—

Final Report « Volume 3 « February 1994

REGULAR TOPOLOGIES FOR GIGABIT
WIDE-AREA NETWORKS: CONGESTION
AVOIDANCE TESTBED EXPERIMENTS

ITAD-8600-FR-94-005
Volume 3

Project 8600

Volume 3

Barbara A. Denny, Computer Scientist

Paul E. McKenney, Sr. Computer Scientist
Danny Lee, Research Engineer

Information and Telecommunications Sciences Center
Prepared for:

National Aeronautics and Space Administration
Ames Research Center

Moffett Field, California 94035

Attn: Dr. Henry Lum, Code RI, M/S: 2447

and

Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, Virginia 22203-1714

Attn: Major Michael St. Johns

Approved by:

Michael S. Frankel, Vice President and Director
Information, Telecommunications, and Automation Division

SRI Intemational 333 Ravenswood Avenue « Menio Park. CA 94025.3493 « (415) 326-6200 » FAX' (415) 326-5512 o Telex: 334486



4



CONTENTS

INTRODUCTION ...ttt 1
TRAFFIC GENERATOR SOURCE ..........cccoooiiiiieeicieeeeeee e 3
2.1 TG DECLARATIONS ... .ottt et 4
2.2 TG SOURCE ...ttt ra et 53
2.3 DCAT DECLARATIONS ...ttt 195
2.4 DCAT SOURCE.......ccoiiiiiiiieeee et ve 205
SOURCE FOR TG ANALYSISTOOLS .........oooiiiiiiieee e 219
SFQ SOURCE ...ttt et 255
4.1 INSTALLATION NOTES......ccco ittt 255
4.2 SOURCE ...ttt e et 257
SFQ PLUS VIRTUAL CLOCK SOURCE ...........cooieiiiviiieeiee e 325
i






1 INTRODUCTION

This document is Volume 3 of the final technical report on the work performed by
SRI International (SRI) on SRI Project 8600. The document includes source listings for all
software developed by SRI under this effort. Since some of our work involved the use of ST-II and
the Sun Microsystems, Inc. (Sun) High-Speed Serial Interface” (HSUS) driver, we have included
some of the source developed by LBL and BBN' as well. In most cases, our decision to include
source developed by other contractors depended on whether it was necessary to modify the original
code. If we have modified the software in any way, it is included in this document. In the case of
the Traffic Generator (TG), however, we have included all the ST-II software, even though BBN
performed the integration, because the ST-II software is part of the standard TG release. It is
important to note that all the code developed by other contractors is in the public domain, so that
all software developed under this effort can be re-created from the source included here. Therefore,
the rest of the document is as follows:

+ Section 2—TG and dcat source

«  Section 3—Source for the TG analysis tools (i.e., the perl scripts)

+ Section 4——SFQi source, using the standard UNIX queueing mechanisms

- Section 5—SFQ plus VirtualClock, using the BBN traffic control abstraction.

*All product names mentioned in this document are the trademarks of their respective holders.
+LBL: Lawrence Berkeley Laboratory; BBN: Bolt Beranek and Newman Inc.
$SFQ: Stochastic Fairness Queueing.



<



2 TRAFFIC GENERATOR SOURCE

This section contains the source for the TG and dcat, the program that converts the binary
output of TG into an ASCII file. The source for each program is divided into two parts. The first
part contains the header files (known as .h files) while the second part is the actual C code.
Therefore, Subsections 2.1 and 2.2 are the header files and code for TG, while Subsections 2.3 and
2.4 are the header files and code for dcat. All the source in this section, including a Makefile, is
available via anonymous FTP on ftp.erg.sri.com in the pub/tg directory.



2.1 TG DECLARATIONS

/*ﬁ**t********ﬁ*i*******ti*****************************ﬁit***i***********

*

* File: config.h *
* *
* Protocol definition structures. *
* *
* Written 08-Aug-90 by Paul E. McKenney, SRI International. *
* *
********i****i*i*********************t**********i**********************i/
#ifndef lint
static char config_h_rcsid[] = ”SHeader: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/config.h,v 1.9 90/11/26 13:18:55 dlee Exp $";
#endif lint
/* Maximum packet buffer size. */
#define MAX_ PKT SIZE 8192 /* 3072 /* Sized for Ethernet. */
/* Maximum value from random-number generator. */
#define MAX_RANDOM Ox7fffffff
/*
* FD_SET and associated macros are not defined in SunOS 3.5
* We need to defined them here, if not previously defined.
*/
#ifndef NFDBITS
#define NFDBITS (30) /* bits per mask */
#define FD_SET(D, p) ((p)—)fds__bits[(n)/NFDBITS] |= (1 << {((n) % NFDBITS)))
#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ~(1 << ((n) % NFDBITS)))
##define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << {((n) % NFDBITS)))

#define FD_ZERO(p) bzero{(char *)(p), sizeof (*(p}))

#endif

g



/***********************************i***t************ti**t******t********

*

File: decode.h *

* * »

»

* Header file for encode and decode compressed integers.
*

* Copyright (c) 1990 by SRI International.

*

*

*

* Written 12-Sep-90 by Paul E. McKenney, SRI International. *
*

*

*

***ﬁ******************t************************************************

/

#ifndef lint

static char decode_h_rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/decode.h,v 1.5 90/11/26 12:29:24 dlee Exp $”;

#endif lint

extern char *decode_ulong() ;
extern int encode_response() ;
extern int encode_sgpecial_response();
extern char *encode_ulong();



/**i*t**ﬁ*i*t****************************i***ﬁ*************i*******t*****

File: distribution.h

* *
* *
g *
* Structs defining additional parameters for those probability *
* distributions that need them. *
* *
* *
* »
* *

Written 20-Jun-90 by Paul E. McKenney, SRI International.

i****t**i*t************************tt******t*it*i********ﬁ**ﬁ********* /

#ifndef lint
static char distribution_h_rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/
dartnet/src/tg/RCS/distribution.h,v 1.7 90/11/26 12:29:29 dlee Exp $";

#endif lint
/* Type definitions local to this file. */

typedef struct
{
double (*generate) (); /* generate a new variable. */
double parl; /* distribution parameter 1. */
double par2; /* distribution parameter 2. */
double par3; /* distribution parameter 3. */
double par4; /* distribution parameter 4. */
char *pars; /* pointer to more parameters */
/* for those distributions that */
/* need them. */
} distribution;

typedef struct
{
double mean([2]; /* mean time in each state. */
unsigned long pl[2]; /* probability of remaining in */
/* same state. */
distribution *dist[2); /* distribution in each state. */
int state; /* current state. */
} dist_markov2; /* 2-state markov distribution. */

extern char *dist_const_init({);
extern char *dist_exp_init (};
extern char *dist_markov2_init{);
extern char *dist_uniform_init{);

T



/*i**i*******************************************************************

*
*

*

File: log.h

* ¥
*

Header file for handling log files

Written 12-Sep-90 by Paul E. McKenney, SRI International.
Copyright (c) 1990 by SRI International.

* o+ o+ %

*

*******t*****************************t*********************************/

#ifndef lint

static char log_h_rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/src/
tg/RCS/log.h,v 1.7 90/11/26 12:29:35 dlee Exp $”;
-~ #endif lint

#define LOG_VERSION 1
#define LOG_SUBVERSION 0

/*

* A log file entry consists of a tuple consisting of the following fields:

* (Record type> <Record control> <Record value>

*/
/* Record type field enumerations */

#define LOGTYPE_RX 1
#define LOGTYPE_TX 2
#define LOGTYPE_SETUP 3
#define LOGTYPE_TEARDOWN 4
i #define LOGTYPE_ACCEPT 5
#define LOGTYPE_ERROR 6

/* Control field modifier bit definitions */

#define LOGCTL_SCHED (0x1<<0)

#define LOGCTL_ADDR (0x1<<1)
e #define LOGCTL_2ADDR (0x1<<2)

#define LOGCTL_EXCEPT (0x1<<3)

~ /* Error codes when record type is set to LOGTYPE_ERROR */

#define LOGERR_INTFMT 1 /* Script format error */
#define LOGERR_MEM 2 /* Out of memory */
#define LOGERR_2SETUP 3 /* Two connections were established */
#define LOGERR_GETTIME 4 /* gettimeofday() failed. */
#define LOGERR_SELECT 5 /* select() failed. */
- #define LOGERR_FCNTL 6 /* fcntl() failed. */
#define LOGERR_GETPEER 7 /* getpeername() failed. */

— #define BEGIN_HDR_STRING “<Begin TG Header>\n”



#define END_HDR_STRING »¢End TG Header>\n"
/* The following routines are exported */

FILE *log_open();
int log_init();

void log_tx();

void log_rx();

void log_accept () ;
void log_setup();
void log_teardown (}:
void log_error () ;



/***********************************t**************t******************t**

*

*

* File: protocol.h *
* *
* Protocol definition structures. *
L 4 *
* Written 20-Jun-90 by Paul E. McKenney, SRI International. *
* -*
************t********i*****i****************************************t***/

#ifndef lint
static char protocol_h_rcsid[] = ”S$SHeader: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/protocol.h,v 1.8 90/11/26 12:29:54 dlee Exp Locker: dlee §";

#endif lint

/* Convert the double d to timer tvp. * /

#define dtotimeval(d, tvp) \

{\
(tvp)->tv_sec = floor(d); \
(tvp) ->tv_usec = ((d) - (tvp)->tv_sec) * 1000000; \

}

/* Convert the double d to timer tvp, offsetting from current time. */

#define dtotimevalfromnow(d, tvp) \

{\
unsigned long seconds; \
\
if (gettimeofday(tvp, (struct timezone *)NULL) == -1) \
A\
(void) perror (“gettimeofday”); \
abort(); \
A
seconds = floor(d); \
(tvp)->tv_sec += seconds; \
(tvp)->tv_usec += ((d) - seconds) * 1000000: \
if ((tvp)->tv_usec >= 1000000) \
{\
(tvp) ->tv_usec -= 1000000; \
(tvp) ->tv_sec++; \
FA

}

/* Convert the double d to timer tvp, offsetting from specified time. */

#define dtotimevalfromthen (then, 4, tvp) \

{\

unsigned long seconds; \

\

seconds = floor(d); \

(tvp) ->tv_sec = (then)->tv_sec + seconds; \



(tvp) ->tv_usec = (then)->tv_usec + ((d) - seconds) * 1000000; \
if ((tvp)->tv_usec >= 1000000) \

{\

(tvp) ->tv_usec -= 1000000; \
(tvp) ->tv_sec++; \

PN

}

/* Add tvpl and tvp2, putting the result into result. result may */
/* alias either tvpl or tvp2 or both, if desired. */

#define timeradd(tvpl, tvp2, result) \

{\

{result)->tv_sec = (tvpl)->tv_sec + (tvp2)->tv_sec; \
{(result)->tv_usec = (tvpl)->tv_usec + (tvp2)->tv_usec; \
if ((result)->tv_usec >= 1000000) \

{\

(result)->tv_usec -= 1000000; \

{result)->tv_sec++; \

P

}

/* Subtract tvp2 from tvpl, putting the result into result. result */
/* may alias either tvpl or tvp2, if desired. */

#define timersub(tvpl, tvp2, result) \

{\
{result)->tv_sec = (tvpl)->tv_sec - {tvp2) ->tv_sec; \
if ((tvpl)->tv_usec >= (tvp2)->tv_usec) \
(result)->tv_usec = (tvpl)->tv_usec - (tvp2)->tv_usec; \
else \
{\

(result)->tv_usec = 1000000 + \
{tvpl)->tv_usec - \
(tvp2)->tv_usec; \

{result)->tv_sec--; \
P\
}
/* Type definitions local to this file. */

typedef struct tg_action_ /* TG action structure. */

{

struct tg_action_ *next;

int tg_flags: /* TG flags. */

gtruct timeval start_at; /* time to begin this action. */
struct timeval stop_before; /* time to be done w/ action. */
distribution arrival; /* interarrival time. */

long data_limit; /* max amt of data to send. */

long packet_limit; /* max amt of data to send. */
distribution length; /* packet length. */

struct timeval patience; /* patience duration. */

10



distribution resplen; /* response length distribution.*/

long seed; /* new RNG seed. */

struct timeval time_limit; /* max amt of time to be sending*/
} tg_action;

/* tg_flags definitions. */

#define TG_ARRIVAL 0x0001 /* Got arrival distribution. */
#define TG_DATA 0x0002 /* Got data send limit. */
#define TG_LENGTH 0x0004 /* Got packet length distr. */
#define TG_PATIENCE 0x0008 /* Got patience duration. */
#define TG_RESPLEN 0x0010 /* Got response length. */
#define TG_SEED 0x0020 /* Got RNG seed. */

#define TG_SETUP 0x0040 /* Got setup command. */
#define TG_START 0x0080 /* Got explicit start time. */
#define TG_STOP 0x0100 /* Got explicit stop time. */
#define TG_TIME 0x0200 /* Got time limit. */

#define TG_WAIT 0x0400 /* Got wait command. */

#define TG_PACKET 0x0800 /* Got packet limit. */
#define TG_RESET 0x1000 /* Got reset command. */

/* Protocol switch table definition. */

typedef struct /* Protocol table entry. */
{
char *name; /* name of protocol. */
short af; /* Address family. */
long (*setup) (); /* connection setup function. */
/* protocol * */
/* returns -1 if cannot setup. */
int (*teardown) (); /* connection teardown function.*/
/* unsigned long cxn */
/* returns -1 if cannot teardown*/
int (*rcv)():; /* to receive incoming pkts. */
/* TG-SUPPLIED!!! */
/* uneigned long rx */
/* unsigned long tx */
/* char *buf */
/* int len */
/* unsigned long pktid */
/* The routine should return 1 */
/* if it has disposed of the */
/* buffer (e.g., by modifying */
/* it and pagsing it to send), */
/* otherwise it should return 0.*/
int (*send) (); /* to send out a packet. %/
/* unsigned long tx */
/* char *buf +/
/* char *len */
/* struct timeval *endtout */
/* unsigned long *pktid */
/* NULL endtout says to wait */

11



/* forever, if necessary. */
/* Returns the number of bytes */
/* actually sent, which will */
/* normally be equal to len. */
/* Returns -1 if an error */
/* occurs (such as a timeout) */
/* and sets errno appropriately.*/
void (*sleep_till)(); /* Suspends until the specified*/
/* time, processing any packets */
/* that arrive in the interim. */
/* struct timeval *waketime*/
char *(*buffer_get) (); /* request buffer to be used */
/* to compose packets to be */
/* output. */
/* This allows protocols to * /
/* avoid packet copying. */
/* unsigned long maxlen */
/* Return NULL if no more bufs. */
void (*buffer_free) (): /* return buffer to freelist. */
/* char *buf */
int (*atoaddr) (); /* parse an ascii string into */
/* a sockaddr structure, return */
/* false if unsuccessful. */
/* char *addr */
/* struct sockaddr *s */
int (*addrtoa) (); /* format a sockaddr structure */
/* into an ascii string, return */
/* false if unsuccessful. */
/* struct sockaddr *s */
/* char *addr */
char *(*btoaddr)(); /* parse a binary log address */
/* a sockaddr structure, return */
/* pointer to first byte of */
/* addr that was not consumed. */
/* char *addr */
/* struct sockaddr *s */
char *(*addrtob) (); /* format a sockaddr structure */
/* into an binary log address, */
/* return pointer to first byte */
/* of addr that was not */
/* overwritten. */
/* struct sockaddr *s */
/* char *addr */
} protocol_table;

extern protocol_table *find_protocol();

/* Protocol connection definition struct. */
typedef struct /* protocol defn structure. */
{

int gqos; /* Quality of Service flags. */

12



long rcvwin;
long sndwin;
struct sockaddr src;
struct sockaddr dst;
double avg_bandwidth;
double peak_bandwidth;
double avg_delay;
double peak_delay;
double avg_loss;
double peak_loss;
double interval;
unsigned long mtu;
protocol_table *prot; /* pointer to protocol table */
/* entry. */
} protocol;

/* Quality of service definitions. */

#define QOS_AVG_BANDWIDTH 0x0001 /* Got average bandwidth. */
#define QOS_PEAK_BANDWIDTH 0x0002 /* Got peak bandwidth. */
#define QOS_AVG_DELAY 0x0004 /* Got average delay. */
#define QOS_PEAK_DELAY 0x0008 /* Got peak delay. */

#define QOS_AVG_LOSS 0x0010 /* Got average loss rate. */
#define QOS_PEAK_LOSS 0x0020 /* Got peak loss rate. */
#define QOS_INTERVAL 0x0040 /* Got averaging interval. */
#define QOS_MTU 0x0080 /* Got max transmission unit. */
#define QOS_RCVWIN 0x0100 /* Got receive window size. */
#define QOS_SNDWIN 0x0200 /* Got send window size. */

#define QOS_INTERACTIVE 0x1000 /* Simulate interactive session.*/
#define QOS_SRC 0x2000 /* Got source address. */

#define QOS_DST 0x4000 /* Got destination address. */

#define QOS_SERVER 0xB8000 /* Set up server socket to */

/* accept incoming connections. */

13



#ifndef _ST2_API_H_
#define _ST2_API_H_ 1
#ifndef lint

static char rcsid_st2_api_h[] = "\
@(#) $Header: st2_api.h,v 1.11+ 92/04/03 18:30:20 clynn Exp $ \n”;
/t ——————————————————————————————————————————————————————————————————— *

Copyright (c) 1991-1992 by BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.

Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice
and this permission appear in all copies and in supporting
documentation, and that the name of Bolt Beranek and Newman
Inc. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission. BBN makes no representations about the suitability
of this software for any purposes. It is provided "AS IS”
without express or implied warranties.

#endif lint

/t

M* st2_api.h ST-II Application Programming Interface Definitions.
M'ﬁ

M* Thie include file contains the Application Programming

M* Interface Definitions for ST-I1I, an IP-layer protocol for

M* experimentation with guaranteed quality of service, etc. (see
M* RFC 1190 for a description or the ST-II Protocol) . It

M* contains all definitions required by an ST-II Application, and
M* then some. These Application Interface Definitions are, as is
M* ST-II, intended to provide flexibility and permit

M* experimentation. These definitions are for use with a

M* BSD-style sockets interface. To maximize transparency and

M* extensibility, information crosses the O0S/Application

M* interface in network-byte order. This file also contains some
M* architecture and compiler specific datatype definitions.

Mﬁ

m* Status:

m* Features:

m* All the definitions that an ST-II Application should reqguire.
m* Configuration & Management definitions.

m* Data Timestamps.

m* Untested Features:

m* Restrictions/Bugs:

m* No support for Full-Duplex, Changes, full HID Negotiation,

m* ??? Notify, or Status.

m* Things to do:

m* Complete object descriptions.

m* Add more InitXxx definitions.

m* Add support for getsockopt/setsockopt.

mt

14



*
~

/*

* Experimenter Identification, to provide a challenge for the

* monitoring software! If you want to experiment with this software,
* please get yourself a number (they are cheap, send a message to

* stii-bugs@BBN.Com). If you have comments or suggestions, send them
* there, too.

*

* Initial DARTNet experimenters

*/

#define ExperimenterList \

aExp (0x00000000, ExpOofficial, stii-bugs@BBN.Com) \
aExp (0x08000000, ExpBBN, CLynn@BBN . Com) \

aExp (0x04000000, ExpISI, Casner@ISI.Edu) \

aExp (0x0C000000, ExpLBL, ) \

aExp (0x02000000, EXpMIT,) \

aExp (0x0A000000, ExpSRI,) \

aExp (0x06000000, ExpUDel,) \

aExp (0x0E000000, ExpUSC, ) \

aExp (0x01000000, ExpXerox,) \

aExp (0x09000000, ExpINRIA, andry@purcell.inria.fr) \

#define Experimenter ExpOfficial /* Your Experimenter Id goes here */

~
*

Module Revision History

bugid 4,0

$Log: st2_api.h,v $

Revision 1.11 92/04/03 18:30:20 clynn

Release for DARTNet. Virtual Clock enforcement & related changes.

Revigion 1.10 91/11/26 23:10:03 clynn
Made print format of config parameters and stats identical.

Revision 1.9 91/11/04 09:20:56 clynn

Updated for Public Domain Release. Major changes: addition of Source
Routing, IP Encapsulation, HELLO protocol between neighbors, tracking
of neighbors, detection of component or agent failures & notification
to applications. More consistant naming and format, including making
all external names begin with “st2_“. Moved some routines and data
structures to reduce external references.

Added more documentation and added missing pcode parameter to
InitaFlowSpec.

!i***#*iti*#ﬁt‘!##ﬁ't

Revision 1.8 91/05/28 16:17:11 clynn
New features: Add new targets from Application layer, UserData support,
basic bandwidth reservation for point-to-point links, more complete

*

15



state tables, added pcode parameter to InitaFlowSpec3, extended packet
buffer abstraction, added network interface abstraction; ststat utility.
Bug fixes: ADDR IN USE problem, data send problem, causes of some
crashes, cleanup of protocol control blocks.

Work around: DARTNET receive memory leak.

Eliminated several small modules to reduce globals; adeded Makefile.

Revision 1.7 91/04/16 16:13:34 clynn
Comma missing in definition of InitaTarget.

Revision 1.1 91/03/15 18:33:05 clynn
Initial revision

* % % * % = % % % * % * *

/* Definitions that should be in <sys/socket.h> ... */

#ifndef AF_COIP /* Defer to local site */
#define AF_COIP 23 /* COIP protocol family */
#endif AF_COIP /* see also ConfigParm (coip_family) */

#ifndef PF_COIP
#define PF_COIP AF_COIP /* Same value, different semanitcs! */
#endif PF_COIP

/* PF_COIP Definitions for ST (basically. same as for IP) */

#define STPROTO_ST 0 /* Dummy for ST */

/*#define STPROTO_TCP IPPROTO_TCP /* tcp */

/*#define STPROTO_UDP IPPROTO_UDP /* user datagram protocol */
#define STPROTO_RAW 255 /* raw ST packet */

#define IPPROTO_ST 5 /* Assigned Numbers */
/* From <netinet/in.h> ... */

#ifndef INADDR_ANY
#define INADDR_ANY (u_long) 0x00000000
#endif INADDR_ANY

#ifndef s_addr /* Defer to local site */
/*
* Internet address
*/
struct in_addr {
union {
unsigned long S_addr; /* An Internet Address */
} S_un;
#define s_addr S_un.S_addr
}i

16



/*

* Socket address, internet style.

*/

struct sockaddr_in {

short sin_family; /* I.E., AF_INET */

unsigned short sin_port; /* Transport-layer multiplexing info */
struct in_addr sin_addr; /* Identity of a system */

unsigned char sin_zero[8]; /* Unused by AF_INET */

}i
#endif s_addr

/* Portability Definitions */
/* Machine dependent definitions */

#if defined(mc68020) || defined(mc68030) || defined (sparc)
typedef unsigned char octetl;

typedef unsigned short octet2;

typedef unsigned long octetd;

#define octet8 double /* yea, but what's better?? */
#define NetOrder 1

#define ntohl (x)
#define htonl (x)
#define ntoh2 (x)
#define hton2 (x)
#define ntohd (x)
#define htond (x)
#define ntoh8 (x)
#define hton8 (x)
#define ntohIP(x) ((INETADDR) (x))
#define htonIP(x) ((octetd) (x))

WX X X K XXX

#fendif

#if defined (mc68020) || defined(mc68030)
#define ALIGNMENT (1)

#endif defined(mc68020) || defined (mc68030)

#if defined(sparc)
#define ALIGNMENT (3)
#endif defined(sparc)

/* Not to exceed ... */
#define MAX_ST CTL (1024) /* from <sys/mbuf.h> MCLBYTES */
#define MAX ST _NAM (112) /* from <sys/mbuf.h> MLEN */

/* Miscellaneous macros */

17



/* Split a number up into k bytes */

#define Bytesl(n) (n)

#define Bytes2(n) ((n)>>8), (Oxff & (n))

#define Bytes3 (n) {(n)>>16), (Oxff & ((n)>>8})), (Oxff & (n))

#define Bytesd (n) ((n)>>24), (Oxff & ((n)>>16)) ., (Oxff & ((n)>>8)), (0xff & (n))
/* others can be defined as required */

/* Build a symbol from three components */
gdefine Cat2(y,z)Ident(y)z

/* Build a comma-separated list */
#define Cma (x) Xx,

/* Find the dimension of an array */
#define DimensionOf (array) (sizeof (array) / sizeof {array{0]))

/* Read and write IP Addresses */
#define GetIPAdAr (p, subscript) {unsigned long) (p)->IPAdr subscript
#define SetIPAdr (p, subscript,v) (p)->IPAdr subscript = (octetd) Vv

/* Build a symbol from two components */
#define Ident(x)x

/* Compare unsigned long quaantities */
#define LaterThan(A, B) ((((B)-(A)) & ((~0) - ({(uneigned long) (~0) »>> 1))) !=
0) '

/* Bulid an n-bit mask */
#define NBitMask(n) ((1 << (n}) - 1)

/* Round a number up modulo the size of a data type or structure. */

#define ROUND({(n,t) ({((n) + csizeof (t) - 1) & ~ (sizeof (t) - 1))
/*

pP* ST-I1I API Parameter pefinitions.

P&

P* To provide maximum flexibility and extensibility, we make the

p* underlying ST-II Protocol definitions available to the Application.
P* This should make it easier to add new Parameters and Messages for

P* experimental purposes (plus eliminating reformatting by some layer);
P* the dwonside is that the Application isn’'t isolated from changes in

18



p*
p*
*/

/*

the underlying Protocols.

Maximum value of a Parameter's plen field, ((8*sizeof (plen))-1) & ~ 3 */

#idefine MaxPlen (252)

/¥
p* Macros to build specific structures to be passed to ST by Application.
p*

p* For each Parameter we define a structure prototype and
p* structure initializer. The prototypes may be customized by

p* each Application when instantiated (at compile time), thus
p* simplifying (really!) generation of parameters whose
p* structure does not vary within an Application. See the
p* example program (example.c) for one way to use them. NB:

p* Since the order of parameters is not constrained by ST-II
p* these prototypes cannot be used to “parse” parameters passed

p* by ST to the Application!
p*

*/

/* ________________________________________________________________________
/*

P* InstaApplEntity (name, sapbytes,srcruts)
p*
p* Structure to specify Application Entity Identifier pseudo-parameters
p* consisting of the tuple <IPAdr NextPcol SAPBytes SAP>.
p* PCodes: STLclAppEnt, STRmtAppEnt.
p* “name” is the optional name of the variable created.
p* "sapbytes” is the length of the SAP used by the Application (required).
p* “srcruts” is an optional list of Source Route Parameters (InstaSrcRut).
pi

*/

#define InstaApplEntity (name, sapbytes, srcruts) \

struct Ident (aApplEntity)name { \

octetl pcode, plen, NextPcol, SAPBytes; \

octet4 IPAdr; \

octetl SAP[(((sapbytes)+3)/4)*4]; \

srcruts } name

/*
p*
p*
p*
p*
p*
p*
p*

InitaApplEntity (type,self, ipadr,nextpcol, sapbytes, sap,srcruts)

Initializer for an InstaApplEntity.

“type” is either STLclAppEnt or STRmtAppEnt.

“self” is the variable representing the structure, e.g., “name”.
“ipadr” is the desired IP Address {or INADDR_ANY) .

“nextpcol” identifies the protocol layer above ST.

19



p* "sapbytes” is the length of the SAP used by the Application (required).
p* “sap” is a comma-separated list of the bytes of the SAP (see Bytes2).
p* “srcruts” is a list of Source Route Initializers (InitaSrcRut).

pi
*/

#define InitaApplEntity(type,self,ipadr,nextpcol,sapbytes,sap,srcruts) \
{ htonl (type), htonl (sizeof (self)),htonl (nextpcol), \

htonl (sapbytes), htonIP (ipadr), {sap},srcruts }

InstaApplEntity (,4,): /* Generic definition for 1-4 byte SAPs */

/t ________________________________________________________________________ */
/t

P* InstaDetectorIPAdr (name)

p*

p* Structure to specify a Detector IP Address Pseudo Parameter.
p* Passed to application in the control message structure.

p* PCodes: SThetectorIPAdr.

p* “name” is the optional name of the variable created.

p*

*/

#define InstaDetectorIPAdr (name} struct Ident (aDetectorIPAdr)name { \
octetl pcode, plen; \

octet2 pad2; \

octetd IPAdr; } name

InstaDetectorIPAdr (); /* Generic Definition */

/* ________________________________________________________________________ */
/t

P* InstaErrdPDU (name,pdubytes)

p*

p* Structure to specify a Errored PDU Parameter.

p* PCode: STpErrdPDU.

p* “name” is the optional name of the variable created.

p* *pdubytes” is the number of bytes to reserve for the Errored PDU.

pt
*/
#define InstaErrdPDU (name, pdubytes) struct Ident (aErrdPDU) name { \
octetl pcode, plen, pdupbytes, erroroffset; \
octetl pduinerror[(((pdubytes)*B)/4)*4]; } name
InstaErrdPDU {(,4); /* Generic definition, not very useful */
/*
P* InstaFlowSpec (name)
p*

p* Structure to specify Resources required by an Application.

20



p* Multiple versions are expected during the course or the research.
p* All begin with a common 4-byte header which idenitfies the actual
p* version. Ideally, only the Resource Management Module (see
pP* st2_resource.c) actually needs to know the details of the specific
p* versions; we aren’'t quite there yet.
p* PCodes: STpFlowSpec, STpRFlowSpec.
p* “name” is the optional name of the variable created.
p*

*/
#define InstaFlowSpec (name) struct Ident (aFlowSpec)name { \

octetl pcode, plen, FlowVer, filll; } name

InstaFlowSpec (); /* Generic header */

/* ________________________________________________________________________ */
/*

P* InstaFlowSpec3 (name)

p*

p* Structure to specify a Version 3 FlowSpec Parameter.
p* RFC 1190 defines the fields in FlowSpec Version 3.
p* “name” is the optional name of the variable created.
p*

*/
#define STFSVer3 (3) /* Version of RFC 1190 */
#define STFSImpAll (0xB00O)
##define STFSUnknown (0x4000)
#define STFSRevChrg (0x2000)

#idefine InstaFlowSpec3 (name) struct Ident (aFlowSpec3)name { \
octetl pcode, plen, FlowVer, Hops, DutyFactor, ErrorRate, \
Precedence, Reliability; \

octet2 Tradeoffs, RecoveryTimeout, LimitOnCosts, LimitOnDelay, \
LimitOnPDUBytes, LimitOnPDURate; \

octetd4 MinBytesXRate, AccdMeanDelay, AddDelayVariance; \

octet2 DesPDUBytes, DegsPDURate; } name

/*

P* InitaFlowSpec3 (pcode,minbytes,minpps,minbw, desbytes, despps)
p*
p* Initializer for a Version 3 Flowspec for use by Applications
p* only interested in specifying packet gize and rate information.
p* "minbytes” is the minimum acceptable number of bytes per packet.
p* "minpps” is the minimum acceptable number of Data packets per second.
p* “minbw” is the minimum acceptable bandwidth (bytes * packets/second).
p* “desbytes” is the (largest useful) desireable number of bytes per packet.
p* “despps” is the (largest useful) desireable number of packets/second.
p*

*/
#define APIRecoveryTimeout (0) /* msec (default) */
#idefine APILimitOnDelay (2000) /* msec */

21



#define InitaFlowSpec3(pcode,minbytes,minpps,minbw,desbytes,despps) \
{ ntonl (pcode),htonl (sizeof (struct aFlowSpec3)), htonl (STFSVer3), \
0,0,0,0,0,0,hton2 (APIRecoveryTimeout), 0, hton2 (APILimitOnDelay), \

hton2 ((minbytes)),hton2 (((minpps)*10)),hton4 (({(minbw)*10)),0,0, \

hton2 ((desbytes)),hton2 (((despps)*10)) }

InstaFlowSpec3 (); /* Generic Version 3 FlowSpec */

/'k ------------------------------------------------------------------------ */
/*

P* InstaFreeHIDs (name,nmasks)

p*

p* Structure to specify a Free HIDs Parameter.

p* PCodes: STpFreeHIDs.

p* “name” is the optional name of the variable created.

p* "nmasks” is the number of 32-bit HID mask words allocated (required).

p*
*/

#define InstaFreeHIDs (name,nmasks) struct Ident (aFreeHIDs)name { \
octetl pcode, plen; \

octet2 basehid; \

octetd freehidbitmask([ nmasks ]; } name

InstaFreeHIDs (,2); /* Generic FreeHIDs w/ 64-bits */

/t ________________________________________________________________________ */
/*

P* InstaGroup (name, nsubgroups)

p*

p* Structure to specify a Group or Reverse Group Parameter.
p* PCodes: STpGroup, STpRGroup.
p* “name* is the optional name of the variable created.
p* "nsubgroups” specifies the number of sub-group slotes allocated (required).
pt
*/
#define InstaGroup (name,nsubgroups) struct Ident (aGroup)name { \
octetl pcode, plen; \
octet2 UniqId; \
octetd IPAdr, Timstmp; \
struct msubgroup \
{ octet2 subgroupid, relation; \
} subgroups [nsubgroups]; } name

InstaGroup (,1}; /* Generic Group/RGroup Parameter */

/* ------------------------------------------------------------------------ */
/*

P* InstaHID (name)

pi

22



p* Structure to specify a HID or Reverse HID Parameter.

P* An SCM Notify or StatusResponse PDU may contain multiple HID Parameters.
p* PCodes: STpHID, STpRHID.

p* ”"name” is the optional name of the variable created.

p*

*/
#define InstaHID(name) struct Ident (aHID)name { \
octetl pcode, plen; \

octet2 hid; } name

InstaHID () ; /* Generic HID Parameter */

/* ________________________________________________________________________
/*

P* InstaMcastAdr (name,mlen)

p*

P* Structure to specify a Multicast Address Parameter.

p* PCodes: STpMcastAdr.

pP* “name” is the optional name of the variable created.

P* “mlen” is the number of bytes in the local net layer multicast address
p* (required).

p*
*/
#define InstaMcastAdr (name,mlen) struct Ident (aMcastAdr)name { \
octetl pcode, plen, localnetbytes, fillil; \
octetd ipmulticastaddress; \
octetl localnetmulticastaddress([ (((mlen)+3)/4)*4 ]; } name
InstaMcastAdr (,6); /* McastAdr Parameter for Ethernets */
/* ________________________________________________________________________
/*
P* InstaName (name)
p*

p* Structure to specify a Name or Reverse Name Parameter.
p* PCodes: STpName, STpRName.
p* “name” is the optional name of the variable created.

p*

*/
#define InstaName (name) struct Ident (aName)name { \
octetl pcode, plen; \

octet2 Uniqld; \

octetd IPAdr, Timstmp; } name
InstaName () ; /* Generic Name/RName Parameter */

#define sizeofaName (sizeof (struct aName))

23



/*

P* InstaNxtHopIPAdr (name)

p*

p* Structure to specify a Next-Hop IP Address Parameter.

p* Used with the Notify SCMP message to identify a potential routing problem.
p* PCodes: STpNxtHopIPAdr.

p* “name” is the optional name of the variable created.

pi
*/

#define InstaNxtHopIPAdr {name) struct Ident (aNxtHopIPAdr) name { \
octetl pcode, plen; \

octetd IPAdr; } name

InstaNxtHopIPAdr (): /* Generic NxtHopIPAdr Parameter */

/* ________________________________________________________________________ */
/t

P* InstaOrigin {(name, sapbytes)

p*

p* Structure to specify a Origin Parameter.

p* PCodes: STpOrigin.

p* “name” is the optional name of the variable created.

p* “sapbytes” is the length of the SAP used by the Application (required).

p*

*/
#define InstaOrigin(name, sapbytes) struct Ident (aOrigin)name { \
octetl pcode, plen, NextPcol, SAPBytes. \

octet4 IPAdr; \

octetl SAP[ (((sapbytes)+3)/4)*4 ]; } name

InstaOrigin (,4); /* Generic Origin for 1-3 byte SAPs */

/*

P* InstaOrgTemp (name)

p*

p* Structure to specify a Origin Timestamp Parameter.
p* PCodes: STpOrgTsmp.

p* “name” is the optional name of the variable created.

pt

*/
#define InstaOrgTsmp (name) struct Ident (aOrgTsmp) { \
octetl pcode, plen; \

octet2 £i112; \

octetd timesec, fractsec; } name

InstaOrgTsmp () ; /* Generic Origin Timestamp Param */

24



/*

P* InstaParameter (name)

p*

p* Structure to specify a Generic Parameter.

p* PCodes: <all>.

p* "name” is the optional name of the variable created.

p*

*/
#define InstaParameter (name) struct Ident (aParameter)name { \
octetl pcode, plen; \

octet2 pdatal; \

octetd pdatad; } name

InstaParameter (); /* Generic Parameter */

/* ________________________________________________________________________
/*

P* InstaReasonCode (name)

p*

p* Structure to specify a Reason Code Pseudo Parameter.
p* Reason (failure) codes are communicated between the Application and
P* ST using this pseudo parameter.
p* PCodes: STReasonCode.
p* “name” is the optional name of the variable created.
p*
*/

#define InstaReasonCode (name) struct Ident (aReasonCode) name { \
octetl pcode, plen; \
octet2 reason; } name

/-h

P* InitaReasonCode (reason)

p*

p* Initializer for a Reason Code Pseudo Parameter.

pP* “reason” is the appropriate enum ST2Errors symbol.

p*
*/

#define InitaReasonCode (reason) \
{ htonl (STReasonCode),htonl (sizeof (struct aReasonCode) ), \
hton2 (({octet2) reason)) }

InstaReasonCode (}; /* Generic Reason Code Parameter */

/* ________________________________________________________________________
/*

P* InstaRecordRoute (name, naddrs)

p*

p* Structure to specify a Record Route Parameter.
p* PCodes: STpRecordRoute.

25



p* “name” is the optional name of the variable created.
p* “naddrs” specifies the number of IP Address slots to be allocated
p* (required).

p*

*/
#define InstaRecordRoute (name,naddrs} struct Ident (aRecordRoute) name { \
octetl pcode, plen, £filll, freeoffset; \

octetd4 IPAAr [naddrs]l; } name

InstaRecordRoute (,1); /* Generic Record Route Parameter */

/t ________________________________________________________________________ */
/%

P* InstaSrcRut (name,naddrs)

p*

p* Structure to specify a Source Route Pseudo Parameter.

p* These pseudo parameters is used within a Target gspecification to
p* specify source routing information. They may appear multiply and
p* in any combination per Target.

p* PCodes: STpIPLSrcRut, STpIPSSrcRut, STpSTLSrcRut, STpSTSSrcRut.

p* “name” is the optional name of the variable created.

p* “naddrs” specifies the number of IP Address slots to be allocated.

pt

*/
#define InstaSrcRut (name,naddrs) struct Ident (aSrcRut)name { A\
octetl pcode, plen; \

octet2 £ill2; \

octetd IPAdr[naddrs]; } name

/*

P* InitaSrcRut (type,self, ipaddrs)

p*

p* Initializer for a Source Route Parameter.

p* “type” is one of STpIPLSrcRut, STpIPSSrcRut, STpSTLSrcRut, or STpSTSSrcRut.

p* “self” is the variable representing the structure, e.g., “name”.
p* “ipaddrs” is a list of "Cma(“ IP Address “)" es forming the route.
pi

*/
#define InitaSrcRut{type,self, ipaddrs) \

{ htonl (type),htonl (sizeof (self)),0, {ipaddrs} }

InstaSrcRut (,1); /* Generic Source Route Parameter */
/* NB: sizeof () is minimum valid size */
/* ________________________________________________________________________ */
/-ﬁ
P* InstaTarget (name,sapbytes,srcruts)
p*

p* Structure to specify a Target, used within a Target List Parameter.
p* “name” is the optional name of the variable created.

26



p* “sapbytes” is the length of the SAP used by the Application (required).
p* “srcruts” is an optional list of Source Route Parameters {(InstaSrcRut).
p*
*/
#define InstaTarget (name, sapbytes, srcruts) struct Ident {aTarget)name { \
octet4d IPAdr; \
octetl TargetBytes, SAPBytes; \
octetl SAP[((((sapbytes)+1)/4)*4)+2]; \
srcruts } name

/*
P* InitaTarget (self, ipadr, sapbytes, sap,srcruts)
p*
p* Initializer for a Target Specification.
p* “self” is the variable representing the structure, e.g., “name"”.
p* “ipadr” is the desired IP Address (or INADDR_ANY) .
p* “sapbytes”is the length of the SAP used by the Application (required).
p* “sap” is a comma-separated list of the bytes of the SAP (see Bytes2).
p* “srcruts” is a list of Source Route Initializers (InitaSrcRut).
p*
*/
#define InitaTarget (self, ipadr, sapbytes, sap, srcruts) \
{ htonIP ((ipadr)),htonl (sizeof (self)),htonl ((sapbytes)), {sap},srcruts },

InstaTarget (,2,); /* Generic Target for 1-2 byte SAPs */

#define minsizeofaTarget (8)

P* InstaTargetList (name, targets)

p* Structure to specify a Target List Parameter.

p* PCodes: STpTargetList.

p* “name” is the optional name of the variable created.

p* "targets” is a list of Target Specifications (InstaTarget).

p*

*/
#define InstaTargetlList (name, targets) struct Ident (aTargetList)name { \
octetl pcode, plen; \

octet2 TargetCount; \

targets } name

/*

P* InitaTargetList (self,ntargets, targets)

p*

p* Initializer for a Target List Parameter.

p* “self” is the variable representing the structure, e.g., “name”.

p* “ntargets” specifies the number of Target Specifications in the List.
p* “targets” is a list of Target Specification Initializers (InitaTarget).

p*

27



*/
#define InitaTargetList (self,ntargets, targets) \
{ htonl (STpTargetList),h htonl (sizeof (self)),hton2 (ntargets),targets }

InstaTargetList (,struct aTarget targets(l];); /* Generic Single Target */

InstaTargetList (header,)aTargetList; /* Generic header w/o any Targets */
#define sizeofaTargetListHeader (sizeof (struct aTargetListheader))

P* InstaUserData (name,bytes)

p* Structure to specify a User Data Parameter.

p* It may be used by an Application to communicate setup(or teardown)
p* information between the Origin and Targets of a Stream.

p* PCodes: STpUserData.

p* "name” is the optional name of the variable created.

p* “bytes” is the number of bytes of space to be allocated.

p*
*/

#define InstaUserData (name,bytes) struct Ident (aUserData)name { \
octetl pcode, plen; \
octet2 userlen; \

octetl userdatal[{(bytes+3)/4)*4]; } name

InstaUserData (,4); /* Generic User Data Parameter, 1-3 bytes */

/vh ________________________________________________________________________ */
/*

p* Instsockaddr_st2 (name,st_parms)

p*

p* Structure to specify an ST-II sockaddr.
p* ST Requests (enum STRequests) are specified implicitly with certain
p* BSD-style socket calls {bind, connect, listen, accept) or explicitly
p* in the ST-II sockaddr (and cemsghdr) structures.
p* “name” is the optional name of the variable created.
p* “st_parms” is a list of ST Parameters (InstXxx) .
p*
*/
#define Instsockaddr_st2(name,st_parms) struct Ident (sockaddr_st2)name { \
unsigned short sa_family; /* AF_COIP */ \
unsigned char st_options; /* enum STOptions */ \
unsigned char st_request; /* enum STReguests */ 0\
unsigned long st_handle; /* ffs */ \
unsigned long st_sec, st_fract; /* NTP-format Data Timestamp */ \
st_parms } name

/i
P* Initsockaddr_st2 (req,opt)

28



p*
p* Initializer for a Target List Parameter.
p* “req” is an element of enum STRequests.
p* "opt” is an “|"-separated list of ST Options (enum STOptions) .
p*
*/
#define Initsockaddr_st2(req,opt) AF_COIP,opt,req,0,0,0

Instsockaddr_st2 (,struct aParameter st_parms(l];): /* Generic ST sockaddr */

Instsockaddr_st2 (header, )sockaddr_st2; /* Generic header */
#define sizeofsockaddr_st2header (sizeof (struct sockaddr_st2header))

/'k
O* ST Options.
O*
o* Options may appear in the st_options field of a sockaddr_st2 structure.
O*
* For each field/bit combination, we define the bit mask, name, and
* description of the Option.
*
* aSTOption (value, name,description)

*/

#define STOptionList \

aSTOption (0x80,STOptlsocket,Bind (no support)) \
aSTOption (0x40,STOptPBit, CONNECT/ACCEPT PTP option) \
aSTOption (0x20,STOptSBit, CONNECT/ACCEPT NoRecovery) \
aSTOption (0x10,STOptLBit, CONNECT LockPath option) \
aSTOption (0x03,STTSR,CONNECT/ACCEPT Data Timestamp) \
aSTOption (0x00,STTSRNotImp, CONNECT/ACCEPT) \
aSTOption (0x01, STTSRNo, CONNECT/ACCEPT) \

aSTOption (0x02,STTSRYes, CONNECT/ACCEPT) \

aSTOption (0x03, STTSROpt, CONNECT/ACCEPT) \

aSTOption (0xEQO,STDataPriority,Data priority send/recv) \
aSTOption (0x10,STDataTBit,Data Timestamp send/recv) \

enum STOptions {

#define aSTOption(bits, name,desc) name = bits,
STOptionList

syntaxfixer

#undef aSTOption

}i

/*
O* ST Requests.
o*

29



o* Requests may appear in the st_request field of a sockaddr_st2 structure
o* or the cmsg_type field of a cmsghdr structure.

O*

* For each Request or Message OpCode, we define the value, name, and
* degscription of the Request. (Not all SCMP Messages are directly

* available to the Application Layer.)

*

* aReq (value,name,comment)

*

*

ApplicationSpecificRequests is proviced to allow applications to
* insert additional (non-ST-II) elements in the enumeration, if desired.

*/

#define STRequestList \

aReq (0, STRegUnspec, App->ST request as per function or ST->App No notification
or data) \

aReq (1, STReqAccept, App->ST ACCEPT connection or ST->App CONNECT received) \
xReq (2, Ack,) \

aReq (3, STRegqChange, CHANGE sent/received) \

aReqg (4, STRegChangeRequest, App->ST request origin to make change or ST->App
requested change) \

aReq (5, STRegConnect, App->ST send CONNECT) \

aReq (6, STRegDisconnect, App->ST send DISCONNECT) \

xReq (7, ErrorInRequest,) \

xReq (8, ErrorInResponse,) \

xReq (9, Hello,) \

xReq (10, HIDApprove,) \

xReqg(11l,HIDChange,) \

xReq (12, HIDChangeRequest,) \

xReg(13,HIDReject,)} \

aReqg(14,STRegNotify,NOTIFY sent/received) \

aReg (15, STRegRefuse, App->ST send REFUSE) \

aReg {16, STReqgStatus, Request for status) \

aReqg(17,STRegStatusResponse, Status response) \

xReq(18,x18,)
xReqg (19,x19,)
xReq (20,x20,)
xReqg (21,x21,)
xReq(22,x22,)
xReq(23,x23,)
xReq(24,x24,)
xReq(25,x25,)
xReqg(26,x26,)
xReq(27,x27,)
XReqg(28,x28,)
xReq (29,x29,)
xReqg (30,x30,)
xReq(31,x31,)
aReq(32,STCt1lPending, Control information is waiting for application) \
aReq (33, STRegBind, App->ST bind () ) \

aReq (34, STReqGroupName, Request a unique GroupName) \

aReqg (35, STReqGroupRel, Release a GroupName) \

P A A A A G A A A A e

30



aReq (36, STReqParms, App->ST specify parametrers) \

#define MAX ST REQUEST (36+1)

#ifndef ApplicationSpecificRequests
#define ApplicationSpecificRequests
#endif

enum STRequests {

#define aReg(value, name, comment) name = value,
#define xReq(value, name, comment)

STRequestList

ApplicationSpecificRequests

#undef xReq

#undef aReg

NUM_ST REQUESTS

i

/* SCM Protocol definitions */

Define each SCMP Message (OpCode) object. For each object, we specify the
value

name

QB (option bit)

QM (mandatory parameter)

QO (optional parameter)

QV(r/s VLI4 regquired)

as per the ST-II Protocol Specification (RFC 1190).

Due to C deficiencies, must be in numberic order, starting at 0, w/o any
gaps.

* % %+ * ¥ * * ¥ * B %

/* ??? Add properties of object, */

/* e.g., permit 0 rvlid (Connect, Hello, Status, ?Notify) */
/* ??? Option bits (OB ()), required recv VLIds */

/* ??? add Query/Response, ..., merge api STReq* */

#define ST20pCodes \

anOpCode (0, BadOpCode, ,,,) \

anOpCode (1, Accept, , QM (STDetectorIPAdr) QM (STpName) QM (STpFlowSpec) \
QM (STpTargetList), \
Q0 (STpRecordRoute) QO(STpRFlowSpec) QO (STpRName) \
QO (STpUserData), \
QV(R) Qv(s)) \

/* HELLOs don't have Names, so neither can their ACKs */ 0\

anoOpCode (2, Ack, , QM (STReasonCode) , QO (STpName) ,QV(R) QV(S)) \

anOpCode (3, Change, QB(G) ,QM(STDetectorIPAdr) QM (STpName) OM (STpFlowSpec), \
QO (STpTargetList) QO{(STpUserData), \

31



QV(R) QV(S)) \
anOpCode(4,ChangeRequest,QB(G),QM(STDetectorIPAdr) QM (STpName) \
OM (STpFlowSpec), \
QO (STpTargetList) QO {(STpUserData), \
QV(R) QV(S)) \
anOpCode (5, Connect, QB (H) QB(P) QB(S) QB(TSP), \
QM (STDetectorIPAdr) QM (STpName) QM(STpOrigin) QM (STpFlowSpec) \
QM{STpTargetList),b QO (eHID) Q0 (STpGroup) QO (STpMcastAdr) \
QO (STpRecordRoute) QO (STpRFlowSpec) QO (STpRGroup) QO (STpRHID) \
QO (STpUserData), \
Qv(s)) \
anOpCode(6,Disconnect,QB(G),QM(STReasonCode) QM (STDetectorIPAdr) QM(STpName),
\
QO (STpTargetList) QO (STpUserData), \
QV(R) QV(S)) \
anOpCode(7,ErrorInRequest,,QM(STReasonCode) OM (STDetectorIPAdr), \
QO (STpName) QO (STpErrdpDU) QO (STpTargetList), \
QVI(R)) \
anOpCode(B,ErrorInResponse,,QM(STReasonCode) QM (STDetectorIPAd4r), \
QO (STpName) QO (STpErrdPDU) QO (STpTargetList), \
QV (R} QV(S)) \
anOpCode(Q,Hello,QB(R),QM(eHelloTimer),QO(STpOrgTsmp),QV(S)) \
anOpCode(lO,HidApprove,,QM(eHID) QM (STpName) , QO (STpFreeHIDs) , \
QV(R) Qv (S)) \

anOpCode (11, HidChange, QB (A) QB (D), QM (eHID) QM(STpName},, \
QV(R) QV(S)) \
anOpCode (12, HidChangeRequest, QB (3) QB(D),QM(eHID) QM(STpName),, \

QV(R) QV(S)) \

anOpCode(lS,HidReject,,QM(eHID) QM (STpName) , QO (STpFreeHIDs), \

QV(R) QV(S)) \

anOpCode(l4,Notify,,QM(STReasonCode) OM (STDetectorIPAdr) , QO (STpPErrdPDU) \
QO (STpFlowSpec) QO (STpHID) QO (STpName) QO (STpNxtHopIPAdr) \

QO (STpRecordRoute) QO (STpTargetList),) \

anOpCode(lS,Refuse,,QM(STReasonCode) OM(STDetectorIPAdr) QM(STpName) \
QM (STpTargetList), \

QO (STpErrdPDU) QO (STpRecordRoute) QO (STpUserData), \

QV(R) QV(S)) \

anopCode (16, Status, QB (H) QB(Q) , QM (eHID), QO (STpRName) ,QV(S)) \

anOpCode (17, StatusResponse, QB (H) OB (Q) ,QM{eHID) QM{STpRName), \

QO (STpFlowSpec) QO (STpGroup) QO (STpHID) QO (STpTargetList), \

QV(R})) \

/* ??? add connect-request */

#ifdef DOCUMENTATION

a) g - ErrorInRequest, r - ErrorInReply, n - nNno error
b) a - DoAcknowledge

¢) has rx parameters

d) wants a valid vlinkp
e) f- notify_pending_Forwarder, t - notify_pending_Target,

32



value,

d - disconnect_Forwarder, all disconect_Target
f) st2_PCBUpdate
g) relay message, q - queue_accepts
[ a | b Je¢ | d | e | £ | g |
+————= +em———— +-———- +—— - +————- +-——-=-=- +-————- +
BadOpCode | q? | | | I | | |
Accept | q@ | a | y | na | t I b v/q |
Ack | r | ! Iy | £ Il 'y | n |
Change | q | I +2 | ¥y | | I I
ChangeRequest | q | F+1 | vy | I I I
Connect | q | Iy | ! | | |
Disconnect | q | a | yv | y | 4 Iy i
ErrorInRequest | n | ] |y | £ ] vy | n |
ErrorInResponse | n | | Iy | £ |y | n |
Hello | q | | | | I | |
HidApprove | r | | | v | £ Iy | |
HidChange | q | Iy | [ I I |
HidChangeRequest | g | | -1 | ] | | ]
HidReject | r | I 'y | £ Iy | I
Notify | q | Iy | I | | |
Refuse | q | a | y | y | 2 I 2?2 1 ¥y |
Status | q | I I | | | !
statusResponse | q | ] ] ] | | |
#tendif DOCUMENTATION
enum OpCodes {
#define anOpCode{value, name,bits, mparm,oparm,vlids) Ident (Op)name
ST20pCodes
#undef anOpCode
NUM_ST_OPCODES
Y
/* ________________________________________________________________________
/* Define each PCode object.
* For each object, we specify the value, structure prefix, enum
* prefixm, name, min and max lengths, and <more later>, as per
* the ST-1I spec.
*
* aPCode (value,struct-prefix,pcode-prefix, (base)name,minlen,maxlen, x)
* gsPCode - source routes, tPCode - targetlist, xPCode - internal
*/

#define ST2PCodes \
xPCode (0,x,p, Bogus, 0, 0,Catch unspecified parameter code) \
aPCode(l,a, STp, ErrdPDU, 4, 252, Copy of Errored SCM PDU)

aPCode(2,a,STp, FlowSpec, 36,36, FlowSpec describing Resource Requirements)

aPCode(3,a,STp, FreeHIDs, 8,36 \
,Masks of HIDs which are available at the sender) \

33

\

\



aPCode (4,a, STp, Group, 12,28, Information specifying a Group of Streams) \
aPCode(5,a,STp,HID, 4,4 \

,Identifies HID in use by a stream between two ST Agents) \
abPCode (6,a, STp,Mcastadr, 8,20, Communicate multicast address information) \
aPCode(7,a,STp,Name,12,12,Identify a Stream) \
aPCode (8, a, STp, NxtHopIPAdr, 8, 8, Communicate a Next Hop IP address) \
aPCode (9,a,STp,Origin,8,16,Identify the Origin of a Stream) \
aPCode (10, a, STp,OrgTsmp, 12, 12, Communicate Time at Origin when Data was sent)

\
aPCode (11, a,STp, RecordRoute, 4,252 \

, Parameter to collect stream path information) \
aPCode (12, a, STPR, FlowSpec, 36,36 \

,FlowSpec describing reverse Resource Requirements) \
aPCode (13,a, STpR, Group, 12,28 \

,Information specifying a reverse Group of Streams) \
aPCode(14,a,STpR,HID, 4,4,Specify HID to be used by Reverse Stream) \
aPCode (15, a, STpR, Name, 12,12, Identify a Reverse Stream) \
sPCode (16,a, STpIPL, SrcRut, 4,252, Loose IP Source Route)} \
sPCode(17.a,STpIPS, SrcRut, 4,252,Strict IP Source Route) \
sPCode (18, a, STpSTL, SrcRut, 4,252, Loose ST Source Route) \
sPCode (19, a, STpSTS, SrcRut, 4,252, Strict ST Source Route) \
tPCode (20, a, STp, TargetList,12,252,List of Targets for a Stream) \
aPCode(21,a,STp,UserData, 4,252 \

,Communicate Application Data at Setup/Teardown) \
xPCode (22,no0,x%x,22,0,0,x) \
xPCode(23,no0,x,23,0,0,x) \
xPCode (24,no,x,24,0,0,x) \
xPCode (25, aApplEntity, STLclAppEnt, , 8,252 \

,Local Application Entity <IPAdr NextPcol SAPBytes SAP>) \
xPCode (26, aApplEntity, STRmtAppEnt, , 8,252 \

,Remote Application Entity <IPAdr NextPcol SAPBytes SAP>) \
xPCode (27 ,no, e, HelloTimer,4,4,x) \
xPCode (28, no,e,HID,2,2,x) \
xPCode (29, a,ST,DetectorIPAdr,4,4,x) \
xPCode (30, a, ST, ReasonCode, 2,2,x) \

/* ?7? add accounting info */
/* 2?7 add stats info */

enum PCodes {

#define aPCode(v,s,p.n,mn,mx,x) Ident (p)n =
#define sPCode(v,s,p,n,mn,mx,x) Ident (p)n =
#define tPCode(v,s,p,n,mn, mx,x) Ident (p)n =
#define xPCode(v,s,p,n,mn,mx,x) Ident (p)n =
ST2PCodes

#undef xPCode

#undef tPCode

#undef sPCode

#undef aPCode

4 < <<

NUM_ST_PARMS

34



/*
* Level number for [gs]letsockopt () to apply to ST.
*/

#define SOL_STII (1190) /* ST-II (RFC 1190) option level */

/*

* [gsletsockopt () options

*

* NB: ST socket option codes are an extension of the user request
* function (pr_usrreq in struct protosw) codes (PRU_xxx) defined
* in <sys/protosw.h>. A gap is left after PRU_NREQ for growth.

* (*protosw[] .pr_usrreq) (so, PRU_xxx, m, nam[sockaddr], opt);

*

* getsockopt ( int s, level, option, caddr_t val, int *vallen )

* setsockopt ( int s, level, option, caddr_t val, int vallen )

* However, they use the pr_ctloutput function.

* {(*pr_ctloutput) ( PRCO_[GF]SETOPT, so, level, opt, struct mbuf **m0 )
* returning a UNIX errno.

*/

#define STOptPriority (65)

/*
* Control structure used with recvmsg () and sendmsg () and [gs)etsockopt ()

*/

/*

P* Instcmsghdr (name,parms)

p*

p* Structure to specify a Control Message Header.

p*

p* Used with getsockopt and setsockopt as well as forming the contents
p* of the mesg_accrights field of the msghdr structure used with
p* recvmsg and sendmsg system calls.

p*

p* "name” is the optional name of the variable created.

p* “parms” is a list of ST Parameter specifications (InstaXxx).

p*

*/

#define Instcmsghdr (name, parms) struct Ident (cmsghdr)name { \
unsigned int cmsg_len; \

int cmsg_level, cmsg_type; \

parms } name

/*

35



P* Initcmsghdr (self, request)

pi
p* Initializer for a Control Message Header.
p* “self” is the variable representing the structure, e.g., “name”.
p* “request” is the appropriate enum STRequest symbol.
pt
*/

#define Initcmsghdr(self,request) sizeof (self),SOL_STII,request
Instemsghdr (,unsigned char cmsg_datald];); /* Generic cmsghdr */

Instcmsghdr (header, )cmsghdr:; /* Generic Header only */
#define sizeofCMsgHdr (sizeof (struct cmsghdrheader))

/* ________________________________________________________________________
/*

P* InitMsg (p,name,namelen, iov,niov,ctl,ctllen)

pt

p* The recvmsg () and sendmsg () calle use the struct msg structure.

p* “p” is a pointer to the struct msg.

p* "name” ig a pointer to a struct sockaddr_st2.

p* “namelen” is the length of the sockaddr_st2.

p* “iovp” is a pointer to a struct iov array.

p* “niov” is the number of entries in the struct iov array.

p* *“ctlp” is a pointer to a struct cmsghdr containing a Parameter list.
p* “ctllen” is the length of the cmsghdr and Parameters.

pi
*/

#define InitMsg (p,name,namelen, iovp,niov,ctlp,ctllen) \
(p) ->msg_name = (caddr_t) (name); \
(p) ->msg_namelen = (namelen); \
(p) ->msg_iov = (struct iovec *) (iovp): \
(p)->meg_iovlen = (niov); \
(p)->msg_accrights = (caddr_t)} (ctlp); \
(p)->msg_accrightslen = (ctllen);

/*
* Error Handling
*

* Needs more work :-)

* What do you do if you DETECT an error

* What do you do if you RECEIVE an error

* Might depend on whether in relation to a previous-hop or a next-hop

* How does the user get informed so that something meaningful can be done
* How to do generic translation between ST errors and native (0OS) errors

36



#idefine ErrorFlagList \

anEFlg (FatalGroup, Error requires group to be removed) \

anEFlg (FatalStream, Error requires stream to be removed) \

anEFlg (FatalTarget, Error requires target to be removed) \

anEFlg (FatalHop, Error requires all targets to nexthop to be removed) \
anEFlg (FatalNet, Error requires all targets reached via net to be removed) \
anEFlg (Reroute, Error requires rerouting) \

anEFlg{(Warning,No action required) \

enum errorflags {

errorflag0 = 0, /* zero is unspecified */
#define anEFlg(name, desc) name,
ErrorFlaglList

#undef anEFlg
}i

/* ________________________________________________________________________

/
ReasonCode

Define ST-II Error Objects. For each error: (internal) value, external
name, internal name, control flags, and description.

ApplicationSpecificErrors is proviced to allow applications to
ingsert additional (non-ST-II) elements in the enumeration, if desired.

* % % A % % O % *

~

#define ST2ErrorList \
ankError (0, NoError,NoError, Q (Warning) \
.No error has been detected) \
anError (1, ErrorUnknown, ErrorUnknown, Q (FatalStream) \
.An error not contained in this list has been detected) \
anError (2, AcceptTimeout, AcceptTimeout, Q(FatalTarget) \
,An Accept has not been acknowledged) \
anError (3, AccessDenied, AccessDenied, Q(FatalStream) \
.Access denied) \
anError(4,AckUnexpected,AckUnexpected,Q(Warning) \
,An unexpected ACK was received) \
anError (5, ApplAbort, ApplAbort, Q(FatalStream) \
.The application aborted the stream abnormally) \
anError (6, ApplDisconnect, ApplDisconnect, Q (FatalTarget) \
.The application closed the stream normally) \
anError (7, AuthentFailed, AuthentFailed, Q(FatalStream) \
,The authentication function failed) \
anError(B,CantGetResrc,CantGetResrc,Q(FatalTarget) \
.Unable to acquire (additional) resources) \
anError (9, CantRelResrc, CantRelResrc, Q (Warning) \
.Unable to release excess resources) \
anError (10, CksumBadCtl, CksumBadCtl, Q(Warning) \
A received control PDU has a bad message checksum) \

37



anError(ll,CksumBadST,CksumBadST,Q(Warning) \
,A received PDU has a bad ST Header checksum) \
anError(12,DropExcley,DropExcley,Q(Warning) \
,A received PDU was dropped because it could not be processed within the
delay specification) \
anError(13,DropExchTU,DropExchTU,Q(Warning) \
,A received PDU was dropped because its size exceeds the MTU) \
anError(14,DropFailAgt,DropFailAgt,Q(Warning) \
,A received PDU was dropped because of a failed ST agent) \
anError(15,DropFailet,DropFailet,Q(Warning) \
,A received PDU was dropped because of a host failure) \
anError(16,DropFailIfc,DropFailIfc,Q(Warning) \
,A received PDU was dropped because of a broken interface) \
anError(17,DropFai1Net,DropFailNet,Q(Warning) \
,A received PDU was dropped because of a network failure) \
anError(18.DropLimits,DropLimits,Q(Warning) \
,A received PDU was dropped because it exceeds the resource limits for its
stream) \
anError(19,DropNoResrc,DropNoResrc,Q(Warning) \
,A received PDU was dropped due to no available resources (including
precedence)) \
anError(20,DropNoRoute,DropNoRoute,Q(Warning) \
,A received PDU was dropped because of no available route) \
anError(Zl,DropPriLow,DropPriLow,Q(Warning) \
,A received PDU was dropped because it has a priority too low to be
processed) \
anError(22,DuplicateIgn,DuplicateIgn,Q(Warning) \
,A received control PDU ig a duplicate and is being acknowledged) \
anError(23,DuplicateTarget,DuplicateTarget,Q(Warning) \
,A received control PDU contains a duplicate target or an attempt to add an
existing target) \
anError(24,FailureRecovery,FailureRecovery,Q(Warning) \
,A notification that recovery is being attempted) \
anError(25,FlcherBad,FlowVerBad,Q(FatalStream) \
,A received control PDU has a FlowSpec Version Number that is not supported)
\
anError(26,GroupUnknown,GroupUnknown,Q(Warning) \
,A received control PDU contains an unknown Group Name) \
anError(27,HIDDeferrendst,HIDDeferrendst,Q(Warning) \
,Deferred HID selection gspecified with multicast group) \
anError(28,HIDNegFails,HIDNegFails,Q(FatalHop) \
,HID negotiation failed) \
anError(29,HIDUnknown,HIDUnknown,Q(FatalHop) \
,A received control PDU containg an unknown HID) \
anError(30,InconsistHID,InconsistHID,Q(FatalHop) \
,An inconsistency has been detected with a stream Name and corresponding HID)
\
anError(31,InconsistGroup,InconsistGroup,Q(Warning) \
,An inconsistency has been detected with the streams forming a group) \
anError(BZ,Intchailure,Intchailure,Q(FatalNet) \
,A network interface failure has been detected) \
anError(33,InvalidHID,InvalidHID,Q(FatalHop) \
,A received ST PDU containe an invalid HID) \

38

e



anError (34, InvalidSender, InvalidSender,Q(FatalStream) \

A received control PDU has an invalid SenderIPAddress field) \
anError (35, InvalidTotByt, InvalidTotByt,Q(FatalStream) \

.A received control PDU has an invalid TotalBytes field) \

anError (36, LnkRefUnknown, LnkRefUnknown, Q (FatalHop) \

,A received control PDU contains an unknown LnkReference) \

anError (37, NameUnknown, NameUnknown, Q (FatalHop) \

A received control PDU contains an unknown stream Name (bad format?)) \
anError (38, NetworkFailure, NetworkFailure, Q (FatalNet) \

A network failure has been detected) \

anError (39, NoRouteToAgent, NoRouteToAgent, Q (Reroute) \

,Cannot find a route to an ST agent) \

anError (40, NoRouteToDest, NoRouteToDest, Q (Reroute) \

,Cannot find a route to the destination) \

anError (41, NoRouteToHost, NoRouteToHost, Q (Reroute) \

,Cannot find a route to a host) \

anError (42, NoRouteToNet, NoRouteToNet, Q (Reroute) \

,Cannot find a route to a network) \

anError (43, OpCodeUnknown, OpCodeUnknown, Q (FatalHop) \

,A received control PDU has an invalid OpCode field) \

ankError (44, PCodeUnknown, PCodeUnknown, Q (FatalHop) \

.A received control PDU has a parameter with an invalid PCode) \
anError (45, ParmValueBad, ParmValueBad, Q (FatalHop) \

A received control PDU contains an invalid parameter value) \

anError (46, PcolIdUnknown, PcolIdUnknown, Q (FatalTarget) \

+A received control PDU contains an unknown next-higher layer protocol
identifier) \

anError (47, ProtocolError, ProtocolError, Q(FatalHop) \

A protocol error was detected) \

anError (48, PTPError, PTPError, Q(FatalHop) \

+Multiple targets were specified for a stream created with the PTP option) \
anError (49, RefUnknown, RefUnknown, Q (FatalHop) \

,A received control PDU contains an unknown Reference) \

anError (50, RestartLocal, RestartLocal, Q (Reroute) \

,The local ST agent has recently restarted) \

anError (51, RemoteRestart, RemoteRestart, Q (Reroute) \

. The remote ST agent has recently restarted) \

anError (52, RetransTimeout, RetransTimeout, Q (FatalHop) \

.An acknowledgment to a control message has not been received after several
retransmissions) \

anError (53, RouteBack, RouteBack, Q (Warning) \

.The routing function indicates that the route to the next-hop is through the
same interface as the previous-hop and is not the previous-hop) \
anError (54, RouteInconsist, RouteInconegist, Q (Reroute) \

(A routing inconsistency has been detected e.g. a route loop) \
anError (55, RouteLoop, RouteLoop, Q (Reroute) \

,A CONNECT was received that specified an existing target) \

anError (56, SAPUnknown, SAPUnknown, Q (FatalTarget) \

.A received control PDU contains an unknown next-higher layer SAP (port)) \
anError (57, STAgentFailure, STAgentFailure, Q(FatalHop) \

,An ST agent failure has been detected) \

anError (58, StreamExists, StreamExists,Q (FatalHop) \

39



,A stream with the given Name or HID already exists) \
anError(59,StreamPreempted,StreamPreempted,Q(Reroute) \

,The stream has been preempted by one with a higher precedence) \

anError (60, STVerBad, STVerBad, Q (FatalHop) \

A received PDU is not ST Version 2) \
anError(61,TooManyHIDs,TooManyHIDs,Q(FatalHop) \

,Attempt to add more HIDs to a stream than the implementation supports) \
anErrOr(GZ,TruncatedCtl,TruncatedCtl,Q(FatalHop) \

,A received control PDU is shorter than expected) \
anError(63,TruncatedPDU,TruncatedPDU,Q(FatalHop) \

,A received ST PDU is shorter than the ST Header indicates) \
anError(64,UserDataSize,UserDataSize,Q(FatalHop) \

, The UserData parameter is too large to permit a control message to fit into
a networks MTU) \

#define ImplErrorList \
anError(BO,ParmValueBad,BadParmLen,Q(FatalHop) \

,A parameter length not multiple of 4) \
anError(Bl,ErrorUnknown,CantDeactivateActive,Q(Warning) \

,An attempt to deactivate a connection which is still active) \
anError (82, ParmvalueBad, DupParm, Q (FatalHop) \

,A control message contained multiple instances of a parameter) \
anError(83,ProtocolError,HelloTimerandDetectorIPAdr,Q(FatalHop) \

,A pdu cannot have both a HelloTimer and a DetectorIPadr) \
anError(Bd,ProtocolError,HIDandReasonCode,Q(FatalHop) \

,A pdu cannot have both a HID and a ReasonCode) \
anError(GS,ProtocolError,Imleest,Q(FatalHop) \

,Attempt to exceed capabilities of the implementation) \
anError(SG,ErrorUnknown,Inconsistency.Q(FatalHop) \

,An unexpected condition has occurred) \
anError(87,InconsistHID,InconsistVLID,Q(FatalHop) \

,An inconsistency has been detected with a stream Name and corresponding
VLID) \

anError(BS,ProtocolError,InvalidArgument,Q(Warning) \

,A subroutine was called with an invalid argument) \
anError(BQ,ErrorUnknown,InvalidPointer,Q(Warning) \

,An attempt to use an undefined pointer has occurred) \
anError(QO,ProtocolError,InvalidRVLId,Q(FatalHop) \

,A received SCMP PDU contains an invalid RVLI4) \
anError(Ql,ProtocolError,InvalidSVLId,Q(FatalHop) \

,A received SCMP PDU contains an inconsistent SVLId4) \
anError(92,ProtocolError,InvalidTarget,Q(FatalTarget) \

,A Target is improperly specified) \
anError(93,ProtocolError,MTUtosmall,Q(FatalHop).\

,A network MTU is too small for SCMP messages) \

anError (94, CantGetResrc, NoConHidvlid, Q (FatalHop) \

,Unable to acquire a connection block or HID or VLIA) \
anError(QS,ErrorUnknown,NoSupport,Q(FatalHop) \

 Attempt to use non-supported feature) \
anError(96,ProtocolError,ParmMissing,Q(FatalHop) \

,A mandatory parameter is not present) \
anError(97,ProtocolError,SourceRouteError,Q(FatalTarget) \

40



,A Target has an invalid source route) \

anError (98, CantGetResrc, InvalidRrRsrcId, Q (FatalHop) \

,Use of an invalid resource identifier) \

anError (99, ErrorUnknown, Misconfiguration, Q(FatalStream) \
,A local configuration error has been detected) \
anError (100, NoError, InProgress, Q (Warning) \

,operation in progress) \

anError (101, ErrorUnknown, Alignment, Q (Warning) \

A memory object is not correctly aligned) \

anError (102, ErrorUnknown, EncapsulationError,Q(FatalHop) \
,Error processing encapsulated ST) \

#ifndef ApplicationSpecificErrors

#define ApplicationSpecificErrors

#endif
enum ST2Errors {

#define anError(vi,vx,n,f,def) n = vi,

ST2ErrorList

NProtocolErrors, /* gets value last+l, # formal errors */
/* Following are not in protocol spec */

ImplErrorList

ApplicationSpecificErrorBase = 256,

ApplicationSpecificErrors
#undef anError

/* MAX_ST_ERRORS /* has value last+1l, # implementation errors */
#define MAX_ST_ ERRORS (127) /* C won’'t use an enum to declare array */

/* sizes! */

|

C* ST-I1 Configuration Definitions

c* The ConfigParmList defining site’'s configuration parameters is
¢* instantiated in st2 proto so sites can make local additions.
c* Only add to the end of the list unless you recompile all of

c* ST-I1 source!

c* Placed here so Applications can get at the information, too.

c* WARNING: Exercise caution when changing the definitions.

* name, current value,min value,max value,compile symbol, format, desc

41



* aCfgParm(name, cv,nv,xv,cs, format, desc)

*

format specifies how to print the value as “i” quantities of "ni”
bytes each (i < 5) as <i><nl><n2>...<ni><printf format specification>
*« Currently, the <printf format specification> prints 13 characters.

