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Abstract
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Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration

environments. Passive isolation is the simplest means to achieve this goal. The system used here

consists of a circular steel ring with a lump mass on top and exposed to base excitation.
Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the

acceleration response spectra at the top of the ring are computed. An experiment is performed to

identify the natural frequencies and modal damping of the circular ring. Comparison is made

between the analytical and experimental results and good agreement is observed. The ring

response is also evaluated with a concentrated mass attached to the top of the ring. The

effectiveness of the ring in isolating the equipment from base excitation is studied. The

acceleration response spectra of a single degree of freedom system attached to the top of the ring

are evaluated and the results are compared with those exposed directly to the base excitation. It

is shown that a properly designed ring could effectively protect the avionics from possible

damaging excitation levels.

I Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY

13699-5725

2 NASA Dryden Flight Research Facility, Edwards, CA 93523



Introduction

Vibration control technology is used in many applications in order to protect equipment,

structures or mechanisms from undesirable vibration environments. The isolator design is

normally based on the degree of isolation desired and the frequency range of the disturbance.

Munjal t has organized vibration isolators into groups according to their functions and Snowdon 2

described the use and function of various isolators. Vibration isolation technology has been used

in automobiles, aircraft, spacecraft and even buildings. Applications in the automobile are

geared primarily toward improving ride quality. Aircraft design uses range from power plant,

frictional damping of gas turbine blades 3 and active engine mounts 4, to flutter suppression 5.

Agnes et al. 6 described the vibration problems and solutions typical of fighter aircraft. Space

applications vary in scope from structural control such as demonstrated by the INFLEX

experiment 7 to microgravity isolation s. Recently, application of vibration isolation to the Space

Shuttle was studied by Lee-Glauser, et al.9 and the Space Station vibration control was discussed

by Ellison, et al._o. In the area of earthquake engineering, frictional base isolation systems have

been developed to protect large buildings (Mostaghel, et al. Is, Su, et al. 12 and Fan, et al. 13).

Equipment mounted in aircraft are exposed to a varied vibration environment depending on the
location of the installation and flight condition as illustrated by Dreher _4. A survey of

environmental data measured in flight such as vibration, acoustic, shock, thermal, flutter and

loads was compiled by Hain et al. Is to define a "real-world" aircraft environment. One particular

example is detailed in the vibration and acoustic measurements report on the F-1 11A aircraft 16.

The vibration environment directly influences the operation, performance and life expectancy of

airborne equipment. To that end, test techniques were developed to evaluate the avionics

equipment endurance based on the source of vibration, installation and response of the black
box 17.

In order to reduce the environment at the equipment, use of vibration isolation has been

suggested. A number of passive and active vibration control techniques are available and the

choice depends on the degree of isolation that is desired or necessary _s-2_. Typical passive

isolators consist of a resilient element contained in a metallic supporting frame. Generally, the

resilient element is either an elastomer, air, steel spring, wire rope or metal mesh 22. Wire rope

isolators are highly effective in controlling both shock and vibration 23. Passive isolators are

usually capable of up to 80 percent isolation if the isolator natural frequency is less than one-

fourth of the lowest excitation frequency. Tuning of the isolator may be necessary to achieve

such high levels of isolation 24. Active control is used when additional protection is needed.

In this work, a passive isolation system is studied as a prelude to a combined active/passive

system for protecting an avionics box subjected to base excitation. The base isolation system is

composed of stainless steel circular rings placed on the base corners of the avionics box. This

system has the capability of isolating the equipment in various directions. In this initial study,

the avionics box is modeled as a lumped mass and only a single ring isolation system is

considered. The earliest work performed on the free vibration of a circular ring was reported by

Hoppe 25. Further work expanding the scope of the ring vibration problem considered centedine

extension 26 and shear deformation and rotary inertia 273°. In most of the earlier works, the
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general ring vibration properties were analyzed but no particular vibration isolation applications

were studied. Here, the ring is treated as a component of a passive isolation system and its

performance in protecting the equipment against the adverse vibration environment is evaluated.

An experiment is also conducted to evaluate the vibration characteristics of a typical circular

steel ring for comparison with the analysis. The experiment consisted of a circular steel ring

mounted on top of a small electrodynamic shaker with the response measured by an

accelerometer. The test is performed with and without an attached mass on top of the ring. This

data is then used to verify the computational model.

