expressions 

As the number of operators grows in a domain it is important t<.\ consider ,way?> to 

limit the size of the relaxation eXpressions. There are several methods PABLO uses 

to limit these sizes. 

Removing Subsumed Dlsjuncts 

The relaxation definitions ate.kept in disjunctive normal torm. Duting the relaxutiofi 

it often happens that oile disjunct sUbsumes another ODe. In sUch situations PABLO 

retm",/CS the subsumed disjunct. There is no reason fot retaining it, since whenever 

it holds, the disjunct which subsumes it will also hold. See chaptef6 for an example 
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where this is done for the Clear(x) predicate in the blocks world. Once hierarchical 

op~rators are introduced the 'frequen,cy of subsumed expressions naturally rises and 

this operation can lead to substantial savings. 

Using Dom~n Knowledge 

Another useful method to limit the size of the relaxed expressions is to uSe domain 

axioms to collapse disjuncts. For example, in the Robot World domain without locked 

doors we have the axiom Status(x,Closed) => ..., Status(x,Open). The result of relaxing 

the Status predic;ateone level is the following: 

.. Sta.tus~(z,y) .. 

Status(x,y) 0 
Nextto(Robot,x) A Type(x,Ooot) A Status(x,Open) [Close(x)] 

Nextto(Robot,x) A Type(x,Door) A Status(x,Closed) [Open(x)] 

However, using the domain axiom, the above can be collapsed to: 

Status~l(Z,y) 

Status(x,y) 

Nextto(Robot,x) A Type(x,J)0or) [Close(x) V Ope.n(x)] 

This technique can lead to considerable simplification in the relaxed expressions. 

Example in the ABsTn.IPS DOmain 

To demonstrate how these techniques cai1 lead to substantial savings we show the 

result of applying them to the relaxatiOi1 expr¢ssiQfi .. 6f the Inrootn(x,y) predicate. 

Without aily simplification the result of relaxing lnrootn(x,y) t\VO levels, over the 

ABSTIUPS operators, can be seen in tables 8.1 and 8.2. 
Obviously this expression is unacceptably large. Rowever; if we make lllSe of the 

techniques {or managing the siZe of relaxed expressions the resulting exptc'!"Ssion, in 

table 8.3 is Consider.ably more compact. 
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lnroom;~1 (x, 11) 
lnroom(x,y) v 
connecttl(z,r,y) A type(z,door) A status(i,Closed) A type(y,room) A type(f,door) j) 

type(r,room) A connects(f,g,r) A status(f,open) A inroom(robot,g) V 

connects(z,r,y) A type(z,door) A status(z,closed) A type(y,room) A inroom(robot,g) A 
conneets(f,g,r) A type(f,door) A status(f,closed)A type(r,room) V 

type(v,door) A type(y,room) A connects(v,w,y) A status(v,open) A type(f,door) A 
type(w,room) A conneets(f,g,w) A status(f,open) A. inroom(robot,g) V 
type(v,door) A ty'pe(y,room) A. connects(v,w,y) A inroom(robot,w) A type(v.,door). A 
status(v,closed) A nextto(robot,v) V 
type(v,doot) " type(y,room) A ctmnects(v,wS) " status(v,open) " inrocm(robot,g) A 
connects(f,g,w) A type(f,door) A status(f,closed) A type(w,room) V .. 

pushable(x) " nextto(x,k) " nextto(tobot,x) A type(k,door) A type(y,room) A sta
tus(k,open) A inroom(x,s) A <:onneets(k,s,y) " type(t,door) A type(s,room) A con. 
nects(f,g,s) A status(f,open) A inroom(robot,g) V 
pushable(x) A nextto(x,k) A nextto(robot,x) A type(k,door) A type(y,room) A in
room(robot,s) A inroom(x,s) 1\ connects(k,s,y) IA. type(k,door) A status(k,elosed) A 
nex.tto(robot.k) V 
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A btatus(k,open} A 
inroom(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) A pushable(x) /\ 
nextto(robot,x) A ,inroom(x,g)-" conneets(k,g,h) " inroam(robot,g) V 
pushable(x) A nextto(x,k) A type(k,door) A. type(y,room) A status(k,open) A in-. 
room(robot,s) A intoom(x,s) A connects(k,s,y) A type(x,door) " pushable(robot) A 
nextto(robot,robot) A inroom(tobot,g) A connects(x,g,h) A inroom(robot,g) V 
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A 
inroom(robot,s) A ifitoom(x,s) A connects(k,s,y) A type(k,obiect) A pushahle(x) A 
neXtto(robot,x) A inroom(x,g) A intbom(k,g) A iIiroom(tobot,g, V 
pusha.ble(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A 
inroom(robot,s) " intootfi(x,s) A conneets(k,s;y) A type(x,object) A pushable(k) A 
nextto(robot,k) A inroom(k,g) A inroom(x,g) A inroom(robot,g) V 
pushable(x) A nextto(x,k) A type(k,door) A type(y,toom) A status(k,open) A in-. 
toom(robot,s) A irttoom(x,s) A connects(k,s,y) A type(x,Object) A pushable(robot) A 
nextto(rohot,robot) A into6th(robot,g) A inrootn(x,g) " inroom(tobot,g) v 

Table 8.1: First half of relaxation expreasion. 
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pushable(x) A nextto(x,k) A type(k,door) A type(y,room) A stat'Us(k,open) A in" 
room(robot,s) A bttoom(x,s) A conneds(k,s,y) 1\ type(robot,object) A pushable!x) A 
nextto(robot,x) A inroom(x,g) A iilroom(robot,g) A inroom(robot,g) V . 
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,opan) A in· .. 
roo!n(robot,s) A. inroom(x,s) A connects(k,s,y) A type(k,})ox) A inroom(k,g) A in
r6om(robot,g) V . 

