AR

PB96-149711 Information Is our business

P

AUTOMATIC ABSTRACTION IN PLANNING

STANFORD UNIV., CA

MAR 91

u.s. DEPART-M!ENT OF COMMERG‘EA
National Tecéhnical Information Service




March 1991 ' Report No. STAN-CS-91-1357

Thesis
(IR

NI

PBS€-149711

AUTOMATIC ABSTRACTION IN PLANNING

by

Jens Christensen

Department of Computer Science

Stanford University.
Stanford, Ca'ifornia 94305

agrroouceo sy | NOTIR
U3 Deparimard ! Comme

3]
Natronad Techere 8 Iformaton Service
Sprngheiy. Vegres 27189



AUTOMATIC ABSTRACTIONIN PLANNING .

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Jens Christensen
March 1991



© Copyright 1991 by Jens Christensen
All Rights Reserved

NTIS g l\nhurlnd 10 riproduce and sell this
report. Parmigéion for furthér regroduttion
mus! be obtained from the cogyright ownar.

il




1 certify that I have read this dissertation and that in my
opinion it. is fully adequate, in s¢ope and in quality, as a
dissertation. for the degree of Doctor of Philosophy.

Prof. Nils J. Nilsson
(Principal Adviser)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in guality, as a
dissertation for the degree of Doctor of Philosophy.

Prof. Yoav Shoham

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Dr. David E, Wilkins. ...

Approved for the University Committee on Graduate
Studies:

Dean of Graduate Studies

i



Abstract

Traditionally, abstraction in planning has been.accomplished by either staté abstrac-
tion or operator abstraction, neither of which has been fully automatic. We present
a new method, predicate relazation, for automatically performing state abstraction.
Predicate relaxation generates abstiaction hierarchies that, for some dornains, can be
more useful than those generated. by previous abstraction mechanisms. PABLO, a
nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well
as empirical results are presented which demonstrate the potential advantages of us-
ing predicate relaxation in planning. Relaxed predicates can also be used by PABLO
to achieve a limited form of reactivity, whereby an executable sequence of actions is
constructed in case of interruption.

We also present a new definition of hierarchical operators that allows us to guar-
antee a limited form of completeness. This new definition is shown to be, in some
ways, more flexible than previous definitions of hierarchical operators. The ability to
plan using such operators. has been incorporated into PABLO.

Finally, a Classical Truth Criterion is presented that is proven to be sound and
complete for a planning formalism that is general énough to include most classical
planning formalisins that are based on the STRIPS assumption.

iv



Acknowledgements

First and foremost I would like to thank Neguine, whom I met, courted, and married
during the five years I spent in the Ph.D. program at Stanford. She heélped make the
experiénce a pleasant and memorable one.

The research itself would have been impossible without the enlightened guidance.
of Nils Nilsson whose encouragement and insights became indispensable. I would also
like to thank my other two advisers, David Wilkins and Yoav Shoham, who brought
different viewpoints to.the problems I was tackling, and made many thoughtful con-
tributions along the way.

The Principia group provided ai: excellent forum for airing ideas. Special thanks
go to Adam Grove, without whose help the chapter on the Classical Truth Criterion
could .not have been written. Andrew. Kosoresow, Karen Myers, Rich Washington,
Eunok Paek, and Alon Lévy reviewed the work and.made valuable suggestions. Matt
Ginsberg also made many useful suggestions along the way.

No acknowledgements would bé compléte without mentioning my parents whose
insistence on my coming to Stanford as well as their support and encouragement
along the way are a major reason for the successful complétion of this thesis.

Finally, I would.like to acknowledge the support of NASA through NASA Grant
NCC2-494 and Texas Instruments through Contract No. 7554900.



Contents

Abstract iv
Acknowledgements v

1 Review of Abstraction in Planning
1.1 Basic Concepts
12 Previous Work . ... . . .. . .. ...

1.2.1 STRIPS Assumption.
1.2.2 Macro Operators

..............................

ooooooooooooooooooooooooooo

..........................

1.2.3 . Hierarchical Operators
1.2.4 State Abstraction
1.2.5 - Yiscussion

......................
@ s & 4 2 s B s & s & s s s=ms 4 % s s s e e s s
..............................

1.3 Theoretical Results on Abstraction

.....................

0D 00 v R e W W N M

14 Conclusion . —... . . .. v+ v eon .

]

2 Predicate Relaxation 11
2.1 Introduction . . . . . ... . ..., e e e 11 .
2.2 Computing Predicate Relaxation . ... ................ 12
2.3 Predicate Relaxation Example . . .. ... ... ............ 14
2.4 Discussion of Predicaté Relaxation .. ................. 17

2.4.1 Context-dependency . . . ... .. ... cooee e e e e 18
2.5 SUIMALY . . v v v v v vt v e ot e o ot e o mt s e 18




3 PABLO .
3.1 Inmtroduction . ... . . . . v i i i i e e e e e
3.1.1 Post-NOAH Planners
3.2 _Planning Terminology
3.3 Overview.of PABLO
3.4 Underlying Planning Algorithm
3.4.1 Plan Representation
3.4.2 Relaxation Phase
3.4.3 Planning Phase
344 TruthCriterion . .. ... ... ... .. ... ... ......
3.5 Examples of planning with PABLO
3.5.1 Towers of Hanoi

.......................
...........................
............................
.....................
..........................
.........................

..........................

3.5.2 Comiparison with Other Planners
36 BlocksWorld . . ... ... .. .. i i e
3.6.1 Esxample Problem
362 AnotherExample . . . ... ... .. ... ... ... ......
3.7 Extensions to Predicate Relaxation . . . ... ... ..........
3.7.1 Associating Costs with Operators
3.7.2 Limit Relaxation Operators

a 5 8 2 6 8 & s smee v & s s e

...........................

----------------

-------------------

3.7.3 Relaxation over Hierarchical Operators
3.8 Conclusion

-------------

.................................

4 Complexity Analysis
4.1 Introduction . . . . . . . . . e
42 PreviousWork. . ... ... .. . .. e .
4.3 Complexity Analysis . .. . . .. . i e

4.3.1 Planning at one level

.......................

4.4 Discussion

ooooooooooooooooooooooooooooooooo

5 Empirical Analysis
5.1 Introduction . . ................. e e e e

5.2 Towers of Hanoi

e w8 4 & 8 ¢ 8 & & 5 & & 6 & 8 s & 8 & 6 & s e s 4= s & b+ s

20

20 .

23

24 .

25
26
29
29
30.
30
31
31
33
34
34
35
38
38
39
39
39

40.
40
40
41
41
46




53 Blocks World .. . . . . oo o o o o e e e
54 Robot Domain
5.5 Eight Puzzle
5.6 Discussion

@ 6 e 8 8 4 s e 4 & s+ & & s & s+ svme & & emms s s e s s s
-----------------------------------

e 4 4 s 8 e 2 % 4 8 s s a2 & s s s s & s e v s 8 s s s 2 s s s =

Using Abstractions to Achieve Reactivity

6.1 .Introduction . . . ... . . . ... e e
6.1.1 Universal Plans
6.1.2 Action Nets . . .. . . ... . i i i e
6.1.3 Situated Action Rules
6.1.4 Subsumption Architecture

---------------------------

.......................
....................

6.1.5 Discussion

6.1.6 Classical Approaches to Reactivity
6.1.7 ForwardSearch . ... .. ... ... ... ...,

6.1.8 Left R ursive Wedge Planning

...............

6.3 Identifying Executable Actions

oooooooooooooooooooooo

6.3.1 Constructing Incomplete Plans . .. ... ... ........
6.3.2 Comparison With other Classical Approaches
6.4 Comparison to Reactive Plans

6.5 Conclusion

.........
......................

ooooooooooooooooooooooooooooooooo

Operator Hierarchicalization
7.1 Introduction . . . . ¢ . v i i i e e e e e e e e e
7.1.1. MACROPS ... ... . i e i e e
7.1.2 SOUP operators
7.1.3 Procedural Net Operators . .. .................
7.14 Formalized Reduction Schemata . . . . .. ... ... ... ..
7.1.5 Problems with Hierarchical Operators
7.2 Generalizing STRIPS-style opérators

ooooooooooooooooooooooooooooo

oooooooooooooo

ooooooooooooooooooo

73 Représentation . ... ... ... ..ottt e
7.4  Hierarchical TWEAK . . . oo v o i s e e e e et e e e e e

....................

6.2 Reactive Reasoning with PABLO.. . . . .. ... . ... ... .... .



7.4.1 Selecting Hierarchical Operators . .. . . ... ... .. .. ..
7.5 . Differences with Other Hierarchical Operators
7.6 PABLO .Implementation. .. .. .
7.7 Retaining useful plans

¢ ¢ ew—e & & & 3 & & s

..........................

771 Towersof Hanoi. . . . . . v v v i it e e e e e e e e e e

7.8 Conclusion

.................................

Combining Abstraction Methe s
8.1 Introduction . . . .. .. . . .. . e e
8.2 Robot World Example . .. ... ..........
8.2.1 OnelLevelof Abstraction . .. . . ... ... ... .........
8.2.2 Two Levels of Abstraction . . . . .
8.3 Generalizing Predicate Relaxation
8.3.1 Shift of Semantics
8.4 ABSTRIPS domain
8.4.1 Managing the Size of Relaxation Expressions . . . . . . .
8.4.2 Example from ABSTRIPS
8.5 Summary

---------------------
L T T O T R S S S T T SN S Y = SRy

L I T T S S S S S S S S S S S S T T Y

--------------------

...................................

Classical Truth Criterion
9.1 Imtroductiorn . . . . . .. o i e e
9.2 Modal Truth Criterion
9.3 The Classicul Planninig Ontology

..........................

.....................

94 Classical PlanLogic . ... ... ... ... . . ...,
94.1 STRIPS Assumption . . . .. ... . v,
942 Lemmas . . . . .t i v ittt e e e .
0.4.3 First attempt at defining a new truth criterion . . . . ... ..

9.5 Classical Truth Criterion . . . ... ... .. .. . ..o ....

9.6 Algorithm for checking truth eriterion . . . . . . .. .. ... .. ...

0.7 SUMIMALY .« . ¢ v v v v vt et e et e o ot ot e oot e e e

a3
93
93
96
98 .
98
99
100
101
105
108

109
109.



10 Further Work 123
10.1 Real World Applications . ... ... ... .. .o o o i .. 133
10.2 Extensions to Predicate Relaxation . . ... ... ........... 133
10.3 Implementation of the Classical Truth Critérion :
104 Real-time Extensions ... ... . . . . . o 0 it i it e e e 134

10.5 Operator Abstraction . . . .. .. ... i it i e 135
10.6 Concluding Remarks . . . . .. .. ... .. ...t 135
Bibliography 136



List of Tables

3.1 Base Level Control Structure of PABLC . .. ... .. .. ...... 27
3.2 Base Level Control Structure continued. .. . . . ... ... ...... 28
8.1 First half of relaxation expression. . ... ... ... ..c....... 103
8.2 Second half of relaxation expression. .. ... ............. 104
8.3 Relaxed expression using the simplification filters. . . . .. ... ... 105
9.1 Algorithm for checking truth criterion. . ... ... ... ....... 130

i



List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
4.1

5.1

5.3
5.4
5.5
5.6
5.7
6.1
6.2
6.3
6.4
6.5

State space graph
ABSTRIPS Example from Tenenberg

Towers of Hanoi . . . . .
Trace of PABLO solving the Towers of Hanoi. ... .
Blocks World

Blocks world trace. . . . . v viv v v i e et e e e e e e e e e e

Blocks World Problem. . . ... .....
Nonlinear blocks world trace.

Abstraction Space . . . . . . ..
Towers of Hanoi

Running times of PABLO for the Blocks World (in seconds)
Robot World Domain

Eight Puzzle
Running times of PABLO for the Eight Puzzle (in seconds).

A piece of a Universal Plan represented as a decision tree-
Planning Problem . . . .. ... .........

Classic Planining Trace . . . ... ... ... i
Pablo’s Planning Tracé . . . ... ... ..o v v,
Level2 Plan .. . . . e e e e e e e e e e e e e s

............................

.................

ooooooooooooooooooooooo

--------------------------------

oooooooooooooooooooooo
....................

.............................

5.2 __Running times of PABLO for the Towers of Harnoi (in seconds).

Running times of PABLO for the Robot World (in seconds). . . .

« e 4 e

......

oooooooooo



6.6
6.7
6.8

7.1
7.2
7.3
1.4

7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2
8.3
8.4
8.5
8.6
9.1
9.2
9.3

Incomplete Plan . ... . ... ... ... . ... . ... . . .. ... 66
Sussman’s Anomaly . . . . .. ... .. L o e 67
Reactive plan for On%y(z,y) . . . . . . o o i it v it 69
ASTRIPSMACROP . . .. . . .. i i e i 72
ANOAH Operator . . . . .. v i it ittt it ittt e e e e e 73
ASIPE 0perator . . . . v v vt v ittt e e e e . 14
(a) A plan with seemingly unresolvable conflicts (b) Resolution of con-——.

flicts after reduction. . . . ... .. ... L L Lo L., 7
Diagram of Hierarchical Operators . ... ............... - 79
Example of intérleaving a plan with a hierarchical operator. ... .. 81
Yang’s problem revisited . . . . .. .. . e e e e 82
Partition Graph . . . . . . . ... ... .. . . e 83
Temporal Distance . . . . ... .. ot it i e e 85
SIPE planexample . ..... . . . .. . . @ i i . 87
Hierarchical Operators for the Robot Domain . . . ... ... .. ... 88
Robot Domain Problem. (2) Initial State, (b) Goal State. . . . . . .. 89
Solution using hierarchical operators. . . .. .......... ..., 90
Operator Abstraction Solution Trace . .. ... ... ... ...... 92
Robot World Problem . .. ... ... .. ............... 96
Plan at first level of abstraction . . . .. ................ 97
Plan atbaselevel . . . . .. ... ... ... ... ... . ...... 98
Plan at the second abstractionlevel . . .. .. ... ........... 99
Problem that ABSTRIPSsolves . . . ... ............... 106
PABLO’ssolution . . . ... ... ... it .. 107
Restricted Range Plan. . . . . . ... .. .. ... ... 112
Deductive Plan . . . . . v v v it i it i e 113
A plan with restricted rangés on variables . . ... ....... ... 131

xiii



Chapter 1
Review of Abstraction in Planning

One of the powerful tools employed by planners to deal with the complexity of plan-
ning problems is avstraction. Although widely used, and in many guises, abstraction
remains relatively poorly understood. Because of this, systems employing abstrac-
tion have usually left the definition of the abstractions up to the user of the system.
This thesis introduces a new method for performing abstractions automatically and
presents results related to abstraction in planning which should help to clarify the
potential benefits, as well as drawbacks, of using abstraction in planning. In this chap-
ter, we present the different methods of abstraction employed up until now, pointing
out some potential problems along the way.

The rest of the thesis is organized.as follows. Chapter 2 introduces predicate re-
lazation, a néw method for pérforming automatic abstraction in planning. Chapter 3
presents PABLO, a nonlinear planner that implements predicate relaxation. Chapter
4 discusses theoretical results pertaining to the complexity of using predicate relax-
ation in planning. Chapter 5 presents empirical results demonstrating the inéreased
efficiency gained when using predicate relaxation in planning, Chaptér 6 discusses
how an extension to predicate relaxation can.be used to achieve a limited form of
reactivity in planning. Chapter 7 discusses a method for performing operator hierar-
chicalization in planning, which guarantees a limited form of cornpleténess. Chapter 8
describes how both abstraction techniques can bé used éffectively in planning. Chap-

tér-9 describes a new tiuth criterion for planning which is based on a very general

1



2 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

planning formalism. Finally, chapter 10 discusses open problems and further work
that needs to be done in the area of abstraction in planning.

1.1 Basic Concepts

When thinking abeut abstraction it is often useful to do so in the context of a state
space graph.. In such a graph each node corresponds to a particular world state,
and each directéd arc to a particular operator which transforms that world state into
another. Figure 1.1 is.an example of a general state space graph.

Figure 1.1: State space graph

It is the task of a planner, when givén a déscription of a particular initial state in
the state space graph as well as a description of otie or miore desired goal states, to -
discover.oné or more paths from the initial state to one of the goal states. Of course
the state space graph iv often prohibitively large, possibly infinite, and is therefore
not usually explicitly represented. Rather, the state space graph is implicitly defined
by a set of operators, i.e. functions from states to states. Parts of the state space
graph ¢an be constructed from the set of operators and a given state by applying
all possihle upérators to the given state, repeating the process for all newly created
states. Fof a planning problem to bé solvable it is necessafy that one of the goal
states can be constructed in this manner from the imitial state.

Generally, when we speak of abstraction in planning, it is implied that one or more



1.2. PREVIOUS WORK . 3

elements of a planning problem is being abstracted, i.e. either the initial state, one
or more of the operators, or the goal states. As we shall see, it has genérally been the
¢ase that planning systems have concerned themselves with abstracting opérators.
Abstraction has been used as a meéchanism in planning for two reasons. First, it is
a natural extension, and one which people ofteén use when doing everyday planning.

Second, it is likely that planning with abstractions improves the efficiency of the
planner.

1.2 Previous Work

1.2.1 STRIPS Assumption

Early work in planning [Green, 69] led to the discovery of severe deficiencies in trying
to apply theorem proving to the planning problem. One of the main problems was
the need for frame axioms [McCarthy and Hayes, 1969}, axioms. which stated what
remained true from one state to the next. As it turns out many such axioms_ are
generally needed for most planning problems.

STRIPS. [Fikes and Nilsson, 1971) embodied one approach for dealing with this
problem. In STRIPS, operators were structures consisting of a precondition list, a
delete list, and an add list. States were sets of well-formed formulas. An opérator
was applicable in a state if all the items in the precondition list could be unified with
members.of the state. The result of applying an operator was that items in the delete
list were deleted froiii the state, and items in the add list were added to the state.

These operatofs embodied what has come to be known as the STRIPS assurhption
- that whatever is not explicitly listed as an éffect i an operator is automatically
copied to the new state. The STRIPS assumption has proven an effective approach
to the frame problém, obviating the need for time consuming frame axioims. Virtually
all subsequent plafinérs make use of the STRIPS assumption in some form. Some
of the newer planners relax the STRIPS assumption somewhat in réturn for more
flexibility.in operator fépresentation [Wilkins, 1988).

Wthien subsequeiitly we refer to opérators we.will mean STRIPS style operatofs,



4 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

unless we specify otherwise. We now discuss some of the previous work on abstracting
planning problems.

1.2.2 Macro Operators

One way an implicit state space graph can be abstracted is by defining new opérators. .
One useful mechanism is to créate new macro operators, éach of which is the result
of composing a sequence of two or more operators. Doing so allows the planner
to traverse the state space graph more quickly, since intermediate, and presumably
unimportant states, can be bypassed when transforming one state into another state.

The use of macro operators can be.found in one of the earliest discussions on the
use of abstraction in problem solving, namely Amarel’s classic paper [Amarel, 1968).
Amarel traces a solution to the Missionaries and Cannibals problem which involves
the introduction of macro operators, as well as other forms of abstraction which we
will discuss later. Through these methods Amarel demonstrates how a seemingly com-
plicated problem can be transformed into a trivial one by exploitirg useful properties
of the state space graph.

One of the first examples of an abstraction method being implemented in a planger .
is the use of MACROPS in STRIPS [Fikes et al, 1972). A MACROP is a macro. .
operator, composed automiatically by STRIPS from a successful plan. This is done
by storing the plan in a triangle table and then generalizing it. by turning constants
into variables. This-generalized plan becomes a MACROP and can then be used by
STRIPS to speed up planning considerably.

1.2.3 Hierarchical Operators

Although macro operators proved successful in STRIPS, their sequential was a limita-
tion..NOAH [Sacerdoti, 1977 introduced the idea of least commitment to planning.
Plans in NOAH were 1o longer répresented simply as linear sequences of operators,
but father as partial.orders of opérators, compactly representing a set of total orders.
These partial ordets were represented in a procedural net. NOAH is the first example
of a planner that searches in a space of partially ordered plans rather than the base



1.2. PREVIOUS WORK 5

staté space provided by the domain. Strictly speaking, NOAH did not search this
space, since no backtracking mechanism was incorporated.

In NOAH, macro operators were generalized, so that they no longer were simply
compositions of sequences of opérators, but rather were procedural encodings which,
when executed, would produce a portion of a procedural net.. These operators are
termed iierarchical operators, and éxecuting their procedural encodings is referred
to as ezpanding an operator. The actual result of .an operator expansion in NOAH
might depend on the situation in which the operator is 2xpanded, so there is not a
simple one to oné relationship between the hierarchical operators and partial orders
of base level operators.

The use of hierarchical operators has-been by far the most commonly used abstrac-
tion mechanism in planning since the advent of NOAH. Almost all ensuing planners
emuploy some form of hierarchical operators, including NONLIN [Tate, 1977] and SIPE
[Wilkins, 1988].

Unlike MACROPS in STRIPS, there is no example of a planner which learns
hierarchical operators from the basic domain operators. Rather, they must be encoded
by the user of the planner.

Because macro operators and hierarchical operators are defined in terms of other
operators, these mechanisms will be termed operator abstraction mechanisms.

1.2.4 State Abstraction

Another planner that utilizes abstraction is ABSTRIPS [Sacerdoti, 1974). It is based
on.STRIPS [Fikes and Nilsson, 1971] and utilizes a.different abstraction mechanism
from operator abstraction. Before proceeding it is important to have an understanding__
of the basic planning mechanism employed by ABSTRIPS.

ABSTRIPS abstracts by assigning ¢riticalities to predicatés. A criticality indicates
the relative difficulty of making the particular predicate true in the domain, with the
highest criticalities being assigned to predicates which cannot be affected by_the
planner.

Planning iu. ABSTRIPS proceeds in a “length-first” manner. At each stage-a
threshiold cricicality is détermined. The platiner then performs a comiplete STRIPS



6 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING.

planning procedure, the sole difference being that. predicates which have criticalities

less than the current threshold. aré assumed to hold. The idea behind this is that

those predicates can in sorme sense be considered details and can be achieved relatively

easily. After each pass ABSTRIPS lowers the criticality threshold and proceeds to ——— ..
refine the current plan by attempting to achieve predicates which are now above

the threshold. Planning is complete once the threshold is less than the smallest -
criticality. Using this method, Sacerdoti was able to achieve great speedup on some

problems when compared to the bare-bones STRIPS system. The criticality values

were generated in a semi-automatic manner, with the user providing a partial order_

of predicates which ABSTRIPS would use in assigning criticality values.

Since at any planning level, the preconditions of operators that have a criticality
lower than the threshold will be dropped, each planning level consists of a new,
abstract set of operators. Because an operator at one level is applicable in a superset
of states from its corresponding operators at lower levels, this form of abstraction is
termed state abstraction.

Tenenberg [Tenenberg, 1988] extends the ABSTRIPS representation by including
criticality levels in the add and delete lists of operators. This, combined with a
restricted method for computing the criticalities .of predicates, produces a system
which guarantees that planning at all levels of abstraction is consistent, which was
not the case in the original ABSTRIPS system.

The problem is that if one is not careful when assigning criticality values it is
possible to generate plans at higher levels of abstractior. which result in inconsistent
states. For example, Tenenberg presents the problem depicted in figure 1.2 in his
thesis.

In the example the set L-defines the language of the system, the set E is the
set of essential predicates, namely those predicates which can be manipulated by the
operators, O is the set of opérators, K is a set of domain axioms, and crit is the set
of criticality mappings on the predicates.

If the initial situation is desctibed by

{On(A, B),Clear(A), Holding(C)}



1.2. PREVIOUS WORK 7

L: (constants={A,B, C)), (variables={x, y, z}) (functions = @),
(predicates={On, Clear, HandEmptx, Holding, =})

E ={On, Clear, HandEmpty, Holding},

O = {unstack(x, y) stack(x, y)
P:{On(x, y), Clear(x), HandEmpty}, P:{Clear{y), Holding(x)},
D:{On(x, y), Clear(x), HandEmpty}, D:{Clear(y), Holding(x)},
A:{Holdingix), Clear(y)}, A:{On(x, y), Clear(x), HandEmpty}}

K={ Holding(x) Ay=x O - Holding(y),
HandEmpty O —Holding(x),
Clear(x) O =On(y, x),

On(x, y) O <On(y, x),
=On(x, x),
A=B, BaC, A=C}

erit={<On, 1>, <Clear, 1>, <HandEmpty, 0>, <Holding, 0>}

Figure 1.2: ABSTRIPS Example from Tenenberg

then the plan < unstack(A, B) > is applicable since the preconditions with criticality
level 1 are satisfied. However, applying the plen results in the state

{Holding(C), Holding(A),Clear(B)}

which is inconsistent with the domain axiom which states that two blocks cannot be
held at the same time.