*/

*

/* ST2_ConfigvVersion (3) /* Source 1.9 */
/* ST2_ConfigVersion (4) /* Source Release 1.10 */
#define ST2_ConfigVersion (5) /* Source Release 1.11 */

#define ConfigParm(x) st2_config.x

#define ConfigParmList \
aCfgParm(gize,sizeof (struct aConfigBlock).8,, \
,"14%17u.”,size of this block) \
aCfgParm(version, Experimenter|ST2_ConfigVersion,,, \
,"14%17x “,Experimenter|ST2_ConfigVersion version of this block) \
\
acfgParm(api_maxctl, MCLBYTES, 128, xx, MCLBYTES \
,”14%17u.”,MTU through API to applications) \
aCfgParm(api_maxnam, MLEN, 16, xx, MLEN \
,*14%17u.”,MTU through API to applications) \
aCfgParm(api_MTU,MCLBYTES, 128, xx, MCLBYTES \
,”14%17u.”,MTU through API to applications) \
acfgParm(coip_family,AF_COIP,AF_COIP,AF_COIP,AF_COIP \
,"14%17u.",Address family for COIP) \
aCfgParm(ctlflg, CTLFLG, 0, Oxf£f£££££Ef, \
,"14%17x “,S8T2Flags) \
aCfgParm(dbgflyg, DBGFLG, 0, Oxfffff££f, \
,”14%17x “,Control diagnostic output) \
aCfgParm(def_genifs, DEF_GENIFS, 2, (#nets+MAX_STREAMS), DEF_GENIFS \
,”14%17u.”,# nets + Origins + Targets) \
aCcfgParm(def_nxthops, DEF_NXTHOPS, 1, xx, DEF_NXTHOPS \
,”14%17u.”,# nxthops per stream w/o EXpAry) \
acfgParm(def_routechoices, 2,1, xx, DEF_ROUTECHOICES \
,"14%17u.”,estimated # routes to a destination) \
aCfgParm(ethertype, 0x5354,1501, OXFFFF, \
,"14%17x *,private ethertype when x800 cannot be used) \
aCfgParm(flowspec_versions, 0,0, OXFFFFFFFF, \
,"14%17x “,bitmap of supported flowspec versions) \
acfgParm(fhid_masks, FHID_MASKS, 1, 62, FHID_MASKS \
,”14%17u.”,RFC1190 recommends at least 64 bits) \
aCfgParm(hellobackoff, 20000, 1, 0OXFFFFFFFF, nodefine \
,”14%17u.” ,HELLO interval backoff msec) \
aCfgparm(hellofiltfactor,2,1,xx,nodefine \
,"14%17u.” ,HELLO filtering factor) \
aCfgParm(hellolossfactor,5,1,xx,nodefine \
,"14%17u.”,HELLO loss factor) \
aCngarm(hellotimerholddown,10000,1000,60000,nodefine \

42



,”14%17u.” , restart quiet time in msec) \
aCfgParm(hid_bits,HID_BITS,3,16,ID_BITS \

,"14%17u. ", # of LSB HID bits we use) \
aCfgbParm(hid_mask,NBitMask (HID_BITS),7, 0xFFFF, \

,”14%17x “,mask for LSB HID bits we use) \
aCfgParm{ip_tos, 0x00380038, 0, 0x00FEOOFE, nodefine \

, %222 %7x %7x *,IP TOS neighbor/stream) \
aCfgParm(ip_ttl, 0x00400040,0, 0X00FFOOFF, nodefine \

,"222 %7u. %7u.”,IP TTL neighbor/stream) \
aCfgParm(max_hids_per_stream,MAX HIDS_PER_STREAM, 2, xx, MAX_HIDS_PER_STREAM \
,"14%17u.”,) \
aCfgParm(max_lclhdrlen, MAX LCLHDRLEN, 0,999, MAX LCLHDRLEN \
,“14%17u. ", maximum local network header length) \
aCfgParm(max_st_errors, 127, xX,xx,MAX_ST_ERRORS \
,"14%17u.",) \
aCfgParm(max_streams,MAX STREAMS, 3,65536,MAX STREAMS \
,"14%17u.”,max simultaneous streams + 2) \
aCfgParm(n32freehids, (((1 << HID_BITS) + 31) / 32),1,2084, \
,"14%17u.”, # 32-bit words for (1 << HID_BITS) bits) \
aCfgParm(nbrRTTO0,4000,1, OXFFFFFFFF, nodefine \
,”14%17u.”,initial value of RTT to a neighbor) \
aCfgParm(noc0, 0, 0, OXFFFFFFFF,nodefine \

,"41111 $%u.%u.%u.%u”,primary NOC) \
aCfgParm(nocOrt, 0, 0, OXFFFFFFFF, nodefine \

,"222 %7u. %7u.”,primary NOC reporting rate (*.5 secs)) \
aCfgParm(nocl, 0,0, OXFFFFFFFF, nodefine \

, 41111 %u.%u.%u.%u”,backup NOC} \
aCfgParm(noclrt, 0, 0, OXFFFFFFFF, nodefine \

,"222 %7u. %7u.”,backup NOC reporting rate (*.5 secs)) \
aCfgbParm(noc2, 0, 0, OXFFFFFFFF,nodefine \

,"41111 %u.%u.%u.%u”,second backup NOC) \
aCfgParm(noc2rt, 0, 0, OXFFFFFFFF, nodefine \

,"222 %7u. %7u.”,second backup NOC reporting rate (*.5 secs)) \
aCfgParm(ntraps, MAX_TRAPS,1,10000,MAX_TRAPS \
,"14%17u.” , number of entries in traptable) \
aCfgParm(num_nexthop, 100, xx, xx, NUM_NEXTHOP \

,"14%17u."”,) \

aCfgParm(num_st_opcodes, NUM_ST_OPCODES, NUM_ST_OPCODES,NUM_ST_OPCODES, NUM_ST_OP
CODES \

,"14%17u.”,# of OpCodes) \
aCfgParm(num_st_parms,NUM_ST_PARMS,NUM_ST_PARMS,NUM_ST_ PARMS,NUM_ST PARMS \

,"14%17u.” ., # of Parameters) \

aCfgParm(rcvryhold,10000,2500,60000,nodefine \

,"14%17u.”, (notyet)msec to hold streams pending reconnection after failure) \
aCfgParm(rcvrytodef,10000,2500,60000, DEF_RCVRYTO \

,"14%17u.”,Default msec to detect failed path) \
aCfgParm(rcvrytomin, 5000, 2500, 60000, MIN_RCVRYTO \

,”14%17u. ", minimum msec to detect failed path) \
aCfgbParm(rcvrytonbr,100000,15000,60000,NBR_RCVRYTO \

,"14%17u.”,msec to detect failed neighbor when no active streams) \
aCfgParm(recvspace,1024%4,1024,64*1024, \

43



,"14%17u.”,default socket recv space) \

/* BEGIN following are each struct stRetryParms */ \
aCngarm(rx_Accept,(3<<16)+1000,xx,xx,xx \

, 7222 %7u. %7u.”,ACCEPT retransmission count & interval) \
aCfgParm(rx_Ack, (0<<16)+0000,xx, xx, XX \

, %222 %7u. %$7u.”,ACK retransmission count & interval) \
aCfgParm{rx_Change, (3<<16)+1000, xx, xx, XX \

,"222 %7u. %7u.”,CHANGE retransmission count & interval) \
aCngarm(rx_ChangeRequest,(3<<16)+1000,xx,xx,xx \

,"222 %7u. %7u.”,CHANGEREQUEST retransmigsion count & interval) \
aCfgParm(rx_Connect, {5¢<16)+1000, xx, xx, XX \

,”222 %7u. %7u.”,CONNECT retransmission count & interval) \
aCfgParm(rx_Disconnect, {3<<16)+1000, xx, xx, xX \

,"222 %7u. %7u.”,DISCONNECT retransmiseion count & interval) \
acfgParm{rx_End2End, (0<<16)+5000, xx, xx, XX \

,"222 %7u. %7u.”,END2END retransmission count & interval) \
aCngarm(rx_ErrorInRequest,(0<<16)+0000,xx,xx,xx \

,%222 %7u. %7u.”, ERRORINREQUEST retransmission count & interval) \
aCfgParm(rx_ErrorInResponse, {0<<16)+0000, xx, xx, xx \

,*222 %7u. %7u.”, ERRORINRESPONSE retransmission count & interval) \
aCfgParm(rx_Hello, (0<<16) +0, xx, XX, XX \

,”222 %7u. %7u.”,HELLO retransmission count & interval) \
aCngarm(rx_HIDApprove,(0<<16)*0000,xx,xx,xx \

,”222 %7u. %7u.”,HIDAPPROVE retransmission count & interval) \
aCngarm(rx_HIDChange,(3<(16)+1000,xx,xx,xx \

,*222 %7u. %7u.”,HIDCHANGE retransmission count & interval) \
aCngarm(rx_HIDChangeRequest,(3<<16)+1000,xx,xx,xx \

, %222 %$7u. %7u."”,HIDCHANGEREQUEST retransmission count & interval) \
aCfgParm(rx_HIDReject, (0<<16)+0000, xx, xx, XX \

,"222 %7u. %7u.” , HIDREJECT retransmission count & interval) \
acfgParm(rx_Notify, (3¢<<16)+1000,xx,xx,Xxx \

,"222 %7u. %7u.",NOTIFY retransmission count & interval) \
aCfgParm(rx_Refuse, (3¢<<16)+1000,xx, XX, XX \

,%222 %7u. %7u.”,REFUSE retransmigsion count & interval) \
acfgParm(rx_Reroute, (5¢<16)+1000, xx, XX, XX \

,"222 %7u. %$7u.”,Reroute retransmission count & interval) \
aCfgParm(rx_Status, (3<<16)+1000, xx, xx, XX \

,"222 %7u. %7u.”,STATUS retransmission count & interval) \
aCngarm(rx_StatusResponse,(0<<16)+0,xx,xx,xx \

,"222 %7u. %7u.”,STATUSRESPONSE retransmiesion count & interval) \
/* END struct stRetryParms */ \
aCfgParm(sendspace,1024*4,1024,64*1024, \

,"14%17u.",default socket send space) \
aCfgParm(sweep_interval,20,1,86400, \

,"14%17u.”, ticks between checking for hung streams) \
aCfgParm(targ_lists, TARG_LISTS, 1, xx, TARG_LISTS \

,”14%17u. ", # target lists to encode per SCMP)} \
aCfgParm(targ_per_list, TARG_PER_LIST, 1, xx, TARG_PER_LIST \

,"14%17u.”,# targets to encode per target list) \
aCfgParm(targ_per_scmp_def, TARG_PER_SCMP_DEF, 1, xx, TARG_PER_SCMP_DEF \

,”"14%17u.”,# targets parsed w/o ExpAry) \
aCfgParm(timeoutfactor,1,1,100, \

44



,"14%17u.”, retransmit timeout factor - slowdown for debug) \
aCngarm(vlnk_bits,VLNK_BITS,l,VLID_BITS,VLNK_BITS \

,"14%17u.”,number of VLID BITS used for table index) \
aCfgParm(vlink_hash, VLNK_HASH, 1, VLNK_HASH, VLNK_HASH \

,"14%17u. ", number of entries in (remote) VLink hash table) \

aCfgParm (Vlnk_mask, { (1< (VLNK_BITS) -1),1,NBitMask (VLNK_BITS) , VLNK_MASK \
,“14%17x ”,mask for index bits in a VLID) \

struct aConfigBlock {
unseigned long
#define aCfgParm(name, cv,nv, xv,cs, fo,desc) name,
ConfigParmList
#undef aCfgParm
end;

};

extern struct aConfigBlock st2_config;

/* ST-II Implementation Control Flags.
*

*/

#define ST2FlaglList \
aST2F1g(0x00000001, ST2F1gNoSrcChking \

.Do not record and check source of ST-II packets) \
aST2F1g (0x00000080, ST2FlgNoHello \

,Do not send HELLOs) \
aST2F1lg (0x00000100, ST2F1gNoFail \

,Do not abort streams on neighbor failure) \
/*following since do not have source access for recompile */ \
aST2F1g(0x00100000, ST2F1gOwnLE \

,Use st2_leoutput instead of leoutput) \

\

aST2F1g (0x10000000, ST2F1gSTCksm \

Accept ST packets with a zero ckecksum) \
aST2F1lg (0x20000000, ST2F1gSCMPCksm, Accept SCMP packets with a zero ckecksum) \
aST2F1lg (0x40000000, ST2FlgBugPrint, Print/Log BUGCHECK info) \

f#define ConfigFlag(x) ((st2_config.ctlflg & (unsigned long) (x)) NE 0)

enum ST2Flag {

#tdefine aST2Flg(bit,name,desc) name = bit,
ST2FlaglList

#undef aST2Flg

ST2F1gDummy

}i

45



/t
* Service costs.

*/

#define CostList \

aCostVar (cost_ctrl, "14%17u.”,) \
aCostvar (cost_ctrl_drop, "14%17u.”,) \
aCostvar (cost_data, “14%17u.”,) \

aCostVar (cost_data_drop, "14%17u.”,) \

aCostVar (cost_fixed, "14%17u.”,) \

aCostVar (cost_os, “14%17u.”,) \
Y e
/*

* Packet throughput counters.

-/

#define ThruList \

aThruvar (ctrl_in_bytes, "14%17u.”,) /* NB: must be first */ \
aThruvar (ctrl_in_pkts, ”14%17u.”,) \
aThruvar(ctrl_in_drop_bytes, “14%17u.”,) \
aThruvar (ctrl_in_drop_pkts, “14%17u.”,) \
aThruvar (ctrl_out_bytes, “14%17u.”,) \
aThruvar (ctrl_out_pkts, "14%17u.”,) \
aThruvar (ctrl_out_drop_bytes, "14%17u.”,) \
aThruVar (ctrl_out_drop_pkts, “14%17u.”,) \
aThruvar (data_in_bytes, "14%17u.”,) \
aThruvar (data_in_pkts, "14%17u.”,) \
aThruvar (data_in_drop_bytes, “14%17u.”,) \
aThruVar (data_in_drop_pkts, "14%17u.”,) \
aThruvar (data_out_bytes, "14%17u.”,) \
aThruvar (data_out_pkts, “14%17u.”,) \
aThruVar (data_out_drop_bytes, "14%17u.”,) \
aThruvar (data_out_drop_pkts, “14%17u.”,) \

/*
A* ST-II Statistics Definitions
a*
a* The CounterList is instantiated in st2_proto so sites can make
a* local additions. Only add to the end of the list unless you
a* recompile all of ST-II source!
a*
a* Placed here so Applications can get at the information, too.
a*
* name, format,description

46



* aCounter (name, format, description)

*

* format specifies how to print the value as “i” quantities of *ni~”

* bytes each (i < 5) as <i><nl><n2>...<ni><printf format specification>
* Currently, the <printf format specification> prints 18 characters.

*

*/

/* ST2StatsVersion (1) /* Binary Release 1 */

/* ST2StatsVersion (2) /* Source Release 1.8 */

/* ST2StatsVersion (3) /* Source 1.9 */

#define ST2StatsVersion (4) /* Source Release 1.10 */

#define CounterList \
/* WARNING, Start: Do NOT change this block */ \

aCounter (length, “14%17u.”,) /* sizeof (st2_stats), not counter */ \
aCounter (version, "14%17u.”,) /* version of statistice block */ \

aCounter (agent, “41111 %u.%u.%u.%u”,) /* IPAdr of the agent */ \

aCounter (rptSeconds, "244%10u.%06u “,) /* Timestamp of data, seconds */ \
aCounter (rptFract,”0”,) /* ... fractional seconds */ \

aCounter (butSeconds, "244%10u.%06u “,) /* Timestamp when booted, seconds */ \
aCounter (butFract,”0”,) /* ... fractional seconds */ \

aCounter (unique_id, "14%17u.”,) /* Unique Id */ \

aCounter (other, "14%17u.”,) /* Catch-all */ \

/* WARNING, End: Do NOT change this block */ \
aCounter (acksdelayed, “14%17u.”,) \
aCounter (bad_mt_type, “14%17u.”,) \
aCounter (bad_stcksum, “14%17u.”,) \
aCounter {(bug_checks, "14%17u.”,) \
aCounter (bug_id, “14%17x ~,) \

aCounter (bug_info, "14%17x *,) \
CostList \

ThruList \

aCounter (encodebadparm, “14%17u.”,) \
aCounter (encodewrongparms, “14%17u.”,) \
aCounter (errfreeingcon, “14%17u.”,) \
aCounter (errfreeinghid, “14%17u.”,) \
aCounter (errfreeingvlid, “14%17u.”,) \
aCounter (fasttics, "14%17u.”,) \
aCounter (frwd_nonxthops, “14%17u.”,) \

aCounter (frwd_notclmbuf, "14%17u.”,) \
aCounter (hellomsec, “14%17u.”,our HelloTimer) \
aCounter (hellorecv, "14%17u.”,) \

aCounter (hellosent, "14%17u.”,)} \
/* Begin keep together - struct timeval */ \
aCounter (hellosec, "14%17u.",local tv_sec of HelloTimer) \

aCounter (hellousec, "14%17u.”,local tv_usec of HelloTimer) \
/* End keep together */ \

aCounter (lennotdx_parm, “14%17u.”,) \

aCounter (lennotdx_target, “14%17u.”,) \

aCounter (misconfiguration, "14%17u.”,) \

47



aCounter (msg_inhidcoll, "14%17u.",) \
aCounter (msg_innocon, "14%17u.",) \
aCounter {msg_intrunc, "14%17u.”,) \
aCounter (nbrsactivated, “14%17u.”,# neighbors started sending HELLOs to) \
aCounter (nbrecreated, "14%17u. ", # neighbors created) \

aCounter (nbrsdeactivated, “14%17u.”,# neighbors stopped sending HELLOs to) \
aCounter (nbredeleted, "14%17u.”, # neighbors deleted) \

aCounter (nbrsfailed, "14%17u.”,# neighbor instanced failed via HELLOs) \
aCounter (nbrsfailedRemoteRestart, "14%17u.”,# neighbor instanced failed:
RemoteRestart) \

aCounter (nbrsfailedstream, “14%17u.”, # neighbor instanced failed via HELLOs) \
aCounter (nbrsfailedtarget, “14%17u.”,# neighbor instanced failed via HELLOs) \
aCounter (nbrsinserted, “14%17u.”, # vlinks monitored to all neighbors) \
aCounter (nbrsremoved, “14%17u.”, # vlinks no longer monitored to all neighbors)
\

aCounter (no_dspin, "14%17u.”,) \
aCounter (no_ifnet, "14%17u.”,)
aCounter (no_mt_data, "14%17u.”,)
aCounter (nofreecon, “14%17u.”,) \
aCounter {nofreehids, “14%17u.”,) \
aCounter (nofreevlids, “14%17u.",) \
aCounter {nofwdifc, “14%17u.”,) \
aCounter (not_aligned, "14%17u.”,) \

aCounter (not_st2, "14%17u.”,) \

aCounter (parm_missing, "14%17u.",) \

\

aCounter (net_in_bytes, "14%17u.”,) \

aCounter (net_in_pkts, "14%17u.”,) \

aCounter (net_in_drop_bytes, “14%17u.”,) \

aCounter (net_in_drop_pkts, "14%17u.”,) \

aCounter (net_out_bytes, "14%17u.”,) \

aCounter (net_out_pkts, "14%17u.”,) \

aCounter (net_out_drop_bytes, "14%17u.”,) \

aCounter (net_out_drop_pkts, "14%17u.”,) \

\

aCounter (pcb_fail, "14%17u.”,pcbs not allocated -- aka nofreecon) \
aCounter(pcb_get,"14%17u.",pcbs allocated) \

aCounter (pcb_rel, "14%17u. ", pcbs released) \

aCounter (pkts_in, "14%17u.",) \

aCounter {(pkts_in_drop, “14%17u.”,) \

aCounter (pkts_in_ipvdp, "14%17u.”,) \

aCounter (pkts_in_ipvd4p5, "14%17u.”,) \

\

aCounter(pkts_in_ipv4p5_rawip,"14%17u.",) \

aCounter (pkts_in_ipvdpx, “14%17u.",) \

aCounter (pkts_in_ipv5,”714%17u.”,) \

aCounter (pkts_in_max, “14%17u.”, input queue high water mark) \

aCounter (pkts_in_gfull, *14%17u.”, input dropped by net because gueue full) \
aCounter (sap_next, “14%17u.”,) \

aCounter (scmp_0Orvlid, "14%17u.”,) \
aCounter (scmp_0sv1id, "14%17u.",) \
aCounter (scmp_badvlid, "14%17u.",) \
aCounter (scmp_cksum, “14%17u.”,) \

48



aCounter (scmp_failed_ifc, *14%17u.”,) \
aCounter (scmp_failed_neighbor, “14%17u.”,) \

aCounter (scmp_failed_net, "14%17u.”,) \
aCounter (scmp_failed_resources, "14%17u.”,) \
aCounter (scmp_failed route, “14%17u.”,) \
aCounter (scmp_failed_route_ fixed, "14%17u.”,) \
aCounter (scmp_failed_srcrut, "14%17u.”,) \
aCounter (scmp_failed_to_route, "14%17u.”,) \
aCounter (scmp_fragmented, “14%17u.",) \
aCounter (scmp_leninconsist, “14%17u.”,) \

aCounter (scmp_nobfxhd, “14%17u.”, insufficient packet header space) \
aCounter (scmp_nobfxol, “14%17u.”, insufficient pre-overhead space) \
aCounter (scmp_nobfxo2, “14%17u.”, insufficient post-overhead space) \
aCounter (scmp_nobfxpk, “14%17u.”, insufficient packet space) \

aCounter (scmp_nobuf0, “14%17u.”,no buf to use) \

aCounter (scmp_nobufl, "14%17u.”,no small bufs) \

aCounter (scmp_nobuf2, “14%17u.”,no large bufs) \

aCounter (scmp_nobuf3, "14%17u.”,no buf big enough) \

aCounter (scmp_nobufmod, “14%17u.”,invalid GetSpace mode) \

aCounter (scmp_refnum, "14%17u.”,) \

aCounter (scmp_rx, “14%17u.”, number of retransmitted control messages) \
aCounter (scmp_rx_timeout, “14%17u.”,number of unacknowledged control messages)

aCounter (scmp_tooshort, “14%17u.”,) \

aCounter (slowtics, "14%17u.",) \

aCounter (trapcount, "14%17u.”,number of traps) \
aCounter (trapnext, “14%17x “,next free slot in traptable) \
aCounter (trappage, "14%17u.”,) \

aCounter (trg_fail, “14%17u.”, targets not allocated) \
aCounter (trg_get, "14%17u.”, targets allocated) \
aCounter (trg_rel, “14%17u.”, targets released) \
aCounter (vlinkfail, #14%17u.”,) \

aCounter (vliinkget, “14%17u.”,) \

aCounter (vliinkrel, “14%17u.”,) \

struct aStatsBlock {

#define aCostVar (name, format,desc) unsigned long Ident (cost_)name;
#define aCounter (name, format,desc) unsigned long name;

##define aThruvVar (name, format,desc) unsigned long name;

CounterList

#undef aCostVvar

#undef aCounter

#undef aThruvar

}

extern struct aStatsBlock st2_stats;

/* Macro to increment a counter */
#define Count(n,v) st2_stats.n += (V)

49



/*

/t
T*
t*
t*
t*
t*
t*
t*
t*

22% Define network management access functions, including accounting.

Testing and Debugging Print Routines

The ST2Print Module provides routines to print ST-II Protocol
Data Units (PrintXxx) and implementation data structures
(print_xxx) . The subroutine declarations are availble to
Applications when USING_ST2Print is defined before including
st2_api h.

*/

#ifdef USING_ST2Print

extern void flush_history (/* */);

extern FILE *g_fp; /* initialized to stdout */

extern char *LookupSTError (/* enum ST2Errors error */);
extern char *LookupSTOpcode (/* enum anSTOpCode, char *default */);
extern void print_aNeighborList (/* prefix */);

extern int print_aNetIf (/* kagifca, agifcp, prefix */);
extern void print_aNxtHop (/* long anha, prefix */);
extern void print_aNxtHopList (/* long anhla, prefix */);
extern void print_aPktDesc (/* long apda, prefix */);
extern void print_aRouteCheoiceList (/* arcla, arclp, prefix */);
extern int print_arptable (/* prefix */)

extern void print_aRsrcBuf (/* long arba, prefix */);
extern long print_aRsercClnt (/* long arscla, prefix */);
extern void print_aRsrcCPU (/* long arscua, prefix */);
extern void print_aRsrcNet (/* long arna, prefix */);
extern int print_aRsrcNetList (/* prefix */);

extern int print_aST2pcb (/* long kcp, prefix */);

extern void print_aTarget (/* long ata, atl, prefix */);
extern void print_avLink (/* long vla, prefix */);

extern void print_config (/* prefix */);

extern int print_ConHshTable (/* prefix */);

extern int print_ConTblList (/* prefix */);

extern void print_drivergtable (/* prefix */);

extern void print_flow_spec (/* long fsa, prefix */);
extern int print_gifcs (/* prefix */);

extern void print_next_hop (/* long nha, prefix */);
extern void print_route (/* long rp, prefix */);

extern int print_rxqueue {(/* prefix */);

extern void print_socket {/* long sop, prefix */);

extern int print_stats (/* prefix */);

extern void print_streams ();

extern void print_traps (/* prefix */};

extern void print_vlinks (/* prefix */Y

extern int PrintIP4Header (/* ipp, len, prefix */);
extern int PrintMsg (/* struct meghdr *msgp, datalen, prefix */);

50

*/



extern
extern
extern
extern
extern

#endif

#endif

int
int
int
int
int

PrintParms (/* struct aParameter *parmp, len, prefix */);
PrintSockaddrST (/* struct sockaddr_st2 *sap, len, prefix */);
PrintSCMPHeader (/* struct aSCMPHeader *scmhp, len, prefix */);
PrintST2Header (/* struct aST2Header *st2hp, len, prefix */);
PrintTarget (/* struct aTarget *tp, len, prefix */);

USING_ST2Print

_ST2_API_H_

51






2.2 TG SOURCE

/*******************************i********************************i*******

* *
* File: buffer generic.c *
* *
* Routines to manage a generic buffer pool. *
* *
* Written 08-Aug-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *
* *
********t***************************************************************/

#ifndef lint

static char rcsgid[] = "“SHeader: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
buffer_generic.c,v 1.8 90/11/26 12:28:44 dlee Exp $";

#endif lint

/* Include files. */

#include <stdio.h>
#include <malloc.h>
#include "config.h”

/* Type definitions local to this file. */

typedef struct generic_freelist

{
struct generic_freelist_ *next;
} generic_freelist;

/* Functions exported from this file */
/* Functions local to this file. */
/* Variableg exported from this file. */

/* Variables local to this file. */

static generic_freelist *generic_flist = NULL; /* generic bfr freelist. */
/* Get a buffer. This does nothing fancy, a more sophisticated version */
/* might be able to avoid some packet copies. */

/* ARGSUSED */

char *

buffer_generic_get (maxlen)

unsigned long maxlen;

{

char *buf;

53



if (generic_flist == NULL)

buf = (char *)malloc (MAX PKT_SIZE);
else

{

buf = (char *)generic_flist;
generic_flist = generic_flist->next;

}
return (buf);
}

/* Free up a buffer. */

void
buffer generic_free(buf)

char *buf;

{

generic_freelist *fp = (generic_freelist *)buf;

fp->next = generic_flist;
generic_flist = fp;

}

54



ot

/********i*******ﬁ*******************************************************
*

* File: decode.c
*

*
*
*
* Encode and decode compressed integers. *
* *
* Written 11-Sep-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *

*

*

*

LA A SR AR R A AR R RREERES SRR RS ER R R RER R R R EE R EE R EE R EE R R R I I IR e I R Sy

/

#ifndef lint

static char rceid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
decode.c,v 1.5 90/11/26 12:29:17 dlee Exp $";
#endif lint

/* Include files. */

#include <stdio.h> N
#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <math.h>

#include *“config.h”

#include “distribution.h”

#include “protocol.h”

#include “decode.h”

/* Type definitions local to this file. */
/* Functions exported from this file. */
/* Functions local to this file. */

/* Variables exported from this file. */
/* Variables local to this file. */

/* Decode an unsigned long from a buffer. The number is packed seven */
/* bits per byte in little-endian order, with the sign bit indicating */
/* that more is to come. */

char *
decode_ulong (buf, n, len)

char *buf;

int *n;
int 1len;

55



char *bufend = &(buf[len]);
unsigned int curbyte;

int shift = 0;

uneigned long tmp = 0;

/* Each pass though the following loop decodes one byte. */

for (:;)

{

/* Pick up the next byte. */

curbyte = *{(buf++);

/* Shift and mask it into the accumulated value. */

tmp |= (curbyte & 0x7f) << shift;

/* If the top bit ie not set, this was the last byte. */

if (curbyte <= 0x7f)
break;

/* Increment the shift count, scream if more than 32 */
/* bits are to be read. */

shift += 7;
if (shift > 32)
{

/*@@@@® Log bad response. .. */

(void) fprintf (stderr,
»decode_ulong: bad format\n”);

abort () ;

}

/* If the encoded number runs off the end of the */
/* buffer, return NULL so that the caller can try */
/* again when he gets more input. */

if (buf >= bufend)
return ((char *)NULL):
}

/* Return the decoded number. */
*n = tmp;

return (buf);

}

56



decode_ulong2 (fp, result)

FILE *fp;
int *result; /* Integer is returned here */

{

unsigned int curbyte;
int shift = 0, rvalue;
unsigned long tmp = 0;

/* Each pass though the following loop decodes one byte. */

for (; (rvalue = getc(fp)) != EOF:)
{

/* Pick up the next byte. */
curbyte = (char) rvalue;

/* Shift and mask it into the accumulated value. */
tmp |= (curbyte & 0x7f) << shift;
/* If the top bit is not set, this was the last byte. */

if (curbyte <= 0x7f)
break;

/* Increment the shift count, scream if more than 32 */
/* bits are to be read. *x/

shift += 7;
if (shift > 32)
{

/*@@@@ Log bad response... */

(void) fprintf (stderr,
“decode_ulong: bad format\n*);

abort () ;
}

}

if (rvalue == EOF) {

return (-1);

}

/* Return the decoded number. */

*result = tmp;

return (0);

}

57



/* Encode a response request. This consists of the length of the */

/* desired response in bytes, followed by the number of bytes to skip */

/* in order to find the next response-length request. Lose synch, and */

/* you die! But does not require touching every byte of a long packet. */
/* Returns the length of the buffer consumed. If the buffer pointer */

/* is NULL, returns the maximum length of buffer that can be consumed. */

int
encode_response (buf, len, n)

char *buf;
unsigned int len;
unsigned int n;

{

char *cp = buf;

static int maxlen = -1;
int remainder;

/* Set up maximum lengths if first time through. */

if (maxlen < 0)
maxlen = 2 * (int)encode_ulong((char *)NULL, 0);

/* Just return maximum length if NULL buffer. */

if (buf == NULL)
return (maxlen);

/* Encode the desired value and the length to skip. */

cp = encode_ulong (buf, n);:
remainder = len - (cp - buf);

if (remainder <= 0)

cp = encode_ulongl(cp, 1);

else

cp = encode_ulong(cp, remainder);
return {(cp - buf);

}

/* Encode a special response request. This consists of the length of */
/* the desired response in bytes, followed by a zero byte, followed by */
/* the number of bytes to skip in order to find the next */

/* response-length request. */

int
encode_special_response(buf, len, n)

char *buf;
unsigned int len;

58



unsigned int n;

{

char *cp = buf;

static int maxlen = -1;
int remainder;

/* Set up maximum lengths if first time through. */

if (maxlen < 0)
maxlen = 2 * (int)encode_ulong((char *)NULL, 0) + 1;

/* Just return maximum length if NULL buffer. */

if (buf == NULL)
return (maxlen);

/* Encode the desired value and the length to skip. */

cp = encode_ulong(buf, n);

*cp++ = 0x00;

remainder = len - (cp - buf);

if (remainder <= 0)

cp = encode_ulong(cp, 1);

else

cp = encode_ulong({cp, remainder) ;
return (cp - buf);

}

/* Encode an unsigned long. This consists of seven bits of number per */
/* byte of buffer, in little-endian order, with the sign bit indicating */
/* that more is to come. */

char *
encode_ulong {(buf, n)

char *buf;
unsigned long n;

/* If no buffer, return maximum length. */

if (buf == NULL)
return ((char *)5);

/* Each pass through the following loop encodes seven bits, */
/* low-order bits first. */

while (n > 127)
{

59



* (buf++) = (n & 0x7f) | 0x80;
n >>= 7;

}

/* Encode the last bits -- leave sign bit clear. */
* (buf++) = n;

return (buf);

}

60



/*********************************t**************ﬁ***i*****************Q*

*

*

*

File: distribution.c

* Containe distribution generation functions.

*

*

*

*

Written 17-Aug-90 by Paul E. McKenney,

SRI International.

Copyright (c) 1990 by SRI International.

*

* %

*

************t************ﬁ*****i**************************************t*/

#ifndef lint

static char rcsid[] = “S$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
distribution.c,v 1.6 90/11/26 12:29:27 dlee Exp $";

#endif lint

/*

Include files. */

#include <stdio.h>
#include <math.h>
#include “config.h”
#include ~"distribution.h”

/e
/s
/e
/e

/*

/*

Type definitions local to this file.

*/

Functions exported from this file. */

Functions local to this file. */

Variables exported from this file. */

Variables local to this file. */

Return constant ’'‘random’’ variate.

double
dist_const_gen(dist)

distribution *dist;

return (dist->parl);

}

/*

Initialize constant ‘‘random’’ variate.

char *
dist_const_init(dist, par)

61

*/

*/



distribution *dist;
double par;

dist->generate = dist_const_gen;
dist->parl = par;

return (NULL);

}

/* Return exponentially-distributed random variate. */

double
dist_exp_gen(dist)

distribution *dist;

{
double value;

do

{
value = -dist->parl * log(((double) (random() + 1))/

{double) (unsigned) (MAX_RANDOM + 1)) ;
} while ((value < dist->par2) || (value > dist->par3));

return(value) ;

}

/* Initialize exponentially-distributed random variate. */

char *
dist_exp_init(dist, mean, min, max)

distribution *dist;
double mean;
double min;
double max;

{

dist->generate = dist_exp_gen;
dist->parl = mean;

dist->par2 = min;

dist->par3 = max;

return (NULL);

}

/* Return uniformly-distributed random variate in interval [0, parl). */

62



e

double
dist_markov2_gen{dist)

distribution *dist;

{

dist_markov2 *dm2;

int sgstate;
distribution *subdist;
double x;

/* Get variate from current distribution.

dm2 = (dist_markov2 *) (dist->pars);
state = dm2->state;

subdist = dm2->dist[state];

X = (*(subdist->generate)) (subdist) ;

/* Switch state, if necessary. */

if (random() > dm2->p[state]l)
dm2->state = !state;

/* Pass back the variate. *x/

return (x);

}

*/

/* Initialize two-state markov random variate.

char *
dist_markov2_init(dist, tl1, 41, t2, d42)

distribution *dist;

double t1;
distribution *d1;
double t2;

distribution *32;

{
dist_markov2 *dm2;

/* Set up generation function. */

dist->generate = dist_markov2_gen;

/* Get memory for markov2 struct. */
dm2 = (dist_markov2 *)malloc(sizeof (dist_markov2)) ;
if (dm2 == NULL)

63

*/



{

return (*distribution: Out of memory”);

}
dist->pare = (char *)dm2;

/* Get mean and distribution for state 1. */

dm2->mean([0] = t1;

if (dm2->meanf0}] < 1.)

return (”"Mean state-residence time must be at least 1");
else

dm2->p[0] = (1. - 1. / dm2->mean[0]) *
{unsigned) 0x80000000;

dm2->dist[0] = (distribution *)malloc{sizeof (distribution)):
if (dm2->dist([0) == NULL)

{

return (“distribution: oOut of memory”);

}

* (dm2->dist (0)) = *dl;

/* Get mean and distribution for state 2. */

dm2->mean[1l] = t2;

if (dm2->mean[l] < 1.)

return (“Mean state-residence time must be at least 1");
else

dm2->pft] = (1. - 1. / dm2->mean([l]) *
(unsigned) 0x80000000;

dm2->dist[1] = (distribution *)malloc (sizeof (distribution)};
if (dm2->dist([l] == NULL)

{

return (“distribution: Out of memory”);

}
* (dm2->dist[1]) = *d2;
/* Initialize state. */

dm2->state = 0;

return (NULL);

}

/* Return uniformly-distributed random variate in interval [0, parl). */

double
dist_uniform_gen(dist)

distribution *dist;

{

/* dist->parl is upper limit, dist->par2 is lower limit */

64



return {((dist->par2 - dist->parl} * {{(double)random()) /
(double) (unsigned) (MAX_RANDOM + 1)) + dist->parl);
}

/* Initialize uniformly-distributed random variate in interval
/* [0, parl}. */

char *
dist_uniform_init(dist, min, max)

distribution *dist;
double min;
double max;

dist->generate = dist_uniform gen;
dist->parl = min;

dist->par2 = max;

return (NULL) ;

}

65

*/



/***ti**ti*ti***ﬁ*************************i***********t***i**ti****ﬁt*t**

* *
* File: log.c *
* *
* Routines to write out log entries. *
* *
* Written 20-Sep-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *
* *
*i*******t******************************t*******************************/

#ifndef lint

static char rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
log.c,v 1.8 91/01/15 18:48:36 dlee Exp Locker: dlee S$";

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include “config.h”
#include “distribution.h”
#include “protocol.h”
#include “decode.h”
#include *log.h”

/* Type definitions local to this file. */

#define HOSTNAMELEN 64
#define FPRINTF (void) fprintf

/* Functione exported from this file. */

FILE *log_open();
int log_init{();

/* Functions local to this file. */
static char *log_current_time();
static char *log_sched_time();

static char *log_time();

static void log_write_error():

/* Variables exported from this file. */

/* Variables impored to this file */
extern int FlushOutput;

/* Variables local to this file. */

66



static long on_time_sec;
static protocol *prot;
static FILE *log_fp:

FILE *

log_open (filename)
char *filename;
{

FILE *fp;

if (filename) {

if ((fp = fopen(filename, “w”)) == NULL) {
perror ("fopen: read”);
return (NULL) ;

}

} else {

fp = stdout;

}

return (fp) ;

}

~
* % %+ * F F * ¥ % ¥ #»

~

TG log file header is stored in ASCII form and contains the
following information:

Data file version identifier (e.g., 1.1)
Script file name

Start time of TG program

Address format identifier

Name of protocol under test

Header termination line

00 O0OO0OOO

log_init(fp, on_timeval, prot_name, af, script, prot2)

FILE *fp; /* Handle to log file */

struct timeval on_timeval; /* Starting timeval structure */
char *prot_name; /* Textual name of protocol under test*/
short af; /* Address format specifier */

char *script; /* name of script file */

protoceol *prot2; /* Common protocol structure */

{

char hostname [HOSTNAMELEN + 1] ;

extern char *version;

/* Store time (in seconds) in global variable */
on_time_sec = on_timeval.tv_sec;

prot = prot2;

67



log_fp = fp:

if (gethostname (hostname, HOSTNAMELEN) t= 0) {
FPRINTF (stderr,

»log_init: fatal error: unable to fetch hostname\n”);
abort ()
1

/* Build data file information header */

FPRINTF (fp, BEGIN_HDR_STRING);

FPRINTF (fp, “TG program version $s\n”, version);

FPRINTF (fp, “TG log file version %4.%d\n”, LOG_VERSION, LOG_SUBVERSION);
FPRINTF (fp, "Log file created on $s\n”, hostname) ;

if (script) {

FPRINTF (fp, “Script filename is %$s\n”, script);
} else {

FPRINTF (fp, “Script read from stdin\n"});

}

on_timeval.tv_usec = OL; /* Zero usec field */
FPRINTF(fp, “Program start time from UNIX epoch %d\n”,
on_timeval.tv_sec);

FPRINTF (fp, “Program start time: %s”,

ctime((time_t *) &on_timeval.tv_sec)):

FPRINTF (fp, “Address family identifier is %d\n”, af);:
FPRINTF (fp, “Protocol under test is %s\n”, prot_name) ;

/* The following entry must immediately precede data records */
FPRINTF (fp. END_HDR_STRING);

return{0); /* Normal return */

static void

log_write_error( /* type */ )

/* int type; /* Not currently used */
{

FPRINTF (stderr, ”“log_write_error: fatal error when writing log file\n”):

abort () ;

}

/* Log connection acceptance. ' 'address2’’ may be NULL to indicate */
/* that it is not present. ‘‘errno’’ may be -1 to indicate */

/* exception-free transmission. */

void

68



log_accept (addressl, address2, asn, errno)

struct sockaddr *addressl;
struct sockaddr *address2;
int asn;

int errno;

{

char buf[100];
char *cp = buf;
char ctl;

/* Encode record type. */

*cp++ = LOGTYPE_ACCEPT;

/* Encode control byte. */
ctl = 0;

ctl |= LOGCTL_ADDR;

if (address2 != NULL)

ctl |= LOGCTL_2ADDR;

if (errno >= 0)

ctl |= LOGCTL_EXCEPT;

*cp++ = ctl;

/* Encode current time (accepts are always asynchronous) .

cp = log_current_time(cp);

/* Encode address(es) or asn. */

cp = (*(prot->prot->addrtob)) (addressl, cp):
if (address2 != NULL)

cp = (*(prot->prot->addrtob)) (address2, cp);

cp = encode_ulong(cp, (unsigned long) asn);
/* Encode error number, if one is present. */

if (errno >= 0)
cp = encode_ulong(cp, (unsigned long) errno);

/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) != 1)
log_write_error(}:

else

{
if (FlushOutput)
fflush(leg_f£fp);
}
}

69

*/



/* Log program error. ‘'‘addressl’’ and ’'‘address2’’ may be NULL */

/* to indicate that they are not present, ‘‘asn’’ may be -1 to indicate */
/* that it is not present. ‘‘errcode’’ indicates the type of error. */
void

log_error (addressl, address2, asn, errcode)

struct sockaddr *addressl;
struct sockaddr *address2;
int asn;

int errcode;

{

char buf[100];
char *cp = buf;
char ctl;

/* Encode record type. */
*cp++ = LOGTYPE_ERROR;:
/* Encode control byte. */

ctl = 0;

if (addressl != NULL)
{

ctl |= LOGCTL_ADDR;
if (addresse2 != NULL)
ctl |= LOGCTL_2ADDR;
}

*cp++ = ctl;
/* Encode current time (errors are always asynchronous) . */

cp = log_current_time({cp);

/* Encode address({es) or asn. */
if (addressl == NULL)

cp = encode_ulong{cp, (unsigned long) asn);
else

{

cp = (* (prot->prot->addrtob) ) (addressl, cp):
if (address2 != NULL)

cp = (*(prot->prot->addrtob)) (addressz, cp);
}
/* Encode error code. */

cp = encode_ulong(cp, (unsigned long) errcode);

70



/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) != 1)
log_write_error();
else
{
if (FlushOutput)
fflush(log_fp);
}
}
/* Log packet reception. ’'‘addressl’’ and ‘‘address2’’' may be NULL */
/* to indicate that they are not present, ‘‘asn’’ may be -1 to indicate */
/* that it is not present. ‘‘errno’’ may be -1 to indicate */
/* exception-free transmission. */
void
log_rx(addressl, address2, asn, pktid, len, errno)

struct sockaddr *addressl;
struct sockaddr *address2;
int asn;

unsigned long pktid;
unsigned long len;

int errno;

{

char buf[100];
char *cp = buf;
char ctl;

/* Encode record type. */

*cp++ = LOGTYPE_RX;

/* Encode control byte. */
ctl = 0;
if (addressl != NULL)
{
ctl |= LOGCTL_ADDR;
if (address2 != NULL)
ctl |= LOGCTL_2ADDR;

}

if (errno »>= 0)

ctl |= LOGCTL_EXCEPT;
*cp++ = Cctl;

/* Encode current time (receives are always asynchronous). */

71



cp = log_current_time(cp);

/* Encode address(es) or asn. */
if (addressl == NULL)

cp = encode_ulong(cp, (unsigned long) asn);
else

{

cp = (*(prot->prot->addrtob)) (addressl, cp);
if (address2 != NULL)

cp = (*(prot->prot->addrtob)) (address2, cp):
}
/* Encode packet ID and length. */

cp = encode_ulong(cp, pktid);
cp = encode_ulong(cp, len);

/* Encode error number, if one is present. */

if (errno >= 0)
cp = encode_ulong(cp, (unsigned long) errno);

/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) != 1)
log_write_error();

else

{

if (FlushOutput)
fflush(log_£p):
}
}

/* Log setup. ‘‘tvp’’ may be NULL to indicate that this transmission */
/* was not explictly scheduled. ’‘‘errno’’ may be -1 to indicate */

/* exception-free transmission. */

void

log_setup(tvp, errno)

struct timeval *tvp;
int errno;

{

char buf[100];
char *cp = buf;
char ctl;

/* Encode record type. */

72



*cp++ = LOGTYPE_SETUP;
/* Encode control byte. */

ctl = 0;

if (tvp !'= NULL)

ctl |= LOGCTL_SCHED;
if (errno >= 0)

ctl |= LOGCTL_EXCEPT;
*cp++ = ctl;

/* Encode time, if present, otherwise encode current time. */

if (tvp == NULL)
cp = log_current_time (cp);
else

cp = log_sched_time(cp, tvp);
/* Encode error number, if one is present. *x/

if (errno >= 0)
cp = encode_ulong(cp, (unsigned long) errno);

/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) != 1)
log_write_error();

else

{
if (FlushOutput)
fflush(log_fp):
}
}

/* Log teardown. ‘’'tvp’'’ may be NULL to indicate that this */

/* transmission was not explictly scheduled. ‘‘errno’’ may be -1 to */
/* indicate exception-free transmission. */

void

log_teardown (tvp, errno)

struct timeval *tvp;
int errno;

{

char buf[100];
char *cp = buf;
char ctl;

/* Encode record type. */

73



*cp++ = LOGTYPE_TEARDOWN;
/* Encode control byte. */

ctl = 0;

if (tvp != NULL)

ctl |= LOGCTL_SCHED;
if (errno >= 0)

ctl |= LOGCTL_EXCEPT;
*cp++ = ctl;

/* Encode time, if present, otherwise encode current time. */

if (tvp == NULL)
¢cp = log_current_time{cp);
else

cp = log_sched time(cp, tvp);
/* Encode error number, if one is present. */

if (errno >= 0)
cp = encode_ulong({cp, (unsigned long) errno);

/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) != 1)
log_write_error();

else

{
if (FlushOutput)
fflush(log_f£p):
}
}

/* Log packet transmission. '‘tvp’'‘’ may be NULL to indicate that this */
/* transmission was not explictly scheduled, ’'‘addressl’'‘’ and */

/* '‘address2’'‘ may be NULL to indicate that they are not present, */

/* ‘'asn’’' may be -1 to indicate that it is not present. ’‘‘errno’’ may */
/* be -1 to indicate exception-free transmission. */

void

log_tx(tvp, addressl, address2, asn, pktid, len, errno)

struct timeval *tvp;
struct sockaddr *addressl;
struct sockaddr *address2;
int asn;

unsigned long pktid;
unsigned long len;

int errno;

74



{

char buf([100];
char *cp = buf;
char c¢ctl;

/* Encode record type. */

*cp++ = LOGTYPE_TX:

/* Encode control byte. */
ctl = 0;
if (tvp != NULL)
ctl |= LOGCTL_SCHED;
if (addressl !'= NULL)
{
ctl |= LOGCTL_ADDR;
if (address2 != NULL)
ctl |= LOGCTL_2ADDR;

}

if (errno >= 0)
ctl |= LOGCTL_EXCEPT;
*cp++ = ctl;

/* Encode time, if present, otherwise encode current time.

if (tvp == NULL)
cp = log_current_time(cp):
else

cp = log_sched_time(cp, tvp);

/* Encode address{es) or asn. */

if (addressl == NULL)

cp = encode_ulong(cp, (unsigned long) asn);
else

{

cp = (*(prot->prot->addrtob)) (addressl, cp);
if (address2 != NULL)

cp = (*(prot->prot->addrtob)) (address2, cp):;
}

/* Encode packet ID and length. */

cp = encode_ulong(cp, pktid);

cp = encode_ulong{cp, 1len);

/* Encode error number, if one is present. */

if (errno >= 0)
cp = encode_ulong (cp, (unsigned long) errno);

75

*/



/* Write out the buffer. */

if (fwrite(buf, cp - buf, 1, log_fp) !'= 1)
log_write_error{();

else

{
if (FlushOutput)
fflush(log_f£fp);

}

}

/* Log current time, as offset from on-time. */

static char *
log_current_time (buf)

char *buf;

{

struct timeval t;

/* Get the current time, adjust for on-time. */

n

1l

|
oy
~—

if (gettimeofday(&t, (struct timezone *)NULL)
{

perror(“log_current_time: gettimeofday”);
abort () ;
}

t.tv_sec -= on_time_ sec;

return (log_time(buf, &t));
}

/* Log scheduled time (as offset from on-time) and offset from current */
/* time. */

static char *
log_sched_time (buf, st)

char *buf;
struct timeval *st;

{

char *cp;

struct timeval stc;
struct timeval t;

/* Get current time. */
stc = *st;

76



if (gettimeofday{&t, (struct timezone *)NULL) == -1)
{

perror (“log_sched_time: gettimeofday”);
abort () ;
1

/* Get delay between scheduled and actual time, in */
/* microseconds. */

timersub (&t, &stc, &t);
t.tv_usec += t.tv_sec * 1000000L;

/* Convert scheduled time to offset from on-time. */
stc.tv_sec -= on_time_sec;

/* Log the scheduled time. */

cp = log_time(buf, &stc);

/* Log the delay. */

cp = encode_ulong(cp, (unsigned long)t.tv_usec);
return (cp):

}

/* Log specified time. The time is assumed to be already converted to */
/* an offset from on-time. */

static char ~*
log_time(buf, t)

char *buf;
struct timeval *t;

{

char *cp;

/* Encode the seconds and microseconds. */

cp = encode_ulong(buf, (unsigned long)t->tv_sec);
cp = encode_ulong(cp, (unsigned long) t->tv_usec);

return (cp);

}

void
log_close() {

extern FILE *log_ fp:

77



}

(void) fclose
exit(-1);

(log_f£fp);

78



/*****************i***************************i************i*************

*

* File: prot_dgram.c
*

Common routines for interfacing to datagram socket protocols

*
* guite via the normal user-level interface.
*

* Written 17-Aug-90 by Paul E. McKenney,

* Copyright (¢) 1990 by SRI International.

*

(A2 AL SRS EE R AR REE SRR RERE RSl RS R R RSS2 R R R X R ER R R X R ]

$Log: prot_dgram.c,v §

Paul’'s final revision,

ckpt

Checkpoint

* % % % F * % F * F * % % * %

/

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <sys/socket.h>
#include “config.h”
#include "log.h”

#include "distribution.h”

#include “protocol.h”

Revisgion 1.4 90/10/04 19:42:11 mckenney

prior to his departure.

Revision 1.3 90/09/18 20:23:14 mckenney

Revigion 1.2 90/09/04 11:27:46 mckenney

Revision 1.1 90/08/26 23:41:06 mckenney

/* Type definitions local to this file. */

typedef struct dgram_freelist_

{

struct dgram_freelist_ *next;

} dgram_freelist;

79

SRI International.

*
*
*
*

*
*
*
*
*
*

/



/* Functions exported from this file. */

/* Functions local to this file. */
/* Variables exported from this file. */
/* Variables local to this file. */

static dgram_freelist *dgram_flist = NULL; /* dgram bfr freelist. */
static fd_set fds; /* FDS to clients. */
static int firsttime = 1; /* flag for get_packets. */
static struct sockaddr_in
from; /* source of last datagram. */
static int fromlen = 0; /* length of last dg's address. */
gtatic int justrcvd = 0; /* rcv since last send? */
static protocol ‘*prot = NULL; /* protocol attr. pointer. */
static protocol_table *prtab = NULL; /* PRotocol Table pointer. */
static int rcving = 0; /* currently receiving? */
static int sfd = -1; /* Socket file descriptor. */

/* Get a buffer. This does nothing fancy, a more sophisticated version */
/* might be able to avoid some packet copies. Leaves space for the */
/* packet ID at the front of the buffer. */

/* ARGSUSED */
char *
buffer_dgram_get (maxlen)

unsigned long maxlen;

{

char *buf;

if (dgram_flist == NULL)
buf = (char *)malloc (MAX_PKT_SIZE);
else

{
buf = (char *)dgram_ flist:
dgram_flist = dgram_flist->next;

}
return {(buf + sizeof (unsigned long) ) ;
}
/* Free up a buffer. */
void

buffer_dgram_free (buf)

char *buf;

80



{

dgram_freelist *fp;

fp = (dgram_freelist *) (buf - sizeof (unsigned long));
fp->next = dgram_flist;

dgram_flist = fp;

}

/* Accept connections and packets while waiting for the opportunity to */
/* write (if wfd specified) or for specified timeout, whichever comes */
/* firet. A wfd of -2 means to send to whereever the previous datagram */
/* came from. */

int
dgram_get packets(wfd, endtout)

int wfd; /* FD for write, -1 if none. */
struct timeval *endtout; /* end of timeout period. */

{

static char *buf = NULL; /* pointer to receive buffer. */
int £4;

int fdmax;

struct sockaddr_in from; /* Socket structure client */
int nitems; /* Number of items selected. */

int pklen; /* Input packet length. */

fd_set rfds; /* Read FDs for select. */

gtruct timeval tv;

struct timeval *tvp;

fd_set wfds; /* Write FDs for select. */

/* Initialization on first pass, if necessary. */

if (firsttime)
{
FD_ZERO (&fds) ;
if (sfd »>= 0)
{
FD_SET (sfd, &fds);
}
firsttime = 0;
}
/* Calculate initial timeout. We force a select even if the */
/* timeout has already expired in order to prevent the CPU from */

/* starving the I/O. */

if (endtout == NULL)
{

/* No timeout, so just use NULL pointer. */

81



tvp = NULL;
}

else

{

/* Calculate timeout. */

if (gettimeofday{&tv, (struct timezone *)NULL) == -1)

{

log_error(NULL, NULL, -1, LOGERR_GETTIME) ;
perror (“dgram_get_packets: getttimeofday”);
abort () :

}
if (timercmp (endtout, &tv, >))

{

timersub (endtout, &tv, &tv);

/* Wait at most one hour at a time. SunOS has */
/* an annoying limitation on the select timeout, */
/* one hour is much less than this limitation. */

if (tv.tv_sec > 3600)

tv.tv_sec = 3600;

}
else

{

tv.tv_sec = 0;
tv.tv_usec = 0;

}
tvp = &tv;
}

/* Each pass through the following loop dces one select call */
/* to check the state of the fds. */

rcving = 1;
justrcvd = 1;

for (;:)

{

/* Set up for select: get fd bitmaps. */
rfds = fds;

FD_ZERO (&wfds) ;

if (wfd >= 0)

{

FD_SET (wfd, &rfds);
FD_SET(wfd, &wfds);
}
else if (wfd == -2)
{

82



FD_SET (sfd, &rfds);
FD_SET (sfd, &wfds);
}

if ((nitems = select(fdmax = (sfd > wfd ? sfd + 1 : wfd + 1),

&rfds,

&wids,

(fd_set *)NULL,

tvp)) < 0)
{
if (errno != EINTR)

{

log_error (NULL, NULL, -1, LOGERR_SELECT) ;
perror (“dgram_get_packets: select”);
abort () ;

}

}

/* Each pass through the following loop checks for */
/* messages on one file descriptor. */

for (fd = 0; fd <= fdmax; fd++)
{

/* If current fd was not gselected, ignore it. */

if (!FD_ISSET(fd4, &rfds))
continue;

/* Each pass through the following loop */
/* attempts to receive one segment. */

for (;:)

{

/* Get a buffer if we do not already */

/* have one on hand. */
if ( (buf == NULL) &&
({buf =

(* (prtab->buffer_get)) (MAX_PKT SIZE) -
sizeof (unsigned long)) ==
NULL) )
{
log_error (NULL, NULL, -1, LOGERR_MEM) ;
(void) fprintf (stderr,
“%$s %$s\n",
“dgram_get_packets: *,
“out of memory!”):
abort () ;
}

/* Receive the segment, scream and die */

83



/* if error. */

fromlen = sizeof (from);
pklen = recvfrom(fd,
buf,
MAX_PKT_SIZE,
0,
(struct sockaddr *)&from,
&fromlen) ;
if ((pklen == 0) ||
{(pklen < 0) &&
{errno !'= EWOULDBLOCK)))
{

/* Shut down and tell rcv if */
/* EOF or error. */
if (close(fd) == -1)

{

log_rx (NULL, NULL, £fd4, 0, 0, errno);
perror (“dgram_get_packets: close”);

log_teardown (NULL, errno);

abort () ;

}
FD_CLR (fd, &fds);
log_rx(NULL, NULL, fd, 0, 0, errno);
log_teardown (NULL, -1)};
/* pklen includes beginning header */

if (prtab->rcv != NULL)
(void) (* (prtab->rcv)) (fd4,
_1’
NULL,
pklen,
0);

}
else if (pklen > 0)

{
/* Pass packet to receiver. */

log_rx(&from,

NULL,

-1,

* (unsigned long *)buf,
pklen - sizeof (unsigned long),
-1);
if ((prtab->rcv != NULL) &&
((*{prtab->rcv))

(fa,

-2,

buf + sizeof(long),

pklen - sizeof (long),

84



* (unsigned long *)buf)))
buf = NULL;

else

{

/* Nothing more to read right */

/* now. */
break;
}
}
if (--nitems <= 0)
break;
}
/* Check for ability to write... */

if ((wfd > 0) &&
(FD_ISSET(wfd, &wfds)))
{

rcving = 0;

return (1)

}

/* Calculate next timeout. If the timeout has expired, */

/* tell the caller the sad story. */
if (endtout != NULL)

{

if (gettimeofday(&tv, (struct timezone *)NULL) == -1)

{
log_error (NULL, NULL, -1, LOGERR_SELECT) ;

perror (“dgram_get_packets: getttimeofday”);
abort () ;
}

if (timercmp (endtout, &tv, >))

{

timersub (endtout, &tv, &tv);
/* Wait at most one hour at a time. */

if (tv.tv_sec > 3600)
tv.tv_sec = 3600;

}

else

{

rcving = 0;
errno = ETIME;
return (0);

85



/* NOTREACHED */
}

/* Send a packet, subject to the timeout. The special association */

/* numbered -2 means to return to the sender of the most-recently */

/* received datagram. Note that the datagram ID is just a per-packet */

/* sequence number; no attempt is made to maintain separate consecutive */
/* number sequences for each destination. */

int
dgram_send(asn, buf, len, endtout, pktid)

long asn;

char *buf;

int 1len;

struct timeval *endtout;
unsigned long *pktid;

{
int cc;
int fd = asn;

/* Make sure that fd wasn’'t closed out from under the sender. */
if (fd == -1)

{

errno = EINVAL;

return (-1);

}
/* Put the packet ID into the packet. */

({unsigned long *)buf) [-1] = *pktid;

/* If we just got done allowing receives, try the write without */
/* bothering to do another receive. */

if (justrcvd ||

rcving)

{

/* Try to write out the packet. */
if (fd 1= -2)

{

cc = write(fd,

86



buf - sizeof (unsigned long),
len + sizeof (unsigned long));

else

{

/* £fd of -2 says to return a datagram to the */
/* sender of the previously received datagram. */

if (fromlen == 0)
{
errno = EBADF;
return (-1);
}
cc = gsendto(sfd,
buf - sizeof (unsigned long),
len + sizeof (unsigned long),
0,
(struct sockaddr *)&from,
fromlen) ;

/* 1f we succeeded, or if we failed for some reason */

/* other than blocking, or if we are already receiving */
/* packets (and thus do not want to recurse), clean up */
/* and exit. */

if ((cc >= 0) ||

(errno != EWOULDBLOCK) ||
rcving)

{

if (fd4a 1= -2)

log_tx(NULL, /* @ee@ fix definition of
send to include a pointer
to the time at which this
send was scheduled, or
NULL if it is asynchronous.
For now, treat all sends
ags if they were async. */
& (prot->dst),

NULL,
-11
((unsigned long *)buf)[-1],
cc - sizeof(unsigned long),
cc == -1 ? errno : -1};
else
log_tx (NULL,
& (from),
NULL,
_ll
({unsigned long *)buf) [-1],
cc - sizeof (unsigned long),

87



cc == -1 ? errno : -1});

if {cc >= 0)

(*pktid) ++;

(* (prtab->buffer_ free)) (buf);
justrcvd = 0;

return (cc):

}
}

/* The write failed with an EWOULDBLOCK or we need to allow */
/* some receives to happen. Thus, we must honor the timeout */
/* period, unless this would recursively invoke */

/* dgram_get_packets. */

/* Invoke the dgram_get_packets routine to receive packets and */
/* accept new connections while we are waiting to write. */

if (!dgram_get_packets(fd, endtout))
{

return (-1);

}
else

{

/* Write out the packet! */

if (fd '= -2)
cc = write(fd,
buf - sizeof (unsigned long)},
len + sizeof (unsigned long));
else

{

/* fd of -2 says tec return a datagram to the */
/* sender of the previously received datagram. */

if (fromlen == 0)
{
errno = EBADF;
return (-1);
}
cc = sendto(sfd,
buf - sizeof (unsigned long),
len + sizeof (unsigned long),
0,
(struct sockaddr *)&from,
fromlen) ;
}
if (fd '= -2)
log_tx (NULL,
& (prot->dst),
NULL,

88



-1,
((unsigned long *)buf) [-11,

cc - sizeof (unsigned long),
cc == -1 ? errno : -1);
else
log_tx (NULL,
&(from) ,
NULL,
_1'
((unsigned long *)buf) [-11,
cc - sizeof (unsigned long),
¢cc == -1 ? errno : -1);
if (cc >= 0)
(*pktid) ++;

(* (prtab->buffer_ free)) (buf) ;
justrcvd = 0;

return (cc);

}
}

/* Record the fact that a setup has occurred.

void
dgram_setup (pp, £4)

protocol *pp:;
int f£4;

if (sfd >= 0)
{
log_error (NULL, NULL, sfd, LOGERR_SELECT);
(void) fprintf (stderr,
“dgram_setup: %s %s\n”,
"cannot set up new server without”,
"tearing down old one first®);:
abort () ;
}

/* Let dgram_get_packets know of the change.

prot = pp;

prtab = pp->prot;
if (fd 1= -1)

sfd = f4;

firsttime = 1;
log_setup (NULL, -1);
}

89

*/

*/



/* Suspend until the (absolute) time specified by waketime, processing */
/* any incoming packets or new connections that occur in that interval. */

void
dgram_sleep_till (waketime)

struct timeval *waketime;

(void)dgram_get_packets (-1, waketime);
}
/* Tear down connection. */

int
dgram_teardown (asn)

long asn;

{

int fd4 = asn;

int sta;
if (fd4 < 0)
{

/* Can’'t tear it down if it is already torn down! */

errno = EINVAL;
return (-1);

}

fromlen = 0O;

justrcvd = 0;

sta = close(fd);

log_teardown(NULL, sta == 0 ? -1 : sta);
return (sta);

}

90



/********t****ii*********i******************i***i********i***************

File: prot_ipport.c

* % % *

Convert ASCII IP address of the form a.b.c.d.port to
sockaddr_in.

*
*
Written 04-Sep-90 by Paul E. McKenney, SRI International. *
Copyright (c¢) 1990 by SRI International. *
*
*

*
*
*
*
*
*
*
*
*
*

khkhhkh ko ke k Ak kR hk ko kr ko kb ddr ok kdr ke ko s sk b o s ok ok s b ok o o o o o o b e o o

/

#ifndef lint
static char rcsid[] = “$Header: /tmp_mnt/net/usr.projecte/dartnet/src/tg/sund/
RCS/prot_ipport.c,v 1.5 90/11/26 12:29:40 dlee Exp Locker: denny $”;

#endif lint
/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <math.h>
#include “config.h”
#include “distribution.h”
#include “protocol.h”

/* Type definitions local to this file. */
/* Functions exported from this file. */

/* Functions local to this file. */

/* Variables exported from this file. */

/* Variables local to this file. */

/* Convert an ascii address to a sockaddr. */
int

ipport_atoaddr (addr, s)

char *addr;
struct sockaddr *s;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;

91



ungigned int a;
unsigned int b;
unsigned int c;
unsigned int 4d;

bzero((char *)s, sizeof(*s));
sin->gin_family = AF_INET;
if (sscanf (addr, “%u.%u.%u.%u.%hu”,

&a, &b, &c, &4, &(sin->sin_port)) != 5)
return (0);
if ((a > 255) }|

(b > 255) ||

(c > 255) ||

(@ > 255))

return (0);
sin->gin_addr.s_addr = (a << 24) | (b << 16) | (c << 8) | @&;
return (1);

}

/* Convert a sockaddr structure to an ascii address. */

int
ipport_addrtoa (s, addr)

struct sockaddr *sg;
char *addr;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;
unsigned int a;

unsigned int b;

unsigned int c;

unsigned int 4;

unsigned long ipaddr;

ipaddr = sin->sin_addr.s_addr;

d ipaddr & Oxff;

c (ipaddr >>= 8) & Oxff;

b = (ipaddr >>= 8) & Oxff;

a = (ipaddr >>= B) & Oxff;

{void) sprintf (addr, "$%u.%u.%u.%u.%u”, a, b, c, d, sin->sin_port);
return (1);

}

/* Convert a binary log address to a sockaddr. */

char *
ipport_btoaddr (addr, s)

char *addr.

92



struct sockaddr *s;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;

sin->sin_family = AF_INET;
(void)bcopy (addr, (char *)&(sin->sin_port), sizeof (sin->sin_port));
(void)bcopy ( (char *)&(addr[sizeof(sin->sin_port)]),
(char *)&(sin->sin_addr.s_addr),
sizecf (sin->sin_addr.s_addr));
return (&(addr([sizeof(sin->sin_port) + sizeof(sin->sin_addr.s_addr)]});

}

/* Convert a sockaddr binary log address. */

char *
ipport_addrtob (s, addr)

struct sockaddr *s;
char *addr;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;

(void) becopy ((char *)&(sin->sin_port), addr, sizeof (sin->sin_port));
(void)bcopy ( (char *)&(sin->sin_addr.s_addr),

(char *)&(addr(sizeof(sin->sin_port)]),

sizeof (sin->sin_addr.s_addr));
return (&(addr([sizeof(sin->gin_port) + sizeof(sin->sin_addr.s_addr}]));

}

93



/**t**i****i**********it*t********t****************t*************i***t**t

* *
* File: prot_st2.c *
* *
* Common routines for interfacing to ST-II socket protocols *
* gsuite via the normal user-level interface. *
* *
* Modified 06-12-91 by C.Lynn for use with ST-II. *
* Written 09-Aug-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *
* *
****i**i***i*********ﬁ*****t*********************i***i*****************ﬁ/

#ifndef lint
static char rcsid[] = “$Header$”;
#endif lint

/* Include files. */
#include <stdio.h>

#include <sys/types.h> /* Required by sys/socket.h, fd_set */
#include <netinet/in.h>

#include <sgsys/file.h>

#include <(sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <gignal.h>

#include <errno.h>

#include <sys/socket.h> /* Socket defns, including struct msg */
#include ”"config.h”

#include “log.h”

#include <sys/uio.h> /* iov for struct msg */

#include *st2_api.h”

#include *distribution.h”

#include “protocol.h”

/* Type definitions local to this file. */

/* Functiones exported from this file. */

/* Functions local to this file. */

/* Variables exported from this file. */

/* Variables local to this file. */

static int fdmax = -1; /* maximum value for client FD. */
static fd_set fds; /* FDS to clients. */

static int firsttime = 1; /* initialization flag. */

NULL; /* per-asn Packet IDs for read. */
NULL; /* per-asn Packet IDs for write.*/

static unsigned long *idr
static unsigned long *idw

94



static int justrcvd = 0; /* Must rcv before next send. */
static protocol *prot = NULL; /* pointer to protocol pars. */
static protocol_table *prtab = NULL; /* pointer to protocol table. */

static int rcving = 0; /* Receiving packets? */
static struct sockaddr *sa = NULL; /* per-asn socket addresses. */
static int sfd = -1; /* Socket file descriptor. */

static Instsockaddr_st2 (from,
unsigned char parmO[(MAX ST NAM-sizeofsockaddr_st2header) /4];);
/* Socket structure client */
static Instsockaddr_st2(to,) = { Initsockaddr_st2 (STRegqUnspec,STDataTBit) };
static struct msghdr msg; /* For recvmsg/sendmsg ... */
static struct iovec dataiov, /* For send/receive data descriptor */
*iovecp = &dataiov; /* Ptr to a data descriptor */
static union { /* First component of msg */
struct cmsghdr cm;
char buf[ MAX ST CTL ]; /* For control info from ST-II */
1 ctl;
static struct cmsghdr *ctlp = &{ ctl.cm ); /* Contents of ctlbuf */

/*

|* struct aParameter

| * FindParm ( pcode, parmsp, parmslen )

|* Usage:

|* Scan a list of parameters with given length for first
|* parameter with specified parameter code.

[* Arguments:

|* pcode desired parameter code

|* parmsp pointer to parameter list

|* parmslen length of parameter list

|* Returns:

|* pointer to desired parameter if found, or NULL
l*

*/

static struct aParameter *

FindParm{ pcode, parmsp, parmslen )

octetl pcode; /* Desired parameter code */

struct aParameter *parmsp; /* Pointer ot parameter list */
int parmslen; /* Length of parameter list */

{

struct aParameter *parmp = parmsp; /* Current parameter */

/* Move it beyond last parameter */
parmsp = (struct aParameter *) ((long) parmep + parmslen);

/* Scan through list */

while ( parmp < parmsp ) {
if ( ntohl( parmp->pcode )} == pcode ) {
return {( parmp ); /* Found match */

95



/* move to next parameter, assuming well formatted */
parmp = (struct aParameter *) ((long) parmp + parmp->plen);

}

return ( (struct aParameter *) NULL ); /* desired parameter not in list */
} /* end of FindParm */
/* Accept connections and packets while waiting for the opportunity to */

/* write (if wfd specified) or for specified timeout, whichever comes */
/* first. */

int
st2_get_packets( wid, endtoutp )
int wfd; /* FD for write, -1 if none. */

struct timeval *endtoutp; /* end of timeout period. */
{
static char *bufp = NULL; /* pointer to receive buffer. */
int fd,
i,
len,
nitems, /* Number of items selected. */
pklen; /* Input packet length. */
fd_set rfds, /* Read FDs for select. */
wfds; /* Write FDs for select. */
struct timeval tv,
*Lvp;

/* Initialization on first pass, if necessary. */

if ( firsttime )

{

FD_ZERO (&fds);

if ( sfd >= 0 )

{

FD_SET (sfd, &fds);
fdmax = sfd;

}

firsttime = 0O;

}

/* Calculate initial timeout. We force a select even if the */
/* timeout has already expired in order to prevent the CPU from */
/* starving the I/O0. */

if ( endtoutp == NULL )

{

/* No timeout, so just use NULL pointer. */

96



tvp = NULL;
}

else

{

/* Calculate timeout. */

if ( gettimeofday( &tv, (struct timezone *)NULL ) == -1 )

{
log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ -1,
/*errcod*/ LOGERR_SELECT );
perror( “st2_get_packets: gettimeofday” )
abort ()
}

if ( timercmp( endtoutp, &tv, >) )

{
timersub( endtoutp, &tv, &tv );

/* Wait at most one hour at a time. SunOS has some strange */
/* limitations on the timeout in the select call, I guess */
/* they just don’'t believe in waiting forever. One hour is */
/* shorter than forever. */

if ( tv.tv_sec > 3600 )
tv.tv_sec = 3600;

}
else

{

tv.tv_sec = 0;
tv.tv_usec = 0;

}

tvp = &tv;
}

/* Each pass through the following loop does one select call to */
/* check the state of the fds. */

rcving = 1;
justrcvd = 1;

for (:;)

{

/* Set up for select: get fd bitmaps. */
rfds = fds;

FD_ZERO (&wfds);
if ( wfd >= 0 )

{
FD_SET (wfd, &rfds);

97



FD_SET (wfd, &wfds) ;
}

if ( (nitems = select( fdmax > wfd ? fdmax + 1
&rfds, &wfds, (fd_set *) NULL, tvp )) == -1
{
if ( errno != EINTR )
{

wfd + 1,
)

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ -1,

/*errcod*/ LOGERR_SELECT )Y
perror( “st2_get_packets: select” );
abort ();

}
}

/* Accept any outstanding connections.

