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ABSTRACT Increasing the scale of hub operations at major airports has led to concerns

about congestion at excessively large hubs. In this paper we estimate the marginal cost of

adding spokes to an existing hub network. We observe entry/non-entry decisions on potential

spokes from existing hubs, and estimate both a variable profit function for providing service

in markets using that spoke as well as the fixed costs of providing service to the spoke. We

let the fixed costs depend upon the scale of operations at the hub, and find the hub size at

which spoke service costs are minimized.

* The authors are grateful to Richard Butler for providing gate information and to Robin Sickels for

providing demand characteristics. Ross acknowledges the Transportation Research Board's Grad VII

Award Program for financial support.
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1. INTRODUCTION

One legacy of airline deregulation has been an increased reliance upon hub-and-spoke

networks among national carriers. By drastically reducing the number of flights required to

accommodate a set of endpoints, hubs have been the source of massive scale and scope

economies. A benefit of the hub-and-spoke system is service to smaller markets where direct

service to a variety of destinations is cost prohibitive, yet exclusive service to a nearby hub

is not; this service enables travelers from small markets to access a carrier's entire network.

While consumers benefit from spatial accessibility resulting from large networks, most

national carriers reported excessive losses during the early 1990s. These losses threaten

service to numerous small markets. Given the proliferation of hubs and the recent losses

incurred within the airline industry, it is timely and appropriate to identify the minimum and

maximum efficiency scales of both hubs and their associated networks.

We focus on identifying the incremental costs of increasing the number of spokes

served by a single hub. This structure may be determined by examining the additional profits

gained from offering service to smaller airports and connecting those airports to an entire

network via a central hub. We do not measure profits explicitly. Rather, we use entry and

exit decisions as a signal of profitability. Our approach is innovative in inferring spoke-level

fixed costs from entry and exit decisions.

The optimal structure for an air cartier depends on both the incremental costs

associated with each spoke and the fixed costs of operating a hub. Two extreme cases may

be considered. If carrying traffic over long spokes is costly, or if the average "cost-

minimizing" hub contains only a small number of spokes, then the efficient network structure

involves many small hubs. This type of network would more likely evolve when congestion

costs are high. Conversely, if the fixed costs associated with hubs are high, or if carrying

spoke traffic is inexpensive, then an efficient network will involve a few large hubs with

numerous spokes. Some anecdotal evidence suggests that moving toward larger hubs is the

more efficient network structure for airline markets. 1 However, a fundamental issue in

building an assessment of the relative efficiency of large and small hubs lies in the

determination of costs.

We use entry and exit decisions as a signal of profitability, since it is not

straightforward to measure operating costs with cost data.'- First, we infer both the profits

earned by carrying traffic along the network as well as the fixed costs associated with

providing the entire network. The use of entry decisions to infer fixed costs was pioneered

by Bresnahan and Reiss (1987) and has been applied to airlines by Reiss and Spiller (1989),

1This conclusion is based upon the recent consolidation of American Airlines.

'- An entire literature has evolved with respect to allocating costs among routes, spokes, etc. For details
see Caves, Christianson and Tretheway (1984), Comwell, Schmidt and Sickles. (1990) etc.
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Berry (1992), and Brueckner and Spiller (1994). Second, we combine the use of entry as a

signal of costs and profitability with the cost disaggregation of Brueckner and Spiller, to

directly measure the costs associated with adding a spoke to an existing hub-and-spoke

network. This second innovative step is crucial in identifying the optimal network structure.

Our model of entry, unlike previous models, recognizes that demand is based on city-

pair markets, not on service along spokes. We incorporate the many four-segment markets

(or routes) a carrier simultaneously enters when adding a spoke. Adding a flight along a

spoke between two cities enables the carrier to enter any four segment city-pair market that

is accessible from either endpoint. Demand for any route depends upon the total distance,

competition, and demographic factors. Costs depend on both the variable costs associated

with providing service in the relevant city-pair markets, plus the fixed costs of adding the

additional spoke to the hub airport. Thus choice of entry or exit depends on the variable

profits for the change in a network versus the associated fixed costs of operating that

particular spoke.