Tenenberg proposes a way of assigning criticality values which guarantees that
such inconsistencies do not occur. As we shall see later, our technique of predicate
telaxation avoids this problem as well, albeit in a different manner.

Knoblock [Knoblock, 1990] uses a graph theoretic technique to identify depen-
dencies among predicates in order to remove progressively more predicates at higher
levels of abstraction. This results in abstractions which guarantee that if there is a
plan at a high level of abstraction, there will be one at a lower level as well.



8 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

1.2.5 Discussion

In actuality, there is not such a clear dichotomy between the state. and operator
abstraction in their implementations. Hierarchical opérators can be used to achieve
state abstraction. This can be done by defining hierarchical operators which do not
reference all the necessary predicates referenced by the operators, or their refinements,
in their bodies. This is similar to the ABSTRIPS approach, but differs in that there is
no enforcement of explicit.abstract levels, as is the case with the explicit assignments
of criticalities. Although more flexible, this lack of explicit criticality levels gives
rise to “hierarchical promiscuity” [Wilkins, 1988), which can result in unnecessary
planning. The problem arises when the planner tries to determine the truth value
of a predicate, call it P. This is generally done by backchaining through the plan
looking for places where P is changed. If operators are represented at different levels
of abstraction there might be .cases where the refinement of an operator results in a
change to P, but this is not apparent at the current level of abstraction. In such cases,
the truth value of P cannot be correctly determined. As we shall see later, there are
several possible solutions to hierarchical promiscuity, but it remains a serious issue in
planning with abstraction.

Furthermore, state abstraction generally results in the generation of new opera-
tors, which are used to generate the abstract state space. Altkough the exact dif-
ferences between state and operator abstraction are not always obvious it.remains a
useful concept for distinguishing the two types of abstraction.

1.3 Theoretical Results on Abstraction

One might-ask by how miuch abstraction improves planning efficiency. Empirically,
it.seems abstraction can be of-great help. ABSTRIPS was able to achieve significant
speedups in planning tifme as comnpared to STRIPS. The adherence to hierarchical
opérators in post-NOAH planners indicates that they are of great value in improving
planning efficiency. There are also a few theoretical results to back up the value of
abstraction in planining.

Korf [Korf, 1987] proves that under certain festrictive assumptions the optimum



1.3. THEORETICAL RESULTS.ON ABSTRACTION 9

abstraction hierarchy of a state.space of size n consists of In n levels of abstraction.
Further, such an abstraction can reduce the expected search time from O(n) to O(log__
n). If n grows exponentially with the length of the plan, as is often the case, this.-
result implies that the state space can be searched in linear time, given the abstraction
hierarchy.

However, Korf makes one especially restrictive assumption, namely that a plan
at one.level maps directly to a.plan at a lower level. This is usually not the case in
planning, e.g. in ABSTRIPS. Rather, once a plan has been found at a higher level,
more planning is necessary to devélop the plan at. the lower level. The plan at the
higher level acts as a guidé and proposes subproblems to be solved.

Knoblock [Knoblock, 1990] has analyzed this more general problem. However, it
is difficult to arrive at useful results unless several new assumptions are made. The
assumptions are as follows. First, if there is a solution at an abstract level, there is one
at a lower level. This property is referred to as downwards-compatibility. Second, at
one level of abstraction, each subproblem defined by the abstract level is independent,
so that no backtracking is necessary. Third, every subproblem of an abstraction level
is of the same size. Finally, the abstract planner produces the shortest solution.

Given these assumptions Knoblock derives that the worst case complexity of plan-
ning is reduced from O(b') to O(l), where b is the branching factor of the search space,
and [ is the length of the solution plan. This is analogous to.Korf’s result.

Korf’s and Knoblock’s results are very encouraging in.that they suggest abstra¢-
tion.can transform intractable combinatorial problems into tractable ones. However,
in practice, the.restrictive assumptions made may not hold, and. the results may
not. always be as spectacular.. Specifically, the. abstraction spaces may not.satisfy
downward-compatibility, meaning that a plan at a higher level has no expansion at
a lower level. It is also possible that the subproblems defined at lower levels ate not
really independent, thus necessitating backtracking across subproblems at ore level of
abstraction.. Nonethéless, these results provide an impetus. for continued résearch on ...
abstraction. It is also clear that human problem solving oftén.makes use of abstrac-
tions when planniug. Capturing this ability rem. ins a strong motivation for pursuing
research on abstraction.



10 CHAPTER 1. REVIEW OF ABSTRACTION IN PLANNING

1.4 Conclusion

Previous work on abstraction in planning falls under one of two rubrics, either opera-
tor abstraction, the most commonly used, or state abstraction. Hierarchical operators
are generally considered useful for performing operator abstraction, although they can
be used for state abstraction as well. ABSTRIPS. was able to successfully perform .
state abstraction by assigning criticality values to predicates in the preconditions of
operators. Finally, theoretical results suggest that planning can, in the best case,
reduce planning time from exponential in the length of the plan down to linear.



Chapter 2

Predicate Relaxation

2.1 Introduction

In this chapter, we introduce predicate relazation, a method for autcmatically per-
forming state abstraction. The motivation for defining predicate relaxation is the
need for determining whether a predicate should be tonsidered a detail in a particu- —
lar situation. As we have seen, ABSTRIPS accomplishes this by associating criticality
values with predicates. However, whenever a predicate has a criticality value lower
than the current planning threshold that predicate is true in all states of the search
space. We will argue that whether 2 predicate should be considered a detail depends
on the situation in which we are évaluating the predicate.

Consider the following example. Suppose we are planning a bus trip from one
location in a city. to another. . When planning at a high level of abstraction, we
world generally ignoreé the issue of whether or not we have adequate bus fares and
concentrate on the route planning aspects of the problem. At high levels of abstraction
we would like to consider having a bus fare a detail. However, if our plan is to be
executed fairly soon, and we do.not have exact change in our pockets, gettiiig the
exact bus fare might not be trivial, and we should not trcat having the bus fare as a
detail. However, if the first bus stop is close to a token booth, it should be relatively
easy to obtain the bus fare, in which case it becomes a detail again. This, of course,
presupposes that we have enough money to buy a token. If not, having bus fare ceases

11



12 CHAPTER 2. PREDICATE RELAXATION

to be a detail again.

The point should be obvious., Whether or not having the bus fare should be
considered a detail depends on the situation. In some situations obtaining the bus
fare is trivial, in others it is more involved and requires some planning. ABSTRIPS'’s .
approach of using criticality values is unable to capture this context-dependency, and
we.are leéd to defining predicate relaxation.

The basic idea behind predicate relaxation is that, given a base level predicate P,
a new predicate P, is defined which is true in a superset of states in which P holds.
We say that Pl; is a relazed version of P.

The above process can be repeated by defining P%; from PL,;, and so on, creating
a hierarchy of predicates. Of course, once.a predicate has been relaxed to the point
that it holds in all states. there is no need to relax it further.

When we plan, if instead of using the original predicates, we use the newly defined
relaxed predicates, we can decide if a predicate should be considered a detail by
checking its relaxed definition. If the relaxation holds we say that the predicate is a .
detail and we do not plan for it. We will see later how this satisfies our requirement
of context-dependency.

2.2 Computing Predicate Relaxation

Predicate relaxation defines a new predicate Pl from a predicate P in such a way—
that. P, holds in all states in which P holds and in all states in which P can be
achieved by the application of one operator.

In order. to precisely define predicate relaxation, regression must be introduced.
Waldinger [Waldinger, 1977) introduced the technique of regression-in the Al liter-
ature, although he credits [Manna, 1968, Hoare, 1969, King, 1969] with the original
discovery.

Definition 1 The regression Reg(o,p) of predicate P over action o is the weakest
relation that ensures the subsequent truth of P after ezecuting o.

Regression can now be used to define predicate relaxation.



2.2. COMPUTING PREDICATE RELAXATION 13

In_a domain with m operators, given a predicate P, we define P2, as follows:

Foy = P
i n— ¥ n-1
::I = Prcl ! V Reg(Op.-, P,

rel

where Reg(Op;, P) is the regression of predicate P through operator Op;.

In general, P will have a non-zero arity, é.g. Clear(z) or On(A,B). When
computing predicate relaxation, we will usually only do so once for each predicate,
and replace its arguments with schema variables. For example, after computing the
relaxation of On(z,y), the result can.be instantiated to the -predicates On(A, B),
On(C, D), etc. There is no need to compute the relaxation. expression separately for
each different predicate.

It is also the case that PL; becomes more complex as n grows. It should be
noted that the regression of PJ, is always computable, although the complexity of
the computation may increase with the complexity of PL,.

To improve the efficiency of computation one can check before regressing a pred-
icate P that it appears in the add list of the operator. If it does not the regression is
not necessary (the resulting expression would simply be subsumed by P). This does
not-mean that we never regress predicates through operators where they do not ap-
pear in the add list.. If we are regressing P A Q through an operator where P appéars
in the add list, we must also regress Q through the same operator, even though it
might not appear in the add list..

In many cases the regression of a predicate through an opetator will be equivalent
to the preconditions of the operator with the appropriate variable instantiatiois.
However, there are possible complications. For exainple, suppose we are regressing
the predicate P(z) through and operator and P(y) appears in the deléte list of the
operator, but not in the add list. Then, one of the conjuncts in the résulting éxpression
will be 2 # y, to guarantee that P(z) is fiot deleted by the application of the operator.

We will see later how we can use relaxed predicates to considerably speed up plaii-
ning. We now provide an example to hélp the reader bécome familiar with predicate



14 CHAPTER 2. PREDICATE RELAXATION ..

relaxation. T

2.3 Predicate Relaxation Example

Suppose we have a blocks-world system with the following four operators, where P is
the précondition list, D is the delete list, and A is the add list.

Pickup(x)
P:{Clear(x),Handempty}
D:{Clear(x),Handempty}
A:{Holding(x)}

Putdown(x)
P:{Holding(x)}
D:{Holding(x)}
A:{Clear(x),Handempty}

Stack(x,y)
P:{Clear(y),Holding(x)}
D:{Clear(y),Holding(x)}
A:{On(x,y),Clear(x),Handempty}

Unstack(x,y)
P:{On(x,y),Clear(x),Handempty}
D:{On(x,y),Clear(x),Handempty}
A:{Holding(x),Clear(y)} _.

To simplify the éxample we assume only two blocks A-and B.
The predicates would be relaxed as follows:

Handempty!,, = Handempty v Holding(z) V (Holding(y) A Clear(z))



2.3. PREDICATE RELAXATION EXAMPLE 15

which ¢an be simplified to:

Handemptyl, = Handempty V Holding(z)
which in turn can be reduced to:
Handemptyl, =T

assuming norral domain constraints.
Here we see that Handempty can easily be guaranteed ta hold.
Proceeding,

Clearl,(z) = Clear(z) V Holding(z) V (Clear(y) A Holding(z))

V(On(z,z) A Clear(z) A Handetnpty)

Clear!,/(z) = Clear(z) v Holding(z) V (On(z,2) A Clear(z) A Handempty)

Although it might not be obvious at first glance, using appropriate domain con- .
straints and the fact that we have only two blocks the above formula reduces to:

Clear}e,(ai') =T
Next we relax Holding(z):

Holding!,(2) = Holding(z) V (Clear(z) A Handempty)
V(On(z,y) A Clear(z) A Handempty)

Holding!,(2) = Holding(z) V (Clear(z) A Handémpty)
At the next step we-relax Cledr(z) A Handempty:

Holding?,(z) = Holding(z)V



CHAPTER 2. PREDICATE RELAXATION

((Clear{z) vV Holding(z)) A (Handempty V Holding(z)))

Note that unlike our independent derivation of Clear],; we could not use.the .

preconditions of the Unstack operator, since Unstack clobbers Handempty.

We can simplify:

Holding?,(z) = Holding(z) V Clear(z)

Holding? (z) = Holding(z) V Clear(z) V (On(z,2z) A Clear(z) A Handempty)
Using the fact that we have only two blocks this reduces to:
Holding?,(z) =T
All that remains is to_relax On(z,y).
On, . (z,y) = On(z,y) V (Clear(y) A Holding(z))
As beft;re we can replace Clear(y) A Holding(z) by Holding(z).
Ont,(2,y) = On(z,y) V Holding(z)
Then, relaxing Holding(z),
On?,(z,y) = On(z,y) vV Holding(z) vV (Clear(z) A Handempty)
Relaxing Clear(z) A Handempty,

Ond,(z,y) = On(z,y) V Holding(z) V (Clear(z) A Handernpty) vV Holding(y)

Ol (z,y) = On(z,y) V Holding(z) V (Clear(z) A Handempty)
VHolding(y) V (Clear(y) A_Handempty)
In our simple two blocks domain this reduces to:

Onfy(z,y) =T



2.4. DISCUSSION OF PREDICATE RELAXATION 17

2.4 Discussion of Predicate Relaxation

It should be obvious that if P%; holds in a state, there is a plan which can achieve P
in n steps or less. The plan is just the séquence of operators through which P was
regressed to arrive at the expression that holds in the current state. However, bécause
we likely simplified the regressed exptession along the way, we do not necessarily know
what this plan is. We just know that there is indeed such a plan. By the definition of
regression, this expression being trué guarantees that P will hold after the application
of that sequence of operators.

If P%, holds, but Q7,; does riot, one can say that P2, is more of a “detail” than
Q7,;, since P can be achieved more easily than Q. Predicate relaxation provides a
gradual widening of the states in which a predicate holds. In ABSTRIPS, a predicate
can either hold in those states in which it was intended to hold, or, when its criticality
valueis less than the current threshold, hold in all states of the domain. This change in
the semantics of a predicate can be quite sharp. Predicates abstracted.with predicate
relaxation, however, avoid this semantic cliff, since the set of states in which they
hold is gradually enlarged at each relaxation level.

Unlike ABSTRIPS, the abstiaction hierarchy is computed automatically. In AB-
STRIPS the_user had-to supply a partial order of predicates which was used to
compute criticality values. It is not.always obvious what this partial order should be.

Also, besides the semantic cliff that ABSTRIP’ method suffers from there is a
more subtle problem.. Because of the way criticality values are computed by AB-
STRIPS it often happeéns that one predicate will have different criticality values in
the preconditions.of different operators. For example, in the example presented in
[Sacerdoti, 1974) the following opératers are présented:

Gothrudr(R,d,ry)
P:{[6]Type(d,Door),[5)Infoom(R,rx),[6]Connects(d,tx,ry),
[2)Status(d,Open),[6)Type(ry,Room)}
D:{Nextto(R,$1),Inroom(R,rx)}
A:{laroom(R,ry)}



18 CHAPTER 2. PREDICATE RELAXATION

Close(R,d)
P:{[6]Type(d,Door),[5]Nextto(R,d),[5]Status(d,Open)}
D:{Status(d,Open)}

A:{Status(d,Closed)}

In the Gothrudr operator the Status(d,Open) precondition has a criticality value
of 2, whereas in the Close(R,d) it has a criticality of 5. This means that in the same
situation, when planning at a criticality threshold between 2 and 5, ABSTRIPS treats
Status(d,Open) as a detail for one operator, but as an important predicate that needs
to be planned for in another operator. This type of inconsistency does not happen |
with predicate relaxation.

In the next chapter we will have more to say about the differences between plan-
ning with predicate relaxation and ABSTRIPS. -

2.4.1 Context-dependency

It should be clear that predicate relaxation can be used to satisfy our requitement
that the deétailness of a predicate should depend on the situation in which the pred-
icate is being evaluated. Using our previous example of the.bus fare,.at abstraction
level n, we will consider Have(BusFare) to be a detail in any situations.in which
Have? (BusFare) holds. In this mannet, Have(BusFare) will. be considered a de-
tail only in.those situations in which there is a plan.of length n or less to achieve
Have(BusFare). This seems to be a reasonable criterion for determining when a
predicate should be consideréd a detail.

2.5 Summary
We liave introduced predicate velazation, a ricthod for defining hierarchies of predi-

cates. Predicate relaxation is a téchiiique for performing state abstraction. We have

also corapared prédicate relaxation to ABSTRIPS's technique of computing ¢riticality



2.5. SUMMARY 19 .

values. The basic motivation for using relaxed predicates is the contéext-dépendency
of detailness. Using predicate relaxation gives us a means for determining in which
situations a predicate should be considered a detail.

In the next chapter we will see how the hierarchies generated by predicate relax-
ation can be used to significantly improve planning efficiency.



Chapter 3

PABLO

3.1 Introduction

Since the advent of NOAH [Sacerdoti, 1977] much of planning research has concerned
itself with developing representationally powerful planners. Researchers have pro-
duced planners that are quite encompassing in the domiains they can represent, in-
corporating resource-based reasoning, temporal reasoning, and other techniques to
facilitate the encoding of domains. '

NOAH has had a great influence on modern day planning research. Virtually all
subsequent planners employ some.of the techniques introduced in NOAH, the most
distinguishing one being the encoding of plans in procedural nets. Procedural nets
provide a convenient representation for plans. They allow the planner to.represent
plan$ as partial orders, rather than as.linear sequences as had previously been the.
case, which allows NOAH to postponé commitment to any particular action ordering
until absolutely necessary.

One important characteristic of the procedural net is that it éncodes procedural
as well as declarative information. . The procedural data is stored in terins of useér
defined functions (SOUP code functions, in the case of NOAH) for expanding nodes
in the procedural network at the next planning level..

A procedural net is procedural precisely because it not only encodes information
about thé problem at hand, but also because it encodes information on how the

20



3.1. INTRODUCTION 21

problem is to be solved. .

However, with this focus on representational power, there has.also been a shift ...
away from geneéral, domain independent problem-solving. NOAH signaled this shift
by providing no backtracking search capability. Thus, if NOAH mistakenly chose a
wrong operator_with which to expand a subgoal, it had no provision for backing up
and attempting another operator. ...

Because of its lack of backtracking, a plan in NOAH is basically unfolded. from
the operator definitions. It is the responsibility of the user to provide NOAH with
correct and detailed enough SOUP functions so that the planning problem can be
solved without backtracking. NOAH .can be viewed as a programming language for
writing programs that compute plans composed of primitive actions.

It is important to note that NOAH’s lack of a backtracking mechanism, which at
first glance appears to be a serious omission, is closely tied to the planning philoso-
phy embodied in NOAH. Of course, the least-commitment principle embodied in the
procedural net, allowed NOAH to avoid many dead-ends that purely linear planners
would have encountered, thus further reducing the need for a search capability.

However, just as importantly, unlike previous planners, the aim was to provide a
framework wherein the user could apply domain-specific knowiedge to solve complex
planning problems.

NOAH shifted a major part of the problem-solving responsibility from the planner,
where it had previously resided, squarely onto the shoulders of the user. This had the
advantage of greatly enhancing the computational efficiency of NOAH as compared
to previous planners. .

Of course, not all the problem-solving responsibility lies with the user. There is,
after all, much declarative information in the procedural net that NOAH makes use
of. Specifically, aftér each level is expanded a set of critics examines the current state
of the plan and modifies it in case of difficulties, e.g. the-possible clobbering of a
precondition by an actiosi.

It has generally been assumed that this division of labout bétween the domain-
specific SOUP functions and the domain-independent critics provided an adequate

compromiise between the conflicting requirements of completeness and efficiency in



22 CHAPTER 3. PABLO

planning, We will argue that this position needs to bere-examined. We believe there
is still much to be done in the area of developing powerful planners and that it might
be necessary to éventually endow planners with more powerful domain independent
techniques.

This is based on the belief that planners should strive to provide as much problem-
solving aid as possible to the user attempting to solve a planning problem. The more
burden we place.on the encoder of the domain, the less valuable a tool the planner
becomes. Ideally, when faced with a new domain, the user should not have to discover
the efficient algorithms for solving problems in that domain, but should be able to

simply provide the planner with a naive encoding of the domain objects and primitive
actions.

For example, if faced with the Towers of Hanoi problem.for the first time it does
not seem reasonable to expect the encoder of the domain to know about efficient
algorithms for solving the problem. If she did indeed know such algorithms it would
probably be more reasonable to encode them directly in a4 general programming lan-
guage.

Rather, we can expect the encoder of the domain to provide descriptions of the
objects and relations of the domain, e.g.. pegs, disks, clear(disk), on(diskl,disk2),
smaller(disk1,disk2), etc... The only action the encoder is likely to be aware of is the
Move(disk1,pegl,peg2) action, narmely move diskl to .pegl from peg2. This level of...
information is.realistically all that can be expected from.the encoder of the domain.
It is then up to the planner to make use of this domain description to facilitate the
development of plans for solving problems in this domain. .

Clearly, because of its lack of backtracking, NOAH is likely to fail to produce plans
in this domain. Given only the naive encoding of the domain, search is inherently
necessary in arriving «. a solution. Of course, search is not the whole answer. If the
planner merely provides a blind search capability, e.g. complete breadth-first search,
it is not aiding the user of the.system appreciably.

Ther. .ure, it is not simply enough that the planner take responsibility for the
problem-solving in a domain, it must do so in a non-trivial way to be of aid to the
user.



3.1. INTRODUCTION . : 23

Many of the advancements in planning since NOAH have been in the area of
allowing more représentational power by the encoder of the domain, but very few
have been in the area of improving the basic problem-solving capabilities of planners.
Blind search still seems to be the default for most planners. __

3.1.1 Post-NOAH Planners

The next major planner after NOAH was NONLIN [Tate, 1977] developed by Austin
Tate at Edinburgh. NONLIN improved on NOAH in several ways. Unlike NOAH, it
searched the space of partial plans. It also provided a more perspicuous language in
which to represent operators, as well as typed preconditions. However, its search is
blind, making its usefulness somewhat questionable. Tate states [Tate, 1977]:

We expect that the first choice taken should lead to a solution...if
failure occurs with the first plan being considered, our experience is that
backtracking can lead to long searches. _

Unless. the problem domain was encoded.in such a way that the solution ¢ould.
be directly unfolded from the operator definitions, there was a slim hope of finding a
solution in & reasonable amount of time.

SIPE [Wilkins, 1984] represents the state of the art in classical planning. In addi-
tion to the planning features discussed to this point, SIPE extends the plan represen- .
tation.in several.ways. It allows for & deductive causal theory which greatly reduces
the complexity of the operator descriptions. It provides. capabilities for reasoning
with resources, including tifmne. In addition to this it provides a powerful constraint
language which allows it to partially specify objects.

SIPE achieves a high level of efficiency and is the first planner to successfully be
applied to real-world applications [Wilkins, 1988]. However, even SIPE could benefit
from advancements in domain-independent problem-solving techniquesto improve its
search capability, since, as in previous planners, it remains blind, aid is guided to a
large extent by the user defined operators.



24 CHAPTER 3. PABLO

TWEAK, developed by Chapman [Chapman, 1987], is a formalization of earlier
non-linear.planners. Chapman introduces a.sound and complete Modal Truth Crite-

rion for determining the truth of predicates at any point in & non-linear plan. TWEAK

is guaranteed to.find a solution to a planning problemi if one exists._

The above is by no means an exhaustive review. of earlier work .on planning;
just .a selection of some major systemns, chosen to contrast the traditional planning
résearch with our research on PABLO. For a good overview of planning systems see
[Georgeff, 1987, Drummond ard Tate, 1989, Allen et al, 1930].

3.2 Planning Terminology

To facilitate the description of PABLO we will.use the TWEAK terminology. In this
section we present some important definitions. A more extensive description can be
found.in [Chapman, 1987].

A planner is said to be sound if whenever it finds a solution to a planning problem,
the solution plan is a correct plan for solving the problem. A planner is said to be
complete if whenever there is a solution.to a planning problem the planner can find
it. '

At the core of any nonlinear planner is the algorithm for determining the truth of
predicates at a particular point in the plan. The condition under which a predicate is
said to hold is known as a truth criterion. TWEAK introduced the first such criterion,
namely the Modal Truth Criterion. In chapter 9 we introduce a new truth criterion.

Two variables are said to codesignate if they are constrained to always refer to
the same domain object. Similarly, two predicates ar¢ said to codesignate if they are
of the same type and their respective arguments codesignate. For éxample, On(z,y)
and On(v,w) codesignate if = and v as well as.y and w codesignate. -

Each action in .a plan is an instantiated operator.. Each action definés two sit-
uations, namely the situation immediately preceding the action and the situation
immedicately following the action. A plan is a partial order of actions with an initial
situation and a final situation.

A predicate is said to be asserted ini a situation if it codesignates with a member of




3.3. OVERVIEW OF PABLO 25

the add list of the action immediately preceding the situation. A predicate is asserted
in the initial situation if it codesignates with a member of the initial situation. A
predicate is denied in a situation if it codesignates with a member of the delete list
of the action immediately preceding the situation.