. pushable(x) A nextt6(x,k) A type(k,door) A type(y,room) 1\. status(k,opeli) 1\ in-. 
room(robot,g) A intoom(x,s) A connects(k,s,y) A type(x,box) A itl.room(~,g) A in
rOOm (robot ,g) V 
pushable(x) A nextto(tobot,x) A type(k,door) A type(y,room) A status(k,open) A in
toom(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) /\ connects(k,g,h) A in
room(robot,g) V 

pushable(x) A nextto(x,k) A type(k,door) A type(y,room.) A status(k,open) A in
room(robot,s) 1\ inroom(x,s) 1\ cpnnects(k,s,y) A type(x,door) A connects(x,g,h) A in
room(robot,g) V 

pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) 1\ status(k,open) 1\ in
room(robot,s) A inroom(x,s) 1\ connects(k,s,y) A inroom(robot,g) 1\ inroom(x,g) 1\ 

type(x,box) 1\ inwom(k,h) A pushable(x) A type(k,object) V 
pushable(x) A nextto(robot,x) 1\ type(k,door) A type(y,room) 1\ status(k,open) 1\ in
room(robot,s) A iJlroom(x,s) A cOJ.l.n.ects(k~,y) 1\ inrOOm(robot,g) 1\ inroom(k,g) A 
type(k,box) A inroom(x,h) 1\ pushable(k) A ~ype(x,object) V 
pushable(x) A nextto(x,k) 1\ type(k,door) A. typt;~y,room) A status(k,open) A in
room(:robot,s) A mroom(x,s) A conneets(k,s,y) " inroom(robot,g) A type(robot,box) A 
inrOOD.l(x,h) 1\ pushable(roDot) 1\ typ~(x,object) V 
p~!hable(x) 1\ nextto(x,k) 1\ type(k,d60r) A type(y,room) 1\ status(k,open) A in
room(robot,s) 1\ inroom(x,s.) 1\ connects(k,s,y) A inroom(robot,g) 1\ intoom(x,gLA 
type(x,box) 1\ pushable(x) 1\ type(robot,object) V 
pushabl~{x) A nextto(x,k) 1\. nextto(robot,x) A type(k,door) A type(y,room) A sta
tus(k,open) 1\ inroom(x,s) A comiects(k,s,y) " inroom(robot,g) A connecU(f,g,s) A 
type(f,doot) A sta.tus(f,closed) A type(s,l'oom) V 
pushable(x) 1\ nextto(x,k) A nextt6(robot,x) A type(k,door) 1\ type(y,rOOfil) A sta
t~s(k,Opeil) 1\ inroom(robot,s) A inrooni(x,s) A ~onnects(k,s,y) V 
type(v,door) A type(y,toOm) A connetts(v,WS) A status(v,open) A hir06m(tohot;w) V 
hiroom(robot.r) A connects(z,r,y) 1\ type(z,doot) A status(z,dosed) A type(y,toom) 

Table 8.2: Second half of relaxation expression. 
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lnroom:el (x, y) . 
connetts(i,r,y) 1\ type(z,door) 1\ type(Y,toom) 1\ in.rOOm(robot,g) 1\ connects(f,g,r) 1\ 

type(f,door) 1\ type(r,room) V 
pushable(x) A nextto(x,k) 1\ nextto(robot,x) 1\ type(k,door) 1\ type(y,room) 1\ in
room(robot,s) 1\ inrootn(x,S) I\_tonnects(k,s,y) 1\ nextto(robot,k) V 
pusha.ble(x) 1\ nextto(x,k) 1\ type(k,door) 1\ type(y,room) /\ status(k,open) ~ in
room(robot,s) 1\ i.nroom(x,s) 1\ cotmects(k,s,y) /\ type(x,box) V 
inroom(robot,r) 1\ connects(z,r,y) 1\ type(z,door) 1\ type(y,room) V 

pushable(x) A nextto(x,k) 1\ nextto(robot,x) 1\ type(k,door) A typ~(Yfrooml-" sta
tus(k,open) 1\ inroom(robot,s) 1\ inr",u.:1(x,s) 1\ connects(k,s,y) 

Table 8.3: Relaxed exp_ression using the simplification filters. 

While simplifying the expression we made use of the domain constraint 

Status(x, closed) :=} .... Status(x, open) 

Notice th;;..t by using this constraint. PABLO can capture the notion that it does 

not matter whether a door is open or closed, since PABLO has operators for either 

case (Gothrudr and Gothrucloseddr). All that is important is that there is a door 

between two rooms. 

We can see tha.t with a few simple techniques it is possible to achieve a sitable 

reduction in the size of the relaxed expressions. If the e>q)r.ession becomes unman'" 

ageably.large even using these simpHfication techniques, PABLO stops relaxing the 

predicate. The user cali set a threshold for. the maximum allowable size for. each 

relaxation. pteditate. This might result iIi PABLO performing additional. planning 

at a higher level than it otherwise would, but this might be preferable to having an 

enormous and unwieldy relaxation expression to evaluate. 

8.4.2 Example from ABSTRIPS 

We gave PABLO the problem presented in [Sacerdoti, 19741 for purposes of compar

ison. The problem can be seen in figure 8.5. tIi this figure (a) represents the initial 

state arid (b) is the goal state. 
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Figure 8.5: Problem that ABSTRIPS solves 

PABLO begins planning at abstraction level 3. The plans g~~erated after each 

absttaction level can be seeILin figure 8.6. ABSTRIPS also uses four levels of ab

stractions for this problem .. 

The plans generated at each abstraction level by PABLO and ABSTRIPS are 

remarkably similar .. This is ptobably due mostly to the nature of the problem. and 

domain. ABSTRIPS is a linear pl~nner .. and this is a linear problem, without strongly 

interacting subgoals. It is not surprising that both planners would genera.te similar 

plaIts at different levels of abstraction. 

Givetl-h...difrerent problem in a similar domain, such as the previous problem with 
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Gollndr(R.Deb,B) ~--....t-;;G:o':::ln::;dr(:;;a,:Da:b:'A~) 

Figure 8.6: PABLO's solution 
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very strongly interacting goals the- similarity obviously ends, since ABSTIUPS is 

unable to solve the problem .. Also, given a different .domain, such as the Towers of 

Hanoi, the two-planners' behaviour might differ considerably. In the-Towers of Hanoi. 

domain, ABSTRIPS can use only one. level of abstraction, jIO matter the complexity 

of the problem given, whereas PABLO g~ijJ!.rC!t~ .. n - 1 levels of abstraction for n 

disks. 
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8.5 Summary 

We have present"!d two examples where state and opera.tor abstraction are combined 

to pro<hlce interesting planning behaviour. We have extended predicate relaxation to 

include the relaxation of predi~tes over hierarchical operators. Finally, we demon

strated techniques whereby the size of predicate relaxation expressions can be sub

stantially reduced. 



Chapter 9 

Classical Truth Criterion 

9.1 Introduction 

A truth criterion defines the conditions under which a predicate is true in a particular 

situation of a plan. Such a criterion is important since a planner must often check 

the truth of propositions during planning, e.g. to determine if a proposition of a 

precondition is satisfied. Because the underlying plan representation varies from 

planner to planner the, truth criteria of planners. have varied as well. 

