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ABSTRACT

Stereoselectivity plays an important role in the late stages of phenyl-
propanoid metabolism, affording lignins, ligngns, and neolignans. Stere-

oselectivity is manifested during monolignol (glucoside) synthesis, e.g.,

where the geometry (E or Z) of the pendant double bond affects the
specificity of UDPG:coniferyl alcohol glucosyltransferases in different

species. Such findings are viewed to have important ramifications in

monolignol transport and storage processes, with roles for both E- and

Z-monolignols and their glucosides in lignin/lignan biosynthesis being

envisaged. Stereoselectivity is also of great importance in enantiose-

lective enzymatic processes affording optically active lignans. Thus,

cell-free extracts from Forsythia species were demonstrated to synthe-

size the enantiomerically pure lignans, (-)-secoisolariciresinol, and (-)-

pinoresinol, when NAD(P)H, H202 and E-coniferyl alcohol were added.
Progress toward elucidating the enzymatic steps involved in such highly

stereoselective processes is discussed. Also described are preliminary

studies aimed at developing methodologies to determine the subcellular

location of late-stage phenylpropanoid metabolites (e.g., coniferyl alco-

hol) and key enzymes thereof, in intact tissue or cells. This knowledge

is e_sential if questions regarding lignin and lignan tissue specificity and

regulation of these processes are to be deciphered.

INTRODUCTION

Phenylpropanoid metabolism in vascular plants provides major classes of phyto-

chemicals of specialized function and structureJ These include monolignols, lignans
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and neolignans, structural cell wall polymers (lignins and the aromatic portion of
suberins), flavonoids and condensed tannins (i.e., their phenylalanine-derived por-

tion), and miscellaneous aromatics derived from cinnamic and p-hydroxycinnamic
acids.

This chapter addresses the biosynthesis and function of E- and Z-monolignols,
their glucosides, and the closely related lignans and neolignans; a third section dis-

cusses our current knowledge of subcellular compartmentalization of enzymes and

metabolites involved in lignin and lignan biosynthesis. Note that lignin biosynthe-

sis has been comprehensively described recently, and the reader is referred to these
texts. _-6 Flavonoid and condensed tannin biosynthesis is covered both in this book

(see chapter by Hrazdina) and elsewhere. 7-1°

A particular goal of this chapter is to make the reader cognizant of the intriguing

stereoselective transformations that occur within the latter stages of the phenyl-

propanoid pathway (i.e., those associated with the lignin, lignan, and neolignan

branches). Each of the three subject areas is discussed in turn; much of the work

described is drawn from studies conducted in the authors' laboratory.

STEREOSELECTIVE TRANSFORMATIONS IN

E- AND Z-MONOLIGNOL GLUCOSIDE BIOSYNTHESIS

o-

Woody and herbaceous plants undergo cell wall reinforcement processes, in

which primary wall expansion is followed by secondary wall thickening. During sec-

ondary thickening, lignins are deposited into the cell corners, middle lamella, and
secondary wail. From the results of studies pioneered by Goring and coworkers, 11,12

it was concluded that the middle lamella and cell corners of woody xylem tissue

mainly consist of liguins (together with small amounts of pectins). By contrast, the

secondary wall layers are a composite matrix of cellulose, noncellulosic polysaccha-

rides, and lignins.
It has long been proposed _ that lignins from woody plants are exclusively de-

rived from the three E-monoliguols, p-coumaryl, coniferyl, and sinapyl alcohols (fig.

l) and that the ratio of each monoliguol in lignins varies with species, 2 subcellular

compartment, 2 and tissue type (e.g., normal versus reaction wood13). For exam-

ple, in the gymnosperm Picea mariana, it appears that the p-coumaryl alcohol

content of lignin is greatest in the cell corners and middle lamella, whereas that of

coniferyl alcohol is greatest in the secondary wall. 14 Interestingly, the p-coumaryl

alcohol content of reaction wood is also higher than its 'normal' wood counterpart
as evidenced from a study of Douglas-fir (Pseudotsuga menziesii)J s

Such findings suggest that the pattern of monolignol deposition during woody

plant cell wall assembly is both temporally and spatially predetermined, and a

number of investigations employing radiolabeled substrates and actively lignifying

tissues have provided support to this view. 16-1s A similar situation is envisaged to

hold for herbaceous plants and grasses. 2 How these biochemical events (i.e., initia-

tion of lignification, deposition of specific monolignols at different stages of cell wall

development) occur is essentially unknown. Consequently, the signal transduction

mechanisms in developmental processes that regulate and control lignification need

to be deciphered.
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Figure 1. E- and Z-monolignols and their glucosides.