Like Brueckner and Spiller (1994) we measure costs as a function of flights between

city pairs. Because the choice of entry or exit depends upon the incremental revenue of entry

versus the associated incremental cost of offering service on a particular spoke, we measure

the total effect of entry or exit on the carrier's network-wide profits. We combine three data

sets (route variables, route-carrier variables, and spoke variables) into a maximum likelihood

specification where entry/non-entry is the dependent variable. From our model, we recover

a cost specification for operating spokes through hub cities, and test that specification for
scale economies.

The remainder of paper is organized as follows: The next section contains a

description of the hub-and-spoke system and provides motivation for our research. Our

methodology, including a description of our technique and our data, comprises the third

section. Results fi'om our model and concluding remarks are included in the fourth and fifth

sections, respectively.

2. THE HUB-AND-SPOKE SYSTEM

During airline economic regulation, tight government control over route entry resulted in a

"linear" structure for national carders. Airlines were required to petition the Civil

Aeronautics Board (CAB) if they desired entry into a given route and often had to justify the

need for additional service to gain such entry. Conversely, carriers were required to provide

service to many smaller, less lucrative markets. While the CAB was effective in providing

service to small markets, travel to and from these airports often involved numerous stops and

inter-line connections) Proponents of regulation expected small airports to suffer a loss of

3 When making an inter-line connection, the passenger changes airlines at some point during the trip and
recheck in himself and his luggage.
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service without government protection. This prediction was based on the linear route

structure imposed by regulation.

Since deregulation, we have observed a curiously different outcome. The linear route

structure imposed by the CAB was quickly abandoned by national carriers in favor of a hub-

and-spoke (H&S) system: The H&S system has been used in other modes of transportation,

such as busing, rail, and subway; it was a natural progression for airlines. A noted advantage

in H&S is the cost savings generated from more efficient aircraft utilization. These savings

generally offset the cost increases that are associated with additional ascents and descents,

and circuitous routing. These cost savings have allowed many small markets to maintain a

profitable niche in airline networks and driven carriers to extend their networks even further:

The dominance of the H&S system has revolutionized the way carriers offer service.

Two key aspects of this revolution are in flight composition and frequency of service.

Because H&S systems allow passengers, from a variety of origins, travel to the entire

network of destinations via a hub, a spoke is used by all passengers originating at the spoke

regardless of their intended destination: Given this increased spoke usage, airlines offer

more frequent service to accommodate passengers requiring connecting service at various

times. Increased frequency implies a greater dependence on smaller aircraft and better

utilization of larger aircraft between hubs and other large markets. The end result is larger,

non-uniform fleets of aircraft.

The economic consequences of H&S paradoxically include both heightened

competition and the market power associated with hub dominance. Competition has

increased on a network scale. Prior to deregulation, carriers were restricted in the markets

they could enter; since deregulation, entry is easier, although not free, and carders are able
to use their H&S networks to link all entered markets to all others. Given the increased

variety in routes offered by all carders, it is inevitable that carriers will begin to compete for

customers on previously monopolized routes. Conversely, Borenstein (1989) has shown

significant market power associated with hub dominance. A case in point is the Charlotte,

NC hub dominated by USAir. USAir uses its USAir express service to provide spoke
service to several dozen small markets within a few hundred miles of Charlotte. For most

4 Under H&S airplanes from several points of origin arrive at a central hub where passengers change
planes to travel to their intended destinations.

s For extensive details on the transition from linear to hub-and-spoke systems in the airline industry, see
Oum and Tretheway (1990).

6 This implies an absolute increase in spacial accessibility due to the availability of network service from
their local airports.
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of these markets, USAir express is the only local link to a national network. 7 American

Airlines attempted to introduce competition from a "mini-hub" at Raleigh/Durham (RDU).