As we shall see, in some special plans, namely those, where the actions are lin

early ordered and where every pr,edicate is ground, defining a truth criterion is rela

tively straightforward. Once we introduce variables, nonlinearity, conditional actions, 

deductive rules, typ~d variables t etc., defining a truth criterion becomes more cOin

pl,icated. _ For example, once we introduce nonlinearity, the truth of a predicate at 

a certain point in the plan depends on-the possible orders of the actioIis p'receding 

the point of interest. IIi this case we no longer speak simply about the truth of a 

proPQsition, but about the possible,or necessary truth_of a .proposition. 

The first formal definition of a truth criterion for partially ordered plans can. 

be found in [Chapman, 1987]. Chapman refers to this criterion as the Modal Truth 
Criterion. The Modal Truth Criterion was defined for a particular plan formalism: 

Chapman's TWEAK forIualism. As Chapman pqints out, TWEAK is a very' re

stricted pJattning formalism. Further"even minor extensions to the formalism results 

109 
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in the truth criterion no longer being valid. 

In this chapter., We discuss the p'!-,~vious work by Chapman, and then present.a. 

new. pl~ning ontology that is powerful enough to capture most pl~nning formalisms 

proposed uP. until now .. We then pr~ent. a new .. Classical Truth Criterion for this 

planning formalism. This truth.ciiterion is proved. sound andC6IIiplete.~ Finally, 

We discuss some of the implications of the Classical Truth Criterion, and present an 

algorithm for checking the truth of a predicate in a plan. 

9.2 Modal Truth Criterion 

Chapman introduces the following truth criterion: 

Definition 6 (Modal Truth Criterion) A proposition p is necessarily true in a 

situation..s iff two conditions hold: there is a situation t equal Of' necessarily previous 

to s in which p is necessarily asserted,. and for every step e possibly before sand 

every proposition q possibly codesignatin.g with p which e denies, there is a step W 
necessarily between e and $ which asserts r, a proposition such that rand p codesignate 

whenever p OJ)d q codesign ate. The criterion for possible tr"th is exactly analogous,. 

with all the modalities switched (read "necessary" for ('possible" and vice versa). 

In Chapman's logical notation. the criterion reads as follows: 

3t Ot -< s A Dassertedin(p, t)A 

ve Os -< ev 
'f/q O-.denies(C,q)V 

Oq ¢ pV 

3W Cle -<·W/\ 

OW -< sA 

3r asserts(W, r) A p :::::: q =? P :::::: r 

1 A truth criterion is sound it whenever it holds for a predicate p and a situation s the predicate 
p is ttue in situation s. A truth criteth.n is complete if whenever p is true in situatiofi s the truth 
criterion holds for predicate p in situation s. 
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There is a typo in ChapmC!-n's logical formulation of the Modal Truth Criterion. 

In order to make the formula conform to the English version_we need to replace 

3r asserts(w, r) "p ~ q => p:::::: r. 
with _ 

3r asserts(w,r) 1\ D(p ~ q => p ~ r). 

In what follows we will refer to this criterion as MTC. The MTC is proven. by 

Cha.pman to be valid for plans represented in TWEAK's formalism. Fot a..complete 

description oLTWEAK see [Chapman, 1987]. An action in TWEAK has a precondi

tion and a postcondition! each of which are sets of predicate~ which must hold before 

the application of the action and after the application of the action respectively. 

Plans in T\VEAK are partial orders of actions. The TWEAK forma.lism explicitly 

excludes restricting variables to a finite domain, conditional actions, and deductive 

rules. Chapman notes that if TWEAK is extended in any of these ways the Modal 

Truth Criterion fails. For example, in order to guarantee, 

-.M1.'C => -.DH olds(p, s) 

or 

'tit Os --( t V O-'asserts(p, t)V 

3c Oc...( sA 

3q Odenie$(c,q)A 

Oq~pA 

'tiw Ow ~ cV 

Os~wV 

Yr -.asserts(w, r) V O(p:::::: q A P ¢ t) 

=> -;OHolds(p,s) 

iLmust be the case that if no action necesse.rily asserts p theil.p canuot ilecessarily 

hold. Although this is the case fo\' the plan represerttatiortused in TWEAK it is not 

the case for maliy representations which ate just someWhat mote-expt~sive. For 

example, if we allow restricted ranges on variables we can have situations where no 

step neccsl:lt' :-ily asserts a proposition but wher~ the propo!lition is asserted by soine 

step in all ground lilip.at completions of the plan. Take the plan in figure 9.1. 
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• 

1-----1 Move(C,x,TABLE) Clear(x) MoVe (D,),.TAl3LE) Clearly) , 

x - {A.l} Y .. {A.B) 

Figure 9.1: Restricted Range Plan. 

In this plan Clear(A) holds in situation 5, however the Modal Truth Criterion fails 

to determine this. 

Restricting the range of variables can greatly rednce the planning time in ceet.ain 

cases. SIPE is the- maln planner which makes use of this fe&tute for great compu

tational savings. A._truth criterion that can deal with this extension is thel'efore an 

important contribution. 

\Ve have a similar problem if we extend our plan tepresentatioIi to allow arbittary 

deduction performed in situat\ons. Vie have to he careful when extending our 1,\,

guage to handle this. Lifschitz [Litschitz, 1986J has shoWil that for a planner 'Which 

uses S~('pjPS style Gperators to remain 50u!ld it is o€cessar.y that an), axioms w~ Use 

must hold in. all states. of the domain. Huwevet, if we allow such axioms in oUr pla.n 

l;uiguage the completeness proof of the Modal Truth CriterioI'! fails sint::e We can now 

have two actions which synergistically assert a ptoposlt;\ln in a way sitnilat tc. th~t of 

figure 9.1. 
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For example, suppose we are in a blocks world which allows more than one block 

on another. We might want to inciude a deductive rule which determines that if no 

block is on top of a .. particular block then that block is clear. This rule would usually 

be applied after a. block has ,been moved from one location to a.nother. This is not-

equiya.1ent to simply adding Clear(x) to the postcondition ot. the move:,block(y,x,2) 

operator, since not all block moves result in x becoming dear. 

Gl[9J 
I c I 

MOVl(A,C,TABLE) 

MciVe(B,C,TABLE) 

Figure 9.2: Deductive Plan 

Take example 9.2. In this example each move operator has On(x,y) in the delete 

list, where:t ~fl the block being moved. However, it does.fiot have Clear(y) ifl the add 

list, since it might be the case that there are.tema.iIiiIig blocks on y. To determine if a 

block 'Ii is deat the planner must use the following axiom (..,3x On(x, y)) => Clecif!(Y). 

