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BACKGROUND

The concept of using biological systems for life support in space has been studied since the

1950s, and most likely discussed long before this (Myers, 1954; Krall and Kok, 1960; Golueke and

Oswald, 1964). Early studies centered on the use of algae (e.g., Chlorella) for photosynthetic

atmospheric regeneration (Krall and Kok, 1960, Golueke and Oswald, 1964; Eley and Myers, 1964).

Testing was expanded in the late 1960s and 1970s by Russian researchers to also include higher plants

(Gitelson et al., 1988). In the late 1970s, NASA created the Controlled Ecological Life Support System

(CELSS) Program to continue research on bioregenerative life support, with much of the effort focused

on controlled environment production of higher plant species (MacEIroy and Bredt, 1985). These studies

were conducted at several universities and NASA field centers throughout the 1980s and early 1990s,

after which the program was merged with physical / chemical life support research efforts under the

Advanced Life Support Program (Averner, 1993).

In the fall of 1995, various members of the Advanced Life Support (ALS) community from NASA

centers met at Johnson Space Center (JSC) to develop research tasks for ALS, including

bioregenerative technologies for food production and resource recovery. This was followed by a series

of teleconferences between NASA's Ames Research Center (ARC), JSC, and Kennedy Space Center

(KSC), with the resulting task lists published as a preliminary program plan (Henninger, 1996). In

September of 1996, a follow-up meeting of ALS food/plant research groups from different NASA centers

and universities was held at JSC to provide up-dates on the past year's activities and to identify issues

for development of the fully integrated, life support system test facility, BIO-Plex (Bioregenerative Life

Support System Complex). In October of 1996, a Memorandum of Understanding was signed between

NASA's Johnson Space Center and Kennedy Space Center designating KSC with the responsibility to

conduct and coordinate bioregenerative research in support of the ALS Program. A second meeting was

held at JSC in October 1996 to review a draft of program-wide requirements for ALS. Plant researchers

from the ALS community met most recently at Kennedy Space Center to discuss plant and food

production issues specifically for the BIO-Plex project. (Note: A preprint of this document was distributed

to the participants of that meeting and the minutes from the meeting are attached as Appendix A).

The following document provides an overview of some issues facing bioregenerative research

and development for ALS, along with suggestions for the design and operation of plant production and

resource recovery subsystems for BIO-Plex and related ground-based testbeds. Concerns related to

development of habitats for space missions (e.g., Lunar, Mars transit, and Martian scenarios) will not be

addressed in this document but clearly must be considered for ALS planning.

ISSUES

Issues for bioregenerative research and development for BIO-Plex might be categorized into

following general areas: 1) crop selection; 2) environmental management and horticulture, including

lighting/energy and nutrient delivery concerns; 3) incorporation of biological resource recovery concepts,
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and 4) microbiological and chemical characterization of bioregenerative systems. The following

discussion offers a status of these areas along with recommendations to address each. The comments

and positions presented are based largely on the bioregenerative research and testing from the KSC

Breadboard Project (Appendix B) and fundamental findings from university investigators.

Crop Selection

Several reviews of crops that might be considered for ALS have been published (Tibbitts and

Alford, 1982; Hoff et al., 1982; Salisbury, 1991 ; Langhans et al., 1995; Salisbury and Clark, 1996;

Mitchell et al., 1996). Criteria considered in generating these crop lists included: crop yield, nutritional

value, harvest index, horticultural requirements, and processing requirements (Tibbitts and Alford, 1982;

Hoff et al., 1982). An initial list of crops was suggested for early testing in BIO-Plex as a result of the

meetings of 1995 and 1996; this included: wheat, potato, rice, peanut, soybean, and salad crops (e.g.,

lettuce and tomato). An updated list was recently (12-12-96) distributed from the ALS program

management office at JSC based on the recommendations of Hoff et al. (1982) and Tibbitts and Alford

(1982) and included: wheat, potato, soybean, rice, peanut, carrot, chard, cabbage, lettuce, and tomato.

Wheat has been studied in numerous growth chamber experiments for ALS (Guerra et al., 1985;

Goyal and Huffaker, 1986; Bugbee and Salisbury, 1988; Gerbaud et al., 1988; Volk and Bugbee, 1991;

Barnes and Bugbee, 1992; Wheeler et al., 1993a), as have potato (Wheeler et al., 1986; Wheeler et al.,

1990; Tibbitts et al., 1994), soybean (Tolley-Henry and Raper, 1986; Vessey et al., 1990; Raper et al.,

1991 ; Wheeler et al., 1993b), lettuce (Knight and Mitchell, 1983, 1988a, 1988b; Wheeler et al., 1994),

and sweetpotato (Hill et al., 1989, 1992; Mortley et al., 1993). Some other crops studied for ALS include:

tomato (McAvoy et al., 1988; Janes, 1994), cowpea (Ohler and Mitchell, 1996), rice (Bugbee et al., 1994;

Volk and Mitchell, 1995), radish (Mackowiak et al., 1994), Brassica (Frick et al., 1993), peanut

(Mackowiak et al., 1997; Mortley et al., 1997), spinach (Both et al., 1996), strawberry (Stutte, per. com.),

and quinoa (Schlick and Bubenheim, 1993). In addition to growth chamber studies, large scale (20 m2 ),

closed environment studies with wheat, potato, soybean, lettuce, and tomato have been conducted in

NASA's Biomass Production Chamber at KSC (Wheeler et al., 1996).

Obviously the list of crops for ALS could be expanded, particularly for future ALS applications

(e.g., Mars colonies). But the first BIO-Plex test will attempt to provide only 40% of the food; thus, it is

perhaps prudent to keep the list limited for BIO-Plex (e.g., 5 to 10 spp.) to assure timely acquisition of

needed data. The following discussion will focus on the most recent crop listdeveloped for BIO-Plex.

Environmental Management

Each crop species has optimal environmental conditions for producing high yields and

acceptable canopy height. Among the important environmental conditions are photosynthetic photon

flux (PPF), photoperiod, spectral quality, CO2, temperature, humidity, and mineral nutrition. With the

assistance of physical/chemical environmental control systems, near optimal levels of CO2 and humidity r
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should be achievable throughout the plant production module for most species, e.g., 1000-1500 ppm for

CO2 and 60-80% RH. But if CO2 levels cannot be controlled rigorously, than studies on the effects of

sub- and superoptimal CO2 should be considered for BIO-Plex (Wheeler et al., 1993; Bugbee et al.,

1994; Mackowiak and Wheeler, 1996). In contrast to gas partial pressures, photoperiod and temperature

will likely require some partitioning if multiple species are to be grown in the same module (see below).

Photoperiod. With the possible exceptions of wheat and lettuce, long photoperiods are not

optimal for most of the crops discussed for BIO-Plex. A 12-h photopedod has worked well for many of

the suggested species (Wheeler et al., 1996) and would allow alternative switching between growing

areas to maintain uniform electrical power draw with relatively constant rates of 02 production and CO2

removal. Dim daylength extensions of 5 pmol m-2s-1PPF effectively block tuber development potatoes

(Wheeler and Tibbitts, 1986), and recent BPC tests have demonstrated that light leakage even as low as

0.2 _mol m-2s-1during a "dark" period can provide an undesirable long day stimulus (Yorio, unpub.); thus

if different photoperiods are used in BIO-Plex, areas should be partitioned to prevent light leakage.

