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Summary

An investigation is conducted of several numierical schemes for use in the computation of two-
dimensional, spatially evolving. laminar, variable-density compressible shear layers. Schemes with various
temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented
and analyzed. All integration schemes use explicit or compact finite-difference derivative operators.
Three classes of schemes are considered: an extension of MacCormack’s original second-order temporally
accurate method. a third-order temporally accurate variant of the coupled space-time schemes proposed
by Rusanov and by Kutler, Lomax, and Warming (RKLW). and third- and fourth-order Runge-Kutta
(RK) schemes. The RKLW scheme offers the simplicity and robustness of the MacCormack schemes and
gives the stability domain and the nonlinear third-order temporal accuracy of the Runge-Kutta method.
In each scheme. stability and formal accuracy is considered for the interior operators on the convection-
diffusion equation {7} + al’, = o, l/p,.. for which a and a, are constant. Both spatial and temporal
accuracies are verified by the equation {7y = [b(x)U,]e as well as I + Fr = 0. Numerical boundary
treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally
accurate boundary conditions are derived for explicit sixth-order: pentadiagonal sixth-order: and explicit.
tridiagonal. and pentadiagonal eighth-order central-difference operators when used in conjunet ion with
Runge-Kutta integrators. Damping of high wave-number. nonphysical data is accomplished for all schemes
with explicit filters. derived to tenth order ou the boundaries and twentieth order in the interior. Several
schemes are used to compute variable-density compressible shear layers. where regions of large gradients
of flow-field variables arise near and away from the shear-layer centerline. Results indicate that in the
present simulations, the effects of differences i temporal and spatial accuracies between the schemes are
less important than the filtering effects. Extended MacCormack schemes are robust but efficient because
of restrictive Courant-Friedrichs-Levy (CFL) limits. The third-order temporally accurate RKLW schemes
are less dissipative but have shorter run times. The Runge-Kutta integrators did not have sufficient
dissipation to be useful candidates for the computation of variable-density compressible shear layers at the
levels of resolution used in the current work.

Introduction

The numerical simulation of spatially evolving. compressible shear layers has become popular as a tool
to understand the mixing mechanisms involved in supersonic combustion. Simulations may involve not only
the effect of compressibility but also the presence of large gradients in density caused by disparate-mass gas
mixtures or large temperature gradients that arise from exothermic chemical reactions. In disparate-inass
gas mixtures, the Schmidt and Lewis numbers are nonmnity - usually greater than I in one stream and
less than 1 in the other. Self-similar solutions to the laminar shear layer suggest that this nonmmity gives
rise to different profiles for species and temperatures relative to the velocity profile. In hydrogen-nitrogen
mixing layers. vorticity occurs predominately in the low-density stream. (See ref. 1.) This phenomenon is
experimentally observed in turbulent, disparate-mass supersonic shear layers. (See ref. 2.)

Computation of compressible shear layers has been largely confined to gas streams that are uniforni in
composition; also. the specific numerical method chosen has varied considerably. Soetrisno et al. (ref. 3)
nse a second-order acenrate, finite-difference, total variation diminishing (TVD) scheme coupled with a
second-order accurate Runge-Kutta method to study two-dimensional, temporally evolving. inviscid shear
layers. Yamamoto and Daiguji (ref. 4) use either a fifth-order upwind TVD or a fourth-order monotonic
upwind-centered scheme for conservation laws (MUSCL) TVD scheme. coupled with a C'rank-Nicolson
time imtegrator. Shu et al. (ref. 5) use various order. essentially nonoscillatory (ENQ) finite-difference
schetes, as well as compact central-difference stencils and a third-order low-storage Runge- Kutta method
on a three-dimensional shear laver. The ENO schemes are particularly useful for flows in which steep
gradients are present. Grinstein and Kailasanath (ref. 6) use a flux-corrected transport (FC'T) algorithm
to investigate three-dimensional and chemical-reaction effects. Another method that has been useful m the
simulation of compressible flows is upwind biased differencing. Raiand Moin (ref. 7) use mildly dissipative
fifth-order upwind differences on inviscid terms and fourth-order differences on viscous terms together



with an mmplicit time integration to simulate transition and turbulence in supersonic boundary layers.
In a different approach to adding dissipation, Mukunda et al. (ref. 8) use the (2-4) scheme proposed by
Gottlieb and Turkel (ref. 9), which is second-order accurate in time and fourth-order accurate in space, as
well as the compact (2-4) version of the MacCormack (ref. 10) method developed by Carpenter (ref. 11)
tostudy spatially evolving compressible shear layers. Lele (ref. 12) chooses a sixth-order compact central-
difference stencil for viscous and inviscid terms and a third-order low-storage Runge-Kutta method to
calculate temporally and spatially evolving, two-dimensional compressible shear layers. Dissipation is
added by the use of implicit filters. (See ref. 13.) In a combination of compact finite-difference and Fourier
spectral methods, Sandham and Reynolds (ref. 14) investigate the transition of a compressible shear layer;
Guillard. Malé, and Peyret (ref. 15) use a fully spectral scheme.

Computations may be divided into two broad categories - spatial and temporal simulations. Temporal
simulations allow the use of periodic numerical and physical boundary conditions in the streamwise
direction, which greatly simplifies the computations. Unfortunately, they are an idealization of real shear
layers. Spatial sinmulations require specification of both physical and numerical boundary conditions.
Recently, Clarpenter, Gottlieb, and Abarbanel (ref. 16) have determined numerical boundary treatments
that preserve the accuracy of compact, tridiagonal sixth-order interior schemes on the model hyperbolic
equation {7y +al’y = 0. These treatments are also asymptotically stable with respect to time. Pror to
the work of Clarpenter, researchers using the sixth-order tridiagonal stencil for the interior scheme closed
it at the boundaries so that the formal accuracy of the overall method was reduced.

Another relevant 1ssue in the computation of compressible shear layers is numerical dissipation. In
simulations where not all the relevant length and/or time scales of the problem are being resolved.
dissipation must bhe added to ensure computational stability. Some numerical dissipation is desirable
to remove spurious high-frequency information regardless of whether second-order derivatives are taken
once with asecond-order derivative operator or twice with a first-order derivative operator. The source of
this high-frequency information may be intrinsic instability in the scheme, the misspecification of physical
boundary conditions. the “odd-even™ decoupling between grid points, or insufficient resolution (temporal
and spatial). To address this problem. some researchers have resorted to implicit (ref. 13) and explicit
filters (refs. 17, 18, and 19). In the present work we use explicit filters.

The goal of the present study is to generate families of schemes with arbitrarily high spatial accuracy
for both viscous and inviscid terms, coupled with explicit time integrations from second to fourth order.
Schemes are applied to highly resolved. spatially evolving, compressible shear-layer calculations devoid
of discontinuities. The accuracy. stability. and robustness of the schemes are considered with particular
attention to compressible, variable-density, nounreacting flows. Analyses of both compact and explicit
mterior schemes have been provided. as well as a variety of choices for boundary closures and explicit filters.
Stability is considered not only through Von Neumann analysis but also through matrix analysis of various
boundary and interior treatments. The schemes examined are the following: extended MacCormack-type
schemes, anew variant of the schemes presented by Rusanov (ref. 20) and by Kutler, Lomax. and Warming
(refs. 21, 22, and 23) (RKLW), and Runge-Kutta (RK) schemes.

Numerical Method

The governing equations are solved in conservative form with the SPARK2D (ref. 24) code and may be
g g eq )
written as

Jdu  oF(U) n JdG(U)

at ar Ay (1)




where

r pu )
pu pUU — Oy
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(2)
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o is the density: u is the streamwise velocity: v is the trausverse velocity: oy, I3 the Newtoman stress
tensor: ¢y is the total internal energy: g, is the heat flux vector: Y; is the species mass fraction: and «;
and ¢; are streamwise and transverse components of the diffusion velocity. respectively. Roman mdicies
(e.g.. i) correspond to the species index. whereas Greek ones (e.g.. a) correspond to spatial indicies.
Throughout this text, the inviscid derivative operators are those used to differentiate F and G. whereas
viscous derivatives are those used to generate derivative termms in the expressions for the stress tensor. heat
flux vector, and diffusion velocity.

lu the finite-difference schemes considered here. for constant grid spacing Ax. the spatial derivative of
a function f (f' = f,). is given in matrix form as

l 3\
rf, = EQf
_ l -1 .
fo=PTQ (3)
1
[=x7A

To avoid the increased operation count necessary to invert large bandwidth matrices. the bandwidth of the
matrix P is not considered operationally 10 be larger than pentadiagonal. Determination of the specific
centered-difference stencil is accomplished by writing

S+ “3/‘;—2 —+ (,)f,/._l + fi, + ()f,-l+1 + ;’3f;+2 + :“I_i—i—l—_ﬁ

A
N bf;+2 — fi_v
Ar
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Ar
4o (1)
where the coefficients e, 3. - form the matrix P a.b, - - form the matrix Q: and f; and f7 are the values

of some function and its derivative at grid point i, respectively. By defining the Fourier transform and the
nverse Fourier transform of the discrete function value f,,, with (ref. 25)
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where € 1s the Fourler (lUdl variable; if W(&) is the approximation of the derivative of f in Fourier space or

the Fourier image off f,” is given in Fourler space as

/ 1 T “
— 131224 ‘J! [E
Jin _—ZW(AJ.')/—;T( (&) f(&) (7)

The finite-difference stencil given in equation (4) becomes
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C'onsequently,
i[2a sin(€) + 2b sin(2€) + 2¢ sin(3€) + -]
[1 + 20 cos(€) + 273 cos(28) + -]

With the spectral representation of f(x) written as

1 XL
f(.r):\/—;/ R ) d (10)

) ! o
it can be seen that f (r) in Fourier space has the form

vV =

!

f (@)= iw f(w) (11)

If the Fourier image of the finite-difference derivative operatoris expandedin a Taylor series in &, coefficients
of the stencil can be chosen to approximate the spectral derivative to some desired accuracy (ie.. ¥ ~ i€).

For an arbitrarly skewed stencil, the stencil and its Fourier image are given by

c+ Ifig tonfi S aplipn + Bl + o = %
arfi-1 + apfiy
Ar
N brfi—y + brfigy
Awr
n crfioy + cnpfigs
Ar
T (12)

and
{[T tilap+arp) cos(§) + (b +br) cos(2) + (cp +cp) cos(3E)+ ]}
N + {(up — ap) sin{&) + (bg — b,] sin(28) + (cp — ¢p) sin(38) + -]
- {3 Tor ol ot 4 7 o)+ E)!
+ iflap—op ) sif€) + (S — 37 ) sin(28) + -]

where the subscripts L and R are used to denote left and right.
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Finally, for predictor-corrector dissipative schemies (ref. 16). we have

A Bl afl i af Bl o = EA—I:I
(BF )i + (B A) g1
Ar
4 (DFCVizo + (DEC) gy
Ar
(FF )iy + (P2 )i
Arx
+ - {(11)

and
( {4 2B[cos(€) — 1] £2Dfcos(28) = 1] & 2F[cox(38) — 1] £ -}
v = + (24 sin(€) + 207 sin(28) + 2E sin(38) + -] (15)
B (I + 20 cos(€&) + 23 cos(26) + -] D

The predictor-corrector stencils become centered stencils for B =D =T = = 0. All second denvatives
are taken effectively by successively applying a first derivative operator twice. A consequence of this
application is that the wave number & = 7 becomes neutrally stable for central difference schemes and
may cause aloss of stability on nonlinear problems. This wave number is sometimes referred to as the ="
mode.

When predictor-corrector finite-difference schemes are used. viscous derivatives are calculated with
explicit stencils (ie., P = I where I is the identity matrix, and Q = A).  An explicit stencil of
(N — Dth-order accuracy is used for the evaluation of viscous terms in the schemes when the derivatives
of F and G are calculated to Nth-order accuracy. Runge-Kutta schemes use the same derivative operator
for both viscous and inviscid derivatives. Further discussion of the derivation of the stencils is contained
m appendix A.

Extended MacCormack Schemes

In 1969, MacCormack (ref. 10) introduced a two-stage numerical scheme for compressible flows with
a predictor stage followed by a corrector stage. The scheme is second-order accurate in both space and
time and is widely applicable, in part. because of its simplicity and robustness. Details of the method
can be found in many places (refs. 26 to 29). Attempts made by Gottlieh and Turkel (ref. 9) to unprove
the method increased the inviscid spatial accuracy to fourth order. This scheme has been popular among
researchers involved with highly resolved flow fields. (See refs. 30, 31, 32, and 8.) Carpenter (ref. 11)
further modified this scheme by using a compact fourth-order inviscid stencil with a third-order upwind
viscons stencil. The scheme was slightly more accurate than the Gottlieb-Turkel scheme. Bayliss (ref. 33)
extended the Gottlieh-Turkel scheme to sixth-order accuracy for the inviseid terms.

Extended MacCormack schemes take the original MacCormack scheme to arbitrary spatial accuracy i
both the inviseid and viscous terms. These schemes are obtained by using the skewed stencils (eq. (12))
to generate viscous terms in the vectors F and G. and the predictor-corrector stencils (eq. (141)) are used
ta evaluate the derivatives of F and G. Symbolically, the schemes may be represented for the equation

i+ Fr=0 {(16)

e A A W O
ThE __ pr¥ —g*
UM = U= XA} (17)

t

1
[rin+l — E(Iyill + [xi**)
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where AT and A~ are the forward and backward difference operators and A = f—j 1s the C'ourant-

Friedrichs-Levy (CFL) number.