Sinusoidal and random base excitations are considered and the peak responses of the ring and

attached single degree of freedom systems are evaluated. It is shown that the ring could

effectively reduce the peak acceleration transmitted to the avionics equipment.

Model Formulation

Passive base isolation of an avionics box with the use of circular, stainless steel ring supports

attached to each comer of the equipment is shown schematically in Figure 1. Here, we assume

that the avionics box is a rigid mass and consider the dynamics of a single ring. The basic

configuration of this model, which consists of a thin stainless steel ring rigidly attached to a base

structure and a concentrated mass located at the top, is shown in Figure 2.

Details of the derivation of Love's equation governing the vibration of a circular ring with a

concentrated mass is outlined in Appendix A. Accordingly, the governing equations of motion

for the tangential and the normal components of the ring displacement are given as

0_6 0_4 (O't)+ °92 a4 t_I °_3 I0_0 6 Wa(O't)+ 2-'_ wa -_-_ wa(O't)+ E1 c98 Mp -_-_w, (O,t)

Mpa' d 2 a'( a_q.)E1 -_Two(0, t) = "_- -qw- o_-'---_ , (1)

,9
-ff-_-wo(0, t)= -uo(O,t), (2)

where wo is the tangential deflection, Uo is the radial deflection, 0 is the angle measured from

the vertical, t is time, E1 represents the bending stiffness, a is the ring radius, qw is an external

tangential force per unit length and q, is an external normal force per unit length. The mass

distribution of the ring (including the concentrated mass located at the top of the ring) per unit

length is given as 31



= pA + _a t_(0 - 7z), (3)Mp

where p is the mass density of the ring, A is the cross sectional area, m a is the mass of the

avionics box represented by a concentrated mass located at 0 = n and 8 ( ) denotes the Dirac

delta function.

Free Vibration of a Ring

The natural frequencies of the ring are obtained by solving the homogenous form of Eq. (1) (in
the absence of the concentrated mass at the top of the ring). Assuming a solution of the form 28

Wa(O,t)= W(O)e last,

the resulting equation may be restated as

(4)

where

d6W d4W d2W" -- _'_2

d0-----V-+ 2 --_-_- + d--_- ( 1 )+fl2W=0, (5)

f_ 2 092 E1- and 07 02_ . (6)
07o2 pAa 4

The appropriate boundary conditions are

w(0)=o t

dW(0) =0
-V(0)- dO

d2W(O)
dO-----T- -0

at 0=0 andat 0=2_.

The solution to Eq. (5) is given by

6

w(e)= Cse a'°
j=l

where the Cs's are found using the boundary conditions given by Eq. (7) and the A

roots of the dispersion equation given as

26 +22 '+A 2(1-.Qz)+D.2 =0.

(7)

(8)

s's are the

(9)
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When the boundaryconditions are applied to the solution given by Eq. (8), a group of six
simultaneousequationsareobtained.In matrix form, theseequationsareexpressedas

m

1 1 1 1 1 1

21 3.2 23 3-4 /1"5 3-6

3-12 3.2 z 2_ 2 3-4z 3-s 2 3-6z

e 2,tdt e 2 2z_ e 2 2_n e 2 24n e 2 ,tsn e 2 26x

3.1e2_t, " /],2 e2a2x 3-3e2't, • 3- 4e2'1, x 3-se2a, _ 3.6 e2a'n

3.12e2a, " 3.z2e2a2" 3.32e2_, " 3.42e2,14 x 3.s2e2a, " 3.62e2a,"

B m

CI

Ca

Cs

= 0. (10)

A nontrivial solution for the Cs's exist only if the determinant of the coefficient matrix in (1 O) is

zero.

An iterative procedure is used to find the natural frequencies and the corresponding modal

coefficients. An initial guess for the frequency (fa) is made and then the 3.s's are computed from

Eq. (9). Using these/], s 's, the determinant of the coefficient matrix (10) is evaluated. If the

determinant does not become zero, then the initial frequency guess is adjusted and the process is

repeated until the determinant approaches zero. The mode shape coefficients, Ci, are then

evaluated for each natural frequency using Eq. (10) and choosing C6= 1. The modal coefficients
are then normalized for each mode such that

(11)

Using the dimensions and physical properties for the circular ring given in Table 1, Eqs. (9) and

(10) are evaluated for £'2, o_j and _. The modal frequencies and corresponding _j's are listed in