In OUr example, it is the case that clear(C) holds in.state S. The·Modal Truth Cri

terion would not recognize this since no action prior to s necessarily asserts clear(C). 

Iii wha.t follows we present a planning formalism which generalizes most of the 

powetful plafl tepresentatiofiS proposed ill the literatur(:! to date. We th~rt present a 
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Classical Truth Criterion which is proven valid for this formalism, and as a. conse

quence, th~ formalisms which it subsumes. 

9.3 The Classical Planning Ontology 

In this section we present out ontology, upOn whith we will base our logic, and present 

the b:uth criterion. 

A plan consists of the. following components: 

A {at, ... , an}, a set of n actions. 

P A possibly infinite set of predicates. 

W _< A part.ial order A x A. 

W..asserts .A binary relation A x P. 

W _denies A .binaty relation A x P. 

W Jnitially A unary relation on P. 

W..ground_ A unary relation on P. 

W..holds A binary relation P x A. 

Notice that we have said nothing about the structure of actions or predicates for 

that matter, only that they exist. It is important to make the distinction at this point 

between the predieates in P, which ate predicates On the particular domain the.planner 

is operating in, e.g. ON(x1y); CLEAR(x) in the blocks world, and the predicates iii the 

logica.1language used to desctib~ the truth criterion, e.g. asserts(W,t) in Chapman's 

logic. 

A model is a Kripke structure such that: 

• The worlds are plans . 

• At P, W JIiitially, and W.ground do fiot vary ftom wodd to world. 
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We define some worlds as being GLP (ground-linear plans): 

Definition 7 (GLP) GLP(w) iff in world w, W_< defines a total order on A and for 

every predicate p such that there is some action a and Sbme pair (a,p) E (W -asserts 

U W _denies) it is the case that P E_W..ground. 

Rurther, the worlds in our Kri~~e s~ry~tur.~ ar~_related by the following two rela

tions: 

Definition 8 (S) S(Wl! W2) is any reflexive, transitive relation such that whenever 

GLP(Wt) then S(WhW2) = (WI = W2). 

This completes our ontology. Notice that the relation S is not con'lpJetely sp"ecified. 

The point is that any relation with the necessary properties we have defined will 

be adequate for our purposes. The relation S will vary from planner to planner, 

depending on the planner's particular method of specializing plans. 

Further notice that this ontology can, be used to represent planning formalisms as 

diverse as STRIPS, TWEAK, SIPE, NOAH. NONLIN, etc. This is because we impose 

Jio ,constraints on the structure of actions, and allow the. telatlons W _<, W ~setts, 

W.denies, to vary from world to world, thus allowing for Ilonlinearity, conditional 

actions, deductive rules, etc. 

9.4 Classical Plan Logic-

In order to reason with our ontology We need a language which will allow Us to make 

prC!cise statements about our model. Not surprisinglY, we wiJl use a first-order modal 

logic. We define symbols for the membets of A and P. For ~imp1icity of expQsition we 

will Use the saine symbol nan'les in our logic as inJ.he modelj if a E A iii the model 

then d is an adion in out logic. We then define the {ollowin~ti6ns: 
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asserts asserts(a,p) iff (a,p) E W..AsSerts. 

denies denies(a,p) iff (a,p) E W _denies. 

initially initiaUy(p} iff peW Jnitially. 

ground ground(p) iff peW .ground. . 

holds holds(p, a) iff (p, a) E W -holds. 

We intend holds(p, a) to be true if predicate P. is true just before action a is 

executed; initially(p) is true if p is true in the initial situationj asserts( 4, p) is true 

if adion a asserts· predicate Pi denies( a, p) is true if action a denies predicate pj 

ground(p) is true if predicate p contains no variables in its argument list; at -< a2 is 

true if action at must be executed before action a2. 

We also have two sets of modal-operators: os, <>s defined in the usual manner ott...---

the accessibility relation S, and 0, <> defined on the accessibility r.elation C. 
We will need the following properties o£ our logic: 

O(P 1\ Q) ..:... Op A OQ 

o.(P V Q)::'" <>PV <>Q. 
OP 1\ <>Q ~ O(P A Q). 
Os.(1' 1\ Q) == 0sP A OsQ 

<>$(P V Q) == <>"sP V <>-sQ 
These are true in aU standard r.:todels of modal logic and the:\~~tore also tn oUrS. 

VxoP ~ OVxP-{BMcan Formula) 

3xOP =* o3:tP 
VxosP ~ OsVzP (Ba.rcan..Fotmula) 

3xosP :.} Os3tP 

This follows frofil the fact that we ate using a fixed domain, Le. the objects in 

out. domain (:i.C:ihnis and ptedicat.es) t.io not vary frO:-.l wodd to 'World. We tail prove 

the BarC<\n fottnlila as follows. It, in a plan Cl,. VzoP thell it is the case thct.t OP is 

true i11 ex fio matter what value x takes. But thf.'ll !<ir nll plaI&!j fJ such that {lCP it 
is the ca"e tha.t P is true no matter what value :x tahes. But this means that V:tP 
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is true.in plan (3. Which in turn means that o'VxP is true in plan Q. 2 The proof 

for 3xClP => o3xP is_similarly straightforward, and the proofs for 0$ and Os are 

analogous._ 

OsOP => oP 

If Fa ~sOP .then there exists some plan a' and some plan (3 such that aSa'.and 

a'C(3 and F=1l P.3 We_just need to show that aC/3. But this is .clearlytrue, since 

clC(3 implies o'S/3, which by transitivity implies 0:8(3. Furthermore, GLP«(3) which 

implies aC {3. 

os£..=> OP 

This follows directly from the definitions of C and S. Specifically, for all plans a 

and /3 whever aC{3 it is the case that a8/3. Therefore, if Fw P for every w such that 

aSw, it must be the case that Fe P for every ( such that aC(. 

O(OP::: P) 

O(OP == P) 

These two axioms follow from the facLthat the only ground linear completion of a 

ground linear completion a is a. Therefore 1==" OP is equivalent to F=a P and E",-a =o:,oo..P ___ _ 
is equivalent to Fa P. 

9.4.1 STRIPS Assumption 

We are almost do::te with the definition .of our logic. It. turns out that to ptoye our 

Classical Truth Criterion we need one axiom~ . 