A goal is a pair consisting of a predicate and a situation in which that predicate
must hold. An action is said to establish a goal if the predicate of the goal is asserted
in the situation immediately following thé action.

An action is said to clobber a goal if it occurs after the establisher of the goal and
before the situation in which the goal predicate must be true and it denies the goal
predicate.

An action is said to be a white knight if it occurs after a clobberer and before .
the situation in which the goal predicate must be true, and whenever the clobberer
clobbers the goal predicate the white knight establishes it..

This brings us to the notions of necessity and possibility. A plan can generally be
completed in many ways, depending on which temporal and codesignation constraints
are added to it. If a property of the plan holds in all completions we say it necessarily
holds. If it holds in some completions we say it possibly holds. For example, if an
action clobbers a goal in all completions of a plan we say that the action necessarily
clobbers the goal in the plan. If it only clobbers the goal in some complétions of the
plan, we say the action possibly clobbers the goal.

3.3 Overview of PABLO

We can provide more problem-solving capability in a domain-indepéndent planner
and thereby shift the burden of problem solving from the user to the planner, by
analyzing the encoding of the domain before beginning the actual planning process.

At one extreme, the planner could simply generate the whole search space ahead
of time, thus trivializing the planning process. This is essentially the approach taken
in Universal Planning [Schoppers, 1987]. There are several problems in attempting
this, which we shall return to later in this thesis.

Another approach is to employ predicate relaxation. By relaxing predicates in



26 —_— CHAPTER 3. PABLO

the domain, we discover relevant facts about each predicate’s difficulty. This is the
~pproach taken by PABLO.

3.4 Underlying Planning Algorithm

PABLO uses iterative-deepening search [Korf, 1985] coupled with TWEAK’s Modal
Truth Criterion as its underlying planning algorithm. We chose this algorithm pri-
marily because of its provable correctness and completeness. A breadth first imple- .
mentation requires too much space so an itérative deepening approach was adopted. |
See table 3.1 for a high level description of the algorithm.

One thing to note about the above algorithm is that for évery call to plan we only
consider resolving one outstanding goal, even though there might be several which are
unachieved. The reason we can do this, is that if we fail in solving for one goal, trying
to solve for any of the other outstanding goals first can have no synergistic effect in
solving the original goal. This is because the order in which goals are attempted
is irrelevant, as all possible establishers are available to the algorithm at any one
point in the form of opérator templates which we can instantiate into the weakest
form of an action. Adding constraints to an action can never result in the possible
‘establishment of a proposition that could not already be possibly established by the
action as it was first instantiated. Therefore, if we fail to solve an unachieved. goal,
we might as well backttack, since continued work on other goals will ot result in the
possible achievement of the original goal.

For reasons of simplicity we have omitted declobbering by white knight in the
overall control structure. See [Chapmian, 1987] for an extensive discussion of the_role
of white knights in planning. This procedure is complicated and omitting it does not
affect the completeness of the planner. The reason for this is that final plans always
have all their variables codesigniating with exactly one constant. Therefore, a white
knight either asserts the proposition, in which ¢ase we would use it as an establisher,
ot it does not, in which case we can use séparation to declobber.the goal.



3.4. UNDERLYING PLANNING ALGORITHM 27

CallPlan ()
maxdepth « 1
loop forever
plan(0 maxdepth)
maxdepth «— maxdepth + 1

Plan (opcount maxdepth)
g «— any unachieved goal in the plan
if g then
for s one of all possible situatioas that can establish g
constrain s to be before the situation g.p has to hold
for p one of all the predicates asserted in s
add codesignation constraint p = g.p
declobber(g,s,opcount,maxdepth)
remove codesignation constraint p ~ g.p-
remove constraint that s be before the situation g.p has to hold -
if (opcount < maxdepth) then .
for op one of the possible operators that.can establish g
instantiate and insért op into the plan
constrain op to be before the situation g.p has to hold
for p one of all the predicates asserted by op
add codesignation constraint.p & g.p
declobbeér(g,s,opcount+1,maxdepth)
remove codesignation constraint p = g.p)
remove op from plan
else print(plan)
break

Table 3.1: Base Level Control Structure of PABLO



28

CHAPTER 3. PABLO

Declobber (g,establisher,opcount,nmiaxdepth)
clobberer « any step in the plan which clobbers g
if clobberer then

else

constrain clobbérer to be before establisher
declobber(g,establisher,opcount,maxdepth)
remove constraint that clobberer be before establisher
constrain clobberer to be after situation in which g has to hold
declobber(g,establisher,opcount,maxdepth)
remove constraint that clobberer be after
situation in which g has to hold
for p one of the possible predicates asserted by
clobberer which.can deny g.p
add codesignation constraint p % g.p
dec'obber(g,establisher,opcount,maxdepth)
remove codesignation constraint p % g.p

plan(opcount,maxdepth)

Table 3.2: Base Level Control Structure continued.



3.4. UNDERLYING PLANNING ALGORITHM. .... ... 29

3.4.1 Plan Representation

PABLO_uses a modified version of TWEAK’s modal truth criterion during planning.
Its plan representation is based on the TWEAK plan representation. In chapter 7
we will extend this representation to.include hierarchical operators. In_the name of
efficiency some extensions have been provided to the opérator.representation. Specif:
ically, preconditions can be specified so as not to be planned for by PABLO, but
rather, just checked before the application. of an operator. . Further, propositions in
the add list of an operator can be specified to be side effects of the operator and
should not be considered as possible establishers for unachieved goals. Finally, vari-
ables of propositions in delete lists can be specified to be global, resulting in a simple
form of universal quantification. Each.of these extensions is completely optional, but
can.be used to sighificantly improve efficiency.

3.4.2 Relaxation Phase .

Before the planning process begins, PABLO performs a relaxation phase, wherein it
creates the relaxed definitions for the predicates appearing in the postconditions and
preconditions of operators. This need only bé done once for each domain.

The user of PABLO specifies the level to which the predicates should be relaxed.
PABLO creates a relaxation definition for each different type of predicate in the
domain.. This definition is a relaxation schema and is instantiated every time a
predicate is instantiated during planning.

For example, just as was done in the blocks world example of chapter 2, relaxation
scliemas would be created for the predicates Clear(x), Handempty, Holding(x) and
Orni(x,y). Then, during planning, a particular predicate instance, say On(A,B) would
have associated with it an instance of the relaxation schema for On(x,y) where x has
been bound to A, and y has been bound to B.

As was done in the example presented dufing the description of prédicate relax-
ation cofisiderable simplification can be accomplished with the use of doriiain con-
stiaints. We will return to the issué of simplifying predicate relaxation expressions in
chapter 8.



30 CHAPTER 3. PABLO

3.4.3 . Planning Phase

The general idea during planning is that PABLO first considér the most important

predicates, and then considet successively less important predicates. Thig is accom-

plished by associating eath planning level with a relaxation level, and planning with
relaxed predicates of that level. At any particular planning level, any predicate whose
relaxation definition is true at thatlevel is considered a detail and is not specifically
planned for.

The opérator Pickup(x), previously discussed, becomes at level 1,

Pickup(x)
P:{Clear],(x),Handempty’,}
D:{Clear(x),Handempty}
A:{Holding(x)}

When moving down abstraction levels, if newly created subgoals appear in dif-
ferent sections of the plan, PABLO attempts to achieve them independently. The
ratiorale for this being that these predicates were considered “details” at the higher -
level and presumably do not have global consequences. In cases where this assump-
tion fails, the consequences can, of course, be costly, in terms of computation time.
However, in our experiernce the increased efficienicy outweighs.this risk.

The above is accomplished by beginning with the initial situation and any instan-
tiated operators that do not have another instantiated operator necessarily between
the initial situation and itself. PABLO plans for any outstanding preconditions or
goals in this segment of the plan. Once this is done the plan is augmented with
the next set of instantiated operators which do not have another operator which is
necessarily before.themselves. This process is fépeatéd until the final situation is
included in.the plan. Once the full plan has been expanded we can move on to the
next abstraction level.

3.4.4 Truth Critéerion

At the core of any platining system is the procedure for determining the tiuth of
predicates. Because PABLO has a restricted plan répreseitation, the inttoduction of



3.5. EXAMPLES OF PLANNING WITH PABLO 31

abstract predicates complicates this computation somewhat. If arbitrary first order .
sentences were .allowed.in the postcondition of operators, the definition for each.ab-
stract predicate could be included in the initial situation. This rule would then be
propagated to every situation in the plan. No extra mechanism would then have to
be provided in thé planner to deal with abstract predicates.

Due to the restriction on.PABLO’ représentational capability we extend the def-
inition of asserts to include abstract predicates. In.a base level system, a predicate is
asserted in a particular situation if one of two conditions holds. If the situation is the
initial situation then the predicate must be contairied in the situation description.
Otherwise, the predicate must be contained in the add list of the operator imme-
diately preceding the situation. We extend these conditions as follows in order to .
accommaodate for relaxed predicates.

Definition 2 A relazed predicate PR, is asserted in situation s iff T(s) b PR, where.

el rels
T (s) is the theory consisting of the base level predicates which are necessarily true in
s.

The computation of the preaicates that nécessarily hold in s is then done with
TWEAK?’s modal truth criterion. This criterion is somewhat conservative in deter-
mining the truth of abstract predicates but has proven quité adequate in practice.
We shall later define a new truth criterion which i valid for a more expressive plan
réprésentation.

3.5 Examples of pianning with PABLO
3.5.1 Towers of Hanoi

A well known problem with many iiiherent abstractions is the Towers of Hanoi piob-
lem. The operator given to PABLO is the following:-
Move(x,2)

P:{Simaller(x,z),Movable(x),0n(x,y),Clear(x),Cleat(z)}
D:{On(x,y),Clear(z)}



32 CHAPTER 3. PABLO

Figure 3.1: Towers of Hanoi

A:{On(x,z),Clear(y)}

See figure 3.2 for a trace of PABLO solving the three disk Towers of Hanoi problem.
The plan at the highest level of abstraction consists of Move(C,P3). At this level all
its preconditions are satisfied (Clear?,(C) is satisfied since it can be achieved in two
steps). .

Move{C,P3)

Abstraction Level 2

M;ave(B.P2j AMé\‘re(C,l"3) = - MOVC(B»CE)

Abstraction Level 1

ove( P9 | Move(BP2) 1| Move(a.B) || MorelCPa)l Movera 1] MoveB.c) H MoveaB)

Bai¢ Level

Figure 3.2: Trace of PABLO solvifig the Towers of Hatioi..



3.5. EXAMPLES OF PLANNING WITH PABLO 33

When we move down to the next.abstraction level Clear?,(C) becomes Clear),(C)
which is not satisfiéd in out.initial state, since we cannot clear C in one step. PABLO
therefore plans to achieve Clear],(C) by adding the action Move(B,P2) to_the plan. In
doing so it undoes On}y (B, C), which PABLO then plans to réachieve, using the action
Move(B,C). At this point the plan at.the first level of abstraction is complete.since
all the first level relaxations of the goals and préconditions are sctisfied. Planning is
then completed at the base level using the original predicates of the domain.

In this case PABLO has discovered and made use of the inherent abstractions
in the domain. Including the time it takes to generate the relaxation definitions,
which in this example is negligible, PABLO solves the problem over 100 times faster
using the abstractions than without using them. In chapter 5 we will present more
comprehensive empirical results of PABLO.

3.5.2 Comparison with Other Planners

All planners of which we are aware, with the exception of ABSTRIPS, would have to
révert to a full backward search of the state space if given this example.

Plannets using operator abstraction can reason abstractly about this problem only
if new operators are defined by the encoder of the domain, a.task which might be
both time-consuming and prone to errors. As we have pointed out earlier, in this
reséarch we are striving to provide powerful problem-solving capabilities given simple
encodings of the domain.

ABSTRIPS assigns the following criticality values to the predicates in the domain:
Move(x,z)

P:{{3}Smaller(x,z),{3}Movable(x),{2}On(x,y),{2} Clear(x),{2} Clear(z)}___
D:{On(x,y),Clear(z)}
A:{On(x,z),Cleai(y)}

ABSTRIPS creates only one level of abstraction in this domain. When solving the
problem, after finishing the abstract level, the plan consists of orie action Move(C,P3).
Although this is of some aid in developing the plan at the base level it is not as useful
as PABLO’s hieraichy.



34 CHAPTER 3. PABLO

ABSTRIPS’s hierarchies are domain-depéndent but probléem-independent. The
number of different criticality values, and therefore the number of abstraction levels,
of ABSTRIPS is constrained by the number of different predicates of the domain. For
the 4 disk Towers of Hanoi, ABSTRIPS still has only one abstraction level, whereas
PABLO geneérates 3 abstraction levels. In general, for the n_disk Towers of Hanoi
problem, PABLO. generates n — 1 abstraction levels, whereas ABSTRIPS still creates
only one abstraction level.

3.6 Blocks World.. ..

3.6.1 Example Problem

4

B

B <
B B

[l o] [el =

Initia) State Goal

Figure 3.3: Blocks World ___

This version of the blocks world has two operators:

PUTON(x,y) TABLEOPR(x,y)
P:{Clear(x),Clear(y),On(x,z)} P:{Clear(x),0n(x,y)}
D:{Clear(y),0On(x,z)} D:{On(x,y)}
A:{Clear(z),0n(x,y)} A:{Clear(y),0n(x,TABLE)}

The goals are On(A,B), On(B,C), On(C,D), and On(D,E). PABLO begins plan-
ning at absttaction level 2. See figure 3.4 for a trace of PABLO solving this problem.

At abstraction level 2 the only goal not satisfied is On?,(C, D). PABLO plans to
achieve this goal using the action Puton(C,D). All its preconditions_are satisfied at
this level of abstraction.

At abstraction level 1 the precondition Clear](C) is not satisfied so PABLO adds



3.6. BLOCKS WORLD 35

the action Tableopr(B,C) to achieve it,_It then reachieves Onl, (B, C) by adding the
action Puton(B,C).

The plan is then completed at the base level using the base level predicates. .
Notice that the resulting plan is nonlinear. PABLO solved this problem 130 times
faster with the abstractions than without them, including the time to génerate the
predicate relaxation definitions.

Puton(C,D)

Abstraction Level 2

Tableopr(B,C) Puton(C,D) Puton(B,C)

Abstraction Leve] 1

Puton(D,E)

Puton(C,D){=——{ Puton{B,C) {={ Puton(A,B)

Tableopr(4,B) H Tableopt(B,C)

Baie Level

Figure 3.4: Blocks world trace.

3.6.2 Another Example

The following éxariple shows the effect of nonlinear plans at higher levels of abstrac-
tion. See figure 3.5 for an illustration of the problem.



36 SR S CHAPTER 3. PABLO

oG n
A v :
Il B Hom
Initial State Goal .

Figure 3.5; Blocks World Problem.

The goals of the problem are On(A,D) and On(C,F). A trace of PABLO solving
this problem. can be found in figure 3.6. At abstraction level 2 PABLO satisfies the
goal On?,(A,D) by introducing the action Puton(A,D). Its preconditions and the goal
On?4(C,F) are now satisfied at this level of abstraction.

At abstraction level 1 the preconditions Clear}y(A) and Clear}y(D) of the ac-
tion Puton(A,D) are no longer satisfied. PABLO at this point inserts the actions
Tablecpr(x,A) and Tableopr(y,D). There is no reason to order these actions so they
remain unordered. At this point the first half of the plar is completed. PABLO now
considers the second half which includes the final situation. This has the effect of
introducing the goal Only(C,F) to this level. However, this goal is satisfied at this
level of abstraction so no action is inserted to achieve it.

At the base level PABLC proceeds in three steps. . The first step considers the
preconditions to the two actions Tableopr(x,A) and Tableopr(y,D). PABLO first con-
siders the precondition On(x,A), which is not satisfied at the base level since x is a
variable. The variable x is then instantiated with Ou(B,A). At this point Clear(B) is
considered since it is not satisfied at the base level. This is satisfied by inserting the
operator Tableopr(C,B) to the plan. An analogous procedure ensues to satisfy the pre-
conditions of Tableopr(y,D), resulting in the insértion of the operator Tableopr(F,E)___
and the.instantiation of vafiable y with block E.

At this point this segment of the plan is fully satisfied and the preconditions to
operator Putoni(A,D) are how considered. However, these are all satisfied at the base
level. Finally, the goals of the final situation are considered. The remaihing goal
On(C,F) is. unsatisfied at the base level, so the operator Puton(C,F) is inserted. Its
preconditions of Clear(C) and Clear(F) can be satisfied by constraining the operators



3.6.-BLOCKS WORLD 37

Puton(A,D)
Abstraction Level 2
Tableopr(x,A)
Puton(A,D)
Tableopr(y,D)
Abatraction Level 1
Puton{C,F)
Tableopr(F,E)
Tableopr(E,D)
Tableopr(C,B) Puton(A,D)
Tableopr(B,A)
Base Level

Figure 3.6: Nonlinear blocks world trace.

Tableopr(F,E) and Tableopr(C,B) to appear before Puton(C,F). At this point the
plan is complete at the base level and PABLO terminates. -

It should be noted.that because of the partitioning of the plan at each level into
self-contained subproblems that the possibility of suboptimal plans is introduced. In
this example, PABLO produces a plan that is one step longer than optimal, since it
could have satisfied the goal On(C,F) by the operator Puton(C,F) and at the same
time satisfied the precondition Clear(B), thus obviating the need for the operator
Tableopr(C,B). The reason PABLO did not recugnize this possibility is precisely be-
cause it did not work on the goal On(C,F) until the base level. When the action



38 CHAPTER 3. PABLO

Tableopr(y,D) was inserted at abstraction level 1, Onl,(C, F) was satisfied so there

was no need to consider the action Puton(C,F), although it would have resulted in .

a legal plan at that level of abstraction. This is an example of the trade-off between
efficiency and optimality that planning with relaxed predicates introduces.

3.7 Extensions to Predicate Relaxation

3.7.1 Associating Costs with Operators

One way in which predicate relaxation can be extended is to associate costs with
operators and define predicate relaxation levels in terms of particular costs and not
simply in terms of the number of operators.

Before we elaborate on this idea, it is important to be aware.of two distinctions.
First, basic predicate relaxation provides a measure of how difficult it will be to plan
to achieve a certain predicate. It does not provide a measure for how difficult it will
actually be for the executor of the plan to achieve that predicate. The reason the
former measure is of value to us, is that it is planning time we are trying to minimize.
Therefore, it seems reasonable, to concentrate on the predicates for which a simple
plan does not exist.

The second distinction is that predicate réelaxation relaxes predicates over uain-
stantiated operators, i.e. over the operator templates.. Therefore, if we are interested

in the cost associated with executing an operator.it might not be available. For ex-

ample, if in our domain we have a drive operator, the cost associated with it will not
be known until it is instantiated, and might vary considerably. The cost.of driviag
two miles to school is significantly different from driving across.the country.

Given these distinctions we can generalize predicate relaxation to relax predicates
over operator templates with costs associated with them. For exarnple, in a travel
domain, the highest cost might be associated with the fly operator and the lowest
with the drive operator._Then, instead of relaxing predicates in terms of the number
of operators necessary to achieve them, we relax in terms of cost threshold. e.g. In the
travel domain, at a particular relaxation level, we would allow more drive operators



3.8. CONCLUSION 39

in.a relaxation of a particular predicate than fly operators. This would have the effect

of introducing the fly operators into the plan at a higher level of abstraction than the
drive operators.

3.7.2 Limit Relaxation Operators

Another possible extension is to limit the regression of predicates.during the relaxation
phasé to a subset of possible opérators, thus creating smaller relaxation definitiors.
For example, we might limit the relaxation definitions to only include commonly used
operators. Also, certain operators might achieve a predicate as a side effect. We might
limit the relaxation definitions to only those operators which have a predicate which
is being regressed as a main effect. We will see later, in chapter 8 how this and other

techniques can be used to significantly reduce the size of the predicate relaxations.

3.7.3 Relaxation over Hierarchical Operators

Ia chapter 8 we will see how we can extend the PABLO operator representation to
include hierarchical operators. It will then be possible to plan using both types of
abstractions. We will give an example where it will be desirable to relax predicates
over hierarchical operators, so there is no longer a one to one correspondence between

the relaxation level and the number of primitive actions over which we regress.

3.8 Conclusion

We have presented PABLO, a non:linear hierarchical planner that automatically gen-
erates abstraction spaces using predicate relaxation. PABLO is able to solve some
problems, e.g. Towers of Hanoi, making full use of the abstractions inherent in the do-
main, something which previous planners could not. The resulting abstraction spaces
can gréatly increase planning efficiency. Predicate relaxation has several advantages
over ABSTRIPS’s abstraction technique. It is fully automated, it provides a gradual
abstraction of predicates, and the number of abstraction levels can be tailored to the

particular problem to be solved.



Chapter 4

Complexity Analysis

4.1 Introduction

We might ask what we can gain by using predicate relaxation. Korf [Korf, 1987],
and later Knoblock [Knoblock, 1990] have shown that planning with abstractions can
reduce worst-case planning complexity from exponential in the length of the resulting
plan, to linear in the length of the plan.

In this chapter we review this work, and then show a complexity analysis of
plannifig with predicate relaxation.

4.2 Previous Work

One of the first analyses of abstraction was made by Korf.[Korf, 1987]. He was able to
show that with a properly constructed abstraction hierarchy it is possible to reduce
planiing time from exponential_-to linear complexity in the length of the resulting
plan. However, in the context of traditional planning, the construction used by Korf
is somewhat non-standard in that it assumes that if there.is a. path between. two
states at a high level of abstfaction, we automatically know what the path is-at a
lower level of abstraction. In hierarchical planning this is normally not the case, and
we must generally plan at the lower levél in order to determiné the lower lével path.
The upper abstraction levels provide the lower levels with islands which guide the

40




4.3. COMPLEXITY ANALYSIS 41

planning process.

Knoblock [Knoblock, 1990] has analyzed abstraction in planning without this as-
sumption, showing again that it is possible to.reduce worst.case planning complexity
from exponential to linear in the length of the final plan. In our analysis of planning
with relaxed predicates we make useé of this result.

4.3 Complexity Analysis

4.3.1 Planning at one level

We will define P(l) to be the worst case complexity of finding a plan consisting
of 1 actions. .In the case of a state-space planner P(l) = ¥} , &, where b is. the
branching factor of the state space. This is the model used by both Korf [Korf, 1987]
and Knoblock [Knoblock, 1990]. However, most planners are plan-space planners
[Sacerdoti, 1977, Wilkins, 1984, Chapman, 1987, including PABLO. Computing the
worst case complexity of a plan-space planner is still an open problem, although it is
likely to be at least exponential in the length of the resulting plan.

See figure 4.1 for an illustration of a.planner planning hierarchically. The branch-
ing factor corresponds to the-number of subproblems that each level generates at a.
lower level. In the figure this branching factcr is 2. We refer to this branching factor
of the abstraction space as c. If the final plan is of length [, the height of the tree will
be log, .

The complexity of planning using n levels of abstraction, assuming the complexity
of planning does not.vary with the abstraction level is -

P(c) + cP(c) + EP(c) + ... + %! P(c)

where c is the branching factor .of the abstraction space.

However, if we want to compute the complexity of planning with relaxed predicates
we need to take into account the greater.amount of time it takeés to determine the
truth of a predicate at a high level .of abstraction.

As we relax a predicate from. one level to another we disjoin the predicate with its
regression through each operator in the domain. There might actually be more than



42

CHAPTER 4. COMPLEXITY ANALYSIS

/

2 N /. N
L Jel lo o == W I = |

L,

L ]

Figure 4.1: Abstraction Space



4.3. COMPLEXITY ANALYSIS ' 43

oné regressed expression for a particular operator since.the predicate might match .
more than one predicate in the.add list. If we have o opérators in the domain, and at.
most $ prédicates in the add list, each predicate’s regression can consists of at most
os conjunctions Therefore, if a particular ¢onjunction consists .of p predicates, the
resulting regression will consist of at most osp ¢onjunctions.

Notice that as. we proceed. with.the_regressions from level to level that the size
of the conjunctions will increase, assuming we do not perform simplifications. If
we take d to be the maximum size of any precondition of the operators, then the
maximum nhumber of predicates at regression level n is bounded by nd.! Note that
the size of the conjunction might actually be larger since we might generate equality
and inequality predicates. However, these are simply passed from level to level and
do. not generate any new regressed expressions. Therefore, at relaxation level n the
number of new.conjunctions generated by regressing a conjunction at level n — 1 is
bounded by os(n — 1)d.? If at level n — 1 we have c,-; conjunctions, at level n we
will have at most os(n —.1)de,.; conjunctions. Therefore, at level n, the number of
conjunctions is bounded by (osd(n — 1))*. Renaming osd to be & we get (k(n ~ 1)),
For simplicity of exposition we will use the weaker bound of (kn)* which is valid for
n > 0. For n = 0 there are only individual predicates so the bound is 1.