Table 2. Due to the complex form of the _ 's obtained, Eq. (8) may be stated as

f 3

[,.,.._ a,lO _ ai.O • bi.kO) for k= 1,2,3,
___lt.2i_,.ke cosb_.k0+ t.2_.ke -sm

___Z_lt.2,_l.ke +t.z,.ke )+c.5.kcosb3.,0+C6.,sinb3.,0 for k=4,5,6

(12)

The mode shape coefficients and parameters for Eq. (12) that were found using the frequencies

and _ 's from Eqs. (9) and (10) are listed in Table 3 and the corresponding mode shapes are

shown in Figure 3. The mode shapes are categorized according to their motion at the top of the

ring (0 = _ ), either lateral or vertical. The odd numbered modes exhibit predominantly side to

side motion and are thereby called lateral modes. Whereas the even numbered modes have
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mostly an up and down responseand thereforeare labeledvertical modes. Only the first six
modesareshownandusedin thecalculations.

Ring Response Due to Base Excitation

In this section, the response of a circular ring, shown in Figure 2, subjected to base excitation is

analyzed. The absolute motion of the ring is assumed to be given as

Wa(O,t): w(O,t)- y(t)cos0 + z(t)sin0 (13)

and

ua (0,t) = u(O,t)- y(t)sin 0- z(t)cos0 (14)

where u and w are relative, normal and tangential, ring displacements and y and z are base
displacements.

The motion of the ring relative to the base is assumed to be given by

w(O,t)= _ rlk (t)W k (O) (15)
k

and

u(0,t) = _ rlk (t)U k(0) (16)

Substituting Eqs. (3), Eqs. (13) and (15) into Eq. (1) yields

6 4 2

B 2 d d

k dO k dO k

a 4 m. _'(e-g flk(t)--_--+_(t)sine+_(t)cosO+El 2ga

mo "" d2_ "" 2_(t)sine)

,/

a'[ _Oq.)
E1 dO ) (17)

Using the relation given by Eq. (5) in Eq. (17) and simplifying yields

d02 _- - _)--d-6-_ (0-: znpAa --d-6r) (
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= q.,+_ + l+2xpAa _i(0- x))(2_(t)cos0- 2_(t)sin 0)

-_ ma _5'(o-_X_(t)sinO+_(t)cosO). (18)
2xpAa

Multiplying Eq. (18) by a normal mode, Wp, integrate around the ring and apply

orthogonality condition given by

the

f (WpW t d2Wk_O=Odo2 k:_ p, (19)

we find

fl_, + 2;pco .flt, +cOeZrip + Kp = Fp + Bp, _(t)+ Bp _.(t) (20)

where

_p = T (21)
2pAcOp

is the modal damping coefficient. T is an equivalent viscous damping factor introduced into Eq.

(20), rip is the modal participation factor, cop is the pt, natural frequency, _(t)is the vertical base

excitation and _(t)is the lateral base excitation. The external pressure field is given by

- mag tS(O--rt) (22)
q., = 0 and q" 2_a

where mAg is the static weight at the top of the ring.

The coefficients in Eq. (20) are then defined as follows

mA (Kp 21r'pAaN, _fqk Wk(rOW_(x)'_ dWk(l_)dW_(lt)]= _ _-_ ) (23)

F = mAg dWp(_) (24)

t, 2_pAaN p dO

Bp, =_l(2/vpk, SoWp(0)c°s0d0 21r,oaamAWt,(x)) (25)

=-Z_--1(-2 Wp(0)sin0d0-t mA dWp(Tt)l
B,, /v,\ _o 2_"Aa dO )

(26)



where

SI "2w'(e)N,= w/(0) do wp(e) e (27)

is the norm of the pm modal amplitude.

The equations given in Eq. (20) are coupled since Kp depends on _k i_, (t). Here, a Gaussian

reduction scheme is used to solve the equations simultaneously for the modal participation

factors in the numerical simulation.

Excitations

Both sinusoidal and random base excitations are used to evaluate the performance of the passive

vibration isolation system. Sinusoidal base accelerations applied are given by

_(t)= Yo sin(co,t) and _(t)= Zo sin(o,t) (28)

where Y,, and Za are the amplitudes, o_ is the excitation frequency and t is time. The base

accelerations, j_(t) and _(t), are used in the following analyses.