*/

if ( (nitems > 0) && FD_ISSET (sfd, &rfds) )

{
FD_CLR (sfd, &rfds);
nitems--;

/* Each pass through the following loop accepts one */

/* connection. */

for (::)
{

struct aParameter *parmp;
len = sizeof (from);
fd = accept( sfd, (struct sockaddr *)
if ( £4 >= 0 )
{
FD_SET (fd4, &fds);

idr[fd] = 0O;

if ( fd > fdmax )
fdmax = £fd4d;

&from,

parmp = FindParm( STpOrigin/*STRmtAppEnt*/,
(struct aParameter *) &( from.parmO[0] ),

len - sizeofsockaddr_st2header );

if ( parmp == (struct aParameter *)

{

NULL )

&len ) ;

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ f4,

/*errcod*/ LOGERR_GETPEER );
perror( “st2_get_packets: accept” );
abort () ;

98



sa[fd] .sa_family = AF_INET; /*from.sa_family*/

becopy( (char *) &( ((struct aApplEntity *) parmp)->SAP[0] ).
(char *) &( sal[fd].sa_data[0] ), 2 );

bcopy( (char *) &{ ((struct aApplEntity *) parmp)->IPAdr ),
(char *) &( salfd].sa_data([2] ), 4 );

InitMsg (&(msg),&( from ),sizeof (from),
(struct iovec *) NULL,O,
&( ctl.cm ),sizeof (ctl)});

len = recvmsg( fd, &msg, 0/*flags*/ );

if ( (len == -1) || (from.st_request != STRegConnect) )

{

log_error{ /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ fd,
/*errcod*/ 17 );

perror{ “st2_get_packets: recvmsg” );

abort () ;

}

from.st_request = STReqAccept;
len = sendmsg( fd, &msg, 0/*flags*/ );

if ( len == -1 )

{

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ £fd,
/*errcod*/ 18 };

perror( “st2_get_packets: sendmsg” };

abort () ;

}

log_accept( &(sa[fd]), NULL, f4, -1 );
}
else if ( errno != EWOULDBLOCK )

{
log_accept{ NULL, NULL, -1, errno );
perror( “st2_get packets: accept” );
abort{) ;

}

else
break;

}

}

/* Each pass through the following loop checks for messages on */
/* one file descriptor. */

for (i = 0; (i <= fdmax) && (nitems > 0); i++ )

{

99



/* If current fd was not selected, ignore it. =*/

if ( ! FD_ISSET (i, &rfds) )
continue;

/* Each pass through the following loop attempts to */

/* receive one segment. */

for (;;)

{

/* Get a buffer if we do not already have one on hand. */
if ( (bufp == NULL)

&& { (bufp = (*(prtab->buffer_get)) ( MAX PKT_SIZE ))

== NULL) )

{
log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ -1,
/*errcod*/ LOGERR_MEM ) ;

(void) fprintf( stderr, “%s %s\n”, "st2_get_packets: *,
*out of memory!” );
abort();

}

/* Receive the segment, scream and die if error. */

dataiov.iov_base = (caddr_t) bufp:
dataiov.iov_len = MAX_ PKT_SIZE;

InitMsg (& (msg),&( from ),sizeof (from),
&dataiov, 1,
&{( ctl.cm ),sizecf (ctl));

pklen = recvmsg( i, &msg, 0/*flags*/ );

if ( (pklen ¢ 0) && (errno != EWOULDBLOCK) )
{

/* Shut down and tell rcv if EOF or error. ¥/

log_rx( /*adrl*/ &( salil), /*adr2*/ NULL, /*asn*/ i,
/*id*/ 0, /*len*/ 0, /*errno*/ errno };

if ( close( i ) == -1 )

{

perror( “close” );

log_teardown( /*tvp*/ NULL, /*errno*/ errmno );
abort () ;

}

FD_CLR (i, &fds);
pklen = 0;

if ( prtab->rcv != NULL )

100



{(void) (*(prtab->rcv)) ( i, i, NULL, pklen, 0 };
break;
}
else if ( pklen == 0 )
{
log_rx( /*adrl*/ &(salil), /*adr2*/ NULL, /*aen*/ i,
/*id*/ from.st_request, /*len*/ 0, /*errno*/ -1 });

if ( (prtab->rcv != NULL)
&& ((*(prtab->rcv)) ( i, i, bufp, 0, idr[i] )) )
bufp = NULL;

if ( from.st_request == STReqgDisconnect )
{

if ( close( i ) == -1 )

{

perror( “close” );

log_teardown( /*tvp*/ NULL, /*errno*/ errno );
abort () ;

}

FD_CLR (i, &fds);
break; /* out of forever loop */

}

}
else if ( pklen > 0 )
{
/* Pass packet to receiver. */

char *cp = bufp;

int j = 5:
unsigned long *ulp,
v = 0;

if ( *cp != 0 ) /* maybe from example: 5-digit seq # */
{

for ( ; § >0 : 3--)

{

if ( *cp < 0" || ‘9" < *cp )
break;

v =v * 10 + *cp++ - ‘0';

}
if ( (3 <= 0) /* ok format */
&& ((idr[il % 100000) != wv) )
j = v, V+3+;
else

j = -1, v = idr[i] + 1;

else if ( pklen »>= (5 * sizeof (unsigned long)) )
{

101



ulp = (unsigned long *) bufp;
v = *ulp;

if ( idr[i] != v )
Jo= v
else

j = -1, v = idr[i] + 1;

log_rx( /*adrl*/ &(sal[i]), /*adr2*/ NULL, /*asn*/ i,
/*id*/ idr[i), /*len*/ pklen, /*errno*/ 3 );

if ( (prtab->rcv != NULL)
&& ((*{(prtab->rcv)) ( i, i, bufp, pklen, idrf[i] )) )
bufp = NULL;

idr[i] = v;
}
else
{
/* Nothing more to read right now. */
break;
}
}
if ( --nitems < 0 )
break;
}
/* Check for ability to write... */
if ( (nitems > 0) && (wfd > 0) && (FD_ISSET (wfd, &wfds)) )
{

rcving = 0;
return (1);

}
/* Calculate next timeout. If the timeout has expired, tell */
/* the caller the sad story. */
if ( endtoutp !'= NULL )
{
if ( gettimeofday( &tv, (struct timezone *) NULL ) == -1 )
{

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ -1,
/*errcod*/ LOGERR_SELECT ) ;

perror{ “st2_get_packets: getttimeofday” ):

abort () ;

102



}

/

st2_send( asn, bufp, len, endtoutp, pktidp )

{

if ( timercmp (endtoutp, &tv, >) )

{
timersub( endtoutp, &tv, &tv );

/* Wait at most one hour per select.

if ( tv.tv_sec > 3600 )

tv.tv_sec = 3600;
}

elge

{

errno = ETIME;
rcving = 0;

return (0);

}
}
}

/* NOTREACHED */

*/

* Send a packet, subject to the timeout.

int

long asn; /* Association number */
char *pbufp; /* Ptr to buffer to be used */

int len; /* Length to be used */

struct timeval *endtoutp; /* Ptr to Timeout */

unsigned long *pktidp: /* Ptr to static “ID” ???per ASN */
int cc,

fd = asn;
gtatic int firsttime = 1; /* Must wait for select to say */

/* that connect has succeeded. */
unsigned long *ulp;

/* Make sure that fd wasn’'t closed out from under the sender.

if ( £4 < 0 )

{
errno = EINVAL;

return (-1);

}

/* Setup buffer and iov and msghdr */

dataiov.iov_base = (caddr_t)} bufp;

103

*/

/* from tg.y:generate */

*/



if ( (dataiov.iov_len = len) >= (5 * sizeof (unsigned long)) )
{

ulp = {(unsigned long *) bufp;

*yulp++ = *pktidp;

gettimeofday( (struct timeval *) ulp, 0 );

ulp += sizeof (struct timeval) / sizeof (unsigned long);
*ulp++ = idw(fd];

*ulp = len;

}

InitMsg (&{msg).,&( to ),sizeof (to),
&dataiov,1l, (struct cmsghdr *) NULL,O0 );

/* If we just got done allowing receives, try the write without */

/* bothering to do another receive. >/

/* However, don‘t do this the first time around because we must */
/* check for the connect completing. */

if ( (justrcvd && ! firsttime) || rcving )

{

/* Try to write out the packet. */

} /% ... else */

/* The write failed with an EWOULDBLOCK or we need to allow some */
/* receives to happen. Thus, we must honor the timeout period, */
/* unless we are being recursively invoked. */

/* Invoke the get_packets routine to receive packets and accept */
/* new connections while we are waiting to write. */

else if ( ! st2_get_packets( fd, endtoutp ) )
{

buffer_generic_free( bufp );
return (-1);

}

else

{
/* Write out the packet! */

firsttime = 0;

}
cc = sendmsg{ fd, &msg, 0/*flags*/ );

if ( cc >= 0 )

{

log_tx( /*tvp*/ NULL, /*adrl*/ &(sa[fd)), /*adr2*/ NULL,
/*asn*/ fd, /*id*/ *pktidp, /*len*/ cc, /*errmo*/ -1 };
(*pktidp) ++;
idw[fd) += cc;

104



}

else if ( errno !'= EWOULDBLOCK )

{

log_tx( /*tvp*/ NULL, /*adrl*/ &(sa[fd]), /*adr2*/ NULL,
/*asn*/ fd, /*id*/ *pktidp, /*len*/ 0, /*errno*/ errno );

}

else if ( rcving )

{

log_tx{( /*tvp*/ NULL, /*adrl*/ &(sa([fd}), /*adr2*/ NULL,
/*asn*/ fd, /*id*/ *pktidp, /*len*/ cc, /*errno*/ errno );

}

buffer generic_free( bufp )
justrcvd = 0;

return (cc);

}

/* Record the fact that a setup has occurred. */

void

st2_setup( pp, f4 ) /* from prot_straw.c: straw_setup */
protocol ‘*pp;

int fa;

{

int nfds;

if ( efd >= 0 )

{

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ sfd,
/*errcod*/ LOGERR_2SETUP ) ;

(void) fprintf( stderr, “dgram_setup: %s %s\n",
"cannot set up new server without”,
“tearing down old one first” );

abort () ;

}

/* Allocate memory for ID arrays. */
if ( idr == NULL )

{
nfds = getdtablesize();

if ( (idr = (unsigned long *) malloc( nfds * sizeof (unsigned long)
== NULL )
{

log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ sfgd,

/*errcod*/ LOGERR_MEM ) ;

(void) fprintf( stderr, "st2_ stream_setup: Out of memory!\n” );
abort () ;

105

)}



if ( idw == NULL )
{
nfds = getdtablesizel();

if { (idw = (unsigned long *) malloc( nfds * sizeof (unsigned long} )}
== NULL )
{
log_error( /*adrl*/ NULL, /*adr2*/ NULL, /*asn*/ sfd,
/*errcod*/ LOGERR_MEM ) ;
(void) fprintf( stderr, *“st2_stream setup: Out of memory!\n” ) ;
abort();
}

if ( sa == NULL )

{

nfds = getdtablesize();

if { (sa = (struct sockaddr *) malloc( nfds * sizeof (struct sockaddr) ))
== NULL )

{

log_error{ /*adrl*/ NULL, /*adr2*/ NULL, /*aen*/ sfd,
/*errcod*/ LOGERR_MEM ) ;

(void) fprintf( stderr, "st2_stream_setup: Out of memory!\n” );
abort ():
}
}
/* Let st2_get_packets know of the change. */
prot = pp;

prtab = pp->prot;
if ( £4 < 0 )

{

int cfd = -fd - 1;

FD_SET (cfd, &fds);

if ( cfd > fdmax )
fadmax = cfd;

ga[cfd] = prot->dst;
}

else

{

sfd = £4;
firsttime = 1;

}

106



log_setup( /*tvp*/ NULL, /*errno*/ -1 );

/* Suspend until the (absolute) time specified by waketime, processing */
/* any incoming packets or new connections that occur in that interval. */

void
st2_sleep_till( waketimep )
struct timeval *waketimep;

{
(void) st2_get_packets( -1, waketimep );
justrevd = 1;

}

/* Tear down connection. */

int

st2_teardown( asn )

long asn;

{

int i,
fd = asn,
result,
tmperrno;

if ( f4 ¢ 0)
{

/* Can’'t tear it down if it is already torn down! */

errno = EINVAL;
return (-1);

}

result = close( fd );
log_teardown /*tvp*/ NULL, /*errno*/ result == 0 ? -1 : errno )};

if ( £fd == sfd )
{
/* Preserve errno from original close(}. */

tmperrno = €rrno;

/* Clear out sfd in order to force initialization if it is */
/* later re-opened. */

sfd = ~-1;

107



/* This is the server socket, so make sure to also kill */
/* current connections to any clients. */

for (1 = 0; 1 <= fdmax; 1i++ )
{

if ( FD_ISSET (i, &fds) )
(void) close( i );

}

/* Restore errno from original close(). */

errnc = tmperrno;

}

return (result);

/*

Local Variables:
c-indent-level: 4
c-brace-offsgset: -4
c-brace-imaginary-offset: 0
c-continued-statement-offset: 4
comment-column: 40

End:

*/

108



/**************i*********i************************************i**********

File: prot_straw.c

* * *

* Routines for interfacing to the rav ST-II protocol suite via
* the normal user-level interface.

Modified 11-Jun-91 by C.Lynn, BBN.

Copyright (c) 1991 by BBN Systems and Technologies,

A Division of Belt Beranek and Newman Inc.

Written 20-Jun-90 by Paul E. McKenney, SRI International.
Copyright (c) 1990 by SRI International.

* % * * * * *»

#ifndef lint
static char rceid[] = “$Header$”;
#endif lint

/* Include files. */

#include <gstdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/file.h>
#include <gys/ioctl.h>
#include <sys/time.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include "log.h”

#include “distribution.h”
#include “protocol.h”
#include <sys/uio.h> /* iov for struct msg */
#include “st2_api.h”

/* Type definitions local to this file. */

#define SAPLEN 2

#define Bytesof (x) Bytes2(x) /* !@#$ cpp lacks an “eval” */
#define DEFAULT_PROTOCOL 255

#define DEFAULT_PORT 1234

int st2_options = STOptLBit | STTSRYes; /* Ought to fix parser ... */

Instsockaddr_st2(local, InstaApplEntity (here, SAPLEN, /*no srcrut*/);) = {
Initsockaddr_ st2 (STReqUnspec, 0/*opt_xxx*/),

InitaApplEntity (STLclAppEnt, local . here,
INADDR_ANY,DEFAULT_PROTOCOL,SAPLEN,ByteSOf(DEFAULT_PORT),/*no srcrut*/)

}s

109

* * * * =

+ * * #

*

*

****************i****************************i********t****************/



Instsockaddr_st2 (remote,

InstaFlowSpec3 (tos);

InstaTargetList (targlst,

InstaTarget (targl, SAPLEN, ) ;

)

) = {
Initsockaddr_stZ(STReqUnspec,0/*opt_xxx*/),
InitaFlowSpec3 (STpFlowSpec,

/*min*/ 128/*bytes*/, 2/*pps*/, 128*2/*bandwidth*/,
/*des*/ 1024/*bytes*/, 10/*pps*/)}.
InitaTargetList(remote.targlst,1/*targets*/,

InitaTarget (remote.targlst.targl,
INADDR_ANY, SAPLEN, 0,)

)

}bi

/* Functions exported from this file. */
/* Functions local to this file. */
/* Variables exported from this file. */
/* Variables local to this file. */

static protocol_table *prtab = NULL; /* pointer to protocol table. */

static Instsockaddr_st2 (from,

unsigned char parm0 [ (MAX_ST_NAM-sizeofsockaddr_st2header)/4];);
/* Socket structure client */

static struct msghdr msg; /* For recvmsg/sendmsg ... */

static struct iovec ctliov; /* For recvfrom data descriptor */

gtatic char ctlnodata[8]; /* Broken recvmsg! */

gtatic union { /* First component of msg */

struct cmsghdr cm;

char buf[ MAX ST CTL ]; /* For control info from ST-II */

} ctl;

gtatic struct cmsghdr *ctlp = &( ctl.cm }; /* Contents of ctlbuf */
/* ST-II stream setup function. */

long

straw_setup{ protp ) /* from tg.y: do_actions */

protocol *protp;

{

int flags,
sfd, /* Socket file descriptor. */
len;

110



—

/* Save pointer to protocol table. */

prtab = protp->prot;

/* Create ST-I1 socket. */

if ( (sfd = socket (AF_COIP, SOCK_RAW, 0)) == -1 )
{

return (-1);

}

if ( ! (protp->qos & QOS_SERVER) )

{

unsigned long bytes,
ratexl0,
bandwidthx10;

/* Handle client side. Connect up a socket and return */

0.1 pps assumed\n"”

/* it to the caller. */
if ( (protp->gos & QOS_MTU) != 0 )
{
bytes = protp->mtu;
}
else
{
printf( “ST-1I: packet size not specified {(mtu)\n” );
return (-1);
}
if ( (protp->qos & QOS_INTERVAL) != 0 )
{
ratexl0 = 10.0 / protp->interval;
if ( ratexl0 == 0 )
{
printf( “ST-II: specified interval is less than 0.1 pps,
)
ratexl0 = 1;
}
}
else
{
printf( “ST-II: packet interval not specified (interval)\n” );
return (-1);
}
if ( (protp->gos & QOS_PEAK_BANDWIDTH) != 0 )

{

bandwidthx10 = 10 * protp->peak_bandwidth;

}

else if

{

(protp->gos & QOS_AVG_BANDWIDTH) != 0 )

111



{

bandwidthx10 = 10 * protp->avg_bandwidth;
}

else

{

bandwidthx1l0 = bytes * ratexl0:

}

/* Establish a connection. */

local.here.IPAdr = * (unsigned long *) &{ protp->src.sa_data(2] );
local.here.NextPcol = DEFAULT_PROTOCOL;

local .here.SAP[0] protp->src.sa_data[0];

local .here.SAP[1] protp->src.sa_datall];

/* Bind socket. */

if ( bind( sfd, &( local ), sizeof (local) ) == -1 )
{

(void) close( sfd );

return (-1);

}
remote.st_options = st2_options;

remote.targlst.targl.IPAdr = * (unsigned long *) &( protp->dst.sa_datal[2] )};
remote.targlst.targl.SAP[0] protp->dst.sa_data[0];
remote.targlst.targl.SAP[1] protp->dst.sa_datal[l];
remote.targlst.targl.SAPBytes = 2;

remote.tos.LimitOnPDUBytes = bytes;
remote.tos.DesPDUBytes = bytes;
remote.tos.LimitOnPDURate = ratexl1O0;
remote.tos.DesPDURate = ratexlO;
remote.tos.MinBytesXRate = bandwidthx10;

if ( (connect( sfd, (struct sockaddr *) &( remote ),
sizeof (remote) } == -1 )

&& (errno != EINPROGRESS) )

{

(void) close( sfd );
return (-1);

}

/* Prevent slow connection-setup from killing us. */
(void) signal( SIGPIPE, SIG_IGN );

ctliov.iov_base = (caddr_t) ctlnodata;
ctliov.iov_len = sizeof (ctlnodata);

InitMsg(&{msg),&( from ),sizeof (from)., &ctliov,1,
&( ctl.cm ),sizeof (ctl));

112



len = recvmsg{ sfd, &msg, 0/*flags*/ );
if ( len == -1 )

{

log_error (NULL, NULL, sfd, 17);

perror( “st2_get_ packets: recvmsg Accept” );
abort () ;

}

if ( from.st_request != STReqAccept )
{

(void) close( sfd );

return ( -1 );

}

if ( (flags = fcntl( sfd, F_GETFL, 0 )) == -1
{

log_error( NULL, NULL, sfd, LOGERR_FCNTL );
perror( “fcntl F_GETFL” );

abort () ;

}

if (fcntl( sfd, F_SETFL, flags | FNDELAY ) ==
{

(void) close( sfd ):

return (-1);

}
/* Tell the get_packets routine about the new

st2_setup( protp, -sfd - 1 );
}

else

{

/* Handle server side. This will need to be modified to allow */

/* the server to accept multiple connections.

local .here.IPAdr = * (unsigned long *) &( protp->src.sa_data[2]

local .here.NextPcol = DEFAULT_PROTOCOL;
local.here.SAP[0] = protp->src.sa_datal[0];
local.here.SAP[1] protp->src.sa_data[1l];

/* Bind socket. */

if ( bind( sfd, &( local ), sizeof (local) )
{

(void) close( sfd );

return (-1);

}

client socket. */

*/

/* Initialize socket to set no-delay mode. */

if ( (flags = fcntl( sfd, F_GETFL, 0 })) == -1

113

)

)i



{
log_error ( NULL, NULL, sfd, LOGERR_FCNTL ) ;

perror( “fentl F_GETFL” );
abort () :
}

if ( fcntl( sfd, F_SETFL, flags | FNDELAY ) == -1 )
{

log_error{ NULL, NULL, sfd, LOGERR_FCNTL ) ;
perror{ “fcntl F_SETFL FNDELAY” );

abort () ;

}

/* Declare willingness to accept connections. */
(void) listen( sfd, 3 ):

/* Tell the get_packets routine about the new server socket. */

st2_setup( protp, sfd );
}

return (sfd);

/*

Local Variables:
c-indent-level: 4
c-brace-offset: -4
c-brace-imaginary-offset: 0
c-continued-statement-offset: 4
comment-column: 40

End:

*/

114



/*t******i*************************************i*********************ﬁ***

* *
* File: prot_stream.c *
* *
* Common routines for interfacing to stream socket protocols *
* suite via the normal user-level interface. *
- *
* Written 09-Aug-50 by Paul E. McKenney, SRI International. *
* Copyright (c) 1930 by SRI International. *
* *
******t*********************************************************t*******/

#ifndef lint

static char rcsid[] = ~”$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
prot_stream.c,v 1.7 90/11/26 12:29:42 dlee Exp Locker: dlee $”;

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <gsys/time.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <sys/socket.h>
#include “config.h”
#include “log.h”
#include “distribution.h”
#include “protocol.h”

/* Type definitions local to this file. */

/* Functions exported from this file. */

/* Functions local to this file. */

/* Variables exported from this file. */

/* Variables local to this file. */

static int fdmax = -1; /* maximum value for client FD. */
static fd_set fds; /* FDS to clients. */

static int firsttime = 1; /* initialization flag. */

static unsigned long *idr = NULL; /* per-asn Packet IDs for read. */

static unsigned long *idw = NULL; /* per-asn Packet IDs for write.*/

static int Jjustrcvd = 0; /* Must rcv before next send. */

static protocol *prot = NULL; /* pointer to protocol pars. */

static protocol_table *prtab = NULL; /* pointer to protoccl table. */

115



static int recving = 0; /* Receiving packets? */

static struct sockaddr *sa = NULL; /* per-asn socket addresses. */
gstatic int sfd = -1; /* Socket file descriptor. */

static void (*setup_gqos) ()

/* Function to set up FD for */

/* desired quality of service. */

/* Accept connections and packets while waiting for the opportunity to */
/* write (if wfd specified) or for specified timeout, whichever comes */
/* first. */

int
stream_get_packets(wfd, endtout)

int wfd; /* FD for write, -1 if none. */
struct timeval *endtout; /* end of timeout period. */

{

static char *buf = NULL; /* pointer to receive buffer. */
int f£4;

gtruct sockaddr_in from; /* Socket structure client */
int i;

int 1len;

int nitems; /* Number of items selected. */

int pklen; /* Input packet length. */

fd_set rfds; /* Read FDs for select. */

struct timeval tv;

struct timeval *tvp;

fd_set wfds; /* Write FDs for select. */

/* Initialization on first pass, if necessary. */

if (firsttime)
{
FD_ZERO (&fds) ;
if (sfd >= 0)
{
FD_SET (sfd, &fds);
fdmax = sfd;
}
firsttime = 0;

}
/* Calculate initial timeout. We force a select even if the */
/* timeout has already expired in order to prevent the CPU from */

/* starving the 1/0. */

if (endtout == NULL)
{

116



/* No timeout, so just use NULL pointer. */

tvp = NULL;
}

else

{

/* Calculate timeout. *x/

if (gettimeofday (&tv, (struct timezone *)NULL) == -1)

{
log_error (NULL, NULL, -1, LOGERR_SELECT) ;

perror (“stream_get_packets: gettimeofday”);
abort () ;

}

if (timercmp (endtout, &tv, >))

{

timersub (endtout, &tv, &tv);

/* Wait at most one hour at a time. SunOS has */
/* some strange limitations on the timeout in */
/* the select call, I guess they just don't */
/* believe in waiting forever. One hour is */

/* shorter than forever. */

if (tv.tv_sec > 3600)

tv.tv_sec = 3600;

}
else

{

tv.tv_sec = 0;
tv.tv_usec = 0;

}
tvp = &tv;
}

/* Each pass through the following loop does one select call */
/* to check the state of the fds. */

rcving = 1;
justrcvd = 1;

for (;:)

{

/* Set up for select: get fd bitmaps. */
rfds = fds;

FD_ZERO (&wfds) ;
if (wfd >= 0)

{

FD_SET(wfd, &rfds);

117



FD_SET (wfd, &wfds);
}

if ((nitems = select(fdmax > wid ? fdmax + 1 : wfd + 1,

&rfds,
&wfds,
(fd_set *)NULL,
tvp)) < 0)
{
if (errno != EINTR)

{
log_error (NULL, NULL, -1, LOGERR_SELECT) ;

perror (“stream_get_packets: select”);
abort ():

}

}

/* Accept any outstanding connections. */

if ((nitems > 0) &&
FD_ISSET (sfd, &rfds))
{
FD_CLR(sfd, &rfds):
nitems--;

/* Each pass through the following loop accepts */
/* one connection. */

for {(:;)

{

len = sizeof (from);

fd = accept(sfd,
(struct sockaddr *)&from,
&len);

if (fd »>= 0)
{

int namelen;

FD_SET(fd, &fds);
idr{fd] = 0O;
if (fd > fdmax)
fadmax = fd;
namelen = sizeof (sa[fdl);
if (getpeername (fd,
&(sa[fd]),
&namelen) == -1}
{
log_error (NULL,
NULL,
fd,
LOGERR_GETPEER):
perror("stream_get_packets: getpeername”) ;

118



abort () ;
}
/* Apply desired quality-of-service to nfd. */

(*setup_gos) (£4d) ;

log_accept(&(sa[fd]), NULL, fd4, -1);
}

else if (errno != EWOULDBLOCK)
{
log_accept (NULL, NULL, -1, errno);
perror (“stream_get_packets: accept”);
abort () ;
}

else
break;

}

}

/* Each pass through the following loop checks for */
/* messages on one file descriptor. */

for (i = 0; (i <= fdmax) && (nitems > 0); i++)
{

/* If current fd was not selected, ignore it. */

if (!FD_ISSET(i, &rfds))
continue;

/* Each pass through the following loop */
/* attempts to receive one segment. */

for (;:)

{

/* Get a buffer if we do not already */

/* have one on hand. */
if ((buf == NULL) &&

( (buf =

(* (prtab->buffer_get)) (MAX_PKT_SIZE)) ==
NULL) )

{
log_error (NULL, NULL, -1, LOGERR_MEM) ;
(void) fprintf (stderr,
“%s %s\n",
“stream_get_packets: “,
“out of memory!”);
abort () ;
}

119



/* Receive the segment, scream and die */
/* if error. */

pklen = read(i, buf, MAX_ PKT_SIZE);

if ((pklen == 0) ||
({pklen < 0) &
(errno != EWOULDBLOCK)))
{

/* Shut down and tell rcv if */
/* EOF or error. */

if (close(i) == -1)

{

log_rx({&(sa(i]), NULL, -1, 0, O,
pklen == 0 ? -1 : errno);

perror (”close”};
log_teardown (NULL, -1);
abort () ;
}
FD_CLR(i, &fds);
len = 0;
if (prtab->rcv != NULL)
(void) (* (prtab->rcv)) (i,
i,
NULL,
pklen,
0);
break;
}
else if (pklen > 0)
{

/* Pass packet to receiver. */

log_rx(&(sal[il), NULL, -1, idr[i], pklen,
-1);
if ((prtab->rcv != NULL) &&
((*(prtab->rcv)) (i,
i,
buf,
pklen,
idr[il}))
buf = NULL;
idr[i] += pklen;
}
else

{

/* Nothing more to read right */
/* now. */

120



break;

if

(--nitems <= 0)

break;

}

/*

if

Check for ability to write...

((nitems > 0) &&

(wfd > 0) &&
(FD_ISSET (wfd, &wifds)))

{

rcving = 0;
return (1) ;

}

/*

/a-

if

{
if
{

log_error (NULL, NULL, -1, LOGERR_SELECT);
getttimeofday”) ;

Calculate next timeout. If the timeout has expired,

tell the caller the sad story.

(endtout != NULL)

(gettimeofday(&tv, (struct timezone *)NULL)

perror{“stream_get_packets:
abort () ;

}

if (timercmp (endtout, &tv, >))

{

timersub (endtout, &tv, &tv);

/* Wait at most one hour per select. */

if (tv.tv_sec > 3600)
tv.tv_sec = 3600;

}
el

{

se

errno = ETIME;
rcving = 0;
return (0);

}
}

/* NOTREACHED */

}

*/

121

*/



/* Send a packet, subject to the timeout. */

int
stream_send (asn, buf, len, endtout, pktid)

long asn;

char *buf;

int 1len;

gtruct timeval *endtout;
unsigned long *pktid;

int cc;

int fd4d = asn;

static int firsttime = 1; /* Must wait for select to say */
/* that connect has succeeded. */

char *tmpbuf = buf;

/* Make sure that fd wasn’t closed out from under the sender. */

if (f4 < 0) {
errno = EINVAL;
return (-1);

}

/* If we just got done allowing receives, try the write without */
/* bothering to do another receive. */
/* However, don’t do this the first time around because we must */

/* check for the connect completing. */

if ((justrcvd && !firsttime) || rcving)

{

/* Try to write out the packet. */

cec = write(fd, tmpbuf, len);

if ((cc »= 0) || ((cc <0) && (errno != EWOULDBLOCK)) || rcving)
{

log_tx(NULL, &(ea[fd]l), NULL, -1, idwlfd],

cc, cc == -1 ? errno : -1);

if (cc >= 0) {

*pktid = idwl[fd];

idw([fd] += cc;

if ((cc == len) || {cc < 0))

buffer_ generic_free(buf);
justrcvd = 0;

return (cc);

}

}

122



/* Adjust buffer pointers if partial write occurred. */

if (cc > 0)

{
tmpbuf += cc;
len -= cc;

}

/* The write failed with an EWOULDBLOCK or we need to allow */
/* some receives to happen. Thus, we must honor the timeout */
/* period, unless we are being recursively invoked. */

/* Each pass through the following loop attempts to write the */
/* packet, more than one pass will be needed if partial writes */
/* occur. */

for (;:)

{

/* Invoke the get_packets routine to receive packets and accept */
/* new connections while we are waiting to write. */

if (!stream_get_packets(fd, endtout)) {
return (-1);
} else {

/* Write out the packet! */

firsttime = 0;
cc = write(fd, tmpbuf, len);
if (cc >= 0)

log_tx(NULL, &(sa[fd]), NULL, -1, idw([fd], cc, -1);
*pktid = idwl[fd];

idw[fd] += cc;

if (cc != len)

{
tmpbuf += cc;

len -= cc;
continue;
}
} else if (errno != EWOULDBLOCK) {
log_tx(NULL, &(sa[fd]), NULL, -1, idw([fd], 0, errno);

}
buffer_generic_free(buf);
justrcvd = 0;

return (cc);

}

123



/* Record the fact that a setup has occurred. */

void
stream_setup(pp, fd,my_setup_gos)

protocol *pp:
int f£4;
void (*my_setup_gos) ();

{

int nfds;

if (sfd >= 0)
{
log_error (NULL, NULL, sfd, LOGERR_2SETUP);
(void) fprintf (stderr,
“dgram_setup: %s %s\n”,
"cannot set up new server without”,
“tearing down old one first”);

abort ();

}

/* Allocate memory for ID arrays. */
if (idr == NULL)

{
nfds = getdtablesize();
if ((idr =
(unsigned long *)malloc(nfds * sizeof (unsigned long))) ==
NULL)

{
log_error(NULL, NULL, sfd, LOGERR_MEM) ;
(void) fprintf (stderr, “stream_setup: Out of memory!\n”);
abort () ;
}
}
if (idw == NULL)

{
nfds = getdtablesize();
if ((idw =

(unsigned long *)malloc{nfds * sizeof(unsigned long))) ==
NULL)

{

log_error (NULL, NULL, sfd, LOGERR_MEM) ;

(void) fprintf (stderr, “stream_setup: Out of memory!\n");
abort ()} ;
}

}

if (sa == NULL)

124



{
nfds = getdtablesize();

if ((sa =
(struct sockaddr *)malloc (nfds *
sizeof (struct sockaddr)}) ==
NULL)

{
log_error (NULL, NULL, sfd, LOGERR_MEM) ;

(void) fprintf (stderr, “stream_setup: Out of memory!\n”);
abort () ;
}
}
/* Let stream_get_packets know of the change. */
prot = pp:
prtab = pp->prot;
if (£4 < 0)
{
int cfd = -f4 - 1;

FD_SET (cfd, &fds);
if (cfd > fdmax)

fdmax = cfd;
sa[cfd] = prot->dst;
}
else

{

sfd = f£4;

firsttime = 1;

}
setup_gos = my_setup_gos;
log_setup (NULL, -1});

}

/* Suspend until the (absolute) time specified by waketime, processing */
/* any incoming packets or new connections that occur in that interval. */

void
stream_sleep_till (waketime)

struct timeval *waketime;

(void) stream_get_packets (-1, waketime);
justrcvd = 1;
}

125



/* Tear down connection. */

int
stream_teardown (asn)

long asn;

int 1i;

int fd = asn;
int result;
int tmperrno;

if (fda < 0)
{

/* Can’'t tear it down if it is already torn down! */

errno = EINVAL;
return (-1);

}

result = close(fd);
log_teardown (NULL, result == 0 ? -1 : errno) ;

if (fd == sfd)
{

/% Preserve errno from original close{). */
tmperrno = €rrno;

/* Clear out sfd in order to force initialization if */
/* it is later re-opened. */

sfd = -1;

/* This is the server socket, so make sure to also kill */
/* current connections to any clients. */

for (i = 0; i <= fdmax; i++)
{

if (FD_ISSET(i, &fds))
(void)close (i) ;

}

/* Restore errno from original close (). */

errno = tmperrno;

}

return (result);

}

126



/*********************************************i******i***********t*****i*

*

*

* File: prot_tcp.c
*

*

Routines for interfacing to the TCP protocol suite via the
normal user-level interface.

* *

*
*
*
Written 20-Jun-90 by Paul E. McKenney, SRI International. *
Copyright (c) 1990 by SRI International. *
*

*

* % % * ¥

*****************************************************************i****

/

#ifndef lint

static char rcsid[] = “S$Header: /tmp_mnt/net/usr.projecte/dartnet/src/tg/sund/
RCS/prot_tcp.c,v 1.7 90/11/26 12:29:45 dlee Exp Locker: denny $”;

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <gignal.h>
#include <errno.h>
#include <sys/time.h>
#include <math.h>
#include “log.h”
#include “config.h”
#include *“distribution.h”
#include *“protocol.h”

/* Type definitions local to this file. */
/* Functions exported from thig file. */
/* Functions local to this file. */

/* Variables exported from this file. */
/* Variables local to this file. */

static protocol_table *prtab = NULL; /* pointer to protocol table. */
static protocol *prot = NULL; /* pointer to protocol struct. *x/

/* Apply QOS parameters to an existing f4. */

127



void tcp_gos (£4)

int f4d:

{

/* Handle QOS parameters, if any are set. */

if ({(prot->qos & QOS_RCVWIN) t= 0)

{

/* Set up receive buffer size. */

if (setsockopt (fd,SOL_SOCKET, SO_RCVBUF, & (prot->rcvwinj},
sizeof (prot->rcvwin}) == -1)

{

perror (“setsockopt SO_RCVBUF failed”) ;

abo
}

}
if
{

re();

((prot->gos & QOS_SNDWIN) != 0)

/* Set up send buffer size. */
if (setsockopt(fd,SOL_SOCKET,SO_SNDBUF,&(prot—)sndwin),
sizeof (prot->sndwin)) == -1)

{

perror (“setsockopt SO_SNDBUF failed”) ;
abort () ;

}

/* TCP connection setup function. */

long

tcp_setup(proto)

protocol *proto;

{

int flags;

int sfd; /* Socket file descriptor. */
/* Save pointer to protocol table. */
prtab = proto-’>prot;

/* Set up global pointer to protocol structure. *x/
prot = proto;

/* Create TCP socket. */

if

{((sfd

socket (AF_INET, SOCK_STREAM,

128

IPPROTO_TCP))



{
return (-1);

}

if (! (prot->gos & QOS_SERVER))
{

/* Handle client side. Connect up a socket and return */
/* it to the caller. */

/* Establish a connection. */
if ((flags = fcntl(sfd, F_GETFL, 0)) == -1)
{

log_error (NULL, NULL, sfd, LOGERR_FCNTL);
perror (“fcntl F_GETFL");
abort () ;

}
if (fentl(sfd, F_SETFL, flags | FNDELAY) == -1)

{
(void) close(sfd);
return{(-1);

}
/* handle any QOS parameters */

tcp_gos(sfd) ;

if ((connect(sfd, &(prot->dst), sizeof (prot->dst)) < 0) &
(errno != EINPROGRESS))
{

{(void)close(sfd);
return (-1);

}
/* Prevent slow connection-setup from killing us. */
(void)signal (SIGPIPE, SIG_IGN);

/* Tell the get_packets routine about the new client */
/* socket. */

stream_getup (prot, -sfd - 1l,tcp_gos)

}

else

{

/* Handle server side. This will need to be modified */
/* to allow the server to accept multiple connections. */

/* Bind socket. */

if (bind{sfd, &(prot->src), sizeof(prot->src})) < 0)

129



{
(void)close (sfd) ;
return (-1);

}
/* Initialize socket to set no-delay mode. */

if ((flags = fentl(sfd, F_GETFL, 0}) == -1)
{

log_error (NULL, NULL, sfd, LOGERR_FCNTL) ;
perror (“fcntl F_GETFL");

abort () ;

}
if (fcntl(sfd, F_SETFL, flags | FNDELAY) == -1)
{

log_error (NULL, NULL, sfd, LOGERR_FCNTL);
perror (“fcntl F_SETFL FNDELAY");

abort () ;

}

/* Declare willingness to accept connections. */
(void) listen{sfd, 3);

/* Tell the get_packets routine about the new server */
/* socket. */

stream_setup (prot, sfd, tcp_qgos);:

}

return (sfd);

}

130



/******i*t*******************i**********************it************i****t*

L *
* File: prot_test.c *
* *
* Test '‘protocol’’ that uses keyboard and screen to check out *
* timing and scheduling at a coarse-grained level. *
* *
* Written 24-Aug-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *
* *

*****************t***********************ﬁ**t**tt***t******************i/

#ifndef lint

static char rcsgid[] = “S$Header: /tmp_mnt/net/usr.projecte/dartnet/src/tg/sun4/
RCS/prot_test.c,v 1.6 90/11/26 12:29:47 dlee Exp Locker: denny $*;

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/file.h>
#include <gys/ioctl.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>

#include “log.h”

#include “config.h*
#include “distribution.h”
#include “protocol.h”

/* Type definitions local to this file. */
/* Functions exported from this file. */
/* Functions local to this file. */

/* Variables exported from this file. */
/* Variables local to this file. */

static protocol_table *prtab = NULL; /* pointer to protocol table. */
static int sfd = -1;

/* Accept packets while waiting for the opportunity to write (if wfd */
/* specified) or for specified timeout, whichever comes first. =*/

131



int
test_get_packets (prtab, wfd, endtout)

protocol_table *prtab; /* PRotocol Table pointer. */
int wfd; /* FD for write, -1 if none. */
struct timeval *endtout; /* end of timeout period. */

{

static char *buf = NULL; /* pointer to receive buffer. */
int pklen; /* Input packet length. */

static unsigned long pktid = 0; /* received packet id. */
fd_set rfds; /* Read FDs for select. */

gtruct timeval tv;

struct timeval *tvp;

fd_set wfds; /* Write FDs for select. */

/* If we are passed a NULL prtab, the caller is trying to tell */
/* ug about a new server socket. But that is too bad, since */
/* we will ignore it in this test protocol. */

if (prtab == NULL)
{

return (0);

}
/* Calculate initial timeout. We force a select even if the */
/* timeout has already expired in order to prevent the CPU from */

/* starving the I/O. */

if (endtout == NULL)
{

/* No timeout, so just use NULL pointer. */

tvp = NULL;
}

else

{

/* Calculate timeout. */

if (gettimeofday (&tv, (struct timezone *)NULL) == -1)
{

log_error (NULL, NULL, -1, LOGERR_GETTIME);
perror (“test_get_packets: gettimeofday”)}:
abort () ;

}

if (timercmp (endtout, &tv, >))

{

timersub (endtout, &tv, &tv);

132



/* Kludge around strange SunOS restrictions. */

if (tv.tv_sec > 3600)

tv.tv_sec = 3600;

}
else

{

tv.tv_sec = 0;
tv.tv_usec = 0;

}
tvp = &tv;
}

/* Each pass through the following loop does one select call */
/* to check the state of the fds. */

for (;:)

{

/* Set up for select: get fd bitmaps. */

FD_ZERO (&rfds) ;

if (sfd >= 0)
FD_SET(sfd, &rfds):
FD_ZERO (&wfds) ;

if (wfd >= 0)

{

FD_SET (wfd, &rfds):
FD_SET (wfd, &wids);

}
if (select(wfd > gfd ? wfd + 1 : sfd + 1,

&rfds,
&wfds,
(fd_set *)NULL,
tvp) < 0)

{

if (errno != EINTR)
{

log_error (NULL, NULL, -1, LOGERR_SELECT) ;
perror (“test_get_packets: select”);

abort (};

}

}

/* If stdin fd was not selected, ignore it. */

if ((sfd >= 0) &&
FD_ISSET (sfd, &rfds))
{

/* Each pass through the following loop */
/* attempts to receive one segment. */

133



for (;;)

{

/* Get a buffer if we do not already */
/* have one on hand. */

if ((buf == NULL) &&

((buf =

(* (prtab->buffer_get)) (MAX_PKT_SIZE)) ==
NULL))

{
log_error (NULL, NULL, -1, LOGERR_MEM) ;
(void) fprintf (stderr,
“%s %s\n”,
“test_get_packets: “,
“out of memory!'!"”);
abort ()
}

/* Receive the segment, scream and die */
/* if error. */

pklen = read(sfd, buf, MAX_PKT_SIZE);

if ((pklen == 0} ||
((pklen < 0) &
(errno !{= EWOULDBLOCK)))

{

/* Shut down and tell rcv if */
/* EOF or error. */

/*&&&&*/if (pklen < 0}
perror ("read”) ;
sfd = -1;
log_rx (NULL,
NULL,
sfd,
0,
0,
pklen == 0 ? -1 : errno);
if (prtab->rcv != NULL)
(void) (* (prtab->rcv)) (sfd,
sfd,
NULL,
pklen,
0);
break;
}
else if (pklen > 0)
{

134



/* Pass packet to receiver. */

log_rx (NULL,
NULL,
sfd,
pktid,
pklen,
-1);
if ((prtab->rcv != NULL) &&
((* (prtab->recv)) (sfd,
sfd,
buf,
pklen,
pktid++)))
buf = NULL;

else

{

/* Nothing more to read right */

/* now. */

break;
}
}
}

/* Check for ability to write...

if ((wfd > 0) &&
(FD_ISSET(wfd, &wfds)))
return (1);

/* Calculate next timeout. If the timeout has expired,

/* tell the caller the sad story.

if (endtout != NULL)
{

if (gettimeofday(&tv, (struct timezone *)NULL)

{

log_error (NULL, NULL, -1, LOGERR_GETTIME);
perror (“test_get_packets: gettimeofday”);

abort () ;
}

if (timercmp(endtout, &tv, >))

{

timersub (endtout, &tv, &tv);

/* Kludge around strange SunoOS
/* restrictions. */

*/

*/

*/

135

*/



if (tv.tv_sec > 3600)

tv.tv_sec = 3600;
}
else
{
errno = ETIME;
return (0);

}
}

/* NOTREACHED */
}

/* Test protocol connection setup function.

long
test_setup(prot)

protocol *prot;

{
int flags;

/* Save pointer to protocol table. */
prtab = prot->prot;

/* Dump out QO0S info. (debug only) */
#ifdef NOTDEF

if ((prot->gos & QOS_AVG_BANDWIDTH) !=

(void)printf (“Average bandwidth..%g\n",

if ((prot->gos & QOS_PEAK_BANDWIDTH) !=
(void)printf (“Peak bandwidth..... sg\n”,
if ((prot->gos & QOS_AVG_DELAY) != 0)
(void)printf (“Average delay...... $g\n”,
if ((prot->gos & QOS_PEAK_DELAY) != 0)
(void)printf (“Peak delay......... sg\n*,
if ((prot->gos & QOS_AVG_LOSS) != 0)
(void)printf (“Average loss....... $g\n”,
if ((prot->gos & QOS_PEAK_LOSS) != 0)
(void)printf (“Peak loss.......... sg\n",
if ((prot->gos & QOS_INTERVAL) != 0)
(void)printf (“Interval........... $g\n”",

if ({prot->gos & QOS_MTU)
(void)printf("MTU................ $u\n",

if
(void)printf (~

((prot->gos & QOS_INTERACTIVE)
INTERACTIVE") ;

0)

136

0)

*/

prot->avg_bandwidth) ;

0)

prot->peak_bandwidth) ;
prot->avg_delay) ;
prot->peak_delay) ;
prot->avg_loss) ;
prot->peak_loss) ;
prot->interval) ;

prot->mtu) ;



if ((prot->qgos & QOS_SERVER) != 0)
(void)printf (” SERVER");

(void) printf (“\n");

#endif NOTDEF

if (! (prot->gos & QOS_SERVER))
{

/* Handle client side. */

return (open(”/dev/tty”, O_RDWR));
}

else

{

/* Handle server side. */

sfd = open(”/dev/tty”, O_RDWR);

/* Set no-delay mode. */
if ((flage = fcntl(sfd, F_GETFL, 0)) == -1)
{

log_error (NULL, NULL, -1, LOGERR_FCNTL) ;
perror ("fcntl F_GETFL");

abort();

}

if (fentl(sfd, F_SETFL, flags | FNDELAY) == -1)
{

(void)close(sfd) ;
returni{-1);

}

return (sfd);

}
}

/* Tear down connection. */

int
test_teardown (asn)

long asn;
{
int fd = asn;

int flags;

if (fd < 0)
{

137



/* Can‘t tear it down if it is already torn down! */

errno = EINVAL;
return (-1);

1

/* Set no-delay mode. */
if ((flags = fcntl(fd, F_GETFL, 0)) == -1)
{

log_error (NULL, NULL, -1, LOGERR_FCNTL) ;
perror (*fcntl F_GETFL");

abort ()
}
if (fentl(fd, F_SETFL, flags & ~FNDELAY) == -1)
{
(void)close(fd) ;
return(-1) ;
}
return (0);
}
/* Send a packet, subject to the timeout. */

int
test_send(asn, buf, len, endtout, pktid)

long asn;

char *buf;

int len;

struct timeval *endtout;
unsigned long *pktid;

{

int cc;
int fd4 = asn;
static unsigned long id = 0;

char s[30];

/* Make sure that fd wasn't closed out from under the sender. */

if (fd < 0)

{

errno = EINVAL;
return (-1);

}

/* Invoke the get_packets routine to receive packets and accept */
/* new connections while we are waiting to write. */

if (!test_get_packets{prtab, fd, endtout))

138



{
return (-1);

}

else

{

/* Write out the packet! */
(void) sprintf (s, “%d4,”, len);

cc = write(fd, s, strlen(s));
log_tx (NULL,

NULL,

NULL,

f4a,

id,

len,

cc > 0 ? -1 : errno);
if (cc »>= 0)

*pktid = id++;
buffer generic_free(buf);
return (cc);

}
}

/* Suspend until the (absolute) time specified by waketime, processing */
/* any incoming packets or new connections that occur in that interval. */

void
test_sleep till (waketime)

struct timeval *waketime;

(void) test_get_packets(prtab, -1, waketime) ;
}

139



/******ﬂ*t****************t**i*i*****************************************

w ¥*
* File: prot_udp.c *
* *
* Routines for interfacing to the TCP protocol suite via the *
* normal user-level interface. *
* *
* Written 04-Sep-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 by SRI International. *
* *

*****************ti****************************i*i*******************t**/

#ifndef lint

static char rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
prot_udp.c,v 1.5 90/11/26 12:29:49 dlee Exp Locker: denny $”;

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <sys/time.h>
#include <math.h>
#include “log.h”
#include "config.h”
#include "distribution.h”
#include "protocol.h”

/* Type definitions local to this file. */
/* Functions exported from this file. */
/* Functions local to this file. */

/* Variables exported from this file. */
/* Variables local to this file. */

static protocol_table *prtab = NULL; /* pointer to protocol table. */

/* Apply QOS parameters to an existing fd. */

static void udp_gos (fd)

140



int f4;

{

/* Handle QOS parameters here if UDP ever gets any. */

/* TCP connection setup function. */

long
udp_setup (prot)

protocol *prot;

{
int flags;

int sfd; /* Socket file descriptor. */

/* Save pointer to protocol table. */

prtab = prot->prot;

/* Create TCP socket.

*/

if ((sfd = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)

{

return (-1);

}

if (!(prot->qgos & QOS_SERVER))

{

/* Handle client side.
/* it to the caller.

Connect up a socket and return */

*/

/* Establish a connection. */

if ((flags = fcntl(sfd,

{
log_error (NULL, NULL,

F_GETFL, 0)) == -1)

-1, LOGERR_FCNTL) ;

perror(“fecntl F_GETFL") ;

abort () ;
}
if (fcntl(sfd, F_SETFL,
{
(void)close (sfd) ;
return(-1) ;
}
/* Handle any QOS */
udp_qgos (sfd) ;

flags | FNDELAY) == -1)

141



if (prot->gos & QOS_SRC)
{
if (bind(sfd, &{prot->src), sizeof (prot->src)) < 0)
{
(void)close (sfd) ;
return (-1);
}

}
if ((connect(sfd, &(prot->dst), sizeof (prot->dst)) < 0) &

(errno != EINPROGRESS))
{

(void)close(sfd) ;
return (-1);

}

/* Prevent slow connection-setup from killing us. */

(void) signal (SIGPIPE, SIG_IGN);

/* Tell the get_packets routine about the new client */
/* socket. */

dgram_setup (prot, -1);
}

else

{

/* Handle server side. This will need to be modified */
/* to allow the server to accept multiple connections. */

/* Bind socket. */

if (bind(sfd, &({(prot->src), sizeof (prot->src)) < 0)
{

(void)close(sfd) ;

return (-1);

}

/* Initialize socket to set no-delay mode. */

if ((flags = fentl(sfd, F_GETFL, 0)) == -1)

{

log_error (NULL, NULL, -1, LOGERR_FCNTL) ;
perror (“fcntl F_GETFL");

abort () ;

}
if (fentl(sfd, F_SETFL, flags | FNDELAY) == -1)
{

log_error (NULL, NULL, -1, LOGERR_FCNTL) ;
perror (“fcntl F_SETFL FNDELAY");

142



abort () ;

/* Declare willingness to accept connections. */
(void)listen(sfd, 3);

/* Tell the get_packets routine about the new server */
/* socket. */

dgram_setup (prot, sfd);
}
/* Pass the association ID back to the caller. */

return (sfd);

}

143



/*t************t*****iﬁ****t************************t*i**********i*******

File: protocol.c

Contains protocol table and functions that search this table.

* % % * »

Written 20-Jun-90 by Paul E. McKenney, SRI International.
Copyright (c) 1990 by SRI International.

*
*
*
*
*
*
*
*
*

* % * %

P T 2 2 A AR R R R E 22 R R R R R R R R R R EERE SRR SRS RS R RS R R R RS RES RS R R

/

#ifndef lint

static char rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
protocol.c,v 1.7 90/11/26 12:29:52 dlee ExXp $";

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <math.h>
#include “config.h”
#include “distribution.h”
#include “protocol.h”
#include ~*st2_api.h”

extern int stream_teardown();
extern int stream_sgend();
extern void stream_sleep_till();

extern long tcp_setup();
extern int dgram_teardown();
extern int dgram_send();
extern void dgram_sleep_till{();
extern long udp_setup();
extern int st2_teardown();
extern int st2_send();

extern void st2_sleep_till();
extern long straw_setup();
extern long test_getup():
extern int test_teardown();

extern int test_send();
extern void test_sleep_till();

144



extern
extern

extern
extern

extern
extern
extern
extern

char
void

char
void

int
int
char
char

*buffer dgram get();
buffer_dgram_free();

*buffer_generic_get ()
buffer_generic_free(};

ipport_atocaddr () ;

ipport_addrtoa () ;
*ipport btoaddr () ;
*ipport_addrtob()

/* Type definitions local to this file. */

/* Functions exported from this file. */

/* Functions local to this file. */

/* Variables exported from this file. */

/* Variables local to this file. */

/* NOTE: The protocol table must be kept in alphabetical order.

static protocol_table ptab[] =

{
{

“straw”, AF_COIP,
straw_setup, st2_teardown,
NULL,
st2_sleep_till,
buffer_generic_get,
buffer generic_free,
ipport_atoaddr,
ipport_addrtoa,
ipport_btoaddr,
ipport_addrtob,

} ’
{

st2_send,

“tcp”, AF_INET,
tcp_setup, stream_teardown,
NULL, stream_send,

stream sleep_till,
buffer generic_get,
buffer generic_free,
ipport_atoaddr,
ipport_addrtoa,
ipport_btoaddr,
ipport_addrtob,

} r
{

“test”,
test_setup, test_teardown,

AF_INET,

145

*/



NULL, test_send,
test_sleep_till,
buffer_generic_get,
buffer_generic_free,
ipport_atoaddr,
ipport_addrtoa,
ipport_btoaddr,
ipport_addrtob,

b,

{

*udp”, AF_INET,
udp_setup, dgram_teardown,
NULL, dgram_send,
dgram_sleep_till,
buffer_dgram get,
buffer dgram_free,
ipport_atoaddr,
ipport_addrtoa,
ipport_btoaddr,
ipport_addrtob,

b,

{

NULL, AF_UNSPEC,
NULL, NULL,

NULL, NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

b,

b

/* search ptab for the specified protocol,

/* entry or NULL if no match.

protocol_table *
find_protocol (name)

char *name;

{
int cmp;
protocol_table *p;

for ptab; p->name !=

{

cmp =

(p =

strcmp (name, p->name) ;

NULL;

*/

p++)

146

return a pointer to the */



if (cmp == 0)
return (p);
if (cmp < 0)
return (NULL) ;

¥

return

}

(NULL) ;

147



% {

/*****t*i******t***************t*it**************************ii*********t

* *
* File: scan.l *
* *
* lexical analyser for CATE traffic generator. *
* Hacked from extractdoc lexer, in turn hacked from an ANSI C *
* lexer. *
* *
* Written 18-Jun-90 by Paul E. McKenney, SRI International. *
* Copyright (c) 1990 SRI International. *
* *

i**i*******t******t**********************************i**i***************/

#ifndef lint

static char scan_1_rcsid[] = “S$Header: /tmp_mnt/net/sfo.a/dlee/workspace/tg/
src/tg/RCS/scan.1l,v 1.4 92/07/29 19:26:31 dlee Exp Locker: dlee $”;

#endif lint

/* Include files. */

#include <stdio.h>
#include <strings.h>
#include “y.tab.h”

/* Type definitions local to this file. */

#undef input
#define input () \
(((yytchar = \
yysptr > yysbuf ? \
U(*--yysptr) : \
(curarg < 0 ? \
getc (yyin) : \
({yytchar = *{
yytchar : \
{gargv[++curarg] != NULL) ? \
curchar = &(gargvicurarg] [0])., \
‘An‘ o\
(strepy (filename, *“<stdin>*), \
curarg -1, \
lineno = 1, \
‘An’ \
) A\
) A\
) A\
y == 10 ? \
(yylineno++, yytchar) : \
yytchar \
) = EOF ? \
0 : \
yytchar \

curchar++)) != 0 2 \

148



/* Functions exported from this file. */

/* Functions local to this file. * /

static void count(); /* COUNT columnes for error use. */
/* Variables exported from this file. */

/* Variables local to this file. */

static int column = 0; /* input COLUMN number. */
static int curarg; /* arglist arg pointer. */
static char *curchar; /* arglist char pointer. */
static char **gargv; /* global version of argv. */
static int lineno = 1; /* input LINE NOmber. */
static char filename[BUFSIZ] = "<arglist>";

%}

/* Definitions. */

%a 8000
%e 2000
%n 1000
%o 20000
%p 10000

[0-7]

[0-9]

[a-zA-7_]
[a-fA-F0-9]
[Ee] [+-]?{D}+
[ \t\v\E]

WW {wW}*

ID {L} ({L}]|{D})*

3= -1 il = B o)

=

$START LEX_NORMAL LEX_ ADDRESS

%%

“include” { count(); BEGIN LEX_NORMAL; return(INCLUDE); }
“=u { count (); BEGIN LEX_NORMAL; return(EQUAL); 1}

“gserver” { count(); BEGIN LEX_NORMAL; return (SERVER) ; }
“average” { count(); BEGIN LEX_NORMAL; return(AVERAGE); }
"bandwidth” { count(); BEGIN LEX_NORMAL; return(BANDWIDTH); }

“delay” { count(); BEGIN LEX NORMAL; return(DELAY); }
"interactive” { count(); BEGIN LEX_NORMAL; return(INTERACTIVE); }

149



vinterval” { count(); BEGIN LEX_NORMAL; return(INTERVAL); }

*loss” { count{); BEGIN LEX_NORMAL; return(LOSS); }
“MTU" { count (); BEGIN LEX_NORMAL; return(MTU)}; }
“mtu” { count(); BEGIN LEX_NORMAL; return(MTU}; }
“peak” { count{); BEGIN LEX_NORMAL; return{PEAK); }
“revwin” { count(); BEGIN LEX_NORMAL; return(RCVWIN); }
vsndwin” { count(); BEGIN LEX_NORMAL; return(SNDWIN); }

vconstant” { count(); BEGIN LEX_NORMAL; return(DIST_CONST); }

vexponential” { count(); BEGIN LEX_NORMAL; return(DIST_EXP); }
“exp” { count (); BEGIN LEX_NORMAL; return(DIST_EXP); }
“markov® { count(); BEGIN LEX_NORMAL; return(DIST_MARKOV); }
“markov2” { count(); BEGIN LEX_NORMAL; return (DIST_MARKOV2); }
wuniform” { count(); BEGIN LEX_ NORMAL; return{(DIST_UNIFORM); }

varrival” { count(); BEGIN LEX_NORMAL; return(ARRIVAL); }

"at” { count{(); BEGIN LEX_NORMAL; return(AT); }

“data” { count(); BEGIN LEX NORMAL; return(DATA); }

“length” { count(); BEGIN LEX_NORMAL; return(LENGTH); }

“on” { count(); BEGIN LEX_NORMAL; return(ON); }

“patience” { count(); BEGIN LEX_NORMAL; return(PATIENCE); }
~regponselength” { count(); BEGIN LEX_ NORMAL; return (RESPONSELENGTH) ;
“resplen” { count(); BEGIN LEX_NORMAL; return (RESPONSELENGTH) ; }
"geed” { count(); BEGIN LEX_ NORMAL; return(SEED); }

“setup” { count{); BEGIN LEX_NORMAL; return(SETUP}; }

“time” { count(); BEGIN LEX_NORMAL; return(TIME); }

“wait” { count(); BEGIN LEX_NORMAL; return(WAIT); }

»packet” { count(); BEGIN LEX_NORMAL; return(PACKET); }

"reset” { count(); BEGIN LEX_NORMAL; return(RESET); }
C(LEX_NORMAL>”:* { count(); return(':’'); }

<LEX_NORMAL> {ID} {

count () ;
if ((yylval.prot.prot = find_protocol(yytext)) !'= NULL)
return (PROTOCOL) ;
else

{

SYMcpy (yylval.n, yytext);

return (IDENTIFIER) ;

}

}

<LEX_NORMAL>"/” ({ID} (*/»{ID})*)?|{ID} (*/*{ID})+ {

/* Note that filenames must contain at least */
/* one slash. */

count () ;
SYMcpy {(yylval.n, yytext);

150

}



return (FILENAME) ;

}

<LEX_NORMAL>O [xX] {H}+ {

unsigned

count () ;

long tmp;

SYMcpy (yylval.n, &yytext[2]); /* skip past 0[xX]
(void) sscanf (yylval.n, “%1x”, &tmp);

vylval.d

= tmp;

return (HEX_INTEGER) ;

}

<LEX_NORMAL>0+ {0} {O}+ {

unsigned

count () ;

long tmp;

SYMcpy (yylval.n, &yytext[1]); /* skip initial 0*/
(void) sscanf (yytext, “%lo”, &tmp) ;

yylval.d

= tmp;

return (OCTAL_INTEGER) ;

}

<LEX_NORMAL>0+ {0} {

unsigned

count () ;

long tmp;

SYMcpy (yylval.n, yytext);
(void)sscanf (yytext, “%1lu”, &tmp);

yylval.d

= tmp;

return (SMALL_INTEGER) ;

}

<LEX_NORMAL> {D}+ {

unsigned

count () ;

long tmp;

SYMcpy (yylval.n, yytext);
(void) sscanf (yytext, “%lu”, &tmp);

yylval.d

= tmp;

return (INTEGER) ;

}

<LEX_NORMAL>' (\\. | ["\\"])* {
char *gp;

count () ;

/* Strip quotes from character constant. */

gqp = &yytext[strlen(yytext) - 1};
if (*qp == '\’'")

*gp = ‘\0‘;

SYMcpy (yylval.n, yytext + 1);
return (STRING_LITERAL) ;

}

151

*/



<LEX_NORMAL> {D} +{E} {
count () ;
SYMcpy (yylval.n, yytext);
{(void) sscanf (yytext, “%1f”, &yylval.d);
return (FLOATING_POINT) ;
}
<LEX_NORMAL>{D}*".”{D}+({E})? {
count () ;
SYMcpy (yylval.n, yytext):
(void) sscanf (yytext, “%1f", &yylval.d);
return (FLOATING_POINT) ;
}
<LEX_NORMAL>{D}+*.”{D}* ({E})? {
count () ;
SYMcpy (yylval.n, yytext);
(void) sscanf (yytext, *%$1f", &yylval.d)};
return (FLOATING_POINT) ;
}

<LEX_NORMAL>\" (\\. | ["\\"1)*\" {
char *gp:

count () ;
/* Strip quotes from string. */

gqp = &yytext[strlen(yytext) - 11;
if (*gqp == *"")
*gqp = ‘\0’;
SYMcpy (yylval.n, yytext + 1):
return(STRING_LITERAL):
}
<LEX_NORMAL>\" [““\n]* {
count () ;
yyerror (“Unterminated string”);
exit(-1);
}

<LEX_NORMAL>[ \t\n\014] { count(); }
<LEX_NORMAL> . {
count () ;
yyerror (“Illegal character”);
exit(-1);
}
<LEX_NORMAL>"#.*$ {
/* Comment lines... */

count () ;

}

<LEX_ADDRESS>[ \t\n\014] { count(): }

152



o

<LEX_ADDRESS> [\41-\176]1* {

%

/* File record structure used for holding file
struct file_entry {

} .

count () ;
((* (lexprot.prot->atoaddr)) (yytext,
& (yylval.tmpaddr)))

if

return

else

{

(ADDR) ;

BEGIN LEX_NORMAL;
REJECT;

}
}
%

FILE

*£4;

char name[MAXSYM];

int

.

cnt;

#define MAX_INCLUDE_LEVEL 10
struct file_entry file_tbl[MAX_INCLUDE_LEVEL];
current_config_file[MAXSYM];

char
int

include_level = 0; /* Current inclusion depth */

yywrap ()

{

/-ﬁ

* If we are currently in an included file,

* to the calling file.

*/

if (include_level > 0)
include_level--;
= file_tbl[include_level] .fd;
yylineno = file_tbl[include_level] .cnt;

yyin

strcpy (current_config file,

return(0) ;

} el

se {

return(l);

}
}

static void
count ()

{

int i;

for
if
{

(i = 0; yytext(i]

(yytext[i]

‘\n"’)

{

(=

‘\0";

i++)

153

don't exit,

include state */

but pop back

file_tbl{include_level] .name);



column = 0;

lineno++;

}

else if (yytext[i] == ‘\t")
column += 8 - (column % 8);
else

column++;

/* Lex initialization. */
lex_init(argc, argv)

int argc;

char *argvl];

{

int c¢;

int errflg = NULL;

extern char *optarg, *ifile, *ofile;
extern int optind;

gargv = argv;

/*
* We should use LEX to parse the command line.
* For now, we use the standard getopt() call to parse
* command line options.
*/
while ((c = getopt(argc, argv, “fi:o:”")) t= -1} {
switch (c) {
cagse 'i’':
if (ifile) {
errflg++;
break;
}
ifile = optarg:
break;
case ‘f':
FlushOutput = 1;
break;
case 'o':
if (ofile) {
errflg++;
break;
}
ofile = optarg;
break;
cage ‘?':
errflg++;
default:

154



errflg++;

fprintf (stderr, “lex_init: unknown option [%s]\n”,

argv([optind]);
}
}
if (errflg) {
fprintf (stderr, “lex_init:
exit (-1);

}

if(ifile) {

if (freopen (ifile, *r”, stdin)

exit (-1);
}
}
#ifdef stuff
if (argec < 2) {
curarg = -1;
} else {
curarg = 1;

curchar = &(gargv[curarg] [0]);

}
#endif stuff
curarg = -1;
}

(FILE

155

*)

NULL)

command line error\n”);

{



% {

/******i**************t*************************************************i

*

*
* File: tg.Yy *
* * -
* Traffic Generation command grammar. *
* *
* Written 19-Jun-90 by Paul E. McKenney, SRI International. * .
* Copyright (c) 1989 by SRI International. *
* *
********i*********************&******t*********ﬁ**i**i**********t*******/
b g
#ifndef lint
static char rcsid[] = “$Header: /tmp_mnt/net/sfo.a/dlee/workspace/tg/src/tg/
RCS/tg.y.v 1.4 92/07/29 15:07:38 dlee Exp Locker: dlee $~; -
#endif lint
/* Include files. */
b

#include <stdio.h>

#include <search.h>

#include <malloc.h> -
#include <errno.h>

#include <signal.h>

#include <sys/types.h> -
#include <sys/socket.h>

#include <sys/time.h>

#include <math.h>

#include “config.h” ha
#include “distribution.h”
#include “protocol.h”
#include “log.h” ——
/* Type definitions local to this file. */
. e
#define MAXSYM 512
#define SYMcpy(a, b) { \
(void)strncpy((a), (b), MAXSYM); \ e
(a) [MAXSYM - 1] = ‘\O0’; \
}
#define SYMcat(a, b) { \
(void) strncat((a), (b), MAXSYM - strlenf(a) - 1); \ .
}
-
typedef enum srvr_state_flag_ /* server packet parse state. */
{
srvr_len, /* Accumulate reply length. */ -
srvr_skip, /* Accumulate skip distance. */
srvr_skipping /* Skip to next reply length. */
} srvr_state_flag; -
156 -



typedef struct srvr_state_ /* per-asn state variables. */
{

struct srvr_state_ *next;

long asn; /* asn that this state is for. */

int bad; /* asn has corrupted data. */
srvr_state_flag state; /* Current state. */

unsigned long acc; /* accumulate compressed number.*/
int nbytes; /* # bytes accumulated so far. */

int special; /* acc contains special number. */
unsigned long skip; /* how many bytes to skip. */

} srvr_state;

typedef struct /* Yacc Symbol table entry TYPE.*/

{

int flags; /* FLAGS, same as symbol below. */

int 1lineno; /* Line number for construct. */

double d; /* token numeric value. */

char n[MAXSYM]; /* token name. */

distribution tmpdist; /* Distribution when we aren‘t */
/* sure which one we have. */

struct sockaddr tmpaddr; /* Address when we aren’'t sure */
/* which one we have. */

tg_action action; /* Action descriptor. */

protocol prot; /* Protocol descriptor. */

} strbuf;

#define YYSTYPE strbuf

/* Each entry of the expected-replies queue represents a packet that */

/* is expected to be received from a server. If a given packet is */
/* not received by its timeout, we scream and die. Packets are */

/* identified by the sequence number of the first byte following them,
/* the sequence number of the first byte of the first packet is zero.

typedef struct xpctd_replies_ /* expected-replies queue. */
{
struct xpctd replies_ *next;
unsigned long byte_seqgno; /* segno of 1lst byte after */
/* packet represented by this */

/* struct. */
struct timeval timeout; /* time at which patience gives */
/* out. */

} xpctd_replies;

/* Functions exported from this file. */
extern void yyerror();

/* Functions local to this file. */

extern void fix_times();

157

*/
*/



extern void generate();

extern void generate_interactive();
extern int check_deadline();

extern void do_actions();

extern void node_init();

extern int rcv_pkt();

extern int rcv_pkt_interactive();
extern int rcv_pkt_interactive_srvr();
extern srvr_state *srvr_state_get();
extern void tg_append_element () ;
extern void wait_start();

extern xpctd_replies *xpctd_replies_get ()
extern void xpctd_replies_free();
extern void yyerror();

/* Variables exported from this file. */

double global start; /* global start time. */

struct timeval global_start_tv; /* global start timeval. */
protocol lexprot; /* lex’'s protocol definition. */

protocol prot; /* Protocol definition. */

tg_action *tg_first = NULL; /* first TG action. */
tg_action **tg_last = &tg_first; /* last TG action. */

char *version = *“1.0"; /* TG program version. */

char *ofile NULL;

char *ifile NULL;

int Flushoutput = 0; /* whether to flush after each

/* Variables local to this file. */

static int got_errors = 0; /* Got errors during parse? */
static int got_setup = 0; /* Got a setup clause? */
static int got_setup_implicit = 0; /* an implicit one? */

static srvr_state *srvr_state_h = NULL; /* per-asn ervr state list*/

static xpctd_replies *xpctd_replies_flist = NULL;
/* xr freelist. */

static xpctd_replies *xpctd_replies_gh = NULL; /* xr queue header. */

static xpctd_replies **xpctd_replies_qgt = &xpctd_replies_gh;
/* xr gueue tail-pointer. */

/* Symbol table */
struct sym_entry {
char *sym_name;
int sym_type;
union {
int intval;
char *strval;
float fltval;
double dblval;

} sym;

158



-

#define
#define

sym_intval sym.intval
sym_strval sym.strval

#define sym fltval sym.fltval

#define

}i

enum {

sym dblval sym.dblval

SYM_INT_TYPE = 1,
SYM_STR_TYPE,
SYM_FLT_TYPE,
SYM_DBL_TYPE,

}i

#define SYM TBL_SIZE 100

struct

sym_entry sym tbl[SYM_TBL_SIZE];

int sym_tbl_index = O0;

%}

/* Lex
$token
$token
$token
$token

s$token

%token
$token

$token

$token

token definitions. */

INCLUDE EQUAL

DIST_CONST DIST_EXP DIST_MARKOV DIST_MARKOV2 DIST_UNIFORM

ARRIVAL AT AVERAGE BANDWIDTH DATA DELAY INTERACTIVE INTERVAL
LENGTH LOSS MTU ON PATIENCE PEAK RCVWIN RESPONSELENGTH SEED SERVER

SETUP SNDWIN TIME WAIT

ADDR FILENAME FLOATING_POINT HEX_INTEGER IDENTIFIER INTEGER
OCTAL_INTEGER PROTOCOL SMALL_INTEGER STRING_LITERAL

ADDRESS

PACKET RESET

/* Starting state. */

$start

%%

statements

statements
statement
| statements statement

’

159



statement
include
| macro
| commands

’

include
INCLUDE STRING_LITERAL

{
FILE *fd;
fprintf (stderr, *“including \"%$s\”\n”, $2.n);

if (include_level > MAX_INCLUDE_LEVEL) {

fprintf (stderr, “too many levels of inclusion\n”};
exit(-1);

}

if ((fd = fopen($2.n, *“r”)) == NULL) {

fprintf (stderr, “can’t open include file \"%s\"\n",
$2.n);

exit(-1);

}

file_tbl[include_level].fd = yyin;
file_tbl[include_level] .cnt = yylineno;
strcpy (file_tbl[include_level] .name, current_config_file);

yyin = f4;

yylineno = 0;

strcpy (current_config_file, $2.n);
include_level++;

}

macro
IDENTIFIER EQUAL integer
{
extern char *malloc () ;
char *cp;

if (! (cp = malloc (strlen($l.n) + 1))} {
perror (*malloc”) ;
exit (-1);

}

strecpy {(cp, $1.n);
sym_tbl[sym_tbl_index].sym_name cp;

sym_tbl [sym_tbl_index].sym_type SYM_INT_TYPE;
sym_tbl [sym_tbl_index].sym_intval = (int) $3.d;

#ifdef DEBUG
fprintf (stderr, “sym_tbl_index [%d] macro [%s], value (531 \n~,
sym_tbl_index., cp. (int) $£3.4);

#endif

160



sym_tbl_index++;
}

commands
start_time association_spec tg_entry list
{
prot = $2.prot;
}

start_time
ON time_literal
{
struct timeval tp;
unsigned long modulus = $2.4;

if (modulus != $2.4)

{

yyerror (“start_time: ON value must be integral”);

}
if (gettimeofday(&tp, (struct timezone *)NULL) == -1)

{

perror (“gettimeofday”) ;

exit(-1);

}
global_start = ((tp.tv_sec + modulus - 1) / modulus) * modulus;

global_start_tv.tv_sec = global_start;
global_start_tv.tv_usec = 0;

}

association_spec
protocol_and_addresses quality of service
{
$§ = $2;
$S.prot.gos |= $1.prot.qos;
$$.prot.src = $l.prot.src;
$$.prot.dst $1.prot.dst;
$$.prot.prot = $1.prot.prot;
}

protocol_and_addresses
protocol ADDR
{

$$ = §1;
$S.prot.dst = $2.tmpaddr;
$$.prot.gos = QOS_DST;

}
| protocol ADDR SERVER

{

161



$$ = §1;
$$.prot.src
$$.prot.gos
}

| protocol ADDR ADDR

{

$$ = $§1;

$$.prot.src = $2.tmpaddr;
$$.prot.dst = $3.tmpaddr;
$$.prot.gos QOS_SRC | QOS_DST;
}

$2. tmpaddr;
QOS_SRC | QOS_SERVER;

1]

protocol
PROTOCOL
{
node_init (&$$);
$$.prot.prot = $1.prot.prot;
lexprot = $$.prot;
BEGIN LEX_ADDRESS;
}

quality_of_service
{
node_init (&$$);
}

| quality_ of_service AVERAGE BANDWIDTH number
{

$$ = $1;
$$.prot.avg_bandwidth = $4.4;
$$.prot.gos |= QOS_AVG_BANDWIDTH:

}
| quality of_service PEAK BANDWIDTH number

{

$$ = $1;
$$.prot.peak_bandwidth = $4.4;
$$.prot.qos |= QOS_PEAK BANDWIDTH;

}
| quality_of_service AVERAGE DELAY number

{

$$ = $1;
$S .prot.avg_delay = $4.4d;
$S$.prot.gos |= QOS_AVG_DELAY;

}
| quality of_service PEAK DELAY number

{

$$ = $1:
$$.prot.peak_delay = $4.4;
$$.prot.gos |= QOS_PEAK_DELAY;

}

162



| quality_of_service AVERAGE LOSS number
{

$$ = $1;
$$.prot.avg_loss = $4.4;
$$.prot.qos |= QOS_AVG_LOSS;

}
| quality_of service PEAK LOSS number

{

$s$ = §1;
$$.prot.peak_loss = $4.4;
$$.prot.qos |= QOS_PEAK_LOSS;

}
| gquality of_ service RCVWIN integer

{

$$ = $1;
$S.prot.rcvwin = $3.4;
$S$.prot.gos |[= QOS_RCVWIN;

}
| Qquality_of_service SNDWIN integer

{

$$ = $1;
$$.prot.sndwin = $3.4;
$$.prot.qgos |= QOS_SNDWIN;

}
| quality_of_service INTERACTIVE
{
$$ = $1;
$$.prot.qgos |= QOS_INTERACTIVE;
}
| quality of service INTERVAL number

{

$$ = §1;
$$.prot.interval = $3.4;
$$.prot.qos |= QOS_INTERVAL;

}

| quality_ of_ service MTU integer

{

$$ = 81,
$S.prot.mtu = $3.4;
$$.prot.gos |= QOS_MTU;

}

tg_entry list

| tg_entry list tg_entry
{

/* Add the new entry to the linked list. Note that */

/* the chain represented by tg_entry_list has already */
/* been added to the list, and need not be referred to,
/* thus there is no need for node_init in the above */

163

*/



/* empty clause. */

*tg last = (tg_action *)malloc (sizeof (tg_action}));
if (*tg_last == NULL)

{

yyerror (“tg_entry_list: Out of memory”);

}
**tg_ last = $2.action;
tg_last = &((*tg_last)->next);

}

tg_entry
at_clause tg_action

{

$$ = $2;
$$.action.tg_flags |= $l.action.tg_flags;
$$.action.start_at = $l.action.start_at;

}
| tg_action
{
$$ = 81;
}

at_clause
AT time_literal
{
double tmp;

node_init (&$$)

tmp = global_start + $2.4;

dtotimeval (tmp, &S$$.action.start_at);
$$.action.tg_flags |= TG_START;

}

tg_action
tg_action_setup

$$ = $1;

}

| tg_action_wait

{

$$ = $1;

}

| tg_action_arrival tg_action_length tg_action_modifier_list
{

$$ = $1;

tg_append_element(&$$.action, &$2.action);
tg_append_element(&$$.action, &$3.action);
}

164



| tg_action_arrival tg_action_length tg_action_resplen
tg_action_modifier_list

{

$$ = $1;

tg_append_element (&$$.action, &$2.action);

tg_append element (&$$.action, &$3.action);
tg_append_element (&$$.action, &$4.action);

}

| tg_action_arrival tg_action_length tg_action_resplen
tg_action patience tg_action_modifier_ list

{

$$ = $1;

tg_append_element (&$$.action, &$2.action);
tg_append_element (&$$.action, &$3.action);
tg_append_element (&$$.action, &$4.action);
tg_append_element (&$$.action, &$5.action);

}

tg_action_setup
SETUP
{
node_init (&$$):
if (got_setup)
{
yyerror (“Multiple setup clauses not supported”);
YYERROR;
}
if (got_setup_implicit)
{

yyerror (“setup clause not legal after implicit setup”);
YYERROR;

}
got_setup = 1;
$$.action.tg_flags |= TG_SETUP;
}

tg_action_wait
WAIT
{
node_init (&$$)
if (!got_setup)
got_setup_implicit = 1;
$S.action.tg_flags |= TG_WAIT;
}
| WAIT time_literal
{
node_init (&$$)
if (lgot_setup)
got setup_implicit = 1;
$$.action.tg _flags |[= TG_WAIT | TG_TIME;

165



dtotimeval ($2.d, &$$.action.time_limit);
}

tg_action_arrival
ARRIVAL distribution
{
node_init (&$$);
if (!got_setup)
got_setup_implicit = 1;
$$.action.tg_flags |= TG_ARRIVAL;
$¢.action.arrival = $2.tmpdist;

}

tg_action_length
LENGTH distribution
{
node_init (&$$);
$$.action.tg_flags |= TG_LENGTH;
$$.action.length = $2.tmpdist;
}

tg_action resplen
RESPONSELENGTH distribution
{
node_init (&$8$);
$$.action.tg_flags |= TG_RESPLEN;
$$.action.resplen = $2.tmpdist;
}

tg_action_patience
PATIENCE time_literal
{
node_init (&$$)
$$.action.tg_flags |= TG_PATIENCE;
dtotimeval ($2.d4, &$$.action.patience);
}
tg_action modifier_list
{
node_init (&$$);
1
| tg_action_modifier_list tg_action modifier
{
$$ = 81,
tg_append_element(&Ss.action, &$2.action);
}

166



tg_action_modifier

DATA number

{
node_init (&$$);
$S$.action.tg_flags |= TG_DATA;
$$.action.data_limit = $2.4;

}
| RESET

{
node_init (&$$);
$$.action.tg_flags |= TG_RESET;
}
| PACKET number

{

node_init (&$§);
$S$.action.tg_flags |= TG_PACKET;
$S$.action.packet_limit = $2.4d;

}

| SEED integer
{
node_init (&$§$);
$$.action.tg_flags |= TG_SEED;
$S$.action.seed = $2.4;
}

| TIME time_literal
{
node_init (&$$);
$$.action.tg_flags |= TG_TIME;
dtotimeval ($2.d, &$$.action.time_limit);
}

distribution

number
{

char *cp:

if ((cp = dist_const_init (&$$.tmpdist, $1.d)
yyerror (cp) ;

}
| DIST_CONST number

{

char *cp:

if ((cp = dist_const_init (&$$.tmpdist, $2.d)
yyerror (cp) ;

}
| DPIST_EXP number

{

char *cp:

if ((cp = dist_exp_init (&$$.tmpdist, $2.4,

167

) !'= NULL)

) !'= NULL)

{double)

0:



(double) MAX_RANDOM)) != NULL)
yyerror (cp):
}

| DIST_EXP number number number /* exp mean min max */

{

char *cp;

if (83.4 < $4.4)
{
if ((cp = dist_exp_init(&$$.tmpdist, $2.d, $3.4,
$4.d)) != NULL)
yyerror (cp) ;
}
else
{
if ((cp = dist_exp_init(&$$.tmpdist, $2.d, $4.4,
$3.d4)) != NULL)
yvyerror (cp) ;
}
}
| DIST_MARKOV2 number distribution number distribution

{

char *cp:

if {((cp = dist_markov2_init (&$$.tmpdist,
$2.4,
&($3.tmpdist),
$4.4,
&($5.tmpdist))) != NULL)

yyerror (cp) ;

}

| DIST_UNIFORM number /* max */

{

char *cp;

if ((cp = dist_uniform_init(&$$.tmpdist,
(double) 0, $2.d)) != NULL)
yyerror (cp) ;

}
| DIST_UNIFORM number number /* min max */

{

char *cp:

if ($2.4 < §3.4)
{
if ((cp = dist_uniform init (&$$.tmpdist,
$2.4, $3.4d)) != NULL)
yyerror (cp) ;

}

else

{
if ({(cp = dist_uniform init(&$$.tmpdist,

168



$3.4, $2.4)) != NULL)
yyerror (cp) ;
}
}

symbol
IDENTIFIER
{

int i, found;

/* Perform symbol lookup if we’re working with a string */
for (i = 0, found = 0; i < sym_tbl index; i++) {

if ((strcmp(sym_tbl{i).sym name, $1.n) == 0) &&
(sym_tbl[i].sym _type == SYM_INT_TYPE)) {
found++;
break;
}
}
if (found) {
$$.d = sym_tbl[i] .sym_intval;
} else {
fprintf (stderr, “reference to unknown symbol \"%s\”"",
$1.n);
exit (1) ;
}
}
| decimal_number
| number
| integer
| decimal_integer
| integer
{
$$ = $1;
}
time_literal
decimal_number
{
$$.4d = $1.4;
}
| decimal_integer ‘:’ decimal_number
{
$$.d = $1.4 * 60 + $3.4;
}
| decimal_integer ‘:’ decimal_integer ‘:’ decimal_number

{
$$.d = ($1.4 * 60 + s$3.d) * 60 + $5.4d;

}

169



decimal_number
FLOATING_POINT

| decimal_integer

{
$$.4 = $1.4d;
}

number
FLOATING_POINT

{

$$.d = $1.4;

}

| integer

{

$$.4 = $1.4;

}

'

integer

HEX_INTEGER
{

$¢$.4d = $1.4;
}

| INTEGER

{

$$.4 = $1.4;
}

| OCTAL_INTEGER
{

$$.4 = $1.4;
}

+

decimal_integer
SMALL_INTEGER

$$.4 = $1.d;
}

| INTEGER

{

$$.4 = s1.4;
}

.