Given that the number of conjunctions in a relaxed predicate is bounded by (kn)"
we must also establish the complexity of computing the truth of each conjunction.
We set z to be the maximum number of predicateés in a particular situation. In the
worst case, we might have to try every possible instantiation of each. predicate in a
conjunction-of length p which takes zf. Since the maximum number of predicates
ift a conjunction that need to be checked in a situation (i.e. not the equality and
inequality constfaints) is bounded by dn at level n this becomes 29", The equality
and inequality constraints-can each be checked in constant tiine and their number is
bounded by O(n?).2

i what follows we assume n > 0.

*This is only valid for n > 1

3This is becduse at level n, the iumber of-new equality constraints generated by regressing a
conjuriction from level n — 1 is bounded by fd(n ~ 1), where f is the maximufi size of the delete list
of any operator, afid d(n — 1) is the maximum nuriber of nonequality prédicates in a conjunction at
level n = 1. The expiession Y i, fd(i = 1) is bounded by &n? for sorie .



44 CHAPTER 4. COMPLEXITY ANALYSIS

Therefore, thé complexity of computing the truth of an abstract predicate at
abstraction level n is O(2%%(kn)"). Simplifying we get O((2%kn)") which is O((Kn)")
for K = 29k,

Given this, we can now derive an expression for the complexity of planning with
relaxed predicates.

O ((Kn)"P(c) + (K (r = 1))"*P(c) + ... + " P(c))

We ¢an write the above as

0 (c"P(c) + i([\’j)"c""'li’(c))

i=1

Moving the constants out of the sum we get

0 (P(c)c“(l + i(Kj/c)" ))

j=?

The sum. is bounded by 1 + (¢gn)* for some g.

O (P(e)e™(1 + (9n)"))
Simplifying

O (P(e)(c" + (cgn)™))
Renaming cg to G and noting that n is log.l we have

O (P(c)(c"®! + (Glogcl)'os<'y)
Which is equivalent to
%, ( P(c)(1 + [logeG llogelogcl))

Which can be simplified to

O—(P(c)(l + 1109¢G+lagclop¢l)) .



4.3. COMPLEXITY ANALYSIS 45

By noting that G and c are constants and rehaming log.G to y this reduces to

0 (I + Iv.-{-logclogd)

The expression y + log.log.l grows very slowly and is therefore very ¢lose to being
a constant, so the complexity has been reduced to nearly polynomial in the size of the
final plan. It should be noted that if we can guarantee that thenumber of conjunctions
at each abstraction level grows exponentially, as opposed to being bounded by (kn)*,
we can reduce the planning complexity to polynomial in the length of the final plan.
As we shall see this occurs in several domains in which we test PABLO.

Suppose, for examiple, that we bound the maximum size of any conjunction in
the relaxation expression to e. Then, the maximum number of conjunctions at level
n is bounded by 3% ,(ose)’, where we recall that o is the number of operators in
the domain and s is the maximum size of the add list. The maximum number of
conjunctions in a relaxation expression at level n is therefore bounded by O((ose)?).
We refer to the constant ose as m. Determining the truth of a conjunction in a
situation with a maximum of z predicates is bounded by z° which is a constant.
Therefore, the complexity of determining the truth of a relaxed predicate at level n
is bounded by Q(m"). '

Our expression for the cost of planning now becomes

O (m"P(c) + em™ " P(c) + ... £.<*P(c))
We can write the above as
§=0

0 (zn: mi c*~ P(c))

Moving the constants out of the sum we get

0 (P(c)c" i(m/c)f)

J=0

Solving the suin we atrive at

O (P(c)e*((m[c)™*! = 1)/((m[c) - 1))



46 CHAPTER 4. COMPLEXITY ANALYSIS

Simplifying
O (P(c)(m™! = &) /(m ~ ¢))

But n is log.l so we have

0 (P(C)(ml-{-logJ _ 1+loccl)/(m _ C))

Which is equivalent to
0 (P(c)(mls™ = cl)/(m - c))
Since ¢ is a constant this becomes
O ((mi'#em — cl)/(m = c))

This reduces to O(I¥) where & = max(1,log, m).

Therefore, if we can bound the growth of the relaxed expressions to be expo-
nential in the number of abstraction levels we can reduce planning complexity from
exponential to polynomial in the length of the final plan.

4.4 Discussion

As we have seen, it is possible to reduce exponential planning time to nearly polyno-
mial in certain circumstances. However, this is only. the.case if ¢ertain assumptions
we have made along the way hold. First, it must be the case that there is no back-
tracking across abstraction levels. Second, withirt an.abstraction lével, there must be
no backtracking across the subproblems of that abstraction level.. Each subproblem
must be solved indepenidently of the others. Third, the length. of the final plan of . .
~ the abstraction planner must be the same as the length of the plan found by the
non-abstracting platner. Finally, there must be a uniform branching factor of the
abstraction space. If any of these assumptions fail, the analysis no loniger holds and
the plarning reverts to possibly exponential complexity. Note that these are the same
assumptions that Knoblock makés in his compléxity analysis [Knoblock, 1990).



4.4. DISCUSSION 47

As we shall see in the next section, in practice these assumptions generally hold _ = _
fairly well for the domains we have attempted. The more amenable a domain is to
being abstracted, the better these assumptions hold.

Furthermore, the complexity of planning grows with the size of y. It is therefore .
in our interest to reduce the size of the relaxed predicates as much as possible to
reduce the time to compute théir truth value. This can be done by simplifying, as
well as invoking domain constraints to rule out impossible expressions. Evén though
theoretically the complexity is considerably imptroved when using relaxed predicates,
in practice it is important that they not become unwieldy, since this might result in
an impractically large constant in the complexity formula. We will Lave more to say
about this in future chapters.



Chapter 5

Empirical Analysis

5.1 Introduction

In this chapter we present empirical results of applying PABLO to four domains.
In each of the domains we compare the performance of PABLO without relaxed .
predicates to PABLO with relaxed predicates. The domains we test PABLO in are
Towers.of Hanoi, Blocks World, Robot World, and the Eight Puzzle.

From our theoretical analysis we should expect potential gains in planning ef-
ficiency when applying predicate relaxation. As we shall show, this is indeed the
case. .

The data presented in this chapter are from an. implementation of PABLO on
a Symbolics 3620, under Genéra 7.1. It should be noted.that very little optimiza-
tion was performed on PABLO. The numbets should sérve as a. means of evaluating
the usefulness of predicate relaxation, not as a testament to the ultimate speed of
planning.

5.2 Towers of Hanoi

To shiow the power of using predicate relasxation in the Towers of Hanoi domain, we
generated seven problems in the 3 disk problem, each successive problem requiring
a solution with a length of one mrore operator than the previous one. We ran the

48



5.3. BLOCKS WORLD 49

Figure-5.1: Towers of Hanoi

problems on PABLO with predicate relaxation and without. A plot of the respective
planning times can be seen in figure 5.2.

As can be seen from the graph, the time it take PABLO to find a solution when
using predicate relaxation grows linearly with the number of operators in the plan.
Without the use of predicate relaxation the running time grows exponentially. These
results conform to our theoretical analysis of predicate relaxation. Notice that each
of the assumptions of the complexity analysis holds in this example: no backtracking
across abstraction levels; no backtracking across subproblems; the optimal solution
is generated; and a uniform abstraction:space branching factor. This results in the
utility of the relaxed predicates being maximized in this example.

The Towers of Hanoi is in some sense the canonical example for testing reasoning
with abstraction, and the gains seen therein are therefore unusually large. Any system

that reasons with abstractions should be able to show similar gains for the Towers of
Hanoi.

5.3 Blocks World —

PABLO was tested on every distinct fout-blocks problem. The optimal solution length
of the problems range from 1 to 6 steps. We otdered the problems according to the
optimal solution length, and then averaged the titne to solve the problems of each
length. This was done both with the use of relaxed predicates, as well as without
their use. The results are presented in figure 5.3. - ..

As can be seen we see significant speedups in the blocks world as well.. It should
be noted that the optimal solution was not always discovered when using the relaxed



50

CHAPTER 5. EMPIRICAL ANALYSIS

Towers of Hanoi

4 Without Abstractions

T With Abstractions

Operators

Figure 5.2: Running times of PABLO for the Towers of Hanoi (in seconds).



5.3. BLOCKS WORLD 51

Blocks World

1200 T
1000 +

800 1

& Without Abstractions

T With Abstractions

600 -

400 1

200 T

1 2 3 4 5 6
Operators

Figure 5.3: Running times of PABLO for the Blocks World (in seconds).




52 CHAPTER 5. EMPIRICAL ANALYSIS

predicates. Out of 223 problems, PABLO generated plans that were one step longer
than optimal when using abstractions 15 tirnes. No other suboptimal plans were
generated. -As we.have pointed out earlier. this is one of the tradeoffs that is made
when using abstractions, namely optimality for efficiency. In general, we believe this
to be a worthwhile tradeoff.

The. gains i the blocks world were not as spectacular as those in the Towers of
Hanoi. This is because thé blo¢ks world is not as amenable to abstraction as the

Towers of Hanoi. It is interesting though that significant gains were still observed.

5.4 Robot Domain

The third domain tried was the robot world domain similar to that used by STRIPS
and ABSTRIPS. See figure 5.4 for a typical example. A problem in this domain might
involve moving the robot from.room G to room A and also push two boxes next to
each other. A plan for solving this problem might involve opening doors and pushing

boxes from one room into another. Typical operators for this domain can be found

in. chapter 8.
T =< ¢

o~
R -
l

O
; O

G

Figure 5.4: Robot World Domain

Random problems were generated and ordered according to their optimal solution
length, as in the blocks world. The times to solve problems of each solution length



5.5. EIGHT PUZZLE 53

Robot World

1400 ¢
1200 ¢+ , / -
1000 +

800 + & Without Abstractions

600 + 4 With Abstractions

400 T

200 7

Operators

Figure 5.5: Running times of PABLO for the Robot World (in seconds).

were averaged with and without using predicate relaxation. The results can be seen
in figure 5.5.

5.5 Eight Puzzle

The fourth and final domain in which PABLO was tested was the eight puzzle. This
puzzle entails sliding eight tiles on a square grid, where there are nine locations.
Figure 5.6 shows. a typical initial state and goal configuration for the eight puzzle.

As in the previous two domains we ordeéred the problems according to the optimal
solution length and averaged the times to solve the problem with relaxed predicates
and without. The results can be seen in figure 5.7.



54 CHAPTER 5. EMPIRICAL ANALYSIS

4 | 7 6

Initial State

1 2 3
4 5 6
7 8

Goal

Figure 5.6: Eight Puzzle
5.6 Discussion

As can be seen from the empirical results, PABLO improved its performance signifi-
cuntly with the use of relaxed predicates. The only drawback was a slight overhead
on easier problems, and the possibility of suboptimal soluiin=s,

It should be noted that all the domains in which we have tested PABLO are so-
ralled toy domains, i.¢. they are unrealistically simple. The reason this was.necessary
is that the underlying planning algorithm used by PABLO, due to its completeness,
is inherently-slow, and ill suited to real world tasks. As we have explained earlier,
there are good reasons for using an underlying algorithm that is complete when
experimenting with abstractions. With a completeé planner it is much easier to gauge
the effects introducing abstractions has on the planner. It is of great interest to see

if the ideas scale up to real world pioblems.



5.6. DISCUSSION 55

Sliding Puzzle

3000

2500 ¢

2000 A

& Without Abstractions.
1 With Abstractions

1500 1

1000 1

500 T

1 2 3 4 5 6.
Operators

Figure 5.7: Running times of PABLO for the Eight Puzzle (in seconds).



Chapter 6

Using Abstractions to Achieve
Reactivity

6.1 Introduction __

There is a growing body of research concerned with tackling the problem of planning
in unpredictable, uncertain, and time stressed environments. One of the oft cited
shortcomings of the classical planning approach is that it assumes a benign envi-
ronment, of which.the planner has complete knowledge,. nothing untoward happens.
during execution and the plannér has virtually infinite time in. which to plan. As.a
result, most of the new approaches have eschéwed classical techniques in favor of more
radical approaches. We will present a brief overview of some of the main techniques
proposed to deal with more complex environmeénts. ...

6.1.1 Universal Plans

Schoppers [Schoppers, 1987] has proposed that rather than plan, an agent should use
Universal Plans iu unpredictable, time stressed environiments. A Universal Plan is
a function from seénsor inputs to actions which computes the appropriate action to-
perform in a situation. Thus, the agent has a precomputed action for every possible

56




6.1. INTRODUCTION 57

situation it.can find itself in. One way to store such a universal plan is as a deci-
sion tree. .Clearly, having such an action cache guarantees very fast response time.
However, as we shall discuss later there are some problems with it.
on(a,b) ?
T) at(top) ¥
T) NO-OP
P) -holding(a) ?
T) RAISE
. F) OPEX
F) clear(d) ?
T) holding(a) ?
T) over(d) ?
T) LOWER
F) at(rop) ?
T) LATERAL
. F) RAISE
. F) ([subplan to GRASP a]
F) [sudplan to CLEARQFF b]

Figure 6.1: A piece of a Universal Plan represented as a decision tree

In figure 6.1 we see a Universal Plan for guaranteeing that On(a,b) holds. The
plan is represented as a decision tree. Each condition in the tree is tested until a leaf
is.reached. The leaf specifies the appropriate action t6 perform.

6.1.2 Action Nets

Nilsson has. proposed Action Nets as an architecture in which to implement reactive
systems [Nilsson et al, 1990]. An.action net is a network of units, each of which has
some inputs (preconditions, a trigger, and a goal), and one output. The output is
connected to another unit or to a_switch of somie kind which activates an action in
the external world. As with the prévious approaches an action network guarantees
very fast response times. Furthérmore, there are facilities for dynamically expanding
the network at run-time, a feature other approaches lack. But, to date, it is not cleat
how action nets might interface with an automatic planning system.

6.1.3 Situated Action Rules

Agre and Chapmian [Agre and Chapman, 1987 have developed Pengi, a program de-
signed to play the Pengo video game. This game requires quick response times. Pengi,



58 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

unlike_a Universal Plan, is not purely functional, but retains some state_in its “vi-
sion” system._Even with relatively simple rules, quite complex playing behaviour.
is achieved by Pengi. For a discussion of the differences between Pengi and other
reactive approaches see [Chapman, 1989).

6.1.4 Subsumption Architecture

Brooks [Brooks, 1986] proposes the subsumption architecture for controlling an agent.
The main idea in this proposal is to organize the agent vertically according to levels
of task-behaviors, with higher levels performing more complex tasks. When a higher .
level completes its computation it can subsume all lower levels. Presumably, higher
level computations are on the. average more time consuming. When pressed for time,
the agent uses the result of its lowest level behaviors. However, if given more time,
one of the higher levels can subsume the lower levels with an action of higher quality.

This is by no means an exhaustive listing of the approaches proposed for reac-

tivity. Other interesting ones include [Rosenschein and Kaelbling, 1987, Firby, 1987,
Drummond and Currie, 1988].

6.1.5 Discussion

We will take the liberty of referring to the above approaches as reactive planners.
Ginsberg [Ginsberg, 1989] points out several serious problems. with reactive plans.
The most serious of the problems is that the size of reactive plans grows exponentially
with.the size of the domain. .Although it remains to be shown, it is likely that the
domainis which Al concerns itself with will be complex énough that reactive plans will
grow prohibitively latge.

It seems clear that some amount of run-time inferénce is.nécessary for any agent
to act successfully in an envirofiment. However, it is also necessary to provide some
mechanisms for reactivity, for situations where there simply is no time for complex
deductions.



6.1. INTRODUCTION 59

6.1.6 Classical Approaches to Reactivity

Suppose a planner is given the following problem to solve (see figure 6.2 for an illus-
tration of the problem.)

a
BB [ ¢
5] e} . B
1: itial State Goal

Figure 6.2: Planning Problem

We are given the following two operators: .

PUTON(x,y) TABLEOPR(x)
P:{Clear(x),Clear(y),On(x,2)} P:{Clear(x),0n(x,y)}
D:{Clear(y),On(x,z)} D:{On(x,y)}
A:{Clear(z),0n(x,y)} A:{Clear(y),On(x,TABLE)}

Using the classic non-linear .planning'metho.d. a trace of the plan at various stages
of development might look as in figure 6.3.

One notable feature of this trace is that until the final plan is produced the classical
planner is not aware of any executable actions to perform in the initial state.. The
actions Puton(B,C) and Puton(C,D) are not. directly executable in our initial state.
Should the planneér be interrupted at any time during planning with the need to start
executing immediately it would not liave a reasonable action to perform.

The problem is that the classical planning approaches have invariably beén back-
ward chaining. This is a perfectly reasonable strategy given that in most planning
domains the branching factor is considerably reduced when reasoning from the goal
back to the initial state. However, it has the di .wback that until the final plan has
been developed, there is no guarantee that the plan will actually be applicable in the
initial state.

This is one reason traditional planning methods have generally been regarded



60 . CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

Puton(B,C) >
Putén(C,D) t* '

Tableopr(A)

Puton(B,C) Puten(A,B)

Tableopr(D) P'utqn(C,D)

Figure 6.3: Classic Planning Trace

as unsuitable for real-time tasks. Besides the reactive planning methods mentioned

earlier, several other alternatives within the classical planning context have been
suggested.

6.1.7 Forward Search

Some favor abandoning backward ¢haining plan-space séarch in favor of a forward
search of the state space [Washington, 1989]. The advantage of this approach is that
an executable action is available as soon as an action has been found applicable in the
initial state._Unfortunately, until we encounter the final solution during the forward
search we have no guarantee that.our cutrent sequernce of actions will everitually lead
to the goal. Further, we cannot take advantage of the least-commitment implicit
in the non-linear représentation of plans. Finally, a forward séarch, so as not to
be completely blind, néeds a domain-spécific heuristic, thereby reducing domain-
independence.



6.2. REACTIVE REASONING WITH PABLO 61

6.1.8 Left. Recursive Wedge Planning

Another approach one can take is that of planning down a left-recursive wedge of
the partial plan in case of an intérruption [Wilkins, 1988]. The idea is to repeatedly .
expand the leftmost. outstanding preconditions until an action is.encountered with
all its preconditions satisfied. In some circumstances this approach might be suc-
cessful. Unfortunately, the time to plan in this manner is possibly unbounded, since
interactions might be éncountered that necessitate backtracking.

The method we propose retains the power of partially ordered plan representa-
tions, but also allows the planner to identify plausible executable actions early in the
planning process.

6.2 Reactive Reasoning with PABLO

The problem we are addressing is that of providing a plausible executable action
should PABLO. be interrupted béfore it has formed a complete plan. Ideally, we
would like to provide as long & sequence of executable actions as possible.

Toward this end, we can store, along with each relaxed predicate, the operators
through which the predicate was regressed during the relaxation process. Then,
during planning, when a relaxed predicate is determined to hold in a situation, the
operator through which the predicate was last regressed is automatically identified.
e.g. this is the first level relaxation of On(x,y):

Onju(2,9) ,
On(x,y) [
(y = TABLE) A Clear(x) A 3 z.0n(x,2) [Tableopr(x))
(y # TABLE) A Cléar(x) A Clear(y) A 3 z On(x,z) | [Puton(x,y))

The logical expressions are conditions under which the predicate should be deter-
mined to hold. The operatots through which the predicate was regressed to arrive at
the expression.are shown in the right side of the table. In this case, since it is a first
level relaxation, only sequenées having oné operator are included.



62 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

During planning, the relaxation table is examined from top to bottom. When an
expression is found that is.satisfied in the current state, the_relaxed predicate is said
to.be asserted in that state. We also say the relaxed predicate is grounded in this
state. This is important because a relaxed predicate that is grounded in a state must.
have a sequence of operators that is executable in.that state, which guarantee that
the predicate with hold as a result of their execution.

6.3 Identifying Executable Actions

Once PABLO has completed a plan at one level of abstraction, and is working at the
next lower level, it can utilize the extra information stored along with the relaxed
predicates that hold.at the higher level, should it be interrupted.

PABLO chooses .a plausible action by examining the preconditions of the earliest
action(s) of the plan. If one of these actions has all its preconditions satisfied at the
base level, the action is obviously executable. .

If no such action exists, PABLO can choose from among the leftmost operators .
associated with the satisfied predicate relaxations that are grounded in the initial
situation. All relaxed predicates must be saticfed since the plan was completed at
the higher level. Furthermore, at least one of the relaxed predicates must be grounded
in the initial state. To see this note that there must be at least one action such that
no action is necessarily between it and the final situation. If all its preconditions were
satisfied at the base level the action itself would be executable. If not, every predicate
that is abstractly satisfied in the precondition must be grounded in the initial state.
Any of the actions collected in this manner are executable.

See figure 6.4 for a trace of PABLO solving the previous.example. It.should.be
noted that PABLO solves the example twice as fast using the predicate relaxations
than without, since reasoming with the abstractions allows it to prune substantial
portions of the search space.

After completing planning at the second level of abstraction the plan consists
of oné operator: Puton(B,C). This is bécause all preconditions of Puton(B,C) are
satisfied at this level of abstraction, and because the rémaining goals, On(A,B) and



6.3. IDENTIEYING EXECUTABLE ACTIONS 63 .

Puton(B,C)

Abstraction Level 2

Puton(C,D) Paton(B,C)

Abstraction Level 1

Tableopr(A)

Puton(B,C) Puton(A,B)

Tableopr(D) Puton(C,D)

Base Level

Figure 6.4: Pablo’s Planning Trace

On(C,D) a.~ also satisfied (at this level of abstraction). See figure 6.5 for a detailed
description of the planning state at this point.

As PABLO moves down to the first abstraction level, the goai On(C,D) is no
longer satisfied since it requires two steps to accomplish. PABLO. grows the plan by
adding the.operator Puton(C,D) to achieve this. goal. Notice that at the first level of
abstraction all preconditions to Puton(C,D) hold, sifice D is cleat and block C can
be cleared in one step. PABLO then completes the plan at the base-ievel.

Now, suppose PABLO is interrupted aftér it has completed planning at abstrac-.

tion level 2. At this level there are three predicates that hold abstractly, i.e. the
components of their relaxed definitions that are satisfied have non-null operator lists
associated with them. These are Clear?,(B), Clear?;(C), and On24(C, D).

To see this, éxamine the second level predicate relaxation of Clear(x).



64 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

On{A,B)
On(D,C).

On(C,TABLE)

Cleaar?(B) _ ,
S e
2,.
; !
Clear(A) Cleaz”(C)

Clear(D)

Clear(TABLE) .

Goal
Initial State
Figure 6.5: Level 2 Plan
Clear?,(z)
Clear(x) 0
3y On(yx) A Cleat(y), 1 [Tableopr(y)]
3 y,z On(y,z) A Clear(y) A On(z,x) | [Tableopr(y),Tableopr(z)]

The above table has been simplified by removing subsumed expressions. e.g. the
result of regressing Clear(x) through Puton(y,z) is

Jy,z On(y, x) A Clear(y) A Clear(z)

This expression. is not.included in the table since it is.subsumed by the regression .
of Clear(x) through Tableopr(y). When Clear?,(x) is instantiated in our plan, with
variable x bound to C, Clear?,(C) becomes:

Clear?,(C)
Clear(C) 0
On(D,C) A Clear(D) [Tableopr(D)]
'3 y,z On(y,z) A Clear(y) A On(z,C) | [Tableopr(y),Tableopr(z)]




6.3. IDENTIFYING EXECUTABLE ACTIONS 65

As.can be seen from the predicate relaxation definition Clear?,(C) holds because
On(D,C) A Clear(D) is true at the base level, and the leftmost regressed operator
associated with this regressed expression is Tableopr(D). In brief, the three relaxed

predicates hold in the initial state for the following reasons:

Clear;(C) On(D,C) A Clear(D) [Tableopr(D)]
Clear?,(B) On(A,B) A Clear(A) [Tableopr(A)]
OnZ%,(C,D) Clear(D) A On(D,C) [Tableopr(D), Puton(C,D)]

The above relaxed predicates are grounded in the initial state. If PABLO is
interrupted after having completed planning at abstraction level 2, it can choose
from among the identified action sequences that are executable in the initial state.
In this case it can propose executing Tableopr(D), Tableopr(A), or Tableopr(D) -
Puton(C,D). This can be determined as soon as the first level of abstraction has been

completed - early in the planning process. In this example it is done after only 15%
of the total planning time.

6.3.1 Constructing Incomplete Plans

If necessary, PABLO can construct a substantial portion of the plan, even at this
early stage. The outline of the algorithm is as follows:

1. current-plan « Nil.
2. current-staté «— Sinitial-

3. op-lists « set of lists of operators associated with the predicates that are ab-
stractly satisfied in the plan.