° (Holds(p, a) .== 
(-,3b(b -< a) A initiaUy(p))V 

3c«c -< a) A -,3d«c -< d) 1\ (d -< a))1\ 

(assetts(c,p) V (ltolds(p,c) A -,denies(c,p))))) 

lnterestingly enough, if we take the ST.IUPS assumption to be: 

~Fot a discussion of the Harcan formula see [Hughes and Cresswell, 1968] pp. 147-148. 
3The notation Fa P means that F P in plan (wC)rld) Q. 

(9.1) 
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Tlle truth value of a predicate does not ehange unless it lLexplicitly 

asserted or denied by an 4.ct;on in the plan. 

Then it should be clear that our axiOlil is merely a restatement of this principlejn" 

our logic. Th~refore, we will refer to this axiom as the STRIPS Assumption Axiom. 

9.4.2 Lemmas 

In our proof of. the Classical truth criterion we will need the following lerrunas which 

follow directly from the STRIPS Assumption Axiom. 

Lemma 9.4.1 

Lemma 9.4.2 

Lemma 9.4.3 

D( (::,39..( b -< a) 1\ ...,Initially(p)) => ...,Holds(p, a)) 

0((3b (b ~ a) 1\ ...,3c ((b ~ c) 1\ (c -< a)) 1\ ...,Holds(p, b) 

,,-,asserts(b,p)) => ...,Holds(p, a)) 

D((3b(b -< a) /\ ...,3c((b -< c) " (c -< a))./\ denies(b,p) /, ...,asserts(b,p)) _ 

Lemma 9.4.4 

Lemma 9.4.5 

=> -'Holds(p, at.:.)) ____ _ 

D(Initially(p) => (Holds(p, a) V 36(b -< a))) 

0(3b(b -< a) A .... 3c((b -< c) 1\ (c -< a))/\ 

("asserts~) => Holds(p1b) A.:-tdeIiies(b,p» 

=> ltolds(p, a)) 
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9.4.3 ---First attempt at defining a new truth criterion 

One obvious truth criterion is the folloYling formula: . 

OHolds(p, a) = 
O((..,3b(b ~ a) A initially(p))v 

3c((c -< a) A 7'3d((c ~ d) A (d -<.a))A 

(asserts(c,p) V {Holds(p, c) A ..,denies(c,p))))) 
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(9.2) 

This follows directly from the STRIPS Assumption Axiom. It should he obvious 

that this definition is not particularly useful since it requir¢s us to examine every 

ground linear completion of a plan to determine the truth of a prop'osit,on in a 

situation. 

We now present a new truth criterion which is powerful enough to correctly handle 

an extended plan representation, yet allows. us t~ determine the truth of a proposition 

more efficiently than simply examining every ground linear completion of the current 

plan. 

9.5 Classical Truth Criterion 

In our language the Classical Truth Criterion is expressed as follows; 

o Holds(p, a) == 
Ds (((..,3b O(b :< a)) =? ClInitia,lly(p))A 

''fie (O(c -< a) A ..,3d O((c -< d) A (d -< a))) => 
(..,0 aSserts ( c, p) => 

OHolds(p,c) A ..,Odenies(c,p))) 

Proof: ' 

We will refer to the right hand side of the equivalence as TC. First We prove that 

if p holds before all. actioIi a of all ground-linear completiollS of a plan then the truth 

criterion m, .~t. hold for that plan .. This is done by proving the contrC!.R9sitive, natnely 

that ..,TC(p; a)=> -;oHolds(p; a). 

1 
i 
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Os«-.3b O(b -< a) /\ -.OInitially(p») . 

V3c (tJ(~ -< a) /\ -.3d O«~ -< d) f.\ (d '-< a)) 

/\...,Oasserts(c,p )/\_-

( -.oHolds(p, c) V Odenies(~~p)))) 

=> -.OHolds(p, a) 

Using Os(P V Q) == OsP V OsQ we can rewrite the above. 

Os«-.3b O(b -< a) /\ ...,OInitially(p))) 

VOs(3c (D(c -< a) /\ ...,3d O«c """ d) /\ (d -< a» 
/\-,Oasserts( c,p)/\ 

(-.oHolds(p, c) V Odenies(c,p)))) 

=? -.oHolds(p, a) 

Usin~P V Q =? R == (P::::} R) /\ (Q =?R): 

We first show: 

Os«-.3b O(b -< a) /\ -'OInitially(p»)) 

=? -.OHolds(p,a) 

/\ 

Os(3c (D(c -< a) /\ -.3d O(.(c -< d) /\ (d -< a)) 

/\ -.Oasserts( c, p)/\ 

(-.tlHolds(p,c) V O.denies~p)))) 

=? ...,DHolds(p, a) 

Os«-.3b O(b -< a) /\ -.OInitially(p))) 

::;- -.oHolds(p, a) 

Since ..,3bO( b -< a) == o-.3b( b -< a) We can rewrite the antecedent: 

Os(O-,3b (b -< a) /\ -,O!nitially(p» 

(9.3) 

(9.4) 

(9.5) 

(9.6) 
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Now, since -.op = O-.P: 

Os(O-.3b (b --: a) A O-.Initially{p)) 

r,ecause Cp 1\ OQ ::} O(P A Q): 

o .)¢.{ -.3b (b --: a) A -.InitiallY(p» 

O( ..,3b (b --: a) 1\ -,Initially(p)) 

O .... Rolds(p, a) 

Which is cqy.ivalen~ to -,tlHolds(p, a) which is what we wanted to show. 

We still need ~,\. ',hew par~. (~) ';of equat.ion 9.5. 

Os~3c I~W(C --: a) 1\ -~3d O((c .4{ d) 1\ (d --: a)) 

/\ ....,Oassert.s(.:'~ p)h 

We distribute oVer V. 

( -.OHoldr.(p, c) v. <) denie~( c,p)))) 

~ -uJIIolds(p,a) 

Os(3c (O(c --: a) A ...,3d O((c --: d) 1\ (d ~ a)) 

1\ -.Oa.ssetts ( c, p) 1\ 

-.OHolds(p"c))V 

(O(c --: a) 1\ ...,3d O((c --: d) 1\ (d --: a)) 

1\ ...,Oasserts( c, p)A 

Odenies(c,p))) 

=* -;OHolds{p, a) 
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(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 
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We distribute 3c over V. 