However, after several years of poor response American left these smaller markets and sold

much of its RDU business to Midway Airlines. Therefore, although the H&S system has led

to intense competition among national carders for heavily traveled routes, monopolized

pockets have become an important factor in maintaining profitable service to smaller markets
and the entire network, s

3. METHODOLOGY

In the following subsection, we use various terms to describe network configurations

for supply and demand purposes. A hub is a centrally located airport serving as an

intermediate point between numerous outlying cities. A spoke is a connection between a

hub city and an endpoint city. Airlines fly along spokes, connected to their hubs, to feed

traffic into their networks. A routte is a connection between one outlying city and another

reached via a hub; that is, each route contains two spokes attached to the same hub.

Passengers fly along routes; the routes an airline can serve depend on the spokes it flies. A

market is a pair of endpoint cities; each market contains one route for each possible hub by

which a passenger can travel between the outlying cities.

3.1. Model

In order to provide service to a market, an airline must operate two spokes connecting the

origin city and destination city to its network via one of its hub cities. We specifically define

a route as two endpoints connected by a hub. Following Brueckner and Spiller (1994), we

disaggregate the costs into two components--the fixed costs of providing the hub, and the

incremental cost of providing service along each spoke. We then break down the

incremental costs of serving each spoke into a fixed cost of serving the spoke, and the

variable costs of carrying passengers along that spoke. Brueckner and Spiller examine the

marginal costs of carrying passengers to test for economies of density; in contrast, we focus

on the fixed (with regard to network traffic) costs of adding the spoke into the hub. We

define spoke costs between an outlying city and the hub as

C, = X,*IB, (1)

7Access to other national networks would require travel to other mid-sized airports such as
Raleigh/Durham, Nashville, or Norfolk.

gAn alternative representation of this point may be found in Hayes and Ross (I 996). Hayes and Ross
note that the Financially viable national carriers tend to offer an extensive network of service, but carefully
protect dominated routes.



Ross and Schmidt - Page 5

where C_represents the cost of operating spoke i, Xis a set of exogenous variables describing

cost conditions at the outlying city and at the hub, and 13is a vector of parameters. If a

carrier does not provide spoke service to some outlying city, it cannot provide route service

between that city and any other city on the airline's network. However, providing spoke

service, allows service on any four-leg routes in the network (as well as the two-leg route

between the outlying city and the hub).

When the airline incurs the fixed costs of providing the sppoke, it gains the ability

to provide service to four-segment routes that connect to the network along that spoke. In

serving the network of routes, the airline will incur traffic costs but will also earn revenue

from additional traffic. Profits earned by serving a given route are

I-Iv = Zo* T + %, (2)

where I-I is the airline's profitability from route j via spoke i. Z_ is a set of exogenous

variables describing cost conditions and demand for tickets between the two endpoints; 1' is

a vector of parameters; and e is an error term whose distribution is described below. The

airline will choose to serve those routes for which profits are positive. For any spoke i, let

S_be the set of all routes for which such profits are positive. Then the airline's incremental

profits for serving spoke i are given by

n, = n,, G. (3)

If incremental spoke profits are positive, then the airline will choose to provide service in

spoke i and will serve those routes in the set Sj. The carrier will not serve those routes for

which incremental route profits are negative, even after the costs of providing spoke i are

paid; that is, the routes outside the set S,. If incremental spoke profits are negative, then the

carrier will not provide service on the spoke nor any of the routes which include that spoke.