The stability of the extended MacCormack schemes may be conveniently analyzed in Fourier space with
conventional Von Neumann analysis on the convection-diffusion equation {; + al’, = a . l’,, with a and
ap as constants. If ¥ and —¥* (where U™ is the complex conjugate of ¥) are defined as the Fourier images
of A* and A~ ¥, and — ¥} are defined as the Fourier images of A and A7 the viscous derivatives; [7
is defined as the Fourier transform of 77: M = ’_’S—\I’. Ao = ('—‘A!'i)i, 18 the viscous C'FL number or diffusion

ol . . .
number; and G = Le— is the amplification factor, then these schemes can be written as
{ 1

[+ )

— = | — MU - A, WU

(,"H

('}**

= T+ Ao — 20y, (18)
YN i
G == e —

) + [7* [/n

The amplification factor ¢ represents the magnitude of the amplification of a given frequency when
the solution is advanced one time step. Use of the letter (7 here should not be confused with its use in
defining the dissipative stencils. To determine the maximum CFL number, ¢ may be analyzed for the
mterior schewe or the amplification matrix G may be considered for the full scheme with boundary points.
For —m < & < m, the magnitude of (¢ must never exceed 1, or the spectral radius of G must be less than
or equal to 1; this is required for stability. For the convection-diffusion equation Uy + al’y = avliss, the
amplification factor and matrix are written as

|G| = %[H (LA — X 00, (L= N — 2 Wr)] (19)
= %[I+ (I-NAT+ X ATAT) (I- VAT 4+ N ATAT)] (20)

where AY and A~ are the forward and backward inviscid matrix derivative operators and At and A7
are the forward and backward matrix operators for the viscous derivatives.

For consistency, the explicit coefficients must sum to zero as follows:
(F-EY+(D-C)+(B~-A)+GH+(B+A)+(D+C)+(F+E)=0 (21)

or G = =2(B+ D+ F). Values of B, D, and F may be selected on the hasis of their effect on the
dispersion, dissipation, and C'FL nuinbers of the scheme. We have chosen to maximize the inviscid CFL
number and retain the largest viscous C'FL limit possible. The coefficients 4. (', E, a, and 3 are chosen
to satisfy the accuracy requirement of the stencil.

Table 1 lists the coefficients of the extended MacCormack predictor-corrector stencils and the maximum
C'FL number Anmax for the inviscid problem (e = 0) in the absence of boundaries. The letters E. T. and
P indicate that the matrix P is either diagonal/explicit, tridiagonal. or pentadiagonal, respectively. The
notation (2-6E) should be interpreted as second-order temporal accuracy with sixth-order spatial accuracy
for both the inviscid and viscous terms; the letter E indicates that the inviscid derivative operator 1s
explicit. Some confusion may arise because many schemes found in the literature do not treat viscous
terms at all and others do not retain the stated inviscid accuracy on viscous terms.
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Figure 1 presents the stability boundary of these schemes as a function of the viscous and inviscid CFL
numbers, again in the absence of boundaries. Regions in the lower left portion of the figure represent the
stable region. whereas regions in the upper right portion are unstable. While optimizing these schees
it was noticed that contours of the stability boundary can be dramatically altered by different choices of
B. D, and F. Optimizing was done by simply scanning parameter space for combinations with desirable
stability characteristics. Each scheme can be considered as optimized, although a j-percent 1mprovemnent
may be possible. Care should be exercised in optimizing the “flipping”™ parameters B. D, and I because
many of the combinations share the maxinnmu inviseid CFL limit of the scheme yet very few of this subset
have a boundary (¢ = | that does not intersect the origin. The (2-8T) scheme was found to have no values
of B. D. and F for which the boundary G = I did not intersect the origin. In many flow fields of interest.
the local viscous and inviscid CFL numbers are likely to lie outside the stability domain in the (2-8T)
scheme. Explicit schemes possess significantly larger stability domains than their compact counterparts
hecause of the increased truncation error of the explicit derivative operator. Thus, the CFL linits for
compact schemes are more severe than those for multidimensional schemes. (Sec refs. 10 and 9.)

Note that the {2-4L) scheme differs from that proposed by Gottlieb and Turkel (ref. 9) where B = —.4
and D = —C'. If used with the explicit third-order accurate viscous derivative, the Gottlieb-Turkel scheme
has a viscous C'FL limit of zero as C'FL — 0. MacC'ormack’s original scheme. (2-2F). is included in table 1
and figure 1 for completeness. The explicit skewed viscous stencils (3 = a; = ap = 3p = 0) are given
in table 2.

RKLW Schemes

Rusanov (ref. 20) derived a finite-difference scheme for nonlinear hyperbolic systems that was mniformly
third-order accurate in space and time. This scheme was considered for use in the computation of
discontinuous solutions. Three spatial difference operators were used in its construction—umean value.
difference, and identity. These operators were combined with a three-stage, third-order Runge-Kutta
method. Later, Burstein and Mirin (ref. 34) derived a similar method. Because function evaluatious
needed to be made on a staggered mesh, Kutler, Lomax. and Warming (refs. 21, 22, and 23) adapted
Rusanov's scheme by replacing the first two stages with MacCormack’s scheme. Hereinafter, this scheme
is referred to as RKIW. This adaptation made the programming logic simpler and facilitated the inclusion
of a source term and the extension to multidimensions. Various investigators have applied this scheme
to both high-speed flow (ref. 35) and to meteorological flows (refs. 36. 37, and 38). Further discussion of
the RKLW schenes can be found in the textbook by Auderson, Tannehill. and Pletcher (ref. 26) and in
two papers by Yanenko et al. (refs. 28 and 29). Attempts to proceed to uniformly fourth-order schemes
for hy perbolic equations (refs. 39. 40. and 41) have been successful. but have not been used extensively,
probably because of their enormous complexity.

The proposed RKLW method is a generalization of the third-order predictor-corrector format of Kutler,
Lomax. and Warming (refs. 21. 22, and 23) to arbitrary spatial accuracy in both viscous and mviscid terms
within the temporally third-order Runge-Kutta (RK) accuracy constraints. The implementation of this
scheme for the equation {7 + F, = 0 is solved numerically as

UF =1 = gaate )

!

UF = 3ZAATE?

i

(22)
(1 — 3 )(,“ + sz[vi“

-#

~—

1 A
T +l T » '# «



where A€ is the central-difference operator and the forward and backward differencing operators are the
same as those used in the extended MacCormack schemes. The values of 3 aud 3, are 1 and 1/4,
respectively. The two degrees of freedom inherent in the general three-stage, third-order Runge-Kutta
formulation (ref. 42) are used to accommodate symmetric (a3; = a3y in eq. (23)), predictor-corrector
spatial differencing.

The traditional Runge-Kutta scheme may be represented for the equation {7y = —Fy = — Fp:l/p = —fls
as

[,“Y* — (}H! _ (lzlAfllAl(yIl
U = U" —ag A" AU — agad frALUY (23)

(yn—H — bIdfrA — bz)\f*A‘_)U* . b:}x\f**AgU**

where the subscript associated with the matrix operator A represents the finite difference operator used
on the relevant stage —forward, backward, or centered.

Runge-Kutta schemes are often described in terms of the Butcher array. (See ref. 42.) The Butcher
array for the present scheme Is given as

0
0 1
) azl
€3 azl axy =1 1] (24)
Z I 7
| b b by T I 2
T © 3
Hence. 31 = ay; and 3, = ay) = agy. Symbols (letters) used for terms contained in the Butcher

array should not be confused with those symbols (letters) involved in the definition of the finite-difference
coefficients. Values of ¢; correspond to the time at which the ith stage is evaluated. that is, zero being the
nth stage and one being the (n + 1)th stage.

The stability of the scheme is considered in Fourier space in the linear model equation {1 +al’s = aolivy

as
f’* 3
— =1 - ,"31/\,\1’ - ,31/\l\]’\I’T
[
f}**
(ﬁ"T* = 1+%31/\I‘P*—‘131/\1,\D*\]ll,
[# [T+ (25)
=1+ =-1
i [rn
frl:-f—l 1 1’;#
—— = = |1+ 2(1 = N A YY)
U 3 {ln )

where ¥ is the Fourier image of the central-difference stencil. For the final stage of this method. the
dissipative difference operator is used as a central-difference operator by setting B = D = F = (. The
optimum values of B, D, and F are different from those of the extended MacCormack schemes. They
have been chosen to maximize the size of the stability envelope under the constraint that |G| < 1 or that
the spectral radius of G is less than or equal to 1. where



i
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Table 3 summarizes the RKIW schemes. Viscous stencils are the same as those used m the extended
MacCormack schemes. (See table 2.) Figure 2 presents the stability boundary of these schemes in the
absence of boundaries. As for the extended MacCormack schemes, explicit schemes have less restrictive
CFL bounds than the compact schemes with the same spatial order of accuracy. and increasing the order
of accuracy of the spatial operator reduces the stability domain. The (3-2E) scheme is the analog of the
original MacCormack scheme with the Runge-Kutta integrator. By simply setting B =D =F =G =0,
the RKLW scheme becomes the third-order Runge-Kutta scheme. Both RKLW and its corresponding
third-order Runge-Kutta method require three storage locations (3M) as opposed to the low-storage (2M)
method proposed by Williamson (ref. 43).

Runge-Kutta Schemes

A significant portion of direct numerical simulations (DNS) and well-resolved model-free simulations
of compressible flows have used a Runge-Kutta method. Unlike the extended MacCormack and RKLW
schemes, space and time are not coupled in the numerical method. A commonly used Runge-Kutta method
is the three-stage, third-order, low-storage scheme (ref. 43). Combined with a sixth-order. compact central-
difference operator. this method has been used in the simulation of compressible shear layers (ref. 12).
supersontc boundary-layer transition (ref. 44). and compressible isotropic turbulence (ref. 453).

In a more traditional approach, common variants of the third- and fourth-order Runge-Kutta tune-
integration schemes are combined with explicit and compact differencing. The Butcher array for these s
given by

U
0 1 1
3 3
2 a|
3 3] ax = 2 0 2 (28)
3 3
bl 1)2 I);;
1 3
- p 2
1 4
for third-order temporal accuracy and by
0
0 Lyt
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; 1 l 7 ] 0 0 1
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for fourth-order temporal accuracy. The application of these schemes to the equation {7+ F, = 0 is
U =01 —ap AAF"
(f"f* = ("1{' — azp AN F* (30)
UL = U1 4 (0 AF] 4 by AFF 4 byA R

and
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Analysis of the stability of the Runge-Kutta schemes can be done again with the equation
Uy +aliy = o U, The amplification polynomial (ref. 42) for the linear problem is given by

ns ns ns ns
G=1- ZI)/’) Z+ Z bic /- Z biajjc; 73 + Z b,'a,‘jaj-/l,c/., y AU (32)

=1 i=1 ig=1 ijh=1

where Z may be either (MW= X, WU) or (M A — XA, A°A°), depending on whether one is interested in
amplification factor or matrix. and ns is the number of stages in the Runge-Kutta scheme. The schemes
are sutnmarized in table 4. Figures 3 and 4 show the stability boundary of the third- and fourth-order
Runge-Kutta/centered-difference schemes, determined by the amplification factor. Stability appears to
be significantly augmented by going to fourth-order accuracy. Figure 3 shows a characteristic of third-
and fifth-order Runge-Kutta formulas: a tendency for the stability domain to become small as the viscous
C'FL — 0. These stability domains are independent of which of the two free-parameter families of three-
stage, third-order and four-stage, fourth-order Runge-Kutta schiemes are chosen. All Runge-Kutta schemes
considered use centered stencils to evaluate viscous derivatives. A brief discussion of low-storage Runge-
Kutta schemes is contained in appendix B. The stability of Runge-Kutta schemes applied to the Navier-
Stokes equations has been considered by Sowa (ref. 46) for second-order centered spatial derivatives and
Runge-Kutta coeflicients in which all a;; = 0, except when i = j+ 1. Temporal accuracy of the Runge-
Kutta schemes was verified in the representative (4-8P) case. The linear equation {7, + (7, = (0 was
solved for various C'FL numbers with a sinusoidal initial and boundary condition and 75 grid pomts per
wavelength. As table 5 shows, fourth-order temporal accuracy was recovered. Table 6 contains the error
when {7y 4+ 7y = 0 was solved at a C'FL number of 0.01 on various grids to ensure that spatial error
dominated the total error. As can be seen, eighth-order spatial accuracy was recovered. In each of these
cases, machine precision becomes a factor at high resolution.

Formal Accuracy

To determine the formal spatial and temporal accuracy of the interior schemes used in this study, the
amplification factor and the linear equation {7y + al/y = o, !/, , are used to dernive the modified equation.
(See refs. 26, 27, 47, and 48))

The exact solution to the convection-diffusion equation can be solved with the continuous Fourier

1> A o
T/ ((“VI + iawl’ + (l,vw'zl'r) eldw = 0 (33)
w — X

) + dawl’ + a0 = 0 (31)

transforin as

or
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This equation may be mtegrated as

~ (4T . n
In o = — (m.u + n ,,w'z) 1‘|;,,+T (35)

where t' is the nth time step, to give

[ = exp [— (i(u + u,,w"‘)) ‘r] & [ (36)
47

At 7 = (At). the value of the amplification factor is then

Cloxacl = exp [— <l(lw + oW ) (At )] (37)

or. in terms of €

Cloxact = OXP [— (iNe + A,vf"))} (3%)

o A g _oa, N\
where A = &&= and Ay = (_AI-JT

The error of the numerical scheme i Fourier space can now be written as (refs. 49 and 25)

ln (g heme) In (Gogaet) ok .
cheme — 1 {1€ 39
/ - \/ — E A(' ) ( )

Replacing all occurrences offl" with its transform (-—i_’&.r)k-_;')—k((',,,) vields
axr
X

In ((A”schf’mv) I (Gexact) o ; :
= - — ‘ZU Ap(Ar ) prali (40)

A symbolic manipulator may now be used to expand In ¢ in a power series and to solve for 4.