In addition to the three monolignols, hydroxycinnamic acids are also (appar-

ently) introduced into the lignin polymer in herbaceous plants and grasses. 19,2° It

is perhaps significant that these acids are often found as cell wall esters bound to

noncellulosic polyoses, e.g., O-[5-0-trans-feruloyl-a-L-arabinofuranosyl]-(1 _ 3)-0-

fl-D-xylanopyranosyl-(1 _ 4)-D-xylopyranose (FAXX). 21 We have proposed that
such cell wall bound esters may serve as locii or recognition sites in the cell wall

for lignification to be initiated. 21 Interestingly, cell wall bound esters (i.e., ferulate,

p-coumarate) are found in both E- and Z-configurations in plants exposed to light,

whereas in etiolated seedlings (e.g., of barley), only the E-isomer is detected. 22 In
the absence of any contradictory evidence, it can be concluded that Z-hydroxycin-

namate ester formation occurs via photochemical isomerization rather than by en-

zymatic control of stereochemistry. Supporting evidence for this notion comes from

the facile light-induced isomerization of hydroxycinnamic acids in vitro to give E:Z
mixtures closely resembling those found in nature in living plants. 21

Two distinct mechanisms have been proposed for monolignol transport from

the cytoplasm through the plasma membrane and into the cell wall where lignifica-

tion occurs. 2'21 In the first scenario, it is envisaged that monolignols are converted

into their glucosides (e.g., E-coniferin, F_,-syringin, fig. 1) and then cross through

the plasma membrane. Action of a _-glucosidase regenerates the monolignols, and

lignification occurs in a reaction catalyzed by peroxidase in the presence of H202.

Alternatively, the monolignol glucosides may serve as storage products (e.g., in the

vacuole) and are only conscripted for lignification as needed. In this ease, the mono-

lignols serve as the major species being transferred into the cell wall. Whatever the

case, monolignol glucosides are assumed to play a role in the lignification process.
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Unfortunately, this depiction of E-monolignol and E-monolignol glucoside for-

mation, transport, and storage is overly simplistic. It provides no explanation

for (a) the accumulation of Z-monolignols 2,_3,24 and their glucosides 2,23-25 (but

not their F-counterparts) in Fagus 9randifolia, (b) the selective deployment of

monolignols, such as coniferyl alcohol, as precursors for lignan 26-2s and neolig-

nan biosynthesis, and perhaps for suberization, and (c) the spatial and temporal

deposition of specific monolignols into the lignin polymer at different stages of cell
wall maturation. 2 The resolution of such questions is an important goal of this

laboratory.

Examination of Fagus grandifolia bark tissue revealed that only the Z-monolig-

nols, Z-coniferyl and Z-sinapyl alcohols, and the Z-monolignol glucosides, Z-coniferin,
Z-syringin (fig. 1), and Z-isoconiferin accumulated; the E-isomers were not detect-

ed. 23'_5 This suggested that an alternate biosynthetic pathway to Z-monolignols was

occurring in this species [perhaps involving the corresponding Z-hydroxycinnamic
acids], as well as implying a different stereochemical basis for lignification; i.e., us-

ing Z- rather than E-monolignols. The first stereochemical question was resolved 29

by a series of radiotracer experiments using [U-14C]Phe and [8-'4C] E- and Z-ferulic

acids, where it was established that [U-14C]Phe and [8-14C] E-ferulic acid served

as precursors of Z-coniferyl alcohol, while [8-14C] Z-ferulic acid did not. Next,
when [8-14C] E-coniferyl alcohol was incubated with F. grandifolia bark tissue, a

significant conversion into the Z-isomer (Z-coniferyl alcohol) occurred. It must be

stressed that, while photochemical isomerization of E- and Z-monolignols and their

glucosides is attainable in vitro using an open face mercury arc lamp, 3° the bio-

chemical conversions were obtained under conditions where photoisomerization was
not detectable. 29 Thus, our results suggest the involvement of a novel stereoselective

E-_Z hydroxycinnamyl alcohol isomerise.