Qs(3c (O(c -< a) A ..,3d O((c -< d) A (d -< a)) 

A ~Oasserts( c, p)/\ 

..,OHolds(p, c))V 

3c(o(c -< a)A ..,3d O((c -< d.) A (d -< a)) 

A "'Oasserts( c, p)A 

Odenies( c, p))) 

=> ""'OHolds(p, a) 

Using Os(P V Q) = OsP V OsQ_ .. __ _ 

Os(3c (O(c -< a) A ..,3d O((c -< d) A (d -< a)) 

A ..,Oasse:. ts ( c, p) A 

..,OHolds(p, c)))V 

Os(3c(CJ(c -< a) A ..,3d O((c -< d) A (d -< a)) . 

A ..,Oasserts (c, p)A 

Odenies(c,p))) 

=> ..,OHolds(p, a) 

Using P V Q => R = (P => R.) A (Q => R): 

We noW show: 

Os(3c (O(c -< a) A ..,3d O((c -<..d) " (d -< a)) 

1\ ..,Oasserts( c, p)A 

..,OHolds(p,.c)).) => ..,OHolds(p, (1) 

V 

Os(3c(O(c -< a) "..,3d O((c -< d) A (d -< aD 

A "'Oasserts ( c, p) A 

Odenies( c, p))) 
=> ..,oHolds(p, a) 

(9.14) 

(9.15) 

(9.16) 
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Os(3e (CJ(e ~ a)" ..,3d O«c ~ d)" (d ~ a)) 

"~Oasserts( e, 'P)" 
..,OHolds(p, e))) => ..,oHolds(p, a) 

:I xOP => 03 xP and ..,OP ~ o..,P .. 

Os(3e (O(t -< a) AtJ-,3d «e ~ d) " (d -< a)) 

"O"'asserts( C, p)" 

O..,Holds(p, e))) 

oP" OQ :} O(P" Q) 

Os(3e O«e ~ a) "..,3d «e ~ d) "(d ~ a)) 

" "'asserts ( c, p)" 

..,Holds(p, c))) 

3c OP(c) => 03e P(e): 

OsOP => OP: 

OsO(3e (e ~ a) " ..,3d «e -< d) " (d ~ a)) 

""'asserts( e, p)" 

..,Holds(p, c)) 

0(3c (c -< a) A ..,3d «c -< d~ " (d -< a)) 

""'asserts( c, p)" . 

..,Holds(p, e)) 

Applying Lemma 9.:.4.2: 

0-. Holds (p, a) 

Which is equ,ivaleilt to -;OHolds(p, a). 

We still need to show: . 

123 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

(9.22)1-__ _ 
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..,op => O..,P. 

OS(!k(D(C ~ a) A ..,3d_O«c ~ d) A (d ~ a)) 

A ..,Oasserts( c, p) A 

OdeIiies( c,p)JJ 

=> ..,OHolds(p, a) 

Os(3c(O(c ~ a) /\ O..,3d «c ~ d) A (d ~ a)) 

AChasserts(c,p)A 

Odenies( c, p)) ) 

of A OQ => O(P A Q): _ 

Os(3cO«c ~ a) A ..,3d «c ~ d) 1\ (d ~ a)) 

A "'asserts( c, p)1\ _ 

denies( c, p) )) 

3aOP(a) => 03aP(a) 

OsOP => OP 

OsO(3c(c -< a) A ..,3d-((c -< d) A (d -< a)) 

A "'asserts( c, p) A 

denies ( C; p)) 

O(3c(c -< a) A ..,3d «c -< d) I\. (d ~ a)) 

A ..,asserts( c, p) A 

denies( c, p)) 

Using Lemma 9.4.3: 

O..,Holds(p, a) 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

VI him is equivalent to ..,tlHolds(pja)._ We are now done proving OHolds(p, a) => 
TC. We now show TC => OHolds(p, a). 
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Os (((..,3b O(~ -< a» ~ oInitia.lly(p»/\ 

'tc (O(c -< a) 1\ ...,3d O((c -< d) 1\ (d -< a))) => 
(...,0 asSerts(c,p) => 

OHolds(p~ 1\ ...,Odenies( c, p))) 

Os(P /\ Q) => asp 1\ 0sQ: 

Os ((...,3b.0(b -< a)) => OInitially(p))A 

Os('tc (O(c_ -< a) 1\ ...,3d O((c -< d) 1\ (d -< a») => 
(...,0 asserts ( c, p) => 

OHolds(p,c) 1\ ""10denies(c,p») 

We begin by showing: 

0s( (...,3b O( b -< a)) => OInitially(p))_ 

=> C(Holds(p, a) v 3b(b -< a) 

3bO(b -< a) => 03b(b -< a): 

0s((..,03b (b -< a)) => OInitiaUy(p)) 

0s((iJ...,3b (b -< a)) => Olnitially(p)) 

asp => OP: 

iJ((0...,3b (b -< a)) => tllnitiaUy(p)) 

O(OP == P): 

0(( ...,3b (b -< a)) => li1itially(p)) 

Rewriting; 
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(9.29) 

(9.30) 

(9.31) 

(9.32) 

(9.33) 
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O({:lb (b ~ a)) V Initially(p)) (9.34) 

Using lemma 9.4.4: 

D(Initially(p),==> (3b(b -w< a)) V Holds(p, a)) (9.35) 

Th~refore: 

D«3b (b -< a)) V Holds(p, a)) (9.86) 

We now show: 

DS(Vc(D(c ~ a) A -,3d O((c ~ d) A (d ~ a))) :-;} 

(-,Oasserts(c,p) => CtJHolds(p,(.) A-,Odeni(>s(c,p)))) (9.37) 

=> O(Holds(p, a) V -,3e(e -( a)) 

-tOP = o-,p and 3xOP::} 03xP. . 