The random excitation being used is modeled after NASA Ames/Dryden Flight Research Facility

(ADFRF) process specification No. 21-2 for environmental testing of electronic and

electromechanical equipment 32, as shown in Figure 4. The random excitation model uses the

frequency sampling method to design a nonrecursive finite impulse response (FIR) filter. As

illustrated in Figure 5, zero-mean Gaussian white noise, e(t), is input to the filter (with impulse

response h(t)), and the output being the random excitation, j_(t) or _(t). That is

_(t)= Io h ( t - "c) l_, ('c )d'c and _(t)= _oh(t-x)E_(x)dx. (29)

The mean and autocorrelation of the stationary, Gaussian white noise processes, I_y(t) and t_z(t),

used as the input are given as:

<E,(t))= O, (¢,(tt_,(t2)> = 2_0 ,_(t,-t2)

=0,

(30)

8



wherethe angularbrackets,'(.) ', representensembleaveragingand So, and Soz are the constant

power spectral intensities. The spectral intensity of the white noise excitations for the y and z

directions are assumed to be given as

So, = .0043 g2sec So_ = .0218 gesec. (31)

The value for Sot was estimated so that the spectral density of the vertical random excitation

would fit that of the NASA ADFRF process specification. The lateral value was taken to be one-

fifth the vertical value since the lateral excitation intensity is usually much lower than that of the

vertical excitation in aircraft. The impulse response, h(t), is obtained by inverse Fourier

transform given as

h(t)= _3-1[H(k)] (32)

where H(k) is the system function. The system function is a function of the acceleration power

spectral density function represented in Figure 4 and given by

IU(k)l= 312-- (33)

where N is the number of samples, At is the spacing between time samples and (_(k) is the

power spectral density function.

To design a FIR filter with the frequency response shown in Figure 4, the frequency response is

sampled N times at intervals of k F_ / N, k=0,1 ..... N-1 where Fs is the sampling frequency.
Since these values are related to the Fourier transform of the filter impulse response, the filter

coefficients h(n) [=-h(nAt)] are found using an inverse Fourier transform of the frequency

samples from Eq. (33). For linear phase filters with a positive symmetrical impulse response, it

is possible to rewrite the inverse Fourier transform such that the FIR filter coefficients are given

by"

I-_v/2-1 ]±/E +n(0)
NL k--l

(34)

where H(k) are the frequency samples, n=0 .... ,N-1 and ct=(N-1)/2. Here At =0.1 sec and

N=1024 samples are used. The impulse response of the above FIR filter is shown in Figure 6.

The Fast Fourier Transform (FFT) is used to transform the filter coefficients and white noise to

the frequency domain. They are multiplied together and the result is inverse transformed using

the inverse FFT back to the time domain. This produces time samples representative of the

frequency response shown in Figure 4. A sample simulated excitation time history is plotted in

Figure 7. To verify that the procedure truly generates the appropriate frequency response, an
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ensembleof 1000sampletime historieswere generated,transformedto the frequencydomain
andthe averagedspectrum,-_1_(03_2, wasevaluated.The resultingfrequencyresponseis shown
in Figure 8. ComparingFigure 4 and Figure 8, it is observedthat the filter producestime
samplesrepresentativeof thedesiredexcitationspectrum.

Experiment

The purpose of the experiment was to measure the natural frequencies and damping of a circular

steel ring for comparison with the analytical results. The experimental set-up is shown

schematically in Figure 9. The dimensions and physical properties of the circular ring that was

used in the experiment are the same as those listed in Table 1 and used in the analysis. Two 5

mm holes were drilled in the ring, one at the top and one at the bottom. The ring was bolted

directly to the shaker armature through the bottom hole for both the vertical and lateral vibration

testing. For rings with the concentrated mass test conditions, a steel weight was bolted through

the hole at the top of the ring. Accelerometer mounting wax was used to hold the accelerometer

onto the ring. The accelerometer was mounted on top of the ring for measuring vertical modes of

vibration and on the side of the ring for measuring lateral modes. Five test conditions were

evaluated for various concentrated masses. The concentrated masses used were 0 grams, 130

grams, 250 grams, 430 grams and 780 grams.

The test system that was used to perform the experiment was entirely PC based. An A-D/D-A

interface on the PC allowed for the computer to output the shaker drive signal and monitor the

system response channels. Software was used for FFI" processing and vibration analysis.

Broadband random excitation from 0 to 2000 Hz was generated by the computer and used to

shake the ring vertically. A force transducer was installed between the ring and shaker rod in

order to measure the input excitation. An accelerometer was mounted n top of the ring to

measure the vertical acceleration. The accelerometer and force data were recorded using the PC

based data acquisition system. Twenty five samples were acquired and averaged to produce the

frequency response functions (FRF) for the vertical excitation for each test condition.