Given the presumed role(s) of monolignol glucosides in ligniflcation, it was

of considerable interest to next establish whether UDPG:coniferyl alcohol (CA)
glucosyl-transferases exhibited any substrate stereoselectivity toward either E- or

Z-monolignols.

Thus, cell-free extracts prepared from the angiosperm, Fagus grandifolia, were

incubated with either E- or Z-coniferyl alcohol in the presence of UDP-c_-D-[U-14C]
glucose. 31 After incubation, both E- and Z-coniferins were added to the enzyme

assay mixtures as radiochemical carriers. E- and Z-coniferins from each incuba-

tion were then separated by high-performance liquid chromatography, individually

acetylated, and recrystallized to constant radioactivity. The results are given in
table 1 and reveal a marked stereoselective preference for Z-coniferyl alcohol over

its E-counterpart (5.74 percent versus <0.24 percent conversion, respectively).

In an analogous manner, a crude cell-free extract from the gymnosperm, Pinus

laeda (loblolly pine), was prepared, and the stereoselectivity of the glucosylation
reaction in coniferin synthesis was investigated. In this case, the glucosyltransferase

preparation displayed only a slight preference for the E (over the Z) isomer, and

both E- and Z-monolignols were efficiently glucosylated (see table 2). 3:_

These findings reveal intriguing nuances in the stereoselectivity of UDPG:coni-

feryl alcohol glucosyltransferases that were previously unknown; i.e., UDPG:CA
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Table 1. Stereoseleetivity of F. grandifolia Bark UDPG:CA Glucosyltransfera_e

Monolignol Radiochemical Radiochemical

substrate carrier conversion (percent)

Z-coniferyl alcohol E-coniferin 0.0
Z-coniferin 5.74

E-coniferyl alcohol E-coniferin <0.24
Z-coniferin 0.92

glucosyltransferases from various sources display profoundly different specificities

toward E- and Z-monolignols. As a consequence, a revised depiction of monolig-

nol transport and storage using either E- or Z-monolignols is proposed in figure 2.

These results raise a number of new questions: (a) How do glucosyltransferases from

different species effect such differences in stereoselectivity?, (b) Are distinct gluco-

syltransferases (i.e., isozymes) formed at different stages of cell wall development,

and do they have differing specificities for E- and Z-coniferyl and sinapyl alcohols?

(c) How efficiently are E- and Z-monolignol glucosides transported through the

plasma membrane?, (d) Do the fl-glucosidase(s) in the cell wall display different

specificities for E- and Z-monolignol glucosides?, and (e) Where are the glucosyl-

transferases and monolignols located in the cell? Answers to such questions will

clarify many of the uncertainties surrounding monolignol transport and storage

and, consequently, the lignification process itself.

STEREOSELECTIVITY IN LIGNAN BIOSYNTHESIS

Neolignans and lignans constitute an important and structurally diverse array

of abundant phytochemicals. They are widely distributed in dryland angiosperms

and gymnosperms (ranging from woody trees to constituents of vegetable fiber and

grain) and have numerous physiological and pharmacological roles) For example,

Table 2. Stereoselectivity of P. taeda Cambial Tissue UDPG:CA Glucosyltransferase

Monolignol
substrate

Radiochemical Radiochemical

product conversion (percent)

Z-coniferyl alcohol Z-coniferin 27.54

E-coniferyl alcohol E-coniferin 57.52
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Figure 2. Hypothetical transport and storage functions of E-and Z-monolignol

(glucosides), such as coniferyl alcohol, in lignification.

LIGNIN

some are phytoalexins, 33 whereas others function in plant protection z4-4° against

fungi, bacteria, insects, and other herbivores. They have also been implicated in

lignin formation, 41'42 and many display important pharmacological properties in

man, including anticancer activity. 43-52

Lignans and neolignans are constructed through linkages between phenylpropa-

noid [C6Cz] units, linked either by 8-8' [/3-/3 _] bonds to give lignans, or via alternate

linkages affording the neolignans (for representative examples, see fig. 3). 53 By 1978,

only 200 structural variants were reported, 54 but this number has grown enormously

since. Lignans have been found in almost all plant types, and not just woody species

as is sometimes erroneously assumed. As is to be expected, the relative amounts

can vary substantially with plant species.