OsP => OP: 

D(DP =.P): 

=:Js(Vc(O(c,"" a) 1\ O-,:3d «(c ...: d) A (d ~ a))) => 
(O-.,assetts(c,p) => (tlFioldc(p,~) A Chdeuies(ctp)))) 

O(Vc(tl(c ~ a) A O-,3d (c ~ d) A (d ~ a))) => 
(D-,as~erts(c,p) => (OHblds(p,~) A O-,denies(c,p)))) 

O(Vc«c ~ a) A -,3d «c --< d) A (d --< a))) => 
(-'asserts(c,p) => (Holds(p,c) A -tdenies(c,p)))) 

(3e(e .-< a) V ~3e(e ~ a)) A P => (3e(e ~ a) A P)V -,3e(e --< al~_ 

O«3e(e ~ a) A Vc«c ~ a) A -,3d «c ~ d) A (d ~ a))) => 

(9.38) 

(9.39) 

(gAO) 

(-tasserts(c,p) => (lIolds(p,c) A -,denies(c,p)))) (9.41) 

V(..,3e(e -< a))) 

Since a ground ·linear plan is a total order the followiftg holds: 
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D(3e(e --{ a) ~ 3J(f --{ a) /\ -,3g(f --{ g) /\ (g_~ a)) 

Therefore~ 

CJ«~f(f --{ a) /\ -,3g«(J ..( g) A (g -< a)) /\ 'v'c«c -< a) A ~3d «c --{ d) /\ (d -< a))) ~ 

(-,asserts(c,p) => (Holds(ikC) /\ -,denies(c,p)) 

V(-,3e(e --{ a») __ 
(9.42) 

We use universal instantiation and simplify: 

D«3f(f --{ a) /\ -,3g«(1 -:< g)./\ (g -< a»/\ 

(-,asserts(f,p) ~ (Holds(p,j) /\ -,denies(f,p»)) (9.43) 

V(-,3e(e -< a))) 

Using lemma 9.4.5: 

O(lIolds(p, a) V (-,3e( e -< a))) (9.44) 

Therefore: 

o (liolds(p, a) V 3b(b -< a)) /\ D(Holds(p, a) V ~3e(e --{ a» (9.45) 

oP /\ DQ => O(P /\ Q): 

D«lIolds(p, a) V 36(b -< a)) A (lIolds(Pi a) V ,:,3~(e -< a))) (9.46) 

Rewriting: 

D(Holds(p,li) V.(3b(lL-< a) /\ -,3e(e -< a))) 

Which is equivalent to: 

Dliolds(p, a) 

o Q.E.D. 
This completes out proof of the Cla.'isical Truth Criterion. 

(9.47) 

(9.48) 
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9.6 Algorithm for checking_.~rl.!th criterion 

We can make use of two properties of the truth criterion to increase the efficiency of 

a truth checking algorithm. The.first is that if. the truth criterion is non-trivially true 

in a plan, then it is true for all spe<;iali~ati6ns of it. . 

By nou-trivially true we mean that either a is the first action of the plan and 

Cllnitially(p), or there is s~ action c immediately before a and 

..,Oasserts(c,p) A ClHolds(p, c) 1\ ..,Odenies(c,p). 

It is important to note that if there is SOme action c immediately before a there 

can be. no other action immediately before a. This property guarantees that both 

conditions imply the Classical Truth Criterion. 

\Ve show, 

Proot: 

(( (..,3b O( b --< a» 1\ Cllnitially(p»V 

3c(D(c --< a) A ..,3d O((c --< d) A (d --< a)))A 

(..,Oasserts(<;,.p) A ClHolds(p,c) A ..,Odenies(c,p))) 

:::} 

Cls.(((..,3b O(b.--< a) A Cllnitially(p)V 

3c(Cl(c --< a) A ..,3d O((c --< d) A (d --< a)))A 

(..,Oasserts(c,p) A ClHolds(p,c) 1\ ..,Odenies(c,p))) 

Rewrite-the antecedent: 

(((V'b Cl..,(b --< a» A Cllnitially(p))V 

3c(Cl(c --< a) A V'd O..,((c --< d) A (d --< a)))A 

(O..,asserts(c,p) 1\ OHo)ds(p,c) A O..,dcnies(c,p))) 

Use oP :::} OsClP: 

(((V'b ClsCl..,(b --< a» A ClsCllilitial1y(p~)V 

3c(OsO(c --< a) A V'd OsO..,((c --< d) A (d --< a)))1\ 

(OsO..,assetts(c,p) A DsOHolds(p,c) A 0s0..,denies(c,p))) 

(9,49) 

(9.50) 

(9.51 ) 
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Use the Barcan formula:. 

«(OsV'b Ch(b ..( a» A OsOInitially(p»V 

3c(DsD(c -cal A DsV'dO-,«c -< d) /\ (!l-< a»)A (9.52) 

(Ds tJ-'assert5(c,p) A OstlHolds(p,c) A OsQ7denies(c,p») 

Use OsP" OsQ => Os(P" Q~J.:-: __ _ 

Os«V'b O-'(b ~~ a» A OInitially(p»V 

3cOs(D(c -< a) A V'dD-.«c_ -< d) A(d -< a»))" 
(O-.asserts(c, p) A OHolds(p, c) A O-'denies( c, p») 

Use the Barcan formula: 

Os«V'b O-,(b -< a»" OInitially(p))V 

Os3c(0(c -< a) A V'dO-.«c -< d) A (d -< a»)A 

(O-.asserts(c,p) " ClHolds(p,c) A O-,denies(c,p») 

DsP V OsQ => Cls(P V Qt ... 

Rewrite: 

Os( «V'b 0-;( b -< a)) A OInitially(p))V 

3c(tl(c -< a) A V'dO-,«c -< d) A.(d ~ a)))" 
(Cbasserts(c,1U...6..0Holds(p,c) A O..,denies(c,p»)) 

Os«(..,3b_O(b -< a)) A OInitially(p))V 

(9.53) 

(9.54) 

(9.55) 

3c(0(c ~ a) A ..,3dO«c. -< d) A (d ~ a)))~ (9.56) 

(-;Oassetts(c, p) " OHolds(p, c) A . ..,Odenies(c,p))) 

Q.E.D. 
The other is that only plans in which the following holds can possibly fail the 

truth criterion: 

..,3b O( b -< a.)V 

3cD(c -< a) A ..,3d O«c -< d) " (d -< a)) A ..,Oasscrts(c,p) 

An algorithm for checking the truth criterion then only has to examine the "weak

est;' specializations such that. the above condition holds to see if Oholds(p, c) " 
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Holds(p,a) 
For every distinct, minimal.specialization.lmch that there is an action c 
inunediately before a and c does not possibly assert p 

check that c does not posfl1bly deny p and neWlsarily Holds(p~c). 
If theteJs a minimal flpecialization such that a is t.he first action 

check that initia.lly(p) !lecessarily holds. 

Table 9.1: Algorithm for checking truth criterion . 

...,Odenies(c,p). The details of the algorithm. will vary fr':>Iil planner to planner de. 

pending on their underlying plan representation, however a high-level description of 

it can be found in table 9.1 .. A specialization Wl satisfying a condition is minimal. if 

there is no other specialization W2 satisfying that condition such that S(W2' Wl). 