Several photoperiod management scenarios can be envisioned:

1) The entire chamber is synchronized on one photoperiod, which would avoid the need for light

partitions. If the chamber were maintained under a long photoperiod (e.g. 24-h), this would be acceptable

for wheat but not for short-day crops (e.g., soybean), and potentially be deleterious for some tomato and

potato cvs. (Hillman, 1956; Wheeler and Tibbitts, 1986). On the other hand, if short photoperiods are

used, this would not utilize wheat to its maximum advantage (Bugbee and Salisbury, 1988; Bugbee

1992). Moreover, anything other than continuous light would unevenly load the electrical power and the

CO2 and 02 control systems.

2) The chamber could be divided into two sections, with the lamps alternately illuminated (12-h

cycles). This would require a light partition but electrical power draw and gas exchange could be

maintained at relatively constant rates. This would accommodate most species but limit wheat's

productive potential (i.e., g m 2 day -I ) by limiting daily total PPF levels.

3) The chamber could be divided into three (or more) parts; one section could be maintained

under continuous light, while the other two are alternately illuminated to provide two short (12-h)

photoperiod zones. This would require at least two light partitions but it could fully utilize wheat's

productive potential and allow uniform power draw. In addition, the partition between the shorl

photoperiod zones may facilitate temperature zones (see below). Another variation of a 3-partitioned

environment might be the use of overlapping 16-h photoperiods with two sections illuminated at any one

time, but this may compromise the use of more obligate short-day species or cultivars (Salisbury, 1981).

PPF. Grasses such as wheat and rice, with their highly inclined leaves, are able to distribute light

over a large leaf area; hence intensive lamping for high PPF (1500 i_mol m 2 s_ ) should be beneficial for

grasses. On the other hand, the broad leaf crops (e.g., potato, sweetpotato, and soybean) cannot

distribute high irradiance throughout the canopy as well as grasses, so productivities and photosynthetic

rates saturate at lower levels (Stutte et al., 1995). On the basis of BPC studies and recent studies with



soybeanatUtah State (Dougher and Bugbee, 1997), PPF levels of 750 to 1000 l.u-nol m-2s-1should be

sufficient for most broad-leaved species, particularly in terms of radiation conversion efficiency (Norman

and Arkebauer, 1991). An additional consideration is that some species are susceptible to physiological

disorders at higher PPFs, such as leaf tipburn of lettuce (Collier and Tibbitts, 1981; Barta and Tibbitts,

1991) and leaf chlorosis from HPS lamps (Barker et al., 1989).

If power requirements for BIO-Plex must be minimized, more efficient lighting scenarios should

be considered, including the use of sub-saturating PPF levels. Lamp output efficiency might be

increased by the use of vertical (base-up) and/or high-powered lamps, e.g., 1000-W lamps, which are

more efficient than 400-W lamps (Sylvania, 1980). However, such modifications will require more

vertical room in the chamber for a given growing area, thereby reducing the area of crops that can be

supported. Innovative lighting technologies such as light-emitting diodes (Bula et al., 1991), microwave

lamps (MacLennan et al., 1994), or lamps mounted remotely with light delivered via conduits or optical

fibers might be considered (Mori et al., 1987). In the latter case, the light might even be distributed to

the sides and/or within the canopies (Tibbitts et al., 1993). However, little plant research has been

conducted with such systems and their use would involve a degree of risk. Use of available sunlight

might also be considered, both to reduce power requirements and heat rejection; however, this would

require light capture and tracking systems, as well as conduit and diffusing technologies. This approach

would also require some supplemental electrical lighting used to maintain desired photoperiods and

compensate for ambient weather conditions.

Temperature. Rice, peanut, soybean, and sweetpotato tend to prefer warmer temperatures (e.g.

26/22 C light/dark) (Thomas and Raper, 1978; Hill et al., 1992), whereas potato prefers cooler

temperatures (20/16 C) (Ewing, 1978; Wheeler et al., 1986). Wheat yields are high at cool temperatures

(< 20 C), but cooler temperatures promote taller shoot growth and prolong the life cycle (Bugbee, 1992;

Bugbee and Koerner, 1997). Lettuce and tomato do well at intermediate temperatures, e.g. 23 C

(Hicklenton and Wolynetz, 1987; Janes, 1994). Cabbage, chard, and carrot production from the field is

typically best at cooler temperatures (e.g. 16 to 18 C) (Yamaguchi, 1983), but this would need

verification in controlled environment studies.

Based on BPC and Early Human-Rated Test (EHT) experiments (D. Barta, personal

communication), areas for high temperatures should be avoided in BIO-Plex, since high temperatures

can have adverse effects on pollination (e.g. wheat and tomato) and promote vegetative growth (e.g.

potato). At a minimum, a partitioned warm and cool zone in the short photoperiod area would seem

advisable to accommodate a wider range of crops.

General comments. A crop production protocol or "handbook" is needed to define environmental

set-points and acceptable ranges for the different species considered for BIO-Plex and future ALS

applications. Such a handbook could be developed from a controlled environment crop production

database currently being compiled by Frank Salisbury and Mary Ann Clark (Utah State). Among the

issues covered in the protocol should be suggestions on cultivar selection (e.g., need for dwarf cvs.),



useofenvironmentalresponsesurfaceapproachestodefineacceptablerangesforcropgrowth,
guidelinesfortestingwithrecirculatingnutrientcultures,andconsiderationsforsustainedcropproduction
andpotentialsystemfailures.

Horticulture

Lettuce. Lettuce is amenable to variety of hydroponic methods (Davis, 1985) and was perhaps

the easiest crop to harvest in the BPC studies (Wheeler et al., 1994). Seed germination and seedling

establishment were critical phases in BPC studies using an NFT approach with a wicking support.

Germination covers and daily (manual) misting were used to maintain high humidity around the seedlings

for the first few days. A fixed spacing was used in BPC studies but a seedling nursery might be

considered for BIO-Plex to maintain seedlings for about 10 to 15 days prior to transplanting to a final

spacing (Wheeler et al., 1994). Alternatively, variable spacing systems might be used to save system

volume (Prince and Bartok, 1978; Knox, 1986). Lettuce is susceptible to leaf tipbum when plants are

grown rapidly through a heading stage (Collier and Tibbitts, 1981 ; Barta and Tibbitts, 1991). Mild tipburn

was observed in BPC studies with 'Waldmann's Green' lettuce grown 1000 ppm CO2 and 300 tJmol m2 s

1 PPF with a 16-h photoperiod (-17 tool m 2 d1 ); thus high PPF is probably not needed for lettuce in

BIO-Plex. If lettuce is not grown to heading, higher PPF might be acceptable (Knight and Mitchell,

1988b).

Wheat. Wheat was arguably the most labor intensive crop to grow in the BPC studies (Wheeler

et al., 1993, 1996). Planting and harvesting were done manually, and mechanization of these

procedures should be considered. In addition, harvesting and threshing create a lot of dust and debris.