Lignans and neolignans are normally dimeric C6Cz derivatives, although higher

oligomeric forms continue to be found. _a Lignans are generally present in plants as

substituted dibenzylbutanes, dibenzylbutyrolactones, furans, furanofurans, arylte-

trahydronaphthalenes, and (less frequently) as O, Or bridged biphenyls. Neolignans

are frequently linked via 3,3 _, 8,3 _, and 8-0-4 _ bonds but can also occur as benzo-

furans, dihydrobenzofurans, and other structural types.

Two different mechanisms have been proposed to account for phenylpropanoid

(C6C3) coupling leading to the dimeric lignan skeleta. These are oxidative s5 and
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Figure 3. Representative examples of lignans and neolignans.

reductive 56 coupling reactions, with the former being most frequently cited; both

mechanisms were based on dogma and not fact. This is not to imply that enzy-

matic coupling reactions had lacked experimental testing, and these studies can

be traced back to early work in Freudenberg's laboratory, 55 where coniferyl al-

cohol was treated with horseradish peroxidase and H20_ in vitro. The products

formed by this enzymatic coupling were mixtures of various compounds, including

racemic (=t=)-pinoresinols (fig. 4). Herein lies the heart of the problem concerning
lignan/neolignan biogenesis; naturally occurring lignans and neolignans are often

not racemic, but most are found in an optically active form. Importantly, the sign

of rotation of a particular lignan may vary with the plant species, e.g., in Forsythia

suspensa, pinoresinol is reported to exist as its (+)-enantiomer, 5T whereas in Xan-

thozylum ailanthoides, the (-)-antipode occurs, ss Similarly, (+)-phillygenin occurs

in Forsythia intermedia, 59 and the (-)-form is present in Pararistolochia flosavis. 6°

Until recently, there were few methods available to quickly and precisely es-

tablish the enantiomeric purity of a given lignan. This is not a trivial point, as

illustrated by the wide range of [a]D and melting point values reported for sy-

ringaresinol (see table 3 and fig. 4) isolated from different plant sources, 61 and

which suggest a large variation in enantiomeric composition between species.
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Table 3. Specific Rotations and Melting Points of Syringaresinol
Isolated from Different Species. 81

81

Species [c_]o Melting point (*C)

L iriodendron tulipifera s2 -I-48.9 185-186
Eucommia ulmoides e3 -t-44.0 183.5
Hedyotis lawsoniae 64 -1-t-23.0 187-190
Liriodendron tulipifera 65 +19.0 171-173
Stellera chamaejasme e6 +3.0 n.d.
Xanthoxylurn inerme er 0 179-185.5
Daphne tangutica 68 - 2.1 174-176
Xanthoxylurn ailanthoides 5s - 9.6 175-180
Holocantha emoryz ¢9 -32.5 184-187
Aspidosperrna marcgravianum TM -34.8 177-183

(n.d. = not determined)

Fortunately, such difficulties in determining enantiomeric purity of lignans have

largely been overcome with the advent of chiral column high-performance liquid

chromatography techniques. 71 Consequently, it is now possible to rapidly determine
the optical purity of lignans from different plant sources. The results obtained for

selected syringaresinol specimens are shown in figure 5 and table 4. As can be seen,

this lignan exists in (+)-, (-)-, and (+)-forms, depending upon the plant species
in question.

Such findings raise obvious questions regarding how stereoseleetive control is

effected in phenylpropanoid coupling reactions. There appear to be only two ways

to account for the optical activity of lignans: (1) Either the enzymatic coupling
reaction is stereoselective and, therefore, cannot be a typical peroxidase-catalyzed

reaction in the presence of H202, or (2) racemic products (or intermediates) are
obtained, and one enantiomeric form is totally or partially converted into the other

antipode or some other product.

Thus, to clarify the question about stereochemical control during phenylpro-

panoid coupling, we chose to probe the biosynthetic pathways to the Forsythia

lignans, (+)-pinoresinol and (-)-matairesinol (fig. 4). Clearly, (+)-pinoresinol for-
mation could occur via the coupling of two coniferyl alcohol moieties, but other

possibilities (e.g., coupling of ferulic acid or coniferaldehyde moieties with subse-

quent reduction to afford pinoresinol) could not be discounted. In an analogous

manner, (-)-matairesinol could be formed via direct coupling of one molecule of
coniferyl alcohol with one molecule of ferulic acid, or via oxidation of an intermedi-

ate such as (-)-secoisolariciresinol (fig. 4), initially formed via the coupling of two
coniferyl alcohol units.