4. op-sequeénce + longest tail of the lists in op-lists that is executable in the current
state. ..

5. if op-sequence = Nil then op-sequence « any action in the plan that is exe-
cutable. If no such action exists, break, returning current-plan.



66 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY = ...

6. op-lists «— oplists - op-sequence.
7. current-plan ¢ currént-plan | op-sequence.
8. current-state «— S,y of last action in op-sequeénce.

9. Goto step 4.

This algorithm will produce a linear sequence of actions to execute in the currént
state. See figure 6.6 for the incomplete plan construéted using this technique.

O———1 Tablespr(D) Puton(C,D) Tableopr(A) Puton(B,C) —"--)

Figure 6.6: Incomplete Plan

The plan is almost complete, the only reina.ining action is Puton(A,B). Once.
PABLO commits to the first portion of the plan, developing the remaining portion
can be considerably easier.

In this case there is little interaction among the executable alternatives. Therefore,
the order in which the algorithm places the opérator sequences does not matter, and.
any of the resulting sequences will be a subsequence of a complete, linear plan for the
problem. However, there are obviously cases where such interactions exist..—

For example, given Sussman’s anomaly, presented in figure 6.7 [Sussman, 1973,
the plan, after planning at the first level of abstraction has been completed, will con-
sist of Puton(A,B). There are two operator sequences associated with the two pred-
icates that are abstractly asserted in the plan at this level. The first is Tableopr(C)
associated with Clear! (A). The second is Puton(R,C) associated with Only(B, C).

These are both éxecutable in the initial state, afid the algorithm has no a priori rea-
son for choosing between thera. Therefore, it might choose to first insert Puton(B,C)



6.3. IDENTIFYING EXECUTABLE ACTIONS 67

A
¢ B
A B . C
1 J | J
Initial State - ——— e Goal

Figure 6.7: Sussman’s Anomaly

into the plan, after. which no more actions are possible. If it inserts Tableopr(C)
first, then the next sequence inserted will be Puton(B,C), which will be followed by
Puton(A,B).

Of course, the only way to discover and resolve conflicts based on such interactions
is to continue planning. Until a complete plan is produced, we cannot guarantee that
the optimal action will be chosen by PABLO (or any other planner), should it be
interrupted. This technique, as opposed to the traditional planning algorithm, pro-
duces viable alternatives.early on in the planning process. Given more time, PABLO
will complete plans at succeedingly lower levels, thereby resolving conflicts not dis-
covered at higher levels, and so producing more reiiable answers. Our method, in
effect, provides a primitive anytime algorithm for planning [Dean and Boddy, 1988!

6.3.2 Comparison With other Classical Approaches

Unlike a forward search of the state space, PABLO can take advantage of the least-
commitment implicit in non-linear plans. Rather than being committed to one path
in the state space at any-one time, the partial order of actions represeats a set of
possibie paths that.are curreutly valid. In NOAH, the non-linear representation was
found to be successful énough that no backtracking was deemed necessary.

Furthermore, wher it is interrupted, its choice for a plausible executable action
is derived from a cofnplete abstract plan, which provides a global constraint on this
action. An interrupted forward state-spacé search on the other hand, can only provide
local constraints on its choice of executable actions.




68 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

Unlike the technique of continuing planning down the leftmost wedge of the plan
after an interruption, our approach requires only a bounded computation time to pro-
duce an executable action after an interruption. To.see this, note that the executable
actions are automatically identified aftér planning at the highest level of abstraction
has been completed.

6.4 Comparison to Reactive Plans

The trace of the relaxation of a predicate can be thought of as a reactive plan for
achieving that predicate. See figure 6.8 for an illustration of the definition of the
On2,(z,y) predicate as a reactive plan. Notice that some predicates in the reactive
plan are not further regressed, this is because these are preconditions to the operator
that we do not wish to plan to achieve, but rather just check that they hold. These.
predicates.are specified.in the operator definitions given to PABLO. During planning,
when a relaxed predicate is determined to hold, the path through the reactive plan
that will lead ‘o the establishment of the predicate, is automatically identified.

Cur technique is a method for handling these small reactive plans. We believe that
this is a more promising approach to reactivit}; than constructing large, unwieldy re-
active plans which risk succumbing to space restrictions very quickly. Each individual
plan is restricted in sizé and can be reused by the planner on different instantiations
of the same predicate.

Each reactive plan in our system has a clear purpose, namely to achieve a particu-
lar predicate. Unlike other reactive planning techniques which must construct a new
reactive plan for each combination of goals encounitered (modulo some parameters to
the reactive plan), PABLO can re-utilize the reactive plan definitions for any goals
specified in the domain.

If our domain is large efiough we risk creating abstraction definitions that are too
large, although they will always be considerably smaller than reactive plans created for
entire domains, since we are only considering reactive plans for individual predicates.

With PABLO, we can extend the planning method to restricted reactive plans,
e.g. allow only commonily encounteéréd coiiditions in the relaxed definitions. Although




6.5. CONCLUSION 69

On(r,x)  Clear(r) On(v,x) Clear{v) On{wx)_ Clear(w) .
Tableopr(r) Tableopr(y) Tableopr(w) .
Cleaz %) Onlfxs) Eq(y.TABLE) Clea.rril(x) Clearl(y) On"‘x,a) Neg(y, TABLE)

Tabléeopr(x) Puton(x,y)

On:fx,y) .

Figure 6.8: Reactive plan for On?,(z,y)

this reduces the number of abstractions identified at the higher levels, each predicate
can be more quickly identified to hold abstractly. PABLO is robust in the sense that
if a predicate is not deemed to hold abstractly, it can plan to achieve it. This is
something systems which rely solely on réactive plans cannot do.

6.5 Conclusion

Using the method presented in this chapter, we can utilize predicate rélaxations to
ptoduce a plausible executable action should PABLO be intetrupted before the final
plan has been completed. The only fequirement fo. identifying a plausible action is
that planning have been completed at the highest abstraction level. This happens
early-in the planning process.

The method can be viewed as an anytime algorithin for planning. During planning,
hatinful interactions afe identified and resolved as PABLO plasis at succéedingly lower



70 CHAPTER 6. USING ABSTRACTIONS TO ACHIEVE REACTIVITY

levels.of abstraction, thus increasing the quality of the response in case of interruption.

Each automatically generated abstraction is actually' a small reactive plan for.
achieving that predicate. PABLO provides a mechanism for combining these small
reactive plans dynamically. Besides the inherent advantages of reasoning abstractly.
we can also achieve somé measure of reactive behavior, should the planner be inter-
rupted during planning. We believe this i a more proniising approach to reactivity
than the reasoning with large, unwieldy reactive plans.



Chapter 7

Operator Hierarchicalization

7.1 Introduction

The abstraction of .operators has been a prevalent theme in the history of planning.
Researchers early realized the value of being able to define abstract operators in
terms of other, less abstract, operators. Doing so.allows the planner to “jump” from
one part of the state space to another with one step, potentially bypassing much
planning. However there have been some problems with the proposed abstraction
representations which we hope will become apparent.

7.1.1 MACROPS

The first use of what we will label “hierarchical operators” is in STRIPS, with the
MACROPS extension [Fikes and Nilsson, 1971]. As the name suggests, this extension
allowed STRIPS to learn and use macro operators, for significant computation titne
savings.

STRIPS would store a plan in a triangle table and then apply a procedure to “lift”
a generalized MACROP from the triangle table.

MACROPS is interesting for several feasons. It is the first use of hiérarchical
operators—in planning, and it is an examiple of a planner léarning abstractions to
spéed up problem solving. An example is shown in figure 7.1.

71



72 CHAPTER 7. OPERATOR HIERARCHICALIZATION

* 1 NROGM (ROBOT . p2)

*CONNEICTS (p3 .2 . 910) COTHRU(D3 /92, p10)

* ] NROOM (80X1 ,p10)

«COMNECTS (p8 ,R1 . p10)
2 ] NROOM (RDBOT . p1O)
SCONNICTS (x.y,3) 2

CONNECTS(x.2.5) PUSHTHROUGH (BOX 1, p8 . p10.R1)

1NROOM (ROBOT , R1)
3 *SPOX (BOX1)
o INROOM (30X 1 .R1)

Figure 7.1: A STRIPS MACROP

7.1.2 SOUP operators

With NOAH came the next major advance in hierarchical operators. Operators in
NOAH were defined in SOUP (Semantics of User’s Problem) code, which allowed
for quite general operator definitions. With NOAH came also the term hierarchical
planning. See figure 7.2 for an example of a NOAH operator.

The SOUP code in the body of the operator provided instructions to NOAH for
how an operator should be expanded to the next level of detail. As has.been.pointed
out by several researchers, a.NOAH operator is not necessarily hierarchical: For
example, in the blocks world, each operator is defined only in terms of a primitive
operator and its preconditions. When combined with the NOAH methodology of
producing a plan by expanding all the expandable operators in a plan and then
critiquing it, a particular ordering in thé expansion of goals was imposed.

There is one major drawback with defining opérators in this manner. Sacerdoti
states [Sacerdoti, 1977]:




7.1. INTRODUCTION 73

(PUTON
(QLAMBDA
{ON X «Y)
(x Clear $X and 8Y, then put
X on 8Y)
{PAND
(PGOAL (Clear $X)
(CLEARTOP $X)
APPLY
(CLEAR))
(PGOAL (Clear 8Y)
(CL.LEARTOP 8Y)
APPLY
(CLEAR)))
{PGOAL (Put $X on top of 8Y)
(ON $X 8Y)
APPLY NIL)
(PDENY (CLEARTOP. 8Y))))

Figure 7.2: A NOAH operator

The most serious deficiency in the current system is its lack of aware-
ness about the auxiliary ¢computations specified in the procedural seman-
tics (the SOUP code) of a task domain. The procedural net representation -
lets the system be aware of the goals and subgoals that the planner has.
decided to tackle, but it does not preserve any information about the
computation that resulted in those decisions.

Because the semantics of NOAH operators are opaque to NOAH their usefulness
is limited. Primarily, the operators must be defined by the user; it would be very
difficult for NOAH to generate néw ones. Furthermiore, only a minimal amount of
error checking can be done by NOAH, which leaves an additional burden on the user
of the systemi.



74 CHAPTER 7. OPERATOR HIERARCHICALIZATION

7.1.3 Procedural Net Operators

The state of the art in hierarchical operators is found in SIPE [Wilkins, 1988]. SIPE
solves the problem of semantic opaqueness by defining the plots.of hierarchical oper-
ators in the same language as that used for its internal procedural net representation.
This provides a powerful language in which to define hierarchical operators.

Operator: Puton
Arguments: blockl, objectl Is Not blockl;
Purpose: (On blockl objectl);
Plot:
Parallel
Branch 1:
Goals: (Clear objectl);
Branch 2:
Goals: (Clear blockl)
End Parallel .

Process

Action: Puton Primitive; .
Arguments: blocklobjectl;
Resources: blockl;

Effects: (On blockl objectl);

End Plot End Operator

Figure 7.3: A SIPE operator

Defining hierarchical opérators in terms of a procedural net facilitates not only
the design of the planner, in that another language need not be added on top of the
existing plan language, but also error checking and the learning of new operators.
Although SIPE does not currently learn new operators, its operator representation
language provides the infrastructure for tfansferring knowledge in plan form into
operator form.



7.1. INTRODUCTION 75

7.1.4 . Formalized Reduction Schemata

In his thesis [Yang, 1989], Yang formalized.a version of hierarchical opérators similar
to thosefound in SIPE. He defines action templates, which consist simply of precondi-
tions and effects. He then defines a set of action reduction schemata each of which is a
function that takes an.action template as input and returns a set of partially ordered
action templates, with protection intervals between them. The reduction schemata
are analogous to plots in SIPE operators.

7.1.5 Problems with Hierarchical Operators

Incorrect Specification of Operators

One problem with the current definition of hierarchical operators is that they might be
incompletely or inaccurately specified, i.e. their preconditions and effects might not
reflect the actual preconditions or effects of the operator after it. has been expanded.
One possibility is that the user simply encodes the wrong effects in the postconditions
of an operator.. e.g. the encoder of the domain might include a proposition in the
add list of a hierarchical operator that is not added by any action in its expansion.

However, even if the encoder is very careful and only includes effects that are
guaranteed to hold after the expansion of a hierarchical operator, there are still po-
tential problems. This is because a hierarchical operator might have several possible
expansions, some of which result in some proposition holding, and others which result
in the proposition not holding.

Hierarchical Promiscuity

A related, though slightly different problem, is one that Wilkins [Wilkins, 1988] terms
hierarchical promiscuity. The problem occurs when opérators are described abstractly,
using different sets of predicates for each level of abstraction. It is possible then, when
the planner expands different parts of the plan at different rates, that one part will
be referring and modifying predicates at a much lower level than a part of the plan
previous to it. In such situations it is possible that potentially harmful side effects at



76 CHAPTER 7. OPERATOR HIERARCHICALIZATION

the lower level of abstractions will not be recognized until much later in the planning
process, resulting in unnecessary planning.

There have been séveral solutions proposed for this problem. SIPE has a mech-
anism for enforcing an ABSTRIPS-like ordering in expanding the operators down
to different abstraction levels. Further, it allows the spetification of special delaying
opeérators, which cause SIPE to reéfrain from planning for cértain goals until some con-
ditions have been satisfied in its state. Yang [Yang, 1989) proposes a solution wherein
syntactic restrictions are computed for operators ahead of time which guarantee that
harmful side-effects will not occur after expansion of an operator.

Unrecognized resolutions .

However, even when the opeérators are specified.completely accurately there are still
potential problems. For example, take the problem in figure 7.4 proposed by Yang
[Yang, 1989]. Part (a) represents a plan with two.actions, each of which clobbers the
other action’s precondition.. There is seemingly no legal ordering to the two action.
However, when the plan is further expanded in (b) each action has become two actions
and a legal ordering exists among the resulting four actions. -

This is an instance of a “Double Cross” described by Sacerdoti [Sacerdoti, 1977].
In this situation a seemingly unresolvable conflict at one point in the plan can be
resolved when the plan is further expanded. Thus, a planner using the traditional
hierarchical operator specification might give up and backtrack when plan (a) is
encountered, missing a potential solution.

Incompleteness

Another problem, less sérious, but still interesting from a theoretical point of view is
that of completeness. There has as yét not been a planner proposed which supports
hierarchical operators and yet is complete. The reason this is not such a serious prob-
lem is that completeness in any planner implies intractability. Hence, any planner of
practical value must make use of some sort of heuristic information to cut substantial -
portions of the search space. However, from a theorztical point of view, a complete-
ness result provides a useful point of reference and starting point for discussing in




7.2. GENERALIZING STRIPS-STYLE OPERATORS 7

(a)

®)

Figure 7.4: (a) A plan with seemingly unresolvable conflicts (b) Resolution of conflicts
after reduction.

what ways a planner deviates from a complete algorithm.

7.2 Generalizing STRIPS-style operators

Although it allows for the formalization of restricted non-linéar planning, the STRIPS-
style operators used by TWEAK fail to capture one important aspect of most major
non-linear planners, natnely their hierarchical nature. It is no accident that NOAH,
SIPE, etc. are generally refetred to as hierarchical planners - this has traditionally
been their defining characteristic and a source of much of their power.

In this chapter we present a generalization of the STRIPS-style operators that
captures much of the hierarchical natuire of previous planners. We then demonstrate
a control strategy for reason.ug with this generalized representation that guarantees
a limited form of completeness.



78 CHAPTER 7. OPERATOR HIERARCHICALIZATION

7.3 Representation

We generalize STRIPS-style operators by defining hierarchical operators to-be dis-
tinguished plans. An operator is simply a plan which has been deemed useful enough - ..
ta store and use in problem solving. Obviously, STRIPS-style operators are.special
cases, namely they are plans limited to onie action and possibly some codesignation . .
constraints. More formally:

Definition 3 (Operator) An operator is a triple (O,T,C) where O is a set of ac-

tions, T is a set of temporal ¢onstraints, and C is a set of codesignation_constraints.

An operator is very much like a plan. A primitive operator is a specialization of
opérator.

Definition 4 (Primitive Operator) A primitive operator.is an operator (O, T,C)
where O is a unary set consisting of one action, T is an empty set, and C ts a set of
codesignation constraints.

Befoe¢ an operator (O,T,C) can be used in a plan it must be instantiated. This
is done by creating a new operator (0, T’,C’) where

o O is a copy of O where every variable of every-action of O is replaced with a
new variable in the corresponding action of O'.

o T'is a copy of 7 where every action ini a témporal constraint is replaced by its
corrésponding copy.

o (’is a copy of C whe:e every variable in the codésignation constraints is replaced
by its corresponding copy.

After instantiating an operator we néed to insert it into a plan. Given a plan
P (Op, Ty, Cp, Sinitials Stinat) and an instantiated operator (O,,7;,C,) the new plan
created by inserting the instantiated operator is (Op,UQ,, T,UT,, C,UC,, Sinitiats Sfiral)-
In figure 7.5 we give a graphical illustration of two hierarchical operators. In the
figure, one of the hierarchial operators has béen chosen to be inserted into the plan.



7.4. HIERARCHICAL TWEAK 79

Figure 7.5: Diagram of Hierarchical Operators

This definition of hierarchical operators readily lends itself to the creation of new
ones. The planner can create new operators simply by storing old plans which it
deems to be potentially useful. Of course, only some plans will be particularly useful
so the planner must have some means of deciding on the usefulness of particular
hierarchical operators.

7.4 Hierarchical TWEAK

.\n important feature of our hierarchical operators is that at any point during plan-
ning, our plan is always composed solely of primitive actions. This feature allows us
to use the TWEAK modal truth criterion to determine the necessary tfuth of goals
and preconditions.

However, we need to. extend TWEAK's control strategy to include hierarchical
optrators. As it turns out we only have to make a few minor changes to the algorithm
in order to handle abstract opérators.



80 CHAPTER 7. OPERATOR HIERARCHICALIZATION ______

7.4.1 Selecting Hierarchical Operators

One important issue we need to address is that of selecting hierarchical 6pérators for
instantiation into a plan. .Previously, an_operator was selected on the basis of whether
any proposition in its add list could possibly codesignate with the proposition . which
needed to be achieved. Now that each operator is composed.of a partial_order of
operators we need to decide what. criteria to use when selecting an operator.

One solution is to choose only hierarchical operators for which the proposition of
the current goal is possibly asserted in a hypothetical situation placed after all the
primitive actions in the operator. Although this solution is intuitively appealing it is
somewhat restrictive. Figure 7.6 illustrates a situation where we should have ¢hosen
a hierarchical operator even though, as a unit, it does not possibly assert the current
goal. .

In figure 7.6 if we need .an action to achieve the precondition p of the plan in part
(a), we can choose the hierarchical operator.A and insert it into the plan as shown.in
part (b) of the figure. Note that we should choose operator A even though p is not
possibly true after its application.

The solution we have chosen is to choose an operator for instantiation into a plan
if any of its actions possibly asserts the current goal, even though one its later actions
might deny it. Using this approach, Hierarchical TWEAK would .have chosen to
expand operator A because its subaction A; possibly asserts the goal proposition.

Hierarchical TWEAK is .then simply TWEAK augmented with the hierarchical
opérator selection strategy outlined above, plus facilities for properly instantiating
and inserting hieratchical operatots.

7.5 Differences with Other Hierarchical Opera-
tors
Incomplete Specification of Operators

The problem of incorrectly specifying preconditions and effects of hierarchical oper-
ators is mot an issue since our operators do not have explicit preconditions or effects




"Page missing from available version"



82 CHAPTER 7. OPERATOR HIERARCHICALIZATION

(s).. O ) O

()

{)

Figure 7.7: Yang's problem revisited
Completeness

An interesting_question to consider is whether completeness is preserved with the
new hierarchical operators. Clearly, if we retain as a condition that every primitive
operator of the domain be represented by onée hierarchical operator.the new algorithm
will remain complete, since any plan that would have been found without hierarchical
operators will still be discovered.

However, if we relax this condition, we cannot guarantee completeness in the
sense that if there exists a plan composed of primitive operators, one.will be found.
using only hieratchical operators. One obvious counterexarple is the case whére the
only final solution consists of exactly oné primitive action, but every operator in the
domnain consists of at least two actions.

We can, though, guarantee a weaker form of cornpleténess. Namely, if a plan that
is a solution to a problem can be fully partitioned into sets of actions, each set being
an ifistantiation of a hieratchical opérator, Hierarchical TWEAK will discover it. We



7.5. DIFFERENCES WITH OTHER HIERARCHICAL OPERATORS 83

will refer to such a partition as & hierarchical partition.

-
\B

Figure 7.8: Partition Graph -

This is most clearly éxplained in graph theoretic terms. We will think of the
partitioned plan as a graph, where one partition points to another if the former
contains a primitive action *vhich establishes a proposition that is a precondition for
an action: of the latter. Further, a pattition points to.the final situation if some action
in the partition establishes a proposition in the final situation. We will refer to this
graph as the partition graph.

Definition 5 (Spanning Property) A hierarchical partition of a plan satisfies the
spanning property iff thére is a path from évery partition to the final situation.

Lemma 7.5.1 A hierarchical partition satisfying the spanning propérty has somc par-
tition that can be femoved, such. that the resulting plan still satisfies the spanning

property.

Proof (by contradiction):



84 CHAPTER 7. OPERATOR HIERARCHICALIZATION

Assume lemma 7.5.1 does not hold. Then it rhust be the case for every partition ... .

that removing it results in $ome partition no longer having a path to the final situ- .
ation. This implies that for every partition p; there is some partition p, that points
to it su¢h that all the paths from p, to the fihal situation contain p;. We will refer
to partitions such as p, as dependent partitions.

Now, we start at the final situation. We choose any partition that establishes
a proposition in the final situation. We mark.it. We then traverse the partition
graph, by choosing a partition that is dependent on the current one. We mark it
and repeat the procedure. Note that we cannot revisit a marked partition since we
already know there is a path from every marked partition to the final situation that
does not contain any unmarked partitions. Therefore, 4 marked partition cannot be .
dependent on an unmarked one. Since the graph is finite, it must be the case that
for some partition we will be unable to find another partition that i dependent on .

it. But this violates our assumption that such a pattition exists for every partition.
Therefore lemma 7.5.1 rmust-hold. O

Lemma 7.5.2 Every hierarchical partition of a plan generated by TWEAK satisfies
the spanning property.

Proof:

Define the temporal distance of a primitive action to be the longest path from the
primitive action to the final situation over the temporal constraints in the plan.

Define the temporal distance of a partition to be the minimal temporal distance
of its primitive actions. ‘We prove that.there must be a path from every partition to
the final situation by induction on the temporal distance of paititions.

Base step: In the null plan there are no partitions and therefore the lemma holds
trivially. In.all.other plans, if a partition’s temporal-distance is 1 it must be the
case that one of its primitive actions establishes a proposition in the jinal situatiorn
(a primitive action.must be necessarily before any-situation in which it establishes a
proposition), or. it would not have been inseérted by TWEAK. This means that the
partition points to_the final situation and therefore there is a path from the partition
to the final situation.



7.5. DIFFERENCES WITH OTHER HIERARCHICAL OPERATORS 85

Figure 7.9: Temporal Distance

Induction step: Assume that for every partition with a temporal distance of n -1
or less there is 4 path in the partition graph to the final situation. We will prove
that there is a path in the partition graph for all partitions with a temporal distance
of n. Ip the partition there must be some primitive action such that its temporal
distance is n. Furthermore, it must be the establisher of a proposition of either the
final situation or the precondition of another primitive action. In the former case it
is nbvious that there is a path from the partition to the final situation. In the latter .
case it.rmust be the case that the other primitive action is part of a different. partition
which must have a temporal distance of n —1 or less. But by the induction hypothesis
there must exist a path.from.that partition to the final situation. Therefore, there is
a path from the original partition to the final situation. O

We want to prove that every plan.that is.a solution to a problem and can be

legally partitioned can be constructed. by Hierarchical TWEAK. Since TWEAK is
complete it can construct every such plan. But by lemia 7.5.2, every such plan must
satisfy the spanning property. Therefore, it suffices to show:
Theorem 7.5.3 (Limited Completeness) If a plan can.be fully partitioned.into n
mutually ézclusive sets of actions, each sel being an instentidgtion of some hierarchical
operator, such that the spanning property holds, the Hierarchical TWEAK algorithm
will construct it.

Proof (by inductioii on n, the numbét of partitions):



86 CHAPTER 7. OPERATOR HIERARCHICALIZATION

Base step: n =0
If the plan can only be fully partitioned into 0 partitions then the plan must be
the null plan. This is the plan that Hierarchical TWEAK begins with.

Induction step:

Assume the.theorem holds for plans that can be partitioned into n — 1 hierarchical
operators such that the spanning property holds. We will show it must hold for all
plans that can be partitionéd into n hierarchical operators such that the spanning
property holds.