This algorithm does not necessarily require that every ground linear completion 

of the pl.an be checked. Suppose we are given the-plan in figure 9.3. In this eXam

ple we asSunie the TWEAK planning formalism, extended. with restricted ranges on 

variables. We are interested in knowing whether the precondition, P(A,B) of action 

3 necessa.rily holds, given that x E {A, B}, y E {A,B} and x ~ y. In this case the 

algorithm will only have to. check two specializations of .the plan, namely the ones 

where y rf. A and :t ~ Bt-which are added when we guar~ntee that action 2 not .. ' 

assert P(A,B). The reason We do. not have to check more specializations is. that We 

cannot-generate any sp~cializations suchJ.hat action 1 does not assert P(A,B}, given 

that action .2 cannot asSert P(A,B) either .. This is much more efficient tha.n having 

to check every possible ground linear completion of this plaft. 

However, we are still lett with the problems of the efficiency of const-ra.int propa

gation. We might ask how planners with extended representationaLca.pabilities deal 

with these problems. SIP E is the best example of a planner with powerful represen

tational capabilities~ Furthermore, SIPE is the most efficient planner to date. 

In SIPE, the combinatoria1.natute of constraint. propagatioii is handled by .. keeping 

many of tlie constraint propagations local, Le. not performing a global constraint 

check every time a cOIistraint is posted. Furthermore, cOfisttaifit computations are , 
not performed every time a constraint is added, but rather at regUlar intervals. This 
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Figure 9.3: A plan with restricted ranges on variables 

seems to .be an adequate. compromise, as the constraint comput~uons have seldom 

led to a problem [Wilkins, 1988]. 

State indep~ndent axioms are handled by computing their derived effects only 

when a new action is inserted into the plan. - The propositions .that are derived in 

this manner are insetted in the add list of_the action that..is being inserted. By using 

this method, checking whether an a.ction asserts a proposition is done trivially by 

checking if it codesignates:with a. proposition in the add list. Of course this can lea.d 

to-inconsistencies later in planning, but this has not proven to be a serious problem 

with SIPE. 

Relating this. method to out truth criterion we can see that it 'Would greatly speed 

up the computation ever.ywhere we need to check if a particular situatioil.asserts a 

proposition. Although it teql\ires the addition of.unsound methods, experience seems 

to bear out that a richer representation makes up for the potential drawbacks. 
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9.7 Summary 

In this chapter we presented a new truth criterion for a pcwerful ,plan fOrnialism which 

subsumes most planners proposed to date. In.fact, the only axiom in OUr formalism is 

a. restatement 01 the STRIPS assumption. We p~ved it is sound and complete with 

respect to this. representation. We t.hen show-ed how it gi.ves rise to an alg<?:rithm that 

is. more efficient than simply checking every pOSSible completion of a plan. 
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Further Work 

In this chapter we point out some questions raised by this thesis and propose further 

work that might help resolve these. 

10.1 Real World Applications 

The most important. question that needs to be answered is whether ~redicate relt>x

ation can scale up to real world appli:3.tions. Since the work presented in this thesis 

was based on a complete planner., real world applications lVere not within its scope .. 

One way to answer this is to apply predicate_relaxation.to an efficient .planner. 

SIPE [Wilkins, 1984] is an obvious candidate .. In the early ~tag~s of this research SIPE 

Was used for .. some experiments with .good results. We hope to Some day attempt to 

integrate predicate relaxation into SIPE. 

10.2 Extensions to Predicate Relaxation 

Another interesting avenue to pursue is extending predicate relaxation. This ntight 

involve trading off correctness for simplicity in generating the relaxed predicates. As 

the efficiency of the planning process isJmproved it-is. likely that the complexity of 
the relaxed predicates becomes the bottleneck. This then-Ieads us to new wa.ys of 
simplifying relaxed predicates, so that they can be evaluated more quickly. 

133 
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Another extension would be to define a new form of predicate relaxation which can 

take into account the -more complex operators available in state of the art planners. 

In this thesis we have ·assumed a planner which is based on STRIPS-style operators. 

It woulcLbe interesting to come up with a definition which can handle conditional 

operators, take into account resources, etc. 

There is also the possibility of defininingJormula relaxation, namely the relaxation.. 

of conunonly occuring sub-formulas. This idea has been. prop9sed by Nilsson and 

might result in definitions that are similar to tree plans [Nilsson, 1989). 

10.3 Implementation of the Classical Truth Cri

terion 

Another interesting project might be to build a planner based on the Classical Truth 

Criterion. This planner would be able to support an ~xtended language for repre

senting operators, including conditional operators, as well as restricted domains for 

variables. 

It would be interesting to experiment with different ways of trading off complete

ness and correctness for efficiency in the truth criterion. ,The new truth criterion 

would provide a good basis for performing such .experiments. 

10.4 Real-time Extensions 

Another area that should be exatnined is that of .improv~.ng real-.time performance. 

The current extension to pi.'edicate relaxation allows a. limited form of reactivity, since 

the planner is able t(' prop9se a pl~usible. action in case it is interrupt~d. One goal 

of planning research should be to imbue planners with the capability to decide When 

acting is indeed necessary, rather than having to rely on an outside agent to make 

that decision. 'l'his is also closely tied to the problem of determining the quality of 

the currently chosen action, since the tradeoff between the impi:ovement-of actions 

reSUlting from.future planning and the possible gains of acting immediately i,s one the 
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planner should be aware of. 

10.5 Operator Abstraction 

More work needs to be dOne in the field of operator: abstraction. This might entail 

automating .the process .of constructing.abstract op~rat.ors a la Nonlin and Sip~, but 

might also involve designing new forms .of oRerator abstraction, uti1i~ing approxitna,. 

tions of op~rators, and automatically a~stracting preconditions and effects of oper

ators. Opet?-tor.abstraction has been the prevalent form of abstraction. in planning 

and automating the process would be a significant advante ... ___ _ 

10.6. Concluding Remarks ..... . 

This thesis has explored new methods of performing abstradion in planning. We 

hope that the. usefulness of abstraction has been clarified, and that the methods, 

primarily predicate relaxation, provide a basis for future research in this area. State 

abstraction has been somewhat overlooked in the planning literature, but is beginning 

to see some resurgence. Furthermore, we! stress the impor.tance of exploring ways in 

which to improve the problem. solving cap.abilities.of .pl~I!ners as opposed to their 

representational prowess, an area that has already been much explored. Abstraction 

and planning remain fascinating areas of tesea.rch that need to be further investigated. 
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