The modified equation of several representative schemes is now presented.  Because the resulting
expressions are of excessive length. only fourth-order tridiagonal schemes are considered. The modified

equation for the (2-4T) scheme is given as

or Al Ak ad L,
- — —ae— = — (AN S
at +od o e dat ()( ) Ep
2 . . )1[
+ = {‘m (AP — 360,.(A0)E — 16B2(Ar)? (Af)] g
(2 ()1
- : Pl
b [00“ (A2 = 90a2a, (A% + 9at (AN 4+ B0 BHAL)? (AL
Iy Py
+ L[ 0a?B2AHYANE + (A ')4] >l
180 a4 )7 4 oo
+ 0 (_xJ-)-"] 41)

and for the (3-1T) RKLW scheme as
11



ar- o o2 N 9 ) ot
— ta— —ap— = — — |9d (AL —
Tt AT~ A — [ A" + 168 A (AnN] =
L P S ST BN 20 A 2 o a] 2
+ ,—[90(1 ac(ALY — 18a”(AL) + 80ae BY(AX)T(At) + 3(Ar)*| —
540 ar?
40 [(Aw)ﬂ (42)

The term (AJ’)Q(Af) represents the dominant space-time error term for both the extended MacCormack
and RKLW schemes. For the (3-4T) and (4-4T) Runge-Kutta schemes,

v ov ot ol
(._' “(._(_”v(,.—.: —a—-(A )i( :
at dr dal 24 ord
A Tan 2 A3 . 4 4 A ad adl
+ [.30(1 au(AD3 = 6at(AN? + (Aw) J —
+O[(Aa*)‘r’] (43)
and )
ar’ at’ G207 a 4 4 a-")U .
— ta=— — ap—5 = — |3a( At QAI]ﬁ., +O[Aw"] 44
ot ar T T T 360 [BaAn)" + 2(as) py (Ar) (44)
As expected, no space-time coupling terms exist. In each of these schemes, the first occurrence of purely
viscous error terins (a = 0) is associated with d{—)(r- To retain the formal accuracy of a scheme with

4.0 7
errors (A#)¥ and (Ax)4, the modified equation mu(s)i only contain terms proportional to (A#)”. (Ar)*, and
(Af)H(A.r)S. where 1 > p. s > ¢, and S + R > min(p.¢g). The accuracy of the schemes is verified in
the absence of boundaries for the convection-diffusion equation. A nonlinear viscous accuracy analysis of
the schemes in the absence of boundaries is presented in appendix ' and shows that viscous terms are
calculated to the same accuracy as inviscid ones and that the schemes retain their advertised accuracy on
the nonlinear problem.

Numerical Boundary Conditions

In each of the numerical schemes presented, a special procedure must be derived to evaluate the
derivatives at the computational boundary points. Because accurate interior-scheme stencils are usually
large, typically at least the derivatives at the boundary grid points require a noncentered stencil. To
preserve the formal accuracy of a spatially N th-order accurate interior scheme on hyperbolic equations.
the boundary and near-boundary points must be closed with stencils that are no less than (N — 1)th order.
(See ref. 50.) The procedure to derive higher order implicit and explicit boundary stencils with a symbolic
manipulator is straightforward. (See appendix A.) Unfortunately, schemes using these higher order (fourth-
order and greater) stencils are most often unstable (refs. 16 and 51); hence, they are inappropriate to
mplement computationally. Although lower order approximations to the derivative at the boundary
points degrade the formal accuracy of the entire numerical method, from a practical standpoint, this
degradation is only observed if the boundaries are a primary source of error. Therefore. if a stable, high-
order boundary condition is available for an interior scheme, it is used. If not, the more forgiving, lower
order formulations are used. For the viscous derivatives, viscous derivative boundary conditions in this
study are closed to the same order as the viscous interior operator; Nth-order inviscid central derivative
operators are closed no greater than (N — [)th order. An unforeseen result of this study is that closing
the boundary points of the dissipative interior stencils cannot be done by simply using boundary closures
derived for the centered-difference Runge-Kutta schemes. Formally, all extended MacC'ormack and RKLW
schemes are (2-2) schemes because of an interaction of the boundary and interior stencils of the inviscid
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derivative operator. The problem is not relegated to only these two families of schiemes: it affects the
(2-4) scheme by Gottlieh and Turkel and is likely to affect other dissipative schemes. For stimplicity, the
truncation error is derived for one time step in the form of a modified equatiou for the seven boundary
poiuts used in the discretization of the equation Uy + {7, = 0 with the RKLW integrator and the explicit
inviscid stencil of Gottheb and Turkel (3-4E(GT)) RKIMW as follows:

Grid pomt 1:

) . AT+ ITN) V=TA(18 +5dA) 9 3
Ui+ lUe = ——w—_\d - 62 (Ar)°+ O [(AJ) }
Grid pomnt 2
. ] (=H4+TA) V=IA (=274 23X) 9 3
[ .= - Ar — A+ O|(Ary
e 108 ' 321 31+ 0 (]

v

Grid point @

Uit 1y = ““‘f;(?“ha- 4 YD (:;2";“3)‘)(;1-)3 r o]
Cirid point 1:

U417, = /\(—1::;17/\).&.1' + ‘/__Wl'zj).ff N (Ae2 4O {(A.z‘):‘}
Cirid point 5:

g HA? V=IAZ 4
[[ + (, = —mAJ — —b’l——(All) +() I:(AJ) :|

Girid point 6:

o A2 vV=TAE o, N

Grid point 7:

U410, =0 [(A.r)*]

The initial condition is exp[i(x)] with a boundary condition expli(—t)]. The exact solution is
exp [i(ae — )]. No physical boundary conditions are imposed at intermediate levels of the scheme. a
technique which has been shown elsewhere (ref. 52) 1o be higher order. Because of the lack of cancellation
at the boundary. error terms of first order are generated at the first six grid pomts. The RKLW scheme
is locally first-order accurate near the boundary and globally second-order accurate. Use of compact
derivative operators would spread this error over the entire domain because of the fullness of the matrix A
mstead of confining it to only the boundaries.

Table 7 shows a grid refinement study of the (3-4E) Runge-Rutta scheme given in table 4 versus the
(3-1E) RKLW scheme given in table 3. Note that in this one-dimensional problem the domain contains
only 2 full wavelengths. Degradation from the boundaries requires significant resolution: full degradation
of the RKLW scheme does not occur until resolutions on the order of 8000 grid points per wavelength.

Machine precision becomes a factor as logyg Ly < —9.
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Time-stable wall boundary stencils for the explicit fourth-order, centered first derivative operator are
given hy

Ji= oo (UL + 185 = 9fs 4+ 21) (45)
! 1 .
o= (F2N = 32+ 63— f4) (46)
S A W)
i ! |
fit 2= g (h+ A2+ f3) (47)

for the compact, tridiagonal fourth-order operators. Each of these equations is third-order accurate and
results in a formally fourth-order accurate inviscid derivative operator. A stable boundary stencil for the
third-order viscous operator is given by

fi= GAr (—11f1+ 18fs~ 9fs+2f4) (48)

. / . . .
To close the boundary point 1y, the negative complex conjugate of the Fourier image of the
Y nr—(i—1) & I ug <

. I - . .
stenci at f. is utilized; this means for the stencil

i
brfis N arfiy N T/ . apfiyi N brfiso N

L 9
Ji + Aw Ar Ax Awr Awr (49)
that
I o beu.r—(i+1) . ”Rfu.r—(i) _ Tfuw—(i—l) _ ('L-f:u-—(i—Z) _ bquJ--(i—.'%) — o (50)
noe—(i=1)y = A A Ar Ax Ar '

where ne is the number of grid points. Closure stencils for the viscous interior stencils must be closed
with some care because a different number of points must be closed on the two sides of the computational
domain. For the explicit stencils used in this study for the (N — 1)th-order accurate viscous derivative
operators, (N — 1) boundary points need to be closed. The forward operator requires N'/2 points to be
closed at the right computational boundary and (N —2)/2 points at the left computational boundary.
This reverses when the backward viscous interior derivative operator is used. For example, the third-order
viscous interior derivative operator is closed with expressions for fi f; f,’“. on the forward stage and f;
f,,“.. f:/u—l on the backward stage. The most interior point of these. f; or f,,”_l, depending on which stage
is being used, is closed with the negative complex conjugate of the interior stencil. Further discussion of
boundary closures focuses on the computational domain containing the leftmost boundary points.

Stable, fifth-order accurate boundary stencils for the centered-difference stencils are given by

!

Ji= oo (- 19TS1 4 690 S5 — 1380 f3+ 1850 £y — 1575f5 + 8225 — 240f7 + 30f3) (51)
! 1 ) 7
o= s (S 1801 = 3512+ 663 — 30f1 + 505 — 57 f6 + 307 ~ 6x) (52)
1 1 ) B ‘
J3= = (+3f1 =30 2= 20f35 4+ 60f3 — 15f5 + 2f5) (53)

60Ax

for the explicit sixth-order derivative operator. by

= Toros (4T30S 1+ 14525 5 — 2625034 34475 fy — 301005+ 16611 f~ 52507 + T25x)  (54)
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' |
fr= T20 A

for the compact tridiagonal sixth-order derivative. and by

(— 135f1 — 844 fo + 1635 f3 — 1050 f1 + 575 f5 — 240 f5 + 69f7 — 10fx) (55)

/ I

K= gy (A6 + 1ATI0 S, = 25746 [y + 29370 f1 — 202055 + 7674 S5 — 12505+ Gfs)  (56)

, I
J2= 1500 A

for the compact pentadiagonal sixth-order derivative operator.

(— 1416 f1 — 1979 fo+ 2460 f3 + 2820 f3 — 2240 f5 — 129 f + 684 f7 — 200fx)  (37)

Results for the compact tridiagonal sixth-order derivative operator were first given by Carpenter
oo D e ey 7 . .
{ref. 16). These results are referred to as 5“.(5‘3—0-5‘).:) schemes and are formally sixth-order accurate m
. . !
space. By using (#/p) to designate the number of free parameters and O; 1o denote the order of accuracy
of the first derivative approximation to a function f at grid point 7. we designate schemes with as

na—1

/ Ty ' NPT
(Ol(#h ]' O.Z(#” ) T Oinlerk)r -0 (#]1 )- O/fl#j[ )> (H8)

An (N — Dthrorder explicit stencil representing an approximation to f' requires N grid points. By
extending the stencil to (A 4 2) grid points, two degrees of freedom are added through two free parameters,
The expression 52 implies a fifth-order accurate stencil with two free parameters using an cight point stencil.
To determine the minimum number of grid points needed to be closed for a centered-difference interior
derivative operator. the bandwidths for matrices P and Q must be considered. I the matrix with the
larger bandwidih has a bandwidth of @. then (¢ — 1)/2 boundary gnd points must be closed on each
side of the computational domain. Where eighth-order spatial accuracy and higher is desired. additional
boundary stencils are added to allow sufficient degrees of freedom for a stable houndary closure to be
obtained. For eighth-order accuracy. four boundary grid points were needed at each end, each with four
degrees of freedom. Closure of tenth-order schemes may be done with six boundary grid points. each with

six degrees of freedom.

The boundaries are closed to lower order for the compact interior stencils by

/ ' 1
fi+2f,= E(_Sh +4fo+ f3) (59)
I / 1 3 _
I/1+.fz+zf:;=:1-§(f:;—f1) (60)

The explicit sixth-order interior scheme uses the same three wall points as the fourth-order explicit scheme.
Both schemes are formally fourth-order accurate and are referred to as the (34-6-4.3) and (3.3.4-6-1.3.3)
schemes.

Fifth-order accurate boundary stencils for the fifth-order viscous operator. which are used in several
extended MacCormack and RKLW schemes, are given by

|
= e (13T 1+ 3002 — 300f3+ 200f4 — T5f5+ 12fi) (61)
GOAw
' 1 ) . S g . Yy .
fo= m(—ufl — 65 2+ 12013 — 60f4+ 205 — 3 f;) (62)

Boundary conditions for higher order schemes are contained in appendix D. Note that stable high-order
boundary stencils for one scheme are likely to be violently unstable if used with a different interior scheme.
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All proposed central-difference stencils have been verified to have bounded left-half-plane eigenvalues for
the matrix A. This condition is necessary for stability of Runge-Kutta schemes but does not guarantee
stability for Navier-Stokes calculations. Table 8 gives the value of the real part R of the eigenvalue of
the matrix A. which has the largest real component for various grid sizes. In each case, the largest real
component of any derivative operator is contained in the left half of the complex plane. This notation
mdicates that the derivative operators will be time-stable.

In addition, the stability of all predictor-corrector (RKLW and extended MacCormack) schemes has
. . . . 1
also been investigated for bounded left-half-plane eigenvalues of the matrix M = ;(A+A: +ATA}).

Several of the schemes listed have eigenvalues in the right-half-plane and are unstable: for instance. all
(2-6P). (2-8T), (3-6P), and extended MacCormack and RKLW schemes using seventh-order boundary
stencils are unstable. The value of the largest real eigenvalue of M is given in table 9. Agam. these
schemes are only formally (2-2) schemes in the presence of numerical boundaries.