As with lettuce, seedling establishment with a wicking system was a critical phase, and germination

covers and daily misting were used for the first few days to maintain high humidity around the seedlings.

Wheat stands in controlled environments are susceptible to lodging, and canopy supports should be

considered. For BPC studies, wire grids were positioned about 30 cm above and parallel to the tray

surface to support the stand. However, use of any canopy support systems will affect harvesting and

materials handling and this should be considered in BIO-Plex planning. Wheat produced substantial

amounts of ethylene gas during rapid vegetative growth (Wheeler et al., 1996b; Barta et al., personal

communication) and this biogenic ethylene can adversely affect seed set (Rowell and Miller, 1971); thus,

effective ethylene removal systems will be required for acceptable wheat yields. The recent release of

the cv. Apogee represents the most extensive effort to date in developing a crop cultivar specifically for

the use in ALS (Bugbee and Koerner, 1997), and recent tests in the BPC have shown that Apogee

significantly out-yields cv. Yecora Rojo.

Soybean. Soybeans have grown well in the recirculating hydroponic systems of the BPC, and

recent tests with cv. Hoyt soybean have shown it to be an excellent dwarf cultivar for ALS applications,

with a harvest index of nearly 40% (Dougher and Bugbee, 1997; Mackowiak, unpublished). Shoots of

cv. Hoyt plants in BPC studies typically stopped growing at 40 cm and no canopy support system was
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required. However, taller, less determinate cvs., such as McCall, will require canopy support systems

similar to wheat (Wheeler et al., 1993, 1996a). Soybean leaves can become chlorotic under high PPF

from HPS lamps (KSC and Utah State findings, unpublished); despite this, photosynthetic rates and

productivities seem to remain high. In BPC studies, lower canopy leaves of soybean tended to abscise

during maturation and periodic removal of leaf litter was useful to provide good air circulation and tray

surface reflection. As with wheat, harvesting of soybean was labor intensive and dusty, and

mechanization of harvesting and threshing should be tested for BIO-Plex.

Potato. Potatoes have produced the highest yields of any crop grown in the BPC (Wheeler et

al., 1996). Harvest indices can reach 70 to 80% when tuber induction is strong. Potatoes are amenable

to NFT culture, but tuberization can be suppressed when stolons are submerged in solution cultures

(Wheeler et al., 1990; Tibbitts et al., 1994). The use of NFT greatly simplifies harvesting in comparison

to using solid media. Potato studies at the University of Wisconsin and KSC have used in-vitro-grown

plantlets for starting materials and this would require a tissue-culture support system for propagation.

Alternative methods for propagating potatoes (e.g., use of mini tubers) should be explored to eliminate

the need for in vitro plants for BIO-Plex. Recent studies at KSC have shown that using the same

recirculated nutrient solution for successive plantings causes a premature tuber initiation (Wheeler et al.,

1995; Stutte and Sager, 1995). This results in stunted shoot growth, which can reduce yields if the stand

ground cover is incomplete. The effect is likely caused by a growth regulating factor(s) that builds up in

the solution. This factor can be removed by passing the water through a charcoal filter, but management

of recirculating systems with potatoes will require further testing to develop strategies for consistent

yields. As with lettuce and soybean, a single transplant management scheme should be considered to

optimize space utilization.

Tomato, BPC tests with the tomato cv. Reimann Philippe have produced high yields without

assisted pollination, and harvest indices ranged from 45 to 55%. Shoots of the tomatoes tended to

sprawl but growth was determinate with the heavy fruit set. The fruit-laden stems caused the canopy to

collapse, and use of shoot supports may be beneficial. Tomato plants for BPC studies were started from

seed at the final spacing, but use of a nursery system and transplanting should be considered for BIO-

Plex to optimize space utilization. Harvesting was carried out manually, and use of mechanization for

harvesting would seem to have little advantage unless large areas were allocated to tomato plantings.

Comparisons of Reimann Philippe with other cvs. studied for ALS (Janes, 1994) should be conducted.

Peanut. Controlled environment production studies with peanut have been limited. Studies at

KSC have demonstrated that peanut can be grown successfully in recirculating NFT (Mackowiak et al.,

1997a), but yields were similar to field yields and harvest index was low (~20%). Shoot growth can be

excessive in hydroponic culture with continuous EC and pH control, suggesting that control of nutrient

levels may be important to control shoot growth and harvest index (see sweetpotato comments below).

Peanut seems particularly important to ALS diet planning because of its high oil and protein content

-..._,.f



(Mitchell et al., 1996) and baseline horticultural tests and cultivar selections are currently underway at

Tuskegee University (MorUey et al., 1997).

Rice. Some controlled environment testing has been conducted with rice at Purdue and Utah

State for the ALS program, and the cultivar Ai-Nan-Tsao was shown to be a relatively short (~60 cm),

high yielding variety (Bugbee et al., 1994; Volk and Mitchell, 1995). However, harvest index values for

rice have been mediocre (30%) and dehulling of grain may present a challenge for harvesting /

processing. Additional screening for dwarf cultivars should be considered and large scale production

tests should be conducted to assess whole stand performance, management, and harvesting

requirements.

Sweetpotato. Extensive studies on controlled environment production of sweetpotato have been

conducted at Tuskegee University (Hill et al., 1989, 1992; Mortley et al., 1993). Results from these tests

have produced good yields in NFT systems when nutrient levels were allowed to deplete prior to

replenishment (e.g., weekly intervals). However, studies in which nutrient solution EC and pH were

controlled continuously have produced extensive vegetative growth with reduced storage root yields

(Mackowiak et al., unpublished; P. Loretan et al., unpublished). Collectively, the findings suggest that

management of nutrient availability, particularly N and K, may be critical for sweetpotato storage root

production, and studies of this nature should be pursued. High PPF (>800 pmol m2 s1 ) from HPS

lamps can cause chlorosis and bleaching of leaves of young sweetpotato plants, but these effects seem

to be transient (Mackowiak, unpublished). Because of the vining nature and potential for large shoot

growth, continued screening of sweetpotato selections for dwarf or determinate cultivars is needed.

S_/nach. Spinach has been grown commercially in controlled environment settings (Davis,

1985) and is amenable to nutrient film technique systems of production (Resh, 1989; Both et al., 1996).

Spinach is a long day plant for flowering (Yamaguchi, 1983), but can be grown successfully under long

days if harvested prior to bolting. The edible leaves of spinach, as with lettuce, chard and beets, may

provide a good means for recycling NaCI from system wastes back to the human diet (i.e., the sodium

would accumulate in the edible tissues, which is not the case for seed and storage root / tuber crops)

(Richards, 1969). Recent studies at Kennedy Space Center have shown that spinach can grow well in

NFT systems with up to 50 mM NaCI in solution, but analyses are still underway to determine how much

Na and CI accumulate in the tissue (COL.Mackowiak, per. com.).