To resolve whether stereochemical control occurs during phenylpropanoid cou-

pling, three objectives needed to be met: (1) To determine whether pinoresinol,
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Table 4. Comparison of Reported Optical Rotation [alp Values with Enantiomeric

Compositions of Syringaresinol Determined Following Chiral Column Chromatography
and UV Detection

Syringaresinol (percent)

Species [ot]D (+) (-)

Xanthozylum ailanthoides 5s - 9.6 38

Daphne tangutica ss - 2.1 48

Xanthozylum inerme s7 0 48

Eucomrnia ulmoides s3 +44.0 88

62

52

52

12
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secoisolariciresinol, and matairesinol, are enantiomerically pure in Forsythia species,

(2) to establish the chemical identity of the substrate(s) undergoing coupling and

the immediate product(s) thereof, and (3) to determine whether the coupling reac-
tion was enantioselective.

To determine the optical purity of each lignan in F. suspensa and F. inter-

media, it was necessary to first obtain pinoresinol, 26 secoisolariciresinol, 27,2s and

matairesino127'2s in racemic form by total synthesis (see scheme 1). [Note that a

crucial step in the synthesis of (+)-matairesinols and (+)-secoisolariciresinols in-

volved the n-BuLi/DIBAL-H reduction (step c) to give the lactone, which was

otherwise difficult to achieve. This approach has since been taken by others in the

synthesis of coniferyl alcohol-protein (BSA) conjugates. 72]

Following the synthesis of the three racemic lignans, each was separated into

its respective (+)- and (-)-forms by chiral column high-performance liquid chro-
matography (see fig. 6a-c). Subsequent analyses of the lignans revealed that only

(+)-pinoresinol was present in r. suspensa, whereas in F. intermedia, only (-)-
sec oisolariciresinol and (-)-matairesinol occurred (fig. 7a-c); the corresponding
antipodes were not detected.

It was next determined tkat coniferyl alcohol served as the precursor of both

(-)-secoisolariciresinol and (-)-matairesinol in F. intermedia tissue as follows: 2s

[8-14C]coniferyl alcohol was administered to F. intermedia stem tissue, and follow-

ing a 3-hour metabolism, the plant was homogenized with unlabeled (+)-secoiso-
lariciresinols and (-l-)-matairesinols added as radiochemical carriers. Isolation and

purification of each lignan revealed that radioactivity was coincident with elution

of (-)-secoisolariciresinol and (-)-matairesinol and not with the (+)-antipodes.
Experiments using cell-free extracts of F. intermedia stem tissue confirmed and ex-

tended these findings: 27 Incubation with [8-14C]coniferyl alcohol, in the presence of

NAD(P)H and H202, and subsequent isolation of the enzymatically formed secoiso-
lariciresinol revealed that only the (-)-form was radio-labeled. Final confirmation

was afforded when [9,9-D2,OCD3]coniferyl alcohol, obtained as shown in scheme 2,

was used as a substrate. The enzymatically formed (-)-deutero-secoisolariciresinol

was isolated from the assay mixture preparation without addition of unlabeled

product. Mass spectroscopic analysis of the resulting (-)-secoisolariciresinol gave

a molecular ion m/z, 372 (M + + 10) and two fragments at m/z 354 (M + + 10

less H20) and m/z 140 (benzylic cleavage with deuterated methyl group); i.e., it

had been formed by the intact coupling of two [9,9-D2, OCD3]coniferyl alcohol
molecules. Taken together, these results established the first example of stereose-

lective control during the biosynthesis of an optically active lignan. Similarly, exper-
iments with F. intermedia (whole plants and cell-free extracts) demonstrated that
the conversion of secoisolariciresinol into matairesinol was also stereoselective. 2s In

this plant species, only the (-)-forms of [Ar-aH] - and [Ar-D]-secoisolariciresinol were

converted into (-)-matairesinol; (+)-secoisolariciresinol was not a substrate for the

formation of either (+)- or (-)-matairesinol. Thus, the stereoselective pathway to

the Forsythia lignans, (-)-secoisolariciresinol and (-)-matairesinol, is as shown in
scheme 3.
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Scheme 1. Synthesis of (4-)-matairesinols and (+)secoisolariciresinols. Legend:
(a) LiOMe, dimethylsuccinate, MeOH, A, 43h (46 percent); (b) H2,10 percent Pd-
C (92 percent); (c) DIBAL-H, nBuLi (49 percent); (d) benzylbromide, K2CO3,
DMF (100 percent); (e) nBuLi/hexamethyldisilane (90 percent); (f) H2, 10 percent
Pd-C (97 percent); (g) LiA1H, (92 percent); (h) benzyl bromide, K2CO3, DMF
(71 percent); (i) NaBH, (95 percent); (j) PBr3 (76 percent).