The incremental profit from serving a route depends upon the extent of competition

from other airlines serving the same market, and on the level of product differentiation

between theml This issue was addressed by Berry (1992). Following his approach, we

decompose the error term in the profit equation (2).

eg = h(N, W, ct)ij + uu. (4)

9This is similar to Brueckner and Spiller, p. 396.
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N is the number of airlines serving the market; W is a set of variables describing the product

differentiation between those airlines which affect this airline's share of the market; o_ is a

vector of parameters; and the error u is independent of N and distributed Normal(0,1).1°

After substituting, the final form of the incremental route profit function is

rI,j = z,:v + ho(N, + (5)

After rearranging to collect error terms, the incremental spoke profit function is given by

I-I, = (_,s, Zu*7 + ho.(N, W, et)) -X,*[3 + (Es, _0 )" (6)

The airline enters the spoke if I-I, is positive and does not enter if it is negative. _

to Berry allows for the possibility that there is product differentiation which is observed by airlines and

customers, but unobserved by econometricians. He thus allows the h0 function to contain a second, carrier-

specific error term whose distribution may be firm-specific and may be correlated with e. The

identification of the model is made complicated by the presence of two error terms, possibly correlated,

whose joint distribution depends on the number of carriers already serving the market. Berry suggests four
different strategies for identifying the model.

1) Assume that profits are constant with respect to N, thus removing the correlation between e and N from
the model.

2) Berry himself restricts consideration to markets served by two or fewer carriers, and reduces the

problem of the joint distribution of error terms to one which is computationally tractable. This solution is

not suitable to our problem. In order to consider the effect of spoke costs on entry we must consider all
routes served along that spoke, regardless of the number of carriers which serve the relevant markets.

3) Suppress the carrier-specific error requiring the addition of sufficient W variables to explicitly account

for product differentiation. While airlines are product differentiated in many ways, we believe that the

variables we include in W are sufficient to measure the effect of product differentiation on profitability.

We adopt this method. As a result, the entry game between the carriers serving this market uniquely
determines the number of firms serving the market, but not their identities (see Berry for details). We

therefore condition our draws for e on the equilbrium having the proper number of firms, since that is what
can be inferred from _e distribution of e, not whether any specific fu'm enters or not.

4) Assume that firms enter in order of decreasing profitability, and that entry decisions are binding. Then

one need consider the f'u'm-specific error of the last firm, rather than one for every potential entrant. An
alternative representation of this point may be found in Hayes and Ross (1996). Hayes and Ross note that

the financially viable national carriers tend to offer an extensive network of service, but carefully protect
dominated routes.

t t The above description may not apply to some markets where alternate hubs are available for serving

the markets in question. In that case, the airline serving the spoke may be able to make some profits in

some of the affected markets even if it chooses not to serve the spoke in question; adding service to the
spoke in question may cause the airline to forego profits on passengers that are currently flying between the
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3.2. Estimation Stratewv

As in a probit model, we maximize the likelihood of observed entry and non-entry decisions

as a function of our parameters. However, our estimation is complicated by two

distinguishing features. First, the distribution depends of e upon the number of competitors

in each of the markets served by a particular spoke. Second, when an airline does enter a

spoke, we know which routes it chooses to serve and which routes it chooses not to serve.

This entry decision provides useful information regarding the _, parameters.

To address the peculiarities of our model, we use numerical integration to estimate

its parameters. For every spoke in the data set, we estimate the likelihood that the airline

chooses the entry/no entry decision we observe by the following procedure:

1) In each route served by that spoke, we draw a value, e,j, for eg which is consistent with

the known information about how many other carders serve the market, and with the airline's

actual decision to serve that route if we observe it (that is, if the airline did enter the spoke

in question).

2) Based upon e_, we calculate the airline's profit on that route from equation (5). If the

airline did enter the spoke, we know for which routes the airline chose to provide service.

Our calculated route profits will be positive if they did and negative if they did not (due to

the conditioning in step 1). If the route profit is negative, we set it to zero, since the airline

will not enter this route even if they do enter the spoke. If the airline did not enter the spoke,

then our random draws can produce either positive route variable profits (route entry) or

negative route variable profits (route non-entry), since we do not observe whether the airline
chooses to serve that route or not if it had entered the spoke. Since the airline would not

serve a route predicted to offer negative variable profits, we set zero profits in that case also.