%%

#include "lex.yy.c”

170



/* MAINprogram for extractdoc. */
main{argc, argv)

int argc;
char *argvl(];

{

extern int yydebug;
void sigint{();
FILE *fp;

/* Set debugging if it is desired. */

# if YYDEBUG
/* yydebug = 1; */
# endif

/* Initialize lex state. */

lex_init({argc, argv);
BEGIN LEX NORMAL;

/* Convert input. v/

if (yyparse(} (= 0)
exit(1l);

if (got_errors)
exit(1l);

(void) gignal (SIGINT, sigint);
(void) signal (SIGTERM, sigint);

/*
* Set up logging. If ofile is set, then we write to the
* gpecified file.

*/
if ({fp = log_open(ofile)) == (FILE *) NULL) ({
exit (-1);

}

log_init(fp, global_start_tv, prot.prot->name, prot.prot->af,
ifile, &prot);

/* Fix up start and stop times. */
fix_times();

/* Wait for global start time, scream if it has already passed. */

171



wait_start();
/* Generate traffic. */

do_actions();
return (0);

}

/* Perform tasks based on list of actions. */

void
do_actions ()

{
tg_action *cur_tg;
struct timeval lasttime;

long tx_asn = -1;

/* Set up receive routine. */

if ((prot.gos & QOS_INTERACTIVE) == 0)
prot.prot->rcv = rcv_pkt;

else if ((prot.qgos & QOS_SERVER) == 0)
prot.prot->rcv = rcv_pkt_interactive;
else

prot.prot->rcv = rcv_pkt_interactive_srvr;
/* If there is no explicit setup clause, do an immediate setup. */

if (got_setup_implicit &&
((tx_asn = (*(prot.prot->setup)) (&prot)) == -1))
{

/* log the setup error. */

perror (“do_actions: protocol setup”) ;
exit(-1);

}

/* Each pass through the following loop processes one tg_action */
/* element from the list. */

for (cur_tg = tg_first; cur_tg != NULL; cur_tg = cur_tg->next)
{

/* Wait for start time, if one was specified. Remember */
/* the start time (or the current time, if the start */
/* time is not specified) in ‘’lasttime’’. */

if ((cur_tg->tg_flags & TG_START) != 0)

172



{
(* (prot.prot->sleep_ till)) (&(cur_tg->start_at));

lasttime = cur_tg->start_at;
}
else

{
if (gettimeofday(&lasttime,

(struct timezone *)NULL) == -1)
{
perror(“do_actions: gettimeofday”);
abort () ;

}
}

/* Compute stop time on the fly, if needed. */

if ((cur_tg->tg_flags & TG_STOP) == 0)
{

if ((cur_tg->tg flags & TG_TIME) == 0)
{

/* No definite stop time, set it for */
/* some time in the year 2038... */

cur_tg->stop_before.tv_sgsec = Ox7fffffff;
}

else

{

/* Add the time limit to the current */
/* time to get the stop time. */

timeradd(&lasttime,
&cur_tg->time_limit,
&cur_tg->stop_before);

}
}
/* Perform the specified action. *x/
if ((cur_tg->tg_flags & TG_SETUP) != 0)
{
/* Perform setup phase. */
if ((tx_asn = (*(prot.prot->setup)) (&prot)) == -1)
{

/* log the setup error. */

perror (*do_actions: protocol setup”);
exit(-1);

173



}

}
else if ((cur_tg->tg_flags & TG_WAIT) != 0)

{

/* If we would run out of patience before the */
/* end of the wait, wait for the patience */
/* interval. */

while ((xpctd_replies_gh != NULL) &&
(timercmp(&(xpctd_replies_qh->timeout),
& (cur_tg->stop_before),
O
{

/* Check to see if timeout has already */
/* passed.. */

if (check_deadline
(&(xpctd_replies_qh—)timeout)))
{

/* eee@@ log frustration! */

(void) fprintf (stderr,
"patience exceeded!\n”);

exit(-1);

}

/* Wait for the timeout if not. */

(* (prot.prot->sleep_till))
(&(xpctd_replies_qh->timeout));
}

/* Just wait until the interval is over. */

(*(prot.prot—)sleep_till))(&(cur_tg—)stop_before));

}
else if ((prot.gos & QOS_INTERACTIVE) != 0)

{

/* Generate traffic as specified by arrival */
/* and length. * /

generate_interactive(tx_asn, cur_tgd, lasttime);

}
else

{

/* Generate traffic as specified by arrival */
/* and length. */

174



generate (tx_asn, cur_tg, lasttime);
}
}

/* Finished, tear down connection. */

if ((* (prot.prot->teardown)) (tx_asn) == -1)

{
/* log the teardown error. */

perror (“do_actions: protocol teardown”) ;
exit(-1);

}

return;

}

.

/* Fix up start and stop times and perform semantic checks. */

void
fix_times ()

{

tg_action *cur_tg;

/* Scan action list, computing all times that can be computed */
/* beforehand. */

for (cur_tg = tg_first; cur_tg != NULL; cur_tg = cur_tg->next)
{

/* If we aren’t interactive and someone is trying to */
/* do a responselength, scream. */

if (((prot.gos & QOS_INTERACTIVE) == 0) &&
((cur_tg->tg_flags & TG_RESPLEN) != 0))

{

(void) fprintf (stderr,
*resplen legal only if %s specified”,
"interactive”) ;

exit(-1);

}

/* If there is no stop time, try to infer one. */

if ((cur_tg->tg_flags & TG_STOP) == 0)
{

if ((cur_tg->tg_flags & (TG_START | TG_TIME)) =

175



(TG_START | TG_TIME))
{

/* Infer from start time and limit. */

cur_tg->tg_flags |= TG_STOP;
timeradd (& (cur_tg->start_at),
& (cur_tg->time_limit),
& (cur_tg->stop_before));
}
else if ((cur_tg->next != NULL) &&
( (cur_tg->next->tg_flage & TG_START) != 0))
{

/* Infer from next actions start time. */

if (!'timercmp (& (cur_tg->next->start_at),
&(cur_tg->start_at),
>))
{
(void) fprintf (stderr,
vfix_times: %s\n”,
“time clash”);
}
cur_tg->tg_f1ags |= TG_STOP;
cur_tg->stop_before = cur_tg->next->start_at;
}
}

/* If there is now a stop time, make sure that it */

/* does not conflict with the next item’s start time.

*/

/* If the next item does not have a start time, then */

/* copy in the stop time from this item. */

if (((cur_tg->tg_flags & TG_STOP) != 0) &&
{cur_tg->next != NULL))
{
if ((cur_tg->next->tg_flags & TG_START) == 0)
{
cur_tg-)next—)tg_flags | = TG_START;
}
else
{
if (timercmp (& (cur_tg->stop_before),
& (cur_tg->next->start_at),
>))
{
(void) fprintf (stderr,
“fix_times: %s\n”,
“time clash”);

176



/* Check to see if current time has exceeded deadline. */

int
check_deadline (deadline)

struct timeval *deadline;

{

struct timeval tv;

if (gettimeofday(&tv, (struct timezone *)NULL) -1)

{

perror (“check_deadline: gettimeofday”);
abort () ;
}

return (timercmp (deadline, &tv, <)) ;

}

/* Generate traffic as specified by cur_tg. */

void
generate(tx_asn, cur_tg, lasttime)

long tx_asn;
tg_action *cur_tg;
struct timeval lasttime;

{
unsigned long datasent = 0, pktsent = 0;
static unsigned long pktid = 0;

/* Set random-number generator seed, if so specified. */

if ((cur_tg->tg_flags & TG_SEED) != 0) {
(void) srandom{cur_tg->seed) ;

}

/* Reset packet counter */

if ((cur_tg->tg_flags & TG_RESET) != 0} {
pktid = 0;

}

/* Generate traffic until either packet, data, or time limit */
/* is exceeded. */

for (;:)

177



{

char *buf;

struct timeval nextpkt_tv;
unsigned long pktlen;
double arrival;

/* Find arrival time for next packet. */

arrival = (*(cur_tg->arrival.generate)) (&cur_tg->arrival);
if (arrival != 0.)

{

/* The interarrival time is not exactly zero, */
/* count the time to start when the last packet */
/* was scheduled to leave, rather than when it */
/* actually left. */

dtotimevalfromthen(&lasttime, arrival, &nextpkt_tv):

}

else

{

/* The interarrival time is zero, so get the */
/* current time of day to check for stop times. */

if (gettimeofday (&nextpkt_tv,
(struct timezone *)NULL) == -1)

{

perror (“generate: gettimeofday”):
abort () ;

}

}

/* If we are to stop this action before the next packet */
/* is to arrive, just wait for the stop time. */

if (!timercmp (& (cur_tg->stop_before), &nextpkt_tv, >})

{
(*(prot.prot-)sleep_till))(&(cur_tg—)stop_before));

break;

}

/* Otherwise, wait until nextpkt_tv to transmit the */
/* packet. */

if (arrival != 0)
(* (prot.prot->sleep_till)) (&nextpkt_tv);
lasttime = nextpkt_tv;

/* Did we exceed the limit on the number of packets to send? */

if (({cur_tg->tg_flags & TG_PACKET) != 0) &&

178

P



(++pktsent > cur_tg->packet_limit)) {

break;

}

/* Get the packet length and see if the data limit has */
/* been exceeded. */ '

pktlen = (*(cur_tg-)length.generate))(&cur_tg->1ength);
if (((cur_tg->tg _flags & TG_DATA) != 0) &&
((datasent += pktlen) > cur_tg->data_limit)) {

/* The current packet would put us over the */
/* limit, quit! */

break;

}
/* Get a buffer for the packet and transmit it. */

if ((buf = (*(prot.prot->buffer get)) (pktlen)) == NULL)
{

log_error (NULL, NULL, tx asn, LOGERR_MEM);
(void) fprintf (stderr,

*main: buffer %s\n”,

“allocation failure”);

else
{
(void) (* (prot.prot->send)) (tx_asn,
buf,
pktlen,
& (cur_tg->stop_before),
&pktid) ;

/* Generate interactive-like traffic as specified by cur_tg.

void
generate_interactive(tx_asn, cur_tg, lasttime)

long tx_asn;

tg_action *cur_tg;
struct timeval lasttime;

{

unsigned long datasent = 0, pktsent = 0;

179

*/



int encodelen;

static unsigned long minbuflen = 0;
unsigned long pktid;
gtatic unsigned long replydatawaiting = 0;

unsigned long resplen;

/* Get minimum buffer length if we don’'t yet know it. */

if (minbuflen == 0}
minbuflen = encode_special_response((char *)NULL, 0, 0);

/* Set random-number generator seed, if so specified. */

if ((cur_tg->tg_flags & TG_SEED) != 0)
{
(void) srandom (cur_tg->seed);

}

/* Generate traffic until either data limit or time limit */
/* exceeded. */

for (::)

{

char *buf;

struct timeval nextpkt_tv;
unsigned long pktlen;
double arrival;

/* Find arrival time for next packet. */
arrival = (*(cur_tg-)arrival.generate))(&cur_tg—>arriva1);
if (arrival != 0.)

{

/* The interarrival time is not exactly zero, */
/* count the time to start when the last packet */
/* was scheduled to leave, rather than when it */
/* actually left. */

dtotimevalfromthen{&lasttime, arrival, &nextpkt_tv);

}

else

{

/* The interarrival time is zero, so get the */
/* current time of day to check for stop times. */

if (gettimeofday (&nextpkt_tv,
(struct timezone *}NULL) == -1)

{

perror ("generate: gettimeofday”) ;
abort () ;

180



/* If we would run out of patience before the stop */
/* time and before the next packet transmission time, */
/* wait for the patience interval. */

while ((xpctd_replies_gh != NULL) &&
(timercmp (& (xpctd_replies_gh->timeout),
& (cur_tg->stop_before),
<)) &&
(timercmp (& (xpctd_replies_gh->timeout), &nextpkt tv, <)))
{

/* Check to see if timeout has already passed.. */

if (check_deadline (& (xpctd_replies_gh->timeout)))
{

/* @@@@ log frustration! */

(void) fprintf (stderr, “Patience exceeded!\n");
exit(-1);

}
/* Wait for the timeout if not. */

(* (prot.prot->sleep_till))
(& (xpctd_replies_gh->timeout));
}

/* If we are to stop this action before the next packet */
/* is to arrive, just wait for the stop time. */

if (!timercmp (& (cur_tg->stop_before), &nextpkt_tv, >))
{
(* (prot.prot->sleep_till)) (& (cur_tg->stop_before));
break;

}

/* Otherwise, wait until nextpkt_tv to transmit the */
/* packet. */

if (arrival !'= 0)
(* (prot.prot->sleep_till)) (&nextpkt_tv);
lasttime = nextpkt_tv;
/* Did we exceed the limit on the number of packets to send? */

if (((cur_tg->tg_flags & TG_PACKET) != 0) &&

(++pktsent > cur_ tg->packet_limit)) {

181



break;

}

/* Get the packet length and see if the data limit has */
/* been exceeded. */

pktlen = (*(cur_tg->length.generate))(&cur_tg—>1ength);
if {(((cur_tg->tg_flags & TG_DATA) != 0) &&
((datasent += pktlen) > cur_tg->data_limit)) {

/* The current packet would put us over the */
/* limit, quit! */

break;

}

/* Get a buffer for the packet and transmit it. */

if ((buf = (*(prot.prot->buffer_get))(pktlen > minbuflen ?
pktlen
minbuflen)) == NULL)

{

log_error (NULL, NULL, tx_asn, LOGERR_MEM) ;
(void) fprintf (stderr,

“main: buffer %s\n”,

“sllocation failure”):

else

{

if ((cur_tg->tg_~flags & TG_RESPLEN) == 0)
{

/* Encode a special zero to say that */
/* we want no response. */

encodelen = encode_special_response(buf,

pktlen,
0);

/* Generate desired response length. */

resplen = (*(cur_tg->resplen.generate))
(&(cur_tg-)resplen));

/* Encode the response length into the */
/* packet and try to send it. */

182



encodelen = encode_response (buf,
pktlen,
resplen) ;

/* Send the packet. */
for (;:)

{

struct timeval *tvp;

/* Get a pointer to a timeout, either */
/* the patience timeout or the end of */

/* thig action, whichever comes first.

if (xpctd_replies_gh == NULL)
tvp = &(cur_tg->stop_before);

*/

else if (timercmp (&(cur_tg->stop_before),

& (xpctd_replies_gh->timeout),
>))
tvp = &(xpctd replies_gh->timeout);
else
tvp = &(cur_tg->stop_before);
if ((*(prot.prot->send)) (tx_asn,
buf,
pktlen > encodelen ?
pktlen
encodelen,
tvp,
&pktid) == -1)

/* If we had a hard error or if */
/* we hit the end of the action, */
/* quit. */

if ((errno != ETIME) ||
(tvp == &(cur_tg-)stop_before)))
break;

/* Check to see if patience */
/* timeout has already passed.. */

if ((xpctd replies_gh != NULL) &&
(check_deadline
(& (xpctd_replies_gh->timeout))))
{

/* @@@@ log frustration!*/

(void) fprintf (stderr,
"%$g8 exceeded!\n",

183



“Patience”) ;
exit(-1);

/* If this action is impatient,

/* make an xpctd-replies entry.

if ((cur_tg->tg_flags &
TG_PATIENCE) != 0)

{

xpctd_replies *p =
xpctd_replies_get ();

p->byte_segno =
replydatawaiting;
timeradd (&nextpkt_tv,
&(cur_tg->patience),
& (p->timeout));
*xpctd_replies_gt = p;
xpctd_replies_gt = &{p->next});

/* Accumulate the total */
/* amount of outstanding*/

/* reply data expected. */

replydatawaiting += resplen;

/* NODE INITialize.

void
node_init (node)
YYSTYPE *node;

(void)bzero({(char *)node,

}

*/
*/

Forces all fields to zero/NULL.

sizeof (*node) ) ;

184

*/



/* Receive and log packet. */

int
rcv_pkt(rx_asn, tx_asn, buf, len, pktid)

long rx_asn;

long tx_asn;

char *buf;

int 1len;

unsigned long pktid;

/* Do nothing, since the protocol logs it. This serves as a */
/* debugging hook. */

return (0);

}

/* Receive a response from an interactive server (we sent a packet */
/* requesting a response, the server responded, and we just received */
/* that response). Log the packet and modify the xpctd_replies list */
/* to account for that packet. */

int
rcv_pkt_interactive(rx_asn, tx_asn, buf, len, pktid)

long rx_asn;

long tx_asn;

char *buf;

int 1len;

unsigned long pktid;

{

static unsigned long replydatarcvd = 0;
int retval;
xpctd_replies *xp = xpctd_replies_gh;

/* Invoke rcv_pkt to log the packet’s arrival. */

retval = rcv_pkt(rx_asn, tx_asn, buf, len, pktid);

/* Each pass through the following loop removes one */

/* xpctd_replies entry from the list. Note that stream */

/* protocols such as TCP can fuse packets; this can result in */
/* one receive removing several xpctd_replies. */
replydatarcvd += len;

while (xp != NULL)
{

185



/* Quit if no more xpctd_replies are covered. */

if (replydatarcvd <= xp->byte_seqno)
break;

/* Remove the current xpctd_replies entry. */

xpctd_replies_qgh = xp->next;
xpctd_replies_free(xp);

if ((xp = xpctd_replies_gh) == NULL)
xpctd_replies_qgt = &xpctd_replies_gh;
}

/* Tell the caller what rcv_pkt did with the buffer. */

return (retval);

}

/* Receive a packet from an interactive client that must be responded */
/* to. Since packets may be glued and chopped, the commands from the */
/* client must be pasted back together, in general. Therefore, a */

/* separate state structure is maintained for each association. */

int
rcv_pkt_interactive_srvr(rx_asn, tx_asn, buf, len, pktid)

long rx_asn;

long tx_asn;

char *buf;

int 1len;

unsigned long pktid;

{

char *bufend;
char *cp = buf;
srvr_state *p;
int rplpktid;
char *replbuf;
int retval;

/* Invoke rcv_pkt to log the packet‘s arrival. */
retval = rcv_pkt(rx_asn, tx_asn, buf, len, pktid);

/* If we really have a packet, get a pointer to the asn’s */
/* state information. If we have an EOF or error, delete */

/* the asn’s state information. */
if (buf != NULL)

p = srvr_state_get(rx asn, 0);

else

186



{
p = srvr_state_get(rx_asn, 1);
return (retval);

}

/* If this association has given us bad data in the past, */
/* ignore it. */

if (p->bad)
return (retval);

/* Each pass through the following loop consumes one byte of */
/* control information or skips as much filler as possible. */

bufend = &(buf{len]);
while (¢p < bufend)
{

/* Handle current byte as specified by current state. */

switch (p->state)
{

case srvr_len
/* Accumulate the response-length field. */

p->acc |= (*cp & O0x7f) << (p->nbytes * 7);
if (++p->nbytes > 5)
{

/* Failed plausibility check, so ignore */
/* this association from here on out. */

p->bad = 1;
log_error (NULL, NULL, rx asn, LOGERR_INTFMT);
}

/* If this is the last byte, send the reply. */
/* The special form of zero represented by */

/* 0x80 0x00 says ‘‘send no packet’’. This */

/* can be detected by *cp==0x00, since putting */
/* a zero at the end of a number does not */

/* change its value. */
if ((*cp & 0xBO) == 0)
{

if (*cp == 0)
else if ((replbuf =
(*{prot.prot->buffer_get)) (p->acc)) ==
NULL)
{

187



log_error (NULL, NULL, -1, LOGERR_MEM) ;
(void) fprintf (stderr,
“$s8%s: Out of memory\n”,
“rev_pkt_ ",
“interactive_srvr”);
abort () ;
}
else
{
(void) (* (prot.prot->send)) (tx_asn,
replbuf,
p->acc,
NULL,
&rplpktid) ;

/* Set the state to pick up the skip */
/* count. */

p->state = srvr_skip;
p->acc = 0;

p->nbytes = 0;

}

Cp++;
break;

case srvr_skip
/* Accumulate the skip field. */
p->acc |= (*cp & 0x7f) << (p->nbytes * 7);

/* If we have the full field, skip the */
/* specified number of bytes. */

if ((*cp & 0x80) != 0)
{

if (++p->nbytes > 5)
{

/* Failed plausibility check, */
/* so ignore this association */
/* from here on out. */

p->bad = 1;
log_error (NULL,
NULL,
rx_asn,
LOGERR_INTFMT) ;
}

Cp++;

188



break;

}

else

{

p->skip = p->acc - p->nbytes;

if ((p->skip & ~Ox7fffffff) != 0)
{

/* Failed plausibility check, */
/* so ignore this association */
/* from here on out. */

p->bad = 1;
log_error (NULL,
NULL,
rx_asn,
LOGERR_INTFMT) ;
}

p->state = srvr_skipping;
p->nbytes = 0;

/* drop into next leg of switch... */

case srvr_skipping

/* Skip the bytes. */

cp += p->skip;

/* If past the end of the packet, adjust the */
/* count and skip the first part of the next */
/* packet. Otherwise, just skip the specified */

/* length. */

if ((cp > bufend) ||

(cp < buf))

p->s8kip = cp - bufend;
else

{

p->state srvr_len;

p->acc = 0;
}

break;

return (retval);

}

189



/* Get the state entry for the specified association, creating it if */
/* necessary, and returning a pointer to it. If the delete flag is */
/* set, the entry is deleted if it is present and a NULL pointer */

/* returned. */

srvr_state *
srvr_state_get (asn, delete)

long asn;
int delete;

{
srvr_state *p;
srvr_state **q;

/* Search the list for the specified entry, if found, move it */
/* to the front of the list. */

for (p = srvr_state_h, q = &srvr_state_h;
p != NULL;
g = &(p->next), p = *q)
{
if (p->asn == asn)
{
*q = p->next;
if (delete)
{
(void) free((char *)p);
return (NULL);
}

else
{
p->next = srvr_state_h;
srvr_state_h = p;
break;
}

}

}

/* 1If no entry was found, create one (unless it was to be */
/* deleted anyway...). */

if ((p == NULL) &&
‘delete)
{

if ((p = (srvr_state *)malloc (sizeof (srvr_state))) == NULL)

{

log_error (NULL, NULL, -1, LOGERR_MEM) ;
(void) fprintf (stderr,

190



“srvr_state_get: Out of memory\n*);
abort () ;
}

p->next = srvr_state_h;
srvr_state h = p;
p->state = srvr_len;
p->asn = asn;

p->acc = 0;

p->nbytes = 0;

p->bad = 0;

}

/* Return a pointer to the entry. */

return (p);

}

/* Append new element to action structure. */

void
tg_append_element (apl, ap2)

tg_action *apl;
tg_action *ap2;

{

apl->tg_flags |= ap2->tg_flags;

if ((ap2->tg_flags & TG_ARRIVAL) != 0)
apl->arrival = ap2->arrival;

if ({ap2->tg_flags & TG_DATA) != 0)
apl->data_limit = ap2->data_limit;

if ((ap2->tg_flags & TG_PACKET) (= 0)
apl->packet_limit= ap2->packet_limit;
if ((ap2->tg_flags & TG_LENGTH) != 0)

apl->length = ap2->length;
if ((ap2->tg_flags & TG_PATIENCE) != 0)
apl->patience = ap2->patience;

if ((ap2->tg_flags & TG_RESPLEN) != 0)
apl->resplen = ap2->resplen;

if ((ap2->tg_flags & TG_SEED) != 0)
apl->seed = ap2->seed;

if ((ap2->tg_flags & TG_TIME)} != 0)

apl->time_limit = ap2->time_limit;

}

/* Wait for start time. Currently we assume that initial page-faults */
/* are not a performance problem. If this is not the case, we need */
/* to add code to reference all pages in order to fault them in. */

191



void
wait_start ()

{

if (check_deadline(&global_start_tv))
{

(void) fprintf (stderr, “Starting time already passed!\n”};
(void) fprintf (stderr, ”“Restart program!\n”) ;
exit(-1);:

}
(* (prot.prot->sleep_till)) (&global_start_tv);

}

/* Get an expected-replies gqgueue element. */

xpctd_replies *
xpctd_replies_get ()

{
xpctd_replies *p;

/* If the freelist is empty, malloc up another entry. */

if (xpctd_replies_flist == NULL)
{
p = (xpctd_replies *)malloc (sizeof (xpctd_replies));
if (p == NULL)
{
{(void) fprintf (stderr,
“xpctd_replies_get: out of memory!\n”);
abort () ;
}
p->next = NULL;
return (p):

}

/* Freelist is nonempty, just grab the next element. */
p = xpctd_replies_flist;
xpctd_replies_flist = p-’next;

return (p);

}

/* Free up an expected-replies gueue element. */

void
xpctd_replies_free(p)

xpctd_replies *p;

192



p->next = xpctd_replies_flist;

xpctd_replies_flist = p;
return;

}

/* Yacc error routine.

void
yyerror(s)

char t*s;

{

(void) fflush (stdout) ;
(void) fprintf (stderr, “%s,
(void) fflush(stderr) ;
got_errors = 1;

}

void
eigint(sig, code, scp, addr)

int sig, code;
struct sigcontext *scp;
char *addr;

{

log_close() ;

}

*/

line %4:

$s\n”",

193

filename,

lineno,

s);






2.3 DCAT DECLARATIONS

/*************************************************************i**********

* *

*

File: config.h

* * *

Protocol definition structures.

*

Written 08-Aug-90 by Paul E. McKenney, SRI International.

*
*
*
*
*
* *
*

*******i******************************************i******t*******i*****/

#ifndef lint
static char config_h_rcsid[] = ”$Header: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/config.h,v 1.9 90/11/26 13:18:55 dlee Exp $";

#endif lint

/* Maximum packet buffer size. */

#define MAX_ PKT_SIZE 8192 /* 3072 /* Sized for Ethernet. */
/* Maximum value from random-number generator. */

#define MAX RANDOM Ox7fffffff

/*

* FD_SET and associated macros are not defined in SunoOS 3.5
* We need to defined them here, if not previously defined.
*/

#ifndef NFDBITS

#define NFDBITS (30) /* bits per mask */

#define FD_SET(n, p) ({p)->fds_bits[(n) /NFDBITS] |= (1 << {(n) % NFDBITS) ) )
#define FD_CLR(n, p) ((p)—)fds_bits[(n)/NFDBITS] &= ~(1 << ((n) % NFDBITS)))
#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS]) & (1 << ((n) % NFDBITS)))
#define FD_ZERO(p) bzero((char *) (p), sizeof (*(p)))

#endif

195



/**i***i********i***********************i*******it***************i**t****

* ¥
* File: decode.h *
* o
* Header file for encode and decode compressed integers. *
* *
* Written 12-Sep-90 by Paul E. McKenney, SRI International. *
* Copyright (c¢) 1990 by SRI Intermnational. *
* *

*****tt*********t******************t*****t******************************/

#ifndef lint

static char decode_h_rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/decode.h,v 1.5 90/11/26 12:29:24 dlee Exp $";

#endif lint

extern char *decode_ulong();

extern int encode_response() ;

extern int encode_special_response () ;
extern char *encode_ulong () ;

196



e

/*******************i**********************************ﬁ*****************

File: distribution.h

distributions that need them.

* % % * * W%

*

*

**********************************i***********i************i*****i*****

#ifndef lint

Structs defining addtional parameters for those probability

Written 20-Jun-90 by Paul E. McKenney, SRI International.

»

*
*
*
*
*
*
*
*

static char distribution_h_rcsid[] = “$Header: /tmp_mnt/net/usr.projectb/

dartnet/src/tg/RCS/distribution.h,v 1.7 90/11/26 12:29:29 dlee Exp $":

#endif lint

/* Type definitions local to this file. */

typedef struct
{

double (*generate) (); /* generate a new variable. */
double parl; /* distribution parameter 1. */
double par2; /* distribution parameter 2. */
double par3; /* distribution parameter 3. */
double par4; /* distribution parameter 4. */
char *pars; /* pointer to more parameters */
/* for those distributions that */
/* need them. */
} distribution;

typedef struct

{

double mean[2]; /* mean time in each state. */

unsigned long pl2}; /* probability of remaining in */

/* same state. */

distribution *dist[2); /* distribution in each state. */
int state; /* current state. */

} dist_markov2; /* 2-state markov distribution. */

extern char *dist_const_init{);
extern char *dist_exp_init();
extern char *dist_markov2_init();
extern char *dist_uniform_init{);

197



/**ﬁ*********it*****************i**t***i************i********************

* *
* File: log.h *
* *

* Header file for handling log files

Written 12-Sep-90 by Paul E. McKenney, SRI International.
Copyright (c) 1990 by SRI International.

+ % * *

*

**i**t*t*****Q*ﬁ******t************************************************/

#ifndef lint

static char log_h_rcsid[] = "$Header: /tmp_mnt/net/usr.projectb/dartnet/src/
tg/RCS/log.h,v 1.7 90/11/26 12:29:35 dlee Exp $”;

#endif lint

#define LOG_VERSION 1
#define LOG_SUBVERSION 0

/*

»*

A log file entry consists of a tuple consisting of the following fields:

* (Record type> <Record control> <Record value>

*/
/* Record type field enumerations */

#define LOGTYPE_RX 1
#define LOGTYPE_TX 2
#define LOGTYPE_SETUP 3
#define LOGTYPE_TEARDOWN 4
#define LOGTYPE_ACCEPT 5
#define LOGTYPE_ERROR 6

/* Control field modifier bit definitions */

#define LOGCTL_SCHED (0x1<<0)
#define LOGCTL_ADDR (0x1<<1)
#define LOGCTL_2ADDR (0x1<<2)
#define LOGCTL_EXCEPT (0x1<<3)

/* Error codes when record type is set to LOGTYPE_ERROR */

#define LOGERR_INTFMT 1 /* Script format error */

#define LOGERR_MEM 2 /* out of memory */

#define LOGERR_2SETUP 3 /* Two connections were established */
#define LOGERR_GETTIME 4 /* gettimeofday() failed. */

#define LOGERR_SELECT 5 /* select() failed. */

#define LOGERR_FCNTL 6 /* fcntl() failed. */

#define LOGERR_GETPEER 7 /* getpeername() failed. */

#define BEGIN_HDR_STRING “<Begin TG Header>\n”

198



#define END_HDR_STRING “<End TG Header>\n"

/* The following routines are exported */

FILE

*log_open();

int log_init();

void
void
void
void
void
void

log_tx ()
log_rx();
log_accept();
log_setup ()
log_teardown () ;
log_error();

199



/*******tt*****************************i******************ﬁ**************

¥ *
* File: protocol.h *
* *
* Protocol definition structures. *
* *
* Written 20-Jun-90 by Paul E. McKenney, SRI International. *
* *

*i****i*i*****t*i***t***************************************************/

#ifndef lint

static char protocol_h_rceid[] = “$Header: /tmp_mnt/net/usr.projectb/dartnet/
src/tg/RCS/protocol.h,v 1.8 90/11/26 12:29:54 dlee Exp Locker: dlee 5";
#endif lint

/* Convert the double 4 to timer tvp. */

#define dtotimeval(d, tvp) \

{\

(tvp) ->tv_sec = floor{d); \

(tvp)->tv_usec = ((d) - (tvp)->tv_sec) * 1000000; \
}

/* Convert the double d to timer tvp, offsetting from current time. */

#define dtotimevalfromnow(d, tvp) \

I\

unsigned long seconds; \

\

if (gettimeofday(tvp, {(struct timezone *)NULL) == -1) \
{\

{void)perror (“gettimeofday”); \

abort(); \

I\
seconds = floor(d); \

(tvp) ->tv_sec += geconds; \

(tvp)->tv_usec += ((d) - seconds) * 1000000; \
if ({(tvp)->tv_usec >= 1000000) \

£\

(tvp)->tv_usec -= 1000000; \
(tvp) ->tv_sec++; \

FA

}
/* Convert the double 4 to timer tvp, offsetting from specified time. */

#define dtotimevalfromthen(then, 4, tvp) \

A\

unsigned long seconds; \

\

seconds = floor(d); \

{tvp)->tv_sec = (then)->tv_sec + seconds; \

200



(tvp) ->tv_usec = (then)->tv_usec + ((d) - seconds) * 1000000; \
if ((tvp)->tv_usec >= 1000000) \

{\

(tvp)->tv_usec -= 1000000; \
(tvp) ->tv_sec++; \

P
}

/* Add tvpl and tvp2, putting the result into result. result may */
/* alias either tvpl or tvp2 or both, if desired. */

#define timeradd(tvpl, tvp2, result) \

{\

(result)->tv_sec = (tvpl)->tv_sec + (tvp2)->tv_sec; \
(result)->tv_usec = (tvpl)->tv_usec + (tvp2)->tv_usec; \
if ((result)->tv_usec >= 1000000} \

{\

(result)->tv_usec -= 1000000; \

(result)->tv_sec++; \

PA

}

/* Subtract tvp2 from tvpl, putting the result into result. result */
/* may alias either tvpl or tvp2, if desired. */

#define timersub(tvpl, tvp2, result) \

{\
{result)->tv_sec = (tvpl)->tv_sec - (tvp2)->tv_sec; \
if ((tvpl)->tv_usec >= (tvp2)->tv_usec) \
(result)->tv_usec = (tvpl)->tv_usec - (tvp2)->tv_usec; \
else \
{\

(result)->tv_usec = 1000000 + \
(tvpl) ->tv_usec - \
(tvp2)->tv_usec; \

(result)->tv_sec--; \
}oA
}
/* Type definitions local to this file. */

typedef struct tg_action_ /* TG action structure. */

{

struct tg_action_ *next;

int tg_flags; /* TG flags. */

struct timeval start_at; /* time to begin this action. */
struct timeval stop before; /* time to be done w/ action. */
distribution arrival; /* interarrival time. */

long data_limit; /* max amt of data to send. */

long packet_limit; /* max amt of data to send. */
distribution length; /* packet length. */

struct timeval patience; /* patience duration. */

201



distribution resplen; /* response length distribution.*/

long seed; /* new RNG seed. */

struct timeval time_limit; /* max amt of time to be sending*/
} tg_action;

/* tg_flags definitions. */

#define TG_ARRIVAL 0x0001 /* Got arrival distribution. */
#define TG_DATA 0x0002 /* Got data send limit. */
#define TG_LENGTH 0x0004 /* Got packet length distr. */
#define TG_PATIENCE 0x0008 /* Got patience duration. */
#define TG_RESPLEN 0x0010 /* Got response length. */
#define TG_SEED 0x0020 /* Got RNG seed. */

#define TG_SETUP 0x0040 /* Got setup command. */
#define TG_START 0x0080 /* Got explicit start time. */
#define TG_STOP 0x0100 /* Got explicit stop time. */
#define TG_TIME 0x0200 /* Got time limit. */

#define TG_WAIT 0x0400 /* Got wait command. */
#define TG_PACKET 0x0800 /* Got packet limit. */
#define TG_RESET 0x1000 /* Got reset command. */

/* Protocol eswitch table definition. */

typedef struct /* Protocol table entry. */
{
char *name; /* name of protocol. */
short af; /* Address family. */
long (*setup) (); /* connection setup function. */
/* protocol * */
/* returns -1 if cannot setup. */
int (*teardown) (); /* connection teardown function.*/
/* unsigned long cxn */
/* returns -1 if cannot teardown*/
int (*rev)(); /* to receive incoming pkts. */
/* TG-SUPPLIED!!! */
/* unsigned long rx */
/* unsigned long tx */
/* char *buf */
/* int len */
/* unsigned long pktid */
/* The routine should return 1 */
/* if it has disposed of the */
/* buffer (e.g., by modifying */
/* it and passing it to send), */
/* otherwise it should return 0.*/
int (*send) {); /* to send out a packet. */
/* unsigned long tx */
/* char *buf */
/* char *len */
/* struct timeval *endtout */
/* unsigned long *pktid */
/* NULL endtout says to wait */

202



/*
/*
/*
/*
/*
/*
/*
void
/*
/*
/*
char
/*
/*
/*
/*
/*
/*
void

/*

forever, if necessary. */
Returns the number of bytes */
actually sent, which will */
normally be equal to len. */
Returns -1 if an error */
occurs (such as a timeout) */
and sets errno appropriately.*/
(*sleep_till) (); /* Suspends until the specified*/
time, processing any packets */
that arrive in the interim. */
struct timeval *waketime*/
* {(*buffer get) (); /* request buffer to be used */
to compose packets to be */
output. */
This allows protocols to */
avoid packet copying. */
unsigned long maxlen */
Return NULL if no more bufs. */
(*buffer free) (): /* return buffer to freelist. */
char *buf */

int (*atoaddr) (); /* parse an ascii string into */

/*
/*
/*
/*

a sockaddr structure, return */
false if unsuccessful. */

char *addr */

struct sockaddr *s */

int ({(*addrtoa) (); /* format a sockaddr structure */

/*
/*
/*
/*
char
/*
/*
/*
/*
/*
char
/*
/*
/*
/*
/t
/a

into an ascii string, return */

false if unsuccessful. */

struct sockaddr *s */

char *addr */

* (*btoaddr) (); /* parse a binary log address */
a sockaddr structure, return */

pointer to first byte of */

addr that was not consumed. */

char *addr */

struct sockaddr *s */

* (*addrtob) (); /* format a sockaddr structure */
into an binary log address, */

return pointer to first byte */

of addr that was not */

overwritten. */

struct sockaddr *s */

char *addr */

} protoccol_table;

extern protoceol_table *find protocol{();

/* Protocol connection definition struct. */
typedef struct /* protocol defn structure. */
{

int gqgos; /* Quality of Service flags. */

203



long revwin;
long sndwin;
struct sockaddr src;
struct sockaddr dst;
double avg bandwidth;
double peak_bandwidth;
double avg_delay:
double peak_delay;
double avg_loss;
double peak_loss;
double interval;
unsigned long mtu;
protocol_table *prot; /* pointer to protocol table */
/* entry. */
} protocol;

/* Quality of service definitions. */

#define QOS_AVG_BANDWIDTH 0x0001 /* Got average bandwidth. */
#define QOS_PEAK_BANDWIDTH 0x0002 /* Got peak bandwidth. */
#define QOS_AVG_DELAY 0x0004 /* Got average delay. */
#define QOS_PEAK_DELAY 0x0008 /* Got peak delay. */

#define QOS_AVG_LOSS 0x0010 /* Got average loss rate. */
#define QOS_PEAK_LOSS 0x0020 /* Got peak loss rate. */
#define QOS_INTERVAL 0x0040 /* Got averaging interval. */
#define QOS_MTU 0x0080 /* Got max transmission unit. */
#define QOS_RCVWIN 0x0100 /* Got receive window size. */
#define QOS_SNDWIN 0x0200 /* Got send window size. */

#define QOS_INTERACTIVE 0x1000 /* Simulate interactive session.*/
#define QOS_SRC 0x2000 /* Got source address. */
#define QOS_DST 0x4000 /* Got destination address. */
#define QOS_SERVER 0x8000 /* Set up server socket to */
/* accept incoming connections. */

204



2.4 DCAT SOURCE

/*********i*****i*********t*******************i************************ii

File: dcat.c

A filter for reading TG log files

#include <stdio.h>
#include <sys/types.h>
#include <(sys/socket.h>
#include <netinet/in.h>
#include “log.h”

#ifndef TRUE
#define TRUE 1
#endif TRUE

#ifndef FALSE
#define FALSE 0
#endif FALSE

main (argc, argv)
int argc;
char **argv;

register char *buff;
int match, index;
char *malloc();
unsigned long result;
int filestat;

FILE *fi;

/* Open specified file */

if ( argc <= 1 )

fi = stdin;

else {

if ((fi = fopen(*(++argv), "“r”)) == NULL)
perror (“dcat cant open input ”);

exit (-1);

}
}

/* Allocate temporary buffer space */

if ((buff = malloc (BUFSIZ)) == NULL) {
perror (“dcat: malloc”);
exit (-1);

205

Written 12-Sep-90 by Danny Lee, SRI International.
Copyright (c¢) 1990 by SRI International.

P Y 2 2 2 A 2 R R R R 2 R S E R R R R R R R R SR RS AR RS S AR AL SR REERES]

{

*

*

B

»*
*
*
¥*
*
*

/



/* Read past the header portion of the file. */

for (match = FALSE; (match == FALSE) && (fgets (buff, BUFSIZ,
{
if (tstremp (buff, END_HDR_STRING)) {
match = TRUE;
index = fi->_ptr - fi->_base;
} else {
printf (”%s”, buff);
}
}
/*
* End of file was detected without finding the
* gpecial end of header entry.
*/
if (match == FALSE) {
fprintf (stderr, “Error: premature end of file\n”);
exit (-1);
}
/* Print a header for the forthcoming table */
puts (“\n\nEvent Time\tType\t\tAddress\t\tId\tLength”);
printf (*------------"------ e -
printf (“--------------- \n\n");
/* Read the record type until we run out */
for (; (filestat = decode_ulong2(fi, &result)) != EOF; ) {
log_parse (fi, result);
}
free(buff) ;

if (fi '= stdin) {

fclose (fi);

} else {

clearerr (fi); /* reset sticky eof */

}

if (ferror (stdout)) {

fprintf (stderr, "“cat: output write error\n”);
exit (-1);

}

exit (0);

log_parse (fp, rec_type)

206

fi)

!'= NULL) ;

)



FILE *fp;

unsigned long rec_type;

{

int ctrl;

unsigned long ac_t_usec, t_sec, t_usec, errno, assoc;

/* Fetch record control/modifier word */

if ((ctrl = getc (fp)) == EOF) {

fprintf (stderr, “log_parse: premature EOF\n");
fprintf (stdout, “log_parse: premature EOF\n");
exit (-1);

}

/* Print event time */

if (ctrl & LOGCTL_SCHED) {

decode_ulong2 (fp, &t_sec); /* time in seconds */
decode_ulong2 (fp, &t_usec); /* time in useconds */

decode_ulong2 (fp, &ac_t_usec); /* time in useconds */

printf (“%u.%06u + %u\t", t_sec, t_usec, ac_t_usec);
} else {

decode_ulong2 (fp, &t_sec); /* time in seconds */
decode_ulong2 (fp, &t_usec); /* time in useconds */
printf (“%u.%06u\t”, t_sec, t_usec);

}

switch(rec_type) {
case LOGTYPE_RX:
printf (”“Receive *};
{

unsigned long pkt_id, pkt_len, assoc, lerrno;

/* Extract address information */
log_parse_address (fp, ctrl);

/* Extract packet length and packet id */
decode_ulong2 (fp, &pkt_id);
decode_ulong2 (fp, &pkt_len);
printf (“\t%ul\t%u”, pkt_id, pkt_len);

}

break;

case LOGTYPE_TX:

printf (”“Transmit “);

{

unsigned long pkt_id, pkt_len, assoc, lerrno;

/* Extract address information */
log_parse_address (fp, ctrl);

/* Extract packet length and packet id */
decode_ulong2 (fp, &pkt_id);
decode_ulong2 (fp, &pkt_len);

printf (“\t%ul\t%u”, pkt_id, pkt_len);

207



}
break;
case LOGTYPE_SETUP:
printf (”Setup “);:
break;
case LOGTYPE_TEARDOWN:
printf (“Teardown “);
break:
case LOGTYPE_ACCEPT:
printf (”Accept ")
{
/* Extract address information */
log_parse_address(fp, ctrl);

/* Association is supplied */
decode_ulong2 (fp, &assoc) ;

printf (“\tAssociation %4”, assoc) ;
}
break;
case LOGTYPE_ERROR:
printf (*Error *);

{

/* Extract and print address information */
log_parse_address (fp, ctrl);

/* Extract Unix errno. */
decode_ulong2 (fp, &errno) ;

printf (“\tError Entry: Unix Error Code %u”,
errno) ;
/* log_parse_error (fi, (char) ctrl); >/
}
break;
default:
fprintf (stderr, “log_parse: unknown record type\n”);

}

/* Check for error */

if (ctrl & LOGCTL_EXCEPT) {
decode_ulong2 (fp, &errno) ;
printf (”*\tUnix Errno %d\n”, errno);

} else {
putchar(‘\n’);

}

}

/w
* print either the association identification number or the
* packet source-destination pair

*

*/

208



log_parse_address (fp, ctrl)
FILE *fp;
unsigned char ctrl;

{

char buffer([30]; /* contains dotted decimal ip address + port */

struct sockaddr_in sin;
unsigned long assoc;

if (ctrl & LOGCTL_ADDR) f{

fread (buffer, sizeof (sin.sin_port) + sizeof (sin.sin_addr),

1, fp);
ipport_btoaddr (buffer, &sin);
ipport_addrtoa(&sin, buffer);
printf (“\t%s”, buffer); /* Source address */
if (ctrl & LOGCTL_2ADDR) {
fread (buffer, sizeof (sin.sin_port) +
sizeof (sin.sin_addr), 1, £fp):
ipport_btoaddr (buffer, &sin);
ipport_addrtoa (&sin, buffer);
printf (“\t%s”, buffer); /* Destination address */

}

} else {
decode_ulong2 (fp, &assoc);
printf (”“\tAssociation %d4”, assoc);

}
}

209



/i*******ti*t*****t**i***************************************************

File: decode.c

* % %

Encode and decode compressed integers.

L 4
*
* Written 11-Sep-90 by Paul E. McKenney, SRI International.
* Copyright {(c)} 1990 by SRI International.
»
*

*
*
*
*
*
*
*
*
*

[EEEEXEEEEE ARSI REERE RS EE SRS SRR RS AR R RARRERRERRRERREER Rt Rl st sl ] /

#ifndef lint

static char recsid[] = “SHeader: /tmp_mnt/net/usr.projectb/dartnet/src/tg/RCS/
decode.c,v 1.5 90/11/26 12:29:17 dlee Exp $";

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <math.h>
#include “config.h”
#include “distribution.h”
#include *“protocol.h”
#include “decode.h”

/* Type definitions local to this file. */
/* Functions exported from this file. */
/* Functions local to this file. */

/* Variables exported from this file. */
/* Variables local to this file. */

/* Decode an unsigned long from a buffer. The number is packed seven */
/* bits per byte in little-endian order, with the sign bit indicating */
/* that more is to come. */

char *
decode_ulong (buf, n, len)

char *buf;

int *n;
int 1len;
{

210



char *bufend = &(buf[len]);
unsigned int curbyte;

int shift = 0;

unsigned long tmp = O;

/* Each pass though the following loop decodes one byte. */

for (;;)

{

/* Pick up the next byte. */

curbyte = *(buf++);

/* Shift and mask it into the accumulated value. */

tmp |= (curbyte & 0x7f) << shift;

/* If the top bit is not set, this was the last byte. */

if (curbyte <= 0x7f)
break;

/* Increment the shift count, scream if more than 32 */
/* bits are to be read. */

shift += 7;
if (shift > 32)
{

/*@@@@ Log bad response... */

(void) fprintf (stderr,
“decode_ulong: bad format\n”);

abort () ;

}

/* If the encoded number runs off the end of the */
/* buffer, return NULL so that the caller can try */
/* again when he gets more input. */

if (buf >= bufend)
return ((char *)NULL);
}

/* Return the decoded number. */
*n = tmp;

return (buf);

}

211



decode_ulong2 (fp, result)

FILE *fp;
int *result; /* Integer is returned here */

{

unsigned int curbyte;
int shift = 0, rvalue;
unsigned long tmp = 0;

/* Each pass though the following loop decodes one byte. */

for (; (rvalue = getc{fp)) != EOF;)
{

/* Pick up the next byte. */
curbyte = (char) rvalue;

/* Shift and mask it into the accumulated value. */
tmp |= (curbyte & 0x7f) << shift;
/* If the top bit is not set, this was the last byte. */

if (curbyte <= 0x7f)
break;

/* Increment the shift count, scream if more than 32 */
/* bits are to be read. */

shift += 7;
if (shift > 32)
{

/*@@@@ Log bad response. .. */

(void) fprintf (stderr,
“decode_ulong: bad format\n"”);
abort ().
}
}
if (rvalue == EOF) {
return (-1);

}
/* Return the decoded number. */

*regult = tmp;

return (0):

}

212



/* Encode a response request. This consists of the length of the */

/* desired response in bytes, followed by the number of bytes to skip */
/* in order to find the next response-length request. Lose synch, and */
/* you die! But does not require touching every byte of a long packet. */
/* Returns the length of the buffer consumed. If the buffer pointer */

/* is NULL, returns the maximum length of buffer that can be consumed. */

int
encode_response (buf, len, n)
char *buf;

unsigned int len;
unsigned int n;

{

char *cp = buf;

static int maxlen = -1;
int remainder;

/* Set up maximum lengths if first time through. */

if (maxlen < 0)
maxlen = 2 * (int)encode_ulong((char *)NULL, 0);

/* Just return maximum length if NULL buffer. ./

if (buf == NULL)
return (maxlen);

/* Encode the desired value and the length to skip. */

cp = encode_ulong (buf, n);

remainder = len - (c¢cp - buf);

if (remainder <= 0)

cp = encode_ulong{cp, 1);

else

cp = encode_ulong(cp, remainder);

return (cp - buf);

}

/* Encode a special response request. This consists of the length of */
/* the desired response in bytes, followed by a zero byte, followed by */
/* the number of bytes to gkip in order to find the next */

/* response-length request. */

int
encode_special_response (buf, len, n)

char *buf;
unsigned int len;

213



unsigned int n;

{

char *cp = buf;

static int maxlen = -1;
int remainder;

/* Set up maximum lengths if first time through. */

if (maxlen < 0)
maxlen = 2 * {int)encode_ulong((char *)NULL, Q) + 1;

/* Just return maximum length if NULL buffer. */

if (buf == NULL)
return (maxlen);

/* Encode the desired value and the length to skip. */

cp = encode_ulong(buf, n);

*cp++ = 0x00;

remainder = len - {(cp - buf);

if (remainder <= 0)

cp = encode_ulong (cp, 1) ;

else

cp = encode_ulong(cp, remainder);
return (cp - buf);

}

/* Encode an unsigned long. This consists of seven bits of number per */
/* byte of buffer, in little-endian order, with the sign bit indicating */
/* that more is to come. */

char *
encode_ulong (buf, n)

char *buf;
unsigned long n;

/* If no buffer, return maximum length. */
if (buf == NULL)
return ({(char *)5);

/* Each pass through the following loop encodes seven bits, */
/* low-order bits first. */

while (n > 127)
{

214



* (buf++) = (n & 0x7f) | 0x80;

n >»»= 7;

}
/* Encode the last bits --
* (buf++}) = n;

)

return (buf

}

leave sign bit clear.

215

*/



/***ii*******t*i**i*i****************i***********************t***********
*

* File: prot_ipport.c

*»

Convert ASCII IP address of the form a.b.c.d.port to
sockaddr_in.

Written 04-Sep-90 by Paul E. McKenney, SRI International.
Copyright (c) 1990 by SRI International.

* % % % % * * *

*

% * % % * * *

*ii************ﬁ**********t*********it********************************t/

#ifndef lint

static char rcsid[] = “$Header: /tmp_mnt/net/usr.projecte/dartnet/src/tg/sun4/
RCS/prot_ipport.c,v 1.5 90/11/26 12:29:40 dlee Exp Locker: denny $”.

#endif lint

/* Include files. */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <math.h>
#include “config.h”
#include “distribution.h”
#include "protocol.h”

/* Type definitions local to this file. */
/* Functione exported from this file. */

/* Functions local to this file. */

/* Variables exported from this file. */

/* Variables local to this file. */

/* Convert an ascii address to a sockaddr. */
int

ipport_atoaddr (addr, s)

char *addr;
struct sockaddr *s;

{

struct sockaddr_in *sin = (struct sockaddr_in *}s;

216



unsigned int a;
unsigned int b;
unsigned int c;:
unsigned int d;

bzero((char *)s, sizeof(*s));
sin->sin_family = AF_INET;
if (sscanf (addr, "%u.%u.%u.%u.%$hu”,

&a, &b, &c, &4, &(sin->sin_port)) != 5)
return (0);
if ((a > 255) |}

(b > 255) 1}

(¢ > 255) ||

(@ > 255))

return (0);
sin->sin_addr.s_addr = (a << 24) | (b << 16) | (¢ << 8) | 4;
return (1);

}

/* Convert a sockaddr structure to an ascii address. */

int
ipport_addrtoa(s, addr)

struct sockaddr *s;
char *addr;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;
unsigned int a;

unsigned int b;

unsigned int c;

unsigned int 4;

unsigned long ipaddr;

ipaddr = sin->sin_addr.s_addr;

ipaddr & Oxff;

(ipaddr >>= 8) & Oxff;

(ipaddr »>>= 8) & Oxff;

(ipaddr »>>= 8) & Oxff;

void) sprintf (addr, “%u.%u.%u.%u.%u”, a, b, c, d, sin->sin_port);
return (1);

}

~ 0 OO O
"

/* Convert a binary log address to a sockaddr. */

char *
ipport_btoaddr (addr, s)

char *addr;

217



struct sockaddr *s;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;

sin->sin_family = AF_INET;
(void)bcopy (addr, (char *)&(sin->sin_port), sizeof(sin->sin_port));
{void) bcopy ( {char *) & (addr([sizeof (sin->sin_port)]),
{char *)&(sin->sin_addr.s_addr),
sizeof (sin->sin_addr.s_addr));
return (&(addr[sizeof (sin->sin_port) + sizeof(sin->sin addr.s_addr)]));

}

/* Convert a sockaddr binary log address. */

char *
ipport_addrtob (s, addr)

struct sockaddr *s;
char *addr;

{

struct sockaddr_in *sin = (struct sockaddr_in *)s;

{(void)bcopy ( (char *)&(sin->sin_port), addr, sizeof(sin->gin_port));
{(void)bcopy ( (char *)&(sin->sin_addr.s_addr),

(char *)&(addr[sizeof(sin->sin_port)]),

sizeof (sin->sin_addr.s_addr));
return (&(addr([sizeof (sin->sin_port) + sizeof(sin->sin addr.s_addr)]));

}

218



3 SOURCE FOR TG ANALYSIS TOOLS

This section contains the four perl scripts used in the analysis of the data presented in
Volume 2 of the final report. The scripts involve two protocols, ST-II and UDP, and each protocol
has two scripts. One script generates a textual summary of statistics, while the other script creates
files suitable for graphing by grtool. The statistics generated by the scripts include average offer
rate, average throughput, average delay, and delay variance. The files for graphing contain data that
can become a graph of delay, including a scatter diagram of the dropped packets, a graph of the
average offer rate on a 10-second interval, and a graph of the average throughput on a 10-second
interval. These scripts are tailored for a network whose link speed is 1.344 Mb/s, but this speed can
easily be changed. Note that the scripts have been used and tested only for a constant packet size.
See the comments at the beginning of each script for more details.

219



#!/usr/local/bin/perl
# st2stats.perl

read compressed TG client and server log files for ST-II traffic and
produce summary statistics including average offer rate, average
throughput, average delay, and delay variance for the experiment. The
offer rate and throughput are also recorded for each 10 second period.
To change the period, modify the variable $period in the routine
thruput. Note: these scripts assume a network bandwidth 1.344 Mgb/s and
have only been used where the packet size is constant. To change the
link capacity, modify the variable Sbyte_rate. Requires client.log.Z,
server.log.Z, and st2.c.tg (tg script file for the client).

3 I I

k-3

Copyright (c) 1993 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

R

THIS SOFTWARE IS PROVIDED ‘‘AS IS'’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

* N

$Dhone = 0;

$byte_rate = 168000.0; # 152000 for full speed T1
$script_file = “st2.c.tg”;

$client_file = “client.log.Z”;

$server_file “gerver.log.Z”;

Sdcat = “dcat”;

$dir = ‘basename \‘pwd\’‘;

chop $dir;

if (SH#ARGV > 0) { # S#ARGV counts starting with 0 after command name!
printf (*Usage: %s\n”,b $0);

exit (0}

}

select ( (select (STDOUT), $| = 1)([$[]): # unbuffer stdout

Stotal_exp_ rbytes
Stotal_ exp_xbytes
Stotal exp_delay = 0;
$variance = 0;

0;
o.

'

220



&get_rates () ;
&open_infiles();

&get _skew () ;
Spsegno = -1;
while(&next_rcv()) {
# print S_:
# find transmitted pkt matching sequence number
for (;;) {
Sprev_xmt_time = $save_xmt_time;
$_ = <CLIENT>; # read next client line
($xtime, $xdirection, $xhost, $xseqno, $xlength) = split (' *);
if ($xdirection eq ‘Teardown’) {
S$last_xmt_time = $prev_xmt_time;

}

next if ($xdirection ne ‘'Transmit’);
Stotal_exp_xbytes += $xlength + 16;

$save_xmt_time = $xtime;

&thruput () ;

lagt if ($xsegno >= $rseqno);

}

if (Srseqno != S$xseqno) { # out of order!!
printf (“seqno %4 OUT OF ORDER!\n”, Srsegno) ;
next;

}

S$delay = S$rtime - S$Sxtime - S$skew;
&num_packets () ;

Stotal_exp_rbytes += $rlength + 16;
Stotal_exp_delay += S$delay;

printf (“Done with RCVS lagt=%d\n”, $Srseqno) ;
while (<CLIENT>) { # drain client xmt data
Sprev_xmt_time = $save_xmt_time;
($xtime, $xdirection, $xhost, $xseqno, $xlength) = split(’ *);
$save_xmt_time = $xtime;
if ($xdirection eq 'Teardown’) {
$last_xmt_time = $prev_xmt_time;
}
next if ($xdirection ne ‘Transmit’);
# &num_packets(); bug??? only used for average so don’'t want to count
#probably need this here
Stotal_exp_xbytes += $xlength + 16;
&thruput () ;
}
printf (“Done with XMTS last=%d\n”, Spxseqgno) ;

# force length change to generate a tp_per length report
Srlength = 1;

221



$Done = 1;
&thruput () :
&close_files();

$XXX = $total_exp_xbytes/($last_xmt_time - $first_xmt_time);
$XXX = $XXX/$byte_rate;

SPPP = Stotal_exp_delay/$num packets;

SRRR = $total_exp_rbytes/($last_rcv_time - $first_rcv_time);
SRRR = $RRR/S$byte_rate;

printf (“\nAverages: TP=%0.41f OR=%0.41f DELAY=%0.41f \n",
SRRR, S$XXX, SPPP);

SAV_PKT_RCV = Stotal_rcv_pkts/($last_rcv_time - $first_rcv_time);
$AV_PKT_XMT = S$total_xmt_pkts/($last_xmt_time - $first_xmt_time)

&get_variance() ;
$variance = $variance/($num_packets - 1);

printf (“variance=%0.41f \n”, S$variance);

printf (“\nAverage Pkt Offer Rate %0.41f, Average Pkt Rcv Rate %0.41f\n”",
$SAV_PKT_XMT,
$AV_PKT_RCV) ;

sub get_variance { #computes delay variance
&init_variables();

&open_infiles():
&set_file ptr();

$Spseqno = -1;
printf (“skew=%d\n", $skew) ;
while(&next_rcv()) {

# print S$_;

# find transmitted pkt matching sequence number

for (;;) {

$_ = <CLIENT>; # read next client line

($xtime, $xdirection, $xhost, $xsegno, $xlength) = split(’ ');

next if ($xdirection ne ‘Transmit’);

&thruput () ;

last if ($xsegno >= $rseqnoj;

}

if ($rseqno != $xsegno) { # out of order!!

printf (*rsegno %4 xseqno %d OUT OF ORDER'!\n", Srseqno, $xseqgno) ;

next;

}
Sdelay = $rtime - $xtime - $skew;
&num_packets () ;

222



Svariance = S$variance + (($Sdelay - SPPP)**2);

}
printf (“Done with RCVS last=%d\n”, Srseqgno} ;
while (<CLIENT>) { # drain client xmt data

($xtime, Sxdirection, $xhost, $xseqno, $xlength) = sgplit(‘’ ‘);
next if ($xdirection ne ‘Transmit’);
&thruput () ;

}
printf (“Done with XMTS last=%d\n”, $pxseqno) ;

# force length change to generate a tp_per_length report
$rlength = 1;

$Dhone = 1;

&thruput () ;

&close_files() ;

sub init_variables { #initialize variables for second pass of log file

$delay = 0;
Srseqgno = 0;
Srtime = 0;

Srlength = 0;
$xseqno = 0;
Sxtime = O0;
$num_packets = 0;
$save_seqgno = 0;
Sslength = 0;
$stime = 0;
$save_rcv_time
Sprev_rcv_time
$ssegno = 0;
Spsegno = 0;
Stemp = 0;
$total_exp_delay = 0;
sendofSec = 0;

$Done = 0;

non
o o

$rcv_exhausted = 0;
$next_rcv_init = 0;
$total_rcv_pkts = 0;
$total_ xmt_pkts = 0;

}

sub next_rcv { # does local 2 line sort on segno for server log

if ($next_rcv_init == 0) { # first time read an extra line
Snext_rcv_init++;
&next_rcv_line();

}

223



$rtime = S$stime;
Srlength = $slength;
Srseqno = $sseqno;

if(! &next_rcv_line())
if (($save_seqno) &&
# end of file,

Sstime;

$slength;
$save_seqno;
0;

Srtime =
$rlength =
Srsegno =
$save_seqQno =
return 1;

}

($ssegno
saved one left

6)

else { # file and saved line exhausted

return 0;
}
}

if ($psegno >= $sseqno) {

printf (*\nseqno %d precedes %d\n”, $psegno, $sseqno) ;

}

$pseqno = $sseqno;

# now have two pkts to choose from,

if
Stemp =
Srtime =
$stime =

($sseqno < S$rsegno) {
Srtime;
$stime;
Stemp;

$rlength;
$slength;
Stemp;

Stemp =
$rlength =
$slength =

Stemp = $rseqno;
Srgseqno = $sseqgno;
$sseqno = S$temp;

}

$save_seqno = $sseqno;
return 1;

}

ugse the one with

1=0)){

lower segno

sub next_rcv_line { # gets next Receive line from server log

return 0 if $rcv_exhausted;

while (<SERVER>) {
$prev_rcv_time =
($stime, $sdirection, $shost,
$save_rcv_time = S$stime;

if (($sdirection eqg ‘Receive’)
$last_rcv_time =

Ssave_rcv_time;
$ssegno,

&&

$prev_rcv_time;

{Ssseqgno ==

224

Sslength)

6)

&&

splitc (' *);

($slength ==

{ # read next line and test for end of file
&& ($slength

0))

{



return 0;

if (($sseqgqno == 0) && ($sdirection eqg ‘Receive’)}) {
$first_rcv_time = $stime;

}

return 1 if ($sdirection eq ‘Receive’);

}

$rcv_exhausted = 1;

return 0;

}

sub num_packets { # increments packet count - packets have to be successfully
received
$num_packets++;
if (! ($num_packets % 100)) {
printf(”.”);
if (! ($num_packets % 10000)) {
printf (“n_xmt_pkts=%d rate=%d\n”, $num_packets, $rate) ;
}
}
}

sub close_files {
close (SERVER) ;
close (CLIENT) ;

}

sub thruput { # compute/print thruput per length, sec and offerrate per sec
Speriod = 10.0; # length of time period for each thruput value

if ($endofSec == 0) { # initial call
$endOfSec = $xtime + $period;
$sec = 0;

Sprsegno = -1;

Stloflength = S$xtime;
Splength = $rlength;
$first_xmt_time = $xtime;
}
else {
$this_period = $period;
if ($Done) {
printf(“ Last xtime = $last_xmt_time, End of Section = $endofSec \n”);
$ShortTime = ($endOfSec - $last_xmt_time);
$endofSec = $last_xmt_time;
$this_period = $period - $ShortTime;
printf (* Last Period Short by %2.4f seconds\n”,$ShortTime) ;
printf (“\n");
}
if (Sxtime >= $endOfSec) {
Ssec++;
$endofSec += Speriod;

225



$rcvLastSec = $RcvBytesThisSec/($byte rate * $this_period);
$xmtLastSec $XmtBytesThisSec/ ($byte_rate * $this_period);
printf (“period=%d tp=%f or=%f\n”,

$sec, SrcvlastSec, $xmtLastSec) ;

0;
0;

SRcvBytesThisSec
$XmtBytesThisSec
}
}

$XmtBytesThisSec += $xlength + 16;
Stotal_xmt_pkts++;
Spxseqno = $xseqno;

return if ($rseqgno == S$prsegqno);
# rcvd a pkt at server!