Pinoresinol exists exclusively as the (+)-antipode in both F. intermedia and
F. suspensa. Consequently, when [U-14C]phenylalanine was administered to F.

suspensa stems, 2s radioactivity in the pinoresinol isolated after 3-hour metabolism

was coincident only with the (+)-form, as expected. On the other hand, when

[8-14C]coniferyl alcohol was administered to F. suspensa stems or incubated with

its cell-free extract in the presence of I-I202, (+)-pinoresinols were obtained, with

the (+)-form slightly predominating. 26 However, when [8-_4C]coniferyl alcohol was
incubated with F. intermedia cell-free extracts, but now in the presence of NAD(P)H

and H202, as cofactors, only (-)-pinoresinol [and not the naturally occurring (+)-

isomer] was formed. Note also that under these conditions, (-)-secoisolariciresinol
is also obtained.

These results can be tentatively explained as follows: During uptake by the

intact plant, [U-IaC]Phe is correctly compartmentalized, and the [U-_4C]coniferyl
alcohol formed from it undergoes stereoselective coupling to give (+)-pinoresinol.
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Figure 6. Chiral separation of racemic lignans: (a) pinoresinol, (b) secoisolar-
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and (c) matairesinol: EtOH/1 percent AcOH in hexanes 15:85, 1 mL min. -1.

Conversely, when [8-14C]coniferyl alcohol was administered to intact plant tissue

or cell-free extracts, it was not properly compartmentalized and was therefore sub-

ject to interference by nonspecific peroxidase-catalyzed coupling. Thus, as shown
in figure 8, this interference by nonspecific peroxidases results in the formation

of both (+)(8S,8S')- and (-)(SR,8R')-quinone methides as intermediates, which

then undergo intramolecular cyclization to give (+)- and (-)-pinoresinols. This is

not to imply, however, that racemic quinone methides are normally formed during
lignan formation in vivo in Forsythia species. Under normal conditions in vivo,

the metabolites would be properly compartmentalized, and stereoselective coupling

would occur to afford the enantiomerically pure lignans.

Unexpectedly, when NAD(P)H was added to the cell-free extract together with

H_O2, racemic (4-)-pinoresinols were not obtained. Instead the (-)-antipode was

formed, which does not naturally occur in F. inlerrnedia (see fig. 8, step c). This ob-

servation can be rationalized as follows: both (+)(8S,8S')- and (-)(8R,8R')-quinone
methides are again formed in vitro, and only the (-)(8R,SR')-quinone methide
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Figure 7. Chiral analysis of the lignans: (a) pinoresinol from Forsythia suspensa
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HPLC conditions: see figure 6.
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Scheme 2. Synthesis of [9,9-D2, OCDa]coniferyl alcohol. Legend: (a) benzyl

bromide, K2CO3 in DMF (32 percent); (b) CD3I (99 atom percent D), K2CO3

in DMF (99 percent); (c) 30 percent wt HBr in AcOH, 90"C (79 percent); (d)

monoethylmalonate, pyridine, aniline, piperidine, 52"C (82 percent); (e) LiAID4

(98 atom percent D) in Et20 (60 percent).
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Figure 8. Proposed biosynthetic route to ]ignans, pinoresinol, secoisolar-

iciresinol and mataJresinol in F. intermedia cell-free extracts. Step: (a)

H202/peroxidase coupling to give (+)(8R,8R';8S,8S')-quinone methides due

to interference by non-specific peroxidases, (b) intramolecular cyclization of

racemic quinone methides to give (+)-pinoresinols, (c) stereoselective reduction

of (-)(8R,SR')quinone methide to give (-)-secoisolariciresinol and intramolec-

ular cyclization of (+)(8S,8S')quinone methide to give (-)-pinoresinol and (d)

stereoselective dehydrogenation to give (-)-matairesinol.
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Scheme 3. Biosynthetic pathway to Forsythialignans, (-)-secoisolariciresinol and

(-)-matairesinol.

undergoes rapid stereoselective reduction to give (-)-secoisolariciresinol. By con-

trast, the (+)(8S,8S')-quinone methide is not reduced and thus can only undergo

intramolecular cyclization to give the unnatural antipode, (-)-pinoresinol.