Strawberry. Strawberries have been grown in controlled environment settings (Stutte and

Darnell, 1987; Resh, 1989; Chow et al., 1992) and generally require short photopedods and cool

temperatures for flowering and fruit set (Durner and Poling, 1988). Initial results from growth chamber

studies at KSC suggest that manual pollination of strawberry flowers enhances both fruit quality and total

yield; thus methods for assisting pollination or increased crew time may be required for strawberry

production. In addition, a consistent means of propagating the plants is needed for sustained fruit

production in ALS.
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Cabbaqe, carrot, and chard. We are not aware of any significant controlled environment efforts

in producing these species. Cabbage is not photoperiod sensitive for leaf production and does best at

cool temperatures, with growth being slowed substantially > 25 C (Hackett and Carolane, 1982;

Yamaguchi, 1983). Chard and carrots are also cool temperature crops, with the optimal field

temperatures for carrot averaging 16 to 18 C (Yamaguchi, 1983). At higher temperatures, carrot roots

tend to be more strongly flavored (Yamaguchi, 1983). If cabbage, carrot, and chard are scheduled for

use in BIO-Plex and future ALS efforts, baseline controlled environment studies and cultivar selection

should be initiated as soon as possible. The taproot growth of carrot may present some horticultural

challenges for the relatively shallow NFT trays used in some ALS studies, although there are several

cultivars that produce short, more rounded roots. Chard, like its "chenopod" relative spinach, may be a

good "sodium return" source for human diet (Richards, 1969). Cabbage might require adaptations to

hydroponic culture trays because of the weight of large heads.

General horticultural comments. To date, tests in support of bioregenerative technologies for

ALS have utilized a range of nutrient/water delivery concepts (e.g., solution culture--Bugbee and

Salisbury; Raper et al., 1991; solid media--Tibbitts et al., 1993; Allen et al., 1995; NFT--Wheeler et al.,

1990; Mackowiak et al., 1997), and a discussion of the physiological consequences of the different

approaches can be found in Bugbee and ,Salisbury (1989). Prior to the final design of BIO-Plex, there is

a need to determine whether a common nutdent delivery scheme can be used for all crops, or whether

different approaches will be required for different crops. In addition, there is a need to develop effective

seed / seedling support concepts that minimize or eliminate the need for wicking systems and their

associated clean-up. Mechanizing certain planting and harvesting steps seems critical to minimize crew

time requirements for species that require dense planting and substantial threshing / cleaning steps at

harvest. BIO-Plex designs also should carefully consider storage and space requirements for

horticultural activities, including: storage for chemicals, seeds, and biomass; nutrient solution mixing and

testing; and a general planting, harvesting, and clean-up area.

V

Crop Readiness Assessment

Based on the available ALS literature and large-scale verification tests conducted at the KSC

Breadboard Facility, the following readiness levels were assigned for some crops considered for ALS,

Ratings refer to the technology readiness scale described in the ALS program plan (Henninger, 1996):

Table 1. Readiness levels of different plant species for BIO-Plex, where 3 = ready for testing; 2 =
intermediate readiness; 1 = low readiness; 0 = significant lack of test data.

Lettuce 3.0 Tomato 2.0 Cowpea 1.5 Cabbage

Wheat 3.0 Spinach 2.0 Strawberry 1.5 Chard

Soybean 2.5 Sweetpotato 2.0 Brassica 1.0 Carrot

Potato 2.5 Rice 1.5 Peanut 1.0

0.5

0.5

0.5
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A readiness level of 0.0 indicates there is little or no knowledge of the crop in controlled environments;

1.0 indicates some controlled environment and / or horticultural testing have been conducted and results

have been published; a level of 2.0 indicates that extensive testing has been conducted with published

results, and that cultivar selection trials have been conducted; and a level of 3.0 indicates thorough

laboratory-level testing and cultivar comparisons have been conducted, and that successful scale-up

tests have been conducted in a closed system such as the Biomass Production Chamber. Although the

ratings are somewhat subjective, they provide a starling point for assessing where research is needed to

support upcoming BlO-Plex testing.

Incorporation of Biological Resource Recovery

Resource recoverv and waste processinq. Development of an optimal resource recovery

approach for bioregenerative life support systems should depend on a cost/benefit analysis. Cost can be

measured in terms of the system resource requirements (i.e., mass, volume, energy, heat rejection, and

manpower; Drysdale, 1995), and benefits can be quantified by the percentage of nutrient content of

waste material that can be recycled for plant growth, by the percentage reduction in noxious compounds

and human pathogens, by the degree of stabilization of processed output for storage, and by reduction in

logistics requirements. Nutrients include CO2 produced from the oxidation of organic material and the

inorganic minerals associated with the waste material.

Biological processors have been proposed as a integral component in a hybrid ALS resource

recovery system (Finger and Strayer, 1994; Finger and Alazraki, 1995; Strayer and Cook, 1995).

Biological processing of inedible plant biomass has been shown to be an efficient, reliable method for

recycling up to 80% of inorganic nutrients contained in plant biomass, but relatively inefficient at

degrading recalcitrant waste materials such as cellulose, hemicellulose, and lignin (30% at short

retention times of 5 days, 80% at long retention times of 48 days).

Use of minerals recovered from inedible plant biomass would reduce the need for resupplying

those nutrients from outside a life support system. Mackowiak et al. (1994a,b) have estimated that the

mass of reagent-grade salts used in place of nutrient recycling could be equivalent to approximately 30%

of the food requirement mass, although salts would also supply additional elements to the system, e.g.,

oxygen. Nutrient recovery has been shown to be a function of rapid, abiotic solubilization of inorganic

minerals from inedible plant material when extracted with water (Garland and Mackowiak, 1990; Garland,

1992a; Garland, 1992b). However, plant growth was depressed when extracts were used directly, which

may have been related to the high total organic carbon in the leachate (Garland and Mackowiak, 1990;

Garland, 1991; Garland et al., 1993; Mackowiak, et al., 1996). A 48-h microbiological pretreatment

eliminated most of the negative effects (Garland and Mackowiak, 1990; Garland, 1991; Garland et al.,

1993; Mackowiak et al., 1996). This work led to the development of aerobic bioreactors to hasten the

microbial degradation of TOC from plant residues (Finger and Strayer, 1994; Finger and Alazraki, 1995;
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Strayer and Cook, 1995). Full-term, hydroponic production tests have been performed with lettuce

(Mackowiak et al., 1994b), wheat (Garland et al., 1993), and potato (Mackowiak et al., 1996) using

nutrients recovered from aerobic bioreactor effluents.

Various physical/chemical techniques, including wet oxidation (Jacquez, 1990; Modell, 1986), dry

incineration (Dreschel et al., 1991; Bubenheim et al., 1993), and low temperature plasma reaction (Ness

et al., 1992), have been proposed for waste oxidation in an ALS. These physical-chemical systems

would have the benefit of rapid conversion of organic matter into CO2. However, significant difficulty and

costs would be associated with operating the systems and with reconstituting the oxidized mineral

residuals into forms suitable for incorporation into plant growth systems. For example, potassium is an

easily extracted, water-soluble nutrient, but it produces low relative melting point ash that would require a

reduction of incinerator operating temperature to prevent slagging. A lower operating temperature could

cause incomplete oxidation, leading to contaminants in the incinerator exhaust gas, which would then

require a second combustion stage. The presence of another easily extracted, water-soluble nutrient--

nitrogen--in the waste can lead to incinerator production of noxious products such as NOx gases upon

combustion.