The lateral modes were measured using impact excitation. A small hammer was used to impact

the side of the ring. An accelerometer mounted on the opposite side of the ring measured the

ring response due to the impact. The response was recorded on the PC. Ten impact samples

were measured and averaged and used to compute the power spectra for the lateral vibration data

for each test condition. The experimental FRF's and power spectra were curve fit at each

resonance frequency and the half-power bandwidth method was used to evaluate the modal

damping. For a ring with no concentrated mass, the natural frequency and modal damping for

the first six modes of the ring are listed in Table 4. For each of the test conditions with the

concentrated mass attached to the ring, the two lowest modes are listed. Comparing Table 2 and

Table 4, it is observed that the computed natural frequencies are in close agreement with the

experimental ones.
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Results

Computer simulation of the ring response is performed by solving Eqs. (13)-(16) and Eq. (20)

subjected to random base excitations. A typical circular ring with the dimensions and physical

properties given in Table l is analyzed. The ring fundamental frequency is 13.75 Hz with a

damping ratio of 0.036. Two ring configurations, one without any concentrated mass and one

with a 0.45 kg mass added on top of the ring, are examined. The ring deflection is given by

u = u 5 + u e , (35)

where u, is the static deflection under the weight and ue is the deflection relative to the static

equilibrium. In this section, the vibration of the ring about the static equilibrium is studied. The

static deflection, us, results from the gravitational force term given by Eq. (24). To achieve this

in the numerical simulation, Eq. (20) is evaluated in the absence of base excitation, i.e.,

F
rip P (36)2 "

top

This equation is evaluated and the modal participation factors are recorded. These values then

establish the static equilibrium position of the ring due to the concentrated mass and can be

calculated using Eqs. (2), (12), (16) and

.5(0.0-- (37)

Subsequent analyses are then conducted using this static equilibrium position as a starting point.

The stored values are used as initial conditions for solving Eq. (20) under base excitation.

Using both sinusoidal and random excitations, the acceleration at the top of the ring and the

response of a single degree of freedom (SDOF) system attached to the top of the ring are

evaluated. The peak responses of the ring are computed for a range of ring frequencies. To

assess the effectiveness of the base isolation at the point on the ring where the equipment is

attached, acceleration response spectra are evaluated. The lateral and vertical acceleration

response spectra are respectively defined as

s.(,,,..;.)-rnax ,,,. (38)

and

So (o}., ;o) = mtax_/i. (re, t_}. (39)

For random excitation, the mean, the standard deviation, the absolute maximum and the absolute

minimum acceleration are defined, respectively, as:
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;(,,,°,;.)=(so(,,,°,;o)),
/ _ 2_1/2

) ,
a,,_ (o),, ,_,,) = max{So(m,,,;,,) } ,

¢.)=min{So(o,o,

(4o)

(41)

(42)

(43)

It should be noted that the absolute maximum and minimum accelerations, which represent upper

and lower bounds on the simulation results, are sample dependent.

Comparison of Numerical and Experimental Results

Ring without concentrated mass

In order to verify the validity of the numerical model, the analytical ring response is computed in

the same manner as was done in the experiment. Random excitation given by Eq. (29) is used to

excite the ring in both lateral and vertical directions. The response at the top of the ring is

computed and used with the input base excitation to generate vertical and lateral frequency

response functions as shown in Figure 10 and Figure 11, respectively. The experimental

frequency response functions are also plotted in these figures for comparison. The peaks in each

frequency response function correspond to the natural frequencies of the ring as listed in Table 2.

The damping values that were calculated from the experimental data as listed in Table 4 were

used in the analytical model.

Figure 10 and Figure 11 show reasonable general agreement between the experimental and

numerical frequency response functions. However, the amplitude of the peak values at each

resonant frequency are not in agreement between experiment and analysis. Part of the difference

in peak amplitude may be due to the frequency response of the accelerometer used. The

accelerometer is rated for an operating range of 10-10000 Hz. The accelerometer frequency

response is level down to about 100 Hz. However, the response starts to roll off below 100 Hz

and the accelerometer is unusable below about 10 Hz. Therefore the amplitude of the

experimental resonant frequencies below 100 Hz are attenuated for both the vertical and lateral

results. The peak response amplitudes of the lateral results can not be compared directly since

the experimental results were acquired with impact excitation producing power spectra density

functions and the numerical results were generated with random excitation giving frequency

response functions.