By lemma 7.5.1 there must be some partition that can be removed from. the plan
such that the spanning property holds in the resulting partitioning. But because this
is a plan of n—1 partitions and the spanning property holds, the induction hypothesis
guarantees that hierarchical TWEAK will construct it. It now remains to be shown .
that the removed partition would be added. But since every partition is, by definition,
an instantiation of a hierarchical operator, and since the spanning property holds, it
must be the case that there is some primitive action of the partition that estab-
lishes a proposition of a situation outside the partition. Therefore, since Hierarchical
TWEAK, in its complete breadth-first search, inserts all hierarchical operators which
have some primitive action which can possibly establish some unachieved proposi-
tion in the plan, the hierarchical operator corresponding to the partition would also
be inserted into the plan. Since the TWEAK declobbering strategy guarantees that
all possible alternatives. will be constructed, temporal and codesignation constraists
would be added to the plan, such that one of the resulting plans was identical to the
original plan. O

Therefore, if-a solution exists to a problem, such that the resulting plan ¢an be
partitionéd into n hierarchical operators, then Hiérarchical TWEAK will find it.

Shuffling of Operators

Another, moré subtle difference with the other hietarchical operator formalisms is that
using thé traditional hierarchical operators, once a hierarchical operator is inserted
into a plan, its éexpansions must satisfy its higher level temporal comistraints. Fof
examiple, in figure 7.10 we have the expansion of a SIPE hierarchical opérator.



7.6. PABLO IMPLEMENTATION - 87

Figure 7.10: SIPE plan example

In this example, all the subactions of action B must be placed after all the sub-
actions of action A and before all the subactions of action C. Using our definition
of hierarchical operators it is possible that the plan could expand such that some of .
the subactions of an action could be shuffled with some of the subactions of another
action. e.g. as we saw earlier, figure 7.6 provides an illustration of this. This feature

,,,,,

provides Hierarchical TWEAK with more flexibility when expanding a plan.

7.6 PABLO Implementation

We have extended the PABLO opérator representation to in¢lude hierarchical oper-
ators. We present af. example that shculd help clarify the usefulness of hiefarchical
opérators. We will use the robot domain used in STRIPS and ABSTRIPS. Before
presenting an examplé problem we deéfine two hierarchical operators.

Operator 1 allows the robot to get to an adjacent foom even when theé door is
closed. Operator 2 is similar and allows the robot to push a box into anotheér room



88 CHAPTER 7. OPERATOR HIERARCHICALIZATION

| Gews(D) b Opea(D) |- «d Gothrads(D,R) ——-—-=0O I
] .

Figure 7.11: Hierarchical Operators for the Robot Domain

when the door is closed. .
We will demonstrate PABLO on the problem depicted in figure 7.12.

See figure 7.13 for the final plan. PABLO solves the problem considerably faster
when using the hierarchical operators than it does without.

7.7 Retaining useful plans

One useful coniséquence of our planner reasoning with hierarchical operators whose
serfiantics are perspicuous to itself.is that learfiing new hiérarchical operators in con-
siderably facilitated. In fact, to generate a tiew hieraichical operator the planner.
need only copy a current plan and store it along with its othiér operators. Of couise,
some criteria must be applied to decide which operators fight be generally useful,
and whi¢h might not.



7.7. RETAINING USEFUL PLANS . 89

N
A L [o] \ D
AN

_ af N\
Aﬁk\'l(\n

E

L]

| F

. . () , .
Figure 7.12: Robot Domain Problem. (2) Initial State, (b) Goal State.

7.7.1 Towers of Hanoi ]

How can hierarchical operators be learned and used effectively in planning? Here is
one possible scenario in the Towers of Harioi domain. The strategy of the planner is
to solve.progressively more difficult problems within the domain.

Suppose the planner is given the three. disk Towers of Hamnoi problem. First,
it orders the subgoals independertly in terms of difficulty. One way this could be -
done is by using the predicate relaxation definitions and applying them to the three—
goals, The resulting order would then be (1) Onpeg(A,P3), (2) Onpeg(B,P3), (3)
Onpeg(C,P3).! The planner would then plan first for achieving Onpeg(A,P3). This

!Note the different notation from before, Onpeg(x,y) instéad of On(x,y). This change was made
to facilitate the éxposition of this particular approach.




90 CHAPTER 7. OPERATOR HIERARCHICALIZATION

L{mwo«i‘ﬂ—{ Opaa{DoetFB) |——] Go;o{BOX)H Pummgsox,nmm RoomB) |

Figure 7.13: Solution using hierarchical operators.

is trivial and does not generate a new operator. It would then plan to achieve the
conjunction of (1) and (2). This would be slightly more difficult and would gener-
ate the plan Move(A,P2)-Move(B,P3)-Move(A,P3). This plan would be stored
away for further use. But how should it be generalized? Clearly, one should not just
convert all the ¢onstants in the plan into variables.

One possible.generalization mechanism is to consider the bulk preconditions of .
the plan [Drummond and Currie, 1988]. The.bulk preconditions are those that must
hold in the state where the hierarchical operator will be applied to guarantee that

every primitive action in the operator is applicable. If these preconditions have more. ... ..

than one consistent instantiation they should be generalized.

In the plan for solving goals (1) and (2) the bulk preconditions and their possible
instantiations are as follows:



7.7. RETAINING USEFUL PLANS

91
Clear(d1) Clear(A) Clear(A)
Onpeg(dl,pl) | Onpeg(A,P1) Onpeg(A,P1)
Movable(dl) | Movable(A) Movable(A)
Onpeg(d1,d2) [ Onpeg(A,B) Onpeg{A,B)
Onpeg(d2,p1) | Onpeg(B,P1) - Oripeg(B,P1)
Movable(d2) | Movable(B) Movable(B)
Onpeg(d3,p2) | Onpeg(BASE2,P2) | Onpeg(BASE3,P3)
Smaller(d1,d3) | Smaller(A,BASE2) | Smaller(A,BASE3)_|
Clear(d3) Clear(BASE2) Clear(BASE3)
Onpeg(d4,p3) | Onpeg(BASE3,P3) | Onpeg(BASE2,P2)
Smaller(d2,d4) | Smaller(B,BASE3) | Smaller(B,BASE2)
Clear(d4) Clear(BASE3) Clear(BASE2)

There are two possible instantiations of the bulk preconditions in the initial state.
In these instantiations p2, p3, d3, and d4 are instantiated to different values. The
variable 2 is either instantiated to P2 or P3, p3 is either instantiated to P3 or P2,
d3 is either instantiated to BASE2 or BASE3, and d4 is either instantiated to BASE3

or BASE2. The fact that only these variables vary suggests that only these variables
should be generalized.

After generalizing them the plan for solving goals (1) and (2) becomnes Move(A ,x)
- Move(B,y) - Move(A,y). Finally, the planner proceeds to solve goals {1), (2),
and (3). The actual solution trace can be seen in figure 7.14. The planner uses the
newly generated hierarchical operator for moving the two top blocks twice, once to
move them to the middle peg and finally to move them to the last peg.

The key to this approach isfirst to order the goals in terms of difficulty. Predicate
felaxation provides a mechanism for doing so. Secondly, using the initial situation
to determine the possible instantiations of the bulk preconditions of the generated
hierarchical operator, to decide which variables should be generalized. We believe

this to be a promising approach to automatic operator abstraction, but more work . .

rémains to be done._in this area.



92 CHAPTER 7. OPERATOR HIERARCHICALIZATION

()

[ Move(a,P3) H Move(B,P2) { Move(4,b2) 2] Move(C,P3) |

g ————— =

(®)

— = — — — —

L[qu.m)]-[ um(B.P‘zﬂ{u_mu.n)-]]{um(c.PSTI-I-_[:M:(A,m)H Move(B,P3) 1| Move(A Ps5)|

G om— Gm—— ow— q—

{e)

Figure 7 4: Operator Abstraction Solution Trace
7.8 Conclusion

We have presented an elegant definition of hierarchical operators which overcomes
many of the problemis associated with earlier hierarchical operator definitions, and
proven that it is possible to guarantee limited completeness when using them in
planning. A mechanism for using hierarchical operators has been incorporated into
PABLO.




Chapter 8

Combining Abstraction Methods

8.1 Introduction

In this chapter we demonstraté several ways to use state abstraction and operator
hierarchicalization simultaneously for effective problem solving. Recall that PABLO.
achieves a form of state abstraction through predicate relaxation and operator hier-
archicalization through the use of hierarchical operators.

8.2 Robot World Example

In this first example we will use predicate relaxation and hierarchical operators in the
mannér in.which they have been presented. We will see later how predicate relaxation
can be extended to include relaxation of predicates over hicrarchical operators. .

We will present an example in some détail and. describe the problem solving that
IPABLO doés to solve it. The domain of the example is the familiar robot world, with
roomms, doors, boxées. In addition to.these we also include keys and add the operators
to lock and .unlock doors. Furthermore, kéys can be dropped into boxes, in which
case they can no longer be retrieved by the tobot.

In the following operator descriptions sorme argumeénts to predicates. in some. of .
the delete_lists are preceded by a §. These variables are special.in the sencz that
they are treated as. global variables. For example, if there is a predicate P($1) in a

93



94 CHAPTER 8. COMBINING ABSTRACTION METHODS

dclete list, and two predicates P(A) and P(B) in the situation description, then both
predicates will be deleted from the situation description, instead of just one. These
aré the operators used:

Pickup-key(R,k)
P:{Type(k,Key},Nextto(R,k),Graspable(k)}
D:{Nextto(R,k)}

A:{Hoiding(R k)}

Put-key-in-box(R,k,b)
P:{Type(k,Key),Type(b,Box),Nextto(R,b),Holding(R,k)}
D:{Holding(Rk),Graspable(k)}

A:{In(k,b)}

Goto-object(R,0)
P:{Type(o,0bject),Inzoom(R,rx),Inroom(o,rx)}
D:{Nextto(R,$1)}

A:{Nextto(R,0)}

G'oto-door(R,d) '
P:{Type(d,Door),Inroom(R,rx),Connects(d,rx,ry)}
D:{Nextto(R,$1)}

A:{Nextto(R,d)}

Gothru-door(R,d)
P:{Type(d,Door),Irroora(R,rx),Connects(d,rx,ry),Status(d,Open)}
D:{Nextto(R,$1),Inroom(R,rx)}
A:{Inroom(R.ry)}

Open-door(R,d)
P:{Type(d,Door),Nextto(R.<),Status(d,Closed)}
D:{Status(d,Closed)}

A:{Status(d,Open)}

Close-door(R,d)
P:{Type(d,Doot),Nextto(R,d),Status(d,Open)}
D:{Status(d,Open)}




8.2. ROBOT WORLD EXAMPLE 95

A:{Status(d,Closed)}

Lock-door(R,d, k)
P:{Type(d,Door),Nextto(R,d),Status(d,Closed),Holding(R,k),Type(k,Key)}
D:{Status(d,Closed)}
A:{Status(d,Locked)}

Unlock-door(R,d,k)
P:{Type(d,Door),Nextto(R,d),Status(d,Locked),Holding(R k), Type(k,Key)}
D:{Status(d,Locked)}

A:{Status(d,Closed)}

In addition we have defined the following hierarchical operators:

Goto-and-Pickup-key(R,k)

Goto-object(R,k), Pickup-key(R k)
Goto-and-Put-key-in-box(R)k,b)

Goto-object(R,b), Put-key-in-box(R,k,b)
Goto-and-Lock-door(R,k,d)

Goto-door(R,d), Lock-door(R,k,d)
Goto-and-Unlo¢k-door(R,k,d)

Goto-door(R,d), Unlock-door(R,k,d)
Goto-and-Close-door{R,d)

Goto-door(R,d), Close-door(R,d)
Goto-and-Open-door(R,d)

Goto-door(R,d), Open:-door(R,d).
Pickup-and-Put-key-in-box(R,k,b)

Goto-object(R,k), Pickup(R k), Goto-object(R,b), Put-key-in-box(R,k,b)
Pickup-and-Loé¢k-door(R,k;d)

Goto-object(R,k), Pickup(R,k), Goto-door(R,d), Lock-door(R,k,d)



96 CHAPTER 8. COMBINING ABSTRACTION METHODS.

Each of the above operators is a linear sequence of primitive operators.. The
codesignation constraints between their arguments is made explicit by substituting

the same variable name for codesignating arguments.

Ri R2

Figure 8.1: Robot World Problem

We will solve the problem in figure 8.1 The goal of the problem. is to achieve
Status(D, Locked) and In(K, B). This problem is an example of very strong interac-
tion. This type of interaction is more serious than. the strong interaétion encountered
in Sussman’s Anomaly [Sussman, 1973]. The difference is that in Sussman’s Anomaly,
once a plan has been developed to achieve.each.-goal independently, it is possible to
correct. the plan simply by adding new actions; in this case the action of putting block
C on the table. However, in the robot éxample we have presented it is not possible -

to repair the plan in this manner, just given the two plans for achieving eacl goal.

8.2.1 One Level of Abstraction



8.2. ROBOT WORLD EXAMPLE 97

Goto-object{R,K] Piék‘up-k_e‘y(R,K) }-— Gato:door(R,D) 5

Lock-door(R,D,K} |f—d  Goto-object{R,B} | Put-key-ia-bax(R K,B)

Figure 8.2: Plan at first level of abstraction

We first solve the problem using only one level of predicate relaxation abstraction.
The resulting plan at the first level of abstraction can be seen in figure 8.2. PABLO
has.used two hierarchical.operators, Pickup-and-Put-key-in«-box and Goto-and-
Lock=door. Furthermore, it has interleaved the primitive actions.of the two op-
erators.. This is. sornething most other hierarchical operator formalisms do not al-
low. There.aré two predicates in this plan that are abstractly satisfied. They are
Statusl, (door,Closed) and Inroomly(Robot,R2).

In figure 8.3 we have the result of planning at the base level of abstraction. Notice.
that both abstract predicates have been satisfactorily achiéved. Furthermore, the
optimal plan is produced. It should be pointed out that problems with very strong
intéraction pose difficulties for many planners. ABSTRIPS would not be able to solve
the above problem.



98 CHAPTER 8. COMBINING ABSTRACTION.METHODS

Gorosbje ¢(RK) Pickup-key(R,K) p— Gotbrudoor(R,D) [=  Goto-door(R,D)

-
S

Close-door{R,D)  |— Lockdoot(R,DK) | Gowo-object(R,B) |fomand Put:key-in-bim{R.,K,B)

Figure 8.3: Plan at base level

8.2.2 Two Levels of Abstraction .

Instead of just relaxing one level of abstraction we can relax the predicates two levels.
Doing so results in the plan seen in figure 8.4. The relaxed predicates that hold are
Infoom?,(Robot,R2), Holding?,(k), Status?,(door,Locked).

Continued planning at the first.level of abstraction and at the base level results in
the sarie plans as.in our previous examiple, albeit achieved using different hierarchical
operators.. PABLO arrived ai the correct plan in two different. ways depending on the
amount the predicates were relaxed.

8.3 Generalizing Predicate Relaxation
It is also possible to generalize predicate relaxation so that predicates are regressed

over hierarchical operators. To determine the desired regressed expression, we buiid
a hypothetical abstract operator whose add list is the union of the add lists of tae



8.3. GENERALIZING PREDICATE RELAXATION 99

Gots-object(R,B)  fims Pat-key-in-box(R,K,B)

Figure 8.4: Plan at the second abstraction level

primitive actions of the hierarchical operator. The preconditions.of the operator
are the bulk preconditions [Drummond and Currie, 1988] of the hierarchical operator.
The bulk preconditions are those that must hold in the state where the hierarchical
opérator will be applied to guarantee that every primitive action in the operator
is applicable.. Therefore, the precondition of the hierarchical operator becomes the
conjunction o the preconditions of the primitive actions that are not necessarily true.
For our purposes the delete list is not important, since any expression resulting from
the regression that contains a proposition from the delete list is subsumed by the
proposition itself.

Having created this operator, it can be used as a primitive action, for the purpose
of regressing predicates through it.

8.3.1 Shift of Semantics

Now. that we have modified prédicate relaxation. it .is important to discuss the im-
plications. Before, if a relaxed predicate held at level n we were guaranteed that
there oxisted a plan of n actions or less that achieved that predicate. Now, we are
guaranieed that there exists a plan of 1 hierarchical operators or less. But this is rea-
sonable ia ight of the fact that the predicate felaxation is a measure of the difficulty
of_planning to achieve a particular pfedicate. The number of hierarchical operators
necessary to achieve a predicate is a good feasure of this difficulty.



100 CHAPTER 8. COMBINING ABSTRACTION METHODS

8.4 ABSTRIPS domain

We will demonstrate the relaxation of predicates over hierarchi¢al opérators in the
ABSTRIPS domain. The operators are those described in [Sacerdoti, 1974) which
are essentially the same as those described in [Fikes and Nilsson, 1971), with the
exception of two which are not used in the following examples.

Gotob(R,b)
P:{Type(b,Box),Inroom(R,rx),Inroom(b,rx)}
D:{Nextto(R,$1)}

A:{Nextto(R,b)}

Goto(R,d) .
P:{Type(d,Door),ltiroom(R,rx),Connects(d,rx,ry)}
D:{Nextto(R,$1)}

A:{Nextto(R,d)}

Pushb(R,bx,by)

P: {Type(by,Object),Pushable(bx),Nextto(R,bx),Inroom(bx,rx),
Inroom(by,rx),Inroom(R,rx) |

D:{Nextto(R,$1),Nextto(bx,$2),Nextto($2,bx)}

A:{Nextto(bx,by),Nextto(by,bx),Nextto(R,bx)}

Pushd(R,dx,bx)

P:{Type(dx,Door),Pushable(bx),Nextto(R,bx),Inroom(bx,rx),
Connects(dx,rx,ry),Inroom(R,rx)

D:{Nextto(R,$1),Nextto(bx,$2),Nextto($2,bx)}

A:{Nextto(bx,dx),Nextto(R,bx)}

Gotlirudr(R,d,ry)
P:{Type(d,Door),Inroom(R,x),Connects(d,rx,ry),Status(d,Open)}
D:{Nextto(R,$1),lnroom(R,rx)}

A:{Iiroom(R,ry)}

Pushthrudr(R,;bx;dx,rx)

P:{Pushable(bx),Type(dx,Door),Type(rx;Room),Nextto( bx,dx),



8.4. ABSTRIPS DOMAIN 101

Nextto(R,bx),Inréom(bx,ry),Inroom(R,ry),Connects(dx,ty,rx),Status(dx,Open)}___
D:{Nextto(R,81),Nextto(bx,51),Nextto($1,bx),Intoom(R,ry),Inroom(bx,ry)}
A:{Inroom(bx,rx),Inréom(R,rx),Nextto(R,bx)}

Open(R,d)
P:{Type(d,Door).Nextto(R,d),Status(d,Closed)}
D:{Status(d,Closed)}

A:{Status(d,Open)}

Close(R,d)
P:{Type(d,Door),Nextto(R,d),Status(d,Open)}
D:{Status(d,Open)}

A:{Status(d,Closed)}

We have alsc defined the following hierarchical operators:

Gothrucloseddr(R,dx,ry)

Goto(R,dx), Open(dx), Gothrudr(R,dx,ry)
Gotob-and-Pushb(R,bx,by)

Goto(R,bx), Pushb(R,bx,by)

8.4.1 Managing the Size of Relaxation Expressions

As the number of operators grows in a domain it is important to consider ways to
limit the size of the relaxation expressions. There are several methods PABLO uses
to limit these sizes.

Removing Subsumed Disjuncts

The rélaxation definitions are kept in disjunctive normal form. Diiring the relaxation
it often happens that one disjunct subsumes another one. In stich situations PABLO
rém.ves the subsumed disjunét. There is no reason for rétaining it, since wheénever
it holds, the disjunct which subsumes it will also hold. See chapter 6 for an exaniple



102. CHAPTER 8. COMBINING ABSTRACTION METHODS

where this is done for the Clear(x) predicate in the blocks world. Once hierarchical
opzrators are introduced the frequency of subsumed expressions naturally rises and
this operation can lead to substantial savings.

Using Domain Knowledge

Another useful method to limit the size of the relaxed expressions is to use domain
axioms to collapse disjuncts. For example, in the Robot World domain without locked
doors we have the axiom Status(x,Closed) =» = Status(x,0Open). The result of relaxing
the Status predicate one level is the following:

o Status},(z,y) B
Status(x,y) 1]
Nextto(Robot,x) A Type(x,Door) A Status(x,0Open) | [Close(x)]
Nextto(Robot,x) A Type(x,Door) A Status(x,Closed) | [Open(x))

However, using the domain axiom, the above can be collapsed to: ... -

 swweey)
Status(x,y) 1]
Nextto(Robot,x) A Type(x,Door) | [Close(x) V Open(x)]

This technique can lead to considerable simplification in the relaxed expressions.
Example in the ABSTRIPS Domain
To demonstrate how these techniques can lead to substantial savings we show the
result of applying them to the relaxation expression.of the Inroom(x,y) predicate.
Without any simplification the result of relaxing Inroom(x,y) two levels, over the
ABSTRIPS operators, can be seen in tables 8.1 and 8.2.

Obviously this expression is unacceptably large. However, if we make use of the
techniques for managing the size of relaxed éxpressions the resulting expression, in
table 8.3 is considerably more compact.



8.4. ABSTRIPS DOMAIN 103

Inroomc, (z,9) ‘

Inroom(x,y) V

connects(z,1,y) A type(z,door) A status(z,closed) A type(y,room) A iype(f,door) A
type(r,room) A conneéts(f,g,r) A status(f,open) A inroom(robot,g) v

connects(z,r,y) A type(z,door) A status(z,closed) A typé(y,room) A inroom(robot,g) A
connects(f,g,r) A type(f,door) A status(f,closed) A type(r,room) V

type(v,door) A type(y,room) A connects(v,w,y) A status(v,0pen) A type(f,door) A
type(w,room) A connects(f,g,w) A status(f,open) A inrcom(robot,g) Vv

type(v,door) A type(y,room) A. connects(v,w,y) A inroom(robot,w) A type(v,doer). A
status(v,closed) A nextto(robot,v) v

type(v,door) A type(y,room) A connects(v,w,y) A status(v,open) A inrocm(robot,g) A
connects(f,z,w) A type(f,door) A status(f,closed) A type(w,room) V .

pushable(x) A nextto(x,k) A nextto(fobot,x) A type(k,door) A type(y,room) A sta-
tus(k,open) A inroom(x,s) A connects(k,s,y) A type(f,door) A type(s,room) A con.
nects(f,g,s) A status(f,open) A inroom(robot,g) vV

pushable(x) A nextto(x,k) A nextto(robot,x) A type(kdoor) A type(y,room) A in-
room(robot,s) A inroom(x,s) n connects(k,s,y) A type(k,door) A status(k,closed) A
nextto(robot.k) v

pushable(x) A nextto(robot,x) A type(k,door) A type(yyroom) A status(k,open} A
inroom(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) A pushable(x) A
nextto(robot,x) A inroom(x,g) A connects(k,g,h) A inrosm(robot,g) v

pushable(x) A nextto(x,k) A type(k,door) A. type(y,room) A status(k,open) A in-
room(fobot,s) A inroom(x,8) A connects(k,s,y) A type(x,door) A pushable(robot) A
nextto(robot,fobot) A inroom(robot,g) A connects(x,g,h) A inroom(robot.g) v
pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A
inroom(robot,8) A infoom(x,s) A comnects(k,s,y) A type(k,object) A pushable(x) A
nextto(robot,x) A inroom(x,g) A inroom(k,g) A inroom(fobot,g) vV

pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A
inroom(robot,8) A inroom(x,s) A connects(k,s;y) A type(x,0bjeét) A pushable(k) A
nextto(robot,k) A inroom(k,g) A infoom(x,g) A infoom(robot,g) Vv

pushable(x) A nextto(x,k) A type(k,door) A type(yroom) A status(k,open) A in-.
foom(robot,s) A infooni(x,8) A connects(k,s,y) A type(x,0bject) A pushable(robot) A
nextto(robot,rabot) A infoétn(robot,g) A inroom(x,g) A inroom(fobot,g) vV

Table 8.1: First half of relaxation expreasion.
4



104 CHAPTER 8. COMBINING_ABSTRACTION METHODS

pushable(x) A nextto(x,k) A type(kdoor) A type(yyroom) A status(k,open) A in-
room(robot,s) A inroom(x,s) A connects(k,s,y) A type(robot,object) A pushable(x) A
nextto{robot,x) A inrcom(x,g) A inroom(robot,g) A inréom(robet,g) v .

puskable(x) A nextto(robotx) A type(k,door) A type{y,room) A status(k,open) A in-.
room{robot,s) A. inroom(x,s) A cennects(ks,y) A type(k,box) A inroom(k,g) A in-
réom(robot,g) V .

pushable(x) A nextto(x,k) A type(k,door) A type(y,room) A.status(k,opeir) A in-.
room(robot,s) A inroom(x,s) A conmnects(k,s,y) A type(x,box) A inroom(x,g) A in-
room(robot,g) V

pushable(x) A nextto(robotx) A type(k,door) A type(y,room) A status(k,openj A in-
room(robot,s) A inroom(x,s) A connects(k,s,y) A type(k,door) A connects(k,g,h) A in-
room(robot,g) V

pushable(x) A mnextto(x,k) A type(k,door) A type(y,room) A status(k,open) A in-
room(robot,s) A inroom{x,s) A connects(k,s,y) A type(x,door) A connects(x,g,h) A in-
room(robot,g) V

pushable(x) A nextto(robot,x) A type(k,door) A type(y,room) A status(k,open) A in-
room(robot,s) A inroom(x,s) A connects(k,s,y) A inroom(robot,g) A inroom(x,g) A
type(x,box) A inreom(k,h) A pushable(x) A type(k,objett) v

pushable(x) A nextto(robot,x) A type(k,door) A type(y,;com) A status(k,open) A in-
room(robet,s) A inroom(x,s) A connects(k,s,y) A inroom(robot,g) A inroom(k,g) A
type(k,box) A inroom(x.h) A pushable(k) A Jype(x,0bject) v

pushabie(x) A nextto(x,k) A type(k,door) A.typeysroom) A status(k,open) A in-
room(robot,s) A inroom(x,s) A connects(k,s,y) A inroom(robot,g) A type(robot,bax) A
inrooni(x,h) A pushable(robot) A type(x,0bject) Vv

puskable(x) A nextto(x,k) A type(k.door) A type(y,room) A status(k,open) A in-
room(robot,s) A inroom(x,s) A connects(k,s,y) A inroom(robot,g) A inroom(x,g)_ A
type(x,box) A pushable(x) A type(robot,objeét) V

pushable(x} A nextto(x,k) A. nextto(robot,x) A typé(k,door) A type(y,room) A sta-
tus(k,opéen) A inroom(x,s) A conneéts(k,s,y) A inroom(robot,g) A comnects(f,g,s) A
type(f,doot) A status(f,closed) A type(s,roon) V

pushable(x) A neéxtto(x,k) A nextto(robot,x) A type(k,doot) A type(ysroom) A sta-
tus(k,open) A inroom(robot,s) A inroom(x,s) A cornects(k,s,y) V

type(v,door) A type(y,room) A connects(v,w.y) A status(v,open) A inroom(robot,w) v
inroom(robot.r) A connééts(z,t,y) A type(z,dooi) A status(z,closed) A type(y,foom)

Table 8.2: Second half of relaxation expression.