These observations suggest that a hybrid, integrated physical-chemical/biological system could

be a more efficient approach for waste processing in an advanced life support system such as BIO-Plex.

Biological processing could allow for effective removal of soluble nutrients and phytotoxic soluble

organics, after which physical/chemical processing could oxidize recalcitrant residuals. Prior removal of

the water-soluble nutrients from the waste stream could enhance the performance of physical/chemical

systems proposed for use in ALS, such as the fluidized bed incinerator [Under development (J.S.

Lighty, Univ. of Utah)].

Because initial BIO-Piex tests will include some food stowage, considerations might also be

given to incomplete conversion (oxidation) or stabilization of some waste biomass to achieve a better

balance of carbon and oxygen entering and leaving the system (Wheeler, 1996).

Estimated quantities of ALS solid and liquid wastes. Several studies have attempted to estimate

the weight and volume of wastes likely to be generated in a life support system. Crop residues would be

a large portion of solid waste generated from a fully sustaining life support system. For example, based

on a diet totally of wheat, potato, soybean and lettuce, inedible plant materials would be 640 g DW

person 1 day 1 (Wheeler et. a11996). Human solid wastes would be significantly lower (20 to 32 g DW

person 1 day -1; Parker and Gallagher, 1988; Shubert et al., 1984; Diem and Lentner, 1970), even when

combined with other waste solids dissolved or suspended in urine (ca. 59 g DW person _ day 1 ; Parker

and Gallagher, 1988) and graywater (ca. 11 g DW person _ day -1; from Wydeven and Golub, 1990).

Even at 90% closure, recycling of nutrients from crew feces could be ignored unless there is a need to

demonstrate technology for processing this biohazardous waste. We recommend that for the initial

mission, BIO-Plex not attempt to recover minerals from human solid waste. This approach minimizes
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crewcontactwiththosehumanpathogensassociatedwithfeces. Instead,fecescouldbecollectedand
stored,removed,or incineratedwithoutbiologicalprocessing.

Inadditiontosolidwastes,anintegrated,hybridwastetreatmentsystemwillneedtoprocess
urineandgraywaterinadditiontothesolids.Becausethesewastesarecomprisedmostlyofwater,the
estimatedweightsandvolumesoftheurineandgraywateraresignificantlygreaterthanforthesolids.
Urinevaluesrangefrom1.3to2.1L(kg)person1day1andgraywater(i.e.,laundrywater[54%],dish

water[23%],andshower/hand-washwater[23%])isestimatedto be intherangeof25L person1 day1
(WydevenandGolub,1990).BioreactortechnologiesunderconsiderationforinclusioninanALSwill

requireliquid/waterinputs.It makessenseto useurineandgraywatertosupplybioreactorsratherthan
relativelycleancondensatefromcropproductionwaterrecoverysystemsor,worse,potableorde-
ionizedwater.UseofcropsthatpartitionNaandCItoediblestructures(e.g.,spinachleaves;Richards,
1969)shouldbeexploredtopreventNaCIbuild-upinthewasterecyclingstreams.Alternatively,if the
NaCIcouldbeseparatedfromtheurine(orconverselytheureaseparatedfromtheurine),nitrogenfrom

theurinecouldbeprocessedbythebioreactorsand/orplantswithlittleconcernforsaltbuild-up.
Backqround to three basic bioreactor types. Biological processes have long been used for

treatment of municipal, agricultural, and industrial organic wastes (Tchobanoglous and Burton, 1991),

with a primary aim of removing soluble organic carbon (Gaudy and Gaudy, 1972; Tchobanoglous and

Burton, 1991). Biological treatment processes almost exclusively employ mixed microbial populations

cultured under aerobic conditions. Three fundamentally different approaches to aerobic microbiological

processing of wastes are: well-mixed, suspension culture (i.e., Continuous Stirred Tank Reactor--CSTR);

composting with high particle/low moisture content (i.e., solid-state fermentation--SSF); and immobilized

microbial biofilms attached to hardware surfaces (e.g., fixed-film bioreactors--FFB). All three bioreactor

technologies have been considered for processing of ALS solid crop residues and human wastes.

Relevant cost/benefit parameters (resources and recycling efficiency) still need to be determined for

each technology to provide necessary information for the selection of components for a hybrid,

integrated biological and physical/chemical system for BIO-Plex.

CSTRs utilize a suspension of microorganisms to degrade soluble and/or particulate organic

compounds. Substrate addition is usually continuous, so maintenance of microbial metabolic activities is

relatively constant with time. The stabilized particulate end product--sludge--consists of microbial cells,

extracellular microbial matrix material, and undegraded crop residues and human waste solids. The

design, fabrication, and successful operation of CSTRs have been underway at KSC for several years

(Strayer, 1993; Finger and Strayer, 1994; Finger and Alazraki, 1995; and Strayer and Cook, 1995).

These bioreactors ranged in size from 4 to 120 L working volumes and were used to conduct studies at

both an intermediate-laboratory scale and at a larger, breadboard scale. The bioreactors were fully

instrumented for computer monitoring and control, and were used to process inedible ALS crop residues

to accomplish multiple objectives: 1) Biological decomposition of crop residue lignocellulose--Depending

on crop type and retention time, fiber degradation ranged between 35 - 40% (shod retention times) and
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65- 80 % (24 to 48 day retention times). The longer retention times are considered impractical for

utilization in a mass-limited life support system; 2) Reduction of soluble organic compounds that were

readily leached from crop residues and accounted for nearly 25% of crop residue carbon. Without

biodegradation of these compounds, crop growth on the resulting solution was reduced. Over a wide

range of bioreactor retention times (1.3 to 48 days), microbial decomposition contributed to a 75%

reduction in soluble organic compounds; (3) Most important, we have shown that CSTR can be used to

recycle inorganic nutrients from the crop residues back to hydroponic crop production systems. Over a

wide range of retention times (1 to 48 days), upwards of 80% of the inorganic nutrient mass contained in

crop residues was recovered in bioreactor effluent. These effluents were used successfully at both

laboratory (3-month studies) and breadboard (418-day study) scales to replenish at least 50% of nutrients

for crop hydroponic solutions (Garland et al., 1993; Mackowiak et al. 1996b).

SSFs for composting solid wastes have lower requirements for water, volume, and energy than

CSTRs or FFBs. The major cost savings for SSFs come from reduced moisture requirements, which

would lead to lower system mass requirements. Compost ranges from 50 to 60% moisture, with the

optimal content varying with the type of waste (Cook, 1993; Atkinson et al., 1996a,b). Short-term

composting effectively removes readily degradable organic materials (Bono et al., 1992) and inorganic

nutrients can be readily extracted from composts (Villar et al., 1993; Forster et al., 1993; Levi-Minzi et

al., 1992). A variety of solid wastes--sewage solids, poultry litter, municipal solid wastes, pulp and paper-

mill primary solids, and pine sawdust--have been successfully composted in laboratory-scale bioreactors

(Atkinson, 1995; Atkinson et al., 1996 a,b). SSF is the only option with the ability to kill human enteric

pathogens in the bioreactor itself as a result of heat generated through microbial metabolic activities (Lau

et al., 1992). Preliminary data from SSFs being operated at KSC indicate they would allow crop residue

bioprocessing on a scale that would be competitive with the other biological processes and be

appropriate for space-based applications.