3) We add the profits on each route together and subtract the additional costs of serving the

spoke. We predict entry if the total spoke profits are positive, and non-entry if they are

negative.

4) We repeat steps 1 to 3 a large number of times for each spoke, and take the fraction in

which we predict entry as the probability of entry i'n that spoke.

endpoint cities by means of a different hub. In such case the entry decision should be conditioned on
marginal profit earned by serving the spoke, rather than the total. For the current version of the paper we
have restricted ourselves to airlines and spokes where no alternative hub is available and therefore the
profits the airline will earn, in the relevant markets, by not entering the given spoke is "known to be zero.
We may expand the data sample to include other markets in which the marginal profit characterization will
be relevant in a future version of this paper.
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When entry is not observed, we do not know which routes the airline would serve if

it chose to serve the spoke. However, we surmise profits for the whole spoke to be negative,

and accordingly, the likelihood for the spoke is Pr0-I; < 0). Conversely, when a spoke is

served, we do know which routes the airline serves and which it does not serve. In the case

of entry, the likelihood for the spoke is Pr(rI; > 0, FI; > 0 over S, rig < 0 over -S;). We

calculate the former likelihood by numeric integration without complication. Since the

probability of any one trial having the correct pattem of routes served and not served is low,

the latter likelihood is computationally intensive; therefore, numerous draws are required to

accurately estimate the probability. A more efficient procedure is to decompose the

probability of entry into Pr(I-l, > 0 [ Fig > 0 over S;, Fl u < 0 over -Sj) * Pr(I-Ig > 0 over S,, rig

< 0 over -S_). The first term, a conditional probability of the decomposition, is computed

numerically by drawing values of Sg that are conditioned on rig> 0 for routes where entry

is observed, and on Fig < 0 for routes where entry is not observed, as discussed above. The

second term, a marginal probability, is computed using the normal distribution function. We

multiply these two probabilities together to condition properly the likelihood estimates.

_._. Airline Data

Adapting our empirical model to available airline data presents many challenges. We use

airline presence data from the Department of Transportation's Origin and Destination Survey

(DB1A) and the T100 Domestic Segment Data for 1992 (T100). 12 The DB1A provides

revenue and number of passengers flying from ticket sales, leg by leg itinerary records for

each ticket, and hub utilization information. The T100 provides plane usage, frequency of

service, and fleet composition information. In addition to the data from the Department of

Transportation, we incorporate gate information and demographics to describe hub

dominance and demand, respectively. 13

We chose the entire year of 1992 for several reasons. First, 1978 through 1988 was

a period of massive restructuring in the airline industry with some 41 mergers (27 alone

occurring between 1985 and 1988) and numerous bartkxuptcies. Such activity could easily

complicate the identification of entry, non-entry, and competition. Therefore, we want to be

(chronologically) as far away from this activity as our available data allow. Second, the

T100 is a valuable source of information which began in 1990. _4 Third, we chose to utilize

': The former data comprises a 10% sample of all domestic passenger itineraries and provides us with
detailed information on routes of travel, hub utilization and revenue. The latter data source includes data

from all non-stop flights and provides information on plane size and utilization, and flight frequency.

_3We are indebted to Robin C. Sickles for demand characteristics and to Richard Butler for gate
information. The demand characteristics are not included in this draft.

_4Another data source (Service Segment Data) provides similar information for earlier years.
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an entire year to avoid seasonal fluctuations. Finally, much of the financial distress that

rocked the airline industry in the very early 1990s led carders to abandon unprofitable routes

and discontinue service to small markets. By catching the tail end of this era, we hope to

correctly label these abandoned routes as non-entry.