8.4. ABSTRIPS DOMAIN 105

InroomZ,(z,y) ] -
connects(z,r,y) A type(z,door) A typé(y,room) A inrodm(robot,g) A connects(f,g,r) A
type(f,door) A type(r,room) V
pushable(x) A. nextto(x,k) A nextto(robot,x) A type(k,door) A typé(ysroom) A in-
room(rabot,s) A inroom(x,s) A-connects(k,s,¥) A nextto(robot,k) v
pushable(x) A nextto(x,k) A type(k,door) A type(y,room) A status(k,open) A in-
room(rcbot,s) A iaroom(x,s) A connects(k,s,y) A type(x,box) V
inroom(robet,r) A connects(z,r,y) A type(z,door) A type(y,room) V
pushable(x) A nextto(x,k) A nextto(robot,x) A type(k,door) A type(yroom)_A sta-
tus(k,open) A inroom(robot,s) A inrco.a(x,s) A connects(k,s,y)

Table 8.3: Relaxed expression using the simplification. filters.

While simplifying the expression we made use of the domain constraint

Status(x, closed) => —~Status(x, open)

Notice that by using this constraint. PABLO can capture the notion that it does
not matter whether a door is open or closed, since PABLO has operators for either
case (Gothrudr and Gothrucloseddr). All that is important is that there is a door
between two rooms.

We can see that with a few simple téchniques it is possible to achieve a sizable
reduction in the size of the relaxed expressions. If the expression becomes unman-
ageably large even using these simplification techniques, PABLO stops relaxing the
predicate. The user can set a threshold for.the maximum allowable size for. each
relaxation. predicate. This might result in PABLO performing additional planning
at a higher level than it otherwise would, but this might be preferable to having an
enorriious and unwieldy relaxation expressioni to evaluate.

8.4.2 Example from ABSTRIPS
We gave PABLO the problem presented in [Sacerdoti, 1974] for purposes of compar-

ison. The problem can be seen in figure 8.5. In this figure (a) represents the initial
state and (b) is the goal state.



106 CHAPTER 8. COMBINING ABSTRACTION METHODS

SN

A_|B /_lc D
<\
T @ N
i N N
B JC )
\ \/\ /
gnin a G

Figure 8.5: Problem that ABSTRIPS solves

PABLO begins planning at abstraction level 3. The plans generated after each
abstraction level can be seen in figure 8.6. ABSTRIPS also uses four levels of ab-
stractions for this problem.

The plans generated at each abstraction level by PABLO and ABSTRIPS are
femarkably similar. . This is probably due mostly to the nature of the problem and
domain. ABSTRIPS is a linear planner.and this is a linear problem, without strongly
interacting subgoals. It is not surprising that both planners would generate similar
plans at different levels of abstraction.

Given.a.different problem in a similar domain, such as the previous problem with



8.4. ABSTRIPS DOMAIN 107

| Gotob(RiBaxt) = Pushib(R.Box,Bex2) |
Leval 3

| Goteb(R,Baxt) |~ Pushb(R,Box1,Bax2) b——r{ Gothrude(R,DabA) |

Level 2

[ Cottruar(mpte. ) || Gotob(R.Bant) |1 Puskb(R,Boxt,Bext) |—— Gosbrudr(R,DabA) |
Level 1

| coordiy)  |— OpeairDig) | Gothndr(R,bfg,F)b

CL Gotbruds(R,Die,E) |—|  Gosob(R,Box1) |—] Euha(n.am,auz)b

g Gothmd:(a,beb.ﬁﬂ—f{ Gothn&(B..Dub.Aﬂ

~ Base Level

Figure 8.6: PABLO’s solution

very strongly interacting goals the similarity obviously ends, since ABSTRIPS is
unablé to solve the problem.. Also, given a different domain, such as the Towers of
Hanoi, the two.planners’ behaviour might differ considerably. In the Towers of Hanoi.
domain, ABSTRIPS can use only one level of abstraction, no matter the complexity
of the problem given, whereas PABLO genérates n — 1 levels of abstraction for n
disks.



108 CHAPTER 8. COMBINING ABSTRACTION METHODS

8.5 Summary

We have presented two examples where state and operator abstraction are combined
to produce interesting planning behaviour. We have extended predicate relaxation to
include the relaxation of predicates over hierarchical operators. Finally, we demon-
strated techniques whereby the size of predicate relaxation expressions can be sub-
stantially reduced.



Chapter 9

Classical Truth Criterion

9.1 Introduction.

A truth criterion definés the conditions under which a predicate is true in a particular
situation of a plan. Such a criterion is important since a planner must often check
the truth of propositions during planning, e.g. to detérmine if a proposition of a
precondition is satisfied. Because the underlying plan representation varies from
planner to planner the truth criteria of ;;lanners.have varied as well.

As we shall see, in some special plans, namely those where the actions are lin-
early ordered and where every predicate is ground, defining a truth criterion is rela-
tively straightforward. Once we introduce variables, nonlinearity, conditional actions,
deductive rules, typed variables, etc., defining a truth criterion becomes more com-
plicated. . For example, once we introduce nonlinearity, the truth of a predicate at
a certain point in the plan depends on.the possible orders of the actions preceding
the point of interest. In this case we no longer speak simply about the truth of a
proposition, but about the possible.or necessary truth-of a proposition.

The first formal definition of a truth criterion for partially ordered plans can.
be found in [Chapman, 1987). Chapman refers to this criterion as.the Modal Truth
Criterion. The Modal Truth Critéerion was defined for a particular plan formalism:
Chapman’s TWEAK formalism. As Chapman points out, TWEAK is a very re-
stricted planning formalism. Further, éven minor extensions to the formalism results

109



110 CHAPTER 9. CLASSICAL TRUTH CRITERION

in the truth criterion no longer béing valid.

In this chapter, we dis¢uss the previous work by Chapman, and then present .a.
new. planning ontology that is powerful enough to capture most planning formalisms
proposed up_ until now. . We then present. a new .Classical Truth Criterion for this
planning formalism. This truth criterion is proved. sound and complete.! Finally,
we discuss some of the implications of the Classical Truth Criterion, and present an
algorithm for checking the truth of a predicate in a plan.

9.2 Modal Truth Criterion

Chapman introduces the following truth criterion:

Definition 6 (Modal Truth Criterion) A proposition p is necessarily true in a
situation s iff two conditions hold: there is a situation t equal or neéessarily previous
to s in which p is necessarily asserted; and for every step C possibly before s and
every proposition g possibly codesignating with p which C deni¢s, there is a step W
necessarily between C and s which asserts r, a proposition such that r and p codesignate
whénever p and ¢ codesignate. The criterion for possible truth is ezactly analogous,
with all the modalities switched (read “necessary” for “possible” and vice versa).

In Chapman’s logical notation. the criterion reads as follows:

3t Ot < s A Dassertedin(p, t)A
VC Os X CV
Vg O-~denies(C,q)V
Og % pVv
Iw ac < WA

oW < sA
Ir asserts(W,F)Ap=g=>p=r

1A truth criterion is sound if whenever it holds for a predicate p and a situation s the predicate
p is true in situationi 8. A truth critefiun is comiplete if whenever p is true in situation s the truth
criterion holds for predicate p if situation s.



9.2. MODAL TRUTH CRITERION . 111 .

There is a typo in Chapman’s logical formulation of the Modal Truth Criterion.
In order to make the formula conform to the¢ English version we need to replace

Ir asserts(w,r) ApRg=>pr .

with _

3r asserts(w,r) AQ(pg=>p=rT).

In what follows we will refer to this criterion as MTC. The MTC is proven by
Chapman to be valid for plans represented in TWEAK’s formalism. Fot a.complete
description of TWEAK see [Chapman, 1987]. An action in TWEAK has a precondi-
tion and a postcondition, each of which are sets of predicates which must hold before
the application of the action and after the application of the action respectively. .
Plans in TWEAK are partial orders of actions. The TWEAK formalism explicitly
excludes restricting variables to & finite domain, conditional actions, and deductive
rules. Chapman notes that if TWEAK is extended in any of these ways the Modal
Truth Criterion fails. For example, in order to guarantee,

-=M1'C = =0OHoolds(p, s)

or S -

Vt Os <tV Oasserts(p, t)V
e Oc < A
dg Odenies(c, q)A
Og = pA
Yu Ow < ¢V
Os X wV
Vr —asserts(w,r)VO(p xR qgAp#ET)
= =0OHolds(p, s)

it-must be the case that if no action necessarily asserts p then p cannot necessarily
hold. Although this is the case fov the plan representation used in TWEAK it is not
the case for many representations vthich are just somewhat more-expiégsive. For
example, if we allow restricted ranges on variablés we can have situations where no
step necess: rily assérts a proposition but wheré the proposition is asserted by some
step in all ground linear completions of the plan. Take the plan in figure 9.1.



112 CHAPTER 9. CLASSICAL TRUTH CRITERION

(O ——] Move(cx maBLE) 20 ove(p yiranLE) (5

x = {A,H} y = {A,B)} xdy

Figure 9.1: Restricted Range Plan.

In this plan Clear(A) holds in situation s, however the Modal Truth Criterion fails
to determine this.

Restricting the range of variables can greatly reduce the planning time in certain
cases. SIPE is the main planner which makes use of this feature for great compu-
tational savings. A truth criterion that cain deal with this extension is therefore an
important contribution.

We have a similar problem if we extead cur plan représentation to allow arbitrary
deduction performed int situations. We have to bé careful when extending our laa-
guage t& handle this. Lifschitz [Litschitz, 1986) has showi that for a planner which
uses STRIPS stvle aperators to remain souxd it is nécessary that any akioms we use
must held in all states. of the domain. However, if we allow such axioms in our plan
language the compléteness proof of the Modal Truth Criterion fails since we can now
have two actions which synergistically assert a proposition in a way similar tc that of
figure 9.1.



9.2. MODAL TRUTH 7RITERION 113

For example, suppose we are in a blocks world which allows more than one blo¢k
on another. We might want to include a deductive rule which determines that if no
block is on top of a particular block then that block is ¢lear. This rule would usually
be applied after a block has beea moved from one loc¢ation to another. This is not—.
equivalent to simply adding Clear(x) to the postéondition of the move-block(y,x,z)
operator, since not all block moves result in x becoming clear.

Move(A,C,TABLE)

Move(B,C, TABLE)

Figure 9.2: Deductive Plan

Take example 9.2. In this example each move operator has On(z,y) in the delete
list, where 2 is the block being moved. However, it does not have Clear(y) in the add
list, since it might be the case that there areremaining blocks on y. To determirie if a
block y is clear the planner must use the following axiom (-~3z On(z,y)) = Clear(y).

In our exarnple, it is the casé that clear(C) holds in.state S. The Modal Truth Cri-
terion would not recognize this since no action prior to s nécessarily asserts clear(C).

In what follows we présent a planning formalism which genéralizes most of the
powerful plan réprésentations proposed in the literature to date. We then present a



114 CHAPTER 9. CLASSICAL TRUTH CRITERION

Classical Truth Criterion which is proven valid for this formalism, and as a conse-
quence, the formalisms which it subsumes.

9.3 The Classical Planning Ontology

In this section we present our ontology, upon which we will base our logic, and present
the tiuth criterion.
A plan consists of the following components:

A {a1,...,a4}, a set of n actions.

P A possibly infinite set of predicates.

W_< A partial order A x A.
W_asserts .A binary relation A x P.
‘W_denies A binary relation A x P.
Winitially A unary relation on P.
W _ground. A unary relation on P.
W_holds A birary relation P x A.

Notice that we have said nothing about the structure of actions or predicates for
that matter, only that they exist. It is important to make the distinction at this point
bétween the predicates in P, whi¢h are predicatés on the particular domain theplanner
is operating in, e.g. ON(x,y), CLEAR(x) in the blocks world, and the predicatés int the
logical language used to describe the truth criterion, e.g. asserts(W,r) in Chaprnan’s
logic.

A model is a Kripke structure such that:

¢ The worlds are plans.

o A, P, W.nitially, and W _ground do not vary from world to world.



9.4. CLASSICAL PLAN LOGIC ‘ 115

We define some worlds as being GLP (ground-linear plans):

Definition 7 (GLP) GLP(w)iff in world w, W_< defines a total order on A and for
every predicate p such that there is some action a and some pair (e,p) € (W_asserts
U W_denies) it is the case that p € W_ground.

Further, the worlds in our Kripke structure are related by the following two rela-
tions:

Definition 8 (S) S(w;,w;) is any reflexive, transitive relation such that whenever

Definition 9 (C) C(wy, w,) iff S(wy, w;) and GLP(w;,).

This compleétes our ontology. Notice that the relation S is not completely specified.
The point is that any relation with the necessary properties we have defined will
be adequate for our purposes. The relation S will vary from planner to planner,
depending on the planner’s particular method of specializing plans.

Further notice that this ontology can be used to represent planning formalisms as

diverse as STRIPS, TWEAK, SIPE, NOAH, NONLIN, etc. This is because weimpose

no constraints on the structure of actions, and allow the. relations W.<, W_asserts,
W denies, to vary from world to world, thus allowing for nonlinearity, ¢onditional
actions, deductive rules, etc:

9.4 Classical Plan Logic—

In order to reason with our ontology we need a language which will allow us to make
précise statements about our model. Not surpfisingly, we will use a first-ordér modal
logic. We define symbols for the members of A and P. For simplicity of éxpesition we
will use the samé symbol namies in our logic as in-theé model; if a € A ifi the model
thén a is an action in our logic. We then defirie the following relations:

< (a1 < ag) iff (a1,az) € W<,




116 CHAPTER 9. CLASSICAL TRUTH CRITERION

asserts asserts(a,p) iff (a,p) € W_asserts.

denies denies(a, p) iff (a,p) € W_denies, ...
initially initially(p) iff p € Winitially.

ground ground(p) iff p € W_ground.

holds holds(p,a) iff (p,a) € W _holds.

We intend holds(p,a) to be true if predicate p is true just before action a is
executed; initially(p) is true if p is true in the initial situation; asserts(a,p) is true
if action a asserts-predicate p; denies(a,p) is true if action a denies predicate p;
ground(p) is true if predicate p contains no variables in its argument list; a; < a3 is
true if action a; must be executed before action a,.

We also have two sets of modal operators: Og, Os defined in the usual manner on ..
the accessibility relation S, and O, defined on the accessibility relation C.

We will need the following properties of our logic:

OPAQ)=0PADE

QPVR)=OPVOQ.

OPAOQ = O(PAQ)

Og(PAQ)=0DsP ADsQ

Os(PVQ)=CsPVOsQ

These are true in all standard models of modal logic and thezefore also in ours.

VzOP = OVzP_(Bascan Forzaula)

3z0P = D3IzP

VzOgsP = OsVzP (Barcan-Formula)

3z04P =» O3 P

This follows from the fact that we are using a fixed domain, i.e. the objects in
out. domain (actions and predicates) do not vary fror world to world. We cain prove
the Barcan formula as follows. If, in a plan o, VZOP then it is the case that OP is
tfue in & no matter what value = takes. But then for all plans 8 such that aCf it
is the case that i is true no inatter what value r takés. But this means that Yz P



9.4. CLASSICAL PLAN LOGIC 117

is true in plan B. Which in turn means that OVzP is true in plan &. 2 The proof’
for 3z0P = O3z P is similarly straightforward, and the proofs for Og and Og are
analogous..

OsOP = OP

If [z, ©sOP then there exists some plan o' and some plan 3 such that aSa’.and
o/CB and =5 P2 We just need to show that aCB. But this is clearly true, since
o«’CP implies &'SPB, which by transitivity implies aS8. Furthermore, GLP(8) which
implies aCB.

OsP. = OP

This follows directly from the definitions of C and S. Specifically, for all plans
and B whever aCf it is the case that aSB8. Therefore, if |=, P for every w such that
aSw, it must be the case that k=¢ P for every ¢ such that aC(.

O(OP = P)

O(0OP = P)

These two axioms follow from the fact.that the only ground linear completion of a
ground linear complétion a is . Therefore |4 OP is equivalent to |=, P and =, OP

is equivalent to =, P.

9.4.1 STRIPS Assumption

We are almost done with the definition .of our logic. It turns out that to prove our
Classical Truth Criterion we need one axiom: .

O(Holds(p,a) =
(=3b(b < a) A initially(p))V
Je((c < a) A=3d((c < d) A (d < a))A
(asserts(c, p) V (Holds(p, ¢) A ~denies(c, p)))))

(9.1)

Interestingly enough, if we take the STRIPS assumption to be:

For a discussion of the Barcan formula seée [Hugliés and Cresswell, 1968] pp. 147-148.
3The notation f=o P meais that | P in plan (world) a.



118 CHAPTER 9. CLASSICAL TRUTH CRITERION

The truth value of 2 predicate does not ¢hange unless it is_explicitly
assertéd or denied by an action in the plan.

Then it should be clear that our axiom is merely a restatement of this principle in =
our logic. Therefore, we will refer to this axiom as the STRIPS Assumption Aziom.

9.4.2 Lemmas

In our proof of the Classical truth ¢riterion we will need the following lemmas which
follow directly from the STRIPS Assumption Axiom.

Lemma 9.4.1

O((=3b (b < a) A ~Initially(p)) = —~Holds(p, a))

Lemma 9.4.2
B((3b (b<a) A=3c ((b < c) A (c < a)) A ~Holds(p, b)
A=asserts(b, p)) = ~Holds(p, a))
Lemma 9.4.3

O((35(b < a) A =3e¢((b < ¢) A (¢ < a))-A denies(b, p) A —asserts(b,p)) _
= < Holds(p, a))

Lemma 9.4.4

O(Initially(p) = (Holds(p,a} v 3b(b < a)))

Lemma 9.4.5
O(3b(b < a) A =3e{(b < c) A (c < a))A
(~asserts(b,p) = Holds(p, b) A ~denies(b, p))
= Holds(p, a))



9.5. CLASSICAL.TRUTH CRITERION — 119

9.4.3 . First attempt at defining a new truth criterion

One obvious truth criterion is the following formula: |

OHolds(p,a) =
O((~3b(b < a) Ainitially(p))V
Je((¢ < a) A =3d((c < d) A (d <.a))A
(asserts(¢, p) V (Holds(p, ¢) A ~denies(ec, p)))))
This follows directly from the STRIPS Assumption Axiom. It should be obvious
that this definition i§ not particularly useful since it requires us to examine every

ground linear ¢ompletion of a plan to determine the truth of a proposition in a
situation.

(9.2)

We now present a new truth criterion wkich is powerful enough to correctly handle
an extended plan representation, yet allows us to determine the truth of a proposition

more efficiently than simply examining every ground linear completion of the current
plan.

9.5 Classical Truth Criterion

In our language the Classical Truth Criterion is expressed as follows:

O Holds(p,a) =
Os (((~3b O(b < a)) => Dnitially(p))A.
Ve (B(c < a) A-3d O(c < d) A (d < a))) =
(=< asserts(c, p) =
OHolds(p, ¢) A ~<denies(c, p)))

Proof: .

We will refer to the right hand side of the equivalence as T'C. First we prove that

if p holds before an.action a of all ground-linear completions of a plan then the truth
¢riterion m. ot hold for that plan. This is done by proving the contrapositive, namely
that ~T'C(p;a) = —DHolds(p, a).



120- CHAPTER 9. CLASSICAL TRUTH CRITERION

Os((~3b O(b < a) A ~Olnitially(p))
Ve (B(e < @) A =~3d O((¢ < d) A (d < a))
A=Oasserts(e, p)A--
(~OHolds(p, ¢) V ¢denies(e, p))))
= ~OHolds(p, a)

(9.3)

Using Os(P V Q) = OsP V OgQ we can rewrite the above.

Os((—3b O(b < a) A ~Dlnitially(p)))
VOs(Fe (B(e < a) A=3d O((c < d) A(d < a))
A=Oasserts(c, p)A
(~OHolds(p, ¢) V $denies(c, p))))
= ~0OHolds(p, a)

(9.4)

Using PVQ = R=(P= R)A(Q =_R):

Os((—3b O(b < a) A ~Olnitially(p)))
= -~OHolds(p, a)
A
Os(3e (O(c < a) A ~3d O((c < d) A (d < a))
A—~Oasserts(e, p)A
(~OHolds(p, ¢) V <denies(é, p))))
= -<0OHolds(p, a)

(9.5)

We first show:

Os((~3b O(b < a) A ~Olnitially(p)))
= -~0OHolds(p,a)
Since =3bO(b < a) = O-3b(b < a) we can rewrite the antecedent:

(9.6)

Os(0-3b (b < a) A ~Olnitially(p)) Q7. ...



9.5. CLASSICAL TRUTH CRITJRION 121

Now, since ~OP = O-P:

O5(0=3b (b < a) A O-Initially(p)) (9.8)
Pecause CPAOQ = OGP AQ):

O s$(=3b (b < @) A -lIeitially(p)) (9.9)

Since <>s<>P = OP:
$(~3b (b < a) A ~Initially(p)) (9.10)

Uste Loraae 4.1
O~Hoelds(p, a) (9.11)

Which is cquivalen. to =3Holds(p, ¢} which is what we wanted to show.
We still need ‘«. shew par’ (%) <f equation 9.5.

Cede e < a) A3d O((e <dj A (d < a))
A-~Qasserts(c, p)ri
(-OHoldz(p, ) V-<denies(c, p)))) (9.12)
= ~0OHolds/p,a)

We distribute over V.

Os(3ec (O(c < a) A=3d O((c < d) A (d < a))
A=Qasserts(c, p)A
~OHolds(p, &)V
(O(c < a) A =3d O((c < d) A (d < a))
A~Oasserts(e, p)A
Odenies(e, p)))
= =OHolds(p, a)

(9.13)



122 CHAPTER 9. CLASSICAL TRUTH CRITERION

We distribute 3¢ over V.