As with the other two options, FF'Bs are a mature technology with widespread uses. The use of

FFBs in space ALS has been proposed and studied. Allied Signal Corp., in conjunction with JSC, has

designed, built, and operated an immobilized cell graywater processor (Nacheff-Benedict et al., 1994;

Edeen et al., 1995). Miller et al. (1991) showed that a packed bed, fixed film bioreactor, operating at a

27-h retention time, could remove up to 99.8% of phenol in a 100 ppm phenol-laced waste stream. KSC

has utilized FFBs for the dual use of TOC reduction and nitrification (Strayer et al., 1997b) as a final

polishing step in an anaerobic-based, inedible plant biomass digestion experiment. Steady-state TOC

reduction and nitrification rates of 80% and 98%, respectively, were demonstrated during 180 days of

continuous operation. Effluent from the bioreactor was successfully used in a concurrent plant growth

experiment (Strayer et al., 1997b; Mackowiak et al., 1997b).

The major advantage of fixed-film designs is retention of high concentrations of decomposer

microbes in the attached biofilms. This advantage could enable the reactor to have lower volume, mass,

and possibly power requirements than CSTR. Disadvantages relate to diffusion-limited transfer of

V"
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dissolved oxygen into biofilms with a resulting potential for denitrification (Stutte, 1996). Also, fixed film

bioreactors are generally designed to process soluble, or low particulate waste streams, thus upstream

particle/liquid separation would be needed. Because bacterial or greater sized pathogens would be

removed by the particle/liquid separation step, operation of the fixed-film bioreactor will not have to be

concerned with exposure to these pathogens.

Microbiological and Chemical Characterization

Microbial community stability will be an important component of overall system stability in closed

bioregenerative life support systems. Biomass production systems will harbor a significant microbial load

due to the release of organic material from plant roots (Garland et al., in press, Garland 1994, Strayer

1991, 1994). The growth of human-associated microorganisms within these systems could lead to human

health problems, and the growth of plant pathogens could affect the production of the life support

commodities by the plants. Consistent recycling of elements through bioregenerative resource recovery

process also will depend on the long-term stability of microbial communities within the bioreactors.

Research to date indicates that the microbial communities associated with prototype plant

production systems and bioreactors are stable during long periods of operation (Cook and Garland, 1997;

Garland 1996, Garland et al., 1997 a,b). Further characterization of the resistance and resiliency of

these microbial communities to stress, including potential invasion by deleterious microorganisms is

necessary. The recycling of human waste streams, and the concomitant introduction of human-

associated microorganisms into bioreactors or plant growth systems is of particular concern. Preliminary

experiments suggest that the complexity of the microbial inoculum to the closed system is an important

element in the community stability (Morales et al. 1996), and emphasize the need to define what types of

"beneficial" microorganisms need to be introduced into the system.

Some common practices in non-regenerative life support systems are likely to give rise to

problems with biological systems. In particular, the widespread use of chemical antibacterials and/or

preservatives can pose problems for plant and microbial systems. Iodine and silver are used in the US

and Russian space programs, respectively, to ensure that potable water is safe to drink. If a similar

approach is used in BIO-Plex, then these ions must be removed before introduction of waste or excess

quantities of water to either the plant systems or the bioreactors. Sulfuric acid and oxone have been

used to chemically stabilize and prevent breakdown of urea in urine, but these would be deleterious to

biological waste treatment systems and very likely make biological recovery of the nitrogen more

difficult. Other contaminants could be introduced by the crew flushing unsuitable materials down the

toilet or adding unsuitable materials to the incinerator. For example, glues used to hold air filter frames

together were found to be a potential source of boron contamination in BPC studies (Stutte, unpub.).

With respect to the atmospheric system, any potential sources of ethylene or other phytotoxic

gases should be considered carefully, just as any potentially toxic gases from the bioregenerative

components must be considered for their effects on the crew. A listing of organic volatiles measured
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duringBiomassProductionChamberstudiescanbefoundinBattenetal.,(1995,1996),Wheeleretal.
(1996b),andStutteandWheeler(1997)andadditionalmeasurementsareneededasnewspeciesof
cropsaretested. Useof certaintypesoffoammaterialscanbetoxictoplants(Wheeleretal.,1985),
andrecentevidenceshowedthatvolatileslikelyfrompyrelfoam,whichisclearedforhumanuseand

hasbeenusedin IEHTtests,weretoxicto slimemoldorganismsonSTS-69(I.Block,unpublished).

RECOMMENDATIONS

Immediate Issues for BlO-Plex Design:

• Partition the plant production module to provide separate photoperiod and temperature zones.

• Reduce the lighting requirements from 1500 to ~ 750 IJmol m -2s-1(tray level) for most of the crop
production areas except for wheat and rice to reduce power consumption and heat rejection
requirements.

• Utilize a biological reactor to process inedible plant biomass and food processing waste for: 1)
recovery of inorganic nutrients in an aqueous stream; 2) reduction of soluble organic compounds to a
level that does not inhibit crop production; 3) partial mineralization of lignocellulose components of
crop residues to carbon dioxide.

• Determine area requirements for seed storage, biomass handling and storage, chemical storage,
solution mixing, and general work areas for planting, harvesting, resource recovery, and clean-up.

• Consider more energy efficient lighting technologies if power requirements are more critical than
total growing area for BIO-Plex (e.g., higher powered HID lamps, LEDs, microwave lamps, or remote
lighting with light conduits).

Supporting Research, Food / Plant Production:

• Develop a crop task handbook and include a list of candidate crops, the crop environmental and
horticultural requirements, and a standard protocol for testing candidate crops for ALS.

• Conduct baseline horticultural and environmental studies with peanut, carrot, chard, and cabbage
and select short (dwarf), high yielding cultivars; studies should include tests utilizing a standard range
of environmental conditions and nutrient delivery approach pertinent to BIO-Plex. (note, additional
species may be added as the result of annual meetings of the ALS food/plant research community).

• Resolve issues pertaining to controlling 1) potato tuberization and 2) sweetpotato storage root
formation in continuous production hydroponic systems.

• Conduct comparison of nutrient delivery systems (NDS) for core crops. Comparisons should
included solution, thin film, and solid media systems (e.g., use of nutrient-rich, zeolite/apatite media)
and address constraints applicable to BIO-Plex and general NDS management issues.

• Determine if bioprocessed solids can be utilized as a starting and/or rooting medium for crops and
explore systems that minimize clean-up after harvest.

• Conduct large-scale (e.g. _10 m 2area) verification tests with untested crops (e.g., rice, peanut,
chard, cabbage, carrot, sweetpotato, strawberry, tomato) prior to incorporation into BIO-Plex; tests
should include the use of nursery/transplant schemes and mechanization technologies where
appropriate.

• Conduct mixed crops studies with environmentally matched species to verify compatibility,
particularly with regard to photopefiod and temperature.