Sprseqno = $rseqno;
SRcvBytegsThisSec += Srlength + 16;
Stotal_rcv_pkts++;

# if new packet length, summarize previous stats
if ($rlength != S$plength) {
$tptime = $xtime - Stloflength; #thruput time of length
if (Stptime == 0.0) {
Sthruput = 0.0;
}
else {
Sthruput = $rcvBytesThisLength / ($tptime * Sbyte_rate);
}
Stloflength = $xtime;
$rcvBytesThisLength = 0;

# rates increase only when lengths decrease
if (Srlength < S$plength) {
Srate = ++$rate % ($SH#rates + 1)
}
$plength = Srlength;
}
$rcvBytesThisLength += S$rlength + 16;
}

sub get_rates {

S#rates = 0;

unless (open{SCRIPT, $script_file)) {
warn “Cannot open client script $script_file: $!\n";
return;

}

while (<SCRIPT>) {
(sf1,sf2,8£f3,8f4) = split(’ *);

226



next unless ($fl eqg “arrival”);
if ($f2 eq *uniform”) {
printf(“%s \n”,$£3/2);
push(rates, $£3/2);
}
else {
printf (“%s \n”,$£f2);
push (rates, $£2) ;
}

}

close (SCRIPT) ;

}

sub open_infiles {

scommand = “zcat $client_file | $dcat |";

open (CLIENT, $Scommand) || die “Can’t open Sclient_file: $!\n”";
$command = “zcat S$server_ file | S$dcat |”;

open (SERVER, $Scommand) || die “Can’t open $server_ file: $!\n”;
}

sub get_skew {

# find client/server log clock skew
for ;) {
$_ = <SERVER>;
($£1,8£2,5£3,8f4,5£5,6f6,5£7)
lagt if ($f6 eq 'epoch’);

}

Sskew = $f7;

for {(;;) {
$_ = <CLIENT>;
($f1,$f2,8£3,5£f4,5£5,$£6,$£7)
last if ($f6é eq ‘epoch’);

}

Sskew = S$f7 - S$Sskew;

printf (“skew=%d\n”, $skew) ;

split(’ ');

split(’ ');

# now look for "Program start time: Fri Nov 15 10:21:05 19%91“
for (;;) {

$_ = <CLIENT>;

($f1,$f2,3£f3,5f4,8£5,$f6,$£f7) = split(’ ');

last if ($fl1 eq 'Program’); # must be next line

}
s/Program start time://; # chop off front

S$date = §$_;
chop S$date;
return;

# find client/server log clock skew (based on ‘Setup’)
for (;:) {

$_ = <SERVER?>;

($f1,8£f2) = split(’ *);

last if ($f2 eq ’'Setup’);

227



}

Sskew = $f1;

for (;;) |

$_ = <CLIENT>;

($£1,8£2) = gplit(’ *);
last if ($f2 eq ’‘Setup’);
}
Sskew = $fl1 - S$skew;
printf (“skew=%d\n", $skew) ;

}

sub set_file ptr{ #sets the file to the setup packet
for (::) {

$_ = <SERVER>;

($£1,$£2) = split(’ ‘).

last if ($f2 eq 'Setup’);

}

for (;;) {
$ = <CLIENT>;
($f1,8$f2) = split(’ *);

last if ($f2 eq ‘Setup’);
}
}

228



#

#

3 ot K H RN NN NN

I IR N *

H*

t/usr/local/bin/perl

st2tables.perl

read compressed TG client and server log files for ST-II traffic and
produce tables to be used by grtool. The dltim.tbl file contains the
per packet delay and a scatter diagram of the dropped packets below
the X-axie. The or.tbl file contains the average offer rate (fraction
of 1.344 Mgb/s) for 10 second intervals. The tptim.tbl file contains
the average throughput for 10 second intervals. It is expected the
output in or.tbl and tptim.tbl will be displayed in one graph so
or.tbl does include any headings. The vc_or.tbl file contains the
average offer rate (packets per second) for 10 second intervals. The
ve_tptim.tbl file contains the average received rate (packets per
second) for 10 second intervals. It is expected the output in
ve_or.tbl and vc_tptim.tbl will be displayed in one graph so vc_or.tbl
doesg include any headings. To change this interval, modify the
variable $period in the routine thruput. Note: these scripts assume a
network bandwidth 1.344 Mgb/s and have only been used where the packet
size is constant. To change the link capacity, modify the variable
$byte_rate. Requires client.log.Z, server.log.Z and st2.c.tg (tg
script file for the client). If a readme file is present, the first
line from this file will be used as the graph title.

Copyright (c) 1993 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

$Done = 0;

$byte_rate = 168000.0; # 192000 for full speed T1
$script_file = “st2.c.tg”;

$client_file = “client.log.Z”;

$server_file = “server.log.Z”;

$dcat = *“dcat”;

$dir = ‘basename \‘'pwd\’’;

chop $dir;

229



if (SH#ARGV > 0) { # SH#ARGV counts starting with 0 after command name!
printf(“Usage: %s\n”,$0);

exit (0);

}

select ((select (STDOUT), $| = 1) [$S[]); # unbuffer stdout

S$total_exp_rbytes = 0;
$total_exp xbytes = 0
Stotal_ exp_delay = 0;

’

&get_rates();
&open_infiles () ;
&get_skew () ;
&open_outfiles(};

$pseqgno = -1;
while(&next_rcv()) {
# print S$_;
# find transmitted pkt matching sequence number
for (;;) {
$prev_xmt_time = $save_ xmt_time;
$_ = <CLIENT>; # read next client line
($xtime, $xdirection, $xhost, $xsegno, $xlength) = split(’ *);
if ($xdirection eq ’‘Teardown’) {

$last_xmt_time = S$prev_xmt_time;

next if ($xdirection ne ‘Transmit’);
Stotal_exp_xbytes += S$xlength + 16;
# printf(~!1~);
$save_xmt_time = $xtime;
&thruput () ;
last if ($xseqgno >= S$rseqno);
printf (DLYTIM “%0.41f\n”,-0.2 + rand(.05));

if ($rsegno != S$xsegno) { # out of order!!
printf(“seqno %d OUT OF ORDER!\n", $rseqno) ;
next;

}

S$delay = Srtime - S$xtime - Sskew;
printf (DLYTIM “%0.61f\n”, Sdelay);
&num_packets () ;

Stotal_exp_rbytes += $rlength + 16;
$total_exp_delay += S$delay;

printf ("Done with RCVS last=%d\n”, $rseqno);
while (<CLIENT>) { # drain client xmt data

Sprev_xmt_time = $save_xmt_time;
($xtime, S$xdirection, S$xhost, $xseqgno, $xlength) = split(’ *);
$save_xmt_time = $xtime;

230



if ($xdirection eqg ‘Teardown’) {
$last_xmt_time = $prev_xmt_time;
}
next if ($xdirection ne 'Transmit’);
# &num_packets(); bug..... shouldn‘t count the ones at the end
&thruput () ;
#probably need this here
$total_exp_xbytes += $xlength + 16;
printf (DLYTIM “%0.41f\n”,-0.2 + rand(.05)});

}
printf (“Done with XMTS last=%d\n”, $pxseqgno);

# force length change to generate a tp_per_length report
$rlength = 1;

$Done = 1;

&thruput () ;

&close_files();

sub next_rcv { # does local 2 line sort on segno

if ($next_rcv_init == 0) { # first time read an extra line
Snext_rcv_init++;
&next_rcv_line();

}

Srtime = S$stime;
$rlength = $slength;
$rseqno = $s8seqno;

if (! &next_rcv_line()) { # read next line and test for end of file
if (($save_seqgno) && ($sseqgno != 6) && (S$slength != 0)){
# end of file, saved one left

Srtime = $stime;
Srlength = S$slength;
Srseqno = $save_seqno;
$save_seqno = 0;
return 1;

}

else { # file and saved line exhausted
return 0;

}
}

if ($pseqno >= S$sseqno) {
printf (*\nsegno %d precedes %d\n”, $psegno, $ssegno) ;
printf (BADSEQ ”“segno %d preceeds $d\n”, $Spseqgno, $sseqno) ;

}

$psegno = $sseqno;

# now have two pkts to chocse from, use the one with lower seqno

231



if ($sseqno < S$rseqno) {
Stemp = Srtime;

$Srtime $stime;

Sstime Stemp;

Stemp = S$rlength;
Srlength = $slength;
$slength = Stemp;

Stemp = $rseqgno:
Srgsegno = $sseqno;
$sseqgno = Stemp;

}

$save_seqno = $sseqno;

return 1;

}

sub next_rcv_line {

return 0 if $rcv_exhausted;
while (<SERVER>) {
Sprev_rcv_time = $save_rcv_time;

($setime, S$sdirection, $shost, S$sseqno, $slength) = split(’' *);
$save_rcv_time = Sstime;

if ((Ssdirection eq ‘Receive’) && ($sseqno == 6) && ($slength == 0)) {
$last_rcv_time = $prev_rcv_time;

return 0;

}
if ((S$Ssseqno == 0) && ($sdirection eq 'Receive’)) {
$first_rcv_time = $stime;

}

return 1 if ($sdirection eqg ‘Receive’};

}

$rcv_exhausted = 1;

return 0;

}

sub num_packets {
$num_packets++;
if (! ($num_packets % 100)) {
printf(~."):
if (! ($Snum_packets % 10000)) {
printf (“n_xmt_pkts=%d rate=%d\n”, $num_packets, $rate) ;
}
}
}

sub close_files {
close (SERVER) ;
close (CLIENT) ;
close (DLYTIM) ;
close (TPTIM) ;

232

'



close (ORTBL) ;
close (VC_ORTBL) ;
close (VC_TPTIM);
close (BADSEQ) ;

}

sub thruput { # compute/print thruput per length,

sec and offerrate per sec

$period = 10.0; # length of time period for each thruput value

if ($endofSec == 0) { # initial call
SendofSec = $xtime + $period;

$sec = 0;

$Sprsegno = -1;

Stioflength = S$xtime;
Splength = $rlength;
$first_xmt_time = S$xtime;
}

else {

$this_period = Speriod;
if ($SDhone) {

printf(* Last xtime = $last_xmt_time, End of Section = $endOfSec \n”);

$ShortTime = ($endOfSec - $last_xmt_time);
$endofSec = $last_xmt_time;
$this_period = $period - $ShortTime;

printf(” Last Period Short by %2.4f seconds\n”

printf (“\n“).

}

if ($xtime >= $endofSec) {
$Sgec++;

SendofSec += S$period;

,$ShortTime) ;

$rcvLastSec = $RcvBytesThisSec/($byte_rate * $this_period);
$xmtLastSec = $XmtBytesThisSec/($byte_rate * $this_period);

$rcvPktslLastSec = $RcvPktsThisSec/$this_period;
$xmtPktsLastSec = $XmtPktsThisSec/$this_period;

printf (“period=%d tp=%f or=%f\n”,
$sec, $rcvLastSec, $xmtLastSec) ;
$posttime = $sec * S$period;
printf (TPTIM “%f %f %f\n”,

SendofSec, $rcvLastSec, $xmtLastSec) ;
printf (ORTBL *%f %f %d\n”,

$endofSec, $xmtLastSec, $posttime) ;
printf(VC_ORTBL “%f %f $d\n",
$endOfSec, $xmtPktsLastSec, Sposttime);
printf (VC_TPTIM “%f %f %f\n",
$endOfSec, $rcvPktslLastSec, $posttime) ;

$RcvBytesThisSec = 0;
$XmtBytesThisSec = 0;
SRcvPktsThisSec = 0;
$XmtPktsThisSec = 0;

}
}

233



$XmtBytesThisSec += $xlength + 16;

SXmtPktsThisSec++;
Spxseqno = $xseqgno;
return if ($rseqgno == S$prseqgno);

# rcvd a pkt at server!

$prsegno = S$rsegno;
$RcvBytesThisSec += $rlength + 16;
$RcvPktsThisSec++;

# if new packet length, summarize previous stats

if ($rlength != Splength) {
Stptime = $xtime - S$tloflength; #thruput time of length
if ($tptime == 0.0) {

Sthruput = 0.0;
}
else {
$thruput = $rcvBytesThisLength / ($tptime * $byte rate);
}
printf(*len=%d rate=%f thruput=%f\n~-,
# $plength,@rates|[$ratel], Sthruput);
S$tloflength = $xtime;
$rcvBytesThisLength = 0;

3+

# rates increase only when lengths decrease
if (Srlength < S$plength) {
Srate = ++Srate % (S$Hrates + 1);
}
$plength = S$rlength;
}
$rcvBytesThisLength += Srlength + 16;
}

sub get_rates {
S#rates = 0;
unless (open (SCRIPT, $script_file)) {
warn “Cannot open client script $script_file: $!\n”;
return;
}
while (<SCRIPT>) {
(sf1,8f2,8£3,8£4) = split(’' ');
next unless ($fl1 eq *arrival”);
if ($f2 eq "uniform”) {
printf(*“%s \n",$£3/2);
push(rates, $£3/2);
}
else {
printf(“%s \n”,$£2);
push(rates, $£2);
}

234



}
close (SCRIPT)

}

’

sub open_infiles {

Scommand = “zcat $client_file | Sdcat |~

open (CLIENT, Scommand) || die "“Can’'t open $client_file: $!\n”;
$Scommand = “zcat S$server_file | $Sdcat |”;

open (SERVER, $command) || die “Can’t open S$server_file: $!\n”;

}

sub open_outfi

les {

# is there a readme file with a Title?
if (-e "readme”) {

$title = ‘head -1 readme’;
chop($title);
printf{“title=3Stitle\n”);

}

open (DLYTIM,
printf (DLYTIM
printf (DLYTIM
printf (DLYTIM
printf (DLYTIM
printf (DLYTIM

open (TPTIM, ">
select ( (selec
printf (TPTIM
printf (TPTIM
printf (TPTIM
printf (TPTIM

>dlytim.tbl”) || warn “Can’'t open dlytim.tbl: $!\n*;
“\@title $title\n”) if (Stitle);

“\@subtitle Delay vs Experiment Time \[$dir:$date\]l\n");
“\@xlabel Packets Sent\n”);

“\@ylabel Delay (seconds) \n”);

“\@setprops 0 0 1 1\n");

tptim.tbl”) || warn “Can’'t open tp.tbl: $!\n*;
t(TPTIM), $| = 1){s$[])); # unbuffer file output
*\@title Stitle\n”) if (Stitle);

“\@subtitle OfferRate, Thruput \[($dir:S$date\l\n”);
*\@xlabel Time (seconds)\n");

“\@ylabel Fraction of 1.344 Mbps \n");

# dual data set, must use ”“grtool -n”

printf (TPTIM

open (VC_TPTIM
select ((selec

“\@setprops 0 1 7 1\n");

,">ve_tptim.tbl*®) || warn “Can’t open vc_tptim.tbl: $!\n”;
t (VC_TPTIM), $| = 1)I[${]}; # unbuffer file output

printf (VC_TPTIM *\etitle $title\n”) if ($title);

printf (VC_TPT
printf (VC_TPT
printf (VC_TPT

IM “\@subtitle Offer Rate,Receive Rate \[$dir:$date\]\n”);
IM “\@xlabel Time (seconds)\n”);
IM “\@ylabel Packets Per Second \n");

# dual data set, must use “grtool -n”

printf (VC_TPT

open (VC_ORTBL

IM “\@setprops 0 1 7 1\n");

,">vc_ox.tbl”) || warn “Can’'t open vc_or.tbl: $!\n”;

select ((select (VC_ORTBL), $| = 1)I[$[]); # unbuffer file output
# printf(VC_ORTBL "\@title $title\n”) if (Stitle);

# printf (VC_ORTBL “\@subtitle OfferRate \[$dir:$date\]\n");

# printf (VC_ORTBL “\@xlabel Time (seconds)\n”);

# printf (VC_ORTBL “\@ylabel Packets Per Second \n"};

# Aual data s
# printf (VC_OR

et, must use “grtool -n”
TBL “\@setprops 0 1 7 1\n”);

235



open (ORTBL, ">or.tbl"”) || warn “Can’t open or.tbl: S'\n";
select { (select (ORTBL), $| = 1)I[$[]): # unbuffer file output

# printf (ORTBL “\etitle S$title\n”) if (Stitle);

# printf (ORTBL “\@subtitle OfferRate, Thruput \[$dir:sdate\]\n");
# printf (ORTBL ”“\@xlabel Time {seconds) \n") ;
# printf (ORTBL “\@ylabel Fraction of 1.344 Mbps \n");

# dual data set, must use “grtool -n”

# printf (ORTBL “\@setprops 0 1 7 1\n");

open (BADSEQ, ”“>badseq.tbl”) || warn “Can’t open badseq.tbl: $!\n”;
printf (BADSEQ “\@title Stitle\n”) if (Stitle);

printf (BADSEQ “\@subtitle Out of Sequence Pkts \ [8dir:$date\]\n");
}

sub get_skew {

# find client/server log clock skew
for (;;) {
$_ = <SERVER>;
($f1,6£2,$£3,5£4,%$£5,5f6,8£7)
last if ($f6 eq ‘epoch’);

}

Sgskew = $£7;

for (;;) |
$_ = <CLIENT>;
($f1,%$£2,5£3,$f4,$£5,5f6,$£7)
last if ($fé eq ‘epoch’);:

}

Sskew = $f7 - Sskew;

printf ("skew=%d\n", $skew) ;

split(’ ')

]

split (' ‘};

# now look for “Program start time: Fri Nov 15 10:21:05 1991”
for (;;) |
$_ = <CLIENT>;

(Sf1,8$f2,5f3,8f4,5£5,5f6,$£7) = split(’ ’);
last if ($fl1 eq ‘Program’); # must be next line
}
s/Program start time://; # chop off front
$date = S$_;
chop S$date;
return;

# find client/server log clock skew (based on ‘Setup’)
for (;;) {

$_ = <SERVER>;

($f1,8£f2) = splic(* ');

last if ($f2 eq ‘Setup’);
}
$skew = $f1;

236



for (;;) {

$_ = <CLIENT>;

($f£1,$£2) = split(’ *);
last if ($f2 eq ‘Setup’);
}
$skew = $f1 - S$skew;
printf (“skew=%d\n", $Sskew) ;

237



#!/usr/local/bin/perl

I*

udpstats.perl

read compressed TG client and server log files for UDP traffic and
produce summary statistics including average offer rate, average
throughput, average delay, delay variance for the experiment. The

offer rate and throughput are also recorded for each 10 second period.
To change the period, modify the variable $period in the routine
thruput. Note: these scripts assume a network bandwidth 1.344 Mgb/s and
have only been used where the packet size is constant. To change the
link capacity, modify the variable $byte_rate. Requires client.log.Z,
server.log.Z and udp.c.tg (tg script file for the client).

3 3 3 = I R

3

Copyright (c) 1993 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote producte derived from this
software without specific prior written permission.

EE B G

THIS SOFTWARE IS PROVIDED ‘‘AS IS'‘’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

B S

$Done = 0;

$byte rate = 168000.0; # 192000 for full speed T1
$script_file = “udp.c.tg”;

$client_file = "client.log.zZ”;

$server_file »server.log.Z”;

$dcat = “dcat”;

¢dir = ‘basename \‘pwd\’’;

chop $dir;

if (S#ARGV > 0) { # S$#ARGV counts starting with 0 after command name!
printf (“Usage: %s\n",$0);

exit (0);

}

select { (select (STDOUT), S| 1) [$[]); # unbuffer stdout

238



Stotal_exp_rbytes
Stotal_exp_xbytes
Stotal_exp_delay = 0;
Svariance = 0;

&get_rates () ;
&open_infiles();
&get_skew() ;

Spesegno = -1;
while (&next_rcv()) {
# print &_;
# find transmitted pkt matching seqguence number
for (;;) {
Sprev_xmt_time = $save_xmt_time;
$_ = <CLIENT>; # read next client line
($xtime, $xdirection, $xhost, $xsegno, $xlength)
if ($xdirection eqg ‘Teardown’) {
$last_xmt_time = $prev_xmt_time;

split(* *);

next if (Sxdirection ne ’‘Transmit’);:
S$total_exp xbytes += $xlength + 32;
$save_xmt_time = $xtime;

&thruput () ;

last if (Sxsegno >= S$rsegno);

if ($Srsegno != S$xseqno) { # out of order!!
printf (“segno %d OUT OF ORDER!'\n”, $rseqgno) ;
next;

}

Sdelay = Srtime - $xtime - S$skew;
&num_packets () ;

Stotal_exp_rbytes += $rlength + 32;
Stotal_exp_delay += Sdelay;

printf (“Done with RCVS last=%d\n", Srseqgno) ;
while (<KCLIENT>) { # drain client xmt data

Sprev_xmt_time = $save_xmt_time;

($xtime, Sxdirection, $xhost, $xseqno, $xlength) = split(’ ‘);
$save_xmt_time = $xtime;

if ($xdirection eq ‘Teardown’) {
$last_xmt_time = $prev_xmt_time;

}

next if ($xdirection ne ‘Transmit’);
$total exp_xbytes += $xlength + 32;

# &num_packets(); bug??? only used for average so don’'t want to count
&thruput() ;

}

239



printf (“Done with XMTS last=%d\n”, $pxsegno);

# force length change to generate a tp_per_length report
$rlength = 1;

$hone = 1;

&thruput () ;

&close_files();

$XXX Stotal exp_xbytes/(Slast_xmt_time - $first_xmt_time);
$XXX $XXX/Sbyte_rate;

SPPP = $total_exp_delay/$num packets;

SRRR = $total_exp_rbytes/($last_rcv_time - $first_rcv_time);
SRRR SRRR/S$byte_rate;

printf (“\nAverages: TP=%0.41f OR=%0.41f DELAY=%0.41f \n“,$RRR, 3$XXX, S$PPP);
&get_variance();

$variance = $variance/ ($num_packets - 1);

printf (“Variance=%0.41f \n”, $variance);

sub get_variance { #computes delay variance

&init_variables () ;

&open_infiles();

&set_file_ptr();

$Spseqno = -1;

printf (“skew=%d\n", $skew) ;
while(&next_rcv()) {

# print $_;
# find transmitted pkt matching segquence number
for (;;) {

$_ = <(CLIENT>; # read mnext client line

(¢xtime, $xdirection, $xhost, $xsegno, $xlength) = split(’ ‘):
next if ($xdirection ne ’‘Transmit’);

&thruput () ;

last if ($xseqgno >= $rsegno);

}

if (Srsegno != $xsegno) { # out of order!!

printf (“rsegno %d xseqno %d OUT OF ORDER!\n”, $rseqno, $xseqgno) ;
next;

}

Sdelay = $rtime - $xtime - Sskew;

&num_packets () ;

$variance = $variance + (($delay - $PPP)**2);:

}
printf (“Done with RCVS last=%d\n", $rseqnoj;
while (<CLIENT>) { # drain client xmt data

240



(Sxtime, $xdirection, $xhost, $xseqno, $xlength) = split(’ ’};
next if ($xdirection ne ‘Transmit’);
&thruput () ;

}
printf (“Done with XMTS last=%d\n”, $pxsegno) ;

# force length change to generate a tp_per_length report
srlength = 1;

$Done = 1;

&thruput () ;

&close_files () ;

sub init_variables { #initialize variables for second pass of log file
Sdelay = 0;

Srseqno = 0;

Srtime = 0;

Srlength = 0;

Sxgseqno = 0;

$xtime = 0;

$num_packets = 0;

$save_seqno = 0;

$slength = 0;

$stime = 0
Ssseqgno =
Spsegno
Stemp = 0;
Stotal_exp_delay = 0;
$endOfSec = 0;
$hone = 0;
$rcv_exhausted
$next_rcv_init

}

o o -

non
o o

sub next_rcv { # does local 2 line sort on seqno for server log

if ($next_rcv_init == 0) { # first time read an extra line
$next_rcv_init++;
&next_rcv_line();

}

$rtime = $stime;
$rlength = $slength;
Srseqno = 388eqno;

if (! &next_rcv_line()) { # read next line and test for end of file
if ($save_seqno) { # end of file, saved one left

$rtime = S$stime;

$rlength = $slength;

241



$rsegno = $save_seqno;
$save_seqno = 0;
return 1;

}

else { # file and saved line exhausted
return 0;

}
}

if ($psegno »>= $sseqgno) {

printf (“\nseqno %d precedes %d\n”, $Spseqgno, $sseqno) ;

}

Spseqno = $sseqno;

# now have two pkts to choose from, use the one with

if ($ssegno < S$rseqgno) {
Stemp = Srtime;
Srtime = $stime;
$stime = Stemp;

Stemp = S$rlength;
$rlength = $slength;
$slength = Stemp;

Stemp = S$rseqno;
Srseqgno = S$sseqno;
$sseqno = Stemp;

}

$save_seqno = $sseqno;

return 1;

}

sub next_rcv_line { # gets next Receive line from server log

return 0 if $rcv_exhausted;
while (<(SERVER>) {

($stime, Sedirection, $shost, $sseqno, S$slength) =
if ( $sdirection eq ‘Receive’) {
if ($sseqno == 0) {

$first_rcv_time = Sstime;
}
$save_time = $stime;

}

return 1 if ($sdirection eq ’'Receive’);

}

$last_rcv_time = $save_time;
$rcv_exhausted = 1;
return 0;

}

sub num_packets { #increments packet count - packets have to

242

lower segno

split ("’

")

be successfully



received

$num_packets++;

if (! (Snum_packets % 100)) f{
printf(*.");
if (! ($num_packets % 10000)) {

printf (“n_xmt_pkts=%d rate=%d\n”, $num_packets, Srate) ;

}
}
}

sub close_files {
close (SERVER) ;
close (CLIENT) ;

}

sub thruput { # compute/print thruput per length,

sec and offerrate per sec

Speriod = 10.0; # length of time period for each thruput value

if ($endofSec == 0) { # initial call
SendOfSec = $xtime + S$period;

$Ssec = 0;

Sprsegno = -1;

Stloflength = S$xtime;
$Splength = $rlength;
Sfirst_xmt_time = $xtime;
}

else {

$this_period = $period;
if ($Done) {

printf (* Last xtime = $last_xmt_time,
$ShortTime = ($endOfSec - S$last_xmt_time);

SendOfSec = $last_xmt_time;

Sthis_period = $period - $ShortTime;
printf (“ Last Period Short by %2.4f seconds\n”,$ShortTime) ;

printf (“\n");

}

if ($xtime >= S$endofSec) {
Ssec++;

$endOfSec += Speriod;
$rcvlLastSec
$xmtLastSec
printf (“period=%d tp=%f or=%f\n~,
$sec, $SrcvLastSec, $xmtLagtSec) ;

0;
0;

$RcvBytesThisSec
$XmtBytesThisSec
}
}
$XmtBytesThisSec += S$xlength + 32;
Spxseqgno = $xseq@no;

243

End of Section = $end0OfSec \n");

$RcvBytesThisSec/ ($Sbyte_rate * $this_period);
$XmtBytesThisSec/ ($byte_rate * $this_period);



return if ($rseqgno == S$Sprseqgno);

# rcvd a pkt at server!
$prsegno = $rseqno;
$RcvBytesThisSec += $rlength + 32;

# if new packet length, gummarize previous stats
if ($rlength != $plength) {
Stptime = $xtime - $tloflength; #thruput time of length
if ($tptime == 0.0) {
Sthruput = 0.0;
}
else {
$thruput = $rcvBytesThisLength / ($tptime * $byte_rate);
}
Stioflength = S$xtime;
$rcvBytesThisLength = 0:

4 rates increase only when lengths decrease
if ($rlength < $plength) {
Srate = ++$rate % (S#rates + 1);
}

$plength = S$rlength;

}

$rcvBytesThisLength += $rlength + 32;
}

sub get_rates {

SHrates = 0;

unless (open (SCRIPT,S$script_file)) {
warn “Cannot open client script $script_file: $!\n";
return;

}

while (<SCRIPT>) {
(6f1,8f2,$£3,8f4) = split(’ ')}
next unless ($fl1 eq “arrival”):
if ($f2 eg “uniform”) {
printf (“%s \n“,$£3/2);
push(rates,$£3/2);
}
else {
printf (*%s \n”,$£2);
push (rates, $£2);
}

}

close (SCRIPT) ;

}

sub open_infiles {

Scommand = “zcat $client_file | $dcat b
open (CLIENT, $command) || die “Can’'t open S$client_file: $!'\n";
$command = “zcat $server_file | $dcat |”;

244



open (SERVER, $command) || die “Can’t open $server_file: $'\n”;

}

sub get_skew {
# find client/server log clock skew

for (;;) |

$_ = <SERVER>;
(sf1,$f2,8£3,5f4,8$£5,$f6,8£f7) = split(’ Y
last if ($f6 eq 'epoch’);
}
Sskew = $£7;
for (;:;) {

$_ = <CLIENT>;
(sf1,8f2,8£3,8£4,$£5,5£6,$£7) = split(’ ‘)

last if ($f6 eq ‘epoch’);
}

Sskew = $f7 - S$skew;
printf (“skew=%d\n", $skew) ;

# now look for “Program start time: Fri Nov 15 10:21:05 1991”
for (;;) {

$_ = <CLIENT>;
($f1,5f2,$£3,6f4,8£5,8£6,$£7) = split{(’ ');
last if ($fl eq ’'Program’'); # must be next line

}
s/Program start time://; # chop off front

Sdate = 5_:
chop S$date;
return;

# find client/server log clock skew (based on 'Setup’)
for (;;) {

$_ = <SERVER>;

($f1,8£2) = split(’ *);

last if ($f2 eq 'Setup’);

}
$skew = S$fl;
for (;;) {
§_ = <CLIENT>;
(sf1,s$£f2) = split(’' *);
last if ($f2 eq ‘'Setup’);
}

$skew = $fl1 - Sskew;
printf (“skew=%d\n", $skew) ;

}

sub set_file_ptr{ #sets the file to the setup packet
for (:;) {

$_ = <SERVER>;

($f1,8£2) = split(’ *):

last if (8$f2 eq ’'Setup’);

245



}
for (;;) |
$_ = <CLIENT>;
($f1,8£2) = gplit(’ *);
last if ($f2 eq ‘Setup’);
}

246



#!/usr/local/bin/perl

R B B R *+

IF I R I W I+

3t 3

udptables.perl

read compressed TG client and server log files for UDP traffic and
produce tables to be used by grtool. The dltim.tbl file contains the
per packet delay and a scatter diagram of the dropped packets below
the X-axis. The or.tbl file contains the average offer rate (fraction
of 1.344 Mgb/s) for 10 second intervals. The tptim.tbl file contains
the average throughput for 10 second intervals. It is expected the
output in or.tbl and tptim.tbl will be displayed in one graph so
or.tbl does include any headings. To change this interval, modify the
variable $period in the routine thruput. Note: these scripts assume a
network bandwidth 1.344 Mgb/s and have only been used where the packet
size is constant. To change the link capacity, modify the variable
$byte_rate. Requires client.log.Z, server.log.Z and udp.c.tg

(tg script file for the client). If a readme file is present,

the first line from this file will be used as the graph title.

Copyright (c) 1993 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS‘’’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

$Done = O0;

Sbyte_rate = 168000.0; # 192000 for full speed T1
$script_file = *udp.c.tg”;

$client_file = “client.log.Z”;

$server_file = “server.log.Z”;

Sdcat = “dcat”;

$dir = ‘basename \'‘'pwd\‘’;

chop $dir;

if (S#ARGV > 0) { # S#ARGV counts starting with 0 after command name!

printf (“Usage: %s\n”,$0);
exit (0);

247



select ((select (STDOUT), $| = 1) I[$I[])); # unbuffer stdout

Stotal_exp_rbytes
$Stotal_exp_xbytes
$total_exp_delay = 0;

’

0
0

+

&get_rates();
&open_infiles();
&get_skew () ;
&open_outfiles();

$psegno = -1;
while (&next_rcv()) {
# print S$_:
# find transmitted pkt matching sequence number
for (;:;) {
$prev_xmt_time = $save_xmt_time;
$_ = <CLIENT>; # read next client line
($xtime, $xdirection, $xhost, $xsegno, $xlength) = split(’ ')
if ($xdirection eq ‘Teardown’) {
$last_xmt_time = $prev_xmt_time;

next if ($xdirection ne ‘Transmit’'};
Stotal_exp_xbytes += S$xlength + 32;

$save_xmt_time = S$xtime;
# printf(~i'");
&thruput () ;

last if ($xseqgno >= S$rseqgno);
printf (DLYTIM “%0.41f\n”,-0.2 + rand{(.05));

}

if (Srsegno != $xseqgno) { # out of order!!
printf (“segqno %4 OUT OF ORDER!\n”", $rseqno);
next;

}
$delay = $rtime - S$xtime - S$skew;
printf (DLYTIM “%0.61f\n", $delay):
&num_packets () ;
$total_exp_rbytes += Srlength + 32;
Stotal_exp_delay += S$delay;

}

printf (“Done with RCVS last=%d\n*, $rseqno) ;
while (<CLIENT>) { # drain client xmt data
$prev_xmt_time = $save_xmt_time;

{$xtime, S$xdirection, $xhost, Sxsegno, $xlength) = split{(’ ‘);
$save_xmt_time = $xtime;

if ($xdirection eq ’‘'Teardown’) {

$last_xmt_time = $prev_xmt_time;

}

248



next if ($xdirection ne ‘Transmit’};

# &num_packets(); bug..... shouldn’'t count the ones at the end
&thruput () ;

#iprobably need this here
Stotal_exp xbytes += $xlength + 16;

printf (DLYTIM “%0.41f\n”,-0.2 + rand(.05));

}
printf (“Done with XMTS last=%d\n”, $pxseqno) ;

# force length change to generate a tp_per_ length report
$rlength = 1;

$Done = 1;

&thruput () ;

&close_files(};

sub next_rcv { # does local 2 line sort on segno

if ($next_rcv_init == 0) { # first time read an extra line
Snext_rcv_init++;
&next_rcv_line();

}

Srtime = $stime;
$rlength = $slength;
$rsegno = $sseqno;

if (! &next_rcv_line()) { # read next line and test for end of file
if ($save_seqno) { # end of file, saved one left
$rtime = $stime;

Srlength = $slength;
Srsegno = $save_seqno;
$save_segno = 0;
return 1;

}

else { # file and saved line exhausted
return 0;

}
}

if ($psegno >= S$sseqgno) {

printf (“\nsegno %d precedes %d\n”, $pseqno, $sseqno) ;
printf (BADSEQ “segno %d preceeds %d\n”, $pseqno, $ssegno) ;
}

Spsegno = $ssegno;

# now have two pkts to choose from, use the one with lower segno
if ($sseqno < S$rseqno) {

Stemp = Srtime;

Srtime = S$stime;

249



Sstime = S$temp:

Stemp = $rlength;
$rlength = $slength;
$slength = Stemp;

Stemp = S$rseqno;
$rseqno = $sseqno;
$sseqno = Stemp;

}

$save_seqno = $sseqno;

return 1;

}

sub next_rcv_line {

return 0 if S$rcv_exhausted;

while (<SERVER>)} {
($stime, S$sdirection, $shost, $sseqno, $slength) = split(’ "y ;
return 1 if ($sdirection eq ‘Receive’);

}

$rcv_exhausted = 1;

return 0;

}

sub num_packets {
Snum_packets++;
if (! ($num_packets % 100)} {
printf(~.”);
if (! ($num_packets % 10000)) {
printf (“n_xmt_pkts=%d rate=%d\n", $num_packets, §rate) ;
}
}
}

sub close_files {
close (SERVER) ;
close (CLIENT) ;
close (DLYTIM) ;
close (TPTIM) ;
close (ORTBL) ;
close (BADSEQ) ;

}

sub thruput { # compute/print thruput per length, sec and offerrate per sec
Speriod = 10.0; # length of time period for each thruput value

if ($endofSec == 0) { # initial call
$endOfSec = $xtime + $period;

$sec = 0;

$prsegno = -1;

250



Stloflength = $xtime;
Splength = S$rlength;
$first_xmt_time = $xtime;
}
else {
$this_period = $period;
if ($Done) {
printf (” Last xtime = $last_xmt_time, End of Section = $end0OfSec \n");
$ShortTime = ($endOfSec - $last xmt_time);
$endOfSec = Slast_xmt_time;
$this period = $period - $ShortTime;
printf(“ Last Period Short by %2.4f seconds\n”, $ShortTime) ;
printf{(“\n");
}
if ($xtime >= SendOfSec) |
Ssec++;
$endOfSec += S$period;
SrcvlLastSec = SRcvBytesThisSec/ ($byte_rate * $this_period);
$SxmtLastSec = $XmtBytesThisSec/(Sbyte_rate * $this_period);
printf (“period=%4 tp=%f or=%f\n-",
$gec, SrcvlastSec, SxmtLastSec) ;
Sposttime = $sec * Speriod;
printf (TPTIM “$%f %f $f\n”,
$endOfSec, SrcvLagtSec, $xmtLastSec) ;
printf (ORTBL “%f %f %d\n-",
S$end0fSec, $xmtLasgtSec, Sposttime) ;

0;
0;

SRcvBytesThisSec
$XmtBytesThisSec
}

}
$XmtBytesThigsSec += $xlength + 32;

Spxseqgno = $xseqno;

return if ($rsegno == S$prseqgno) ;

# rcvd a pkt at server!
Spresegno = $rseqgno;
SRcvBytesThisSec += $rlength + 32;

# if new packet length, summarize previous stats
if ($rlength != S$plength) {
Stptime = $xtime - Stloflength; #thruput time of length
if ($tptime == 0.0) {
Sthruput = 0.0;
}
else {
$thruput = SrcvBytesThisLength / ($tptime * S$byte_rate);
}
# printf(”len=%d rate=%f thruput=%£f\n-,
# $Splength,@rates[$rate], Sthruput);
$tloflength = S$xtime;

251



SrcvBytesThisLength = 0;

# rates increase only when lengths decrease
if ($rlength < $plength) {
Srate = ++Srate % (S#rates + 1);
}
Splength = $rlength;
}
SrcvBytesThisLength += $rlength + 32;
}

sub get_rates {

S#rates = 0;

unless (open(SCRIPT, $script_file))
warn "Cannot open client script $script_file: $!\n”;
return;

}

while (<SCRIPT>) {
($f1,5£2,8£3,$£f4) = split(’ ’});
next unless ($fl1 eq “arrival”);
if ($f2 eq “uniform~”) {
printf(”"%s \n",$£3/2);
push (rates, $£3/2);
}
else {
printf(“%s \n”,$f2);
push(rates, $£2) ;
}

}

close (SCRIPT) ;

}

sub open_infiles {
$command = *“zcat $client_file | S$dcat |”;

open (CLIENT, $command) || die “Can’'t open S$client_file: $!\n”;
Scommand = *“zcat $server_file | Sdcat |*;

open (SERVER, $command) || die “Can’'t open $server_file: $!\n”;
}

sub open_outfiles {

# is there a readme file with a Title?

if (-e “readme”) {

S$title = 'head -1 readme’;

chop($title);

printf(“title=$title\n”);

}

open (DLYTIM, “>dlytim.tbl”) || warn “Can’'t open dlytim.tbl: $!\n”;
printf (DLYTIM “\e@etitle S$title\n”) if (Stitle);

printf (DLYTIM “\@subtitle Delay vs Experiment Time \[$dir:S$date\]\n”):
printf (DLYTIM “\@xlabel Packets Sent\n*);
printf (DLYTIM “\@ylabel Delay (seconds) \n");
printf (DLYTIM “\@setprops 0 0 1 1\n”);

252



open (TPTIM, “>tptim.tbl”) || warn “Can’'t open tp.tbl: $!\n”";
select ((select (TPTIM), $| = 1) {$[]); # unbuffer file output
printf (TPTIM “\@title S$title\n”) if (Stitle);

printf (TPTIM “\@subtitle OfferRate, Thruput \[$dir:$date\]l\n"):;
printf (TPTIM “\@xlabel Time (seconds)\n");

printf (TPTIM “\@ylabel Fraction of 1.344 Mbps \n”");

# dual data set, must use “grtool -n"

printf (TPTIM ”\@setprops 0 1 7 1\n");

open (ORTBL, “>or.tbl”) || warn “Can’t open or.tbl: $!\n”;

select ((select (ORTBL), $| = 1)[$[}); # unbuffer file output

# printf (ORTBL “\@title S$title\n”) if ($title);
# printf (ORTBL “\@subtitle OfferRate, Thruput \[$dir:S$date\]\n");
# printf (ORTBL "\@xlabel Time (seconds)\n*);
# printf (ORTBL “\@ylabel Fraction of 1.344 Mbps \n”);

# dual data set, must use “grtool -n”
# printf (ORTBL “\@setprops 0 1 7 1\n*");

open (BADSEQ, “>badseq.tbl”) || warn ”“Can’'t open badseq.tbl: $!\n“;
printf (BADSEQ “\e@title $title\n”) if (Stitle);

printf (BADSEQ “\@subtitle Out of Sequence Pkts \[$dir:$date\]\n");
}

sub get_skew {
# find client/server log clock skew

for (;;) {
$_ = <SERVER>;
($f1,8f2,8£3,5$£f4,5£5,5f6,$£f7) = split(’ ’);
last if ($f6 eqg ‘epoch’);
}
Sskew = $f7;
for (;;) {
$_ = <CLIENT>;
($£1,8f2,8£3,%£4,5£5,%£6,5£7) = split(’ *);

last if ($f6 eq 'epoch’};
}

Sskew = $f7 - Sskew;
printf (“skew=%d\n”, $skew) ;

# now look for “Program start time: Fri Nov 15 10:21:05 1991~
for (;;) {

$_ = <CLIENT>;

($f1,8£2,8f3,8f4,%£5,8$f6,8£f7) = split{’ *);
last if ($fl eq 'Program’); # must be next line
}

253



s/Program start time://; # chop off front
$date = $_;
chop S$date;
return;
# find client/server log clock gkew (based on ’'Setup’)
for (;;) {
$_ = <SERVER>;
($f1,$£2) = split(' ’);
last if ($f2 eq ‘Setup’);
}
Sskew = $f1;

for ;) {

$_ = <CLIENT>;

($f1,8£f2) = split(' *);
last if ($f2 eqg ‘Setup’);
}

$skew = $f1 - Sskew;
printf ("skew=%d\n", $skew) ;

254



4 SFQ SOURCE

This section contains the implementation of SFQ that uses the standard queueing techniques
available in a UNIX-based kernel, unlike the SFQ implementation documented in Section 5. To
use SFQ, the enqueue and dequeue macros located in the drivers are replaced with special SFQ
macros that perform the necessary functions. Subsection 4.1, therefore, contains notes for installing
the software in a UNIX-based kernel. Subsection 4.2 contains the source itself, which includes the
following files: a config file for an SFQ kernel; conf/files; and the files sfq.h, sfq.c, and hsis.c.
Hsis.c serves as an example of the installation of SFQ in an existing driver. In the presentation of
this material, we assume that the reader is familiar with the process of building a kernel and with
the kernel directory structure.

4.1 INSTALLATION NOTES

This is a prototype implementation of Stochastic Fairness Queueing. SFQ is a probabilistic
variant of strict fair queueing. Instead of requiring that each flow have its own queue, SFQ has a
fixed number of queues and uses a hashing function to map the IP source and destination address
into one of the queues. A seed to the hash function is occasionally perturbed, to allow a
redistribution of the address pair mapping. This is done to ensure that flows are not consistently
mapped into the same queue, so that a well-behaved source is not penalized by an ill-behaved
source if the flows happen to map to the same queue at some point in time. For a more complete
description of SFQ, see the following article.

McKenney, P.E. 1991. “Stochastic Fairness Queuing,” in Internetworking: Research and
Experience, Vol. 2, pp. 113-131.

SRI provides the code as is and without any express or implied warranties, including, without
limitation, the implied warranties of merchantability and fitness for a particular purpose. The
current implementation only supports IP packets. It also aliases the send head queue pointer,
if_ghead, to a new data type. It is therefore necessary to modify the if_down routine in if.c, so that
SFQ queues are not flushed with the routine if_gflush when the interface is marked down via
ifconfig. Because this involves Sun source code, the file if.c is not included with this distribution.
However, a SFQ flush routine, if_sfqflush, is provided in case you are able to make this change.

Besides the source to SFQ, this distribution includes the source to the HSIS driver used on
DARTRet, a sample kernel config file, and the file sundc/conf/files. Hsis.c provides a model of the
way to integrate SFQ into an existing driver, and sundc/conf/SFQ and sundc/conf/files show how
to integrate SFQ into the kernel. To install SFQ into any system, use the following procedure:

1. Start with a GENERIC kernel config file and copy it to a new name, like SFQ. To the
generic config file, add the SFQ option by specifying

options SFQ
Add the following to conf/files:
sfq/sfqg.c optional SFQ
3. Create a directory called sfq containing sfq.c and sfq.h. This directory should be at
the top level of the kernel distribution.

19

255



4. If source is available, replace the call to if_qflush with if_sfqflush and add the
following external definition in if.c:
extern void if_sfqgflush{();
Otherwise, DO NOT mark an interface as down, using SFQ with ifconfig. If you
do, the system will crash.
5. For every driver:
A. Add #include *../sfq/sfq.h” to the end of the #include section.
B. Add a call to IF_QINIT before the call to if_attach: for example,
IF_QINIT (&ifp->if_snd, hashl)
if you want to use hashl as the hash function.

C. Replace calls to IF_QFULL with IF_SFQFULL. Note: a second parameter has
been added that is the pointer to the mbuf. If the IP packet is not available yet,
use NULL (i.e., 0) as the second parameter.

D. Replace calls to IF_ENQUEUE with IF_SFQENQUEUE.

E. For optimization, if the driver is structured with a call to IF_QFULL followed
by IF_ENQUEUIE, replace the two calls with a call to IF_SFQ_ENQUEUE
FAIL. This call will cause the hashing function to be performed only once, and
the routine will return TRUE if a packet cannot be added to the queue.

6. For compatibility with all other kernel configurations, you should use conditional
compilation around any modifications to the existing kernel source (i.e., #ifdef SFQ
followed by #endif SFQ).

256



4.2 SOURCE

SFQ config file
This config file describes the *“released” Sun-4c kernel for use in DARTnet,
including the HSIS driver and IP multicast support.

The following lines include support for all Sun-4c CPU types.
There is little to be gained by removing support for particular
CPUs, so you might as well leave them all in.

R W

machine “sundc”
cpu *“SUN4C_60" # Sun-4/60 (any Sun-4c)

ident “SFQ_1"

This kernel supports about 8 users. Count one user for each

timesharing user, one for each window that you typically use, and one
for each diskless client you serve. This is only an approximation used
to control the size of various kernel data structures, not a hard limit.

H* 3 3 xR

maxusers 16

options GENERIC

options INET # basic networking support - mandatory
options UFS # filesystem code for local disks

options NFSCLIENT # NFS client side code

options NFSSERVER # NFS server side code

options MULTICAST # IP multicast support

options MROUTING # IP multicast routing support

options HSFS # High Sierra (ISO 9660) CD-ROM file system

options TCPDEBUG # TCP debugging, see trpt(8)
options SFQ # Stochastic Fairness Queueing (SFQ)

#
# The following option adds support for SunView 1 journaling.

#
options WINSVJ # SunView 1 journaling support

Build one kernel based on this basic configuration.

It will use the generic swap code so that you can have

your root filesystem and swap space on any supported device.
Put the kernel configured this way in a file named "vmunix”.

H®H H H I I I

config vmunix swap generic

#
# Include support for all possible pseudo-devices.

#
# The first few are mostly concerned with networking.

257



# You should probably always leave these in.

#

pseudo-device pty # pseudo-tty’s, also needed for SunView
pseudo-device ether # basic Ethernet support
pseudo-device loop # loopback network - mandatory

pseudo-device dbx

#
# The next few are for SunWindows support, needed to run SunvView 1.

#

pseudo-device winl28 # window devices, allow 128 windows
pseudo-device dtopl # desktops (screens), allow 4
pseudo-device ms # mouse support

#
# The following is needed to support the Sun keyboard, with or

# without the window system.

#
pseudo-device kb # keyboard support

#
# The *“open EEPROM” pseudo-device is required to support the

# eeprom command.

#
pseudo-device openeepr # onboard configuration NVRAM

pseudo-device bpfilter 16 # Berkeley packet filter

#

# The following is for the “clone” device, used with streams devices.

# This is required if you include streams NIT support, RFS, or an audio
# device.

#

pseudo-device clone # clone device

#

# The following section describes which standard device drivers this
# kernel supports.

#

device-driver sbus # ‘driver’ for sbus interface
device-driver bwtwo # monochrome frame buffer

device-driver cgthree # 8-bit color frame buffer
device-driver cgsix # B-bit accelerated color frame buffer
device-driver dma # ‘driver’ for dma engine on sbus interface
device-driver esp # Emulex SCSI interface

device-driver fd # Floppy disk

device-driver audicamd # AMD79C30A sound chip

device-driver le # LANCE ethernet

device-driver zs # UARTs

device-driver hsis

options HSIS_TRACE

258



#options HSIS_EXTERNAL RCVDONE

#
# The following section describes SCSI device unit assignments.

#
scsibus0 at esp # declare first scsi bus

disk s8d0 at scsibus0 target 3 lun 0 # first hard SCSI disk
disk sdl at scsibus0 target 1 lun 0 # second hard SCSI disk
disk sd2 at scsibus(0 target 2 lun 0 # third hard SCSI disk
disk s8d3 at scsibus0 target 0 lun 0 # fourth hard SCSI disk
tape st0 at scsibus0 target 4 lun O # firgt SCSI tape

tape stl at scsibus0 target 5 lun 0 # second SCSI tape

disk sr0 at scsibus0 target 6 lun 0 # CD-ROM device

259



# @(4)files 1.48 90/08/22 SMI

# Updated by 4.1.1-GFX Rev.2 on 91/03/11 to 1.49

#

include ../../conf.common/files.cmn

#

# Oonly one of i386dev, sbusdev, and sundev/fd.c should be defined
#

#i386dev/fd.c optional fd device-driver not-supported
i3g6dev/hd.c optional hd device-driver not-supported
i3gédev/pp.c optional pp device-driver not-supported
i3gédev/wde.c optional wds device-driver not-supported
pixrect/../cgl2/cgl2_colormap.c optional win cgtwelve device-driver
pixrect/../cgl2/cgl2_ioctl.c optional win cgtwelve device-driver
pixrect/../gt/gt_colormap.c optional win gt device-driver
pixrect/../gt/gt_ioctl.c optional win gt device-driver
pixrect/../gt/gt_rop.c optional win gt device-driver
pixrect/../mem/mem_colormap.c optional win device-driver
pixrect/../mem/mem_kern.c optional win device-driver
pixrect/../mem/mem_rop.c optional win device-driver
pixrect/../pr/pr_clip.c optional win device-driver
pixrect/../pr/pr_dblbuf.c optional win device-driver
pixrect/../pr/pr_plngrp.c optional win device-driver
sbusdev/audio.c optional audioamd
sbusdev/audio_79C30.c optional audiocamd device-driver
sbusdev/amd7930.c optional audio device-driver
sbusdev/bwtwo.c optional bwtwo device-driver
sbusdev/cgthree.c optional cgthree device-driver
sbusdev/cgsix.c optional cgsix device-driver
sbusdev/cgeight.c optional cgeight not-supported
sbusdev/cgtwelve.c optional cgtwelve device-driver
sbusdev/dbx_sbusdev.c optional dbx symbolic-info
gbusdev/gt.c optional gt device-driver

sbusdev/dmaga.c optional dma device-driver
sbusdev/fbutil.c optional bwtwo device-driver
sbusdev/fbutil.c optional cgthree device-driver
sbusdev/fbutil.c optional cgsix device-driver
sbusdev/fbutil.c optional cgtwelve device-driver
sbusdev/fd.c optional fd device-driver

#

# SCSI for Campus

#

scei/adapters/esp.c optional esp scsibus device-driver
scsi/conf/scei_confdata.c optional scsibus
scsi/conf/scsi_confsubr.c optional scsibus
scsi/impl/scsi_capabilities.c optional scsibus
scei/impl/scgi_control.c optional scsibus
scei/impl/scei_resource.c optional scsibus
scsi/impl/scsi_data.c optional scsibus
scsi/impl/scsi_subr.c optional scsibus
scsi/impl/scsi_transport.c optional scsibus
scsi/targets/sd_conf.c optional sd scsibus
scgi/targets/sd.c optional sd scsibus

260



scsi/targets/sf.c optional sf scsibus not-supported
scsi/targets/sg.c optional sg scsibus not-supported
scsi/targets/sr.c optional sr scsibus
scsi/targets/st_conf.c optional st scsibus
scsi/targets/st.c optional st scsibus

#

sparc/addupc.s8 standard

sparc/copy.s standard

sparc/crt.s standard

sparc/float.s standard
sparc/fpu/addsub.c standard
sparc/fpu/compare.c standard
sparc/fpu/div.c standard

sparc/fpu/fpu.c standard
sparc/fpu/fpu_simulator.c standard
sparc/fpu/iu_simulator.c standard
eparc/fpu/mul.c standard
sparc/fpu/pack.c standard
sparc/fpu/unpack.c sgtandard
sparc/fpu/utility.c standard
sparc/fpu/uword.c standard
sparc/kgdb_stub.c optional KGDB
sparc/mcount.s optional profiling-routine
sparc/ocsum.s standard

sparc/overflow.s standard
sparc/sparc_subr.s standard

sparc/swtch.g etandard

sparc/underflow.s standard

sparc/zs_asm.s optional zs device-driver
sun/conf.c standard

sun/cons.c standard

sun/consfb.c standard device-driver
sun/conskbd.c standard

sun/consmse.c optional ms

#sun/dkbad.c standard

sun/in_cksum.c optional INET
sun/mb_machdep.c standard device-driver
sun/openprom_util.c standard

sun/probe.c standard

sun/seg_kmem.c standard

sun/str_conf.c standard

sun/subr_crash.c standard
sun/swapgeneric.c standard
sun/ufs_machdep.c standard

sun/vdconf.c optional VDDRV

sun/vddrv.c optional VDDRV

sun/vdmodsw.c optional VDDRV
sun/wscons.c standard

sund4/vm_hat.c standard

sund4/vm_hatasm.s standard
sundc/audio_79C30_intr.s optional audioamd device-driver
sundc/autoconf.c standard device-driver

261



sundc/openprom_xxx.c standard device-driver
sundc/clock.c standard device-driver
sundc/dbx_machdep.c optional dbx symbolic-info
sund4c/fd_asm.s standard device-driver
sundc/kgdb_glue.s optional KGDB

sundc/kprof.s optional profiling-routine
sundc/locore.s standard special

sundc/lwp/low.s optional LWP
sundc/lwp/lwpmachdep.c optional LWP
sundc/lwp/lwputil.c optional LWP

sundc/lwp/stack.c optional LWP

sundc/machdep.c standard

sundc/map.s standard

sundc/mem.c standard

sund4c/memerr.c standard

sundc/mmu.c standard

sundc/subr.s standard

sund4c/trap.c standard

sundc/vm_machdep.c standard

sunchat/chat.c optional chat device-driver
sunchat/chatunit.c optional chat device-driver
sundev/ar.c optional ar not-supported
sundev/cgtwo.c optional cgtwo not-supported
sundev/cgfour.c optional cgfour not-supported
sundev/cgnine.c optional cgnine not-supported
sundev/db.c optional db

sundev/dbx_sundev.c optional dbx symbolic-info
sundev/des.c optional des not-supported
sundev/fpa.c optional fpa not-supported
#sundev/fd.c optional fd device-driver
sundev/ft.c optional ft device-driver
sundev/gpone.c optional gpone not-supported
gundev/hrc.c optional hrc device-driver
sundev/hrc_common.c optional hrc device-driver
sundev/id.c optional id device-driver not-supported
sundev/ipi.c optional ipi device-driver not-supported
sundev/ipi_trace.c optional ipi device-driver not-supported
sundev/is.c optional is device-driver not-supported
sundev/is_conf.c optional is device-driver not-supported
sundev/kbd.c optional kb

sundev/keytables.c optional kb

sundev/kg.c optional kg device-driver
sundev/lightpen.c optional gt device-driver

# no mb.c for sundc

#sundev/mb.c standard device-driver

sundev/mcp.c optional mcp not-supported
sundev/mcp_async.c optional mcpa not-supported
sundev/mcp_bsc.c optional mcpb not-supported
sundev/mcp_bsctables.c optional mcpb not-supported
sundev/mcp_conf.c optional mcp not-supported
sundev/mcp_isdlc.c optional mcps not-supported
sundev/mcp_proto.c optional mcp not-supported

262

it g



sundev/mcp_sdlc.c optional mcph not-supported
sundev/ms.c optional ms
opticnal mti not-supported
sundev/mti_conf.c optional mti not-supported
sundev/ns.c optional ns device-driver
sundev/openprom.c optional openeepr device-driver
sundev/pc.c optional pc device-driver
sundev/pc_conf.c optional pc device-driver
optional pi not-supported
sundev/rd.c optional rd device-driver
optional sc OLDSCSI device-driver
sundev/sc_conf.c optional OLDSCSI device-driver

sundev/mti.c

sundev/pi.
sundev/sc.

sundev/sd.
sundev/se.
sundev/sf.
sundev/ei.
sundev/st.
sundev/sw.
sundev/taac.

sundev/tvone.c

[

c

c

no0ooao0a0a0

optional
optional
optional
optional
optional
optional

sd
se
sf
si
st
sw

OLDSCSI
OLDSCSI
OLDSCSI
OLDSCSI
OLDSCSI
OLDSCSI

device-driver
device-driver
device-driver
device-driver
device-driver
device-driver

¢ optional taac not-supported
sundev/tm.c optional mt not-supported
sundev/tod.c optional tod not-supported

optional tvone not-supported

sundev/vp.c optional vp not-supported

sundev/vpa.c optional vpa not-supported
sundev/vpc.c optional vpc not-supported
sundev/vuid_queue.c optional kb

sundev/vuid_store.c optional win device-driver
sundev/xd.

sundev/xt.

sundev/zs_bsc.c

[}

[}

optional xd not-supported
sundev/xd_conf.c optional xd not-supported
optional xt not-supported
sundev/xy.c optional xy not-supported
sundev/xy_conf.c optional xy not-supported
sundev/zs_async.c optional zs device-driver

optional zsb device-driver

not-supported

sundev/zs_bsctables.c optional zsb device-driver
sundev/zs_common.c optional zs device-driver
sundev/zs_conf.c optional zs device-driver

sundev/zs_isdlc.c optional zsi device-driver

sundev/zs_midi.c optional zs MIDI device-driver

sundev/zs_proto.c optional zs device-driver
sundev/zs_sdlc.c optional zss device-driver
sunif/dbx_sunif.c optional dbx INET symbolic-info
optional dcp device-driver

sunif/dcp.
sunif/ie_conf.c
sunif/if_dep.c

sunif/if ec.
sunif/if_en.
sunif/if hy.
sunif/if_ie.
sunif/if_1le.
sunif/if_me.

C

a0 a0 a0aaq

ec INET
en INET
hy not-s
ie INET
le INET
pc INET

sunif/if_ subr.c optional ether

optional ie device-driver
optional dcp device-driver
optional
optional
optional
optional
optional
optional

device-driver
device-driver
upported
device-driver
device-driver
device-driver
INET

263



sunif/le_conf.c optional le device-driver
sunif/tbi.c optional tbi device-driver
sunwindow/rect/rect.c optional win device-driver
sunwindow/rect/rect_data.c optional win device-driver
sunwindow/rect/rectlist.c optional win device-driver
sunwindowdev/dtopnub.c optional dtop device-driver
sunwindowdev/win.c optional win device-driver
sunwindowdev/win_syscall.c optional win device-driver
sunwindowdev/wincms.c optional win device-driver
sunwindowdev/windevconf.c optional win device-driver
sunwindowdev/windt.c optional win device-driver
sunwindowdev/winioctl.c optional win device-driver
sunwindowdev/winlock.c optional win device-driver
sunwindowdev/winshared.c optional win device-driver
sunwindowdev/wintree.c optional win device-driver
sunwindowdev/ws.c optional dtop device-driver
sunwindowdev/ws_dispense.c optional win device-driver
sunwindowdev/ws_interrupt.c optional win device-driver
hsisdev/hsis.c optional hsis device-driver
hsisdev/dbx_hsis.c optional hsis symbolic-info
sfgq/sfqg.c optional SFQ

264



#ifdef notdef
/* #ifndef lint */

static char rcsid[] = "@(#)S$Id: sfqg.h,v 1.6 92/10/23 17:35:49 root Exp Locker:
root $”";
static char copyright[] = “Copyright {(c¢) 1992 SRI International,

denny@erg.sri.com”;
/* #endif lint */
#endif notdef

~
*

Copyright (c) 1992 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ’‘AS IS’'’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

* * % ¥ % % * * * * * * * * #»

~

#ifdef SFQ

#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>

#include <net/if.h>

#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <sys/mbuf.h>

/t
* Debug register. Set to Oxffffffff to enable debug statements.
*/

extern long sfgdebug;
#define DPRT(c, x)} 1if(sfgdebug&c)printf x;

/* debugging flags */

265



#define TR_ENQ 1<<0 /* Enqueue flag */
#define TR_DEQ 1<<1 /* Dequeue flag */
#define TR_STA 1<<2 /* Statistics and
/* error checking */

/* flag */

#ifdef KERNEL

#define malloc{x) new_kmem_zalloc((u_int) (x}, KMEM_SLEEP)
#define free kmem_free

#endif KERNEL

/*
* Overview of SFQ implementation

*/
/* Replace generic BSD queuing macros with our own */

#undef IF_PREPEND /* (ifq, m) */
#undef IF_DEQUEUEIF /* (ifg, m, ifp) */
#undef IF_DEQUEUE /* (ifq, m) */

g#define MOD_INPUT_VALUE 8 /* used by call to modit */
#define FQ HASHTBLSIZ 257 /* The size of the hash table */
/* is 2 * MOD_INPUT VALUE + 1.*/
/* This also indicates the */
/* number of queues allocated.*/
#define FQ_HASHBUFLEN 8 /* 2+*sizeof (struct ip_addr) */
#define FQ MAXFCFSQLEN 100 /* Maximum FCFS Queue length per */
/* queue */

/* Hashing functions that can be used */

unsigned long hashl ();
unsigned long hash2 ();
unsigned long hash3 () ;
unsigned long hashd ();
unsigned long hash5 ()

/* Individual queue description */
struct ifqueue2 {

struct mbuf *ifg _head; /* pointers to pkts in this */
struct mbuf *ifq tail; /* queue */

int ifgq_len; /* length of queue */

int ifg_maxlen; /* maximum number of entries */

int ifg_drops; /* number dropped */

int ifg_sent; /* for debugging-number sent */

struct ifqueue2 *ifq forw; /* active list pointer */
struct ifqueue2 *ifq_back; /* i.e. where this queue is in */

/* the transmission gueue */
int ifg_label; /* For debugging only */
b

266



/* Main top level data structure, replaces datatype for the ifg_head */
/* pointer in the ifnet structure */

struct sfq {

int fq_len; /* Total number of packets in FQ chain */

unsigned long (*fg_hash) (}); /* Hash function */

long fqg_hashlen; /* Length of hash data */

struct ifqueue2 *fqg_index; /* Points to the head of the active list */
long fq_seed; /* Hash function seed */

struct ifqueue2 fg_hashtbl [FQ HASHTBLSIZ]}; /* Hash table area */
u_char fq_hashbuf [FQ _HASHBUFLEN];/* Temporary work area */

——

Miscellaneous comments:

Note that all internal variables used within a macro are prefaced
with an underscore so as to differentiate them from variables names
used the calling program. Be careful when using variable names
beginning with an underscore.

* & * * * * * *

/* IF_QINIT: Macro which allocates and initializes SFQ structure */

/*

* ifg ::= Pointer to ifnet ifqueue structure
* hashfnc ::= Pointer to hash function

*/
#define IF_QINIT(ifq, hashfnc) { \

struct sfq *_sfqg; \

int i; \

\

/* Allocate FQ structure and attach to interface ifg */ \
_8fg = {(struct sfq *) malloc (sizeof (struct sfq)); \
(ifqg)->ifg_head = (struct mbuf *) _sfq; \

\
/* Initialize variables */ \
_s8fg->fq_index = NULL; \
_sfg->fq_seed = 0; \
_sfg->fq_len = 0; \
_sfg->fq_hash = hashfnc; \
_sfqg->fgq_hashlen = FQ_ HASHBUFLEN; \
for (_i = 0; _i < FQ_HASHTBLSIZ; _i++) { \
_sfg->fq_hashtbl([_i].ifq_head = NULL; \
_sfg->fq_hashtbl[_i).ifqg_tail = NULL; \
_sfg->fq_hashtbl[_il.ifq len = 0; \
_sfg->fq_hashtbl[_i]}.ifq_drops = 0; \
_sfg->fq_hashtbl([_il.ifqg_sent = 0; \
_sfqg->fg_hashtbl[_i].ifq maxlen = FQ_MAXFCFSQLEN; \
_sfg~>fq_hashtbl[_i).ifqg_forw = NULL; \
_sfqg->fqg_hashtbl[_i]).ifqg_back = NULL; \

267



_sfq->fq_hashtbl[_i].ifq_label = _i; \
} \
}

#ifndef PPP_HDRSPACE
#define PPP_HDRSPACE 4
#endif

/* 1F_SFQENEQUEUE: Macro which enqueues an IP packet, contained in the */
/* mbuf, to the appropriate queue and links that queue into the active */
/* list pointer if necessary. The active list pointer is a linked list */
/* which orders the packets for transmission. */

/*
* ifq ::= Pointer to ifnet ifgqueue structure
* m ::= Pointer to beginning of mbuf chain

*/
#define IF_SFQENQUEUE (ifq,m) { \

unsigned long _8; \

struct sfq *_sfq; \

struct ip *_ip: \

struct ifqueue2 *_g, *_qg2; \
struct mbuf *_mO0; \

u_char *_ucp; \

int _index; \
/* Extract fields to be hashed and put into buffer */ \
\

_sfq = (struct sfq *) ifg->ifg_head; \
\
_m0 = m; \
\
/* Checking the size and finding the beginning of the IP pkt */ \
if (_m0->m_len == PPP_HDRSPACE) { \
_m0 = _mO->m_next; \
if (_m0 == NULL) \
panic ("IF_SFQENQUEUE: ppp header only\n”); \
_ucp = mtod ((_m0), u_char *); \
} else if (_mO->m_len > PPP_HDRSPACE) { \
_ucp = mtod ((_m0), u_char *); \
_ucp = (u_char *) (((int) _ucp) + PPP_HDRSPACE); \
} else { \

panic(“IF_SFQENQUEUE:invalid _m0 elem: no valid data \
or header\n”); \

} \

_ip = (struct ip *) _ucp: \

bcopy (&(_ip->ip_src), _sfq—)fq_hashbuf, _sfq->fq_hashlen); \
\

/* Compute hash entry */ \

_s8 = (*_sfqg->fq_hash) (_sfq->fq_seed, _sfq->fq_hashbuf); \
\

/* Mod hash result to fit into table */ \

_index = modit (_s,MOD_INPUT_VALUE); \

268



i

f (_index >= FQ_HASHTBLSIZ) \

panic (“IF_SFQENQUEUE: invalid queue index\n”); \
\
DPRT (TR_ENQ, (“IF_SFQENQUEUE: Adding packet to [$d1\n", _index)); \
\
g = &_sfg->fq_hashtbl{_index]; \
\
/* Make active list entry */ \
if (_g->ifg_head == NULL) { \
if (_sfg->fg_index == NULL) { \
_sfqg->fq_index = _q; \
_g->ifqg forw = _gq; \
_q->ifq back = _q; \
} else { \
_qg2 = _sfg->fg_index; \
_q->ifg back = _q2->ifqg_back; \
_g->ifqg _forw = _qg2; \
_g2->ifqg_back->ifq_forw = _q; \
_g2->ifqg_back = _q: \
} \
} \
/* Insert into the queue */ \
(m)->m_act = 0; \
if (_g->ifg_tail == 0) { \
_q->ifg _head = m;
} else { \
_g->ifq_tail->m_act = m; \
} \
_g->ifqg_tail = m; \
\

(
}

g->ifgq_len++; /* FCFS queue counter */ \
sfq->fqg_len++; /* SFQ packet counter */ \
ifq)->ifg_len++; /* ifnet counter */ \

/* IF_DEQUEUE: Macro which dequeues the next packet for tranmission */
/* from the active list. All appropriate fields are updated including */
/* the queue length fields and the number sent from this queue. */
/*
* NB: m = NULL signals empty gqueue
* fg_index == NULL signals empty queue
*/
#define IF_DEQUEUE(ifq,m) { \
struct sfqg *_sfq; \
struct ifqueue2 *_q; \
\
(m) = NULL; \
_sfqg = (struct sfq *) ifqg->ifq_head; \
_q = _sfg->fq_index; \
\
A \

* Conditional will be true, if index field points \

269



* to a non-empty queue. \

*/ \
if (_q) | \
\
(m) = _g->ifqg_head; \
if ((_g->ifg_head = (m)->m_act) == 0y { \
_g->ifqg_tail = 0; \
} \
(m)->m_act = 0; \
\
_g->ifg_len--; \
_sfqg->fq_len--; \
(ifqg)->ifqg_len--; \
_g->ifq_sent++; /* number sent on this g */ A\
DPRT (TR_DEQ, ("IF_DEQUEUE: [$d4] \n", _q—)ifq_label)); \
\
/* Remove entry from active list if no more pkts */ \
if (_g->ifq_head == 0) { \
if ((_g->ifq_forw == _q) && (_g->ifq_back== _q)) { \
_q->ifq_forw = NULL; \
/* Perturb the hash seed only when queue is empty */ \
_sfg->fq_seed++; \
DPRT (TR_DEQ, (“IF_DEQUEUE: FQ %d now Empty\n”, g->ifq_label)); \
} else { \

_q->ifq_forw; \
_q->ifg_back; \

_q->ifqg_back->ifqg_forw
_g->ifq_forw->ifqg back

DPRT (TR_DEQ, (“IF_DEQUEUE: removing %d from active list\n”, \

_q->ifq_label)); \

} \

} \

\

/* Index to the next non-empty gqueue */ \

_sfqg->fq_index = _qg->ifq_forw; \

} \

}

/* IF_QPRINT: Macro which prints out information about the SFQ structure */
/* and verifies the integrity of the structure. */

#define IF_QPRINT(ifq) { \
int i, total = 0, nelem; \
struct sfq *q: \
struct ifqueue2 *fcq: \
struct mbuf *m; \

\

q = (struct sfqg *) ifg->ifg_head; \
DPRT(TR_STA,("IF_QPRINT: Seed = %d SFQ len = %d\n”, \

q->fq_seed, g->fg_len }); \
\
for (i = 0; i < FQ _HASHTBLSIZ; i++) { \
fcq = &g->fqg_hashtbl[i]; \

270



if (fcg->ifg_sent != 0) \

DPRT (TR_STA, (”IF_QPRINT: FQ = %4, len = %4, \
drops = %4, sent = %d\n”, \
fcg->ifq_label, fcqg->ifqg len, fcg->ifqg_drops, \

feq->ifqg_sent)); \
if (fcqg->ifg_head != 0) { \
total += fcqg->ifqg_len; \
for (nelem = 0, m = fcqg->ifg_head; m; \
m = m->m_act) { \
nelem++; \
} \
if (fcqg->ifqg_len != nelem) { \
DPRT(TR_STA, ("IF_QPRINT: Inconsistency in q \
structure for %d\n”,i); \
DPRT (TR_STA, ("IF_QPRINT: ifqg_len = %4 count \
= %d\n”, fcg->ifg_len, nelem)); \
} \
} \
} \
if (total != g->fg_len) \
DPRT (TR_STA, (*IF_QPRINT: inconsistency in \
total pkt count\n”)); \
DPRT (TR_STA, (”IF_QPRINT: Total number of \
packets = %d fg_len = %d\n", \
total, g->fq_len)); \
}
#endif SFQ

271



#ifdef notdef
/* #ifndef lint */

static char rcsidl] = “@(#)$Id: sfqg.c,v 1.6 92/10/23 17:35:21 root Exp Locker:
root $”;
static char copyright[] = “Copyright (c} 1992 SRI International,

denny@®erg.sri.com”;
/* #endif lint */
#endif notdef

Copyright (c) 1992 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘'AS IS'’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

* * % % ¥ * % #* % % * * % * * »

#ifdef SFQ

#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>

#include <net/if.h>

#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>

#ifndef FALSE
#tdefine FALSE (0)
#endif

#ifndef TRUE
#define TRUE (1)
#endif

#include "sfqg.h”

272



long sfqdebug = 0x0; /* printing debug flag */

/* modit returns a mod (2**m + 1): a must be positive */
/* The algorithm is taken from Volume II of Knuth */
modit (a, m)

unsigned long a;
unsigned long m;

{

int mask, bpl, ¢, n, x;

mask = (1 << m) - 1;
bpl = mask + 2;

for (;;)

{

c = a & mask;
n=a »>> m;
X = ¢ - n;

if (x >= 0)

return (x);

if (x >= -bpl)
return (x + bpl);

a = -x; /* masking only works on positive values */
c = a & mask;

n=a > m;

X = ¢ - n;

if (x > 0)

return (bpl - x);
if (x > -bpl)
return (-x);

a = -x;

}

}

/* if_sfqflush frees all queues when an interface is marked down by ifconfig*/
/* should replace call to if_gflush in if_down if running SFQ */
/* These routines are contained in if.c */

if sfgflush(ifaq)

register struct ifgqueue *ifq;
{

int 1i;

struct sfq *q;

struct ifqueuel2 *fcqg;

struct mbuf *m, *n;

273



q = (struct sfg *) ifg->ifq_head;
for (i = 0; i < FQ HASHTBLSIZ; i++) /* loop through all the gueues */
{
fcq = &g->fg_hashtbl[i];
if (feqg->ifqg_head != NULL) /* Is this queue not empty? */
{

n = fcq->ifg_head; /* remove packets in this queue */
while (m = n)

{

n = m->m_act;

m_freem(m) ;
}

}

fcqg->ifg_head NULL; /* reinitialize all variables */
fcg->ifg tail NULL;
fcg->ifg_len = 0;
fcg->ifg_drops = 0;
fcqg->ifg_sent = O;
fcg->ifg_forw = NULL;
fcqg->ifq _back = NULL;
}

g->fg_len = 0;
g->fq_index = NULL;
q->fqg_seed = 0;

/* IF_SFQFULL checks to see if a particular queue is full for a given */

/* mbuf which contains an IP packet. Returns TRUE if the queue is */

/* full; FALSE otherwise. Note: Due to the structure in the HSIS driver, */
/* this routine gets called for a raw packet before the driver actually */
/* gets the packet. Since SFQ needs the IP source and destination address */
/* from the packet to figure out what queue to put it in, all raw packets */
/* automatically get put in the same queue regardless of their source or */
/* destination. Since it is assumed that raw packets are not a great */

/* percentage of network traffic, the effects should be negligible. */

/* In addition, a side effect of this routine is that the drop counter */

/* for a queue gets incremented if there is no room for the given IP */

/* packet. */

IF_SFQFULL(ifq, m)

struct ifqueue *ifq:

struct mbuf *m;

{

struct sfq *sfq;

struct mbuf *mo0;

struct ip *ip;

struct ifgqueue2 *q;

iong s; /* value from hash function */
u_char *ucp; /* pointer to IP pkt */

274

S



int index;

if (m != NULL) /* do we have a packet? */

{

sfq = (struct sfqg *) ifqg->ifqg_head;

m0 = m;

if (m0->m_len == PPP_HDRSPACE) { /* pkt size checks */
m0 = mO0->m_next;

if (m0 == NULL)

panic (*IF_SFQFULL: ppp header only\n”);

ucp = mtod ({m0), u_char *};

} else if (m0->m_len > PPP_HDRSPACE) {

ucp = mtod ({m0), u_char *);

ucp = (u_char *) (((int) ucp) + PPP_HDRSPACE) ;
} else {

panic (“IF_SFQFULL: invalid m0 elem: no valid data or header\n”);
}

ip = (struct ip *) ucp; /* Assumes packet is an IP pkt */

/* Extract fields to be hashed and put into buffer */
/* i.e. IP source and destination address */

bcopy (&ip->ip_src, sfg->fg_hashbuf, sfqg->fqg_hashlen);

/* Compute hash entry */

s = (*sfqgq->fq_hash) (sfg->fq_seed, sfqg->fqg_hashbuf);

/* Mod hash result to fit into table */

index = modit (s,MOD_INPUT_VALUE) ;

if (index >= FQ_HASHTBLSIZ) /* error check */

printf (*IF_SFQFULL: invalid queue index\n");

}

else

index = FQ HASHTBLSIZ -1; /* all raw packets get this index */

g = &sfg->fg_hashtbl[index]; /* get the queue for this IP address */
/* pair */

if (q->ifqg_len >= g->ifqg_maxlen) /* check the length */

{

if (m != NULL) /* will need to drop this packet */

g->ifq_drops++; /* increment drop counter */

return (TRUE) ;

}

else

return (FALSE) ;

/* IF_SFQ ENQUEUE_FAIL returns TRUE if a packet failed to be put on the */
/* associated queue; FALSE otherwise. Note: Due to the structure in the */
/* HSIS driver, this routine can called for a raw packet before the */

/* driver actually gets the packet. Since SFQ needs the IP source and */
/* destination address from the packet to figure out what gueue to put */

275



/* it in, all raw packets automatically get put in the same queue */

/* regardless of their source or destination. Since it is assumed that */
/* raw packets are not a Jgreat percentage of network traffic, the */

/* effects should be negligible. In addition, a side effect of this */

/* routine is that the drop counter for a gqueue gets incremented if */

/* there is no room for the given IP packet. */

IF_SFQ_ENQUEUE_FAIL(ifq, m)
struct ifgueue *ifq;
struct mbuf *m;

{
struct sfq *sfq;
struct mbuf *m0;
struct ip *ip;
struct ifgueue2 *q, *q2;
long 8; /* value returned from hash function */
u_char *ucp:
int index;

if {(m != NULL) { /* do we have a packet? */

sfq = (struct sfq *) ifg->ifq_head;
m0 = m;
if (m0->m_len == PPP_HDRSPACE) { /* pkt size legality checks */

m0 = m0->m_next;

if (m0 == NULL)

panic (*IF_SFQ_ENQUEUE_FAIL: ppp header only\n”);

ucp = mtod ({(m0), u_char *);

} else if (m0->m_len > PPP_HDRSPACE) {

ucp = mtod ((m0), u_char *);

ucp = (u_char *) (((int) ucp) + PPP_HDRSPACE);

} else {

panic (“IF_SFQ_ENQUEUE_FAIL: invalid m0 elem: no valid data or header\n”);

}
ip = (struct ip *) ucp: /* Assumes packet is an IP pkt */

/* Extract fields to be hashed and put into buffer */
/* i.e., IP source and destination address */

bcopy (&ip->ip_src, sfq->fq_hashbuf, sfg->fqg_hashlen);

/* Compute hash entry */

s = (*sfg->fq_hash) (sfq->fq_seed, sfg->fq_hashbuf);
/* Mod hash result to fit into table */

index = modit(S,MOD_INPUT_VALUE):

if (index >= FQ_HASHTBLSIZ)

printf (“IF_SFQ_ENQUEUE_FATIL: invalid gueue index\n");
}

else

index = FQ_HASHTBLSIZ -1; /* raw packets go here */

276



q = &sfg->fg_hashtbl[index]; /* find the queue */

if (g->ifg_len >= g->ifq_maxlen) /* is length not ok?