Filters

In reasonably well-resolved computations, numerical errors are still present and are introduced prinartly
at high wave numbers. This can readily be seen by plotting the Fourier image of the finite-difference first
derivative versus the spectral derivative or, as is sometimes stated, modified wave number versus wave
number. (See ref. 13.) Figure 5 shows the accuracy of various centered-difference first derivatives relative
to the exact spectral derivative. It is imnmediately apparent that compact derivative operators (P#£1
are more accurate than their explicit counterparts because the representation of ¥ as a polynomial is
most accurately done as a Padé approximate. All derivative operators have no resolution at € = 7 and
have marginal resolution for wave numbers near 7. Nonlinear interaction of these unresolved. nonphysical
waves of various wave numbers generates higher wave-number information. When the grid is unable to
resolve the highest wave-number information, the error is introduced into low wave numbers and eventually
contaminates the solution. In addition. successive application of the first derivative operator to obtain a
second-order derivative results in an amplification factor of unity at € = 7 for centered-difference operators;
this application facilitates what is commonly referred to as “odd-even” decoupling. To suppress these
effects. a numerical filter is used to create artificial viscosity. Several criteria exist for a useful filter.
Eigenvalues that correspond to low wave numbers that are resolved should be virtually untouched: the
relatively unresolved high wave numbers should be removed. Either an explicit or implicit filter can be
chosen. Although Lele (ref. 13) uses implicit filters up to sixth order. in this study an explicit filter is
used because it is computationally more efficient and its design is more conceptually straightforward. As
a filtering function, we seek a function that is equal to 0 at £ = 7 and is equal to 1 at £ =0. Asmple
function to satisfyv this need is

|/

| — sin?" (63)

¥

[

We also desire a filter whose accuracy may be chosen arbitrarily: the filtering function must have a slope
that approaches 0 to the chosen order as € approaches 0. Thus a (2n)th-order filter should have, to leading
order, ¥ = £2" hecause € tends to zero. The magnitude of the filter must also be equal to or less than 1.
Several discussions of filtering approaches can be found in the literature. (See refs. 19, 18, 17, and 53.)
This discussion follows that of Eriksson (ref. 54). who derived explicit filters of second, fourth. and sixth
order.

For the finite-difference implementation of these filters, hegin with the following definition of the explicit
central-difference operator for the (2n)th-order derivative of a function f:

(2n) _ _Tfi fiv1 + fi-1 fivz + fi2 Jivs + Jiz3 Jiva + fi—a

g Rz R RWE Ao T Az T e T 0
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and the Fourier 1mage given by
W =7 + 2a cos(E) + 2b cos(28) + 2¢ cos(3E) + 2d cos(4E) + - (65)

If consideration is given only to the second-order accurate versions of these derivatives, the negatives of
the coefficients are given w table 10.

‘ . . g2n [ Y I
In Fourier space, the second-order accurate stencil of [:}T;;;-] W= & O(EP TR is given by
¢ 2n
U= (=" 2 s 5 (66)
Table 10 shows the terms proportional to the interior stencil coefficients for filters of orders 2 (n = 1)

through 20 (n = 10).

If we choose a matrix filter function D that is symmetric, then it has real cigenvalues. Because this
filter function is based on a stencil that, when implemented with the temporal schemes discussed. has
eigenvalues that are negative, then [7;D;;17; is always negative. This negative value guarantees that the
filter is completely dissipative. The filter function is implemented on a vector U as U = (1 4+ apD)U.
where U is the filtered vector: ap must be given by (=1 i+ 1o=20 for a (2n)th-order filter. Figure 6 shows
the filter strength in Fourier space.

To close the matrix D at the boundaries and retain symmetry, skewed stencils of order n are used with
an interior scheme of order 2n. Appendix E contains the upper left portions of the matrix D for filters of
orders two through twenty (n = 1 = 10). A formally tenth-order accurate scheme may now be closed with
no concern as to how the boundary points of the filter affect the spatial operator.

Results

Because of the large number of schemes presented in the text. the number of permutations of boundary
closures possible, and run times of several hours. only a few of the schemes could be run on large grids.
The flow field of interest was the spatially evolving, two-dimensional, compressible nitrogen-hydrogen
shear layer. This flow field was chosen because regions of intense gradients occur both near and far
from the flow centerline: this makes grid allocation difficult and places a heavy burden on the accuracy
and computational stability of the numerical method. It is also an unportant prelude to the supersonic,
hy drogen-air. reacting shear layer found in scramjet combustors.

Inflow conditions to all computations are Euler supemonic (ref. 53) and are described elsewhere m
reference 1. They represent a self-similar, supersonic. nitrogen-hydrogen shear layer with Ma,. = 0.45.
where Ma,. is the convective Mach number. The inflow shear-layer thickness was fixed at 2 mm. A factor
of 100 between the shear-laver thickness and the transverse domain was used to ensure that no reflections
front the inflow plane returned to the shearing region before the domain ended. Forcing was applied at the
nflow to the transverse velocity compouent in the form of a sinusoidal disturbance. Amplitudes of 4 and
2 percent of the mean velocity were applied to the fundamental and subliamionic frequencies. respectively.
No attempt was made to adjust other inflow variables to preserve consistency with the governing equat 1ons
in the presence of this forcing. A result of this was a strong adjustinent zone Immediately downstream
of the inflow plane where large amplitude disturbances propagated toward the transverse boundaries.
potentially contaminating the shearing region with spurious boundary reflection. The forcing profile of
the transverse veloeity was in the form of a near step function centered at the region of maxinum velocity
gradient and falling off precipitously at the shear-layer edge: this was found to minimize the amplitude of
the disturbances impinging on the transverse boundaries.

Principal runs were done on grids of 301 by 451 with transverse grid clustering to represent a physical
domain of 200 by 100 nun. Only about 10 percent of the grid points was contained in the high-shearig
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regions of the shear layer because of this choice. The four scliemes investigated were the (2-4T), (2-6T).
(3-4T) RKLW, and (3-6T) RKLW. No Runge-Kutta schemes are listed because several attempts were made
to use the (4-4T) and (4-6T) schemes but they lacked sufficient dissipation to remain stable on the grid
densities that were run. Boundary closures for the fourth- and sixth-order schemes were implemented as
(3-4-3) and (3,4-6-4.3). These combinations were chosen because they were believed to represent the most
practical schemes for these shear-layer sinmlations. All computations used Euler nonreflecting boundary
conditions (refs. 56 and 57) at the two transverse boundaries and supersonic Euler boundary conditions
atl the outflow.

Differences i accuracy between the filtered (2-4T), (2-6T), (3-4T) RKLW, and (3-6T) RKLW schemes
were not striking. Flow-field variables like velocity. pressure, temperature, and, more importantly, the
differentiated quantities, vorticity and dilatation. were nearly independent of the scheme. All attempted
schemes used a tridiagonal derivative operator that was chosen to reduce the truncation error of the
derivative operator but caused a small increase in computational time due to the inversion of the matrix P.
Table 11 lists the truncation errors for various first-order derivatives, including several stencils not
considered i any schemes in this paper. The explicit stencils have large truncation errors relative to
the compact stencils: this is consistent with figure 5. Truncation error is minimum for the 4T, 6T, 8P,
and 10P stencils. Further discussion of this situation is contained in appendix A. The penalty associated
with the large C'FL limits of the explicit versions of the various schemes in figures | through 4 is now
clear--explicit stencils have large truncation errors. Inspection of terms that require significant resolution,
such as ¥ x w and the dilatation gradient. in well-resolved sinulations could help determine the efficacy
of sixth-, eighth-, and tenth-order accurate schemes. Schemes with spatial accuracy greater than 10 may
be readily derived by extending the current methodology; however, spectral schemes should probably be
considered as an alternative for such highly resolved computatious.

Computational stability was found to be more sensitive to numerical method than accuracy. Extended
MacCormack schemes are more stable than the RKLW schemes and far more stable than the Runge-Kutta
schemes. Several runs on smaller grid densities with the (4-4T) and (4-6T) schemes were completed for
nitrogen-nitrogen shear layers; this suggests that the robustness required for disparate-mass gas mixtures
is significantly greater. Modifying the temporally third-order Runge-Kutta scheme with the addition of
the predictor-corrector sequence to form the RKLW family of schemes noticeably increases computational
stability. Higher order numerical boundary conditions are presented; however, they are not used because
dissipative schemes are, by definition, lower order at the boundary. Insmaller nitrogen-nitrogen simulations
with the (4-4T) and (4-6T) schemes, the formally accurate boundary closures were found to be less forgiving
than the lower order closures and were more likely to lead to computational instability on any given grid.
This conclusion is based on the closure response to the manner in which the shear layer was forced.
Inadequate resolution and minimal dissipation from both the interior and boundary stencils make the
Runge-Kutta schemes impractical for these simulations until grid densities become significantly greater
than those chosen here.

The appropriate choice of schemes depends strongly on the accuracy, computational stability, and CFL
limits of the method and the needs and resources of the user. For smaller grid densities where robustness
was more important than CPU time. the (2-4T) scheme was very useful. The (2-6T) scheme was slightly
slower. On larger grid sizes, such as 301 by 451, the (3-6T) RKLW scheme was preferred because it was
slightly more accurate and actually faster than the (2-4T). A comparison of run times indicates that the
RKLW schemes may be run to the same physical time as its corresponding extended MacCormack scheme
(Le.. (3-4T) RKLW versus (2-4T)). in significantly less CPU time. Relative to the (2-4T) scheme, the
run times of the (2-6T), (3-4T) RKLW. and (3-6T) RKLW schemes are 1.24,0.75, and 0.92, respectively.
The (3-8T) RKLW scheme is likely to require only 11 percent more C'PU time than the (2-4T) scheme.
Although we did not attempt to run any of the explicit dissipative schemes, they have significantly larger
stability envelopes, are easy to code, require no inversion of the matrix P, and are, consequently, likely to
be very fast. Pentadiagonal schemes were presented here up to tenth order; however, these schemes may
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not be considered competitive because of the difficulty in inverting P until the truncation-error penalty of
the explicit or tridiagonal stencils is deemed sufficiently large.

A surprising finding in this work is the effect of filters. Filtering was applicd to the vector U after
all full predictor-corrector and central-difference stages in order to remove spurious information before
it could move to lower wave numbers. The unfiltered dilatation field for the dissipative (2-1T) scheme
was badly contaminated: filtering resulted i a noticcable improvement. Figures 7(a) and 7(b) show a
section of the dilatation field from a 101 by 15| simulation using the (2-4T) scheme of a nitrogen-nitrogen
shear layer at Ma, = 0.45. with and without filtering. For comparison purposes. a very large 401 by 601
simulation was run with the (3-6T) RKLW scheme. (See fig. 7(c).) The filters were found to improve the
calculations more than any differences in temporal or spatial order of accuracy between the schemes. All
runs were made with the tenth-order filter to avoid lowering the order of the 52, 52-6-52 .52 schemes. The
appropriate filter order was chosen based on either the interior or boundary accuracy of the differencing
scheme. The strongest filter that did not degrade the accuracy of either the mterior or boundary points
was used (i.e.. the interior filter order could be no less than the order of the interior schenie nor could the
filter boundary order be less than the boundary order of the scheme). A twentieth-order filter could then
be used with a formally tenth-order scheme.

The fact that the filters had such a significant effect indicates that the simulations may not have been
completely resolved. To determine whether a calculation is well resolved. a good test (in addition to
grid refinement) is to compare filtered and unfiltered simulations. Dilatation was a particularly sensitive
variable to resolution. The 301 by 451 calculations should be considered “model-free simulations™ but not
“direct numerical sitnulations.” Later simulations of the nitrogen-hydrogen shear layer at Ma,. = 0.45 on
the 401 by 601 grid were believed to be fully resolved because contours of third derivatives of the velocity
were not only smooth but also physically plausible. Model-free simulations that “run™ are no guarantece
that all relevant scales of the problem are resolved.

In addition, misspecification of the physical boundary conditions. which is a current topic of research,
heconies more apparent as the accuracy of the method is increased. For sufficiently refined grids. supersonic
Euler outflow boundary couditions are clearly inadequate in the center of the shear layer. Dilatation
provides a simple tool to gauge whether the nonreflecting physical boundary conditions used on the upper
and lower boundaries were. in fact, reflecting. Vorticity contours give virtually no indication of this
boundary contamination.

Concluding Remarks

An investigation was conducted of several numerical schemes that offered high spatial and temporal
accuracy and were used in the computation of two-dimensional, spatially evolving. laminar. variable-
density compressible shear layers. Three scheines with various temporal accuracies and arbitrary spatial
accuracy of both the inviscid and viscous terms were presented and analyzed. All integration schemes
made nse of explicit or compact finite-difference derivative operators. Extended MacC'ormack schenies
retained the robustness of the original, uniformly second-order accurate method. Spatial aceuracy was
enhanced. and the stability limit was somewhat restricted. Extending the original MacCormnack scheme
resulted in longer run times; however, simulations achieved far greater spatial resolution. The (2-4T)
scheme. used in conjunction with a tenth-order filter, provided an accurate, computationally stable,
general purpose nunerical scheme.  For large, well-resolved simulations where computational stability
(dissipation) was not as critical. the temporally third-order RKLW (Rusanov-Kutler-Lomax-Warming)
scheme was preferred. As with the extended MacCormack schemes. spatial accuracy of both the mviscid
and viscous terms could be chosen freely. Stability limits of the RKLW schieme were large because of
stroug resetiblance to the Runge-Kutta central-difference schemes. Computational stability was achieved
by the same space-time dissipative terms in the extended MacCormack schemes. This approach made
the RKWL schemes more stable than the Runge-Kutta schemes with the same workload per stage. An
additional benefit of the extended MacCortnack and RKLW schemes was that computer codes written
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with the original MacCormack or Gottlieb-Turkel scheme may be readily upgraded to higher temporal
and spatial accuracy with minimal effort. Third- and fourth-order Runge-Kutta schemes, although very
accurate, possessed insufficient dissipation for the calculations conducted in this work. Filters did not add
enough dissipation to stabilize computations with significant compressibility and variable-density effects.
Tridiagonal difference operators were chosen for their low truncation error. Pentadiagonal operators are
not likely to be competitive below eighth-order accuracy.