Thus, the first demonstration of stereoselective enzyme-catalyzed transforma-

tions in lignan biosynthesis has been reported and offers the opportunity to address

a number of fascinating questions: (1) What is the precise nature of the stereos-

elective coupling enzyme in F. inlermedia? [This cannot be answered until the

enzyme(s) has(have) been purified from competing nonspecific coupling enzymes];

(2) Are there two distinct coupling enzymes which are differently expressed or

induced in different species? If so, this could explain the predominance of (+)-

syringaresinol in Eucommia ulmoides, 63 and formation of (-)-syringaresinol in As-

pidosperma marcgravianum. 7° Are both operative in other species?; (3) Are all

post-coupling enzymatic transformations strictly stereoselective?; (4) Are lignan-

and lignin-forming biochemical systems in different cells or are they separately

compartmentalized, regulated, and controlled within the same cell?

Answers to such questions will clarify many of the outstanding mysteries remain-

ing in the lignin, lignan, and neolignan branches of phenylpropanoid metabolism.

COMPARTMENTALIZATION OF SPECIFIC PHENYLPROPANOID

METABOLITES AND ENZYMES

The subcellular location(s) of late-stage phenylpropanoid metabolites (i.e., mono-

lignols, monolignol glucosides, lignans) and the enzymes synthesizing such sub-

stances are unknown. Consequently, until this is rectified, much of our views on

lignin and lignan formation can only be speculative. Determining where E- and Z-

monolignol (glucosides) and specific lignans (e.g., secoisolariciresinol) accumulate,

and where the enzymes synthesizing such metabolites are located, should provide

an excellent start to deciphering synthesis, transport, storage, and regulatory pro-

cesses. For example, it will be of particular interest to establish whether E- and

Z-monolignols differ in subcellular location (i.e., bark vs. woody xylem tissue),

whether monolignol glucosides are storage products (e.g., in the vacuole) or are

actively transported through the plasma membrane, and whether lignan deposition

processes are tissue-specific.
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To achieve such goals, the precise sub cellular location(s) of E- and Z-coniferyl

alcohol and their glucosides, and the lignans secoisolariciresinol and matairesinol,

need to be determined. Similarly, the site(s) of metabolite synthesis where the
enzymes, cinnamyl alcohol dehydrogenase, UDP glucose:E- and Z-coniferyl alcohol

glucosyltransferases and enzymes catalyzing the formation of secoisolariciresinol

and matairesinol are located within the cell must be established. In this section,

preliminary progress in establishing the location of E-coniferyl alcohol in intact

tissue (or cells thereof) is described. Note that a parallel thrust is underway to

determine the location of cinnamyl alcohol dehydrogenase involved in both lignan
and lignin synthesis.

Before describing current progress toward achieving these goals, a brief sum-

mary of current technologies available to determine subcellular locations and their

limitations is required. Until recently, the approaches commonly employed; i.e., cell

fractionation, morphological analyses were of limited use. For example, cell frac-

tionation techniques (i.e., isolation of chloroplasts, mitochondria, vacuoles, etc.)
often did not give the desired resolution, where freedom from contamination from

other subcellular constituents was assured. Consequently, results obtained were

often open to subjective interpretation. Moreover, as far as light and electron mi-

croscopy are concerned, these techniques alone cannot be used to identify where a
particular (macro)molecule or enzyme within a tissue cross-section is located.

Over the last decade or so, such difficulties have been substantially overcome

by the application of different methods that permit the localization of specific

molecules (e.g., abscisic acid, 7a partially methylated flavonoid glucosides 74) and

enzymes (e.g., ribulose-biphosphate carboxylase-oxygenase 7s) in intact tissues or

cells. Such advances were made possible using immunocytochemistry; i.e., via col-

loidal gold labeling (= electron opaque markers) of an immunogenic response to

an antibody, raised against either a (macro)molecule or protein. Visualization of

the immunocytochemical response is obtained on a tissue or cell section using ei-
ther electron or light microscopy. Although such immunocytochemieal techniques

are widely used, sensitive and specific, it must be emphasized that specificity is

critically dependent upon the production of highly specific antibodies.