{

if (m != NULL)

g->ifg_drops++; /* incremented drop counter */

return (TRUE) ;

}

else

{

if (m == NULL) /* hack for raw send and because we */

return FALSE; /* are combining the enqueue and qfull
/* macros for efficiency */

/* There is no packet :yet */

DPRT (TR_ENQ, (“IF_SFQ_ENQUEUE_FAIL: Adding packet to
/* Make active list entry */

if (g->ifg_head == NULL) {
if (sfg->fg_index == NULL) {
sfg->fq_index = q;
g->ifq_forw q;

g->ifq _back = g

} else {

g2 = sfg->fg_index;
g->ifg_back = q2->ifq back;
g->ifq_forw = q2.
g2->ifq_back->ifq_forw = q;
g2->ifg_back = q;

/* Store packet onto queue */
{m) ->m_act = 0;
if (g->ifq_tail == 0) {
g->ifq_head = m;
} else {
g->ifq_tail->m_act = m;
}
g->ifqg_tail = m;

qg->ifqg_len++; /* FCFS queue counter */
sfq->fg_len++; /* SFQ packet counter */

(ifq)->ifq_len++; /* ifnet counter */

return (FALSE) ;
}
}

/* Possible hash functions to choose from */

277

*/

*/

[%d] \n”

‘

index)) ;



/*

*

*/

unsigned long
cp)

hashl (seq,
char segq;

unsigned char *cp;

{

unsigned long 11;
unsigned long 12;

11
12
return

/t

*

*/

unsigned long
cp)

hash2 (seq,
char seqg;

unsigned char *cp;

{

static unsigned long maskstay([] = {
Oxffffffff, Oxfffffffe, Oxfffffffc,
OXfffffffo, Oxffffffel, OxffffffcoO,
Oxfff£££00, Oxfffffe00, OxfffffcOO0,
Oxff£££000, Oxffffe000, Oxffffc000,
Oxff££0000, Oxfffe0000, Oxff£fc0000,
Oxf£f£f00000, Oxffe00000, Oxffc00000,
0xf£f000000, O0xfe000000, 0xfc000000,
0xf0000000, 0xe0000000, 0xc0000000,
}:

static unsigned maskwrap(] = {
0x00000000, 0x00000001, 0x00000003,
0x0000000f, 0x0000001f, Ox0000003f,
0x000000f£f, Ox000001ff, Ox000003ff,
0x00000fff, Ox00001fff, OxO0003fff,
Ox0000ffff, Ox0001ffff, Ox0003ffff,
OxO000f£ffff, OxO001fffff, OxOQ003fffff,
OxO00ffffff, OxO1ffffff, OxO3ffffff,
OxOfffffff, Ox1fffffff, Ox3fffffff,

b

unsigned long 11,

int coseq;

11
12 =
seq &=

12;

/* addxorhash.c */

* (unsigned long *)cp:
* (((unsigned long *)cp) +
((11 + seq)

1);

*12);

/* rotllhash.c */

* (unsigned long *)cp;
* ({(unsigned long *)cp) +
0x1f;

1);

Oxfffffffs,
Oxfff£f££80,
Oxfff££800,
Oxf£££8000,
0xf££80000,
0x£f£800000,
0x£8000000,
0x80000000

0x00000007,
0x0000007f£,
0x000007£f€£,
0x00007£f¢£,
0x0007ffff,
Ox007£££f£€£,
O0x07f£f££f£ff,
Ox7fffEf£E

278



}

coseqg = 32 -
11 = ((11 <<
12 = ((12 <«

return (11

/*

unsigned long
hash3i (seq,

{

*

*/

char seq;

+

cp)

seq;
seq)

coseq)

12);

unsigned char *cp;

static unsigned long maskstay([] = {
OxEffffffff, Oxfffffffe, Oxfffffffc,
Oxfffffff0, Oxffffffe0, OxffffffcoO,
Oxffff££00, Oxfffffe00, OxfffffcoOO,
Oxfff£f£f000, Oxffffe000, Oxffffc000,
Oxf£££0000, Oxfffe0000, Oxfffc00O0O,
0xf££00000, Ox£ffe00000, O0xffc00000O,
O0xf£000000, OxfeD00000, 0xfc000000,
0x£f0000000, Oxe0000000, 0xc0000000,
};

static unsigned maskwrap[] = {
0x00000000, 0x00000001, 0x00000002,
0x00000008, 0x0000001f, O0x0000002f,
0x0000008f, O0x000001ff, 0x000002ff,
0x000008ff, OxO00001fff, Ox00002fff,
0x00008fff, OxO0001ffff, OxO0002ffff,
0x0008ffff, OxO01fffff, OxOQ02fffff,
Ox008fffff, OxOL1ffffff, OxOQ2ffffff,
OxOBffffff, Ox1fffffff, Ox2fffffff,
Ox8fffffff

}:

unsigned long 11;
unsigned long 12;

int coseq;

11
12
seq &=
coseq =
11 =

32

12 =

({12 << coseq)

return (11 +

12);

& maskstay[seq])

/* rotlhash.c */

* (unsigned long *)cp;

* (((unsigned long *)cp) +
Ox1f;
- seq;
({11 << seq)

1);

& maskstay([seq])

-

& maskstay|[coseq])

& maskstay[coseq])

((11 >>

Oxfffffffs,
Oxffffffao,
Oxfffff800,
0xff££8000,
0xf££80000,
0xf£800000,
0x£8000000,
0x80000000

0x00000004,
0x0000004f,
0x000004ff,
0x00004fff,
0x0004f£fff,
Ox004fffff,
OxO04ffffff,
Ox4fffffff,

((11 >>

279

(coseq))

to((12 >>

(coseq))

to((12 >>

(seq))

(seq))

& maskwrap[seq]l) :

& maskwrap[coseq]);

& maskwrap[seq]);

& maskwrap[coseq]) ;



/*

*

*/
unsigned long
hashd (seq, cp) /* rothash.c */

char seq;

unsigned char *cp;

{

static unsigned long maskstayl[] = {

Oxffffffff, Ooxfffffffe, Oxfffffffc, OxEffffffs,
OxfEfff£f££f0, Oxffffffe0, OxEffffffcO, Oxffffffsgo,
OXEff££££00, Oxfffffe00, OxEfffffc00, Oxfffff800,
Oxfff£f£f000, Oxffffe000, Oxffffc000, Oxfff£f8000,
Oxff££0000, Oxfffe0000, Oxfffc0000, Oxff£80000,
Oxf££00000, O0xffe00000, Oxffc00000, O0xff800000,
O0xf£000000, 0xfe000000, Oxfc000000, 0x£f8000000,
0x£f0000000, 0xe0000000, Oxc0000000, 0x80000000
}i

gtatic unsigned maskwrapl[] = {

0x00000000, 0x00000001, 0x00000002, 0x00000004,
0x00000008, 0x0000001f, 0x0000002f, Ox0000004f,
0x0000008f, 0x000001ff, 0x000002ff, Ox000004ff,
0x000008ff, Ox00001fff, Ox00002fff, Ox00004fff,
0x00008fff, Ox0001ffff, Ox0002ffff, OxO004ffff,
O0x0008ffff, OxO001fffff, OxO002fffff, OxOO04fffff,
OxOO08fffff, OxOLffffff, OxO2ffffff, OxO4ffffff,
OxOBffffff, Ox1fffffff, Ox2fffffff, Oxdfffffff,
OxB8fffffff

}i

unsigned long 11, 12;

int coseq;

11 = *(unsigned long *)cp;

12 = *(((unsigned long *)cp) + 1);

seq &= O0xl1f;

coseg = 32 - seq;

11 = ((11 << seq) & maskstay[seq]) ° ((11 >> (coseq)) & maskwrap(seq]):

12 = ((12 << coseq) & maskstayl[coseq]) * ({12 >> (seq)) & maskwraplcoseq])};

return (11 * 12);
}

/a
*
-/

unsigned long

hashs (seg, cp) /* xoraddhash.c */
char segq;

280



unsigned char *cp;
{

unsigned long 11;
unsigned long 12;

11
12
return ((11

}

* (unsigned long *)cp;
* (((unsigned long *)cp)
" seq) + 12);

#tendif SFQ

+

1);

281



#ifndef lint

static char rcsidll =

~@ (#) SHeader: /home/sys_isi/hsisdev/RCS/hsis.c,v 1.4 92/10/23 17:46:43
Exp Locker: root $”;

gstatic char copyrightl[] =

»Copyright (c) 1990 Regents of the University of California”;

#endif

/

Copyright (c) 1990 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the University of California, Lawrence Berkeley Laboratory,
Berkeley, CA. The name of the University may not be used to
endorse or promote products derived from this software without
gpecific prior written permission.

THIS SOFTWARE IS PROVIDED '‘AS IS'’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

/

* % % % % % * * % * * + % * * * *

#include “hsis.h”

#if NHSIS > 0

#include <sys/param.h>
#include <sys/mbuf._h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <net/netisr.h>
#include <sys/stream.h>
#include <sys/ttycom.h>
#include <sys/tty.h>
#include <sys/time.h>

#include <sys/sockio.h>

#include <sundev/zsreg.h>
#include <sundev/mbvar.h>
#include <sundc/intreg.h>

#include <sundc/auxio.h>

#include “bpfilter.h”
#if NBPFILTER > O

282

root



#include <net/bpf.h>
#endif

#ifdef SFQ
#include ”../sfqg/sfqg.h”
#endif SFQ

#include "z16c35.h”
#include “hsisreg.h”
#include “syncmode.h”
#include “syncstat.h”
#include *hsiscom.h”
#include “ppp.h”

#ifndef AF_RAWSYNC
#define AF_RAWSYNC AF_IMPLINK
#endif

int hsidebug = 0;

#ifdef HSIS_TRACE

int hseis_trace_lock = Ox7FFFFFFF;

#endif

#define dprintf (x) if (hsidebug)printf x;

/
Like most things that have to deal with Zilog chips, this driver
requires two interrupt levels: a hardware level that should be as
high as possible (SBus level 5-7) and a software level that should

be at or below splimp (i.e., at level 4 or 6 on a sparc). Very little
time is spent at hardware interrupt level. Packet copies to and

from the board (<300 us, worst case) and almost all the device and
system stuff (20-100 us typically, 300 us if we have to call Sun's
incredibly slow Streams NIT) is done at the software interrupt level.

* % * % *+ * * »

*

*/
#define splboard spld4
#define HARDINT LEVEL 5

/*

* Software interrupt level, state and status bits.
*/

##define SOFTINT_LEVEL 4

#define splsoft spl2

u_int hsis_isum;

#define RECV_DONE 1

#define XMIT_DONE 2

#define SOFTINT (softc, event) (hsis_isum |= (event) << \
({sc)->sc_if.if unit << 1))

/*

* default set-up for scc (possibly modified by user-specified ‘syncmode’).

283



* gee hsis_init for how this is interpreted. Each entry is a particular
*+ gcc reg. The scc regquires register be set in a particular order and
* not all bits (in particular, the rx & tx enables) can be loaded from

* here (see hsis_init). Be careful when changing this array.
*/
u_char hsis_scc_setup[] = {

/* 0 */ 0,

#ifdef HSIS_EXTERNAL_RCVDONE
/* 1 */ ZSWR1_SIE,
#else
/* 1 */ ZSWR1_SIE | ZSWR1_RIE_SPECIAL_ ONLY,
#endif
/* 2 */ 0,
/* 3 */ ZSWR3_RXCRC_ENABLE | ZSWR3_RX_8,
/* 4 */ ZSWR4_SDLC,
/%« 5 */ ZSWRS_TXCRC_ENABLE | ZSWR5_RTS | ZSWR5_TX_8,
/* 6 */ 0,
/* 7 */ ZSWR7_SDLCFLAG,
8 */ 0,
/* 9 */ ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR | ZSWR9_VECTOR_INCL_STAT,
/*10 */ ZSWR10_PRESET_ONES,
/*11 */ 0,
/*12 */ 0,
/*13 */ 0,
/*14 */ 0,
/*15 */ ZSR15_SDLC_FIFO_ENA | ZSR15_TX_UNDER,

/*
+ default ‘syncmode’ (clock and loopback options) for scc.
*/
struct syncmode hsis_default_sm = {
TXC_IS_BAUD, RXC_IS_BAUD, 1, 0, 9600, 0, O

}:

int hsisidentify (), hsisattach();
struct dev_ops hsis_ops = {

1,

hsisidentify,

hsisattach,

};

int nhsisboard; /* total # of hsis boards found */

struct hsiscom *hsiscom;

struct hsiscom *hsiscom_end;
struct hsis_softc *hsis_softc:
struct hsis_softc *hsis_softc_end;

int hsis_init (), hsis_output{), hsis_ioctl(), hsis_reset(), hsis_watchdog (),
hsisintr(), hsissoftint(};

284



void hsis_start();
void rawsyncinit();

void

hsis_scc_attach(unit, hs, addr)
register u_char unit;

register struct hsiscom *hs;
register u_char *addr;

{

static int nhsischan;

register struct zscc *zs = &hs->hs_zs{unit];
register struct zdma *zd = &hs->hs_zd[unit >> 1];
register u_char *zsdev = addr;

register struct hsis_softc *sc = &hsis_softc[nhsischan];
register struct ifnet *ifp = &sc->sc_if;
zs->zs_unit = unit;

zs->zs_addr = zsdev;

/* disable rx, tx and interrupts. */

SCC_WRITE(1l, 0);

SCC_WRITE(3, 0);

SCC_WRITE(5, 0);

/* disable external rcv done interrupt */

hs->hs_board[unit + HSIS_EINT_ENA_A] = 0;

/* set up the softc and make us known to the network code. */
sc->8c_zs = z8;

sc->sc_zd = zd;

sc->s8c_hs = hs;

sc->sc_sm
sc->sc_fifop

hsis_default_sm;
sc->sc_fifo;

ifp->if name = “hsig”;
ifp->if _unit = nhsischan++;
ifp->if_mtu = HSIS_MTU;

#ifdef MULTICAST
ifp->if_flags =
#else
ifp->if_flags =
#endif MULTICAST
ifp->if_init = hsis_init;
ifp->if_ output = hsis_output;
ifp->if ioctl = hsis_ioctl;
ifp->if_reset = hsis_reset;
ifp->if watchdog = hsis_watchdog;
#ifdef SFQ
ifp->if_snd.ifq _maxlen

/* size of one of
#else
ifp->if_snd.ifq_maxlen =
#endif SFQ

IFF_POINTOPOINT | IFF_MULTICAST;

IFF_POINTOPOINT;

= FQ_MAXFCFSQLEN; /* may be misleading */

SFQ’'s queue */

HSIS_MAX_SENDQ;

285



#if NBPFILTER > O
bpfattach(&sc->sc_bpf, ifp, DLT_PPP, PPP_HDRSPACE) ;

#endif

#ifdef SFQ
IF_QINIT(&ifp-)if_snd,hashl);
#endif SFQ

if_attach(ifp)}:
}

void

hsis_dma_attach(unit, zd, addr)
register u_char unit;

register struct zdma *zd;
register u_char *addr;

{

register u_char *zddev = addr;
zd->zd_addr = zddev;

/

Reset the dma section. Clear out the ‘interrupt vector’ address
so we get a simple value to switch on when interpreting intr.
Set the DCR to increment addresses rather than decrementing.
Set the ICR to disable intr

on all channels (any event that would generate a dma intr also
generates an scc intr -- we waste enough time dealing with this
stupid chip and don’t need to double all the interrupts),

don’'t put a vector on the bus when req. intr but do include
‘gtatus’ in the IVR on intr.

7ero out the dma address registers so we don’‘t have to write
the high bytes when switching buffers.

* * % * * % % * * * *

»

*/
DMA_WRITEO (ZSDMA_CCAR_DMA_RESET) ;
DMA_WRITEO (ZSDMA_CCAR_RESET_IUS) ;
DMA_WRITE (ZSDMA_IVR, 0);
DMA_WRITE (ZSDMA_ICSR, 0);
DMA_WRITE (ZSDMA_DCR, Oxf);
DMA_WRITE (ZSDMA_ICR, ZSDMA_ICR_NV | ZSDMA_ICR_VIS);

DMA_WRITE (ZSDMA_RDARA, 0);

DMA_WRITE (ZSDMA_RDARA+1, 0);
DMA_WRITE (ZSDMA_RDARA+2, 0);
DMA_WRITE (ZSDMA_RDARA+3, 0);

DMA_WRITE (ZSDMA_TDARA, 0);

DMA_WRITE (ZSDMA_TDARA+1, 0);
DMA_WRITE (ZSDMA_TDARA+2, 0);
DMA_WRITE (ZSDMA_TDARA+3, 0);

286



DMA_WRITE
DMA_WRITE
DMA_WRITE
DMA_WRITE

ZSDMA_RDARB, 0);

ZSDMA_RDARB+1, 0);
ZSDMA_RDARB+2, 0);:
ZSDMA_RDARB+3, 0):

o~~~ o~

DMA_WRITE(ZSDMA_TDARB, 0);

DMA_WRITE (ZSDMA_TDARB+1, 0);
DMA_WRITE (ZSDMA_TDARB+2, 0);
DMA_WRITE(ZSDMA_TDARB+3, 0);

int

hsisidentify (name)

char *name;

{

if (strcmp (name, “HSI") == 0) {
++nhsisboard;
return (1) ;

} else
return (0);

int

hesisattach (dev)

register struct dev_info *dev;
{

static int curhsis = 0;
register struct hsiscom *hs;
register u_char *hsboard;
register int i;

dev->devi_unit = curhsis;

if (heiscom == NULL) {

hsiscom = (struct hsiscom *)new_kmem_ zalloc (
{u_int) (nhsisboard * sizeof (struct hsiscom)),
KMEM_SLEEP) ;

if (hsiscom == NULL) {
printf(“hsis: no space for data structures.\n”);
return (-1);

}

hsiscom_end = &hsiscom[nhsisboard];

hsis_softc = (struct hsis_softc *)new_kmem_ zalloc(
(u_int) (nhsisboard * 4 * sizeof (struct hsis_softc)),
KMEM_SLEEP) ;

if (hsis_softc == NULL) {

printf(*hsis: no space for data structures\n”);

return (-1);

}

hsis_softc_end = &hsis_softc[nhsisboard * 4};

rawsyncinit(); /*XXX*/

287



}
hs = &hsiscom[dev->devi_unit};
hs->hs_dev = dev;

* register our interrupt handler, map the board into kernel memory,
* then reset it. Note that the interrupt level must be <= splimp
* (and, given the constraints imposed by the braindead Zilog dma,
* the level should be as high as possible, e.g., splimp).
*/
addintr (dev->devi_intr->int_pri, hsisintr, dev->devi_name, curhsis);
addintr (SOFTINT_LEVEL, hsissoftint, "HSI-soft”, curhsis);
hsboard = (u_char *)map_regs(dev->devi_reg->reg_addr,
dev->devi_reg->reg_size,
dev->devi_reg->reg_bustype);
hs->hs_board = hsboard;

/*

* get up the free buffer list.

*/

for (i = HSIS_SRAM_SIZE; (i -= HSIS_BUFSIZE) >= 0; ) {

register struct hsisbuf *bp;

bp = (struct hsisbuf *) (hsboard + i + HSIS_SRAM);
bp->next = hs->hs_free;

hs->hs_free = bp:

}

/t
* Tnitialize the two dma channels and 4 scc channels.
* First reset each chip and set its bus configuration reg.
* Then set up the software data structures.
*/

hsboard [HSIS_RST_ISSC0] = 0; /* reset chips */

hsboard [HSIS_RST_ISSC1l] = O0;

DELAY (10) ;

hsboard [HSIS_SCC_A]

hsboard {HSIS_SCC_C]

0; /* clear BCR */
0;

L]

hsis_dma_attach(0, &hs->hs_zd[0], &hsboard[HSIS_DMA_0]);
hsis_dma_attach(l, &hs->hs_zd[1l], &hsboard[HSIS_DMA_1]);

hsis_scc_attach(0, hs, &hsboard[HSIS_SCC_A]);
hsis_scc_attach(l, hs, &hsboard[HSIS_SCC_B]);
hsis_scc_attach(2, hs, &hsboard[HSIS_SCC_C]);
hsis_scc_attach(3, hs, &hsboard[HSIS_SCC_D]};

report_dev (dev);

++curhsis;
return (0);

288



int

copy_m_to_b(sc, m, c¢p)

register struct hsis_softc *sc;
register struct mbuf *m;
register u_char *cp;

{

register long len, totlen;
register struct mbuf *m0 = m;

totlen = 0;

do {
len = m->m_len;
bcopy (mtod (m, caddr_t), (caddr_t)cp, (u_int)len);

cp += len;
totlen += len;
} while (m = m->m_next);

m_freem(m0) ;

if (sc->sc_raw && (sc->sc_raw->so_snd.sb_flags & SB_WAIT ||
sc->sc_raw->so_snd.sb_sel))

sbwakeup (sc->sc_raw, &sc->sc_raw->so_snd);

return (totlen);

}

hesis_output (ifp, m, dst)
register struct ifnet *ifp;
register struct mbuf *m;

struct sockaddr *dst;

{

register int s;

register struct hsis_softc *sc;

sc = (struct hsis_softc *)ifp;
TRACEL (T_OUTPUT, sc, 0)
#ifdef HSIS_TRACE

/*
* keep trace unlocked; ignore miniscule interrupt race.
*/
if (hsis_trace_lock > 100) hsis_trace_lock = O0x7FFFFFFF;
#endif
if ((ifp->if_flags & IFF_UP) == 0) {

m_freem(m);

return (ENETDOWN) ;

}

if (dst->sa_family != AF_UNSPEC) {
/* Add a PPP header */

register u_int off = m->m off;

if (off < MMINOFF + PPP_HDRSPACE | |
(off >= MSIZE && m->m_cltype != MCL_STATIC_HDR)) {
/* need new mbuf for hdr (should really panic here
* then fix whatever isn't leaving space for header) */

289



register struct mbuf *m0;

MGET (m0, M_DONTWAIT, MT_DATA);
if (m0 == {(struct mbuf *)0) {
m_freem(m) ;
return (ENOBUFS) ;
}

m0->m_next = m;

m0->m_len = PPP_HDRSPACE;
m = mO0;

} else {

m—)m_off -= PPP_HDRSPACE;

m->m_len += PPP_HDRSPACE;
}

*mtod {m, u_int *) = PPP_INET; /* XXX */

}

if (sc->sc_ostate == 0) {

register struct hsisbuf *bp = sc->sc_curout;

register int len;

len = copy_m_to_b(sc, m, BUFtoCP({(bp));
s = gplboard();
TRACE (T_OUT_COPY, sc, {int)bp | len)
bp->cnt = len;
sc->sc_ostate = 2;
hsis_start(sc);
#ifdef HSIS_EXTERNAL_RCVDONE
} else if (sc-»>sc_if.if_snd.ifq_len == 0 && sc->sc_nextout->cnt == 0)
register struct hsisbuf *bp = sc->sc_nextout;
register int len;

len = copy_m_to_bl(sc, m, BUFtoCP(bp));

s = esplboardl();

TRACE (T_OUT_COPY, sc, (int)bp | len)

bp->cnt = len;

if (sc->sc_ostate == 0) {

/*
* last packet completed while we were doing copy --
* flip buffers & restart output.

*/

(sc->sc_nextout = sc->sc_curout)->cnt = 0;
sc->sc_curout = bp;
sc->sc_ostate = 2;

hsis_start(sc);
}
#endif
} else {
register struct ifqueue *ifg = &ifp->if_snd:

s = splboard{();

#ifdef SFQ
if (IF_SFQ_ENQUEUE_FAIL(ifq,m)) {

290



IF_DROP(ifq);
/* TRACE(T_QFULL, sc, 0) see if can make this call */
splx(s);
m_£freem(m) ;
return (ENOBUFS) ;
}
#else
if (IF_QFULL(ifq)) {
IF_DROP(ifq);
TRACE (T_QFULL, sc, 0)
splx(s):
m_freem(m):
return (ENOBUFS);
}
IF_ENQUEUE(ifq, m);

#endif SFQ
if (sc->sc_ostate == 0)
hsis_start{sc):

}

splx(s);

return (0);

}

/*

* gtart new output operation. This routine *must* be called at
*/
void
hsis_start(sc)

register struct hsis_sgoftc *sc;

{

register struct zscc *zs = s8c->8C_z8§;
register u_char *zsdev zs->zs_addr;
register u_char *zddev sc->sc_zd->zd_addr;
register u_char unit = sc->sc_if.if unit;
register u_char *cp;

register int len;

register u_int baddr;

register int s;

register u_int resid;

register int i;

cp = BUFtoCP(sc->sc_curout);

if (sc->sc_ostate == 3) /* take handoff from hardware intr */
sc->sc_ostate = 0;

if (sc->sc_ostate == 0) {

register struct hsisbuf *bp;

if (len = (bp = sc->sc_nextout)->cnt) {

/*
* 'pext’ output buffer is full - swap current and
* pnext. (The weird assignment below fools Sun-4 cc
* into generating reasonable code -- maybe one day

291

splboard.



* Sun will discover ANSI C ‘volatile’ and this
* crap can go away.)
*/
(sc->sc_nextout = sc->sc_curout)->cnt = 0;
sc->sc_curout = bp;
cp = BUFtoCP (bp);
} else {
/*
* on-board xmit buffer is empty. try to copy a new
* packet to it. (we want to overlap the copy with
* the scc sending the final crc and flag bytes to
* avoid taking an extra xmit interrupt).
*/

register struct mbuf *m;

IF_DEQUEUE (&sc->sc_if.if_snd, m);

if (m == NULL) {
sc->sc_if.if_timer = 0;
TRACE (T_EMPTY_0OQ, sc, 0)
return;

}

len = copy_m_to_b(sc, m, cp);

TRACE (T_OUT_COPY, sc, (int)bp | len)
}
} else

len = sc->sc_curout->cnt;

if the transmit buffer is full it means that crc/flag
sending is still in progress. the stupid scc will jam
two packets together if we enable dma xmit so we have
to turn on the xmit interrupt (which should come when
the crc and flag have been sent) and exit waiting for
that interrupt. If the transmit buffer is empty, we
can just start the next packet (this should be the
usual case at T1 speeds).
/
sc->sc_if.if_timer = HSIS_WATCHDOG_TIME;
SCC_READO (resid) ;

* % * *+ * * * * * *

if ((resid & 2ZSRRO_TX_READY) == 0) {
/t

* we lose - wait for xmit intr.

*/
SCC_BIS (1, ZSWR1_TIE) ;
sc->sc_ostate = 2;
sc->sc_curout->cnt = len;
return;
}
/*

* Transmit buffer empty -- start up dma.
*/

baddr = cp - sc->sc_hs->hs_board;

292



SCC_WRITEO (ZSWRO_RESET_TXCRC) ;
if (unit & 1) {

/* B channel */

register u_int c;

DMA_READ(ZSDMA_TDCRB, resgid) ;
DMA_READ(ZSDMA_TDCRB + 1, ¢);
resid |= ¢ << 8;

DMA WRITE (ZSDMA_TDCRB, len);
DMA_ WRITE (ZSDMA_TDCRB+1, len >> 8);

DMA_WRITE (ZSDMA_TDARB, baddr);
DMA_WRITE (ZSDMA_TDARB+1, baddr >> 8);

s = splhigh{();

DMA_WRITE(ZSDMA_CCAR, ZSDMA_CCAR_ENA_TX_B);
} else {

/* A channel */

register u_int c¢;

DMA READ (ZSDMA_TDCRA, resid);
DMA_READ (ZSDMA_TDCRA + 1, c¢);
resid |= ¢ << 8;

DMA_WRITE (ZSDMA_TDCRA, len);
DMA_WRITE (ZSDMA_TDCRA+1, len >> 8);

DMA_WRITE (ZSDMA_TDARA, baddr);
DMA_WRITE (ZSDMA_TDARA+1, baddr >> 8);

s = gplhigh();
DMA_WRITE (ZSDMA_CCAR, ZSDMA_CCAR_ENA_TX_A) ;

~

* % * * % 2 #»

Cretinous chip requires that EOM not be reset until dma has
loaded first data character into buffer but must be reset
before last character loaded into buffer. We’ve locked out
to prevent the obvious race so just wait until character gets
there.
/
for (i = 10; --i >= 0; ) {
DELAY (2) ;
SCC_READO (baddr) ;
if ((baddr & ZSRRO_TX_READY) == 0)
goto rdy;
}
TRACE (T_NO_XMIT_RDY, sc, baddr)
dprintf ((“hsis%d: hsis_start: xmit didn‘t load (rr0=0x%x)\n”,
unit, baddr})
rdy:
SCC_WRITEO (ZSWRO_RESET_EOM) ;

293



TRACE (T_START_OUT, sc,
sc->sc_ostate = 1;
splx(s);

if (resid) f{

++gc->sc_1if.if_ oerrors;

++gc->8c_estats.sse_underrun;
}

++sc->sc_if.if_opackets;
++sc->sc_dstats.ssd_opack;
sc->sc_dstats.ssd_ochar += len;
#1if NBPFILTER > 0

if (sc->sc_bpf)

bpf_ tap(sc->sc_bpf,
#endif
#ifdef HSIS_EXTERNAL_RCVDONE
/*

*

cp, len);

if there’'s more in the snd q,

* on-board ‘next’ buffer

*

*

*/
if (gc->sc_if.if_snd.ifqg_len)
register struct mbuf *m;

output packets).

{

(resid << 16) |

len)

copy another packet to the

{(we do it now to overlap the copy
with the send of the last packet to approximate back-to-back

IF_DEQUEUE (&sc->sc_if.if_snd, m);

if (m) {
register struct hsisbuf *bp

bp->cnt len copy_m_to_b(sc
TRACE (T_OUT_COPY, sc, {(int)bp
}

}

#endif

}

int
hsis_start_dma_read(sc)
register struct hsis_softc *sc;

{

register u_char *zddev = sc->sc_
register int baddr = BUFtoCP(sc-
register u_char bl = baddr;
register u_char bh = baddr >> 8;
register int s = splhigh();
register u_int rl;

register u_char rh;

disable the dma channel, set
then re-enable. If there are
we have to re-enable the dma
rcv fifo overflows. E.g., at

gc->sc_nextout;

, m, BUFtoCP(bp))}:
| len)

zd->zd_addr;
>sc_inbuf) - sc->sc_hs->hs_board;

it to xfer into sc_inbuf,
back-to-back packets inbound,
channel before the 3 byte scc
Tl (5.2us/byte) the time

294



* from disable to enable should be no more than 10us. So,

* we make sure nothing interrupts us during this window and
the code below is as fast as I can make it.

Data from the next packet probably got stuffed into the
buffer containing the current packet so we save and return
the current dma count reg. before overwriting it (so the
higher level routine can undo the damage done by this
braindead dma model) .

*

= F F *

*

*/
if (sc->sc_zs->zs_unit & 1) f{
/* B channel */

/* if the TX DMA is just about finished, wait for it */
/* to avoid re-enabling it when disabling RX DMA */
DMA_READ (ZSDMA_TDCRB, rl);

DMA_READ(ZSDMA_TDCRB + 1, rh);

rl |= rh << 8;
if (rl > 0 && rl < 4) {
do {

DELAY (2) ;

DMA_READ (ZSDMA_DER, rh);
} while (rh & ZSDMA_DER_TX_B_ENABLE) ;
}

/* spin until the rcv fifo is empty */
for (rl = 10; --rl != 0; } {
register u_char *zsdev = gc->sc_zs->zs_addr;
SCC_READO (rh)
if ((rh & ZSRRO_RX_READY) == 0)
break;
DELAY (2) ;
}
if (rl1 == 0)
TRACE (T_FAIL, sc, rh);

/* repeat the disable until it works (harware bug) */
DMA_READ(ZSDMA_DER, rh);

do {

DMA_WRITE (2SDMA_DER, rh &~ ZSDMA_DER_RX_B_ENABLE) ;
DMA_READ(ZSDMA_DER, rh) ;

} while (rh & ZSDMA_DER_RX_B_ENABLE) ;

DMA_READ (ZSDMA_RDARB, rl);
DMA_WRITE (ZSDMA_RDARB, bl):
DMA_ READ (ZSDMA_RDARB+1, rh);
DMA_WRITE (ZSDMA_RDARB+1, bh);

DMA_WRITEO (ZSDMA_CCAR_ENA_RX_B) ;
/* set count after enabling to minimize time */

/* disabled; 1lsb first to prevent borrow from msb */
DMA_WRITE (ZSDMA_RDCRB, HSIS_MAXPACKET & Oxff);

295



DMA_WRITE(ZSDMA_RDCRB+1, HSIS_MAXPACKET >> 8);
} else {
/* A channel */
DMA_READ (ZSDMA_TDCRA, rl);
DMA_READ (ZSDMA_TDCRA + 1, rh);
rl |= rh << 8;
if (r1 > 0 && rl < 4) {
do {
DELAY (2) ;
DMA_READ (ZSDMA_DER, rh);
} while (rh & ZSDMA_DER_TX_A_ENABLE) ;
}

for (rl = 10; --rl t= 0; ) {
register u_char *zsdev = sc->sc_zs->zs_addr;
SCC_READO (rh)
if ((rh & ZSRRO_RX_READY) == 0)
break;
DELAY (2) ;
}
if (rl == 0)
TRACE (T_FAIL, sc, rh);

DMA_READ (2SDMA_DER, rh);

do {

DMA_WRITE (ZSDMA_DER, rh &~ 2ZSDMA_DER_RX_A_ENABLE) ;
DMA_READ (ZSDMA_DER, rh);

} while (rh & 2SDMA_DER_RX_A_ENABLE) ;

DMA_READ (ZSDMA RDARA, rl);
DMA_WRITE (ZSDMA_RDARA, bl);
DMA_READ (ZSDMA_ RDARA+1, rh);
DMA_WRITE (ZSDMA_RDARA+1, bh);

DMA_WRITEO (ZSDMA_CCAR_ENA_RX_A) ;

DMA_WRITE (ZSDMA_RDCRA, HSIS_MAXPACKET & Oxff);
DMA_WRITE (ZSDMA_RDCRA+1, HSIS_MAXPACKET >> 8);

}

rl |= rh << 8;
TRACE (T_START_READ, sc, (((bh << 8) | bl) << 16) | rl)
splx(s);

return ((int) (rl - sizeof(struct hsisbuf)) & (HSIS_BUFSIZE - 1));

/*

* Thigs routine is called if an output operation takes longer than
* HSIS_WATCHDOG_TIME (usually 2 minutes) to complete. Reset and

* restart the channel (current output packet will be lost).

*/
hsis_watchdog (unit)

register int unit;

296



register struct hsis_softc *sc = &hsis_softc{unit];
register u_int errcnt = sc->sc_oerrcnt;
register int s;

if (sc->sc_inbuf == NULL || (sc->sc_if.if flags & IFF_UP))
/* we have been manually turned offline or online */
return;

if (errcnt == 0)

printf (*hsis%d: watchdog timeout.\n”, unit);
s = splboard();

sc->sc_oerrcnt = ++errcnt;

hsis_reset (unit);

hsis_init(unit);

hsis_start (sc);

splx(s);

void

hsig_ierr_timer (sc)

register struct hsis_softc *sc;

{

register int unit = sc->sc_if.if unit;
register int s;

if (sc->sc_inbuf == NULL || (sc->sc_if.if flags & IFF_UP))
/* we have been manually turned offline or online */
return;

printf("hsis%d: reset and restarted.\n”, unit);

8 = splboard();

hsis_init(unit);

hsis_start(sc);

splx(s);

void

hsis_ierror(sc, zs, zsdev, msg)
register struct hsis_softc *sc;
register struct zscc *zs;
register u_char *zsdev;
register char *msg;

{

register int unit = sc->sc_if.if unit;
register u_int errcnt = sc->sc_ierrcnt;
sc->sc_ierrcnt = ++errcnt;

if (errcnt >= HSIS_RESET_THRESH) {
#ifdef HSIS_TRACE

if (hsis_trace_lock > 100) hsis_trace_lock = 100;
#endif

hsis_reset (unit);

297



if (errcnt >= HSIS_OFF_THRESH)
timeout (hsis_ierr_timer, sc, HSIS_OFF_TIME);
else
hsis_ierr_ timer (sc);
return;
}
if (errcnt == 1)
printf(“heis%d: %s (p#%d) .\n", unit, msg,
sc->sc_dstats.ssd_ipack);

/>
* book says we have to disable then re-enable
* fifo to clear it. Then toss input queue in (vain) hope that
* we'll end up with input stream and fifo in sync.
*/
* (u_char *)AUXIO_REG = AUX_MBO|AUX_EJECT;
SCC_BIC(3, ZSWR3_RX_ENABLE)
SCC_BIC(15, ZSR15_SDLC_FIFO_ENA)
++gc->sc_if.if_ierrors;
SCC_BIS(15, ZSR15_SDLC_FIFO_ENA)
SCC_WRITEO (ZSWRO_RESET_ERRORS) ;
(void) heis_start_dma_read(sc);
SCC_BIS(3, ZSWR3_RX_ENABLE)
if (sc->sc_intail) {
sc->sc_intail->next = sc->sc_hs->hs_free;
sc->sc_hs->hs_free = sc->sc_ing;
sc->sc_ing = NULL;
sc->sc_intail = NULL;
}
bzero(sc->sc_fifo, sizeof({sc->sc_fifo});
sc->sc_fifop sc->sc_fifo;
sc->sc_inoff NULL;
*(u_char *)AUXIO_REG = AUX_MBO|AUX_EJECT|AUX_LED;
}

void

hsis_sccrecv_intr(sc, zs, zsdev)
register struct hsis_softc *sc;
register struct zscc *zs;
register u_char *zsdev;

{

register struct hsiscom *hs;
register struct hsisbuf *bp;
register struct hsisbuf *qp;
register int *fp;

/-ﬁ

Stash the current contents of the sdlc fifo. This should

be done before we call ‘start_dma_read’ or we can end up
with the fifo & dma counts different: For god-only-knows
what reason, Zilog made the sdlc fifo count bytes that have
entered the 3 byte receive data fifo while the dma counts

* * % #* *

298



* bytes that have left the receive data fifo. Thus the fifo

* can record the end of a packet that the dma hasn’'t finished.
*/

fp = sc->sc_fifop;
while (1) {

register u_char rrl, rré, rr7;

regigter int i;

SCC_READ(7, rr7)

SCC_READ (6, rr6)

SCC_READ(1, rril)

i = (((rrl << 8) | rr7) << 8) | rré6;

TRACE (T_RCVINT_FIFO, sc, i)

if (rrl & ZSRR1_DO) {

/*

data overrun - the way the Zilog fifo works

we don't have a prayer of recovering so toss
everything in the fifo and input queue, put
the scc in hunt mode to skip to the start of
the next packet, then hope the fifo eventually
gets back in sync with the input stream.

/

hsis_ierror(sc, zs, zsdev, “receive data overrun”);
++8Cc->8Cc_estats.sse_overrun;

return;

}

switch (rr7 & Oxc0) {

* % * * * * ¥

case 0x80:

case 0xc0:

/* fifo overflow */

heis_ierror(sc, zs, zsdev, “status fifo overflow”);
return;

case 0x00:

/* fifo empty */

goto fifo_empty;

}

if (*fp) {

hsis_ierror(sc, zs, zsdev, “status fifo array overflow”);
return;

}

*fp++ = i;

if (fp >= &sc->sc_fifo[HSIS_NFIFO])
fp = sc->sc_fifo;

}

fifo_empty:

if (fp == sc->sc_fifop)
/* did nothing (spurious read interrupt) */
return;

sc->sc_fifop = fp;

299



hs = sc->sc_hs;
if ((bp = sc->sc_inbuf) == 0) {

/* channel is offline */
(void)hsis_start_dma_read(sc);

return;
}
if ((gqp = hs->hs_free) == NULL} {

/* no buffer - have to toss input or we lose sync with fifo */
TRACE (T_RCVINT_BUF, sc, 0)

heis_ierror(sc, zs, zsdev, “no free bufs”);
return;
}
hs->hs_free = gp->next;
ac->sc_inbuf = gp:
if ((bp->cnt = hsis_start_dma_read(sc)) == 0) {
bp->next = hs->hs_free;

hs->hs_free = bp;
} else {

bp->next = NULL;

if {(gp = sc->sc_intail)

qp->next = bp;

else

sc->sc_ing = bp:

sc->sc_intail = bp;
}
SOFTINT (s8c, RECV_DONE) ;

}

void

hsis_stat_intr(sc, zs, zsdev)
register struct hsis_softc *sc;
register struct zscc *zs;
register u_char *zsdev;

{

register u_int rro0;

SCC_READO (rr0);
SCC_WRITEO(ZSWRO_RESET_STATUS);
SCC_WRITEO (ZSWRO_CLR_INTR) ;
TRACE (T_STAT_INT, sc, rr0)
if ((rr0 & 2ZSRRO_TXUNDER) && sc->sc_ostate) {
/* packet completed - start a new one if possible */
sc->sc_ocerrcnt = 0;
sc->sc_ostate = 3; /* don’'t let hsis_output sneak in */
SOFTINT (sc, XMIT_DONE);
} else if (rr0 & ZSRRO_BREAK) {
/*
* ‘abort’' received -- reset input (because scc fifo
* gtate is messed up and we have no way to figure
* out packet boundaries).
*/

hsis_ierror(sc, zs, zsdev, “received ‘'abort’”);

300



++8c->8c_estats.sse_abort;
} else §
/* XXX - should do something. */
dprintf ((“hsis%d: scc stat interrupt, rr0=0x%x.\n",
sc->sc_if.if_unit, rro0))
}
}

void

hsis_scecxmit_intr(sc, zs, zsdev)
register struct hsis_softc *sc;
register struct zscc *zs;
register u_char *zsdev;

{

register u_int rro0;

SCC_READO (rr0) ;

SCC_BIC(1l, ZSWR1_TIE);

SCC_WRITEO (ZSWRO_RESET_TXINT) ;

SCC_WRITEO (ZSWRO_CLR_INTR) ;

TRACE (T_XMIT_INT, sc, (sc->sc_ostate << 16) | rr0)

if (sc->sc_ostate == 2) {

/*
* we were waiting for CRC/flag send to finish and it
* has -- start next packet.
*/

SOFTINT (sc, XMIT_DONE) ;

} else {

/*

* gince we never enabled xmit interrupt, something's weird.
it would be nice to print a warning message but there's

a small race in hsis_start where we TIE then find xmit is
done & turn it off. Zilog says the disable should clear
the interrupt but, of course, they lie & we can end

up here.

* * * *

»*

*/

#define ZS_A_INTR (ZSRR3_IP_A_STAT|ZSRR3_IP_A_RX|ZSRR3_IP_A TX)
#define ZS_B_INTR (ZSRR3_IP_B_ STAT|2ZSRR3_IP_B RX|ZSRR3_IP_B_TX)

#define ZINTSCAN(rmask, smask, tmask) { \
if (rr3 & rmask) { \
SCC_WRITEO (ZSWRO_RESET_ERRORS); \
SCC_WRITEO (ZSWRO_CLR_INTR) ; \

hsis_sccrecv_intr({sc, zs, zsdev); \
FA

if (rr3 & smask) \
hsis_stat_intr(sc, zs, zsdev); \

if (rr3 & tmask) \
hsis_sccxmit_intr(sc, zs, zsdev); \

301



}

#define ZCHECK_INT (chan) ZINTSCAN(ZSRRB_IP_/**/chan/**/_RX,
ZSRR3_IP_/**/chan/**/_STAT, \
ZSRR3_IP_/**/chan/**/_TX)

#ifndef HSIS_EXTERNAL_RCVDONE

#define ZCHECK_BOTH { \

zs = sc->sc_zs; \

zsdev = zs->zs_addr; \

SCC_READ(3, rr3); \

if (rr3 & 2S_A_INTR) { \

++did_something; \
ZCHECK_INT (A) \
FA

++8c; \

if (rr3 & ZS_B_INTR) { \

++did_something; \

zs = sc->8c_28; \
zgdev = zs->zs_addr; \
ZCHECK_INT (B) \

A

++8¢c; \

}

#else

#define ZCHECK_BOTH { \

zs = sc->sc_zs; \
zsdev = zs->zs_addr; \

if ((hsis[HSIS_EINT_STS] & rcvintmask) == 0) {\

++did_something; \

hsis[zs->zs_unit + HSIS_EINT_CLR_A] = 0; \
hsis_sccrecv_intr(sc, zs, zsdev); \

PA

rcvintmask <<= 1; \

SCC_READ(3, rr3); \

if (rr3 & ZS_A_INTR) { \

++did_something: \

ZCHECK_INT (A) \

FA

++8c; \

if ((hsis[HSIS_EINT_STS] & rcvintmask) == 0) {\
++did_something; \

zs = sc->sc_z8; \

zsdev = zs->zs_addr; \

hsis(zs->zs_unit + HSIS_EINT_CLR_A} = 0; \
hsis_sccrecv_intr(sc, zs, zsdev); \

PA

rcvintmask <<= 1; \

if (rr3 & 2ZS_B_INTR) { \

++did_something; \

zs = sc->8c_z8; \

zsdev = zs->zs_addr; \

ZCHECK_INT (B) \

302



FA
++8c; \
}

#endif

/*

* Handle HSIS board(s) interrupt(s).

*/

int
heigintr ()

{

register struct hsis_softc *sc;

register struct hsis_softc *sc_end = hsis_softc_end;
register struct zscc *zs;

register u_char *zsdev, *hsis;

register u_char rr3;

register int did_something = 0, last_round;

/*

* It's costly to take an interrupt and likely that some other

* channel finished while we were servicing the current channel.
* We loop here until we make one full pass through the status

* registerg and don‘t find new work to do.

*/
TRACE(T_INTR_ENTRY, hsis_softc, 0)
do {

last_round = did_something;

/*

* we can‘t reliably read the status registers on the

* zilog chip so we look at the hsis board status register
* to find interrupt requests. This means we loop over

* four zilog channels at a time.

*/

for (sc = hesis softc; sc < sc_end; ) {
#ifdef HSIS_EXTERNAL_RCVDONE

register u_char rcvintmask = 1;
#endif

hsis = sc->sc_hs->hs_board;
ZCHECK_BOTH

ZCHECK_BOTH

}

} while (did_something != last_round) ;

if (hsis_isum)
set_intreg (IR_SOFT_INT4, 1);

TRACE (T_INTR_EXIT, hsis_softc, did_something)
return (did_something) ;

}

void
hsis_drop_input(sc, len, bufoff, buflen)

303



register struct hsis_softc *sc;
register int len, buflen;
register u_char *bufoff;

{
/
Note: To avoid races between the hardware & software
interrupt levels, it'’'s important that the load of ‘bp’
below be done *after* we are at splboard. In particular,
this means that the locad of bp *cannot* be put in the
delay slot of the spl call. The statement order below
works with Sun’s current compiler technology but may give

* + *+ % * * * * »

/

register int s = splboard();

register struct hsiscom *hs sc->s8c_hs;
register struct hsisbuf *bp = sc->sc_ing;

if (bp == NULL) {
/*
* timeout or hardware intr probably did a reset --
* exit, making sure that input state stays clean.
*/
sc->sc_inoff = 0;
splx(s);
return;
}
while (len) {
if (buflen <= 0) {
buflen = bp->cnt;
bufoff = BUFtoCP(bp);
}
if (buflen > len) {

buflen -= len;
bufoff += len;
break;

} else {

register struct hsisbuf *np:

len -= buflen;
buflen = 0;
bufoff = NULL;

np = bp-’>next;
bp->next = hs->hs_free;
hs->hs_free = bp;:

if ((sc->sc_inqg = bp = np) == NULL) {
sc->sc_intail = NULL;
break;
}
}
}
if (buflen)

304

problems in the future (one day they’ll discover “volatile”...



bp->cnt = buflen;
sc->sc_inoff = bufoff;

splx(s);

}

/t

* Following is mbuf offset to get nice alignment of packets.

* Choice determined by:

* 1. IP header *must* be aligned on a word (4 byte) boundary.

* 2. bcopy will go much faster if data is cache aligned (i.e., at

* 16-byte boundary).

* 3. We need space to prepend a 14 byte ethernet header (if

* forwarding packet).

*

* MMINOFF is 12 (thanks to Bill Joy for this horrible kludge) and the
* next mult-of-16 above 12+14 is 32 so we offset 20 (= 32 - MMINOFF)

*

in an mbuf and 16 in a cluster.
*/

#define HDRSPACE (16)

#define MBUF_HDRSPACE (32 - MMINOFF)

/*
* following macro drops ‘len’ input bytes (used on input errors).
v/

#define DROP_INPUT (len) { \
hsis_drop_input(gc, len, bufoff, buflen); \
if ((bp = sc->sc_ing) == NULL) \

/* input was reset by timeout or error */ \
return; \

if (bufoff = sc->sc_inoff) \
buflen bp->cnt; \
else \
buflen

n

0; \

This routine goes through the software copy of the scc
status fifo (which records the lengths of incoming packets)
and sc_ing (the queue of unprocessed, incoming data) and
breaks the data up into packets then queues them for higher
level network processing. The loop structure is complicated
by the fact that packet boundaries are mapped randomly onto
the input queue (there may be more than one packet per input
buffer and packets may cross buffer boundaries).

* % % * * * * * % *

~

void

hsis_recv_done(sc)

register struct hsis_softc *sc;
{

register int *fp;

register u_char *bufoff;
register int buflen;

305



register struct hsiscom *hs = sc->sc_hs;

register struct hsisbuf *bp;

/* find the first unprocessed packet in

for (fp = sc-»>sc_fifop - 1:; : --fp)
if (fp < sc->sc_fifo)

fp = &sc->sc_fifo[HSIS_NFIFO - 1];
if (*fp == 0)

break;

if (bufoff = sc->sc_inoff) {

if ((bp = sc->sc_ing) == NULL)
return;

buflen = bp->cnt;

} else

buflen = 0;

while (1) {

register struct mbuf *m;
register u_char *op;
register int sfifo;

{

if (++fp >= &sc->sc_fifo[HSIS_NFIFO])

fp = sc->sc_fifo;

if ((sfifo = *fp) == 0)
break;

“fp = 0;

TRACEL (T_RCVINT, sc, sfifo)

if (sfifo & (ZSRR1_FE << 16)) {
++8Cc->8Cc_estats.s8se_crc;
++gc->sc_if.if_ ierrors;

sfifo &= Ox3fff;

DROP_INPUT (sfifo)

continue;

}

sfifo &= Ox3fff;

if (sfifo > MCLBYTES - HDRSPACE) {
/* packet too big */
++gc->s8c_if.if_ierrors;
DROP_INPUT (sfifo)

continue;

}

MGET (m, M_DONTWAIT, MT_DATA);
if (m == (struct mbuf *)0) {
DROP_INPUT (sfifo)

continue;

}

if (sfifo <= MLEN - MBUF_HDRSPACE)
m->m_off += MBUF_HDRSPACE;

306

the fifo array */

Sw



else {
/* too big for mbuf - use cluster */
MCLGET (m) ;
if (m->m_len != MCLBYTES) {
/* no clusters - drop this packet */
m_freem(m) ;
DROP_INPUT (sfifo)

continue;
}
m->m_off += HDRSPACE;
}
if (! sc->sc_raw)
m->m_off -= PPP_HDRSPACE;

m->m_len = sfifo - 2;
sc->sc_dstats.ssd_ichar += sfifo;
++gc->s8c_dstats.sed_ipack;
++gc->sc_if.if_ipackets;
op = mtod(m, u_char *);
while (sfifo) {
if (buflen <= 0) {
bp = sc->sc_ing;
if (bp == NULL) {
/*
* nothing on input gueue - probably
* had an overrun at hardware intr
* level. just bail.

*/
m_freem(m);
return;
}
buflen = bp->cnt;
bufoff = BUFtoCP(bp);

}
if (buflen > sfifo) {
becopy (bufoff, op, sfifo);

buflen -= sfifo;
bufoff += sfifo;
break:

} else {

register int s;
regigter struct hsisbuf *bp;

bcopy (bufoff, op, buflen);
sfifo -= buflen;

op += buflen;

buflen = 0;

bufoff = NULL;

s = splboard() ;

if ((bp = sc->sc_inq) == NULL) {
splx(s);

m_freem(m) ;

307



return;

}

if ((sc->sc_ing = bp->next) == NULL)

sc->sc_intail = NULL;

bp->next = hs->hs_free;

hs->hs_free = bp;
splx(s);

}

}

/*

* gqueue the packet to the

*/
#if NBPFILTER > 0
if (sc->sc_bpf) {
register u_char c;

op = mtod({(m, u_char *);
Cc = *op;

appropriate network protocol.

*op = 0; /* 'in‘’ direction */
bpf_ tap(sc->sc_bpf, op, m->m_len);

*op = C;
}
#endif
if (sc->sc_raw) {

register struct socket *so

= sc->sc_raw;

if (m->m_len > sbspace(&so->so_rcv)) {

++sc->sc_idrops;
m_freem(m) ;
} else {

register struct mbuf *n

if (n) {

while (n->m_next)

n = n->m_next;
n->m_next = m;
} else
so->so_rcv.sb mb = m;

so->so_rcv.sb_mb;

so->so_rcv.sb_cc += m->m_len;

sorwakeup (80) ;

}

} else {

register struct ifgueue *ing;

register int s;

/

* * * % %

*

Note: the protocol input routines all require
an ifp at the front of the buffer. We make
use of the fact that a PPP header is the same
size as an ifp & just overwrite the 4 bytes
of header without allocating new space.

308



*/
s = gplimp();
op = mtod(m, u_char *);
switch (*(u_int *)op) {

case PPP_INET:
ing = &ipintrgq;
schednetisr (NETISR_IP);
break;
default:
splx(s);
++sc->gc_ibadtype;
m_freem(m) ;
continue;
}
if (IF_QFULL{ing)) {
++sc->sc_idrops;
m_freem(m) ;
} else {
*(struct ifnet **)op = &sc->sc_if;
IF_ENQUEUE(ing, m);
}
splx(s);
}
sc->sc_ierrcnt = 0;
}
/*
* done with fifo -- if there’'s data left in the current buffer,
* remember where we are.
*/
if (bufoff && (bp = sc->sc_ing))
bp->cnt = buflen;
sc->sc_inoff = bufoff;

}

int

hsissoftint ()

{

register u_int isum;

register int did_something = 0;

TRACE (T_SOFTINT, hsis_softc, hsis_isum)

while (1) {

register struct hsis_softc *sc;

register struct hsis softc *sc_end = hsis_softc_end;
register int s;

s = splboard();
isum = hsis_isum;
hsis_isum = 0;
splx(s);

if (isum == 0)

309



break;

++did_something;
sc = hsis_softc;
for ( ; isum && sc < sc_end; ++sc) {
if (isum & XMIT_DONE) {
s = splboard();
hsis_start(sc);
splx(s);
}
if (isum & RECV_DONE)
hsis_recv_done(sc);
isum >>= 2;
}
}
TRACE (T_SOFTINT_EXIT, hsis_softc, did_something)
return (did_something);

}

int

hsis_ioctl(ifp, cmd, data)
register struct ifnet *ifp;
register int cmd;

register caddr_t data;

{

register int unit = ifp->if unit;

register struct hsis_softc *sc = &hsis_softc[unit];
register struct ifreq *ifr = (struct ifreq *)data;
register int 8 = splboard(), error = 0;

TRACE(T_IOCTL, sc, cmd)
switch (cmd) {

case SIOCSIFADDR:

bzero((caddr_t) &sc->sc_dstats, sizeof(sc->sc_dstats));
bzero((caddr_t) &sc->sc_estats, sizeof (sc->sc_estats));
error = hsis_init(unit);

break;

case SIOCSIFDSTADDR:
break;

case SIOCSIFFLAGS:
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {

case IFF_UP:

/* down interface just marked up */

bzero((caddr_t) &sc->sc_dstats, sizeof (sc->sc_dstats));
bzero((caddr_t) &sc->sc_estats, sizeof (sc->sc_estats));
error = hsis_init(unit);

hsis_start (sc);

break;

310



case IFF_RUNNING:

/* up interface just marked down */

hsis_offline(unit);
break;

}

break;

case SIOCSSDSTATS:

* (struct ss_dstats *)ifr->ifr data = sc->sc_dstats;

break;

case SIOCSSESTATS:

* (struct ss_estats *)ifr->ifr_data = sc->sc_estats;

break;

case SIOCGETSYNC:

*(struct syncmode *)ifr->ifr data = sc->sc_sm;

break;

case SIOCSETSYNC:
if (ifp->if_flags & IFF_RUNNING)
hsis_offline(unit);
gc->sc_sm = *(struct syncmode *)
if (sc->sc_sm.sm_baudrate != 0)
bzero((caddr_t) &sc->sc_dstats,
bzero((caddr_t)&sc->sc_estats,
error = hsis_init(unit);
hgis_start(sc);
}
break;
#ifdef MULTICAST
case SIOCADDMULTI:
case SIOCDELMULTI:
switch (ifr->ifr addr.sa_family)
#ifdef INET
case AF_INET:
break;
#endif INET
default:
error = EAFNOSUPPORT;
break;
}
break;
#endif MULTICAST

default:

error = EINVAL;
}

splx(s);

return (error);

ifr->ifr_data;

{

sizeof (sc->sc_dstats));
sizeof (sc->sc_estats));

{

311



int

hsis_init(unit)

int unit;

{

register struct hsis_softc *sc = &hsis_softclunit};
register struct zscc *zs = SC->8C_2Z8;

register u_char *zsdev = zs->zs_addr;

u_char wreg([sizeof (zs->zs_wreg)];

register int s;

regigster int clk = 0, txin = 0O;

TRACEL (T_INIT, sc, sc->sc_if.if_flags)
if (sc->sc_if.if_flags & IFF_RUNNING)
return (0);

/* set appropriate defaults for scc */
bcopy ( (caddr_t)hsis_scc_setup, (caddr_t)wreg, sizeof (wregq));

/*
* modify defaults as per Sun’s ‘syncmode’ (hsi compatibility).
*/

switch (sc->sc_sm.sm_txclock) {

case TXC_IS_TXC:

wreg[11l] |= ZSWR11l_TXCLK_TRXC;
txin = 1;

break;

case TXC_IS_RXC:
wreg([11l] |= ZSWR11l_TXCLK_RTXC;
break;

case TXC_IS_BAUD:

wreg(11] |= 2ZSWR11l_TXCLK_BAUD;
clk = 1;

break;

case TXC_IS_PLL:
wreg[11l] |= ZSWR11l_TXCLK_DPLL;
clk = 2;

break;

default:
return (EINVAL);
}

switch (sc->sc_sm.sm_rxclock) {
case RXC_IS_RXC:

wreg[11] |= ZSWR1l1l_RXCLK_RTXC;
break;

312



case RXC_IS_TXC:
wreg(1l1l] |= ZSWR11l_RXCLK_TRXC;
txin = 1;

break:

case RXC_IS_BAUD:

wreg{11] |= ZSWR11l_RXCLK_BAUD;
clk |= 1;
break;

case RXC_IS_PLL:

wreg([11] |= ZSWR11l_RXCLK_DPLL;
clk |= 2;

break;

default:

return (EINVAL) ;

}

if (c1k) {

register long tconst;

if (clk > 2)

return (EINVAL);

tconst = sc->sc_sm.sm_baudrate;

if (clk == 2) {

if (! sc->sc_sm.sm _nrzi)
return (EINVAL);

tconst <<= 5;

}

tconst = HSIS_PCLK / (tconst * 2) - 2;

if (tcomnst == 0)

return (EINVAL);

sc->sc_sm.sm_baudrate = (HSIS_PCLK / 2) / (tcomst + 2);
wreg[1l2] = tconst;

wreg[1l3] = tconst >> 8;

wreg[14] |= ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
}
if (! txin)

wreg([11] |= ZSWR11l_TRXC_OUT_ENA | ZSWR11l_TRXC_XMIT;
if (sc->sc_sm.sm_loopback)

wreg[14] |= ZSWR14_LOCAL_LOOPBACK;
if (sc->sc_sm.sm_nrzi)

wreg{10] = ZSWR10_NRZI;
/*

* if we don't have read and write buffers yet, get them.
*/

s = splboard():

if (sc->sc_inbuf == NULL) {

313



if ((sc->sc_inbuf = sc->sc_hs->hs_free) == NULL) {
printf (“hsis%d: hsis_init: no free bufs.\n",
sc->sc_if.if_unit);
splx(s);
return (ENOBUFS) ;

}

sc->sc_hs->hs_free = sc->sc_inbuf->next;

}

if (sc->sc_curout == NULL) {

if ((sc->sc_curout = sc->sc_hs->hs_free) == NULL) {
printf(“hsis%d: hsis_init: no free bufs\n”,
sc->sc_if.if_unit);
splx(s) ;
return (ENOBUFS);

}

sc->sc_hs->hs_free = sc->sc_curout->next;
sc->sc_curout->cnt = 0;

}

if (sc->sc_nextout == NULL} {

if ((sc->sc_nextout = sc->sc_hs->hs_free) == NULL) {
printf(“hsis%d: hsis_init: no free bufs\n”,
sc->sc_if.if_unit);

splx(s):

return (ENOBUFS);

}

sc->8c_hs->hsg_free = sc->sc_nextout->next;
sc->sc_nextout->cnt = 0;

}

/*
* If we got here, sm contents must be reasonable and wreg contains
the new scc configuration. Disable rcvr & xmitter, load in new
* modes then re-enable.

*/

sc->sc_hs->hs_board[zs->zs_unit + HSIS_INT_CLK_A] = 0;
#ifdef HSIS_EXTERNAL_RCVDONE
/a
* if there’'s an external receive clock, use the external
* done interrupt. Otherwigse, enable the chip’s receive intr.

*/
if (sc->sc_sm.sm_rxclock == RXC_IS RXC)
sc->sc_hs->hs_board(zs->zs_unit + HSIS_EINT_ENA A] = Oxff;
else {
sc->sc_hs->hs_board[zs->zs_unit + HSIS_EINT_ENA_A] = 0;
wreg(1l] |= ZSWR1_RIE_SPECIAL_ONLY;
}
#endif

SCC_BIC(3, ZSWR3_RX_ENABLE) ;
SCC_BIC(5, ZSWR5_TX_ENABLE) ;

SCC_WRITE(4, wregl[4]):

314



SCC_WRITE(10, wreg[10]);
SCC_WRITE(6, wregl[6]);
SCC_WRITE(7, wreg[7]);
SCC_WRITE(3, wreg[3]);
SCC_WRITE(5, wregi5]);

SCC_WRITE(1l, wreg[l]);

SCC_WRITE (9, wreg{9]);

SCC_WRITE(11l, wregl[l1l]);
SCC_WRITE(12, wreg[l2]);
SCC_WRITE(13, wregll13]);

if (clk == 2) {

SCC_WRITE (14, ZSWR14_DPLL_SRC_BAUD) ;
SCC_WRITE (14, ZSWR14_DPLL_NRZI);

} else

SCC_WRITE(14, ZSWR14_DPLL_DISABLE) ;
SCC_WRITE(14, wreg[14]);

SCC_WRITE (15, wreg[15]);

if (txin) {

/*
* TRxC pin is input (i.e., we’'re using an external clock).
* Set latch that allows clock to get to the pin.
*/

register u_char *board = sc->sc_hs->hs_board + zs->zs_unit;

board [HSIS_INT CLK_A] = 1;

/* XXX - ext. clocks are inverted */
board[HSIS_RX_CLK_A] = 1;

board [HSIS_TX CLK_A] = 1;

}

SCC_WRITEO (ZSWRO_RESET ERRORS) ;
SCC_WRITEO(ZSWRO_RESET_STATUS);
SCC_WRITEO (ZSWRO_RESET_TXCRC) ;

/*

* Everything should be configured. Start a dma read then
* enable recv dma and the receiver.

*/

(void) hsis_start_dma_read(sc);

SCC_BIS(l, ZSWR1_REQ_ENABLE)

SCC_BIS (3, ZSWR3_RX_ENABLE) ;

/*

* Enable the transmitter and turn on DTR.
*/

SCC_BIS (5, ZSWRS_TX_ ENABLE|ZSWRS5_DTR) ;

SCC_WRITEO (ZSWRO_RESET_ERRORS) ;
SCC_WRITEO (ZSWRO_RESET_STATUS) ;
SCC_WRITEO (ZSWRO_RESET_TXCRC) ;

sc->sc_ostate = 0;
sc->sc_if.if_ flags |= IFF_UP|IFF_RUNNING;

315



TRACE (T_INIT_DONE, sc, *zsdev)
splx(s);
return (0);

}

hsis_reset (unit)

register int unit;

{

register int s = splboard();

register struct hsis_softc *sc = &hsis_softc[unit];
register struct zscc *zs = 8C->8C_Z8;

register u_char *zsdev = zs->zs_addr;

register u_char *zddev = sc->sc_zd->zd_addr;
register struct hsisbuf *bp;

TRACE (T_RESET, sc, *zsdev)
SCC_WRITE(3, 0);
SCC_WRITE({5, 0);
SCC_WRITE (15, 0);
#ifdef HSIS_EXTERNAL_RCVDONE
sc->sc_hs->hs_board[zs->zs_unit + HSIS_EINT_ENA_A] = 0:
#endif
(void) hsis_start_dma_read(sc);
if (zs->zs_unit & 1) {
DMA_BIC (ZSDMA_DER, ZSDMA_DER_RX_B_ENABLE) ;
} else {
DMA_BIC (2SDMA_DER, 2SDMA_DER_RX_A_ENABLE) ;
}
(void) hsis_start_dma_read(sc);
if (sc->sc_intail) {
sc->sc_intail->next = sc->sc_hs->hs_f{free;
sc->sc_hs->hs_free = sc->sc_ing;
sc->sc_ing = NULL;
sc->sc_intail = NULL;
}
bzero(sc->sc_fifo, sizeof(sc->sc_£fifo));
sc->sc_fifop = sc->sc_fifo;
sc->sc_inoff = NULL;

sc->sc_ostate = 0;

if (bp = sc->sc_curout)

bp->cnt = 0;

if (bp = sc->sc_nextout)

bp->cnt = 0;

sc->sc_if.if_flags &=~ (IFF_UP|IFF_RUNNING);
splx(s);

hsis_offline(unit)
register int unit;

{

register int s = splboard();

316



register struct hsis_softc *sc = &hsis_softc[unit}];
register struct hsisbuf *bp;

/* reset channel, then free any resources it holds */

hsis_reset (unit);

if (bp = sc->sc_inbuf) {
sc->sc_inbuf = NULL;

bp->next = sc->sc_hs->hs_free;
sc->sc_hs->hs_free = bp;

}

if (bp = sc->sc_curout) {
sc->sc_curout = NULL;

bp->next = sc->sc_hs->hs_free;
sc->sc_hs->hs_free = bp;

}

if (bp = sc->sc_nextout) {
sc->sc_nextout = NULL;
bp->next = sc->sc_hs->hs_~free;
sc->sc_hs->hs_free = bp;

}

splx(s);

}

/*
Remainder of this code is support for ‘raw sync’ protocol domain.
It should probably be in a separate file since it (should not be)

* hsis specific but I'm too lazy to set that up just now.