In each of the schemes. stability was considered for the interior operators in the convection-diffusion
equation {7y + al/y = o /.. Accuracy of the extended MacCormack and RKLW schemes was verified
for the nonlinear problem U/; + F, = 0 and the viscous problem [} = b(x),]e. Numerical boundary
treatments for Runge-Kutta schemes of various orders of accuracy were chosen and evaluated to be
asymptotically stable. Derived, formally accurate boundary conditions were given for explicit sixth-order,
pentadiagonal sixth-order. and explicit, tridiagonal, and pentadiagonal eighth-order central-difference
operators. Lower order closures were also presented and shown to be stable. All boundary closures
for the extended MacCormack and RKLW schemes were determined to destroy the formal accuracy of the
schemes: this problem is a serious limitation of these schemes and is likely to occur in many other comnion
dissipative schemes. Apparently, this problem has gone unnoticed for over two decades.

Damping of high wave-number, nonphysical data was accomplished for all schemes with the use of
explicit filters. Filters have been derived up to tenth order on the boundaries and twentieth order in
the interior. These filters use explicit finite-difference stencils, are computationally efficient. and act
predonmnately on high wave-number data. Results of several simulations indicate that on moderately
well-resolved sinmlations. the effects of temporal and spatial accuracy differences between the schemes
were less important than filtering effects.

NASA Langley Rescarch Center
Hampton, VA 23681-2199
July 31, 1997
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Appendix A
Derivation of General Stencils

To generate the centered finite-difference approximation of —{- to Ntl-order accuracy, the problem is

divided into cases with b even and odd. When & = 2n — 1 1s ml(] the stencil i1s

el 2n—1) (2 (2n—1 2n—1) 2n—1 20—
ST 0T T T T )
[f Zu 1) + f(ZIl:—l] + f.('Zn—l)
i+ i
_“f,+| f/—l plive = Jico o Sivs = Jies
- (AJ,)(:Z::—I) (_\.1,)(2::—]] (A.I.)(zn—l)
Sivs — fizg fivs = fi-s Sive = Jio
+d (AJ,)(ZH—I) f (AJ.)(ZH—” +J (AJ,)(L)H—-I) T (A1)

and its Fourler image is written as

P2a sin(€) + 20 sin(28) + 2¢ <in('¥£) + 2d sin(AE) + 2¢ sin(hE) + -]

¥ = A2
[1 + 20 cos(&) + 23 cos(26) + 27 cox(3E) + 28 cos(4€) + -] (A2)
Expanding the sine and cosine functions as a Taylor series gives
x
U= ,Zz ey &2 (A3)
Hl:
where the functions of (2m—1) BF€ (a.b, - 0.3 ). Itis required that ¥ = (6% + O(C'\""k) 10

approximate the spectral derivative to order N. A tenth-order pentadiagonal approximation to f may be
obtained by solving six (—\—'I'—é;]) simultaneous equations (v'] = v, = v7 = vg = vy = 0 and vy = —1)

in six unknowns (a. 3, a.b.c. and d). Solutions do not always exist for these stencils. Similarly. when
k= 2niseven, then the stencil s

C 2n) (2 (2 (2 2 2 2
Al s S 4 s+ s+ olf20 4 B0 g
_r fi “f/+1 + f;_l )f;+z + fii» Cf;+3 + fi3
- (A_I.)(Zu) (AJ.](ZZH) (AJ.)(ZII) (AJ,)(ZH)
n (]jH_,; + f,'_4 ff,'+r, + fi—.") + ffi+ﬁ + fi—(i (\1)

(A.I')(z”) ) (AJ,]('ZH) (A.l.)('z::)

and its corresponding Fourier image is given by

v [Y + 2a cos(&) + 2b cos(2€) + 2¢ cos(3€) + 2d cos(4€) + 2¢ cos(dE) + - ] "
n [I 4+ 20 cos(é) + 23 cos(28) + 29 cox(3E) + + 28 cos(4E) + -] (A%)

or

TR ST L (AG)

m=1

A tenth-order heptadiagonal approximation to V' may be obtained by solving eight (—\—#) simultaneous

equations (vp = ty = vy = vy = v = vz = vy = 0 and vg = —1) in eight unknowns (a.7.7.a, b.c.d.
and ). Again. it is required that ¥ = ( f)‘ + )(E [‘).
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For arbitrary skewed stencils representing the Ath derivative. we may write

(k)
-+ th'_.vl + be,+4 + 71f-z + '7!t’f,+§ + ij: z + *}Rf:+)

+ (}[f_l + ”‘Rf, 1+ f
Ji 4 arfi-1 + arfiq1 brfi—o + brfiy crfioy + crfiys

O (An)A) (Ar)) (Ag)h) (Ar)k)
drfi—a + drfiza e ficn + erfivs frfice + frfivo -
+ ~ 0 ~ () + 5 + - (AT)
(Ax) (Ax) (Ax)

and give its Fourier image by

[T +(ag+ag) cos(&) + (bp+b7) cos(28) + (cp+ 7)) cos(3E) + ]}
+ i[(aR = ay) sil&) + (b — by ) sin(28)+ (cp — 7)) sin(3€) + -]

\I,: {[l+((lf{+(l,)(()\( )+(fH+ )’I)(()x(zf)_f_}} (Ah)
+ (g — g ) sin(€) + (S — 1) sin(26) + -]
or
X 7 ' ~ .
¥ = Z U"(Zm—'z)fum_z) + 7 Z U’(z;,;—l)&cum_l) (AY)
m=1 m=1

For the kth derivative, ¥ must be either purely imaginary (k is odd) or purely real (k is even). We now
must solve (N + k) simultaneous equations in (N + k) unknowns: vy = ()% (for k even). vy = (@)* =1 (for

kodd), and vy =01=0,1,--- (N+ k=11 #k.

In the special case of the centered first derivative, let p denote the number of bands in the matrix P,
let ¢ denote the number of bands in the matrix Q. and let n be N/2. The order of the derivative N is then
equal to p+ ¢ — 2. Simple recursion relations for the coefficients of the matrix P can be found for p < .
Stencils for which p > ¢ are of marginal practical utility because they are computationally inefficient and
have a larger truncation error than those with p = 4. The following relations can be derived:

(,:(1’_”[’ 1) AL0
w+ D[N —(p-3) (A1)
w=3p-DN-@+D]N-=(p-1) ,

3 = All
T D F DN = (= BIN = (r 3] LA

_ === DN = (p+ 3N = (p+ DN = (p— 1] (A1)

P+ Ee+ DIN = (- TN = (p- 5NN - (p— 3)]

s P D=9 =3 - DIV = (p+ )N - (p+ 3V =+ DIV — (p — 1)] (A13)

A D NP3+ DN = (p= DN —(p=DN = (p=3N —(p—3)] '

and so on.

For example, the thirty-second-order (N = 32) nonadiagonal (p = 9) first derivative has the coefficients
a = A48/65, 3 = 132/455.9 = 176/318h. and & = 99/25480.
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Similar patterns can also be found in the matrix Q if p < ¢. For exaniple.

L [pN= = DN +2)

T T DE N (p-3)p
If we define
I . Y
i
¢=] <4i+2)
=1
I—=r —]
(7
i p+1
p—1
P = —
2 J
then for p =1 and 3,
b=ar, 1 (p+ DN —(p—1)]
N = (p=H)N —(p=3)]
for p= 1.3, and 5.
o, o AN = DY — (p— 1]

for p=1.3.5. and 7,

and so on.

If we consider only explicit (p=1.a = 3= - = 0) central-difference stencils. then
n—14
a = + —
n+
(n—0)n»n—-1)
h =

C2n+ D)(n+ 2)
n (n— 00— 1) (n—2)
O 3n+ D+ 2)n+3)

(n— 0y — 1}n—2)(n—3)
A(n+ D+ 2)n+ D0+ 4)

d = —

for the first derivative operators (first noted by Fornberg (ref. H8)). and
T =24+ b+c+d+--)
2
=t (n+0)n+1)
23

(Al‘l)

(AlD)

(A16)

(AIT)

(A1R)

(A19)

(A20)

(A21)

(A22)

(A23)

{A24)



b= — 2~ 1) (A25)
(n+0)n+ 1)} (n+2)

- 2(n — L)(n —2)
‘=T (n4+0)(n+ D(n+2)(n+3) (A206)

2= D(n—-2)n—3) o=
- (n+0Oin+Dn+D(n+3n+4) (AZ7)

=8
I

for the second derivative operators.
Truncation error of centered first derivative operators can also be put in general formulas. The first

derivative stencil truncation error for p < ¢ may be written as

_n! (n—r) (e} TTizy (28 = 1) E(NH)
(N + DTz [200 =)+ 1]

(A28)

If we compare two different first derivative approximations that are each Nth-order accurate with the
subseripts @ and b distinguishing the two and let r4 > 75, then the ratio of the truncation errors for p < g
is given by
(n—ra) (ra TI02,, oy (20— 1)
T — (A29)
(71 — ‘I'h). (7'/)). Hi:,,’)+1 [2(71 - l) + J.]

As r, becomes progressively larger than », the ratio becomes very small; this implies, for example, that
for a twentieth-order derivative, a nonadiagonal derivative has far less truncation error than a tridiagonal
derivative. Truncation error is minimized by letting p = ¢ (N = 4,812, - Yorp=¢g—2 (N = 2,6.10,-- )
for p <. This approach has been cmpirically verified in cases where p < 9 for all possible values of 4.
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Appendix B
Low-Storage Runge-Kutta Methods

Consider the equation {7y + I = 0, where &7 = F(I") and Iy = Fplly = flie. The traditional
three-stage Runge-Kutta method may be represented in the equation {7y = —f, as

'Y =17 —an AfUAL"
[75F = [ ay AfUATT — aga A [T AL (BI1)
(,,;+l — " bl/\an(vu _ ()QAJWA(Y* _ ]):;Af**A[r**

where A is the matrix derivative operator and A = %— Alternatively, in Butcher array form (ref. 42), this

appears as

az]

ay] o agy (B2)

In some cases. storage requirements of computations should be minimized. We briefly elaborate on the
Runge-Kutta scheme given by Williamson (ref. 43). He derives formulas that allow storage of only two
values (2M) of the vector U, where U has a vector length M. In the low-storage format. this becomes

’!H — AfHA(‘!H _ f‘l‘]_* W
(r* — (rll _ Hl(]"

qF = ATATT = Aug”

(B3)
I = U = Byg?
f[** — /\f**A(V'** _ ?'13‘]*
[v,,+1 — (!** _ B;{t[** )
or
('# — ('H _ l;[/\f”AI"“
U5 = U = By(AfPAT — AN [T AT (B4)

Pl e g APADT - (A STAUT — A TATT)

Setting 1| 1o zero creates a self-starting procedure. This procedure results in a one-parameter fanily of
schemes. The relationship between low-storage and traditional methods may also be shown with the aid

of

()
0
2 21 13 B
3 azr ayy _ {(B))
Bl + DBaAr+ 1) (42 B2+ By] By
I)] ,)2 1)3
[A2(A3Bs + Bo) + By] (A3Bs3+ Ba) By



where (A, Ay, By, By. BB3) correspond to the variables (ay, ay, by, by, b3) in Williamson's work. (See ref. 43.)
Because the stability bounds of the two-parameter family of the third-order, three-stage Runge-Kutta

method are independent of the parameter choice, the analysis presented in the text is valid for the low-

storage formulas as well.

For ¢y, #0,2/3. or ¢3 and ¢3 # 0, we define

<1

<2

<3

;= e

= /(36¢] + 366} — 1353 + Baey — 12)

= 2(‘% + cp—2
= 12(’}1 - 18('-:23 + 18(':5 — lley 4+ 2
=36c) — 36¢5 + 13¢5 — 8ey + 4
=69¢ — 62¢5 + 280y — &

16¢3 + 34¢3

|
I

3¢y + 2

The one-parameter family is given by

B3

Ay

Ay = - - 5 — ——r -
29z109(ep — )Y + T2¢9z¢ + i2c5(2¢y — 13) )

=y

12¢9(co — 1) (329 — 21) — (329 — =)
144cy(3ey — 2)(cg — 1)2

—24(3cy — 2)(cy — 1)2
(32— 21)% = 12e9(ep — 1) (329 — z1)

—(6c5 —4ez+ 1)z + 323
(200 + 1)1 — 3(ep+ 2)(2cp — 1)2

—z471 + 108(2e9 = 1)) — 3(2e9— 1)z5

which can be verified, provided that none of the respective denominators vanish. Williamson's optimized
scheme appears in Butcher form as

0
1 1 0
5 ; ;11 181
5
3 3 15 - Ay B, = -9
4 16 16
13 By 153
I T
6 10 15

Allen Wray of the Ames Research Center (personal communication) has considered cases where ¢y = 2/3.
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If an extra stage is added. a three free-parameter family oflow-storage schemes may be devised. Several
schemes are given that are third-order accurate for the nonlinear problem and fourth-order accurate for
the linear problem (Fp- = Constant), where the stability bounds of the convection-diffusion equation are
the largest for four-stage schemes. If we set ¢y = ¢3. then

0]
1
1 | 0 3
3 3
3
1 5 3 —1 1
3 12 A = (BY)
)
— Z
12 :
| 12 3
1 12 3
T 5 1 -1
0o - —= - 1
12
If we set e = ¢4. then
0
|
| . 0 n
1 1
5 11
11 o 1 Ea
12 360 0 = (B10)
1t [%
I 119 16 1% iy m
12 396 9 11
182 1
I 7 7 - s
11 1 66 12
and
0 0 19
1O 19 36
36 36
’ 0 205 27
3 51 27 T2 19
1 619 = (BI1)
243 2
3o b2 BE R
1 36 l§]
2 |
ER AN I
5T 16 6
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Appendix C

Nonlinear Analysis

T

Consider the equation Uy + F, = [b(2)l/,;], in a periodic domain, where b(x) is taken to be exact.
Let B = b and F, = I/, = fl7,. The accuracy of the extended MacCormack (2-[2n]) and RKLW
(3-[2n]) families of schemes is now verified (the first number representing the temporal accuracy and the
[2n] representing the spatial accuracy of the overall schemes, viscous and inviscid) with viscous stencils
whose order of accuracy is [2n-1]. This verification is done in two parts. First, the equation {7y = [b(2)Us]+
15 examined to determine the accuracy of the viscous termns; second, for the equation [y + F, = 0 the
nonlinear accuracy is verified. The analysis provided is somewhat different than that given in the section
“Formal Accuracy.” Previous researchers have investigated some of these issues for spatially fourth-order
accurate MacCormack schemes (ref. 9). Use of the variable n as a superscript on the vector [7 represents
the nth time step: otherwise. it denotes spatial accuracy of the derivative operator. In matrix notation,
the RKLW scheme may be represented for the equation U7y = [b(x) U], in matrix form as

N

[ = T+ A A BAT)"
[ t

% = [[+ 51, ATBA
# rn rAx i (C1)
U% = [V 43U =1
1 . .
= S 4L+ X AT BAT ]
. T AL .
where A, = VL If we let
A+ —_ A2ll + X
A-= A" -X )
. 2
Aj— — AZII +Xl' (
A: — A2I1 . Xl'
then we may define
A'ZNBAZH — Zl
AlluB L= Z'
}f‘ 2 (C3)
XBA“' = Z3
XBX, = Zy

To facilitate our analysis, note in tables 2, 4, and 7 that X, the forward, first. derivative matrix operator
of (2n — I)th-order accuracy, may be rewritten as

("), = (“]AEQ”’)I‘JF{ EE:HI(_‘”li!]'Z)} ("5%), (€4)

where <(1)A(2”_1)) p ((I)A;’z")) L and ((2")A;'2)) _represent the explicit. forward, first derivative operator
4 ¢ {

to (2n — l)th-order accuracy at grid point i: the explicit, centered, first derivative operator to (2n)th-order

accuracy at grid poimnt 7; and the explicit, centered, (2n)th derivative operator to second-order accuracy

at grid pownt i, respectively.