A central issue to our estimation procedure is a comparison between entry and non-

entry spokes. While collecting revenue and flight information about entry spokes is a

straightforward process, the same is not true for the non-entry spokes. A non-entry spoke

is the combination of a hub and an outlying airport that is not served through the hub. Our

task is to find the potentially fruitful outlying airport. We find the fruitful airports by

watching the behavior of (a) other carriers hubbing at the same hub, (b) other carriers

hubbing near by, or (c) the same carder hubbing near by. Table 1 contains a list of our

carder/hub combinations and the alternative carrier/hubs we utilize to identify and infer

revenue and flight information for non-entry routes. Table 2, showing summary statistics,

exhibits an average value of .87 to the entry indicator. The low percentage of non-ent_

routes demonstrates that airline carriers have a tendency to "blanket the market" and,

therefore, non-entry spokes are rare.

The set of independent variables is composed of three subsets. The first subset of

variables is spoke-carrier based. We include the total revenue associated with entry into a

spoke, spoke distance, flight frequency and enplanement data, and the number of endpoints

accessible from the hub. The second subset of variables is route-carrier based and provides

information regarding overall flight distance, route revenue, and market share. The third

subset is composed of route information focusing on endpoint demographics and the

competitive environment of the route. Summary statistics for these variables are contained

in Table 2 and detailed descriptions may be found in the Data Appendix.

4. RESULTS

Our preliminary results are based upon a limited number of variables and a 10% sample of

our data set. In the spoke fixed costs X,*I3 (equation 1) we use two independent variables,

TOTGATES, the total number of gates at the hub, and CARRGATES, the number of gates

under the control of the carder in question. In the route profits Zg*)' ( equation 6) we use

ROUTDIST, the distance along the route; we hope to add demographic information on

demand in the near future. In the hg(N, W,a) function, we include log N, the number of

carriers serving the route, NDEST, the number of destinations each carrier may reach from

a spoke, and DISTRATIO, the ratio of distance of each carrier on the route to the distance

of the competitor with the shortest path between the two endpoints. 15 The latter two

variables capture heterogeneity in service between airlines. Airlines which serve more

destinations are more attractive for frequent flyer programs, and should be more profitable;

i__We include observations for all carriers flying a route in question.
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airlines which take passengers far out of their way will have longer travel times and should

" be less demanded, hence less profitable.
The results of the estimation are:

Route profits = -0.730 - 0.210e-4 * DISTRATIO + 3.26e-4 * NDEST

- 0.044 * CARRDIST - 1.85 * log N

and

Spoke costs = -0.208 + 2.726 * TOTGATES + 0.136 * CARRGATES

Log likelihood = -6612.973633

We have not yet been able to calculate standard errors for these estimates, so we cannot

determine their significance, but we can still draw some preliminary conclusions based on

the signs of the estimates as long as the tentative nature of those conclusions is clear. First,

we note that while spoke fixed costs are substantially higher at larger airports (those with

more total gates), it does not make a great deal of difference how large the operations of the

hubbing carrier are (because the coefficient on CARRGATES is considerably smaller than

that on TOTGATES). This suggests that most of the incremental costs of adding a spoke to

a hub are the physical costs of making the airport larger; if a spoke is added by switching

gates from a non-hubbing airline to the hubbing airline, the incremental costs are quite small

in relative terms. Indeed, they may be zero if the estimated coefficient turns out to be

insignificant. This result suggests that there are decreasing returns (rising incremental costs)

in making hubs larger, although the returns decrease more slowly, perhaps not at all, if the

increase is achieved by giving the hubbing carder a larger share of the existing gates at the

airport rather than by making the airport larger.

Second, the coefficient on ROUTDIST is negative. This is reasonable, since the costs of

serving long routes, particularly fuel and the opportunity cost of pilot and crew time, are

higher than those of serving short routes. Our current specification for distance is linear;

however, if airlines have economies of hauling distance, the true relationship may be

quadratic, with the ROUTDIST 2 term being positive. We hope to test for this in future

regressions. Third, the airline heterogeneity measures are taking the expected signs; NDEST

is positive and DISTRATIO is negative. This gives us reason to believe that we have

correctly controlled for demand heterogeneity between carriers in the profit function.