*/

#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/user.h>
#include <sys/uio.h>

int rawsync_usrsend(), rawsync_usrrecv (), rawsync_usrreq():
extern struct domain rawsyncdomain;

struct protosw rawsyncswl[] = {

{ SOCK_RAW, &rawsyncdomain, 0, PR_ATOMIC,
o, 0, 0, O,

rawsync_usrreq,

o, 0, 0, 0,

rawsync_usrsend, rawsync_usrrecv},

b

struct domain rawsyncdomain =
{ AF_RAWSYNC, *rawsync”, 0, 0, O,
rawsyncsw, &rawsyncsw[sizeof (rawsyncsw) /sizeof (rawsyncsw([0])] };

void

317



rawsyncinit ()

{

register struct domain *dp;

rawsyncdomain.dom_next = domains;
domains = &rawsyncdomain;

}

int

rawsync_usrsend (so, nam, uio, flags, rights)
register struct socket *s0;

struct mbuf *nam;

register struct uio *uio;

int flags;

struct mbuf *rights;

register int len;

register int error = 0;

register int s;

register struct hsis_softc *sc;

register struct mbuf *m;

static struct sockaddr dst = { AF_UNSPEC };

#ifdef lint

nam = nam; rights = rights;

#endif lint

if ((sc = (struct hsis_softc *)so->so_pcb) == NULL ||
so != sc->sc_raw)
return (EINVAL);

len = uio->uio_resid;
if (len <= 0 {]| len > sc->sc_if.if mtu)
return (EMSGSIZE);

if (so->so_state & SS_CANTSENDMORE) {
psignal (u.u_procp, SIGPIPE);
return (EPIPE);
}
while (1) {
g8 = splboard();
#ifdef SFQ
if (! IF_SPQFULL(&sc->sc_if.if_snd,0)) /* not correct
#else
if (! IF_QFULL(&sc->sc_if.if_snd))
break;
#endif SFQ
sbwait (&so->so_snd) ;
splx(s):
}
(void) splnet();
MGET (m, M_DONTWAIT, MT_DATA);
if (m == (struct mbuf *)0) {

318



error = ENOBUFS;
goto out;
}
if (len <= MLEN - MBUF_HDRSPACE)
m->m_off += MBUF_HDRSPACE;
else {
/* too big for mbuf - use cluster */
MCLGET (m) ;
if (m->m_len != MCLBYTES) {
/* no clusters - drop this packet */
m_freem(m) ;
error = ENOBUFS;
goto out;
}
m->m_off += HDRSPACE;

}

m->m_len = len;

error = uiomove(mtod(m, caddr_t)}, len, UIO_WRITE,
if (! error)

error = hsis_output(&sc->sc_if, m, &dst);
out:

splx (s);

return {(error);
}
int
rawsync_usrrecv(so, anam, uio, flags, arights)
register struct socket *so;

struct mbuf **anam;

register struct uio *uio;

int flags;

struct mbuf **arights;
{

register int len, mlen;

register int error = 0;

register int s;

register struct hsis_softc *sc;

register struct mbuf *m, *n;

register struct sockbuf *sb;

if (anam)

*anam = NULL;

if (arights)

*arights = NULL;

if ((sc = (struct hsis_softc *)so->so_pcb) == NULL

so != sc->sc_raw)
return (EINVAL) ;

len = uio->uio_resid;

if (len <= 0) {
error = EMSGSIZE;

319

uio) ;



goto out;
}
if (so->so_state & SS_CANTRCVMORE)

goto out;

sb = &so->so_xcv;

sblock (so, sb);

s = splboard():

if (sb->sb_cc == 0) {
if (so->so_error) {
error = B8O->SO_error;
so->so_error = 0;
goto release;

1
if (so->so_state & SS_NBIO) {

error = EWOULDBLOCK;
goto release;
}
while (sb->sb_cc == 0) {
sbunlock (so, sb);:
sbwait (sb) ;
if (so->so_error) {
error = SO->S80_error;
so->so_error = 0;
goto release;
}
}
}
m = sb->sb_mb;
sb->sb_mb = m->m_next;
mlen = m->m_len;
sb->sb_cc -= mlen;
splx (8);
sbunlock (so, s8b);
m->m_next = NULL;
if (mlen > len) {
error = EMSGSIZE;
mlen = len;

}

error = uiomove (mtod(m, caddr_t), mlen, UIC_READ, uio);
MFREE (m, n):

out:

return (error);

release:

splx(s):

sbunlock (so, sb);

return (error);

}
/*ARGSUSED*/

rawsync_usrreq(so, req, m, nam, rights)
struct socket *so;

320



int req;

struct mbuf *m, *nam, *rights;
{

register struct hsis_softc *sc;
register int error = 0;

if (rights && rights->m_len) {

error = EOPNOTSUPP;

goto release;

}

sc = (struct hsis_softc *)so->so_pcb;
if (sc != NULL && so != sc->sc_raw) {
error = EINVAL;

goto release;

}

switch (req) {

cagse PRU_ATTACH:

if ((so->so_state & SS_PRIV) == 0)
error = EACCES;

else if (sc)
error = EINVAL;

else if (sbreserve(&so->so_snd, 4096)
error = ENOBUFS;

else if (sbreserve(&so->so_rcv, 4096)
sbrelease (&so->go_snd) ;
error = ENOBUFS;

}

break;

n
L]
(=)
-~

"
[}
o
~—
~—

/*
* Destroy state just before socket deallocation.
* Flush data or not depending on the options.

*/
case PRU_DETACH:
if (sc == 0)

error = ENOTCONN;
else {

register int s = splboard();

sc->sc_raw = NULL;
so->so_pcb = NULL;
sofree(so);
splx(s);

}

break;

case PRU_BIND:

if (sc)
error = EISCONN;
else {

register struct sockaddr *addr =

321



mtod (nam, struct sockaddr *);

if (addr->sa_family != AF_RAWSYNC) {

error = EINVAL;

break;

}

sc = (struct hsis_softc *)ifunit(addr->sa_data, MLEN);
if (sc == NULL)

error = EADDRNOTAVAIL;

else if (sc->sc_raw)

error = EADDRINUSE;

else {

register int s = splboard();

sc->8c_raw = S0;
so->so_pcbk = (caddr_t)sc;
splx(s) ;
}
}
break;
/*
* Mark the connection as being incapable of further input.
*/

case PRU_SHUTDOWN:
socantsendmore (g0) ;
break;

case PRU_ABORT:
if (sc != NULL && (so->so_state & SS_NOFDREF)) ({

register int s = splboard{();
sc->sc_raw = NULL;
so->so_pcb = NULL;

splx(s) ;

}

sofree(so) ;
soisdisconnected(so);
break;

case PRU_SENSE:

/t
* gtat: don’t bother with a blocksize.
*/

return (0);

/*
* Not supported.
*/

case PRU_CONTROL:

case PRU_CONNECT:
case PRU_CONNECTZ2:

322



case PRU_DISCONNECT:

case PRU_RCVOOB:
case PRU_RCVD:

case PRU_LISTEN:
case PRU_ACCEPT:
case PRU_SENDOOB:

case PRU_SOCKADDR:
case PRU_PEERADDR:
error = EOPNOTSUPP;
break:

default:
panic (“rawsync_usrregqg”) ;
}
release:
if (m != NULL)
m_freem(m);
return (error);

}

#endif

323






5 SFQ PLUS VIRTUAL CLOCK SOURCE

This section contains the implementation of the hybrid algorithm, SFQ plus VirtualClock. In
addition to the code developed by SRI, the implementation uses BBN s traffic control abstraction,
BBN's release 1.12 of ST-I1, and the HSV/S driver from LBL. All code not developed by SRI is
available from BBN. It is important to use the HSI/S driver from BBN, since it has been altered to
accommodate the traffic control abstraction.

This section contains all source developed by SRI and any source from BBN that SRI had to
modify. In particular, the section includes the following files: a config file for an SFQ plus
VirtualClock kernel, files.cmn, sfq.h, sfq.c, hybrid_int.c, if.h (diffs), if_aux.c, st2_resource.h,
hsis.c, and st2_proto.c. Except for sfq.c, sfq.h and hybrid_int.c, the files are printed with our
modifications in bold type. The code in sfq.c and sfq.h is similar to the code presented in the
previous section, except that the macro calls have been made into routines, and all references have
been changed from the ifnet structure to the aNetIF structure, which is necessary for BBN's traffic
control. The file named hybrid_int.c contains the appropriate calls to SFQ plus VirtualClock
encapsulated in the interface definition for a new traffic control abstraction.

Once a kernel is built, it is necessary to invoke the ifconfig program provided in BBN’s
software release, in order to attach our traffic control algorithm to a particular interface. The name
of the traffic-control algorithm is SFQ_VC; so the command, given as root, would be

ifconfig.sundc hsisO t¢ SFQ_VC
to attach this control algorithm to interface 0 of an HSI/S board, for example.

The reader who uses this material for building a kernel containing SFQ plus VirtualClock is
assumed to be familiar with the process of building a kernel, the kernel directory structure, and the
installation notes from BBN entitled “Installing Generic Traffic Control & Resource Management,
and ST-II in a SunOS 4.1.x Kernel.” These notes are provided in BBN's software release.

325



@ (#) $Id: DARTNET,v 1.5 92/12/23 14:39:41 casner Exp $

This config file describes the "released” Sun-4c kernel for use in DARTnet,
including the HSIS driver and IP multicast support.

The following lines include support for all Sun-4c CPU types.
There is little to be gained by removing support for particular
CPUs, so you might as well leave them all in.

I N x

machine ~“sundc”
cpu “SUN4C_60" # Sun-4/60 (any Sun-4c)

ident “HYBRID”

This kernel supports about 8 users. Count one user for each

timesharing user, one for each window that you typically use, and one
for each diskless client you serve. This is only an approximation used
to control the size of various kernel data structures, not a hard limit.

i

maxusers 16

options GENERIC

options INET # basic networking support - mandatory
options TRAFFIC_CONTROL # Generic traffic control support
options DARTNET # DARTNET specific stuff

#options FAIR_SHARE # Fair Share traffic control support
options VIRTUAL_CLOCK # Virtual Clock traffic control support
options STII # Protocol processing software for ST-II
options STIIAPI # Socket interface for ST-II

options STIIDEBUG # ST-1I Debugging, if desired

options SFQ # SFQ

options SFQ_VC # SFQ with VvC

options MY _FIFO # FIFO queue model

options UFS # filesystem code for local disks

options NFSCLIENT # NFS client side code

options NFSSERVER # NFS server side code

options MULTICAST # IP multicast support

options MROUTING # IP multicast routing support

options HSFS # High Sierra (ISO 9660) CD-ROM file system

options TCPDEBUG # TCP debugging, see trpt(8)

#
# The following option includes the COIP-Kernel code for ST-II (RFC 1190)

#

#options STII # Protocol processing software for ST-II
#options STIIAPI # Socket interface for ST-II

#options STIIDEBUG # ST-II1 Debugging, if desired

#
# The following option adds support for loadable kernel modules.

326



#
options VDDRV # loadable modules

#
# The following option adds support for SunView 1 journaling.

#
options WINSVJ # SunView 1 journaling support

#

# Build one kernel based on this basic configuration.

# It will use the generic swap code so that you can have

# your root filesystem and swap space on any supported device.
# Put the kernel configured this way in a file named ”“vmunix”.
#

config vmunix swap generic

#
# Include support for all possible pseudo-devices.

#
# The first few are mostly concerned with networking.
# You should probably always leave these in.

#

pseudo-device pty # pseudo-tty’s, also needed for SunView
pseudo-device ether # basic Ethernet support
pseudo-device loop # loopback network - mandatory
pseudo-device encap4 init encapattach # allow 4 IP tunnels
pseudo-device coip init coipdomaininit # COIP/ST-II

peeudo-device dbx

#
# The next few are for SunWindows support, needed to run SunView 1.

#

pseudo-device winl28 # window devices, allow 128 windows
pseudo-device dtopl # desktops (screens), allow 4
pseudo-device ms # mouse support

#
# The following is needed to support the Sun keyboard, with or

# without the window system.
#
pseudo-device kb # keyboard support

#
# The “open EEPROM” pseudo-device is required to support the

# eeprom command.
#
pseudo-device openeepr # onboard configuration NVRAM

pseudo-device bpfilter 32 # Berkeley packet filter

#

327



# The following is for the “clone” device, used with streams devices.

# This is regquired if you include streams NIT support, RFS, or an audio
# device.

#

pseudo-device clone # clone device

#

# The following section describes which standard device drivers this
# kernel supports.

#

device-driver sbus # ‘driver’ for sbus interface
device-driver bwtwo # monochrome frame buffer

device-driver cgthree # 8-bit color frame buffer
device-driver cgsix # 8-bit accelerated color frame buffer
device-driver dma # ‘driver’ for dma engine on sbus interface
device-driver esp # Emulex SCSI interface

device-driver fd # Floppy disk

#device-driver audiocamd # AMD79C30A sound chip

device-driver bsdaudioc # BSD audio driver to replace Sun's
device-driver le # LANCE ethernet

device-driver zs # UARTs

device-driver hsis

options HSIS_TRACE

options HSIS_EXTERNAL_RCVDONE

#

# The following section describes SCSI device unit assignments.
#

scsibus0 at esp # declare first scsi bus

disk s8d0 at scsibus0 target 3 lun 0 # first hard SCSI disk
disk s8dl at scsibus(0 target 1 lun 0 # second hard SCSI disk
disk s8d2 at scsibus0 target 2 lun 0 # third hard SCSI disk
disk sd3 at scsibus0 target 0 lun O # fourth hard SCSI disk
tape st0 at scsibus0 target 4 lun 0 # first SCSI tape

tape stl at scsibus0 target 5 lun 0 # second SCSI tape

disk sr0 at scsibus0 target 6 lun 0 # CD-ROM device

328



#

# @{(#)files.cmn 2.83 90/08/02 SMI

# Copyright (c) 1990 by Sun Microsystems, Inc.
#

des/des_crypt.c optional NFSCLIENT
des/des_crypt.c optional NFSSERVER
des/des_soft.c optional NFSCLIENT CRYPT
des/des_soft.c optional NFSSERVER CRYPT
hsfs/hsfs_node.c optional HSFS
hsfs/hefs_subr.c optional HSFS
hsfs/hsfs_vfsops.c optional HSFS
hsfs/hsfs_vnodeops.c optional HSFS
krpc/klm_kprot.c standard
krpc/klm_lockmgr.c standard
lofs/lo_subr.c optional LOFS
lofs/lo_vfsops.c optional LOFS
lofs/lo_vnodeops.c optional LOFS
lwp/alloc.c optional LWP

lwp/cntxt.c optional LWP

lwp/condvar.c optional LWP
lwp/lwperror.c optional LWP
lwp/monitor.c optional LWP
lwp/process.c optional LWP
lwp/schedule.c optional LWP

net/af.c standard

net/bpf.c optional bpfilter
net/bpf_filter.c optional bpfilter
net/if.c standard

net/ifdev.c optional ifd

net/nit.c optional NIT

net/nit_buf.c optional nbuf
net/nit_if.c optional snit
net/if_aux.c optional TRAFFIC_CONTROL
#net/fs.c optional TRAFFIC_CONTROL FAIR_SHARE
net/nit_pf.c optional pf
net/packetfilt.c optional pf
net/raw_cb.c standard

net/raw_usrreqg.c standard

net/route.c standard

net/if sl.c optional sl INET
net/slcompress.c optional sl INET
netat/aarp.c optional atalk
netat/at_proto.c optional atalk
netat/ddp_usrreq.c optional atalk
netdna/dna.c optional dnalink device-driver
netinet/if_ether.c optional ether INET
netinet/if_encap.c optional encap INET
netinet/if_loop.c optional loop INET
netinet/igmp.c optional MULTICAST INET
netinet/in.c optional INET

netinet/in pcb.c optional INET
netinet/in_proto.c optional INET

329



netinet/ip_icmp.c optional INET
netinet/ip_input.c optional INET
netinet/ip_mroute.c optional MROUTING MULTICAST INET
netinet/ip output.c optional INET
netinet/raw_ip.c optional INET

netinet/st2.c optional STII INET
netinet/st2_api.c optional STIIAPI INET
netinet/st2_asm.s optional STII INET
netinet/st2_cmp.c optional STII INET
netinet/st2_proto.c optional STII INET
netinet/st2_resource.c optional STII INET
netinet/st2_routing.c optional STII INET
netinet/dbx_st2.c optional STII dbx INET symbolic-info
netinet/tcp_debug.c optional INET
netinet/tcp_input.c optional INET
netinet/tcp_output.c optional INET
netinet/tcp_subr.c optional INET
netinet/tcp_timer.c optional INET
netinet/tcp_usrreq.c optional INET
netinet/udp_usrreqg.c optional INET
netinet/dbx_inet.c optional dbx INET symbolic-info
netns/idp_usrreqg.c optional xns

netns/ns_error.c optional xns

netns/ns_ether.c optional xns

netns/ns_input.c optional xns

netns/ns_ip.c optional xns

netns/ns_output.c optional xns

netns/ns_pcb.c optional xns

netns/ns_proto.c optional xns

netns/spp_debug.c optional xns

netns/spp_usrreq.c optional xns

netns/xns.c optional xns

nettli/tcp_tli.c optional tcptli
nettli/tcp_tliaux.c optional tcptli
nettli/tcp_tlisubr.c optional tcptli
nettli/ti_mod.c optional tim

nettli/ti_rdwr.c optional tirw

nfs/dbx_nfs.c optional dbx NFSCLIENT symbolic-info
nfs/dbx_nfs.c optional dbx NFSSERVER symbolic-info
nfs/nfs_client.c optional NFSCLIENT
nfe/nfs_common.c optional NFSCLIENT
nfs/nfs_common.c optional NFSSERVER
nfs/nfs_dump.c optional NFSCLIENT
nfs/nfs_export.c optional NFSSERVER
nfs/nfs_server.c optional NFSSERVER
nfs/nfs_subr.c optional NFSCLIENT
nfs/nfs_vfsops.c optional NFSCLIENT
nfs/nfs_vnodeops.c optional NFSCLIENT
nfs/nfs_xdr.c optional NFSCLIENT

nfs/nfs_xdr.c optional NFSSERVER
os/au_msg_wrappers.c optional SYSAUDIT IPCMESSAGE
os/au_quot_wrappers.c optional SYSAUDIT QUOTA UFS

330



os/au_sem_wrappers.c optional SYSAUDIT IPCSEMAPHORE
os/au_shm _wrappers.c optional SYSAUDIT IPCSHMEM
os/au_wrappers‘c optional SYSAUDIT

os/dbx_sys.c optional dbx symbolic-info
os/heap_kmem.c standard

os/init_dbx.c standard symbolic-info
os/init_main.c standard

os/init_sysent.c standard

os/ipc_msg.c optional IPCMESSAGE

os/ipc_sem.c optional IPCSEMAPHORE
os/ipc_shm.c optional IPCSHMEM

os/ipc_subr.c optional IPCMESSAGE
os/ipc_subr.c optional IPCSEMAPHORE
os/ipc_subr.c optional IPCSHMEM

os/kern_acct.c optional SYSACCT
os/kern_audit.c optional SYSAUDIT
os/kern_clock.c standard

os/kern_descrip.c standard

os/kern_exec.c standard

os/kern_exit.c standard
os/kern_fork.c standard
os/kern_mman.c standard
os/kern_proc.c standard

os/kern_prot.c standard
os/kern_resource.c standard
os/kern_sig.c standard
os/kern_softint.c standard
os/kern_subr.c standard
os/kern_synch.c standard
os/kern_time.c standard
os/kern_trace.c optional TRACE
os/kern_xxx.c standard
os/str_buf.c standard
os/str_io.c standard
os/str_sp.c optional sp
os/str_syscalls.c standard
os/subr_dump.c standard
os/subr_log.c standard
os/subr_mcount.c optional profiling-routine
os/subr_prf.c standard
os/subr_rmap.c standard
os/subr_xxx.c standard
os/sys_generic.c standard
os/sys_process.c standard
os/sys_socket.c standard
os/syscalls.c optional SYSCALLTRACE
os/tty.c standard
os/tty_ldterm.c standard
os/tty pty.c optional pty
os/tty ptyconf.c optional pty
os/tty subr.c standard
os/tty_tb.c optional tb

331



os/tty_ ttcompat.c standard
os/tty_tty.c standard
os/uipc_domain.c standard
os/uipc_mbuf.c standard
os/uipc_proto.c standard
os/uipc_socket.c standard
os/uipc_socket2.c standard
os/uipc_syscalls.c standard
os/uipc_usrreq.c standard
os/vis.c standard
os/vfs_bio.c standard
os/vfs_conf.c standard
os/vfs_dnlc.c standard
os/vfs_io.c standard
os/vfs_lookup.c standard
os/vfs_pathname.c standard
os/vfs_syscalls.c standard
os/vis_vnode.c standard
os/vfs_xxx.c standard
os/vm_meter.c standard
og/vm_pageout.c standard
os/vm_sched.c standard
os/vm_subr.c standard
pcfs/dbx_pcfs.c optional dbx PCFS symbolic-info
pcfs/pc_alloc.c optional PCFS
pcfs/pc_dir.c optional PCFS
pcfs/pc_node.c optional PCFS
pcfs/pc_subr.c optional PCFS
pcfs/pc_visops.c optional PCFS
pcfs/pc_vnodeops.c optional PCFS
rfs/adv.c optional RFS
rfs/auth.c optional RFS
rfs/canon.c optional RFS
rfg/cirmgr.c optional RFS
rfs/comm.c optional RFS
rfs/fumount.c optional RFS
rfs/netboot.c optional RFS
rfs/que.c optional RFS
rfs/queue.c optional RFS
rfs/recover.c optional RFS
rfs/rfadmin.c optional RFS
rfs/rfcanon.c optional RFS
rfs/rfs_misc.c optional RFS
rfe/rfs_param.c optional RFS
rfs/rfs_serve.c optional RFS
rfs/rfs_syscalls.c optional RFS
rfs/rfs_vfsops.c optional RFS
rfs/rfs_vnodeops.c optional RFS
rfs/rfs_xdr.c optional RFS
rfs/rfsys.c optional RFS
rfse/rsc.c optional RFS
rpc/auth_des.c optional NFSCLIENT

332



rpc/auth_kern.c standard
rpc/authdes_prot.c optional NFSCLIENT
rpc/authdes_subr.c optional NFSCLIENT
rpc/authunix_prot.c standard
rpc/clnt_kudp.c standard
rpc/clnt_perror.c standard
rpc/dbx_rpc.c optional dbx symbolic-info
rpc/key_call.c optional NFSCLIENT
rpc/key call.c optional NFSSERVER
rpc/key_prot.c optional NFSCLIENT
rpc/key_prot.c optional NFSSERVER
rpc/kudp_fastsend.c standard
rpc/pmap_kgetport.c standard
rpc/pmap_prot.c standard
rpc/pmap_rmt.c standard
rpc/rpc_callmsg.c optional NFSCLIENT
rpc/rpc_callmsg.c optional NFSSERVER
rpc/rpc_prot.c standard
rpc/subr_kudp.c standard

rpc/svc.c optional NFSSERVER
rpc/svc_auth.c optional NFSSERVER
rpc/sve_auth_unix.c optional NFSSERVER
rpc/sve_kudp.c optional NFSSERVER
rpc/svcauth_des.c optional NFSSERVER
rpc/xdr.c standard

rpc/xdr_array.c standard
rpc/xdr_mbuf.c standard
rpc/xdr_mem.c standard
rpc/xdr_reference.c standard
rpcsvc/bootparam xdr.c optional NFSCLIENT
rpcesve/mountxdr.c optional NFSCLIENT
sfq/sfqg.c optional SFQ
sfq_vc/hybrid_int.c optional SFQ_VC
specfs/bdev_dsort.c standard
specfs/fifo_vnodeops.c standard
specfs/spec_clone.c optional clone
specfs/spec_subr.c standard
specfs/spec_vfsops.c standard
specfs/spec_vnodeops.c standard
sunwindowdev/winsvj.c optional WINSVJ
tfs/tfs_subr.c optional TFS
tfs/tfs_vfsops.c optional TFS
tfs/tfs_vnodeops.c optional TFS
tfs/tfs_xdr.c optional TFS
tmpfs/tmp_dir.c optional TMPFS
tmpfs/tmp_subr.c optional TMPFS
tmpfs/tmp_tnode.c optional TMPFS
tmpfs/tmp_vfsops.c optional TMPFS
tmpfs/tmp_vnodeops.c optional TMPFS

ufs/dbx_ufs.c optional dbx UFS symbolic-info

ufs/quota.c optional QUOTA UFS
ufs/quota_syscalls.c optional QUOTA UFS

333



ufs/quota_ufs.c optional QUOTA UFS
ufs/ufs_alloc.c optional UFS
ufs/ufs_bmap.c optional UFS
ufs/ufs_dir.c optional UFS
ufs/ufs_efs.c optional UFS efs device-driver
ufs/ufs_inode.c optional UFS
ufs/ufs_lockf.c optional UFS
ufs/ufs_subr.c optional UFS
ufs/ufs_tables.c optional UFS
ufs/ufs_vfsops.c optional UFS
ufs/ufs_vnodeops.c optional UFS
vm/dbx_vm.c optional dbx symbolic-info
vm/seg_dev.c standard

vm/seg_map.c standard

vin/seg_u.c standard

vm/seg_vn.c standard

vm/vm_anon.c standard

vm/vm_as.c standard

vim/vm_mp.c standard

vm/vm_page.c standard

vm/vm_pvn.c standard

vm/vm_rm.c standard

vm/vm_seg.c standard

vm/vm_swap.c standard

334



#ifdef notdef
/* #ifndef lint */

static char rcsidl] = "@(#)$Id: sfg.h,v 1.1 93/04/19 20:44:46 denny Exp Locker:
denny $*;
static char copyright[] = “Copyright (c) 1992 SRI International,

denny@erg.sri.com”;
/* #endif lint */
#endif notdef

/
Copyright (c¢) 1992 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS‘‘ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

/

* % % % * * F * * F ¥ * * * * *

#ifdef SFQ

#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>

#include <net/if.h>

#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>

#include <sys/types.h>

#include <arpa/inet.h>

#include <sys/mbuf.h>

/*
* Debug register. Set to Oxffffffff to enable debug statements.
*/

extern long sfgdebug:;
#define DPRT(c, x) if(sfqgdebug&c)printf x;

/* debugging flags */

335



#define TR_ENQ 1<<0 /* Enqueue flag */
#define TR_DEQ 1<<1 /* Dequeue flag */
#define TR_STA  1<<2 /* Statistics and
/* error checking */

/* flag */

#ifdef KERNEL

#define malloc(x) mnew_kmem_zalloc{(u_int) (x), KMEM_SLEEP)
#define free kmem_free

#endif KERNEL

/*
* Overview of SFQ implementation

*/

#define MOD_INPUT_VALUE 8 /* used by call to modit */
#define FQ_HASHTBLSIZ 257 /* The size of the hash table */
/* is 2 * MOD_INPUT_VALUE + 1.*/
/* This also indicates the */
/* number of gQueues allocated.*/
#define FQ_HASHBUFLEN 8 /* 2*sizeof(struct ip_addr) */
#define FQ_MAXFCFSQLEN 100 /* Maximum FCFS Queue length per */
/* queue */

/* Hashing functions that can be used */

unsigned long hashi ();
unsigned long hash2 ()
unsigned long hash3 ();
unsigned long hashd ();
unsigned long hash5 ();

/* Individual queue description */

struct ifqueue2 {

struct mbuf *ifq head; /* pointers to pkts in this */

struct mbuf +*ifq_tail; /* queue */

int ifg_len; /* length of queue */

int ifq maxlen; /* maximum number of entries */

int ifg_drops; /* number dropped */

int ifq_sent; /* for debugging-number sent */

struct ifqueue2 *ifg forw; /* active list pointer */

struct ifqueue2 *ifqg back; /* i.e. where this queue is in */
/* the transmission gueue */

int ifq_label; /* For debugging only */

|

/* Main top level data structure, replaces datatype for the ifg_head */

/* pointer in the ifnet structure */
struct sfq {

336



int fq_len; /* Total number of packets in FQ chain */

unsigned long (*fg_hash) (); /* Hash function */

long fqg_hashlen; /* Length of hash data */

struct ifqueue? *fqg_index; /* Points to the head of the active list */
long fqg_seed; /* Hash function seed */

struct ifqueue2 fg_hashtbl [FQ_HASHTBLSIZ]; /* Hash table area */
u_char fq_hashbuf [FQ_HASHBUFLEN];/* Temporary work area */

}i

#ifndef PPP_HDRSPACE
#define PPP_HDRSPACE 4
#endif

#ifndef ETHER_HDRSPACE
#define ETHER_HDRSPACE 14
#endif

/* returns true if all SFQ qgueues are empty */

#define SFQ_EMPTY (extifp) (((struct sfqg *) (extifp)->iftc_statelp)->fqg_index \
== (struct ifqueue2 *)NULL)

#endif SFQ

337



#ifdef notdef
/* #ifndef lint */

static char rcsid[] = "@(#)$Id: sfq.c,v 1.1 93/04/19 20:42:39 denny Exp Locker:
denny $":
static char copyright[] = “Copyright (c) 1992 SRI International,

denny@erg.sri.com”;
/* #endif lint */
#endif notdef

* Copyright (c) 1992 SRI International. All rights reserved.

* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

*

*

THIS SOFTWARE IS PROVIDED '‘AS IS’‘ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

* % % * % * % * »

/* This file containe all the routines for manipulating an SFQ. */
/* It includes the initalization, enqueueing, dequeuing, */

/* queue full, queue okay functionality. The hash functions and */
/* mod function are also located in this file. */

#ifdef SFQ

#include <sys/param.h>
#include <gys/mbuf._h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/kmem_alloc.h>

#include <net/if.h>

#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>

#ifndef FALSE
#define FALSE (0)

338



#fendif

#ifndef TRUE
#define TRUE (1)
#endif

#include "“sfq.h”

long sfgdebug = 0x0;

/* printing debug flag */

(2**m + 1) :

/* modit returns a mod

modit (a, m)

unsigned long a;
unsigned long m;

{
int mask, bpl,

mask = (1 << m)
bpl = mask + 2;

for (;:)

{

c = a & mask;
n=a »>m;

X = ¢ - n;

if (x »>= 0)
return (x);
if (x >= -bpl)

c, n,

- 1;

return (x + bpil);

a = -x; /* masking only works on positive values */
c = a & mask;

n=a > m;

X = Cc - n;

if (x > 0)

return (bpl -
if (x > -bpl)
return (-x);
a = -Xx;

}

}

X);

X;

a must be positive */
/* The algorithm is taken from Volume II of Knuth */

/* sfqg_drain_func removes and frees all packets on the queues associated */

/* with SFQ. npktsp contains the count of how many packets were removed.
/* nbytesp contains the count of how many bytes were freed.

339

*/

*/



void sfq_drain_func(gifcp, npktsp, nbytesp)
register struct aNetIf *gifcp;
unsigned long *npktsp, *nbytesp;

{

int 1i;

struct sfqg *q;

struct ifqueue2 *fcq;

struct mbuf *m, *n, *tmp;

unsigned long npkts = 0,

nbytes = 0;

q = (struct sfq *) gifcp->iftc_statelp;

for (i = 0; i < FQ HASHTBLSIZ; i++) /* loop through all the queues */
{

fecq = &g->fqg_hashtbl([i];

if (fcg->ifg_head != NULL) /* Is this queue not empty? */

{

n = fcg->ifq_head; /* remove packets in this queue */

while (m = n)

{

n = m->m_act;

for (tmp = m; tmp != (struct mbuf *) NULL; tmp = tmp->m_next)
{

nbytes += tmp->m_len;
}

npkts++;
m_freem(m) ;

}

}

fcq->ifg_head = NULL; /* reinitialize all variables */
fcg->ifq_tail = NULL;

fcq->ifg_len = O;

fcg->ifqg_drops = 0;

fcqg->ifg_sent = 0;
fcq->ifgq_forw = NULL;

fcg->ifg_back = NULL;
}

g->fgq_len = 0:
g->fg_index = NULL;

g->fq_seed = 0;
if ( npktsp != (unsigned long *) NULL )
*npktsp = npkts;

if ( nbytesp != (unsigned long *) NULL )
*nbytesp = nbytes;

/* IF_SFQFULL checks to see if a particular queue is full. The mbuf */
/* is used to determine which gueue you wish to check. Returns TRUE if */

340



/* the queue is full; FALSE otherwise. */

int IF_SFQFULL(gifcp, m)

struct aNetIf *gifcp;

struct mbuf *m;

{

struct sfqg *sfq;

gstruct mbuf *m0;

struct ip *ip:;

struct ifqueuel *q;

long 8; /* value from hash function */
u_char *ucp; /* pointer to IP pkt */

int local_hdr_length; /* number of bytes for local hdr */

int index;

if ( gifcp->ifc_name[0] == ‘h’ )
local_hdr length = PPP_HDRSPACE;

elge if ( (gifecp->ifc_name[0] == *1‘) || (gifcp->ifc_name([0] == ‘'i’)

local_hdr length = ETHER_HDRSPACE;
else

panic(“IF_SFQFULL: unknown interface name\n”);

efq = (struct sfq *)gifcp->iftc_statelp;

if (m != NULL) { /* do we have a packet? */
m0 = m;
if (m0->m_len == local_hdr_length) { /* pkt size legality

m0 = mO0->m_next;

if (m0 == NULL)

panic(“sfq_ng_func: local header only\n”"):
ucp = mtod ((m0), u_char *);

checks */

} else if (m0->m_len >= (local_hdr_length + sizeof(struct ip))) {

ucp = mtod ((m0O), u_char *);
ucp
} else {

(u_char *) (((int) ucp) + local_hdr_length);

panic (“IF_SFQFULL: invalid m0 elem: no valid data or header\n”);

}

ip = (struct ip *) ucp; /* Assumes packet is an IP pkt */
if (ip->ip_v == IPVERSION)
{

/* Extract fields to be hashed and put into buffer */

/* i.e., IP source and destination address */

bcopy (&ip->ip_src, sfqg->fq_hashbuf, sfg->fq_hashlen):

/* Compute hash entry */

s = (*sfq->fqg_hash) (sfqg->fq_seed, sfg->fg_hashbuf);

/* Mod hash result to fit into table */
index = modit (s,MOD_INPUT_VALUE) ;

341



if (index >= FQ_HASHTBLSIZ)
printf (“IF_SFQFULL: invalid queue index\n”);

}

else

index = FQ_HASHTBLSIZ -1; /* non-IP, i.e. ST-II control packets
/* go here */

}

else

index = FQ_HASHTBLSIZ -1; /* raw packets go here */

g = &sfqg->fqg_hashtbl[index); /* find the queue */
if (g->ifqg_len >= g->ifq_maxlen) /* is length not ok? */

return{TRUE) ;
else

return (FALSE) ;

/* sfq_chk checks the integrity of the SFQ, used for debugging */

sfg_chk (q)
struct sfq *q;
{

int i, total

= 0, nelem;

struct ifqueue2 *fcqg;
struct mbuf *m;

DPRT (TR_STA, (“sfq_chk: Seed = %d SFQ len = %d\n”,qg->fqg _seed, g->fq_len ));

for (i = 0; i

{

< FQ_HASHTBLSIZ; i++)

fcqg = &g->fq_hashtbl(il;

if (fcq->ifg_len !'= 0)

DPRT (TR_STA, (“sfg_chk: FQ = %d, len = %d, drops = %4, sent = %d\n”",
fcqg->ifqg_label, fcqg->ifqg len, fcg->ifq_drops, fcg->ifqg_sent));

if (fcg->ifg_head != 0)

{

total += fcg->ifg_len;

for (nelem =
nelem++;

0, m = fcg->ifqg_head; m; m = m->m_act)

if (fcqg->ifqg_len != nelem)

{
DPRT (TR_STA,
DPRT (TR_STA,
}
}
}

(“sfq_chk: Inconsistency in g structure for %d\n~,i));
(“ifg_len = %d count = %d\n”, fcg->ifg_len, nelem));

if (total != g->fq_len)

{

DPRT (TR_STA, (*

DPRT (TR_STA,

sfq_chk: inconsistency in total pkt count\n”));
(*sfg_chk: Total number of packets = %d fq_len = %d\n",

342



total, g->fg_len));

/* sfq_ng_func returns FALSE if a packet failed to be put on the */

/* associated gqueue; TRUE otherwise. Note: Due to the structure in the */
/* HSIS driver, this routine can called for a raw packet before the */

/* driver actually gets the packet. Since SFQ needs the IP source and */
/* destination address from the packet to figure out what queue to put */
/* it in, all raw packets automatically get put in the same queue */

/* regardless of their source or destination. Since it is assumed that */
/* raw packets are not a great percentage of network traffic, the */

/* effects should be negligible. If a packet ie not an IP packet, it */
/* is also placed in the same queue as raw packets. In addition, */

/* a side effect of this routine is that the drop counter for a queue */
/* gets incremented if there is no room for the given IP packet. */

int sfq_nqg func(gifcp, m)
struct aNetIf *gifcp;
struct mbuf *m;

{

struct ifqueue *ifqg;
struct sfqg *sfq;

struct mbuf *mo0;

struct ip *ip;

struct ifgueue2 *qg, *g2;
long 8; /* value returned from hash function */
u_char *ucp:

int index;

int local_hdr_length;

if ( gifcp->ifc_name[0] == ‘h’ )

local_hdr_length = PPP_HDRSPACE;

else if ( (gifcp->ifc_name([0] == 1’} || (gifcp->ifc_name([0] == ‘i’) )
local_hdr_length = ETHER_HDRSPACE;

else

panic(“gfqg_nqg_func: unknown interface name\n”);

sfq = (struct sfq *)gifcp->iftc_statelp;

if (m != NULL) { /* do we have a packet? */

m0 = m;

if (m0->m_len == local_hdr_length) { /* pkt size legality checks */
m0 = mO->m_next;

if (m0 == NULL)

panic(*sfq_ng_func: local header only\n”);
ucp = mtod ((m0), u_char *);
} else if (m0->m_len >= (local_hdr_ length + sizeof (struct ip))) {

343



ucp mtod ((m0), u_char *);

ucp = (u_char *) (((int) ucp) + local_hdr_ length):

} else {

panic (*sfg_ng_func: invalid m0 elem: no valid data or header\n”);

}

ip = (struct ip *) ucp; /* Assumes packet is an IP pkt */
if (ip->ip_v == IPVERSION)

{

/* Extract fields to be hashed and put into buffer */

/* i.e., IP source and destination address */

bcopy (&ip->ip_src, sfqg->fqg_hashbuf, sfg->fq_hashlen);

/* Compute hash entry */
s = (*sfq->fg_hash) (sfg->fq_seed, sfg->fq_hashbuf) ;

/* Mod hash result to fit into table */

index = modit (s,MOD_INPUT_VALUE);

if (index »>= FQ_HASHTBLSIZ)

printf(“sfq_nqg_func: invalid queue index\n");

}
else

index = FQ HASHTBLSIZ -1; /* non-IP, i.e. ST-II control packets

/* go here */

}

else
index = FQ_HASHTBLSIZ -1; /* raw packets go here */

q = &sfg->fq_hashtbl[index]; /* find the queue */

if (q->ifq_len >= g->ifqg_maxlen) /* is length not ok? */

{

if (m != NULL)

qg->ifq_drops++; /* incremented drop counter */

return (FALSE) ;

}

else

{

if (m == NULL) /* hack for raw send and because we */

return TRUE: /* are combining the enqueue and gfull */
/* macros for efficiency */

/* There is no packet yet */

if (ip->ip_v == IPVERSION)

{

DPRT (TR_ENQ, ("sfq_nqg_func: Adding IP pkt to [%d)\n”,index)):
/* printf(“src %s *, inet_ntoa(ip->ip_sxc));
printf (“dest %s\n”, inet_ntoa(ip->ip_dst)); */

}

else

DPRT (TR_ENQ, (*sfq_nq_func: Adding NON-IP packet to [%d]\n”, index));

344



/* Make active list entry */

if (g->ifg_head == NULL) {
if (sfg->fqg_index == NULL) {
sfq->fg_index = q;
g->ifq_forw = q;

g->ifq back = q;

} else {

g2 = sfg->fq_index;
q->ifq_back = g2->ifqg_back;
q->ifq_forw = q2;
q2->ifg_back->ifq_forw = q;
g2->ifqg _back = q;

/* Store packet onto gueue */

(m) ->m_act = 0;

if (qg->ifq_tail == 0) {
q->ifqg_head = m;

} else {

g->ifqg tail->m_act = m;

}
g->ifqg _tail = m;

g->ifq_len++; /* FCFS queue counter */
sfqg->fq_len++; /* SFQ packet counter */
/* (ifQ)->ifqg_len++;*/ /* ifnet counter */

/* don’'t increment ifnet counter */

/* because it is used for the stii */

/* gueue */

return (TRUE) ;
}
}

/* sfq_init_func: function which allocates and initializes SFQ structure */

/*

* gifcp ::= Pointer to extended ifnet structure
* hashfnc ::= Pointer to hash function

>/

int sfq_init_func(gifcp, hashfnc)
struct aNetIf *gifcp;
unsigned long (*hashfnc) () ;
{
struct sfq *_sfq;
int _i;
/* Allocate FQ structure and attach to interface ifg ~/
_8fg = (struct sfg *) malloc (sizeof (struct sfq)) ;

345



if (_sfqg == (struct sfqg *)

return (ENOMEM) ;

gifecp->iftc_state2p =

NULL)

(caddr_t) _sfqg;

/* Initialize variables */
_sfg->fg _index = NULL;

_sfg->fq_seed = 0;
_sfg->fq_len = O;

_sfg->fg_hash = hashfnc;
_sfq->fq_hashlen = FQ HASHBUFLEN;
for (_i = 0; _i < FQ_HASHTBLSIZ; _i++) {

_sfqg->fq_hashtbl[_i]
_sfq->fq_hashtbl[_i]
_sfq->fqg_hashtbl[_i]
_sfqg->fg_hashtbl[_i]
_sfq->fq_hashtbl[_i]
_sfg->fq_hashtbl[_i]
_sfq->fq_hashtbl[_i]
_sfqg->fq_hashtbl|[_i]
_sfqg->fq_hashtbl[_i]
}

return(0) ;

.ifq_head =
.ifq_tail =
.ifq_len =
.ifq_drops
.ifq_sent =
.ifgq_maxlen
.ifq_forw
.ifqg_back
.ifqg_label

NULL;
NULL;

0;

0;

0;

= FQ_MAXFCFSQLEN;
NULL;
NULL;

_i;

/* sfq_dq_func: function which dequeues the next packet for tranmission */

/* from the active list.

All appropriate fields are updated including */

/* the queue length fields and the number sent from this queue. */
/*

* NB: m = NULL signals empty gqueue

* fg_index == NULL signals empty queue

*/

struct mbuf *sfg_dqg_func(gifcp)

gtruct aNetIf *gifcp:

{

struct ifqueue
struct sfq *_sfq;
struct ifqueue2 *_q;
struct mbuf *m;

*ifq:

m = (struct mbuf *)NULL;

/* ifqgq = (struct ifqueue *)&(gifcp->osifcp->if_snd); CHECK !!!!t1 */
_sfq = (struct sfq *)gifcp->iftc_statelp;
_q = _sfqg->fq_index;
/*

* Conditional will be true,

* to a non-empty gqueue.

*/
if (_q) {

(m) = _g->ifqg_head;

if index field points

346



'

if ((_g->ifq_head = (m)->m_act) == 0) {
_qg->ifg_tail = 0;
}

{m) ->m_act = 0;
_g->ifq_len--;
_s8fg->fq_len--;
/* (ifq)->ifq_len--; */ /* this is the vc queue */

/* statistice for now */
_q->ifq_sent++; /* number sent on this q */
DPRT (TR_DEQ, ("sfq _dq_func: [%d]\n”, _g->ifqg_label)};

/* Remove entry from active list if no more pkts */

if (_g->ifq_head == 0) {
if ((_g->ifg_forw == _q) && (_g->ifq_back== _q)) {
_q->ifqg forw = NULL;

/* Perturb the hash seed only when queue is empty */
_sfg->fq_seed++;

DPRT (TR_DEQ, (“sfqg_dq_func: FQ %d now Empty\n”,_g->ifg_label));
} else {
_q->ifqg_back->ifg forw = _qg->ifq_forw;
_q->ifq_forw->ifg back = _g->ifqg_back;

DPRT (TR_DEQ, (“sfq_dq_func: removing %d from active list\n”,

_q->ifqg_label));

}

}
/* Index to the next non-empty queue */
_sfqg->fq_index = _g->ifqg_forw;
}
return{m) ;
}
#endif SFQ

/* Possible hash functions to choose from */

/*
*
*/

unsigned long

hashl (seq, cp) /* addxorhash.c */
char seq;

unsigned char *cp;

{
unsigned long 11;
unsigned long 12;

347



11 * (unsigned long *)cp;

12 * ({ (unsigned long *)cp) + 1)
return ({11 + seq) ~ 12);

}

/t
*
*/

unsigned long

hash2 (seq, cp) /* rotlilhash.c */
char seq:;

unsigned char *cp;

{

static unsigned long maskstay[] = {

OxffEfffff, Oxfffffffe, Oxfffffffc, Oxfffffffs,
OxfEffff£f0, Oxffffffe0, OxffffffcO, Oxffffffso,
OxfEfffff00, Oxfffffe00, Oxfffffc00, Oxfffff800,
Oxfff£f£000, Oxffffe000, Oxffffc000, Oxf£ff£8000,
Oxff££0000, Oxfffe0000, Oxfffc0000, Ox£f££80000,
Oxfff00000, Oxffe00000, Oxffc00000, Ox£f£f800000,
Oxff000000, Oxfe000000, Oxfc000000, 0xf8000000,
0xf0000000, 0xe0000000, Oxc0000000, 0x80000000
}i

static unsigned maskwrap[] = {

0x00000000, 0x00000001, Ox00000003, 0x00000007,
0x0000000f, 0x0000001f, 0Ox0000003f, 0x0000007f,
0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
0x00000fff, O0x00001fff, O0x00003fff, O0x00007fff,
Ox0000ffff, Ox0001ffff, OxO0003ffff, Ox0007ffff,
OxO000fffff, OxO001fffff, OxO003fffff, OxO007fffff,
OxOO0ffffff, OxQLlEffffff, OxO03ffffff, OxO7ffffff,
OxOfffffff, Ox1fffffff, OxIELfLfffff, Ox7LfLfEfffff
i

unsigned long 11, 12;

int coseq;

11 = *(unsigned long *)cp;

12 = *{((unsigned long *)cp) + 1);

seq &= Ox1f;

coseq = 32 - seq;

11 = ({11 << seq) & maskstaylseg]) ° ({11 >> (coseq)) & maskwrap[seq]);

12 = ((12 << coseqg) & maskstayl[coseqg]) " ((12 >> (seq)) & maskwraplcoseq]);
return (11 + 12};

}

/t

*

*/

348

)



unsigned long

hash3 (seq, cp) /* rotilhash.c */

char seq;

unsigned char *cp;

{

static unsgigned long maskstay([] = {

OxEffffffff, Oxfffffffe, Oxfffffffc, Oxfffffffs,
Oxffeffffo, OxffffffeO, OxffffffcO0, Oxffffffso,
Oxffffffo0, Oxfffffe00, Oxfffffc00, Oxffff£800,
OxXffff£f000, Oxffffe000, Oxffffc000, OxffffB8000,
Oxff£f£f0000, Oxfffe0000, Oxff£fc0000, Oxff£80000,
Oxff£f00000, Oxffe00000, Oxffc00000, Oxf£800000,
0x££000000, Oxfe000000, O0xfc000000, 0x£f8000000,
0xf0000000, 0xe0000000, 0xc0000000, O0x80000000
b

static unsigned maskwrap[] = {

0x00000000, O0x00000001, 0x00000002, 0x00000004,
0x00000008, 0x0000001f, Ox0000002f, 0x0000004f,
0x0000008f, Ox000001ff, Ox000002ff, Ox000004ff,
0x000008ff, O0x00001fff, Ox00002fff, Ox00004fff,
0x00008fff, Ox0001ffff, OxO0002ffff, Ox0004ffff,
O0x0008ffff, OxO001fffff, OxO002fffff, OxO04fffff,
Ox008fffff, OxO1ffffff, OxO02ffffff, OxO4ffffff,
OxO08ffffff, Ox1fffffff, Ox2fffffff, Ox4fffffff,
OxXBEffffff

}i

unsigned long 11;

unsigned long 12;

int cosegq:

11 = *(unsigned long *)cp;

12 = *(((unsigned long *)cp) + 1);

seq &= O0x1f;

coseq = 32 - sedq:

11 = ((1l1 << seq) & maskstay([seq]) ° ((11 >> (coseq)) & maskwrap[seq]);

12 = ((12 << coseq) & maskstaylcoseql) * ((12 >> (seq)) & maskwrapl[coseq]);

return (11 + 12);
}

/*
*
*/

unsigned long

hashd (seqg, cp) /* rothash.c */
char seq;

unsigned char *cp;

{
static unsigned long maskstay[] = {
Oxffffffff, Oxfffffffe, Oxfffffffc, Oxfffffffs,

349



Ooxfffffffo, Oxffffffe0, OxffffffcO,
OxfEEff££f00, Oxfffffe00, Oxfffffc0O0,
Oxfff££f000, Oxffffe000, Oxffffc000,
Oxf£f££0000, Oxfffe0000, Oxfffc0000,
O0xf££00000, O0xffe00000, O0xf£fc00000,
0xf£000000, 0xfe000000, 0x£fc000000,
0xf0000000, 0xe0000000, 0xc0000000,

};

static unsigned maskwrapl[] = {

0x00000000, 0x00000001, 0x00000002,
0x00000008, 0x0000001f, 0x0000002f,
0x0000008f, 0x000001ff, O0x000002ff,
0x000008ff, O0x00001fff, O0x00002fff,
0x00008fff, Ox0001ffff, Ox0002ffff,
0x0008ffff, Ox001fffff, OxOO02fffff,
Ox008fffff, OxO1ffffff, OxO02ffffff,
OxOBffffff, OxI1fffffff, Ox2fffffff,

OxBfffffff

};

unsigned long 11, 12;
int cosegq:

11 = *(unsigned long *)cp;

12 = *(({unsigned long *)cp) + 1):
seg &= Ox1f;

coseq = 32 - seq:;

11 = ((11 << seq) & maskstayl[seq])

12 = ((12 << coseq) & maskstay[coseq])

return (11 * 12);
}

/v:

*

*/
unsigned long
hashS (seq, cp) /* xoraddhash.c */
char seq:;

unsigned char *cp;

{

unsigned long 11;

unsigned long 12;

11 = * (unsigned long *)cp:;

12 = *({((unsigned long *)cp) + 1);
return ((11 * seq) + 12);

}

-

Oxffffffso,
Oxff£f££800,
O0xf£f££8000,
Ox£f££80000,
0x££800000,
0x£8000000,
0x80000000

0x00000004,
0x0000004f£,
0x000004f£ff,
0x00004ff€f,
O0x0004£ffff,
0x004fffff,
OxO04ffffff,
Ox4fEf£E£f£EE,

((11 >>

350

((12 >>

(coseq))

(seq))

& maskwrap[seq]) ;

& maskwrap [coseq]) ;

S



/* hybrid_int.c */
/*

»

Copyright (c)} 1993 SRI International. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by SRI International, Menlo Park, CA. The name SRI International
may not be used to endorse or promote products derived from this
software without specific prior written permission.

* ¥ *

THIS SOFTWARE IS PROVIDED ‘'AS IS’'‘ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

* % * o o * % O * % »

/* This file contains the routines that interface to the traffic */

/* control algorithms. These routines specify a hybrid algorithm of =*/
/* SFQ for IP traffic,best-effort service, and virtual clock */

/* as embedded in ST-II for resource guarantee. ST-II provides the */
/* resource protocol setup needed for passing the flow specification */
/* to the routers. Virtual Clock provides a clock-based scheme for */

/* ensuring proper ordering of arriving packets according to their */
/* advertised rate. */

#ifdef SFQ_VC
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <sfqg/sfqg.h>

/* Compare unsigned long quantitiesg */

#define LaterThan(A,B) (({(B)-(A)) & {((~0) - ((unsigned long) (~0) >> 1))) !
0)

#ifndef FALSE
#define FALSE (0)
#endif

#ifndef TRUE
#define TRUE (1)
#endif

#ifndef NULL

351



# define NULL O
#endif

extern int sfg_init_func();

extern int ve_init_func();

extern int sfqg_ng_func();

extern void vc_nqg_func();

extern struct mbuf *gen_dq_func();
extern struct mbuf *sfq_dq_func();
extern void gen_drain_func();
extern void sfqg_drain_func(};
extern int vc_enf_func();

extern unsigned long hashl{();
extern unsigned long hash2({();
extern unsigned long hash3();
extern unsigned long hashd () ;
extern unsigned long hashS5();

long sfq_vc_debug = 0x0;
#define H_DPRT(c, x) if(sfg_vc_debugkc)printf x;

#ifndef TR_ENQ
gdefine TR_ENQ 1<<0 /* Engueue flag */
#$endif

#ifndef TR_DEQ
#define TR_DEQ 1<<1 /* Dequeue flag */
#endif

#$ifndef TR_STA
#define TR_STA 1<<2 /* Errors */
#endif

/* sfq_vc_init initializes the sfq and vc queueing structures */
int sfq _vc_init(gifep)

struct aNetIf *gifcp;

{

int sfq_error, vc_error;

sfq_error = 0;
/* initialize SFQ structures */

sfq_error = sfq_init_func(gifcp, hashl);

/* initialize VC structures */
vc_error = vc_init_func(gifep);

if (tsfqg_error)

return(vc_error);
else

352



return{sfg_error);

/* sfq_vc_ng enqueues a “packet” onto the appropriate queue. */

/* If the packet belongs to an ST-II flow, indicated by the */

/* mbuf type set to MT_TCDATA, the packet is put on the virtual */
/* clock queue. If the packet is an IP packet, or an ST-II packet */
/* which does not have a flow setup, indicated by the mbuf type set */
/* to MT_DATA, it is handled by SFQ. */

void sfq_vc_ng(gifcp, mp)
gtruct aNetIF *gifcp;
gtruct mbuf *mp;
{
switch (mp->m_type)
{
case MT_DATA:
H_DPRT{(TR_ENQ, (“sfqg_vc_ng: mt_data pkt\n”));
if (sfqg_ng_func(gifcp,mp) != TRUE)
{
/* qfull routine is not called with correct */
/* queue structure */
/* need to free packet, because g might be full */
/* make sure surrounding calls are at correct */
/* interrupt level */

if (mp != NULL) /* not a raw packet */

{
H_DPRT(TR_ENQ, ("sfqg_vc_ng: FREEING an sfq packet\n”));

m_£freem(mp) ;
mp = NULL; /* NOOP for now, doing for cleanliness */

}

break;

case MT_TCDATA:

H_DPRT (TR_ENQ, ("sfqg_vc_ng: mt_tcdata pkt\n”));
ve_ng_func(gifcp, mp);

break:

default:

printf (“sfg_vc_ng: Illegal Classifcation. FATAL ERROR\n");
break;

}

}

/* PEAK_VC_QUEUE is a macro which does a one packet lookahead into */
/* the virtual clock gqueue */

#define PEAK_VC_QUEUE (timestamp, gqueue, nextpkt){ \

\
nextpkt = (queue)->ifqg _head; \
timestamp = (nextpkt)->m_tckey; \

353



/* VC_EMPTY is a macro which checks to see if the virtual clock */
/* Queue is empty */

#define VC_EMPTY (queue) ((queue)->ifg_head == (struct mbuf *) NULL)

/* sfq_vc_dq dequeues a packet from either the SFQ or Virtual Clock */

/* queue. See SRI report 8600 ...for details */

struct mbuf *sfqg_vc_dg(gifcp)
struct aNetIf +*gifcp;

{

struct mbuf *mp;

unsigned long pkttimestamp;
struct timeval time_right_now;
unsigned long nowusec;

struct ifqueue *vc_q;

/* Preliminary version */

/* VC queue has priority */

/*

if ({mp = gen_dq_func(gifcp)) == NULL)
mp = sfq_dqg_func(gifcp);

return (mp) ;

*/

/* interleaving with times */

/* If it is time to send a VC packet, dequeue a packet from this queue.
/* If not time to send from VC, take a packet from SFQ. If no packet */

/* available, go back and try VC gueue. */

ve_q = (struct ifqueue *) &(gifcp->osifcp->if_snd);

if (!VC_EMPTY(vc_q)) /* something in virtual clock queue */
{

PEAK_VC _QUEUE (pkttimestamp, vc_q, mp);

unigtime (&time_right_ now);

nowusec = ( (unsigned long) time_right_now.tv_sec) * 1000000 +
time_right_now.tv_usec;

H_DPRT(TR_DEQ, (“sfqg_vc_dqg: pkttime = %X, now = $X\n”, pkttimestamp,
nowusec) ) ;

if ( LaterThan(pkttimestamp, nowusec))

{

if (SFQ_EMPTY (gifcp))

{

H_DPRT(TR_DEQ, (“trying vc q:sfqg empty \n“));
return(gen_dq_func(gifcp)):

354

*/



N

}
else
{
H_DPRT(TR_DEQ, ("dq sfqg pkt\n”));
return (sfq_dqg_func (gifcp)):
}
}
else
{
H_DPRT (TR_DEQ, (“dq vc pkt-pkt time expired\n”));
return(gen_dq_func(gifcp)}):
}
}
else
{
H_DPRT (TR_DEQ, (“dg sfg pkt: no vc pkts\n”));
return(sfq_dqg_func(gifcp)):
}

}

/* sfq_vc_drain empties all packets from the Virtual Clock and SFQ queue. */

void sfqg_vc_drain(gifcp, statelp, state2p, statelul, state2ul, npktsp,
nbytesp)
struct aNetIf *gifcp;
caddr_t statelp,
statelp;
unsigned long statelul,
state2ul,
*npktsp,
*nbytesp;
{
unsigned long npktsl,
npkts2,
nbytesl,
nbytes2;

npktsl = npkts2 = nbytesl = nbytes2 = (unsigned long ) 0;

/* empty all queues associated with each algorithm */

/* VC queue */

/* leave order as is due to re-initializing ifg fields */
gen_drain_func(gifcp., statelp, state2p, statelul, state2ul, &npktsl,
&nbytesl);

/* SFQ queues */

sfq_drain_func(gifcp, &npkts2, &nbytes2);

if ( npktsp != (unsigned long *)NULL )
*npktsp = npktsl + npkts2;

355



if ( nbytesp != (unsigned long *) NULL)
*nbytesp = nbytesl + nbytes2;

return;

}

/* sfg_vec_classify should classify whether the packet belongs in the */

/* Virtual Clock qQueue or SFQ */
/* problem here..... the result of this function gets overwritten */
/* with resource information from stII....something should be done */

/* differently */

/* for initial cut rely on the fact that if an enforcement function */
/* is provided, the mbuf type is MT_TCDATA for resource traffic and */
/* MT_DATA for best-effort so this function is not really used */

caddr_t sfq_vc_classify(gifcp, mp, pf, nethdrp, validlen)
struct aNetIf *gifcp;
struct mbuf *mp;
int pf;
caddr_t nethdrp;
int wvalidlen;
{
/* IF packet is IP, use SFQ */
/* if packet is STII, use VC */
switch(pf)
{
case PF_INET:
/* return(PF_INET); */
return (NULL) ;
break;
case PF_COIP:
/* return(PF_COIP); */
return (NULL) ;
break;
default:
printf(“sfq_vc_classify: unknown packet type\n”);
return (NULL) ;
/* return(PF_UNSPEC); */
break;
}
}

/* sfg_vc_enforce provides the enforcement. Because IP traffic doesn’'t */
/* require any enforcement, since it represents best-effort service, */
/* only the Virtual Clock enforcement routine is called. */

int sfq_vc_enforce(gifcp, mp, totlen, timevalp)
struct aNetIf *gifcp;

356



struct mbuf *mp;

unsigned int totlen;

struct timeval *timevalp;

{

return (vc_enf_func(gifcp, mp, totlen, timevalp)) ;

}

/* sfq_vc_qfull checks to see if the queue associated with a given packet */
/* is full. Skeleton only provided for completeness. It is currently not */
/* used. */

int sfq_vec_qgfull{gifcp, mp)
struct aNetIf *gifcp:
struct mbuf *mp;

{

#endif SFQ_VC

357



/* This is diffeg for if.h. */
12,13411
< #include <sys/time.h>

<

112,1184109
< #ifdef TRAFFIC_CONTROL

< /*
*

*

*

If we had source, the following struct would be part of struct ifnet
and many things would be easier

NB: without source, we cannot get to things like if _gflush()

*/

20,6994110

D»
da*
a»
da*
a*
d*

ar
d*
ar
a*

<

<

<

<

<

1

<

<

<

<

<

<

<

<

<

<

<

<

< a*
< gx*
< g«
< 4a*
< da-
< g+
< 4a»
< 4a»
< ar
< da*
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

a»
dt
d*
d*
a»
ar*
ar
da*
ax*
fo Bd
d*
ar
a*
ax*
ar*
di

aNetIf Yet another network interface abstraction
We want fields:

AdrOfIfc (ifec) Maps an 0OS net handle to something to access its info.
ifc_bw_alloc Currently allocated bandwidth (Bytes/sec) for network.

| *OBS ifc_bw_byte Bandwidth (Bytes) required to gsend a byte (8 bits).

ifc_bw_cnfg Bandwidth (Bytes/sec) provided by the network.
ifc_bw_load Target load (Bytes/sec) for network from this interface.
ifc_bw_resv Amount of resources (Bytes/sec) that may be reserved.
ifc_bw_pkt Overhead bandwidth (Bytes/pkt) required to send a packet.

| *OBS ifc_clientsp Ptr to access info about clients regserving resources.

ifc_cost Cost to reserve network resources.
ifc_cost_byte Cost to send a byte.

ifc_cost_msec Cost to use link for a millisecond
ifc_cost_pkt Cost to send a packet.

ifc_cp [Private: Ptr to Origin/Target's aST2pchb].
ifc_gwcp [Private: Ptr to Target's "Gateway" aST2pcb].
ifc_lclhdrlen Bytes to leave for network layer headers.
ifc_mtu Network MTU.

ifc_name Name of network interface.

ifc_output Routine to send a packet.

from ReplyMsgSend st2_CMPOutput st2_Forward

ife_selfp [Private: Ptr to memory object holding interface info].
ifc_snd Output queue

ifc_unit Device unit #

iftc_alg Current Traffic Control Algorithm

iftc_alg_next Next Traffic Control Algorithm

iftc_classify ( IF_Ext(ifp), mp, PF_xxx, nethdrp, validlen ) -> flowp

iftc_clockfast ( IF_Ext(ifp) )

iftc_control ( IF_Ext({ifp), op, xxxp, xxxl1 ) -> error

iftc_dq ( IF_Ext(ifp) ) -> mp

iftc_drain ( IF_Ext(ifp), statelp, state2p, statelul, state2ul,
npktsp, nbytesp )

iftc_enforce ( IF_Ext(ifp), mp, totlen, timevalp ) -> result
-2: no traffic control; -1: drop it; 0: enqueue it;
N: enqueue it but some other N byte packet was dropped

ifte_init ( IF_Ext(ifp) )

358



-~

AAAAI\AAI\/\/\/\/\/\/\I\/\/\I\I\I\I\I\/\/\AA/\/\/\/\/\/\/\/’\I\A/\/\/\/\/\/\/\/\I\/\/\/\AAAA

d* iftc_nqg ( IF_Ext(ifp), mp ) -> error
d* iftc_per_alg [] struct
d* iftc_quit ( IF_Ext(ifp) )

d* ifrm_rsrcalloc ( IF_Ext(ifp), ridp, arsclpp, ratep, bytesp, fdp,

d* ifrm_rsrcgetid ( IF_Ext(ifp}, rsrcidp )
d* ifrm rsrcprobe ( IF_Ext(ifp) ??2? )
d* ifrm_rsrcrelid ( IF_Ext(ifp), rsrcidp )

d* ifrm_rsrcrelse ( IF_Ext(ifp), ridp, arsclpp, ratep, bytesp, fdp,

d* iftc_statelp pcinters for use by algorithm, except iftc_drain
d* iftc_state2p
d* iftc_statelul longs for use by algorithm, except iftc_drain
d* iftc_state2ul
d*

*/

struct aNetIf {
char namebuf [(16]; /* Interface name */
struct aNetIf *ifc_nextp; /* Ptr to next generic interface */
int lclhdrlen; /* Local network header length */
unsigned long bw_conf, /* Bytes per second on the wire */
bw_load, /* Target loading, bytes/sec */
bw_resv; /* Reservable bytes per second */

struct aResourceManagement {
/* allocate resources */

int (*rsrcalloc) (/* IF_Ext(ifp), ridp, arsclpp, ratep,
bytesp, fdp, destpp */),
(*rsrcentrl) (/* IF_Ext(ifp), op, xxxp, xxxl1 */),

/* get a resource id */
(*rsrcgetid) (/* IF_Ext(ifp), rsrcidp */),
/* probe available resources */
(*rsrcprobe) (/* IF_Ext(ifp) 2?2 */),
/* release a resource id */
(*rsrcrelid) (/* IF_Ext(ifp), rsrcidp */),
/* release resources */
(*rsrcrelse) (/* IF_Ext(ifp), ridp, arsclpp, ratep,
bytesp, fdp, destpp */);
} rmf;

struct aTrafficControl {

caddr_t (*classify) (/* IF_Ext(ifp), mp, PF_xxx,
nethdrp, validlen */);
void {*clockfast) (/* IF_Ext{ifp) */);
int (*control) (/* IF_Ext(ifp), op., xxxp, xxxl1 */);
struct mbuf *(*dq) (/* IF_Ext(ifp) */);
void (*drain) (/* IF_Ext{ifp), statelp, state2p, statelul,

state2ul, npktsp, nbytesp */);
int (*enforce) (/* IF_Ext(ifp), mp, totlen, timevalp */);
/* -1: drop it; 0: enqueue it; */
/* N: enqueue it but some other N byte */
/* packet was dropped */
int (*init) (/* IF_Ext(ifp) */);

359

destpp

destpp

)

)



A A A A A A A A AN A A A AN ANANNDNNDNNDNNDANNNAA NN N ANANANNDNANANANANANDANANANANANADANANANANNADANN NN NN

void (*nq) (/* IF_Ext (ifp), mp */);
void (*quit) (/* IF_Ext(ifp) */);
struct aResourceManagement rmf; /* per-algorithm hooks */
struct aTcRmState {
caddr_t slp, /* Traffic Control private */
s2p; /* Traffic Control private */
unsigned long slul, /* Traffic Control private */
s2ul; /* Traffic Control private */
} state;
} tcf;

struct aRsrcNet *rsrcifp; /* Ptr to resource management info */

short alg, /* Current Traffic Control algorithm */
alg_next; /* Next Traffic Control algorithm */
caddr_t per_alg; /* private */

struct ifnet *osifcp; /* Ptr to OS structure */
#ifdef STII
struct aST2pcb *cp, /* Ptr to api pcb (IFF_PRIVATE) */
*gwcp; /* Ptr to upstream-"gateway" pcb */
/* (IFF_PRIVATE) */
struct aPktDesc *selfp; /* Ptr to buffer holding interface */
#endif STII

/* Pseudo interface may have 0S block here, if required */

}s
/* Generic Network Interface (aNetIf) Mappings (ifnet, aRsrsNet) */

#define AdrofIfc(ifc) ((ifc)->osifcp)
#define ifc_bw_alloc rsrcifp->bw_alloc
#define ifc_bw_cnfg rsrcifp->bw_cnfg
#define ifc_bw_load rsrcifp->bw_load
#define ifc_bw_pkt rsrcifp->bw_pkt
#define ifc_bw_resv rsrcifp->bw_resv
/*#define ifc_clientsp rsrcifp->clientsp*/
#define ifc_cost rsrcifp->cost

#define ifc_cost_byte rsrcifp->cost_byte
#define ifc_cost_msec rsrcifp->cost_msec
#define ifc_cost_pkt rsrcifp->cost_pkt
#define ifc_cp cp

#define ifc_gwcp gwep

#define ifc_lclhdrlen lclhdrlen

#define ifc_mtu osifcp->if_mtu

#define ifc_name namebuf

#define ifc_output osifcp->if_output
#define ifc_selfp selfp

#define ifc_snd osifcp->if_snd

#define ifc_unit osifcp->if_unit

#define ifrm_rsrcalloc rmf.rsrcalloc

360

s



AAAA/\l\/\l\l\/\l\/\l\l\l\/\/\l\/\/\/\l\l\/\l\/\AI\AI\I\/\I\/\/\I\/\/\/\/\/\/\I\A/\/\I\I\AAAA

#define ifrm_rsrccntrl rmf.rsrccntrl
#define ifrm_rsrcgetid rmf.rsrcgetid
#define ifrm_rsrcprobe rmf.rsrcprobe
#define ifrm rsrcrelid rmf.rsrcrelid
#define ifrm_rsrcrelse rmf.rsrcrelse

#define iftc_alg alg

#define iftc_alg next alg_next

#define iftc_classify tcf.classify
#define iftc_clockfast tcf.clockfast
#define iftc_control tcf.control

#define iftc_dg tcf.dgq

#define iftc_drain tcf.drain

#define iftc_enforce tcf.enforce

#define iftc_init tcf.init

#define iftc_ng tcf.ng

#define iftc_quit tcf.quit

#define iftc_rsrcalloc tcf.rmf.rsrcalloc
#define iftc_rsrcentrl tcf.rmf.rsrccentrl
#define iftc_rsrcgetid tcf.rmf.rsrcgetid
#define iftc_rsrcprobe tcf.rmf.rsrcprobe
#define iftc_rsrcrelid tcf.rmf.rsrcrelid
#define iftc_rsrcrelse tcf.rmf.rsrcrelse
#define iftc_statelp tcf.state.slp
#define iftc_state2p tcf.state.s2p
#define iftc_statelul tcf.state.slul
#define iftc_state2ul tcf.state.s2ul

#define ifo_per_alg per_ alg
#define NO_NETIFP ((struct aNetIf *) NULL)

#define IF_Ext(ifp) (tcif_ifp2gifep( (caddr_t) ifp ))
extern struct aNetIf *tcif ifp2gifcp (/* osifecp */);

/* Structure for managing buffer resources. */

struct aRsrcBuf { /* # of buffers ... */
unsigned long cnfg, /* ... configured as available */
alloc; /* ... currently allocated */

}:

/*

D* aRsrcId Structure holding a Resource Identifier.

* (HAP wants 64 bits)
*/
struct aRsrcId {

unsigned long a,
b;

361



b

#define NO_RSRCIDP ((struct aRsrcId *) NULL)

<

<

< /* Structure to hold information about resource requests for a reguestor of
¢ * gervices from a network.

< */

<

< struct aRsrcClnt {

¢ #define RSRCCLNTID Oxc8b%c551 /* A unique # */

< int rsrcclntid; /* MUST BE FIRST w/value RSRCCLNTID */
< struct aRsrcClnt *nextp; /* Ptr to next client on this interface */
< #ifdef NOTYET

< struct aRsrcClnt *parentp,

< *childp;

< /* ??? pending/multiple requests for single client */

< int usecnt: /* NOTYET */

< #endif NOTYET

<

< struct aRsrcId handle; /* Resource id, given to client */
<

< struct aFlowDesc { /* Args for xx_aloc_func */

¢ unsigned long src,

< src_mask,

< dst,

< dst_mask,

< type,

< type_mask,

< #define FL_TYPE_PRIVATE 0x00000001 /* Externally managed flow */
¢ #define FL_TYPE IP 0x00000002 /* IP flow */

< #define FL_TYPE_IPPROT_SHIFT 8 /* O0D00FF00 Proto field */

< #define FL_TYPE_ST 0x00000004 /* ST-II flow (=>FL_TYPE_RT) */
< #define FL_TYPE_STHID_SHIFT 16 /* FFFF0000 ST-II HID field */
< #define FL_TYPE_STHID_MASK Oxff£ff0000

< #define FL_TYPE_RT 0x00000008 /* Real-Time flow */

< ports,

< ports_mask;

< } flowdesc;

L4

< unsigned long buf, /* Resources allocated to client */

< bw_clnt,

< bw_local,

< cpu_clnt,

< cpu_local:

<

< /* outstanding request (?g) for client */

< /* current request

< callback function

< callback argument

< struct NextHop *

< pending list

362



AAAAI\/\/\/\I\/\I\/\I\I\A/\/\A/\I\I\AI\I\A/\I\/\/\AI\/\/\I\AAA/\A/\/\/\/\/\/\/\A/\AAAA

lower layer,
lower layer,

*
~

int enf i

handle

d; /* id of enforcement algorithm used */

unsigned long alg_vector([l]; /* Algorithms using this */

#ifdef VIRTUAL_CLOCK

struct vc_info

{

unsigned long
drop, /* # times said to drop pkt */

/* lar, */
last_check_u
priority, /*

/* threshold,

sec,
microseconds */
/* microseconds */

vc, /* microseconds */
auxvec, /* microseconds */

ai,
/* air, */
/* ar, */

/* bw_byte, /* fractional seconds per byte */
bw_pkt, /* overhead bytes per packet */

bytes_in_ai,
bytes_per_ai

#define VTICKSCALE 10 /* Extra precision bits 10"6 << 10 < 2°32 */

/* bytes (/sec) used this interval */
, /* bytes (/sec) allocated */

vtick; /* realtime expansion factor */
struct timeval
last_check_tv;

} rc_vc;

#define vc_ai

rc_vc.ai

#define vc_auxvc rc_vc.auxvc
#define vc_bw_pkt rc_vc.bw_pkt

#define vc_drop

rc_vc.drop

#define vc_bytes_in ai rc_vc.bytes_in_ai
#define vc_bytes_per_ail rc_vc.bytes_per_ai
#define vc_last_check_usec rc_vc.last_check usec
#define vc_priority rc_vc.priority

#define vc_vc

rc_ve.vc

#define vc_vtick rc_vec.vtick
#define vc_last_check_tv rc_vc.last_check_tv
#endif VIRTUAL_CLOCK

#ifdef FAIR_SHARE

struct flow *fl

Oowp;

#define fs_flowp flowp
#endif FAIR_SHARE

/* add others here ... */

e

363



A A A A A A A A AAAAAAAANA A ANAANANADNDNAANAANAANAANAANANANANNDNANDANDNANANNNANANN N AN NN AN

#define NO_RSRCCLNTP ((struct aRsrcClnt *) NULL)

/* Structure for managing CPU resource. */

struct aRsrcCPU { /* Fractional seconds ... */
unsigned long cnfg, /* ... configured as available */
alloc; /* ... currently allocated */

b

/* Logical extension to 0S native network interface structure
* to support resource management by the network.