The matrix X may be considered by rewriting the finite-difference stencil of which it is composed

Ffics + Dfico + Bfic1 + Gfi + Bfiv1 + Dfigo + Ffivs (C5)

28



as

F [((Z)A?z))i“ n ((Z)A(("J));_z] + (D42 [((Z)A{‘z))wl + ((Z)A;'._,))I__l]

+ (B 42D +3F) ((Z)Az‘,_,)) (C'6)

i

Although we do not utilize these results, for the special case of B = —(4D +9F). the finite difference
stencil in X 1s shown to be given by

where (7 is still given by (¢ = —=2(B + D + F) or. in this particular case. (¢ = 2(3D + &17). By further
enforcing ) = —6F". equation (C'7) hecomes

F(19ag,) (C®)
21/
and the stencil in X then represents the second-order accurate approximation to the sixth derivative.

- . 2
The matrices A~ X, and X, may be represented as

P

AL = (AJ'){% + ()[(Aa-)z“]}

52
X x (As)? {d—, + O[(AJ’)2]} (C9)

dr-

. f)'“)” i
X(' S (AJ‘)JH {()1.2:1 + 0[(A,1)“)]}
. J

The terms A2%, X, and X, that occur in both extended MacCormack and RKLW schemes are now given
v
' A?" x (Ar)
X x (Ar)? (C'10)
X, x (Ar)?"
Equations (C'10) imply that
Z) x (Ar)?
Zy x (Ag)2ntl
Zy o (Ar)?
Zy x (Ar)2it?

(C'11)

Also note that A®". X, and X, are antisymmetric. symmetric. and svmmetric, respectively.  Bach
symnietrie matrix has identical diagonal elements: this inplies that Zy and Zy are svnunetric, Zo and
Zy are antisynunnetric, and therefore

ATBATA BAY = (Z1 -2 = (Zy — ZyV +2(Z\(Z3 — L) — Zy(Zy + Zz)]} (€12)

ATBAT + ATBA = AZ, - Zy)
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The full RKLW scheme 1s written as
ru+1 1 ! ! 2.t 2 9319 ;
U =(I + 5;32“‘*31/\1.(1-4—)\‘,Z1)(Z1 —Z4) + g/\l,ZI -+ Edg,ﬂ}l/\l,(I%-)\rZ])
x {(Zl ~Z4)’ ~ (Zy - Ty)? + 2(Z1(Zy — Zo) — Zy(Zy + Z)] })1 (C13)

and the extended MacCormack schemes are given as
Az ,
ol = (I + (20— 20 = (2o - B 4202002 - T) — (T + 20
+ /\’l,(Zl — Z4)) " (C'14)
With 3 =1 and 4 = -11- the RKLW schemes become

! 1 ' 2 ) ' 31 / 1 4 '
gl _ (1 + (Nz1) + E(Al,zl) n E(A(,Zl) = A+ N Z0Zs — A1+ N2

x {(Zy— 22)* = 22024+ 23 + 2 (20(Z5 — Zo) — Zu(Zs + zzn})zf“ (C'15)
and similarly, for the extended MacCormack schemes,
ol ! 1 ! 2 !
= (14 (hz) + E(A“Zl) W
Ly 2 5 2 ‘ n (s
— (23— o) - 2T+ 2+ 20202~ ) - Za(Zs + 2]} )1 (C116)

Making use of the following relations

U = (b))

= (Ar)H(AT'BAY )

= (Ar)HZ " (C17)
Ui = (o)) ]e) o

= (Az)THA'BAZ AT BAY )
(Ar) N2y Zy )" (C18)

it (b(d') {b()[ () ). }J.) ‘
— (AJT)_(;(Az"BAz"AQ"BA.‘Z"AQ"BAz" 1A
= (A‘l')_(j(zlzlzl)("’“ (('l())
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gives

| . 1 I
S O] P SO g0 N B0Z) = 2
X (Zy—Zo) — 2212y + T+ 2[Z1(Zy — Zy) — Zy(Zy+ Zo)) p 1" {€120)
]
for the RKLW schemes and
Uil oAnl) + (Af) — A Z
L . 2. "
- g {(zz;—zz) — 970 Zy+ 22+ 2212y — L) —z4(z¢;+z._,)]}1 (€21)

for the extended MacClormack schemes.

The lowest order error terins present i11 the extended MacCormack scheme are those proportional
B . Iz X " .
to /\,,Z(Z;; — Z;))Z, )\142Z1(Z;; —Z), and by vZy. These three terms have respective errors ()f{A[) (Ar)?,

(AI‘)Q(A.I’). and (A[)(AJ’)'Z" (m = 1). RKLW error terms are very similar with the term (1 + /\ Zy) being
equal to (1 + Af).

Both Z, and Zgy are cross-coupling terms present i the extended MacCormack and RKLW schemes,
and linear occurrences may be removed by a procedure discussed later in this appendix. Error terins that
contain only Z; and/or Zy cannot be removed by this procedure. Therefore. the (3-25) scheme does not
retain formal accuracy. In cases of n > 1, the leading order error terms are (A1) (.A.r)LJ and (Ai)(A.l')z".
Al extended MacCormack and RKLEW schemes except (3-2E) are formally accurate to their stated order
in the absence of boundaries on the viscous problem.

We now consider the second part of the problem. namely

v+ 1. =0

where F' = F(I')and [y = I7:U . = fU. With no loss of generality. the term (D) ]a 18 absorbed into

Fp. The RKLW schemes may be represented for the equation {7y = —F, as
:(I_dl/\an—l-)(vll 3
=(I- 3 AfTA™
(C22)
[# — [(rl: + ‘32(('** _ (vll )]
(vll+l — %{,vl! + 2(1_ Af**A'ZII)(f#]
where, again. A = -AS% With
A'ZNfA'Zu - 7- )
=7
AM X =12
XfAZ = Z: (C23)
XfX =12
Z="75+Z¢6— 27 -1y

7
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the full RKLW scheme is written as
(ol - (I — éAf**AL"'Jz{—mA[(f”+f*)A2” ("= fIX] + BiAS z}

2 : 2 . g .
_ ;/\quZn + :5_“.32{_;31/\[(le +f*)AZ“ + (f"—f*]X] + ",if»/\zf*z}) [ ((724)

If we expand f* and f** in a Taylor series with the coefficients from the Butcher array for the RKLW
scheme (¢; = (0. 1. 1)), then

Afl
f*:fll + (('QAf)f{” + ((12 ) /,; + ..
At)?
= ang + B0 (C'25)
* ] 3At 2
="+ (aADf + (M? i it
At At)? .

The expansions for f* are identical for the extended MacCormack and the RKLW schemes. Note that the
error of the quantities Zy. Zg, Z+. and Zy are proportional to (Ax)?, (Ax)3. (Ax), and (Ax)!. respectively.
Inserting the values of 3; and 32 and expanding give

(fn-H — ,:I + %Azf**Az“(f“ +f*)A2u 4+ l'/\’zf**AZu(fn_ f*)X _ l‘/\:{_f**A"z“(f” _ f*)Z
y . | . .
—_ %/\f**AZH _ (_‘A(fll + f*)Ale _ f“ f X + A f ZJ ( n ((<2—{-)
. )

In addition,

(r{ll - _ f”(".:‘l
= (Ar)TH=frAaT (C'28)
- _ f[lJ{r‘lI'l + f“(f“("r.:‘l ).l‘
= (Ar)” anZI) + quZanAZu iaL (C'29)
[vtl;[ - _ [,;(°Y_1’-I + zf[,'(f“(i!")‘l' + f”( /I(\ri‘l ).l‘ _ f”[f”(f"[‘i,’»l ).l‘].l‘
— (AJ')_:‘(—f[”,Azn + .ZJ-IHA'ZuquZu + f“ A'an[nAZH _ A2nqu2u anZH )(“'" ((,‘30)
If we use equations (("28), (('29), and (('30) and negl( ct the terms with error proportional to (At¢)? and

higher and cross-couple terms proportional to (Ai) (Awr ) where l4+k > 4 and higher, then after significant
manipulation, RKLW schemes are
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1 | .
{rll+l =4 (Af)("(” '_)—(Af) (vllll + E(A”S([l[‘[

[A(A? A

+ (( ) ,X + - f” A"”fX XfAZn [
) 3]
[AANH? XA AHAL) L, ol

+ —-11)—f,,X - — A" "X 4+ —T—f/(A" JX = XfAM 1"
+ _A_zxfllx [!Il ((-q.{l)

6 '

The terms in brackets have an error that is proportional to (A#)2(Axr). (A3 (Ax), and (AN (Ar)2.
respectively: the first group must be removed in order to retain the formal accuracy of the scheme on the

nonlinear pmb]( m. ldeally, all other error terms listed should also be removed. For the linear problem,
Sl = fli = 0 and Az"fX XfAZ” the scheme is formally (3-[2n])th-order accurate, with the highest
error contributed by the term —)— X f7X){7". For the nonlinear problem. the step from tune level (n + 1)
to (n+2) is slightly different fron the step from time level (n) to (n+1). Let F, B, and C denote forward,
backward. and centered differencing, respectively. Until this point. consideration has only been given to
the RN LW scheme where the sequence of forward-backward-centered operations are repeated indefinitely:
F-B-C. - - If this sequence were modified to be F-B-C. B-F-C. ---. then cach term for which the error
is proportional to (Af)? (_\1 y and (AP (Ar) vanishes. The term %i X X0 still remains with an error
proportional to (AHZ2(Ar)2 If the forward and backward operators are not permutated. the crosscoupling
terms would remain and the scheme would be formally (2-[2n])th-order accurate.

The full. extended MacCormack scheme Is written as
A , . Af* _
(.H-H — {I _ ;[(f*+fll)A2H + (fu__f*) ]_+_ _T,_‘__Z}Ivu (C'32)

or

Lo t A : )
(n+] [ (Af)("," + _2_(_\1),2”/; + /\_(:_j_lf/lx + Tf"(A“)“fX-*XfA“”)] [

A° :
+ [—Xf"X [ (C"33)
Again. the two terms in the first set of brackets of equation (( 33) are proportional to (At)* (Az) and may
be removed by implementing the scheme as an F-B. B-F., - - sequence. The error terms i the first set
of brackets disappear for the linear problem and for the nonhm ar problem with permutated ope mtm\.

which leaves the last error term in the second set of brackets with an error proportional to (Af)* (A2
[n multidimensions. this permutation would be implemented as

F,F,-B,B,B,B,-F,F,F,B,-B,F,.BF,-FB, -

for the extended MacCormack schemes and

F.[' F(/ - B,[B‘(/ - CJ‘C.U. B,IBI} - F,I'F‘U - C,I'Cy, FJBU - B,l‘ F‘U - Cle. B,I‘ FN ha F,IBU - C.]Cll. ct
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for the RKLW scheme. In the present computations, we found it sufficient to only implement the RKLW
scheme as

F,F,-B,B, -C,C,.B,B,—F,F,— C,C,.

and the extended MacCorimack scheme as

F,F,-B,B, B,B,~F,F, -

A discussion of multidimensional stability for finite-difference schemes can be found in the work of Beckers.
(See ref. 59.)
This analysis does not need to be performed for the Runge-Kutta central-difference schemes because the

spatial and temporal accuracies are not coupled in the numerical scheme: therefore, each scheme retains
its respective formal accuracy for the nonlinear problem.