Ring With Rigid Avionics

Next, the circular ring with a 0.45 kilogram rigid avionics mass attached to its top is analyzed.

The ring response is computed in the same manner as outlined above for Figure 10 and Figure

11. Random excitation given by Eq. (29) is used to excite the ring in both the lateral and vertical

directions. Vertical and lateral frequency response functions are plotted in Figure 12 and 13.
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Experimentalfrequencyresponsefunctionsarealsoshownin thesefiguresfor comparison.The
ring geometryis the same as that used earlier with the exceptionof the additional mass.
ComparingFigure 10and 11with Figure 12and 13,it is noticedthatthering naturalfrequencies
arelowerwith theadditionalmasson top asexpected. Both experimentalandnumericalresults
indicatea decreasein the naturalfrequencieswith fairly closeagreementbetweenthe two. The
observedvariations in the resonant frequency peak amplitudes are due to accelerometer
frequencyresponsecharacteristicsandfor the lateralcase,arealsodueto the differentmethods
of excitationused. Numerical resultsfor the lateralcaseareproducedwith randomexcitation
whereasimpactexcitationis usedin theexperiment. Figure 12and 13showcloseagreementin
overalltrendsbetweentheexperimentalandnumericaldata.

Avionics Box Under Sinusoidal Excitation

In this section, responses of a SDOF avionics box subject to horizontal-vertical sinusoidal base

excitation with and without a ring isolation system are studied. Figure 14 illustrates the system

configurations considered. Sinusoidal base excitation, as given by Eq. (28), is used. The

amplitude, A, of the input excitation is 0.01 g's in the vertical direction and 0.002 g's in the

lateral direction. The excitation frequency, fe, is 400 Hz. The peak responses of the system are

computed for a range of avionics equipment system frequencies from 50 to 500 Hz. Table 1 lists

the physical properties of the ring used in the analysis with the natural frequencies that appear in

Table 2. The interaction of the avionics system and the ring is neglected in the following

analyses since it is assumed that the avionics system is rigidly attached to the ring.

The vertical and lateral acceleration response spectra of the avionics system are plotted in Figure

15 and Figure 16. The cases of unprotected avionics and avionics with the ring are shown. For

the avionics with the ring, two different responses are shown. No interaction implies that there

was no coupling between the avionics and ring degrees of freedom. The response at the top of

the ring was computed and used as excitation to the SDOF avionics box. The rigid mass

response implies that the avionics box is treated as a rigid mass of 0.45 kg. Both figures show a

peak at the excitation frequency of 400 Hz due to the resonance of the SDOF system with the

excitation frequency. The ring natural frequencies given in Table 2 are not excited by the

sinusoidal excitation as shown by the plots. For the vertical direction, there is a 50% decrease in

the transmitted acceleration to the avionics system on top of the ring with no interaction mass

and an order of magnitude decrease for the rigid mass case as compared to the avionics system

exposed directly to the sinusoidal excitation, unprotected avionics. Similar decreases are seen for

the transmitted acceleration in the lateral direction. There is an order of magnitude decrease for

the avionics system on the ring with no interaction mass and a one and a half order of magnitude

decrease when the avionics on top of the ring is treated as a rigid mass. Clearly, the ring

provides significant passive isolation for the avionics box.

Ring Response to Random Excitation

For the case of a single ring (in the absence of a concentrated attached mass), the vertical ring

response spectra for the top of the ring are plotted versus ring frequency in Figure 17 and the

lateral response spectra are plotted in Figure 18. The peak responses for an ensemble of 100
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samples are computed using the random excitation given by Eq. (29) and the results are compiled

and the statistical response spectra are evaluated from Eqs. (38)-(43). The input power spectra

density level is 0.04 g2/Hz up to 150 Hz and then increases at 4 DB/Oct to 0.10 g2/Hz at 300 Hz

as shown in Figure 4 and Figure 8. Six modes are included in the numerical ring model. The

mean vertical acceleration spectrum starts at about 0.002g for a ring frequency of 15 Hz and

increases over the frequency range plotted leveling off to about 0.025g at a frequency of about

150 Hz. The mean lateral vibration starts off at about 0.0003g at the lower frequencies (about 5

Hz) and steadily increases to about 0.003g at a frequency of 60 Hz. This increase in acceleration

is a result of the higher frequency modes responding to the increasing excitation levels The

maximum and minimum acceleration levels are an extreme upper and lower bound, respectively,

for the computed vibration spectrum.