Turning our attention to determining the subcellular location of E-coniferyl

alcohol in developing xylem tissue, it should first be realized that coniferyl alco-

hol is too small a molecule (mol. wt. 180) to generate an immunogenic response

in mammalian systems (e.g., rabbits). It must first be conjugated with a larger

immunogenic molecule or carrier protein, such as bovine serum albumin (BSA).

Thus, the complex formed (see fig. 9) between E-coniferyl alcohol and BSA (i.e.,

the hapten:protein conjugate) was prepared by first reacting E-coniferyl alcohol

with chloroacetic acid. The resulting acid was converted to its anhydride using

dicyclohexylcarbodiimide (DCC) and subsequently covalently attached to BSA as
the amide.

It should be noted that, typically, a hapten:protein ratio of 10:1 is necessary in

order to obtain polyclonal antibodies of sufficient titer for immunocytochemical pur-

poses. In our hands, an accurate determination of the coniferyl alcohol:BSA (hap-
ten:protein) ratio could only be obtained using radiochemical techniques. Thus,
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Figure 9. Synthesis of E-coniferyl alcohol : BSA conjugate.

coniferyl alcohol was reacted with [1-14C]chloroacetic acid, with the resulting acid

conjugated to BSA as described earlier, giving a hapten:protein ration of 21.5:1.
Note that UV estimations did not give accurate values of hapten:protein ratios.

The required E-coniferyl alcohol:BSA conjugate was applied intradermally across

the back of the rabbit in a phosphate buffer saline (PBS) solution emulsified in Fre-

und's complete adjuvant. This procedure was repeated three more times over a

1-week interval.

Two weeks after the last injection, additional conjugate was injected subcuta-

neously into the back of the neck. Booster injections were repeated every 2 weeks,

and the serum was tested for antibody production by dot blots rs a week after the

injection. Antibodies were first detected in the serum 5 weeks following the first

injection, but the conjugate was applied to the rabbit four more times, as before,

in order to increase the titer of the polyclonal antibodies.

As alluded to earlier, immunogold labeling techniques are sensitive and specific,

provided the antibody which is used as a probe is both specific and sensitive. Thus,

prior to immunocytolocalization of E-coniferyl alcohol in plant tissue, the specificity
of the antibodies needed first to be examined using a number of compounds contain-

ing similar functionalities; i.e., to determine whether cross-reactivity was occurring.

The selected compounds are given in table 5 and include phenylpropanoid metabo-

lites such as Z-coniferyl alcohol, coniferaldehyde, ferulic acid, sinapyl alcohol, and
eoniferin; cross-reactivity was determined using the ELISA technique. 76

As can be seen from table 5, antibodies raised against the E-coniferyl alco-

hol:BSA conjugate differentially cross-react with Z,-coniferyl alcohol, coniferalde-
hyde, sinapyl alcohol, and coniferin (51 to 60 percent cross-reactivity) and to a

lesser extent with ferulic acid (9 percent).
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Table 5. Cross-reactivity of Anti E-Coniferyl Alcohol Serum a

91

Analogues Cross-reactivity (percent)

E-coniferyl alcohol 100

Z-coniferyl alcohol 56

Coniferaldehyde 52
Ferulic acid 9

Sinapyl alcohol 51
Coniferin 60

aCross-reactivity was determined by the enzyme-linked in'ununosor-
bent assay (ELISA) : The antiserum was preincubated with E,-
coniferyl alcohol or its structural analogues and further incubated

with the antigen:protein conjugate immobilized on a solid phase.

It can, therefore, be anticipated that by chromatographic separation of the

polyclonal antibodies, fractions will be obtained that will specifically react with

E-coniferyl alcohol but not with the other analogues. A similar situation should

hold also for Z-coniferyl alcohol, E- and Z-coniferins, and the corresponding lignans,

secoisolariciresinol, pinoresinol, and matairesinol.

In summary, the preliminary results obtained indicate that it will be possible

to produce antibodies highly specific to individual phenylpropanoid metabolites.

A similar situation currently holds for cinnamyl alcohol dehydrogenase from Pinus

laeda. Antibodies have been prepared and should permit establishing the subcel-

lular location of this protein. Thus, a continued emphasis in this area should allow

us to determine where synthesis, storage, and transport functions are located, as

well as allowing us to distinguish between tissue-specific responses for lignin and

lignan synthesis.
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