• Develop mechanized systems for planting and harvesting (e.g., wheat, soybean, and rice), and
materials handling and processing for resource recovery.
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Supporting Research, Resource Recovery and Waste Processing:

• Determine if the microbial flora present in the crop nutrient delivery system (NDS) can be utilized to
process gray water in situ. If, gray water cannot be introduced directly into the NDS due to health
issues, utilize a biological reactor to pretreat the graywater prior to addition.

• Determine bioprocessing conditions that reduce human-associated microorganisms from crew
wastes (graywater) to acceptable levels. Define acceptable levels.

Find ways to minimize sodium in ALS wastes (e.g., potassium soaps) Develop a biological (salt
tolerant and/or accumulating plants) or physical-chemical method for removing sodium from the
waste processing system.

Define the advantages and disadvantages of fundamental bioprocessing approaches (continuous
stirred tank reactors [CSTR], fixed-film bioreactors [FFB], and solid state fermentation [SSF, or
composting]). These evaluations should be made with regard to a cost-benefit analysis for each
approach: Costs are volume, mass, energy, and manpower. Benefits are reliability, carbon
mineralization, nutrient recovery, and a product stream that contains acceptable levels of soluble
TOC (eliminate problems in hydroponic NDS), pathogen reduction, and trace organic contaminant
control, without introducing hazards such as high temperatures and pressures.

Explore use of physical/chemical waste processing outputs (e.g., combustion ash and gas) for
sustaining food/plant production systems.

Define microbial inocula necessary for reliable and stable (over time) operation of resource recovery
and plant production systems. Determine effects of inocula on survival of contaminants, including
plant and human pathogens.

Evaluate resource recovery bioprocesses with regard to mission scenarios, including rate of input--
(e.g., the crop harvest interval for inedible biomass), degree of system closure, storage of waste
system inputs and outputs, etc.

Determine the stability of bioprocessed liquids and solids under storage conditions.

These recommendations focus on the issues for development of BIO-Plex and draw largely on

published results from the KSC Breadboard Project, which has been operation for nearly 10 years

(Appendix A), as well as university investigations throughout the 1980s and 1990s. Achieving more far-

reaching ALS objectives, including a flight testing program, will require updated NASA Research

Announcements (NRAs), to sustain the needed bioregenerative research and technology development.

Priorities will need to be assigned for developing both bioregenerative and physical / chemical system

flight support hardware. These priorities, along with schedules, costs, and responsible organizations,

should be agreed to by all members of the ALS program team in order to maximize the progress.

It is recommended that representatives of the bioregenerative community participate in

preliminary and critical design reviews for BIO-Plex, and that members of the food/plant production and

waste treatment/resource recovery working groups meet on an annual basis to formally discuss issues

regarding BIO-Plex development, as well as future ALS mission needs. These meetings will provide the

basis for re-prioritizing program research and development needs.
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Appendix A: Minutes from ALS Plant/Food Production Research Meeting, May 1997.

Date:
To:
From:
Re:

24 June 1997
Advanced Life Support (ALS) Program Management and Attendees
R.M. Wheeler, Kennedy Space Center, FL
Minutes from ALS Plant/Food Production Meeting

On May 5 and 6, 1997, a meeting was convened at Kennedy Space Center (Hangar L) to discuss issues
related to Food and Plant Production activities for NASA's Advanced Life Support (ALS) Program. Two
primary topics were addressed: 1) development and maintenance of an ALS plant production database,
and 2) candidate crops and support research for BioPlex I.

Questionnaires on the growth of crops for bioregenerative life support were mailed out to most of the
attendees prior to the meeting by Frank Salisbury (Utah State Univ.). Frank along with Mary Ann Clark
(Utah State) are currently compiling inputs from these questionnaires to develop a database on
controlled environment crop production for ALS. During the Monday morning session, the structure of
the questionnaire and the types of data needed for ALS were discussed, and manipulations with the
software were demonstrated. Frank also presented an overview of rules and proper usage of SI units for
ALS research and reporting.

The Monday afternoon session included a discussion of systems-level considerations for food/plant
production by Alan Drysdale of Mc Donnell Douglas Corp. Following this, Ted Tibbitts (Univ. of
Wisconsin) and Ray Wheeler (KSC) led discussions on the types of testing and environmental
measurement needed for thorough assessment of ALS crops. Key questions included: Has the crop
been grown in recirculating nutrient delivery system? Are there short or dwarf cultivars available? Has
the crop been grown under high-pressure sodium lighting? Cheryl Mackowiak (Kennedy Space Center)
then presented the concept of developing workbooks or experiment protocols from the database; such
protocols would be used to provide guidelines for ALS projects and mission planning involving plants.

Frank Salisbury is retiring from Utah State in July of 1997 and maintenance of the database following his
retirement was discussed. The group thought it worthwhile for the program to maintain the database
(current funding is provided by a contract through JSC). Options for maintaining the database were
discussed. A preliminary recommendation was for Ted Tibbitts to act as the database curator through
funding to the University of Wisconsin. Protocols for different crop studies for the program could be
developed utilizing the database as needed.

On Tuesday morning, Dan Barta (JSC) provided an overview of the plant activities associated with the
Lunar/Mars Life Support Test Project (formerly EHT) phase III and plans for the BioPlex project. Dan
noted that the first phase of BioPlex would strive for a 90% crop-derived diet (crew of four), with 45%
produced within the system, and 45% stowed. The remaining 10% would be non-crop related foods.

2 3
The BioPlex food production module would provide about 80 m growing area in a 185 m volume and

• -2 -1
use horizontally mounted 400-W HPS lamps providing up to 1500 IJmol m s PPF. Plants would be
grown in shallow trays on shelves 9.8 m long by 1.4 m wide with a nutrient solution reservoir for each
shelf. For the "staple" crops requiring large growing areas, an entire shelf would be planted at once (i.e.,
no mixed ages of plants on a shelf).

Yael Vodovotz (JSC) followed this with an overview of food concerns for BioPlex as they might relate to
plants. Some of the issues discussed included: finding a lipoxygenase-free soybean cultivar (to reduce
processing requirements), considering adding dry beans (as a protein and Ca source), adding fruits and
other salad crop varieties (for nutrition and dietary diversity), and continuing to search for dwarf rice and
sweetpotato cultivars (to include them in as staple crop selections). Useful measurements to consider
for ALS plant research include: edible tissue moisture content, proximate composition, protein and non-
amino acid N content, micronutrient content, presence of anti-nutritive factors (e.g., tyrpsin inhibitors,
phytic acid), and the presence of any human-associated organisms in the foods.
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OnTuesdayafternoon,the initial crop list for BioPlex I and other possible crops were discussed (Hoff et
al., 1982; Tibbitts and Alford, 1982; Salisbury and Clark, 1996). The crops fell into two general
categories: 1) staple crops, which could supply significant amounts of carbohydrate, protein, and/or fat,
but could require substantial processing, and 2) supplemental crops (vegetables and fruits), which are
generally perishable but would add dietary variety. The following criteria were used to assign readiness
levels of 0 - 3 for the use of the crops in BioPlex: 0 = little knowledge of the crop in controlled
environment conditions; 1) limited testing of the crop in controlled environment conditions and limited
published results; 2) extensive testing in controlled environment conditions with several papers published
in the scientific literature; 3) extensive controlled environment testing, published results, and large scale
(> 10 m2), closed system (i.e., pre-integration) testing conducted.