To evaluate the effects of damping on ring performance, the vertical ring acceleration response

spectra as a function of structural damping are calculated and plotted in Figure 19. The other

ring parameters are as given in Table I. The results are as expected, indicating a decrease in

transmitted vibration with an increase in structural damping. It is observed from the graph that a

damping value of about six percent provides satisfactory isolation. For a passive ring system

having six percent damping as compared to that with a two percent damping, there is a 36%

decrease in transmitted excitation. Whereas another four percent increase in damping above six

percent only provides an additional 14% decrease in the transmitted vibration. Increasing the

damping in the ring system above ten percent provides little if any improvement in the vibration

environment at the top of the ring.

Avionics Under Random Excitation

For the random base excitation, comparison is made between the acceleration responses of the

avionics system mounted on top of the ring (treated as a rigid 0.45 kg concentrated mass) and the

unprotected avionics system. The system response is computed for a range of avionics system

frequencies from 50 to 500 Hz. The sensitivity to variations in the ring damping ratio on the

response spectra is also examined. The resulting response spectra are plotted versus the avionics

system frequency. As was noted before, the avionics system is treated as a rigid concentrated

mass attached to the ring and the interaction between the avionics system and the ring is
neglected.

The vertical and lateral avionics system acceleration response spectra with and without the ring

are plotted in Figure 20 and Figure 21. Comparing the response of the isolated avionics to that of

the unprotected avionics, the transmitted vibration to the avionics system is cut in half using the

ring as a passive isolator. When the avionics system is rigidly mounted on top of the ring, the

acceleration levels are magnified at the ring natural frequencies as compared to the rest of the

acceleration response. However, these levels are still considerably lower than the acceleration

levels for the unprotected system. Even the maximum calculated acceleration levels of the

isolated system are less than half the unprotected avionics minimum response. In the lateral

direction, the ring isolates the avionics system by at least an order of magnitude over the entire

frequency range. The isolated avionics response again is greater at the ring resonant frequencies
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ascomparedto therest of thespectrum.The ring performsbetterin the lateraldirectionby not
transmittingthelateralexcitationinto theavionicssystemasreadilyastheverticalexcitation.

Thepeakaccelerationresponseof the avionicssystemrigidly mountedto thering is calculated
for severaldampingratios and plotted as a function of avionics frequencyin Figure 22 and
Figure23. Thesecurvesarecomparedto theresponseof the unprotectedavionicssystem.The
defaultdampingvaluesreferredto in thefiguresare thoselisted in Table 2 with the 100%value
beingtwice what is listed and-50% beinghalf the listed value. As shownin both figures, the
peak accelerationdecreaseswith increasing structural damping. Again, the results are as
expected.Increasingthe ring dampingincreasesthe isolation effectivenessof the passivering
elementandthepeak accelerationlevels for all dampingvaluesare lessthan thelevels for the
unprotectedsystem.

Conclusions

An analytical model of a stainless steel circular ring for the purpose of base isolation of avionics

equipment is formulated. This model is used to evaluate the circular ring response characteristics

subject to base excitation. Filtered zero-mean Gaussian white noise was tuned to match the

NASA process specification No. 21-2 and is used for the random excitation. Peak acceleration

response spectra are evaluated as a function of avionics frequency and ring structural damping.

The ring is evaluated as an passive isolator for a rigidly mounted avionics system. This system is

compared to the response of the unprotected system. An experiment was performed to measure

the modal response of the thin circular steel ring mounted on top of an electrodynamic shaker.

The analytical ring responses closely match the experimental results. The peak avionics system

acceleration spectra indicate that the ring is an effective isolator in both the vertical and lateral

directions.. .... ;. ", _ _:_

The sensitivity of the ring response and avionics system response to variations in ring parameters

and additional mass on top of the ring is examined. With no added mass at the top of the ring,

the peak ring acceleration increases with increasing excitation. Changes in structural damping

produce expected results in peak ring acceleration; decreasing transmitted acceleration with

increasing damping factor. Overall, the ring and avionics system response were insensitive to

small variations in ring properties.
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Appendix

Love's equations of motion governing the vibrations of a circular ring in its plane of

curvature due to an applied pressure field are 34

(A1)

7 J-Tt --Mpo3 Zu(0't)

(A2)

In most applications, the extension of the neutral surface of the ring is negligible and the

inextensional approximation may be used. i.e.,

aw(o,,)_
d0

u(O,t).