Further work might include replacing X with a stencil having an error that is proportional to (Ax)?.
Using forward and backward differences with different weightings on all three stages of the RKLW schene
might mininize error terms.
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Appendix D
Higher Order Boundary Treatments

When eighth-order spatially accurate, central-difference stencils are coupled with either third- or fourth-
) 2 I

order temporally accurate Runge-Kutta schemes. seventh-order accurate stable boundary stencils for the

explicit eighth-order accurate spatial derivative operator result and are given by

/

= —— (= 3751501 + 1565172y — 4039140 3 + TIR0075
N = Tosuo0ay AU E BIRS Ofs + 11800,
— RBO3USOS + GOTOTAOS; — 33T8EAS: + 1024890 fy
— 15TH00fy + R400f1) — 84011 + 147 f12) (D1)
I
fo = —————(56400f) — T25676fs + 23319453 — 4322850,

2 7 105000 A
+ 5296900 f5 — 4232970 f¢ + 21475027 — 641320 fy

+ 94500 f9 — 5250 19 + 945 1 — 126[12) (D2)
' 8186 66262 181370 336385 f
f:;—m( if1 = 66262f, + 370 f5 — 336385 f4
+ 07120 f5 — 289352 f¢ + 114674 f; — 18070 fs
- 1890 fy + 630f10 — &84f1 + 63f12) (D3)
f (16480 f 121338 f5 + 348810 f: 044475 f
= — ‘ — e - 3 — Jadhia .
7 S0000a, . ¥ :
+ 1234800 f5 — 792120 f¢ + 323876 f7 — 77310 fx
+ 16800fq — T350f 1, + 1890f1 — 63[12) (D)

For the tridiagonal eighth-order accurate derivative operator. the boundary stencils are given by

|
TO21000Ar
— HE6RIDU S5 + A6IRTA0f; — 2394728 f7 + 730230«

I3
fi
— 105000fy 4+ 21001y — 210f;; + 189f1,) (DH)

1 -
+ 1510460 f; — L183518 f5+ 578382 f7 — 159890 fx
+ 18900f9 — 210f10+ 189f 11 — 21 f12) (D6)
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f3 = (99920 f] — 818104fy + 2402330f3 — 4643275 f4
3 7 2T0000Ar

+ H814200f; — 4407620f; + 1947008 f; — 391330 K&
— 21000fy + 189001 — 1050f1 + 21f12) (D7)
' 1

L+ = F0000As
+ TI8200f; — 4T4600f; + 225092f; — 65970f5

(5140f) — 36246 f, + T4970f3 — 456225f,

+ 10500f9 — 1050f10 + 210f11 — 21f12) (D¥)
and for the compact pentadiagonal eighth-order accurate denvative operator. by

! N
fl = (9361521 + B3I6908f2 — 10530450f5 + 205294254
<

— 25599000 f5 + 20734644f; — 10674356 fr + 32365503

— 470400 f0 + 12600 f10 — 42f11 + 273f12) (DY)
/
= (99660 f] — 1065099 fz + 3490410f3 — 6562500
Ly = To5000a2" h 099 12 f3 f

+ 7964320 f5 — 6213060f; + 30145087 — 822760 fi
+ 94500fy — 945f1 + 1050f); — 84f),) (D10)

!

I3 = ST0000Ax
+ BBI4200f; — 44076205 + 1947008f- — 391330 fy

(99920 f) — R18104fy + 2402330f3 — 4643275 f4

— 21000fg + 18900f19 — 1050f11 + 21f12) (D11)
' 1 .
= (— 158 7136 ) — 1106T0f3 — 86625 f.
[y ZIOUOOA;P( 1580f) + 17136f» 0670f3 — 86625 f4
+ 256200f5 — 101220f5 + 32228 f7 — 6330fs
+ 2100 fg — 2100f15 + 1050f); — 189f19) (D12)

Each of these expressions is denoted by 7t sl 7 7 7 schemes and s formally eighth-order
accurate in space. We were not able to find stable, accuracy-preserving numerical boundary conditions for
the eighth-order spatially accurate dissipative schemes.

Seventh-order accurate boundary stencils for the seventli-order viscous operator used in the eighth-order
extended MacCormack and RKLW schemes are

/ 1
= — 9 29/ 2 — 44 ; 9 :
Ji = 5o (10891 + 2940, 10f3 + 4900 f4
— 3675f5 + 1764f5 —490f7 + 60fx) (D13)
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’ 1
S

(—60f1 — 609fy + 1260f3 — 1050 f4

2 T 120Ar
T00f5 — 315f + ¥4f; — 10fx) (D14)
I
fy = (+ 10f1 — 140f5 — 329f3 + T00f4

420Ar
— 350f; + 140fs — 35f7 + 4fs) (D15)

The values of f4 on the backward step and f,“ 5 on the forward step are close »d by using the seventh-
order viscous interior stencil and the negative of its complex (on|ugat< (in Fourier space), respectively.
For the tenth-order spatially accurate Runge-Kutta schemes given in table 4, nintlrorder accurate stable
boundary stencils for the central and dissipative stencils were derived but were subject to severe C'FL
restrictions: hence. these are not presented.

These boundaries may be closed to lower order also. Explicit stencils may be closed as (3.3, 4.2, y-10-
y.r.4.3.3), where & is either the fourth- or sixth-order accurate explicit stencil and y is either the fourth-.
sixth-, or eighth-order accurate explicit stencil. Tridiagonal stencils may be implemente *das (3.4 y-10-
y.r.4.3). where & is the fourth- or sixth-order accurate tridiagonal stencil and y is either the fourth-,
sixth-. or eighth-order accurate tridiagonal stencils. The pentadiagonal stencil is closed with (3.4, .-10-

r.4.3), where 2 is either a sixth-order accurate tridiagonal or an ecighth-order accurate pentadiagonal
stencil.  Each of these lower order closures results in a formally spatially fourth-order scheme. Other
closures not mentioned may also be constructed.

The viscous boundaries for the (3-10P) RKLW scheme are closed with the following ninth-order stencils:

[l = o (T2 4 22680 f, 453605 + TOS60S, — TU380fy
+ 6305045 — 35280f7 4+ 12960fs — 2835 fo + 280f10) (D16)
: 280 1329 10080 11760 11760
fz—m(— Ji— A329f + R0f3 — L11760fy 4+ 11760 [
—8R20f6 4+ AT04f7 — 1680fx + 360fa — 353f10) (DIT)
: !
(4 35f) — 630fy — 2T5Afy + HE 4410
Sy = gpgan (T 351 — 630f2 — 205403 + 880 f1 — 4410 fy
2040 — M70f7 + H04fg — 105fy + 10fy0) (DI18)
' |
- (- 135 f» — 1080f3 — 1554fy + 37805
Iy 252()A.r( 10f1 + 1350, 8Of3 — 16h4fy + 3780 f;
— 1890 fs + #40f7 — 270fx + d4fy — 5f10) {D19)

The values of f. on the backward step and f _4 on the forward step are closed by using the ninth-order
viscous interior \Ien(ll and the negative of its (‘()Illpl(\ conjugate (in Fourier space). respectively.
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Appendix E
Explicit Finite-Difference Filters

To filter the vector U, the dissipation matrix D must be specified, including boundary points.
Coeflicients for the interior portion have already been given in table 7 and should be familiar as elements of
Pascal’s triangle. The boundary portions (upper left portion of D) of the dissipation matrix are given for
filters of orders two through twenty in the interior and orders one through ten at the boundary. The lower
right portion of D on a grid of N, points is given by D;;j =Dy, 41-in, 41— To clarify the information
presented. the full dissipation matrix is written out for the second-order filter and its first-order boundary

points as

+1 -1 0 0 0 0

-1 42 -1 0 0

0 -1 +2 -1 0 0

0 0 -1 +2 -1 0 (ED

0 0 0 -1 42 -1

0 0 0 0 -1 +1

Boundary points for the second-order dissipation matrix D are

+1 -1 oy
[—1 +2] (E2)

The lower row and the right column are the interior operator. Similarly, the full dissipation matrix can
be constructed for the fourth-order filter with

-1 +2 -1
+2 —=h +4 (E3)
-1 44 -6
for sixth order with
+1 =3 +3 —1
=3 410 =12 46
: E4
+3 =12 419 -1 (£
-1 46 =15 420
for eighth order with
-1 +4 -6 44 —1
+4 =17 428 =22 4R
—6 +28 =53 +H2 =28 (E3S)
+4 =22 452 —69 436
-1 48 =28 456 =70
for tenth order with
(-H —-D + 10 —10 +5 —1 7
-5 426 =55 460 =35 410
+10 =55 4126 =155 +110 —-45 (E6)
—10 460 —155 +226 —205 +120 Y
+5 =35 4110 =205 4251 =210
L -1 410 —45 +120 =210 4252
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for twelfth order with

for fourteenth order with

for sixteenth order with

for eighteenth order with

+1
-9
+36
—84
+126
—126
+84
—36
+9
-1

=1 46 =15 420 —15 46 —1 7
46 =37 496 —135 4110 =51  +12
—15 496 —262 4396 —360 +200 —66
+200 =130 4396 —662 +696 —480 +220
—15 4110 =360 4696 —88T 4786 —495
+6 =Bl 4200 —480 4786 —923 +T7Y2
[ -1 412 =66 4220 —195 4792 =924
C+l =T 421 =35 435 2] 47 —1 7
—7 430 =161 4266 =280 4182 =70 +14
421 =154 4491 =889 41001 =721 4329 -9l
—35 4266 —8&89 41716 —2114 41736 =966 4364
+35 =280 41001 —2114 42941 —2819 41981 —1001
21 182 =721 41736 289 43382 —2996  + 2002
+7T 0 =T0 4320 =966 1981 —2996 +3431  —3003
L0 Sl S0l 4360 —1001 42002 —3003 43432
Tl 48 =28 456 —T0 436 —28 8 —1 T
+R =65 4232 —4T6 4616 =518 4280 —u2 +16
SR 4232 =849 +1R00 —2436 420184 —1302 4501 —120
56 =476 1800 —3985 45720 —53T2 43752 —17TH0 4560
—T0 4616 —2436 +5720 —8R85 49640  —7TH32 44312 — 1820
436 =518 42084 —55T2 49640 —12021 +11208 —T980 44368
28 4280 — 1302 43752 —TH32 411208 —12085 + 11432 —8008
48 =92 4504 —1TH0 44312 —TY8R0 411432 — 12869 411440
[ —1 416 =120 4360 —1820 #1368 —8008  + 11440 — 12870
—9 436 = 41260 —126 484 —36 +9 -1
+R2 =333 4792 — 1208 41260 —8R2 4408 —117 418
—333 41378 —335T 45328 —HTHhA 44284 —21TR 4732 —153
4792 —335T 48434 — 13941 415912 —12810 47308 —2931  +®16
CI218 45328 — 13041 424310 —2081T 426496 —17346 48442 —3060
+1260 —=5754 415912 =29817 440186 —40401 +31032 —18480  +85H68
82 44284 — 12810 426496 —40401 447242 —43425 431788 — 18564
FA08  —20T8 47308 — 17346 431032 —43425 448338 —43749 431824
—11T 4732 —2034 48442 — 18480 +31TER —A37T49 448619 —A3THR
HI8 =153 4RI6 —=3060  4RH68  —I8H64 431821 —4BTHE +48620
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and for twentieth order with

[- -1 +10 —45 +120 —210 +252 =210 +120 —45 +10 -1 7
+10 101 +460 —1245 42220 —2730 +2352 —1410 +570 —145 +20
—45 4460 2126 45860 —10695 +13560 —12180 47752 —3435 +1020 —190
+120 ~ 1245 45360 —16526 +31060 —40935 438760  —=206580 +13152  —4635 +1140
=210 42220 —10695 431060 —60626 483980  —85035 4063960 —36030 +15252 — 4845
+252  =2730  +13560 —40935 483980 —124130 4136900 —115275 475300 —38550 415504 (E1l)

=210 42352 —12180 438760 —85035 136900 —168230 +162100 -—124720 477400 38760
+120 —1410 47752 26580 +063960 —115275 +162100 —182630 +167500 —125925 +77520
—45 4570 =3435 413152 36030 +75300 —124725 4167500 —184655 +167950 —125970
+10 —145 41020 —4635 415252  —=38550 477400 —125925 4167950 —184755 4167960
L —1 +20 =190 41140  —4845 415504 38760  +77520 125970 +167960 —184756

PN B
Each of these groups of boundary steucils representing o to second-order accuracy has a very predictable
ax

pattern in Fourier space with coeflicients that appear in Pascal’s triangle.
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Definitions of Symbols Used in Tables

AB. ... coeflicients i predictor-corrector stencils
a3 T.a.b. ... coefficients in matrices P and Q

AA.AB. M C'FL numbers for matrices A, B, and M
Anax maximum CFL number

£ wave number

Subsecripts:

L left

R right
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Table . Extended MacClormack Predictor-Corrector Steneils

SC]I(‘II](,* ;3 f} 1 [j, (' l) [‘j I’Y (’I‘ Alll‘d.\
1 1
(2-2F) 0 0 7 = 0 0 0 0 —1 1.00
o : IR 2 | g
(2-1E) 0 0 3 0 B 3 0 0 3 0.72
Y 1 3 V3 V3 -
(2—4 T) 0 I : T () 0 { 0 —T 0.57
3 1 3 2 1 2 H4
(2-6E) 0 0 2 - - : — = —— | 063
4 3 20 7 60 T 35
(2-6T) 0 ! : ! L L 0 0 32 050
3 9 3 30 45 45
1 17 15 B 10
) _ D  — — — —_— e )
(2-6P) T = T T 0 0 0 0 o 0.48
oo 3 25 1 I T 1 1 3T .
(2-87T) U N 2 1 20 Y T T2 Tk 0.46
P T R AT A A I R
(2-8F) 36 9 27 10 216 1 0 0 10 045
Table 2. Skewed Viscous Stencils
S(‘]l(‘]ll(‘ (11‘ (’L bL (7[‘ T ”]f bh’ C R (IR R
First order forward 0 0 0 0 —1 | () 0 0 0
Third order forward 0 0 0 —é —% | —(-17 0 0 0
. 1 2 1 2 1
Fifth order forward 0 0 — — - 1 —- 0 0
20 B 3 8 30
3 3
Seventh order forward 0 L L —= ! | —— —]7 L 0
105 10 B 1 10 15 140
Ninth order forward L 1 é _d —_l | 1 2 ___L _l-
H01 12 T G ) 12 21 56 630