Our next step is to add more variables to X,*I3, specifically the number of spokes served

by the airline, and to use a quadratic functional form to allow for the possibility that

incremental spoke costs might fall, then rise as the size of the network increases.

5. CONCLUDING REMARKS

As airlines continue to rely on hub and spoke networks to compete in an increasingly global

market, economists and other researchers must weigh the costs and benefits associated with

these networks. We add to a literature addressing these issues by evaluating the marginal
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profitability of spokes within these networks. Our approach was innovative in several ways.

First, we used entry as a signal of costs and profitability as did Berry. Second, we

disaggregated costs as did Brueckner and Spiller, by directly measuring the fixed costs

associated with adding a marginal spoke to an existing hub-and-spoke network. The

combination of these two methods is an important first step towards identifying the optimal

network structure.

Our data comprised three sets: a set of spoke-carrier observations, a set of route-

carrier observations and a set of market-carrier observations. These data included demand

characteristics, congestion indicators, 16 spoke cost variables, network cost variables and

network characteristics. We restricted our sample to a small number of mid-sized hubs and

data from the calender year 1992.

We presented some preliminary results that are both consistent with the literature and

puzzling. Our results indicated slightly increasing, possibly constant returns to scale in

airport presence and economies of scope in destination alternative. Both constant returns to

scale and scope economies are consistent with the literature and suggest benefits to larger

hubs and economies in network size. As we continue to include additional observations and

variables to the model, and obtain standard errors, we hope to improve the reliability of these

findings.

_6To be added in a later draft.
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Data Appendix

Spoke Carrier Variables. These variables are based upon information regarding a particular

carrier/spoke. In the case of non-entry, the data is reflective of the alternate carrier/spoke.

SUMPASS - The total number of passengers traveling with the carrier through the spoke

regardless of the origin or destination of travel. (Source: DB 1A and author's calculations).

SUMDOLL - The total revenue generated from passengers traveling with the carrier through

the spoke regardless of the origin or destination of travel. (Source: DB1A and author's

calculations).

ENTRY - A 0/1 variable indicating that the carrier in question has or has not entered the

spoke in question. (Source: DB1A and author's calculations.)

TSCHED - The total number of flights that the carrier has scheduled throughout the year.

(Source: T100)

TPERF - The total number of flights that the carrier has performed throughout the year.

(Source: T100)

TSEATS - The total number of seats that the carrier has made available throughout the year.

(Source: T100)

TPASS - The total number of seats that the carrier has filled throughout the year. (Source:

T100)

VPLANE - The variance in plane size (as measured by total number of seats per plane) for

the carrier on performed flights throughout the year. (Source: T100)

DIST - The great circle distance between the outlying airport and the hub. (Source: T100)

TOTGATES - The total number of gates at the hub airport.

CARRGATES - The number of gates the carrier controls at the hub airport.

Route Carrier Variables. These variables are based upon information regarding a particular

carrier/route. The route includes the spoke in question as one of its "legs" and the hub-
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endpoint as the other "leg." In the case of non-entry, the data is reflective of the altemate

carrier/spoke and the endpoint.

ENDPASS - The total number of passengers traveling with the carrier through the spoke to

the endpoint in question. (Source: DB1A and author's calculations).

ENDDOLL - The total revenue generated fi'om passengers traveling with the carrier through

the spoke to the endpoint in question. (Source: DB1A and author's calculations).

ENTRY - A 0/1 variable indicating that the carrier in question has or has not entered the

spoke in question. (Source: DB1A and author's calculations.)

ROUTDIST - The great circle distance from the outlying airport to the hub in question and

then from the hub in question to the endpoint. (Source: DB1A and author's calculations.)