(A3)

The ring equations of motion need to be expressed in force and moment resultant form in

order to apply the inextensional approximation. These equations are as follows

(A4)

(A5)

f0 'f01 Noo "_ Moo- Mp-_w(O,t)=-qwa a 2

1 d z Noo O32
a 200 z Moo a Mp ff_- u(0,t) = -q.

where Noo is the force and Moois the bending moment. Solving Eq. (A5) for N0o and

substituting into Eq. (A4) gives

1 O3 O32 . d [" 02 . ] o3q.a z o3 0 Moo - M, _ w(0,,)- _'--_LMP _2t2 u{.O,, ) =-q_, ---ff-_.

(A6)

The resultant moment for the ring based on the tangential and normal displacements has

the form

EIo3 o32

Moo=--_-(-_w(O,t)--_u(O,t)).

(A7)
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Using the inextensional approximation, Eq. (A7) can be expressed in terms of the

tangential displacement as

d3 /Moo = a 2 t 030 w( O, t ) + -ff-_ w( O, t )

(A8)

or in terms of the normal displacement as

(A9)

032

Substituting Eqs. (A3) and (A8) into Eq. (A6) gives the equation for the tangential

component of the ring motion as follows

60_ 4 0_2 a4 [0_ o_ 3 ]

,9
w_(O,t)+ 2 (0, t)+-ff-_wo(O,t)+ wo(O,t)d 0 6 -ff-_ wa E1 o_ 0 Mp o_ Oo_t 2

a' a'( /M p 03 2 03q.
E] 03/.2 wo(0, t)= -_- -qw 030 '

The normal component of the ring motion is obtained from Eqs. (A3) and (A10).
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Tables

Table 1: Ring Properties

Modulus, E 199 x l02 N/m 2

Poisson's Ratio, Ix 0.3

Radius, a .07104 m

Thickness, h 5.1 x 104m

Width, b .03165 m

Top mass, m .450 kg

Density, p 7916 kg/m 3

Table 2: Analytical ring natural frequencies and damping values

Mode 1 2 3 4 5 6

fj (Hz)

(rad/s)

;9

13.75 37.50 78.75 133.75 202.50 282.50

86.39 235.61 494.80 840.37 1272.34 1775.00

0.56642 1.59520 3.38459 5.75492 8.68973 12.13275

0.036 0.040 0.025 0.018 0.025 0.019

Table 3: Ring mode shape coefficients and parameters.

Mode i ai bi Ci Mode i ai bi Ci

1

2

3 3

4

5

6

1

2

5 3

4

5

6

1 0.00 1.30876 -0.10096 1 0.00 1.68930 -0.11704

2 0.38027 0.53683 -0.14731 2 0.82800 0.50863 -0.07916

3 -0.38027 0.53683 -0.01967 2 3 -0.82800 0.50863 0.00077

4 0.03524 4 -0.00245

5 0.12062 5 0.11626

6 0.42328 6 0.45340

0.00 2.17382 -0.09447 1 1.99490 0.00 0.79760E-6

1.20824 0.31161 -0.05741 2 1.07927 0.00 -0.22151

-1.2082 0.31161 0.00033 4 3 0.00 2.67291 -0.00033

0.00018 4 0.29688

0.09413 5 -0.07503

0.76404 6 -0.04531

2.65515 0.00 -0.65433E-8 1 3.24700 0.00 0.11063E-9

1.02932 0.00 -0.11509 2 1.01428 0.00 -0.08019

0.00 3.17952 0.00027 6 3 0.00 3.68399 -0.00022

0.17655 4 0.13268

-0.06173 5 -0.05225

-0.03904 6 -0.03409
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Table 4: Experimental ring natural frequencies and damping values.

Mass

($rams)

0

130

250

430

780

Mode

;j
o_

o_

o_

1 2 3 4 5 6

86.394 229.336 507.367 854.513 1253.49 1790.71

0.036 0.040 0.025 0.018 0.025 0.019

31.416 83.252

0.056 0.057

21.991 69.115

O. 112 0.036

18.850 53.407

O. 120 0.053

12.566 39.270

0.091 0.060
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Figures

Figure 1: Circular ring isolation system for generic avionics equipment. .

--¢ 11

Figure 2: Circular ring structure.
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damping ratio variations as compared to unprotected avionics under random base
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