Table 3. RKLW Predictor-Clorrector Stencils

Scheme /3 a A B C D £ F G Auax
3 1 1
(3-2E) 0 0 ~ - 0 0 0 0 ~1 1.59
(3-4E) 0 0 2 0 S _2 0 0 1 1.34
12 9 9
(3-4T) 0 1 3 1 0 0 0 0 “200 106
4 4 5 D
J . 1 1 2
(3-6E) 0 o |2 [ X | L — ~= | == | 115
1 H 20 3 60 5 5
(3-6T) 0 1 ’ 2 L _b 0 0 164 92
3 9 21 36 11 231
(3-6P) LU T ! 0 0 0 0 _2 94
t14 Iy 19 9 5}
. . 3 25 11 1 3 1 11 6
(3-8T) 0 s 32 20 20 5 IR0 T 5 83
L 1 4 2 2 25 ) 198
3-&P 1 1 CL T R 0 0 108 &4
( ) 36 9 27 25 216 13 325
1 17 i 11
(3-10P) L - — 2 ol _2 — LU B 76
20 2 24 5) 600 ) 600 20 2
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Table 4. Fourth- and Third-Order Runge-Kutta Stencils

A ccuracy Aax
Fourth Third [ I [ [ [ [ Fourth Third
order order i3 () a b ¢ d ( order order
2 1
(4-4E) (3-4F) 0 0|z | -5 0 0 0 206 126
(A-ary | @34 0 11 -} 0 0 0 0 163 1.00
3 3 1
3-GE SO S — TR 0
(4-6F) (3-6E) 0 0| - = — 0 0 LR 1.09
1 n 1 .
(4-6T) | (3-67) 0 - ! = 0 0 0 | .42 0.87
. R 1 17 15 ,
(4-6P) @-6p) | —— | Z |2 0 0 0 0 144 (.88
114 57 19
4-8E 3-RE 0 0 | 2 : : 1 0 163 1.00
(4-8E) (3-8L) 5 5 105 550 e '
- 3ol | 0| "
(4-8T) | (3-8T) 0 = | = - — 0 0 132 081
(4-8P) | (3-8P) L O I 2 0 0 0 .28 0.78
36 9 27 216
n D D 5 1
4108 310K 22 2 S B 5 Y
(4-108) | (3-10k) 0 0| - = = — | 0= 153 0.94
L10T) | (3-10T 0 = : : : 0 126 0.77
(10T | (3-10 5 50 5 30 1200 < o
10 9 10P $ ! 7 1ol L )
(4-10P) | (3-10P) = > = | — 0 0 121 0.74
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Table 5. Temporal Accuracy of (4-8P) Scheme on U+ U7, =0

(74,74 7ottt 7l ,74) Convergence

CFL logio Ly rate

0.8 —5.282

0.6 —5H.896 491

0.4 —6.638 4.21

0.2 —7.804 4.04

0.1 —9.053 3.98

0.05 —9.399 1.15

Table 6. Spatial Accuracy of (4-8P) Scheme on /) + U/, =0

(77t st v 7T Convergence
Grid log 1y L2 rate
41 —4.933
hl —h.741 8.34
101 —8.388 8.79
151 —9.797 8.00
201 - 10.606 6.48

Table 7. Temporal Accuracy of Third-Order Runge-Kutta and
RKLW Schemes on Uy + 17, = 1)

Rk RKLW
(3. 3-4-3. 3) Clonvergence (3. 3-4-3.3) Convergence

Grid logig Ly rate logio L2 rate
41 —2.512 —1.877

51 —2.794 2.91 —2.121 2.60

101 —3.681 2.94 —2.913 2.62

201 —4.57)H 2.97 —3.672 2.53

251 —4.864 2.9%8 —3.910 243

501 —0.763 2.99 —4.612 2.33

1001 —6.665 2.99 —5.27H 220

2001 —7.567 3.00 —n.4911 2.11

4001 —8.469 3.00 —6.531 2.06

8001 —9.369 2.90 —7.143 203

16001 —10.099 2.42 —7.749 201
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Table &. Stability of Varions Boundary Closures

Interior stencil

max N(Aa)

max K(Ay)

max K(Ay)

Order Type Scheme {(n=51) (n =201) {(n=>501)

Fourth |Explicit (3.3-4-3.3) 2092 % 1077 | =432 x 1077 | =275 x 107%
Fourth |Tridiagonal (3-4-3) —266 x 1072 [=388 x 1077 | =245 x 1077
Sixth [ Explicit (3.3.4-6-4.3.3) 441 x 107 [=633 x 1077 | =3.99 x 1078
Sixth | Explicit (5%.5%.5-6-5.5%.5%) — 10l x 1078 | =107 x 1077 | =7.07 x 1077
Sixth [ Tridiagonal (3.4-6-4,3) —6.03x 1077 | =882 x 1077 [ =5.57 x 107}
Sixth | Tridiagonal (52.526-52.5%) 124 x 107 | =156 x 1075 | =9.60 x 107"
Sixth Pentadiagonal (3.4-6-4.3) 55T x 1077 [=&14x 1077 | =514 x 1078
Sixth | Pentadiagonal (52.5%6-5%.5%) —330 x 1071 | =508 x 1077 [ =648 x 1070
Eighth |Explicit (3.3.4.4-8-4,4.3,3) S22 x 1070 | =155 x 1077 [ =9.56 x 107"
Eighth | Explicit (3.3.4.6-8-6.4.3.3) SR x 1077 ) =292 x 1077 [—1.81 x 1077
Bighth [ Explicit (7L 7L T T T T T T | =80 x 1071 | =901 x 1070 | =543 x 1077
Eighth | Tridiagonal (3.44-8-1.4.3) “HARX 107 | =T T2 x 1077 [ —4.81 x 1078
Eighth | Tridiagonal (3.4.6-8-6,1.3) —758x 1077 | =101 x 1070 [ —=6.95 x 1077
Eighth |Tridiagonal (7L 7L Tt T Ty | 1T x 1078 | =189 x 1070 | =113 x 1070
Bighth | Pentadiagonal (3.4-8-4.3) —8.1A5 x 1077 | =120 x 1075 | =755 x 107
Bighth |Pentadiagonal | (78, 70 707087070 7074 | =456 x 1077 | =167 x 1077 | =848 x 1076
Tenth |Explicit (3.34.44-10-4.4.4.3.3) —204 x 1070 | =228 x 1073 [ =1.30 x 1077
Tenth |Explicit (3.3.1.68-10-8.6.4.3.3) —958 x 1070 | =119 x 1077 | =7.32 x 107%
Tenth | Tridiagonal (34.44-10-1.4.4.3) 1RO x 1077 ] =238 x 1077 | =146 x 107%
Tenth |Tridiagonal (34.68-10-8,6.4.3) —5I8x 1077 | =809 x 1077 | =5.06 x 1078
Tenth | Pentadiagonal (3.4.4-10-1.4.3) —451 x 1077 | =613 x 1077 | =3.82 x 1078
Tenth | Pentadiagonal (3.4.8-10-8.4.3) _810x 1070 | =117 x 1078 | =737 x 107"
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Table 9. Stability of Boundary Closures for Dissipative Schemes for M =

[0.001 = 1.00(—3)]

F(ATAT + ATAY)

Error Error Error
Boundary max R(App) max ®(Ang) max R Ang)
Stencil closure (n =51) (n=201) {n =5H01)
(a) scheme («) (a) (a)
(2-2E) [(3-2E)] (1-2-1) —3H(=3) [-3.94(=3)] | —247(=4)[-2.47(—4) —3.95(=5)[=3.9% =5)]

(2-4E) [(3-4E)]
(2-4T)[(3-4T)]
(2-6E) [(3-6E)]
(2-6E) [(3-GE))
(2-6T)[(3-6T)]
(2-6'T) [(3-6T)]
(2-6P) [(3-6P)]
(2-6P) [(3-6P)]
{(2-8T)[(3-8T)]
(2-8T ) [(3-8T)]
(2-8T) [(3-8T)]
(2-8P) [(3-8P)]
(2-8P) [(3-8P)]
[(3-10P)]
[(3-10P)]
[(3-10P)]

(3.3-1-3.3)
(3-4-3)
(3.3.4-6-4.3,3)
(52,52, 5-6- 5,52,5”)
(3 3)

)

(5%.5% 6

C\
b'
%"

(3

(3.4,4-8-4.4.3)
(3.4,6-8-6,4.3)
(7L 7T TR T T 7T
(3.4-8-4.3)
(Lot et T
(3,4.4-10-4.4.3)
(3,4,6-10-6 4.3)
(3,48-10-8.43)

—3.94(=3) [-3.94(-3)]
=3.94(-3) [-3.94(=3)]
~3.94(=3)[-3.94(=3)]
~3.94(—3) [=3.94(=3)]
—377(=3)[-3.76(=3)]
—2.93(=3)[-2.93(=3)]
+L67T(+2) [+2.49(+2)]
+6.65(4+2) [+7.40(4+2)]
+2.61(40) [-9.42(~3)]
+2.6H(+0) [-9.42(=3)]
+L09(+1) [+ 1.06(+1)]
—3.70(-3)[-3.73(-3)]
+168(+2) [+ 1.68(+2)]

[=3.95(=3)]

[=3.95(=3)]

[=3.95(—3)]

]
—247(—4)[-2.47(—4)]
]
)]

—247(~4) [~2.47(—1)
—247(—4)[~2.47(—1)
—247(~4)[-2.47(1)]
—244(—4) [-2.44(-1)]
—2.27(—4)[-2.27(-4)]

+1.72(+2) [+2.56(+2)]
+6.65(+2) [+7.40(+2)]
+2.73(+0)[—4.66(=3)]
+2.73(4+0) [-4.66(=3)]
+LO9+1) [+1.06(+1)]
~243(—4) [-2.43(=1)]

+1.68(+2) [+1.68(+2)]

[-2.47(—4)]
[-2.47(~1)]
[-2.47(=1)]

—3.95(=5) [=3.95 -5)]

—3.95(=5)[-3.9%=5)]

=3.95(=5)[=3.95% -5)]
—3.95(=5)[-3.95 ~5)]
—3.93(=5)[—3.93—5)]
—3.81(-5)[~3.81(=5)]
+2.12(4+2) [+3.29(+2)]
+6.65(+2) [+7.40(+2)]

+2.7T4(+0) [—4.38 - 3)]
+2.74(+0) [-1.38(=3)]
+1L09(+1) [+1.06(+1)]
~3.92(=5)[-3.92-5)]
+1.68(+2) [+1.68(+2)]
[—3.95(-5)]
[—3.95(-5)]
( )]

—3.95(=5

" Y - X -
“Brackets indicate values from seheme 2: other valtes are from seheme 1.




Table 10. Interior Filter Stencil, Second-Order

*)
s . ‘)..”

Accurate Stenells for [—ﬁ*‘,“. ”
02

:—;’3'-',{-] T a b ¢ d ¢ S g h i J
— 42 ~1 0 0 0 0 0 0 o o [o
.

%.'LI -6 +4 —1 0 0 0 0 0 0 0 | o
(S0 S

o6

— 420 15 6 — 0 0 0 0 o o o
] 70 36 V8 ' I ) 0 0 )| o
(—T: —7 +90 —2% +8 — 0 ( ( (
—('}]U/'A AR . v 1

S| w2 | —2100 ) 4120 [ <45 | 10 ) 0 0 o o o
C 12

Ll o2 | owToz |95 | 4220 | =66 | 412 | 0 o o [o
LA~ )

Cald

DE | a3z | —s003 | 42002 | —100n | 4364 [ o1 f 414 |- o o |o
rl6 0

L] | —r2xto | 411440 | =008 [ a36x | —1820 [ 4560 | =120 [ 416 | =1 |0 |0
LU

.

lj—,ﬂ +48620 | —43758 | 431820 |—18564 | 48568 [ =3060 | +x816 | =153 [+18 | =1 |0
[20 p 17

D] = 1ma756 [ 4167960 | =125970 |+77520 | -38760 |+15504 [=4845 |+1140 (=190 420 |1

Table 11. Truncation Error of First Denvative Operators

Accuracy

Explicit

Tridiagonal

Pentadiagonal

Heptadiagonal

Nonadiagonal

Fourth order
Sixth order
Eighth order

Tenth order

1 .-
— D
18()E

T 147400

23

_ ct
226800 °
1 cll

T 495000

263
el
14968800




Inviscid stability, A

0 5 1.0
Viscous stability, Ay

Figure 1. Stability limits of extended MacClormack schiemes on one-dimensional convection-diffusion
equation as function of inviseid CLF () and viscous CFL (A,) numbers.
20
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(3-6P)

Inviscid stability, A

3-6T)

(3-8P)
(3-87)

| J
0 5 1.0 1.5
Viscous stability, Ay

Figure 2. Stability limits of RKLW schemes on one-dimensional convection diffusion equation as function
of inviscid CFL (A) and viscous C'FL (X,.) numbers.
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(3-6T)
(3-8T)
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1.0

Inviscid stability, A

0 S 1.0 1.5
Viscous stability, Ay

Figure 3. Stability limits of third-order Runge-Kutta schemes on one-dimensional convection-diffusion
equation as function of inviscid CIL (A) and viscous CFL (A, ) numbers.
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Figure 4. Stability limits of fourth-order Runge- Kutta schiemes on one-dimensional conveetion-diffusion
equation as function of inviscid CFL (A) and viscous CFL (A¢) numbers.
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Figure 5. Various Fourier images of first-derivative spatial operator compared with exact Fourier derivative
as function of wave number &,
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(a) Unfiltered (2-4T) scheme on 101 by 151 grid.
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(b) Filtered (2-4T) scheme on 101 by 151 grid.

Figure 7. Dilatation field ¥ - @ in nitrogen-nitrogen compressible shear layer at Mac = 045,
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(c) Fittered (3-6T) RKLW scheme on 401 by 501 grid.

Figure 7. Concluded.
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