The crops and their current readiness ratings for use in BioPlex I:

Staple Veqetables and Fruits

Wheat 3.0 Lettuce 3.0 Kale 1.0
Soybean 2.5 Tomato 2.0 Quinoa 1.0
Potato 2.5 Spinach 2.0 Onion 1.0
Sweetpotato 2.0 Radish 2.0 Carrot 0.5
Peanut 1.5 Strawberry 1.5 Broccoli 0.5
Rice 1.0 Chard/Beet 1.0 Cabbage 0.5
Dry Bean / Pea 1.0 Chufa 1.0 b Melon 0.5
Cowpea 1.0 a
Sugar Beet 0.5

not discussed but used in previous CELSS studies; _ nutsedge.

Because time was limited, thorough assessment of readiness levels was not possible. Assessment
should continue in conjunction with the database development to refine ratings for BioPlex and related
efforts. There was a general agreement that staple crops, which require a large planted area, reach a
readiness level of ~ 3.0 for inclusion in BioPlex. Supplemental crops might be expanded to include other
salad crops or cvs., and readiness levels might be relaxed because the area investment would be
substantially less for these species. Food / diet development staff should provide approval of the
tentative crop list prior to integration testing. If possible, the crew might also be canvassed for
supplemental crop suggestions.

Following the crop discussions, an outline of pressing research needs for BioPlex I was discussed briefly.
Issues fell into four general categories: 1) nutrient delivery systems (e.g., growing mixed species and
ages of crops on one solution, allelopathy, recycling of minerals from treated waste products, sodium
chloride build-up, iodine removal, phytopathogens, and sanitation procedures); 2) cultivation and
environmental effects (e.g., propagation, starting media for seedlings, transplanting, spacing, mixed
crops in the same environment, volatile organic contaminants, automated planting and harvesting); 3)
lighting (e.g., acceptability of HPS lamps for crops, light leakage during dark cycles, improved thermal
management, use of LEDs and microwave lamps, and use of native sunlight), and 4) crop and cultivar
selection (e.g., dwarf cultivars, lipoxygenase-free soybeans, and dry bean cvs.).

Following discussions of BioPlex issues, Yuri Syniak presented an overview of life support related
activities at the Moscow Institute for Biomedical Problems (IMBP). IMBP activities include the
development of flight hardware for producing salad crops ("Vitamin Greenhouse") for the Russian
module of the International Space Station. Following this, Bernie Grodzinski presented an overview of
bioregenerative research at the University of Guelph, Ontario. Guelph activities are currently focused on
carbon metabolism of whole crop stands using tightly closed chambers. The chambers utilize microwave
lighting systems and have no plastic components, which allows tracking of volatile organic compounds.
The group is also investigating the use of water/biological filtration approaches for removing atmospheric
contaminants in closed buildings and has a working system in the Canada Life Insurance Building in
Toronto.
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Thelasttopicscheduledwasa discussionof inputsonplant/foodproductionresearchforNASA
ResearchAnnouncements(NRAs),buttimedidnotpermita dialogueonthistopic.

Themeetingwasadjournedatabout5:00pmonTuesdayafternoon,May6,1997.

Attendees:

MikeAlzaraki/ Kennedy Space Center
Dan Barta / Johnson Space Center
Maynard Bates / Ames Research Center
Yuli Berkovitch / IMBP
Doug Britt / Kennedy Space Center
Dave Bubenheim / Ames Research Cen.
Bruce Bugbee / Utah State Univ.
Peter Chetirkin / Kennedy Space Cen.
Mary Ann Clark/Utah State Univ.
Dave De Villiers / Cornell Univ.
Mike Dixon / University of Guelph
Tom Dreschel / Kennedy Space Cen.
Alan Drysdale / McDonnell Douglas (KSC)
Barry Finger / Kennedy Space Center
Gene Giacomelli/Rutgers Univ.
Greg Goins / Kennedy Space Center
Bernie Grodzinski / Univ. of Guelph
Jill Hill / Tuskegee University
Ross Hinkle / Kennedy Space Center
Bill Knott / Kennedy Space Center

Bob Langhans / Cornell
Colleen Loader / Kennedy Space Center
Howard Levine / Kennedy Space Center
Bill Little / Kennedy Space Center
Phil Loretan / Tuskegee University
John Lu / Tuskegee University
Cheryl Mackowiak / Kennedy Space Center
Desmond Mortley / Tuskegee University
John Sager / Kennedy Space Center
Frank Salisbury / Utah State University
Greg Schlick/Ames Research Center
Lisa Siegriest-Ruffe / Kennedy Space Cen.
Gary Stutte / Kennedy Space Center
Yuri Syniak / IMBP
Ted Tibbitts I Univ. of Wisconsin
Yael Vodovotz / Johnson Space Center
Ray Wheeler / Kennedy Space Center
Neil Yorio / Kennedy Space Center
Scott Young / Kennedy Space Center
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Appendix B: Timeline of KSC Breadboard Project Activities

1985 - 1987

B PC constructed

1989 - 1992

Baseline crop studies with wheat,
potato, soybean & lettuce

May 1992 - June 1992
Lettuce production on recycled
condensate

- 1988
Early wheat grow-outs as
chamber engineering improves:
sealed atmosphere, computer
control, etc.

1992

• Separation of upper and lower
chambers

• Added condensate recycling

Nov 1993 - Dec 1993

Lettuce production on recycled
minerals

Feb 1994- May 1994
Wheat growth on effluent
degraded aerobically from inedible
plant material

June 1995

• BPC atmosphere connected
with BSAB atmosphere

Feb 1996 - April 1996

Atmospheric study with tomato

June 1992 - Sept 1993
Testing of biogenic compounds
with potato & wheat

January 1994
• Breadboard-Scale Aerobic

Bioreactor (BSAB) installed

1994 - August 1995
Continuous vs. batch production
study of potato on aerobic effluent

1995 - Jan 1996

Baseline crop study with tomato &
soybeans

1996 - May 1997
Mixed wheat & potato crops in
same environment

Future Testing
Gray Water
Composting

Alternate Crop Testing
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Appendix C:

ALS

ARC

BIO-Plex

BPC

CELSS

CSTR

EC

EHT

FFB

HID

HPS

JSC

KSC

LED

NDS

NFT

NRA

PPF

STS

TOC

Abbreviations

Advanced Life Support

Ames Research Center

Bioregenerative Life Support Systems Complex

Biomass Production Chamber

Controlled Ecological Life Support System

Continuous Stirred Tank Reactor

Electrical Conductivity

Early Human-Rated Tests

Fixed-Film Bioreactor

High Intensity Discharge (lamp)

High Pressure Sodium

Johnson Space Center

Kennedy Space Center

Light-Emitting Diode

Nutrient Delivery System

Nutrient Film Technique

NASA Research Announcement

Photosynthetic Photon Flux

Space Transportation System

Total Organic Carbon
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