ENDPTSHR - The share of the cartier at the endpoint reached via the spoke. (Source:

DBIA.)

NSMLSAPT - The non-stop miles from the outlying airport.

TNPXAPT - The total number of passengers using the outlying airport.

INCMAPT - The average income in the SMSA of the outlying airport.

POPAPT - The population in the SMSA of the outlying airport.

WKFCAPT - The workforce in the SMSA of the outlying airport.

UNEMPAPT - The unemployment rate in the SMSA of the outlying airport.

NSMLSEND - The non-stop miles from the endpoint.

TNPXEND - The total number of passengers using the endpoint.

INCMEND - The average income in the SMSA of the endpoint.

POPEND - The population in the SMSA of the endpoint.

WKFCEND - The workforce in the SMSA of the endpoint.
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UNEMPEND - The unemployment rate in the SMSA of the endpoint.

Market Carder Variables. These variables are based upon information regarding a particular

carrier/market. The market include all possible routes that could be used travel between the

outlying airport on the spoke and the endpoint on our sample or routes. For each market we

have observations for all carders offering service between the endpoints.

N - The number of competitors in the market.

NDEST - The number of destinations available from the outlying airport in the market.

CARRDIST - The minimum distance traveled by the carrier in the market to connect the

outlying airport and the endpoint.
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Table 1

Spokes and Alternatives

Hub and Carrier In Question Alternate Hub and Cartier

Cincinnati, OH

Hub Carrier Hub Carrier

Cleveland, OH USAir Cleveland, OH Continental

Dayton, OH USAir

Memphis, TN Northwest Nashville, TN American

Nashville, TN American Memphis, TN Northwest

Chicago, IL* American

Delta USAirCleveland, OH

Cleveland, OH Continental

Dayton, OH USAir

Philadelphia, PA USAir Baltimore, MD USAir

Pittsburgh, PA USAir

Washington, DC** USAir

Pittsburgh, PA USAir Philadelphia, PA USAir

Baltimore,.MD USAir

Indianapolis, IN USAir

Dayton, OH USAir Cleveland, OH USAir

Indianapolis, IN USAir

Denver, CO United Denver, CO Continental

Washington, DC** USAir Baltimore, MD USAir

Washington, DC* ** United

Detroit, MI Northwest Cleveland, OH USAir

Cleveland, OH Continental
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Salt Lake City, UT

Las Vegas, NV

St. Louis, MO

* O'Hare Intemational Air _ort

** Washington National Airport

*** International Airport at Dulles

Table 1 (cont'd)

Spokes and Alternatives

Delta Las Vegas, NV

America West Salt Lake City, UT

TWA Chicago, IL*

Chicago, IL*

America West

Delta

United

American
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Table 2

Some Summary Statistics

Variable

9UMPASS

3UMDOLL

:.NTRY

FSCHED

FPERF

['SEATS

['PASS

CPLANE

9IST

N

765

765

765

765

765

765

765

765

765

Spoke Cartier Variables

Mean

2575.68

805374.36

0.87

1408.74

1388.87

197580.26

118927.13

1002.69

804.66

Std Dev

2199.60

703166.18

0.34

1177.49

1159.66

177157.87

116826.77

1844.18

659.11

Minimum

11.00

2347.00

0.00

0.00

1.00

97.00

0.001

0.00

30.00

Maximum

11899.0(

3713978.0(

8127.0C

1084548.0C

705672.0C

15140.6f

4129.0£

Route Cartier Variables

v'affable

Z.NDPASS

ENDDOLL

N

39797

Mean

58.16

Std Dev

89.01i

28248.12

Minimum

1.00

0.00

Maximum

1245.0(

582041.0(39797 17727.40

ENTRY 39797 0.83 0.37 0.00 1.0(

_OUTDIST 39797 1332.69 772.60 107.00 6975.0(

ENDPTSHR 39797 0.17 0.23 0.00 1.0(