Cs(3e (O(c < a) A=3d O((e < d) A (d < a))
A=Oasserts(c, p)A
-OHolds(p, ¢))V
Je(Q(c < a) A =3d O((¢e < d) A (d < a))
A—~Oasserts(e, p)A
<{denies(e, p)))
= «0OHolds(p, a)

Using Os(PV.Q)=COsPVOsQ

Os(3e (O(c < a) A-Td O((e < d) A (d < a))
A=Oasse: ts(c, p)A
—~DHolds(p, ¢)))V

Os(3e(B(c < a) A~ O((c < d)A(d < a)) .

A—Qasserts(c, p)A
Odenies(c, p)))
=» —OHolds(p, @)

Using PVQ = R= (P = R)A (Q = R):

Os(3e (B(c < a) A~3d O((c <.d) A (d < a))
A=Qasserts(e, p)A
~OHolds(p,c})) = —~OHolds(p, a)

\'

Os(3c(O(c < a) A=3d O((¢ < d) A (d < a))
A=Qasserts(c, p)A
Odenies(c, p)))
= ~DOHolds(p, )

We niow show:

(9.14)

(9.15)

(9.16)



9.5. CLASSICAL TRUTH CRITERION 123

Os(Fe (O(e< a)A=3Fd O((e < d) A (d < a))
A=Oasserts(c, p)A (9.17)
-0Holds(p, ¢))) = ~OHolds(p, a)

JzOP = O3 zP and ~OP = O-P. .
Os(3e (A(e < a) AO-3d ((c <d) A (d < a))

ADO=-asserts(¢, p)A (9.18)
<-Holds(p, ¢)))

OP AOQ = O(P A Q)

Os(Fe O((e < a)A=3d ((c<d)A(d <a))
A-asserts(e, p)A (9.19)
~Holds(p, c)))

3e OP(c) = O3c P(c):

©sO(3e (¢ < @) A=3d ((c < d) A (d< a))

A-asserts(c, p)A (9.20)
~Holds(p, ¢))
OsOP = OP:
O(Fc (e < a)A=3d ((c <d) A(d < a))
A—asserts(c, p)A . (9.21)
=Holds(p, ¢))
Applying Lemma 9.4.2:

O-Holds(p, a) (9.22____

Which is equivalent to ~OHolds(p, a).
We still néeed to show: .



124 CHAPTER 9. CLASSICAL TRUTH CRITERION

Os(Fe(O(e < a) A ~3dO((c < d) A (d < a))
A-Oasserts(c, p)A
Odenies(e, p))) (9.23)
= ~0OHolds(p, a)

~COP = O~P,

Os(3e(B(c < a) AD-3d ((c <d)A(d < a))
AD-asserts(c, p)A (9.24)
Odenies(c, p)))

0P AOQ = O(P AQ):

Os(Fed((e < a)A=3d ((c <d)A(d <q))
A-asserts(c, p)A _ (9.25)
denies(c, p)))

3aOP(a) = O3aP(a)

OsO(Fe(c < a) A-3d.((c < d) A (d < a))
A-asserts(c, p)A (9.26)
denies(c, p))
OsOP = OP

O(3e(c < a) A =3d ((c < d) A (d < a))

A-asserts(c, p)A (9.27)
denies(c, p))
Using Lemma 9.4.3:
<O-Holds(p, a) (9.28)

W hich is equivalent to ~CHolds(p,a).. We are now done proving OHolds(p,a) =
TC. We now show T'C = DOHolds(p, a).



9.5. CLASSICAL TRUTH CRITERION 125

Qs (((=3b O(b < a)) = Olnitially(p))A
Ve (D(c<a)A-3d O((e<d)A(d<a))) =
(=< asserts(c,p) =
DOHolds(p, ¢) A ~Odenies(¢, p)))

Ds(P A Q) = DsP/\ DsQ!

Og ((~3b.0(b < @)) = Dlnitially(p))A
Og(Ve (O(c< @) A=Fd O((c < d) A (d < a))) =
(= asserts(c, p) =
OHolds(p, ¢) A ~Odenies(e, p)))

We begin by showing:

Bs((~3b O(b < @) = Olitially(p))__

, (9.29)
= O(Holds(p,a) Vv 3b(b < a))
AO(b < a) = O3b(b < a):
Og((—~©3b (b < a)) = Olnitially(p)) (9.30)
~OP = DO-P,
Os((9-3b (b < ¢)) = Olnitially(p)) (9.31)
OsP = 0P:
O((9-3b (b < a)) = Olnitially(p)) (9.32)
o(0P = P):
D((-3b (b < a)) = Initially(p)) (9.33)

Rewriting,



126 CHAPTER 9. CLASSICAL TRUTH CRITERION

B((3b (b < a)) V Initially(p)) (9.34)
Using lemma 9.4.4:
O(Izitially (p) = (35(b < a)) V Holds(p, a)) (3.35)
Therafore:
0((3b (b < a)) V Holds(p, 2)) (9.36)

We new show:

Og(Ve(Oic < a) A =3d O({c < d) A (d < a))) =
(=<asserts(e, p) = (OHolds(p, ¢j A =<Cdenies(c, p)))) (9.37)
= O(Holds(p, ¢) V —~3e(e < a))
-~CP = 0-P and 3zOP = Oz P.

3s(Ve(O(e = a) AD-2d ({c < d) A{d < a))) =
(O-asserts(c, p) = (OTolds(p, ¢) A D-denies(c,p))))
OsP = OP:

(9.38)

C(Ve(O(c < a) AO-3d {(c < d) A (d < a))) =
(O-asserts(¢, p) = (OHolds(p, <) A D—denies(c, p))))
0(ar =.P):

(9.39)

O(Ve((c < @) A=3d ((c < d)A(d < a))) =
(—asserts(c,p) = (Holds(p, c) A —~denies(c, p))))
(Je(e < @) v ~3e(e < a)) A P = (3e(e < a) A P)v -3¢(e < a)..

(9.40)

O((3¢(e < a) AVe((c < a) A=3d ((c < d) A (d < a))) =
(—asserts(c, p) = (Holds(p, c) A —~denies(c, p)))) (9.41)
V(~3e(e < a)))

Sinice a ground Jinear plan is a total order the following holds:



9.5. CLASSICAL TRUTH CRITERION 127

O(3e(e < a) = 3f(f <a)A-3g(f < g) A (9.< a))

Therefore:.

B((Ef(f <a) A-3g((+ < g) A (g < a)) AVe((c < a)A=3d ((c < d)A(d < a))) =
(—asserts(c, p) = (Holds(p,c) A ~denies(c, p))))
V(-3e(e<a)))
(9.42)
We use universal instantiation and simplify:

B(Ef(f < a) A-3g((f < 9).A (g < a))A
(—asserts(f,p) = (Holds(p, f) A ~denies(f, p)))) (9.43)
V(=3e(e < a)))
Using lemma 9.4.5:

O(Holds(p, &) V (~3e(e < a))) (9.44)
Therefore:

O(Holds(p, @) V 3b(b < a)) A O(Holds(p, @) V =3e(e < a)) (9.45)
OPADQ = O(PAQ):

O((Holds(p, a) v 3b(b < a)) A (Holds(p,a) vV =3e(e < a))) (9.46)
Rewriting:

O(Holds(p,a) V (3b(b< a) A =~3e(e < a))) (9.47)
Which is equivalent to:

OHolds(p,a) (9.48)
0 Q.E.D.
This completés our proof of the Classical Truth Critérion.



128 CHAPTER 9. CLASSICAL TRUTH CRITERION

9.6 Algorithm for checking truth criterion

We can make use of two properties of the truth criterion to increase the efficiency of
a truth checking algorithm. The first is that if the truth criterion is non-trivially true
in a plan, then it is true for all specializations of it. .

By non-trivially true we mean that either a is the first action of the plan and
Dlnitially(p), or there is some action ¢ immediately before a and

=Oasserts(c, p) A OHolds(p, ¢) A ~Cdenies(c, p).

It is important to note that if there is some action ¢ inmediately before a there
can be no other action immediately before a. This property guarantees that both
conditions imply the Classical Truth Criterion.

We show,

(((~3b O(b < a)) A Olnitially(p))V
Je(D(c < a)A=3d O((c < d) A (d < a)))A
(=COasserts(¢, p) A OHolds(p, c) A =Odenies(c, p)))
= (9.49)
Ds(((~3b O(b-< a)) A Olnitially(p))V
Je(D(c < a) A=3d O((c < d) A (d < a)))A
(~Oasserts(c, p) A OHolds(p, c) A =Odenies(c, p)))
Proof:
Rewrite-the antecedent:

(((Vb O-(b < a)) A Olnitially(p))V
Je(D(c < a) AVd O-((c < d) A (d < a)))A (9.50)
(D-asserts(c, p) A OHolds(p, ¢) A O~denies(c, p)))
Use OP = Os0P:

(((vb OsO=(b < a)) A OsOlnitially(p))V
3¢(Ds0(c < a) A Vd OsO~((c < d) A (d < a)))A (9.51)
(DsO=asserts(c, p) A DsOHolds(p, ¢) A OsO-deénies(c, p)))



9.6. ALGORITHM FOR CHECKING TRUTH CRITERION 129

Use the Barcan formula:

(((QsVb O=(b < a)) A OgOlnitially(p))V
3¢(0sBO(c <.a) A Os¥dO=((e < d) A (d < a)))A (9.52)
(OsO-asserts(c, p) A OsOHolds(p, ¢) A OgB-denies(c,p)))

Use OsP A OsQ = Og(P A Q):

Dg((Vb O-(b ~ a)) A Olnitially(p))V
JeOg(0(¢ < a) AVdO-((c < d) A(d < &)))A (9.53)
(Q-asserts(c, p) A OHolds(p, ¢) A O-denies(e, p)))
Use the Barcan formula:

Og((Ys O~(b < a)) A Dlnitially(p))V
Os3¢(0(e < a) AVdO((¢ < d) A (d < a)))A (9.54)
(O-asserts(c, p) A OHolds(p, ¢) A O-denies(c, p)))
OsPVvOsQ=0s(PVQ) .

Os(((Vo O=(b < a)) A Olnitially(p))V
3¢(O(c < a) AVdO-((c < d) A(d < a)))A (9.55)
(O=asserts(c, p) A OHolds(p, ¢) A O-denies(e, p)))

Rewrite:
Os(((~36-<C(b < a)) A Olnitially(p))V
Je(D(c < a) A=3dO((e < d) A (d < a)))A (9.56)
(~Oasserts(c, p) A DHolds(p, ¢) A ~Odenies(¢, p)))
Q.E.D.

The other is that only plans in which the followirnig holds can possibly fail the
truth criterion:
~3b O(b < @)V
JcO(c < a) A ~3d O((¢ < d) A (d < a)) A ~Oasserts(c, p)
An algorithin for checking the truth critefion then only has to examine the “weak-
est” specializations such that the above condition holds to see if Dholds(p,¢) A



130 CHAPTER 9. CLASSICAL TRUTH CRITERION

Holds(p,a)
For every distinct, minimal specialization .such that there is an action ¢
immediately before a and ¢ does not possibly assért p
check that ¢ does not possibly deny p and necessarily Holds(p.c).
If there is a minimal specialization such that a is the first action
check that initially(p) necessarily hoids.

Table 9.1: Algorithm for. checking truth criterion.

~<Odenies(c,p). The details of the algorithm. will vary from planner to planner de-
pending on their underlying plan representation, however a high-leve] description of
it can be found in table 9.1.. A specialization w,; satisfying a condition is minimal if
there is no other specialization w, satisfying that condition such that S(ws,w,).

This algorithm does not necessarily require that every ground linear completion
of the plan be checked. Suppose we ate given the-plan in figure 9.3. In this exam-
ple we assume the TWEAK planning formalism, extended with restricted ranges on
variables. We are interested in knowing whether the precondition, P(A,B) of action
3 necessarily holds, given that z € {4, B}, y € {4,B} and z % y. In this case the
algorithm will only have to.check two Specialiéations of the plan, namely the ones
where y % A and z # B, .which are added when we guarantee that action 2 not .
assert P(A,B). The reason we do.not have to check more specializations is that we
cannot.generate any specializations such-that action 1 does not assert P(A,B), given
that action 2 cannot assert P(A,B) either. This is much more efficient than having
to chieck every possible ground linear comipletion of this plaii.

However, we are still left with the problems of the efficiency of constraint propa-
gation. We might ask how plannérs with extended representational capabilities deal
with these problems. SIPE is the best example of a planner with powerful répresen-
tational capabilities. Furtheérmore, SIPE is the most efficient planner to date.

In SIPE, the combinatorial nature of constraint propagatioi is handled by keeping
many of the constraint propagations local, i.e. not performing a global constraint
check every time a constraint is posted. Furthermore, constraint computatiors are
not performed every time a constraint is added, but rather at fegulat intervals. This




9.6. ALGORITHM FOR CHECKING TRUTH CRITERION 131

P(AB) /

l 1 2 3

P(xy) P(y.x)

Figure 9.3: A plan with restricted ranges on variables

seems to.be an adequate ¢ompromise, as the constraint computations have seldom
led to a problem [Wilkins, 1988].

State independent axioms are handled by computing their derived effects only
when a new action is inserted into the plan.. The propositions that are derived in
this manner are inserted in the add list of the action that.is being inserted. By using
this method, checking whether an action asserts a proposition is done trivially by
checking if it codésignates.with a proposition in the add list. Of course this can lead
to-inconsistencies latér in planning, but this has not proven to be a serious probléem
with SIPE.

Relating this. method to our truth criterion we can see that it would greatly speed
up the computation everywhere we need to check if a particular situation.asserts a
proposition. Although it requires the addition of unsound methods, éxperience seetiis
to bear out that a richer representation makes up for the potential drawbacks.



132 CHAPTER 9. CLASSICAL TRUTH CRITERION

9.7 Summary

In this chapter we presented a new truth criterion for a powerful plan formalism which
subsumes most planners proposed to date. In fact, the only axiom in our formalism is
a restatement of the STRIPS assumption. We proved it is sound and complete with
respect to this representation. We then showed how it gives rise to an algorithm that
is. more efficient than simply checking every possible completion of a plan.



Chapter 10

Further Work

In this chapter we point out some questions raised by this thesis and propose further
work that might help resolve these.

10.1 Real World Applications

The most important. question that needs to be answered is whether oredicate relsx-
ation can scale up to real world applications. Since the work presented in this thesis
was based on a complete planner, real world applications were not within its scope. .

One way to answer this is to apply predicate relaxation to an efficient planner.
SIPE [Wilkins, 1984] is an obvious candidate. .In the early stages of this research SIPE
was$ used for.some experiments with good results. We hope to some day attempt to
integrate predicate relaxation into SIPE.

10.2 Extensions to Predicate Relaxation

Another interesting avenue to pursue is extending predicate relaxation. This might
involve trading off correctness for simplicity in génerating the relaxed predicates. As
the efficiency of the planning process is.improved it-is. likely that the complexity of
the relaxed predicates becomes the bottleneck. This then leads us to new ways of
simplifying relaxed predicates, so that they can be evaluated more quickly.

133



134 CHAPTER 10. FURTHER WORK

Another extension would be to define a new form of predicate relaxation which can
take into account the-more complex operators available in state of the art planners.
In this thesis we have assumed a planner which is based on STRIPS-style operators.
It would_be interesting to come up with a definition which ¢an handle conditional
operators, take into account resources, etc.

There is also the possibility of definining formula relazation, namely the relaxation.
of commonly occuring sub-formulas. This idea has been.proposed by Nilsson and
might result in definitions that are similar to tree plans [Nilsson, 1989].

10.3 Implementation of the Classical Truth Cri-

terion

Another interesting project might be to build a planner based on the Classical Truth
Criterion. This planner would be able to support an extended language for repre-
senting operators, including ¢onditional operators, as well as restricted domains for
variables.

It would be interesting to experiment with different ways of trading off complete-
ness and correctness for efficiency in the truth criterion. . The new truth criterion

would providé a good basis for performing such experiments.

10.4 Real-time Extensions

Another area that should be examined is that of improving real-time performance.
The current extension to predicate relaxation allows a limited form of reactivity, since
the planner is able tc proposé a plausible.action in case it is interrupted. One goal
of planning research should be to imbue planners with the capability to decide when
acting is indeed necessary, rather than having to rely on an outside agent to make
that decision. This is also closely tied to the problem of determining the quality of
the currently chosen action, since the tradeoff between the improvement.of actions
resulting from future planning and the possiblé gains of acting immediately i3 one the



10.5. OPERATOR ABSTRACTION : 135

planner should be aware of.

10.5 Operator Abstraction -

More work needs to be done in the field of operator abstraction. This might entail
automating the process of constructiag abstract operators a la Nonlin and Sipe, but
might also involve designing new forms.of operator abstraction, utilizing approxima-
tions of operators, and automatically abstracting preconditions and effects of oper-
ators. Operator.abstraction has been the prevalent form of abstraction.in planning

10.6 . Concluding Remarks .

This thesis has explored new methods of performing abstraction in planning. We
hope that the usefulness of abstraction has been clarified, and that the methods,
primarily predicate relaxation, provide a basis for future research in this area. State
abstraction has beén somewhat overlooked in the planning literature, but is beginning
to see some resurgence. Furthermore, we stress the importance of exploring ways in

which to improve the problem solving capabilities.of planners as opposed to their

representational prowess, an area that has already been much explored. Abstraction ..

and planning remain fascinating areas of research that need to be further investigated.



Bibliography

136



BIBLIOGRAPHY 137

[Agre and Chapman, 1987] Agre, P. and Chapman, D., “Pengi: An Implementation
of a Theory of Activity” AAAI-87, Morgan Kaufmann, Los Altos, California.

[Amarel, 1968] Amarel, S., “On Representations of Problems.of Reasoning About Ac-
tions,” Machine Intelligence 3, D. Michie (ed.), pp 131-171, Edinburgh University
Press, 1968.

[Allen et al, 1990] Allen, J., Hendler, J., and Tate, A. (Eds.), “Readings in Planning,”
Morgan Kaufman, San Mateo, 1990.

[Brooks, 1986] Brooks, R. A., “A Robust Layered Control System for a Mobile
Robot,” IEEE Journal of Robotics and Automation, Vol RA-2, No. 1, March 1986.

[Chapman and Agre, 1985] Chapman, D. and Agre, P. E., “Abstract Reasoning as
Emergent from Concrete Activity,” Workshop on Planning and Reasoning ebout
Action, Portland, Oregon, 1986.

[Chapman, 1987] Chapman, D., “Planning for Conjunctive Goals,” Artificial Intelli-
genee, v 32: 333-378, July 1987.

[Chapman, 1989] Chapman, D., “Penguins Can Make Cake”, Al Magazine, vol. 10,
no..4, 1989.

[Dean and Boddy, 1988] Dean, T. and Boddy M., “An Analysis of Time-dependent
Planning,” in Proceedings AAAI-88, pages 49-54, 1988.

[Drummond and Currie, 1988] Drummond,. M., and Currie, K., “Exploiting Tempo-
ral Coherence in Nonlinear Plan.Construction,” Computation Intelligence, in press.

[Drummond and Tate, 1989] Drummond, M. and Tate, A., “Al Planning: A Tutorial
and Review,” Technical Report AIAI-TR-80, University of Edinburgh, U.K., 1989.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J., “STRIPS: A New Approach

to the Application of Theorem Proving to Problem Solving,” Artificial Intelligence,
2(3-4): 189-208, 1971.



138 BIBLIOGRAPHY

[Fikes et al, 1972] Fikes, R. E., Hart P., and Nilsson, N. J., “Learning and Executing
Generalized Robot Plans,” .irtificial Intelligence, 3(4): 251-288, 1972,

[Firby, 1987] Firby, R. J., “An Investigation into Reactive Planning in Complex Do-
mains,” in Proceedings AAAI-87.

[Georgeff, 1987] Georgeff, M. P., “Planning,” Annual Review of Computer Science, v
2: 359-400, 1987.

[Ginsberg, 1989] Ginsberg, M.L., “Universal Planning: An (Almost) Universally Bad
Idea,” AI Magazine, vol. 10, no. 4, 1989.

[Green, 69] Green, C., “The Application of Theorem Proving to Question-Answer'ng
Systems,” Ph.D. thesis, Stanford University, Stanford, 1969.

[Harary and Palmer, 1973] Harary, F. and Palmer, E. M., Graphical Enumeration,
Academic Press, New York, New York, 1973.

[Hoare, 1969] Hoare, C.A.R., “An Axiomatic Basis for Computer Programming,”
CACM 12, 10, 576-580, 583.

[Hughes and Cresswell, 1968] Hughes, G.E. and Cresswell, M.J., “An Introduction to
Modal Logic,” Methuen and Co, London, England.

{King, 1969] King, J.C., “A Program Verifier,” Ph.D. Thesis, Department of Cormn-
puter Science, Carnegié-Mellon University, 1969.

[Knoblock, 1990] Knoblock, C., “A Théory of Abstraction for Hierarchical Planning,”
in D.P. Benjamin (Ed.), Change of Representation and Inductive Bias, Boston, MA:
Kluwer, 1990.

[Korf, 1985]) Korf, R.E., “Depth-First Iterative-Deepening: An Optimal Admissible
Tree Search,” Artificial Intelligence, 27:97-111, 1985.

Intelligence, 33:65-88, 1987.



BIBLIOGRAFHY 139

[Lifschitz, 1986] Lifschitz, V., “On .the Semantics of STRIPS,” Proceedings of the
Workshop on Reasoning about Aétions and Plans, Timberline, Oregon, 1986.

[Lowry, 1988] Lowry, M. R., “Invariant Logic: A Calculus for Problem Reformula-
tion,” Proceedings of the Seveni: National Conference on Ariificial Intelligence,
Saint Paul, Minnesota, 1988.

[Manna, 1968] Manna, Z., “Termination of Algorithms,” Ph.D. Thesis, Department
of Computer Sciénce, Carnegie-Mellon. University, 1968.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J., “Some Philosophical
Problems from the Viewpoint of Artificial Intelligence,” in: Michie, D. (Ed.), Ma-
chine Intelligence 7, 1969.

[Nilsson, 1989) Nilsson, N. J., “Teleo-Reactive Agents”, Unpublished Draft, Stanford
Computer Science Departrent, 1989.

[Nilsson et al, 1990] Nilsson, N. J., Moore, R., Torrance, M. C., “ACTNET: An
Action-Network Language and its Interpreter (A Preliminary Report),” Stanford
Computer Science Départment Draft Report, 1990.

[Rosenschein and Kaelbling, 1987] Rosenschein, S. J. and Kaelbling, L. P., “The Syn-
thesis of Digital Machines with Provable Epistemic Properties,” SRI Technical Note
412, Menlo Park, Ca, 1987.

[Sacerdoti, 1974] Sacerdoti, E., “Planning in a Hierarchy of Abstraction Spaces.”
Artificial Intelligence, v 5: 115-135, 1974.

[Sacerdoti, 1977] Sacerdoti, E., A Structure for Plans and Behavior, Elseviér, North-
Holland, New. York, 1977.

[Schoppets, 1987] Schoppers, M. J., “Universal Plans for Reactive Robots in Unpre-
dictable Environments,” in Proceedings AAAI-87. .

[Shotiarn, 1989) Shoham, Y., “Time for Action: On the Relation between Time,
Knowledge and Action,” Proceedings IJCAI-89, Detrait, Michigan, 1989.



140 BIBLIOGRAPHY

[Sussman, 1973) Sussman, G.J., “A Computational Model of Skill Acquisition,”
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

[Tate, 1977] Tate, A., “Generating Project Networks,” Proceedings IJCAI-77, Can-
bridge, Massachusetis, 1977, pp. 888-893.

[Tenenberg, 1988] Tenenberg J. D., “Abstraction in Planning,” Ph.D. Thesis, Tech-
nical Report 250, University of Rochester, Rochester, New York, 1988.

[Vere, 1983] Vere, S., “Planning in Time: Windows and Durations for Activities and

Goals,” IEEE Transactions on Pattern Analysis and Machine Intelligence, v 5:
246-267, 1983.

[Waldinger, 1977] Waldinger, R., “Achieving Several Goals Simultaneously,” Ma-
chine Intelligence 8:94-136, Elcock E. and Michie D. (Eds.), Ellis Horwood, 1977.

[Washington, 1989) Washington, R., “Abstraction Plannicg in Real Time,” Ph.D.
Thesis Proposal, unpublished, 1989.

[Wilensky, 1980] Wilensky, R., “Meta-Planning,” Proceedings AAAI-80, Stanford,
California, 1980, pp. 334-336. '

[Wilkins, 1984] Wilkins, D. E., “Domain-independent Planning: Representation and
Plan Generation,” Artificial Intelligence, v 22: 269-301, April 1984.

[Wilkins, 1988] Wilkins, D. E., Practical Planning, Morgan Kaufmann, San Mateo,
California, 1988.

[Yang, 1989]) Yang, Q., “Improving the Efficiency of Planning,” Ph.D. Thesis, Uni-
versity of Maryland, 1989._