*/

struct aRsrcNet {
#define RNNameUnit parentp /* Init: "namelunit" */
struct aRsrcNet *parentp, /* NOTYET */
*nextp, /* ptr to next extension block */
*childp; /* NOTYET */
struct aNetIf *gifcp; /* ptr to generic interface this extends */
struct aRsrcClnt *clientsp; /* ptr to clients of network */

unsigned long flags; /* Services provided by network */

# define NetCanMcast 0x01

# define NetMayMcast 0x02

# define NetCanBcast 0x04

# define NetMayBcast 0x08

# define NetIgPt2Pt 0x10
struct aRsrcBuf *bufp; /* Ptr to buffer resources */
struct aRsrcCPU *cpup; /* Ptr to CPU resources */
unsigned long ber, /* Bit Error Rate, negative of

exponent of ten ( > 0 )} */

/* On-the-wire Bytes per second ... */
bw_cnfg, /* ... available, i.e., bandwidth */
bw_load, /* ... target load */
bw_resv, /* ... reservable bandwidth */

/* OBS bw_byte normalized to be 1 */

/* bw byte, /* ... required to send a byte */
bw_pkt, /* ... required to send a packet, incl.
gap, leader, header, trailer */

bw_alloc, /* ... allocated bandwidth */

/* ??? Need units - milli/micro/nanc cents/dollars/pounds/DM */
cost, /* Fixed cost per client */
cost_byte, /* Per byte cost */
cost_msec, /* per millisecond cost */
cost_pkt, /* Per packet cost */

364



AN AN NN AN NN NN DN AN NN NN A A A AN AN N AN A NN NN AN NN N A A AN A AANA A A A A A AN A AN AN

/* Fractional seconds of CPU ... */
cpu_in_byte, /* ... to receive a byte */
cpu_in_pkt, /* ... to receive a packet */
cpu_out_byte, /* ... to send a byte */
cpu_out_pkt, /* ... to send a packet */

droprate, /* Drop rate, fraction of packets that
will be dropped */
/* ??? need per pkt & per byte? */

/* Fractional seconds ... */
dly_in, /* ... to receive a packet */
dly in_var,

dly_prop, /* ... of "fixed" propagation delay,
(else see aNeighbor delay) */
/* ???need >= 1 second */

/* ??? array by class, etc., ??? need >= 1 second */
dly que, /* ... of queueing delay, estimate */
dly_que_var,

/* ??? need per pkt & per byte? */
dly_out, /* ... to transmit a packet */
dly_out_var,

lclhdrlen; /* Max length of network-layer header,
so clients can leave room for it */

b

#define NO_RSRCNET ((struct aRsrcNet *) NULL)

#ifndef Ident

/* Build a symbol from two components */
#idefine Ident (x)x

#endif Ident

/* def/name/aloc getid probe relid rlse */

#define aRmVectorList \

aRV (P2P,point-to-point,tcif_PtpAlloc, NoRmCtrl, tcif_ RsIdGet, \
NoRmProbe, tcif RsIdRel, tcif_ PtpRlse) \

aRV (BCST, broadcast, tcif_PtpAlloc,NoRmCtrl, tcif_ RsIdGet, \
NoRmProbe, tcif_ RsIdRel, tcif_ PtpRlse) \

aRV (NUN, ,NoRmAlloc, NoRmCtrl, NoRmIdGet, NoRmProbe, NoRmIdRel, NoORmRlse)

/* def/name/classify clockfast control dqg drain enforce init ng quit
aloc ctrl getid probe relid rlse */

365

\



A A A A A A A A A AN AN A A AN NN AN NN N DD NN NN A NN A NN A AN AN A AN NN AN DN NN A NN A A AN

#ifdef FAIR_SHARE

#define MAYBE FAIR_SHARE \

aTV (FS1, fair-share, fs_classify_func, fs_clockfast_func, fs_control_func,\
gen_dq_func,NoDrain, fs_enforce_func, fs_init_func, \
fs_nglqg_func,NoQuit, \
fs_aloc_func, NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, fs_rlse func)

#else

#define MAYBE_FAIR_SHARE

#endif FAIR_SHARE

#ifdef MY_FIFO

#define MAYBE_MY FIFO \
aTV (MY _FIFO,my_fifo,gen_classify_func,NoClockfast,NoControl,gen_dq_func,\
gen_drain_func, gen_enforce_func,Nolnit,gen_nq_~func, \
NoQuit, NoRsrcAlloc, NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, NoRsrcRlse)
#else

#define MAYBE_MY_FIFO
#endif MY_FIFO

/*

#ifdef SFQ

#define MAYBE_SFQ \

aTV (SFQ,sfq,NoClassify,NoClockfast,NoControl, NoDg,NoDrain, \
NoEnforce, NoInit, NoNg, NoQuit, \

NoRsrcAlloc, NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, NoRsrcRlse)

#else

#define MAYBE SFQ
#endif SFQ

*/

#ifdef SFQ_VC

#define MAYBE_SFQ_VC \

aTV (SFQ_vcC,sfq_vc,sfq_vc_classify,NoClockfast,NoControl, sfq_vc_dq,
sfq_vc_drain,sfq_vc_enforce,sfq_vc_init,sfq_vc_nq,
NoQuit, vc_aloc_func,NoRsrcCtrl,NoRsrcGetid,
NoRsrcProbe, NoRsrcRelid, NoRsrcRlse)

Pl

#else
#define MAYBE_SFQ_VC
#endif SFQ_VC

#ifdef VIRTUAL_CLOCK

#define MAYBE_ VIRTUAL_CLOCK \

aTV (VC,vc,NoClassify,NoClockfast,NoControl,gen_dqg_func,NoDrain, \
vc_enf_func,ve_init_func,vc_ng_func,NoQuit, \
vc_aloc_func,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, NoRsrcRlse)

366



< #else

< #define MAYBE VIRTUAL_ CLOCK

< #endif VIRTUAL_CLOCK

<

< /* %$°*% cpp! no #ifdefs in a #define */

< #define aTcVectorList \

< aTV (FIFO,fifo,NoClassify,NoClockfast,NoControl,gen_dq_func,NoDrain, \
< gen_enforce_func,NoInit,gen_ng_func,NoQuit, \

< NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \

< NoRsrcRelid, NoRsrcRlse) \

< MAYBE_FAIR_SHARE \

< aTV (RD, random-drop, NoClassify,NoClockfast,NoControl,gen_dq_func, \
< NoDrain,gen_enforce_func,NolInit,gen_nqg_func,NoQuit, \

< NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \

< NoRsrcRelid, NoRsrcRlsge) \

< /* MAYBE_SFQ */ \

< MAYBE_SFQ_VC \

< MAYBE_MY_FIFO \
< MAYBE_VIRTUAL_CLOCK \

< /* This must be last -- it has the largest enum value */ \

< aTvVv (NUN,,gen_classify_func,gen_clockfast_func,gen_control_func, \
< gen_dqg_func,gen_drain_func,gen_enforce_func, \

< gen_init_func,gen ng_func,gen_quit_func, \

< NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \

< NoRsrcRelid, NoRsrcRlse)

<

<

<

<

<

<

<

<

<

<

<

<

enum RM_Strategy {

#define aRVv{id,name,aloc,ctrl, idget, probe, idrel, rise) Ident (RM_)id,
aRmVectorList

#undef aRV

}s

enum TC_Algorithm {

/* @#S$% cpp is too primative to allow \ in the formal parameter list */

#define
aTv(id, name,clefy, faclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl, idget,prob
e,idrel, rlse) \
< Ident(TC_)id,

aTcVectorList
#fundef aTV

b

#define NoRmAlloc LintRmAlloc
#define NoRmCtrl LintRmCtrl

#idefine NoRmIdGet LintRmIdGet
#define NoRmProbe LintRmProbe

<

<

<

<

<

< #ifdef lint
<

<

<

<

<

< #define NoRmIdRel LintRmIdRel

367



#define NoRmRlse LintRmRlse

#define NoClassify LintClassify
#define NoClockfast LintClockfast
#define NoControl LintControl
#define NoDg LintDg

#define NoDrain LintDrain
#define NoEnforce LintEnforce
#define NoInit LintInit

#define NoNg LintNg

#define NoQuit LintQuit

#define NoRsrcAlloc LintRsrcAlloc
#define NoRsrcCtrl LintCtrl
#define NoRsrcGetid LintRsrcGetid
#define NoRsrcProbe LintRsrcProbe
#define NoRsrcRelid LintRsrcRelid
#define NoRsrcRlse LintRsrcRlse

#elgse !lint

#define NoRmAlloc ((int (*) ()) 0)
#define NoRmCtrl ({(int (*) (}) 0)
#define NoRmIdGet ((int (*) ()) 0)
#define NoRmProbe ((int (*) ()) 0)
#define NoRmIdRel {(int (*) ()) 0)
#define NoRmR1lse ((int (*) ()) 0)

#define NoClassify ((caddr_t (*) ()) 0)
#define NoClockfast ((void (*) ()) 0)
#define NoControl ({(int (*) (}) 0)
#define NoDg ((struct mbuf *(*) ()) 0)
#define NoDrain ((void (*) ()) 0)
#define NoEnforce ((int (*) ()) 0)
#define NolInit ((int (*) ()) 0)
#define NoNg ((void (*) ()) 0)

#define NoQuit ({(void (*) ()} 0)
#define NoRsrcAlloc (({int (*) (}) 0)
#define NoRsrcCtrl ({(int (*) ()) O0)
#define NoRsrcGetid ((int (*) ()) 0)
#define NoRsrcProbe ((int (*) ()) 0)
#define NoRsrcRelid ((int (*) ()) 0)
#define NoRsrcRlse {({int (*) ()) 0)

#endif lint

#if O

#define Omit (x)

#define NoFunc (x}x

#define aRV{id,name,aloc,ctrl, idget,probe,idrel, rlse)

extern int aloc (), ctrl (), idget (), \
probe ()}, idrel (), rlse ();

368



< aRmVectorList
< #undef aRV
<

<
< ##define
aTV (id, name, clsfy, fsclk,cntrl,dq,drain,enfrc,init,nqg,quit,aloc,ctrl, idget,prob
e,idrel, rise) \
< extern caddr_t clsfy (); extern void fsclk (); \
extern int cntrl ({); extern struct mbuf *dg (); \
extern void drain (); extern int enfrc (); \
extern int init (); extern void nqg (}; \
extern void quit (); \
extern int aloc (), ctrl (), idget (), \

probe (), idrel (), rise ();

aTcVectorList
#undef aTV

#undef Omit
#define Omit (x)x
#undef NoFunc
#define NoFunc (x)

#endif O

A A AN AN N AN AN N A A AN N A AN AN

/*
706a118,121
> #define IFO_ENQUEUE(ifg, m) \

> (st2_ifonqg [st2_ifoid]) (ifqgq,.m,st2_ifoid, 0)
> #define IFO_DEQUEUE(ifqg, m) \
> (st2_ifodq [st2_ifoid]) (ifq,&(m),st2_ifoid,0)

708,7114122

< #define IFTC_ENQUEUE (ifgp, mp) tcif_ng_func( (ifgp)., (mp) )
< #define IFTC_DEQUEUE (ifgp, mp) tcif_dq_func( (ifgp}, &(mp) )
< #endif TRAFFIC_CONTROL

<

832,8414d242

< int ifru_tc_ailg;

/* Struct for resource management info */
struct ifr_rsrcnet_parms {

u_long parml;

u_long parm2;

u_long parm3;

u_long parm4;

} ifru_rsrcnet_req;

58,862d258
#define ifr_tc_alg ifr_ifru.ifru_tc_alg /* traffic control algorithm */

/* resource management specific */
#define ifr_rsrcnet_req ifr ifru.ifru_rsrcnet_req

NN A A A DA NN A A AN A AN

369



88la278,293

VoW OV OV VWV V V VWV VWV V VWV VWV

/* Driver Output Queue Management Strategies: */
#define IFO_GEN 0 /* Generic: fifo using if_snd queue */

#define IFO_VC 1 /* Virtual Clock: uses single if_snd queue, but
* m_type MT_DATASORTED mbufs are inserted, before *
* other MT_xxxs, by m_key (units of microsecs) */

/* ... others ... */

define NIFOIDS B /* allocated size of st2_ifong/st2_ifodq arrays
* ought to be per interface, but no room in ifnet */

extern int st2_ifoid; /* Strategy being used */

extern void (*(st2_ifong [1)) (/*ifqgp.mp,id,aux*/);
extern struct mbuf *{*(st2_ifodq [])) (/*ifgp.mpp.id,aux*/);

370



/*
#ifndef lint

static char recsid_if_aux_c[] = “\

@(#) $Header: if_aux.c,v 1.98 1.98+ 93/04/08 18:00:00 clynn Exp $ \n"; */
VI N S Rl A et b
@(#) | Copyright (c) 1991-1993 by BBN Systems and Technologies,

@(#) A Division of Bolt Beranek and Newman Inc.

e(#)

e (#) Permission to use, copy, modify, distribute, and sell this

@(#) software and its documentation for any purpose is hereby

@(#) granted without fee, provided that the above copyright notice

@ (#)

|
| f
I |
I |
| |
| |
| and this permission appear in all copies and in supporting |
@(#) | documentation, and that the name of Bolt Beranek and Newman |
I I
I I
! |
I |
I |

@ (#) Inc. not be used in advertising or publicity pertaining to

@(#) distribution of the software without specific, written prior

@ (#) permission. BBN makes no representations about the suitability

@ (#) of this software for any purposes. It is provided '’'AS IS'°

@(#) without express or implied warranties.

@(#) *--——m - mm o — o e oo oo oo oo TS oo oo oSoSooomoToooSToTs

/* #endif lint */

/*
M* if_aux.c Generic Traffic Control and Resource Management Routines.
M*

*/

/*

m* Status:

m* Features:

m* Untested Features:
m* Restrictions/Bugs:
m* Things to do:

m*

*/

/* Module Revision History
*
* $Log: if_aux.c,v §

*/

#include <sys/errno.h> /* E* */

#include <sys/types.h> /* for <sys/mbuf.h> */

#include <sys/mbuf.h> /* needs <sys/types.h> & <sys/param.h> */
#include <sys/socket.h> /* for <net/if.h> */

#include <sys/socketvar.h> /* for so_proto */

#include <sys/ioccom.h> /* _IOC*, SIOCxxx */
#include <sys/protosw.h> /* PRU_CONTROL */

371



#include <sys/sockio.h> /* SOIC* */
#include <sys/user.h> /* u.* uid = u.u_uid, pid = u.u_procp->p_pid */

#include <netinet/in.h> /* before st2.h -> st2_api.h; IPPROTO_* ,
in_addr for netinet/if_ether.h*/

#include <net/if.h> /* ifnet, ifqueue, aNetIf, aRV, aTV
for netinet/if_ether.h */

/* Optional (ha, ha) Ethernet Support */

/* If you get an error here, the lines:

* gunif/if_ie.c optional ie INET device-driver

* sunif/if_le.c optional le INET device-driver
are missing from the file sys/sun<N>/conf/files.

#include “ie.h”

#if defined (NIE)

#if NIE

#ifndef WANT ETHERNET
#define WANT_ETHERNET 1
#endif WANT_ETHERNET
#endif NIE

#endif defined (NIE)

#include “le.h”

#if defined (NLE)

#if NLE

#ifndef WANT_ETHERNET
#define WANT_ETHERNET 1
#endif WANT_ETHERNET
#endif NLE

#endif defined (NLE)

#ifndef WANT_ ETHERNET
#define WANT_ETHERNET 0
#endif WANT_ETHERNET

#if WANT_ETHERNET

#include <net/if_arp.h> /* ether_family, for netinet/if_ether.h */

#include <netinet/if_ether.h> /* ether_addr, ether_header, wants net/if arp.h,
net/if.h, netinet/in.h */

#include <sys/errno.h>

#include <netinet/in.h> /* for netinet/if_ ether.h */

#include <net/if_arp.h> /* ether_family, for netinet/if_ ether.h */

#include <netinet/if_ether.h>

extern struct ether_addr etherbroadcastaddr;

extern struct ether family *ether families;
extern int ifgmaxlen;

372



extern int tcif_ether_ output ();
extern struct timeval time;
#endif WANT_ETHERNET

/* Optional HSI/S Support */

/* If you get an error here, the line:
* hgsisdev/hsis.o optional hsis device-driver
* igs missing from the file sys/sun<N>/conf/files.

*/
#include “hsis.h”
#if NHSIS

#include <net/ppp.h>
#endif NHSIS

#ifdef STII

#include <netinet/st2_api.h>
#include <netinet/st2.h>
#else !STII

/* Macros to call dbgstp when errors are detected
*
S* BUGSTOP( m, errinfo, bug_id )

S* BUGRETURN( m, errinfo, bug_id, return type )

S* BUGGOTO( m, errinfo, bug_id, label )

*/

#define BUGRETURN( m, code, where, type ) return ( (type) (code) );
#define BUGGOTO( m, code, where, label ) goto label;

#define BUGSTOP{ m, code, where ) {;}

#endif STII

#ifndef AND
#define AND &&
#define OR ||
#define NOT !
#define EQ ==
#define NE !=
#fendif AND

#ifndef Bcopy
#define Bcopy{srcp,dstp,len) \
(void) bcopy ( (char *) (srcp), (char *} (dstp), (int) (len) )

373



#endif Bcopy

#ifndef Cat2

/* Build a symbol from three components */
#define Cat2(y,z)Ident(y)z

#endif Cat2

#ifndef DimensionoOf

/* Find the dimension of an array */

#define Dimensionof (array) (sizeof (array) / sizeof (arrayl[0]))
#endif DimensionOf

#ifndef Ident

/* Build a symbol from two components */
#define Ident(x)x

#endif Ident

#ifndef ExpAry

/*

D* Expanable Arrays

Di

D* An Expanable Array of “struct aXxx”"s is composed of a list of
D* aXxxList structures, each holding a sub-array of struct aXxx.
D* The initial sub-array can be sized for the expected case with
D* the ability to handle overflow when necessary. Each sub-array
D* specifies the number of array elements allocated (allocated),
D* maximum used (maxused), and a pointer to the next sub-array
D* (nxtXxxp). A “selfp” pointer is provided so that the header
D* of a dynamically allocated block may be located to satisfy

D* the memory management routines.

D*

D* ExpAry (a,t,n)

d* ”a® is the structure name prefix, generally "a”.

d* *t” is the structure name base, XXXx.

d* “n” is the number of array elements allocated when the ExpAry is

d* instantiated.

d*

*/
#define ExpAry(a,t,n) \
struct Cat2 (a,t)List { \

struct Cat2 f{(a,t)List *Cat2 (nxt,t)p;/* Ptr to next part of array */ \

struct aPktDesc *selfp; /* Ptr to aPktDesc of this struct */ \

unsigned short allocated, /* Number of possible entries here */ \

nxtfree; /* Number of smallest free entry, */ \
/* 0..allocated-1 */ \
int objld; /* Type of array this is (ffs) */ \
struct Ident (a)t Ident (t)s[n]; /* Initial entries */ \

374



D* InitaExpAry (alloc,objid)
d* Initializer for an Expanable Array.

d* "alloc” is the number of instantiated array elements.

d* “objid” is the array’s object identifier.
d*
*/

#define InitaExpAry({alloc,objid) 0,0,alloc,0,objid

#endif ExpAry

#ifdef lint /* stop “possible pointer alignment problem” */

#define Mkp(t,p,n) ((t)0+{(int) (p)+(n))

felse !lint

#define Mkp(t,p,n) ((t) ({(char *) (p) + (n)))
#endif lint

#define OffsetOf(x,t) ((int)&(({t*)0)->x))

#ifndef NULL
#define NULL 0
#endif NULL

/* Local Routines */

caddr_t gen_classify func (/* gifcp, mp, pf,
nethdrp, validlen */);
void gen_clockfast_func (/* gifecp */);

int gen_control_func (/* gifcp, op, datap, datalen */);

struct mbuf *gen_dq_func (/* gifcp */);

void gen_drain_func (/* gifcp, statelp, statelp,

state2ul, npktsp, nbytesp */);
int gen_enforce func (/* gifcp, mp, totlen,
int gen_init_func (/* gifcp */);
void gen_nqg_func (/* gifcp, mp */);
void gen_quit_func (/* gifcp */);

#ifdef lint

caddr_t LintClassify (/* gifcp, mp, pf, nethdrp,

void LintClockfast (/* gifcp */);

statelul,

timevalp */);

validlen */);

int LintControl (/* gifcp, cmd, datap, datalen */);

struct mbuf *LintDg (/* gifcp */):
void LintDrain (/* gifcp, statelp, state2p,
statelul, state2ul, npktsp, nbytesp */);

int LintEnforce (/* gifcp, mp, totlen, timevalp */);

375



int LintInit (/* gifcp */):
void LintNg (/* gifcp, mp */):
void LintQuit (/* gifcp */);

int LintRmAlloc (/* gifcp, ridp, arsclpp, ratep,

fdp, destpp */):

int LintRmCtrl (/* gifcp, cmd, datap, datalen */);

int LintRmIdGet (/* gifcp, ridp */);
int LintRmProbe (/* gifcp , TBD */);
int LintRmIdRel (/* gifcp, ridp */);

int LintRmRlse (/* gifcp, ridp, arsclpp, ratep,

fdp, destpp */);
int LintRsrcAlloc (/* gifcp. ridp, arsclpp,
fdp, destpp */);

ratep, bytesp,

int LintRsrcCtrl (/* gifcp, op, datap, datalen */);

int LintRsrcGetid (/* gifcp, ridp */):

int LintRsrcProbe (/* gifcp , TBD */):

int LintRsrcRelid (/* gifcp, ridp */):

int LintRsrcRlge (/* gifcp, ridp, arsclpp,
fdp, destpp */);

#endif lint

bytesp,

bytesp,

ratep, bytesp,

static int tcif_AlgSwitch (/* gifcp, quit */);

struct aNetIf *tfic_dev2gifcp (/* namep */);
void tcif_dq_func (/* ifgp., mpp */);

static int tcif_ dummy_ output (/* ifnetp, pktp,

#if WANT_ETHERNET

static int tcif_ether_output (/* acp, pktp,
fnc_start */);

#if NIE

/*static*/ int tcif_ieoutput (/* acp, pktp,

#endif NIE

#endif WANT_ETHERNET

struct aNetIf *tcif_ ifp2gifcp (/* osifp */);

void tfic_init_gifes (/* */);

int tcif_ioctl (/* cmd, argdatap, ifp */);

#if WANT_ETHERNET

#if NLE

/*static*/ int tcif_leoutput (/* acp, pktp,

#endif NLE

#endif WANT_ETHERNET

void tcif_ng_func (/* ifgp., mp */);

static int tcif_random_drop (/* ifqp */);

/* Local Data Structures */

/*

c* Number of generic network interfaces (DEF_GENIFS). Dummy plus

sockaddrp,

sockaddrp

sockaddrp

ifsockadr */);

*/);

one

c* per physical network interface plus one per Origin and Target on

c* local system.

*/

376



#ifdef STIIAPI
#define DEF_GENIFS
#else

#define DEF_GENIFS
#endif STIIAPI

static struct ifnet
#define TC_MAX 5

struct aNetIf *tcif_gifcheadp

struct _ovrlay {

(10 + 32)

/* Physical plus API pseudo */

(10) /* Physical */

dummyif

{

" dumy " s

0, 576 }; /* name, unit, mtu */

/* TC_NUN if C were less primitive */
static ExXpAry (a,TrafficControl,TC_MAX*DEF_GENIFS)
tcif_cache = { InitaExpAry (TC_MAX*DEF_GENIFS, TC_MAX) };
EXpATry (a,NetIf, DEF_GENIFS)
tfic_genifs = { InitaExXpAry (DEF_GENIFS, 0x9) };
NO_NETIFP;

char ifname|[ IFNAMSIZ ]; /* ifr_name */

char datall]:
};

#ifdef STII

#define TcIfF1lgOwnLE ST2F1gOwnLE

#elge !STII
#define ConfigFlag

#define TcIfFlgOwnLE
static unsigned long

#fendif STII

(x) ((tcif config & (x)) NE 0)

/* Tables for symbolic names */

struct aTCname {
enum TC_Algorithm

char name[16]); /* name */

} tcif_TCnames (]

value;

(0x00100000)
tcif_config = TcIfFlgOwnLE;

/* TC_xxx */

{ /* @#$% cpp is too primative to allow

#define

\ in the formal parameter list */

aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob

e,idrel,rise) \

{ Ident(TC_)id, *id” },

aTcVectorList
#undef aTV
Y

/*

* pre-defined Resource Management vectors

*/

extern int tcif_BctAlloc
tcif_ PtpRlse (), tcif_RsIdGet (), tcif_ RsIdRel 0);

()

'

tcif_ BctR1

377

gse (), tcif_ PtpAlloc (),



struct aRmVector ({

char name [16] ;

struct aResourceManagement rmf;
} tcif_rmvectors(] =

{ /* "<--- name ---->" rsrcalloc rsrcctrl rsrcgetid rsrcprobe rsrcrelid

* rgrcrelse */

#define aRV(id, name,aloc,ctrl, idget, probe, idrel, rlse) \

{ “name”, { aloc, ctrl, idget, probe, idrel, rlse } 1},
aRmVectorList /* Defined in st2_resource.h */
#undef aRV
};
/*
* Pre-defined TrafficControl vectors
*/
#ifdef SFQ_VC
extern int sfq_vc_init(/* gifcp */);
extern void sfq_vc_nq(/* gifcp, mp */);
extern struct mbuf *sfq vc_dq(/* gifcp */);
extern void sfq_vc_drain(/* gifcp, statelp, state2p, statelul, \
state2ul, npktsp, nbytesp */);
extern caddr_t sfq_vc_classify(/*gifcp, mp, pf, nethdrp, validlent*/);
extern int sfq_vc_enforce(/* gifcp, mp, totlen, timevalp */);
#endif SFQ_VC
#ifdef VIRTUAL_CLOCK
extern int vc_aloc_func (/* gifcp, arsclp, bw, srecp, dstp, ctlp */);
extern int vc_enf_func (/* gifcp, pktp, totlen, timevalp */);
extern int vc_init_func (/* gifcp */);
extern void ve_ng_func(/* gifcp, mp */);
#endif VIRTUAL_CLOCK
#ifdef FAIR_SHARE
extern int fs_aloc_func (/* gifcp, arsclp, bw,
srcp, dstp, ctlp */);
extern caddr_t fs_classify_func (/* gifcp, mp, PF_xxx,
nethdrp, validlen */);
extern void fs_clockfast_func (/* gifcp */);
extern int fs_control_func (/* gifcp, op, xxxp, xxxl */),

fs_enforce_func (/* gifcp, mp, totlen, timevalp */),
fs_init_func (/* gifcp */):

extern
extern
#endif

void fs_nqlq_func (/* gifcp, mp */);
int fs_rlse_func (/* gifcp, arsclp, bw, srcp, dstp, ctlp */);
FAIR_SHARE

378



struct aTcVector {

char name[16] ;

struct aTrafficControl tcf;
} tcif_ tcvectors(] =

{ /* @#%% cpp is too primitive to allow \ in the formal parameter list */
#define
aTv(id, name,clsfy, fsclk,cntrl,dqg,drain,enfrc,init,nqg,quit,aloc,ctrl, idget, prob
e,idrel,rlse) \

{ *name”, { clsfy, fsclk, cntrl, dg, drain, enfrc, init, ng, quit, \

aloc, cntrl, idget, probe, idrel, rlse } 1},

aTcVectorlList /* Defined in st2_resource.h */
#undef aTVv

}i

/*
* Bandwidth
*/

struct aBandwidthInfo {
char name[16] ;
unsigned long bw_conf,
bw_load,
bw_resv;
} bws[] =
{ /*"<--- name ---->" conf load resv */
#define ENET_10MB 0
/* nfs complains
{ "ethernet_10mb~”, 1250000, 40000, 20000 },
*/
{ "ethernet_10mb”, 1250000, 400000, 200000 },
#define HSIS_1344 1
{ *heis_1344", 168000, 134400, 115000 },
{1}
}:

/* Driver Output Traffic Control Algorithms */

/*

S* gen_classify func ( gifcp, mp, pf, nethdrp, validlen )

s*

s* Called to classify packet pointed to by mp, of protocol family
s* pf, whose network header is pointed to be nethdrp, where there
s* are validlen octets of network header. Returns a pointer to the
s* flow.

Si

*/

379



caddr_t

gen_classify_ func ( gifcp, mp, pf, nethdrp, validlen )
struct aNetIf +*gifcp;

struct mbuf *mp;

int pf.
caddr_t  nethdrp;
int validlen;

{
#ifdef lint
#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e, idrel,rlse) \
(void) clsfy ( gifcp, mp, pf, nethdrp, validlen ):
aTcVectorList;
#undef aTV
#endif lint

return { (caddr_t) NULL );
}

/i

8* gen_clockfast_func ( gifcp )

B*

e* Called to perform any Traffic Control timer activities.
st

*/

void

gen_ clockfast_func ( gifcp )
struct aNetIf =*gifcp;

{

#ifdef lint
#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel,rlse) \

fsclk ( gifecp );
aTcVectorList;
#undef aTV
#endif lint

return;

}

/*

S* gen_control_func ( gifecp, op, datap, datalen )

s*

s* Called to perform any Traffic Control control operations.
St

*/

380



int

gen_control_func ( gifcp, op, datap, datalen )
struct aNetIf *gifcp;

int op;

caddr_t datap;

int datalen;:

{
#ifdef lint
int error;

#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel,rlse) \

error = cntrl ( gifcp, op, datap, datalen )};

aTcVectorList;

#undef aTV

error = error;

#endif lint

return ( 0 );

s* gen_dq_func ( gifep )
g* Called to get next packet to be sent.
*/

struct mbuf *
gen_dqg_func ( gifcp )

struct aNetIf *gifcp;

{

struct ifqueue *ifqgp = &( gifcp->ifc_snd );
struct mbuf *mp;

#ifdef lint

#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob

e, idrel, rlse) \

mp = dq ( gifcp }:
aTcVectorList;
#undef aTV

#endif lint

IF_DEQUEUE (ifgp, mp);

return ( mp );

}

381



/*

S* gen_drain_func ( gifcp, statelp, statelp, statelul, state2ul, npktsp,
nbytesp )

St

s* Called to flush any packets gqueued for output. Returns the number

s* of dropped packets and dropped bytes.

s*

*/

void

gen_drain func ( gifcp, statelp, state2p, statelul, state2ul, npktsp, nbytesp

)

struct aNetIf *gifcp;

caddr_t statelp, /* ARGSUSED1 */
statelp;

unsigned long statelul,
state2ul,
*npktsp,
*nbytesp;

struct ifqueue *ifqgp = &( gifcp->ifc_snd );

struct mbuf *mp,
*Xp;

int oldpri;

unsigned long npkts
nbytes = 0;

(]
o

#ifdef lint

#define

aTv(id, name,clsfy, feclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl, idget, prob
e,idrel,rlse) \

drain ( gifcp, statelp, statel2p, statelul, state2ul, &( npkts ), &( nbytes )
)
aTcVectorList;
#undef aTV
#endif lint

oldpri = splnet ();
while ( (mp = ifgp->ifg_head) NE (struct mbuf *) NULL )

{
ifgp->ifg_head = mp->m_act;
mp->m_act = (struct mbuf *) NULL;

for { xp = mp ; xp NE (struct mbuf *) NULL ; xXp = xp->m_next )
nbytes += xp->m_len;

npkts++;

m_freem ( mp };

}

ifgp->ifg_tail = (struct mbuf *) NULL;

382



(void) splx ( oldpri );

if ( npktsp NE {(unsigned long *) NULL )
*npktsp = npkts;

if ( nbytesp NE (unsigned long *) NULL )
*nbytegsp = nbytes;

return;

}

/*
S* gen_enforce_func ( gifcp, mp, totlen, timevalp )
S*
s* Called at splimp (or higher depending on driver).
S*

*/

int
gen_enforce_func( gifcp, mp, totlen, timevalp )}
struct aNetIf *gifcp;

gstruct mbuf *mp;

unsigned int totlen; /* ARGSUSED */

struct timeval *timevalp;

{

int result = 0;

#ifdef 1lint

#define

aTv(id, name,clsfy, fsclk,cntrl,dq,drain,enfrc,init,ng,quit,aloc,ctrl, idget, prob
e,idrel, rlse) \

result = enfrc ( gifcp, mp, totlen, timevalp ).

aTcVectorList;

#undef aTV

#endif lint

if ( IF_QFULL ( &( gifcp->ifc_snd ) ) )
return ( -1 );

return ( result );

}

/*

S* gen_init_func ( gifcp )

s*

g* Called to initialize Traffic Control data structures.
s*

*/

383



int
gen_init_func { gifcp )
gstruct aNetIf *gifcp:
{

int result = 0/*NoError*/;

#ifdef lint

#idefine
aTV (id, name,clsfy, fsclk,cntrl,dq,drain,enfrc,init,ng,quit,aloc,ctrl, idget, prob

e,idrel,rlse) \

result = init ( gifcp ):
aTcVectorList;

#undef aTV

#endif lint

/* Nothing to do -- maybe set gifcp->osifp->if_snd.max_len */

return ( result );

}

/*

S* gen_ng_func ( gifcp, mp )

S*

s* Called at splimp (or higher depending on driver).
S*

*/

void

gen_nqg_func( gifcp, mp )
struct aNetIf *gifcp;
struct mbuf *mp;

{
struct ifqueue *ifqgp = &( gifcp->ifc_snd );

#ifdef lint

#define

aTVv(id,name, clsfy, fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl, idget, prob
e,idrel,rlse) \

ng ( gifcp, mp );

aTcVectorList;

#undef aTV

#endif lint

IF_ENQUEUE (ifgp, mp):
return;
}

/*

384



S* gen_quit_func ( gifcp )

si

s* Called to stop using Traffic Control algorithm.
s*

*/

void

gen_quit_func ( gifecp )

struct aNetIf *gifcp:

{

unsigned long npkts,
nbytes;

#ifdef lint

#define
aTv(id, name,clsfy, fsclk,cntrl,dq,drain, enfrc,init,nqg,quit,aloc,ctrl, idget, prob

e,idrel,rlse) \
quit ( gifcp );
aTcVectorList;
#undef aTV
#endif lint

if ( gifcp->iftc_drain NE (void (*) ()) NULL )
(*gifecp->iftc_drain) ( gifcp, (caddr_t) NULL, (caddr_t) NULL,
(unsigned long *) NULL, (unsigned long *) NULL,
&( npkts ), &( nbytes ) };

/* gifcp->osifp->if_snd.ifq _drops += npkts */
return;

}

#ifdef lint

caddr_t

LintClassify ( gifcp, mp, pf, nethdrp, validlen )

struct aNetIf *gifcp;
struct mbuf *mp;

int pf:
caddr_t nethdrp;
int validlen;

{
return {( LintClassify ( gifcp, mp, pf, nethdrp, validlen ) );

}

void
LintClockfast ( gifcp )
struct aNetIf *gifcp:

{

LintClockfast ( gifcp );
return;

385



int

LintControl ( gifcp, cmd, datap, datalen )
struct aNetIf *gifcp;

int cmd;

caddr_t  datap;

int datalen;

{

return ( LintControl

}

( gifcp, cmd, datap, datalen ) );

struct mbuf *
LintDg ( gifcp )
struct aNetIf

{
return ( LintDg ( gifep } ):
}

*gifep:

void

LintDrain ( gifcp, statelp, state2p, statelul, statelul,

struct aNetIf *gifcp;

caddr_t statelp,
statel2p;

unsigned long
state2ul,
*npktsp,
*nbytesp;

statelul,

{
LintDrain ( gifcp, statelp, state2p, statelul, state2ul,

return;

}

int
LintEnforce ( gifcp, mp, totlen, timevalp )

struct aNetIf *gifcp:
struct mbuf *mp;
unsigned int totlen;

struct timeval *timevalp;
{

return ( LintEnforce { gifcp, mp, totlen, timevalp ) );

}

int
LintInit ( gifcp )

struct aNetIf *gifcp;

{

return ( LintInit ( gifcp ) ):
}

void
LintNg ( gifcp, mp )

386

npktsp,

npktsp,

nbytesp )

nbytesp );



struct aNetIf *gifcp;
struct mbuf *mp;

{

LintNq ( gifcp, mp );
return;

}

void
LintQuit ( gifcp )
struct aNetIf *gifcp:
{

LintQuit ( gifcp )
return;

}

int

LintRmAlloc ( gifcp, ridp, arsclpp, ratep, bytesp,

struct aNetIf *gifcp;

struct aRsrcId *ridp;

gtruct aRsrcClnt **arsclpp;

unsigned long *ratep,
*bytesp;

struct aFlowDesc *fdp;

struct sockaddr **destpp;

{
return { LintRmAlloc ( gifcp, ridp, arsclpp,

}

int
LintRmctrl ( gifcp, cmd, datap, datalen )
struct aNetIf =*gifcp:

int cmd;
caddr_t  datap:
int datalen;

{

ratep,

return { LintRmCtrl ( gifcp, cmd, datap, datalen }

}

int

LintRmIdGet ( gifcp, ridp )
struct aNetIf *gifcp:
struct aRsrcld *ridp:;

{
return ( LintRmIdGet ( gifcp, ridp ) ):

}

int

LintRmProbe ( gifcp /* ., TBD */ )
struct aNetIf *gifcp;

{

return ( LintRmProbe ( gifcp /* , TBD */ ) );

}

387

fdp,

bytesp,

)

destpp )

fdp,

destpp )

Y



int
LintRmIdRel ( gifcp, ridp )

struct aNetIf *gifcp;

struct aRsrcId *ridp;

{

return ( LintRmIdRel ( gifcp, ridp ) )
}

int

LintRmRlse ( gifcp, ridp, arsclpp, ratep, bytesp,
struct aNetIf *gifcp;

struct aRsrcId “*ridp;

struct aRsrcClnt **arsclpp:

unsigned long *ratep,

*bytesp;

struct aFlowDesc *fdp;

struct sockaddr **destpp;

{

return ( LintRmRlse ( gifcp, ridp, arsclpp, ratep,

}

int

LintRsrcAlloc ( gifcp, ridp, arsclpp, ratep, bytesp,

struct aNetIf *gifcp;

struct aRsrcId *ridp:;

struct aRsrcClnt **arsclpp;

unsigned long *ratep,
*bytesp;

struct aFlowSpec *fdp;

struct sockaddr **destpp:

{

fdp,

return ( LintRsrcAlloc ( gifep, ridp, arsclpp, ratep,

fdp, destpp ) );

int
LintRsrcCtrl ( gifcp, op, datap, datalen )
struct aNetIf *gifcp;

int op;
caddr_t datap;
int datalen;

{

return {( LintRsrcCtrl ( gifcp, op, datap, datalen ) );

}

int
LintRsrcGetid ( gifcp, ridp )

struct aNetIf *gifecp;

struct aRsrcId *ridp;

{

return { LintRsrcGetid ( gifcp, ridp ) );

388

destpp )

bytesp, fdp, destpp )

fdp, destpp )

bytesp,

)



int
LintRsrcProbe ( gifcp /* , TBD */ )

struct aNetIf *gifcp;

{

return ( LintRsrcProbe ( gifcp /* , TBD */ ) );
}

int
LintRsrcRelid ( gifecp, ridp )

struct aNetIf *gifcp:

struct aRsrclId *ridp;

{

return ( LintRsrcRelid ( gifcp, ridp ) ).
}

int
LintRsrcRlse ( gifcp, ridp, arsclpp, ratep, bytesp, fdp, destpp )
struct aNetIf *gifcp;
struct aRsrcId *ridp;
struct aRsrcClnt **arsclpp;
unsigned long *ratep,
*bytesp;
struct aFlowDesc *fdp;
struct sockaddr **destpp:;
{
return ( LintRsrcRlse ( gifcp, ridp, arsclpp, ratep, bytesp,
fdp, destpp ) );

#endif lint

/*

S* tcif_AlgSwitch ( gifcp, quit )

g*

g8* Switch to new traffic control algorithm on the specified interface.
st

*/
static int /* Next bugid 0x71203 */
tcif AlgSwitch( gifcp, quit ) /* from init_gifcs */
struct aNetIf *gifcp;
int quit;
{
struct mbuf *mp;
int alg = (int) gifcp->alg_next,
oldpri;
unsigned long nbytes,
npkts;

struct aTrafficControl *tcp;

389



/* Verify can switch before make changes */

switch ( alg )

{

default: printf ( *“tcif_AlgSwitch: Invalid Algorithm (%u)\n”, alg );
gifep->alg_next = gifcp->alg;

return ( EINVAL );

case TC_FIFO: break;

#ifdef FAIR_SHARE
case TC_FS1: break;
#endif FAIR_SHARE

case TC_RD: break;

#ifdef MY_FIFO
case TC_MY_FIFO: break;
#endif MY _FIFO

/a

#ifdef SFQ

case TC_SFQ: break;
#tendif SFQ

*/

#ifdef SFQ_VC
case TC_SFQ_VC: break;
#endif SFQ_VC

#ifdef VIRTUAL_CLOCK

case TC_VC: break;
#endif VIRTUAL_CLOCK

} /* end of alg switch */

if ( {int) TC_NUN > TC_MAX )

{

printf ( “tcif_AlgSwitch: TC_NUN (%u) must be <= TC_MAX {(%u) \n",
TC_NUN, TC_MAX );

return ( ENOSR );

}

oldpri = spld4 (); /* bring interface down, wait, ... */

/* Locate cache area */

if ( gifcp->per_alg EQ (caddr_t) NULL )

{

if ( tcif_cache.allocated < (tcif_cache.nxtfree + TC_MAX) )
return ( ENOMEM ); /* ??? add more */

390



tcp = &( tcif_ cache.TrafficControls|[ tcif_ cache.nxtfree ] };
tcif_cache.nxtfree += TC_MAX;

bzero ( (char *) tcp, TC_MAX * sizeof (tcif_ cache.TrafficControls|[0]) );
gifcp->per_alg = (caddr_t) tcp;

}

tcp = (struct aTrafficControl *) gifcp->per_alg; /* lint ppap */
#if 0

/* Cache pervious algorithm’s info */

Bcopy ( &( gifcp->tcf ), /*->*/ (tcp + gifcp->iftc_alg), sizeof (* tcp) )
#endif 0

/* Flush old queue(s) */

if ( gifcp->iftc_drain NE (void (*) ()) NULL )

{

(*gifcp->iftc_drain) ( gifcp, gifcp->iftc_statelp, gifcp->iftc_state2p,
gifep->iftc_statelul, gifcp->iftc_state2ul,
&npkts, &nbytes ) ;

#ifdef lint

#define

aTv (id, name, clsfy, fsclk,cntrl,dq,drain, enfrc,init,nqg,quit,aloc,ctrl, idget,prob

e, idrel, rise) \

drain ( gifcp, gifcp->iftc_statelp, gifcp->iftc_state2p, \
gifcp->iftc_statelul, gifcp->iftc_state2ul, &npkts, &nbytes );

aTcVectorList

#undef aTV

#endif lint

}
else
{
for (;;)
{
if ( gifcp->iftc_dg NE (struct mbuf *(*) ()) NULL )
mp = (*gifcp->iftc_dqg) ( gifecp );
else
{
IF_DEQUEUE ( &( gifcp->osifcp->if_snd ), mp );
}

if ( mp EQ (struct mbuf *) NULL )
break;

#ifndef STII
m_freem ( mp );
#else STII
FreePkts ((struct aPktDesc *) mp);
#endif STII
} /* end of forever loop */

}

if ( quit && (gifcp->iftc_quit NE (void (*) ()) NULL) )

391



(*gifcp->iftc_quit) ( gifcp };

#ifdef lint

#define

aTv (id, name, clsfy, fsclk,cntrl,dq.drain,enfrc,init,nq,quit,aloc,ctrl, idget,prob
e,idrel,rlse) \

quit ( gifcp );

aTcVectorList;

#undef aTV

#endif lint

#if 1

/* Cache pervious algorithm’s info */

Bcopy ( &( gifcp->tcf ), /*->*/ (tcp + gifcp->iftc_alg), sizeof (* tcp) );
#endif 1

/* Switch algorithms */
gifep->alg = (short) alg;

tcp += alg; /* Restore previous parameters */
Bcopy ( tcp, /*->*/ &( gifcp->tcf ), sizeof (gifcp->tcf) );
if ( (gifep->iftc_statelp EQ (caddr_t) NULL)

AND (gifcp->iftc_state2p EQ (caddr_t) NULL)

AND (gifcp->iftc_statelul EQ 0)

AND (gifcp->iftc_state2ul EQ 0) )

{

switch ( alg )

{

default:

printf ( “tcif_ AlgSwitch: Invalid Algorithm (%u); using FIFO\n",
alg )

gifcp->alg = (short) TC_FIFO;

gifcp->alg_next = (short) TC_FIFO;
gifcp->tcf = tcif_ tcvectors[ (int) TC_FIFO ].tcf;
break;

#define

aTv(id, name,clsfy, fsclk,cntrl,dq,drain,enfrc,init,ng,quit,aloc,ctrl, idget,prob
e,idrel,rlgse) \

case Ident (TC_)id: \

gifcp->tcf = tcif tcvectors| (int) Ident(TC_)id ].tcf; \
break;
aTcVectorList

#undef aTV
} /* end of alg switch */
}

if ( gifcp->iftc_init NE (int (*)()) NULL )
(void) (*gifcp->iftc_init) ( gifcp ); /* ??? check for error & undo */

392



splx ( oldpri ); /* bring interface back up */

#if ©

if ( gifcp->iftc_clockfast NE (void (*) ()) NULL )
(*gifcp->iftc_clockfast) ( gifcp );
#tendif

return ( 0 );

}

/t

S* tfic_dev2gifcp ( namep )

S*

s* Find generic interface given device name & unit string.
S*

*/

struct aNetIf *
tfic_dev2gifcp( namep )
char *namep;

{
struct aNetIf *gifcp = tcif_ gifcheadp;

while ( gifcp NE (struct aNetIf *) NULL )

{
if ( stremp ( namep, &{( gifcp->ifc_name([0] ) ) EQ 0 )
return ( gifcp ):

gifcp = gifcp->ifc_nextp:
}

return ( (struct aNetIf *) NULL );
}

/* catch macro calls and convert into proper interface calls */

/*
S* tcif_dq_func( ifgp, mpp )}
S*

s* Convergence routine from SunOS IF_DEQUEUE to Traffic Control
s* functions. Arguments are address if ifnet’s ifqueue and address
e* of pointer for packet.

*
s* Called at splimp (or higher, depending on driver).
s*

*/

void

tcif_dq_func( ifgp, mpp )
struct ifgueue *ifgp;

393



struct mbuf **mpp;
{
struct aNetIf *gifcp:
struct mbuf *mp,
* (*dgfuncp) () ;

/* Map ifqueue pointer back to ifnet, then to extended ifnet (aNetIf) */
gifep = tcif_ ifp2gifcp( Mkp (caddr_t,ifgp,
(-offsetof (if_snd,struct ifnet))) );

/* dummyif0 / mp = NULL; ?°?2? */

/* 1f no specific dequeue function is supplied, use specified gueue */

if ( (3gfuncp = gifcp->iftc_dqg) NE (struct mbuf * (*)()) NULL )
mp = (*dgfuncp) ( gifcp ); /* Use specific dequeue function */
else /* Use generic dequeue function */

IF_DEQUEUE (ifgp, mp):
*mpp = mp; /* Return ptr to packet, if any */

return;

}

static int
tcif_dummy_output ( ifnetp, mp, sap )
struct ifnet *ifnetp; /* ARGSUSED */
struct mbuf *mp; /* we free */
struct sockaddr *sap:;
{
#ifndef STIIX
m_freem ( mp );
#else STII
FreePkts ((struct aPktDesc *} mp);
#endif STII

ifnetp->if_oerrors++;
return ( 0 };

}

#if WANT_ETHERNET

/w

S* tcif_ether_output ( acp, pktp, sockaddrp, fnc_start )

S*

s* Routine called to build ethernet packets and gueue them for

s* transmission.
*

394



* Just because we don’'t have source to be able to recoompile
* ether_output with a different IF_ENQUEUE macro in <net/if.h>
* & fix randomdrop.
S*
* Called indirectly via ifnet if output dispatch.

*

*/

static int
tcif_ether_output( acp, pktp, sockaddrp, fnc_start )
struct arpcom *acp; /* begins with struct ifnet */
struct mbuf *pktp; /* packet to be sent, we dispose of it */
struct sockaddr *sockaddrp:; /* sockaddr of some flavor */
void (*fnc_start) (); /* driver output-start function */
{
unsigned short ether_type; /* ether_type */
int len, /* of packet */
oldpri;
struct ether_addr dst_ea; /* an ethernet address */
struct ether_family *efp; /* to find appropriate digpatches */
struct ether_header *ehp; /* ehternet header */
struct mbuf *mh = pktp, /* mbuf that will have ether header */
*bcstp = NULL, /* copy of packet if to be broadcast */
*mp; /* to scan packet to find length */
#ifdef TRAFFIC_CONTROL
struct aNetIf *gifcp;
caddr_t flowp,
nethdrp;
int validlen;
unsigned long key,
rsrc;
unsigned short pf;
#endif TRAFFIC_CONTROL

if ( (acp->ac_if.if_flags & (IFF_RUNNING | IFF_UP))
NE (IFF_RUNNING | IFF_UP) )

{

m_freem ( pktp ):
return ( ENETDOWN ) ;
}

#ifdef TRAFFIC_CONTROL
gifcp = tcif_ ifp2gifcp( (caddr_t) acp ); /* dummyif0 ?7? */

pf = PF_UNSPEC;
nethdrp = mtod ( pktp, caddr_t);
validlen = pktp->m_len;

if ( pktp->m_type EQ MT_TCDATA )

{
flowp = pktp->m_tcflowp;

395



rsrc = pktp->m_tcrsrc;
key = pktp->m_tckey;

}

else

{

flowp = (caddr_t) NULL;
rsrc = 0;

key = 0;

}
#endif TRAFFIC_CONTROL

/* Map protocol specific address in sockaddr to local network address */

switch ( sockaddrp->sa_family )
{
case AF_INET: /* 2 IP packets */
oldpri = splimp ():
{
if | acp—)ac_lastip.s_addr /* is translation in cache */
NE ((struct sockaddr in *) sockaddrp)->sin_addr.s_addr )
{ /* no */
acp->ac_lastip = ((struct sockaddr_in *) sockaddrp)->sin_addr;
if ( NOT arpresolve ( acp, pktp ) ) /* look it up */
{ /* not in table, arping it */
acp->ac_lastip.s_addr = 0; /* no valid translation */
splx ( oldpri ):
return ( 0 ); /* held til arp’'d, if_output called */
}
}

#ifdef sparc /* alignment is at least octet2 */
« (short *) &{ dst_ea.ether_addr_octet([0] ) /* lint ppap */
= * (short *) &( acp->ac_lastarp.ether_addr_octet([0] );
*+ (short *) &( dst_ea.ether_addr_octet[2] )} /* lint ppap */
= *» (short *) &{( acp->ac_lastarp.ether_addr_octet([2] ):
+ (short *) &( dst_ea.ether_addr_octet[4] ) /* lint ppap */
= * (short *) &¢( acp—>ac_lastarp.ether_addr_octet[4] )y ;
#else !sparc
dst_ea = acp->ac_lastarp;
#endif sparc
ether_type = ETHERTYPE_IP;
#ifdef TRAFFIC_CONTROL
pf = PF_INET;
#endif TRAFFIC_CONTROL
}
splx ( oldpri };
break;

case AF_UNSPEC: /* 0 Ethernet packets */
/* sockaddr has ethernet header */

ehp = (struct ether_header *) &( sockaddrp->sa_data[0] ); /* lint ppap */

#ifdef sparc /* alignment is at least octet2 */

396



* (ghort *) &( dst_ea.ether_addr_octet[0} ) /* lint ppap */
= * (short *) &( ehp->ether_dhost.ether_addr_octet[0] );

* (short *) &( dst_ea.ether_addr_octet[2] ) /* lint ppap */
= * (short *) &( ehp->ether_dhost.ether_addr_octet[2] ):
* (short *) &( dst_ea.ether_addr_octet[4] ) /* lint ppap */

= * (short *) &( ehp->ether_dhost.ether_addr_octet[4] );
#else !sparc
dst_ea = ehp->ether_dhost;
#endif sparc
ether_type = ehp->ether_type; /* use specified ether_type */
#ifdef TRAFFIC_CONTROL
if ( ether_type EQ ETHERTYPE_IP )
pf = PF_INET;
#ifdef STII
else if ( ether_type EQ ConfigParm (ethertype) )
pf = PF_COIP;
#endif STII
#tendif TRAFFIC_CONTROL
break;

default: /* Lookup other types */

efp = ether_ families; /* List of known types */
while ( efp )

{

if ( efp->ef_family EQ sockaddrp->sa_family )
break; /* Found address family */

efp = efp->ef_next; /* try next */
}

if ( efp ) /* if found table entry */
{
if ( efp->ef_outfunc ) /* better "ave address translation */
{
if ( efp->ef_outfunc ( sockaddrp, pktp, acp, &{ dst_ea y ) )
return ( 0 ); /* ef_outfunc disposed of pktp */
/* classify, enforce, ng ??? */

if ( efp->ef_ethertype EQ 1500 ) /* ? ETHERMTU */
{

len = 0; /* find packet length */

if ( mp = pktp )

do

{

len += mp->m_len;

mp = mp->m_next;

} while ( mp )

ether_type = len; /* use length as “ether_type” */
/* leave pf = PF_UNSPEC */

break;

}
ether_type = efp->ef_ethertype; /* ether_type from table */

397



#ifdef TRAFFIC_CONTROL
pf = efp->ef_ family;
#endif TRAFFIC_CONTROL

break:;

}

}
identify ( acp ):; /* unsuported ether_type, drop pkt */
printf ( “can’t handle AF Ox%x”, sockaddrp->sa_family )

m_freem ( pktp );
return ( EAFNOSUPPORT ) ;

break:
} /* end of sockaddrp->sa_family switch */

/* Check if destined to the broadcast address */

if { ( * (short *) &{( etherbroadcastaddr.ether_addr_octet(4] )

EQ * (short *) &( dst_ea.ether_addr_octet{4] )) /* lint ppap */
AND ( * (short *) &( etherbroadcastaddr.ether_addr_octet[2] )

EQ * (short *) &{( dst_ea.ether_addr_octet[2] })) /* lint ppap */
AND ( * (short *) &( etherbroadcastaddr.ether_addr_octet[0] )

EQ * (short *) &( dst_ea.ether_addr_octet[0] )) ) /* lint ppap */

{

/* yes, make copy for local delivery */
bestp = (struct mbuf *) m_copy ( pktp, 0, M_COPYALL );
}

/* Find space for ethernet header */

if ( (pktp->m_off <
#ifdef TRAFFIC_CONTROL
(unsigned long) OffsetOf (m_tcdat[0],struct mbuf)
#else !TRAFFIC_CONTROL
MMINOFF
#endif TRAFFIC_CONTROL
+ gizeof (struct ether_header))
OR ( M_HASCL({ pktp )
#ifdef MCL_STATIC_HDR
AND (pktp->m_cltype NE MCL_STATIC_HDR)
#endif MCL_STATIC_HDR
) ) /* no room in first mbuf, prepend another */

{
#ifdef TRAFFIC_CONTROL

mh = (struct mbuf *) m_get ( M_DONTWAIT, MT_TCDATA );
#else !TRAFFIC_CONTROL

mh = (struct mbuf *) m_get ( M_DONTWAIT, MT_ HEADER ):
#endif TRAFFIC_CONTROL

if (! mh)

{
m_freem ( pktp );

398



m_freem ( bcstp )

ether_error ( acp, “WARNING: no mbufs” );
return ( ENOBUFS };

}

#ifdef TRAFFIC_CONTROL /* XXX B8 => mod x10 aligned */
mh->m_off = OffsetOf (m_tcdat[8],struct mbuf);

#endif TRAFFIC_CONTROL

mh->m_next = pktp; /* prepend */

mh->m_len = sizeof ( struct ether_header );

}

else /* insert header */

{

pktp->m_off -= sizeof ( struct ether_header );
pktp->m_len += sizeof ( struct ether_header );

}

/* Construct ethernet header */
ehp = mtod ( mh, struct ether_header *);

#ifdef sparc /* alignment is at least octet2 */

* (short *) &( ehp->ether_dhost.ether_addr_octet[0] )
* (short *) &( dst_ea.ether_addr_octet[0] );
* (short *) &( ehp->ether_dhost.ether_addr_octet[2] )
* (short *) &( dst_ea.ether_addr_octet[2] };
* (short *) &( ehp->ether_dhost.ether_addr_octet[4] )
* (short *) &( dst_ea.ether_addr_octet[4] );
#else !gparc

ehp->ether_dhost = dst_ea;
#endif sparc

ehp->ether_type = ether_type;:

/* Deliver local copy if broadcast */

if ( bcstp )
{
mp = bcstp;

len = 0; /* find length */
/* if ( becstp ) */
do

{

len += mp->m_len;

mp = mp->m_next;

} while ( mp ):

#ifdef sparc /* alignment is at least octet2 */
* (short *) &( ehp—>ether_shost.ether_addr_octet[0] )

= * (short *) &( acp->ac_enaddr.ether_addr_octet[0] );

399

/* lint ppap */
/* lint ppap */

/* lint ppap */

/* lint ppap */

'



%

*

#el

(short *) &( ehp->ether_shost.ether_addr_octet[2) ) /* lint ppap */
* (ghort *) &( acp->ac_enaddr.ether_addr_octet[2] );
(short *) &( ehp->ether_shost.ether_addr_octet[4] )} /* lint ppap */
* (gshort *) &( acp->ac_enaddr.ether_addr_octet[4] );

se !sparc

ehp->ether_shost = acp-

#en

dif sparc

>ac_enaddr;

/* deliver local copy */
do_protocol ( ehp, bcstp, acp, len );

}

#if
le
if
do
{

1

def TRAFFIC_CONTROL
n = mh->m_len;
{ (mp = mh->m_next)

en += mp->m_len;

NE (struct mbuf *) NULL )

} while ( (mp = mp->m_next) NE (struct mbuf *) NULL );

mh

->m_tcrsrc = rsrc;

mh->m_tckey = key;

key = mh->m_type;

mh->m_type = MT_TCDATA;

if
{
if
f
/*
}

/* *** mbuf stats update below */

( flowp EQ (caddr_t) NULL )
( gifep->iftc_classify NE (caddr_t (*) ()) NULL )
lowp = (*gifcp->iftc_classify) ( gifcp, mh, pf, nethdrp, validlen );

??7? else “flow 0" */

mh->m_tcflowp = flowp;
#endif TRAFFIC_CONTROL

/* Engueue packet for output & start driver */

ol
{

#if

if
{

dpri = splimp ();

def TRAFFIC_CONTROL
( key NE MT_TCDATA )

/* *** ypdate mbuf usage stats now */

mbstat.m_mtypes [key]l --;
mbstat.m_mtypes [MT_TCDATA] ++;

}

if

{

( (gifcp->iftc_enforce EQ (int (*) ()) NULL)
OR {(validlen = (*gifcp->iftc_enforce)
( gifecp, mh, len, (struct timeval *) NULL)) EQ -2} )

/* Packet not subject to traffic control */

400



if ( validlen EQ -2 )

{

mh->m_type = MT_DATA; /* No-sort */
mbstat.m_mtypes|[ MT_DATA ]++;
mbstat.m mtypes[ MT_TCDATA ]--;

}

validlen = 0;

if ( IF_QFULL( &{( acp->ac_if.if snd ) ) )
{

/* Queue is full, make room for this packet */

ether_error ( acp, “WARNING: if_ snd full” );

/* drop a pkt */

validlen = tcif_random drop ( &( acp->ac_if.if snd ) );
}

}

/* Drop this packet */

if ( validlen EQ -1 )

{

acp->ac_if.if_snd.ifq_drops++;

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_queued += validlen - len */

m_freem ( mh );

splx ( oldpri );

return ( ENOBUFS ); /* ??? better error */
}

if ( gifcp->iftc_ng NE (void (*) ()) NULL )
{

(*gifcp->iftc_nqg) ( gifcp, mh );
}
else
{
IF_ENQUEUE ( &( acp->ac_if.if_snd ), mh );

}

if ( validlen > 0 )

{

acp->ac_if.if snd.ifq_drops++;

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_queued += validlen - len */

/* don’'t want to return an error as it may have higher layer
ramifications for pkt instead of what was dropped */

}
#else !TRAFFIC_CONTROL

401



if ( IF_QFULL({ & acp->ac_if.if_snd ) ) )

{

/* Queue is full, make room for this packet */
ether_error ( acp, “WARNING: if snd full” ):

len = tcif_random_drop ( &( acp->ac_if.if_snd ) ); /* drop a pkt */
if ( len > 0 )

{

acp->ac_if.if_snd.ifq_drops++;

/* update drop stats -- no good way to do keep accurate stats */

/* bytes_dropped += len */

/* bytes_qgueued += validlen - len */

}
}

/* append new paacket */

IF_ENQUEUE ( &( acp->ac_if.if_snd ), mh );
#endif TRAFFIC_CONTROL

(*fnc_start) | acp->ac_if.if_unit ); /* (re)start device output */

}
gplx ( oldpri );

return ( 0 };

}

#if NIE

/t

S* tcif_ieoutput ( ifp, pktp, sockaddrp )
st

s* Routine called to send packets via the ethernet.

* Just because we don’'t have source to be able to recoompile
* ether_output with a different IF_ENQUEUE macro in <net/if.h>
* & fix randomdrop.
s*
Called via ifnet if_output dispatch.

L 4
*/
extern void iestartout ();

/*static*/ int

tcif_ieoutput( acp., pktp, sockaddrp )
struct arpcom *acp;

struct mbuf *pktp:

struct sockaddr *sockaddrp;

{

402



return ( tcif_ether_ output( acp, pktp, sockaddrp, iestartout ) };
}

#endif NIE

#if NLE

/*

S* tcif leoutput ( ifp, pktp, sockaddrp )
s*

s* Routine called to send packets via the ethernet.

* Just because we don’t have source to be able to recoompile
* ether_output with a different IF_ENQUEUE macro in <net/if.h>
& fix randomdrop.

*
*
* Called via ifnet if_ output dispatch.
*
*

extern void lestart ();

/*static*/ int /* Next bugid 0x */

tcif_ leoutput( acp, pktp. sockaddrp )

gstruct arpcom *acp;

struct mbuf *pktp;

struct sockaddr *sockaddrp;

{

return ( tcif_ether_ output( acp, pktp, sockaddrp, lestart ) );

}

#endif NLE
#endif WANT_ETHERNET

/*

Ss* tcif ifp2gifcp ( osifhandle ) from IF_Ext macro

s*

s* Returns the Generic Network Interface pointer corresponding to
s* the given 0OS handle (BSD: (struct ifnet *)).

S*

*/

struct aNetIf * /* Next bugid 0x71102 */
tcif_ifp2gifcp( osifp ) /* from */ /* (macro) */
caddr_t osifp;

{

static int gave_warning = 0;
struct aNetIf *agip = tcif_gifcheadp;

403



/* ??? Ought to have faster algorithm, but only a few interfaces. */

for ( ; agip NE NO_NETIFP ; agip = agip->ifc_nextp )
{

if ( (caddr_t) agip->osifcp EQ osifp )

return ( agip ); /* Found match */

if ( osifp EQ (caddr_t) agip )}

{ /* be forgiving */

if ( gave_warning EQ 0 )

{

printf ( “tcif_ ifp2gifcp: ifnetp instead of gifcp (%x)\n”,

agip )

gave_warning++;

}

else if ( gave_warning < 0 )

panic { “tcif_ifp2gifcp: ifnetp instead of gifcp\n” );

return ( agip ); /* Found match */

} /* end of for loop */

return ( &( tfic_genifs.NetIfs[0] ) ); /* ??? Send to blackhole, timeout */
}

/*

S* tfic_init_gifcs ()

Bt

g* Routine to initialize generic network interfaces.
sﬁ

*/

void
tfic_init_gifes() /* from ??? */
{
char *sSp;
int left,
len;
struct aNetIf *agip = &( tfic_genifs.NetIfs[0] ),
**tailpp = &( tcif_gifcheadp ).
extern struct ifnet *ifnet; /* BSD's global list of interfaces */
struct ifnet *osifp = ifnet; /* BSD's global list of interfaces */

if ( tcif_gifcheadp NE (struct aNetIf *) NULL )
return; /* already done */

/* Create a dummy interface to try and fail gracefully if something is
* broken.

404



*/

bzero( (char *) agip, sizecf (struct aNetIf) );
agip->ifc_nextp = NO_NETIFP;
agip->osifcp = &( dummyif );

agip->lclhdrlen = sizeof (((struct sockaddr *)0)->sa_data);:
agip->ifc_output = tcif dummy output;

(void) strcpy ( &( agip->namebuf([0] ), /*<-*/ “dummyif0” );
agip++;

tfic_genifs.nxtfree++;

/* Create a Generic Network Interface for each 0S interface */
for ( ; osifp NE (struct ifnet *) NULL ; osifp = osifp->if next )
{

/* FYI: ifnet->if_addrlist not yet valid */

/* Logical end of addresses per interface loop */

if ( (tfic_genifs.nxtfree +1) >= tfic_genifs.allocated )

{

printf ( “Too many network interfaces (%s%u); make DEF_GENIFS larger\n”,
osifp->if_name, osifp->if_ unit );

break; /* out for next interface */

}

agip->osifcp = osifp;
agip->lclhdrlen = sizeof (((struct sockaddr *)0)->sa_data);

sp = &( agip->namebuf[0] );

left = sizeof (agip->namebuf) - 2;
(void) strncpy ( sp, osifp->if name, left );
len = strlen ( sp );

sp += len;

left -= len;

if ( left < 5 )

*gp++ = ‘1?27,

else

{

len = osifp->if_unit & OxXFFFF;
if ( len >= 10000 )

*gp++ = ‘0’ + (len / 10000), len %= 10000;
if ( len >= 1000 )

*gp++ = ‘0’ + (len / 1000), len %= 1000;
if ( len >= 100 )

*gp++ = ‘0’ + (len / 100), len %= 100;

if ( len >= 10 )

*gp++ = ‘0’ + (len / 10), len %= 10;

*gp++ = ‘0’ + len;

}

*sp = '\0";

405



#if WANT_ETHERNET
/* Don’'t have source access to change:
» 1) IF_ENQUEUE / IF_DEQUEUE macros in ether_output

* nor 2) random_drop

*/
#if NLE
if ( strcmp ("le”,osifp->if_name) EQ 0 )

{
if ( configFlag (TcIfFlgOwnLE) )

{
extern int leoutput (/* ifnetp, pktp, sockaddrp */):

agip-»>lclhdrlen = sizeof {(struct ether_header);
if ( osifp->if_output EQ leoutput )
osifp->if_output = tcif leoutput;
}
/*
cwl ?7?? default TrafficControl */
agip->bw_conf = bws[ (int) ENET_10MB ] .bw_conf;
bws[ (int) ENET_10MB ) .bw_load;
bws[ (int) ENET_10MB ] .bw_resv;

[}

agip->bw_load
agip->bw_resv

agip->rmf = tcif_rmvectors| (int) RM_BCST ].rmf;
#ifdef VIRTUAL_CLOCK
/* agip->tcf = tcif_tcvectors| (int) TC_VC }.tcf; */
agip->alg_next = (short) TC_VC;
#else !VIRTUAL_CLOCK
agip->alg_next = (short) TC_RD:
#endif VIRTUAL_CLOCK
}
#endif NLE
#if NIE
if ( strcmp ("ie”,osifp->if_name) EQ O )
{
if ( configFlag (TcIfFlgOwnLE) )

{
extern int ieoutput (/* ifnetp., pktp, sockaddrp */};

agip->lclhdrlen = sizeof (struct ether_header);
if ( osifp->if_output EQ ieoutput )
osifp->if_output = tcif_ieoutput;
}

/*

cwl 7?77 default TrafficControl */
agip->bw_conf = bws[ (int) ENET_10MB ] .bw_conf;
agip->bw_load = bws[ (int) ENET_10MB 1 .bw_load;
agip->bw_resv bws[ {(int) ENET_10MB ] .bw_resv;

agip->rmf = tcif_rmvectors[ (int) RM_BCST ] .rmf;
/* agip->tcf = tcif_tcvectors[ (int) TC_VC ].tcf; */
agip->alg_next = {(short) TC_VC;

406

~



}

#endif NIE
#endif WANT_ETHERNET

#if NHSIS
if ( strcemp ("hsis”,osifp->if_name)
{

agip->lclhdrlen = PPP_HDRSPACE;

/* #ifdef DARTNET */

if ( (osifp->if_unit % 4) EQ O )

/* #endif DARTNET */

{

/*

ewl ??? default TrafficControl */

agip->bw_conf
agip->bw_load
agip->bw_resv

agip->rmf = tcif_rmvectors[ (int)

#ifdef VIRTUAL_CLOCK
/* agip->tcf = tcif_tcvectors[ (int) TC_VC ].tcf:

agip->alg_next = (short) TC_VC;
#else !VIRTUAL_CLOCK
agip->alg_next = (short) TC_FIFO;
#endif VIRTUAL_CLOCK
}
}
#endif NHSIS
/*
cwl ??2? do *lo”, too? */
/*

EQ 0 )

bws[ (int) HSIS_1344 ].bw_conf;
bws[ (int) HSIS_1344 ] .bw_load;
bws[ (int) HSIS_1344 ] .bw_resv;

RM_P2P ].rmf;

cwl ??? fill in default dq/ng/enf */

}

tcif_AlgSwitch( agip, /*quit*/0 );

*tailpp = agip:
tailpp = &( agip->ifc_nextp );

agip++;
tfic_genifs.nxtfree++;

} /* end of all interfaces */
*tailpp = &( tfic_genifs.NetIfs[O0]

return;

Y

407

*/



int

tcif_joctl( cmd, argdatap, ifp )

{

int cmd;
caddr_t argdatap;
struct ifnet *ifp;

struct _ovrlay *datap =
struct aNetIf *gifcp =

int alg;
int {*ctl_func) {):
int i;

char *algp:
struct aTCname *tcp;

if ( (gifep EQ (struct

(struct _ovrlay *) argdatap:
tfic_dev2gifcp( datap->ifname );

aNetIf *)

OR (gifcp->osifcp NE ifp) )

return ( ENODEV );

NULL)

/* Find current traffic control algorithm name */
alg = (int) gifcp->iftc_alg:

algp = "";
tcp =
for (
{

if ( (int) tecp->value !
continue;

algp = &( tcp->name[0]
break;

}

&( tcif_TCnames[0] )
i = DimensionOf (tcif_TCnames) - 1 ; i >= 0 ; i--, tcp++

= alg )

Y

/* Process change of traffic control algorithm */

if ( cmd EQ SIOCGTCALG
{

)

strncpy ( (char *) &( datap->data[0} ), /*<-*/ algp,

gizeof (tcp->name) )
return ( 0 );

}

if ( cmd EQ SIOCSTCALG
{

int oldpri;

short if_flags;
extern int suser ();

)

/* Find entry for specified traffic control algorithm name */

408



algp = (char *) &{( datap->datal([0] );
alg = 99999;
tcp = &( tcif TCnames[0] );

for ( i = DimensionOf (tcif TCnames) - 1 ; i >= 0 ; i--, tcp++ )
{

if ( strncmp ( tcp->name, algp, sizeof (tcp->name) ) NE 0 )
continue;

alg = (int) tcp->value;

break;

}

if ( alg EQ 99999 )
return ( EINVAL );

if ( suser() EQ 0 )
return {( u.u_error );

oldpri = splnet ();

if ( ((if_flags = gifcp->osifcp->if_flags) & IFF_UP) NE 0 )
{
/* gifcp->osifcp->if_flags &= ~ IFF_UP; /* in if_down */

{(void) if_down ( gifcp->osifcp ):
}

gifep->alg_next = (short) alg; /* Set desired algorithm */
tcif_AlgSwitch( gifcp, /*quit*/0 ) ;

if ( (if_flags & IFF_UP) NE 0 )
gifcp->osifcp->if_flags |= IFF_UP;

splx ( oldpri ):

return ( 0 );

}

/* Process interface specific operations */
if ( (ctl_func = gifcp->iftc_control) EQ | int (*) ()) NULL )
return ( EOPNOTSUPP );

return {( (*ctl_func) ( gifcp, cmd, datap, ({(cmd >> 16) & _IOCPARM MASK) ) };
}

/*

S* tcif_ng_func ( ifgp, mp )

S*

g* Convergence routine from SunOS IF_ENQUEUE to Traffic Control
g* functions. Arguments are address if ifnet’s ifqueue and pointer
s* to packet. Assumes that enforcement has already been performed.

409



*
g* Called at splimp (or higher, depending on driver).
s*

*/

void

tcif_nq_func( ifgp, mp )
struct ifqueue *ifgp:;
struct mbuf *mp;

{

struct aNetIf *gifcp;
void (*ngfuncp) ():

mp->m_act = (struct mbuf *) NULL;
/* Map ifqueue pointer back to ifnet, then to extended ifnet (aNetIf) */
gifecp = tcif_ifp2gifcp( Mkp (caddr_t,ifgp,
{- offsetof (if_snd,struct ifnet))) );
/* dummyif0 /ng ??? */

/* If no specific enqueue function is supplied, use specified queue */

if ( (ngfuncp = gifcp->iftc_ng) NE (void (*) ()) NULL )
(*ngfuncp) ( gifcp, mp ); /* Use specific enqueue function */
else

IF_ENQUEUE (ifgp, mp);

return;

S* tcif_random drop ( ifgp )

g* Routine called to randomly drop one of “un-regulatedd”
s* packets from interface output queue.

* Just because we don’'t have source.

* Called from tcif_ether_output.

*/

static int

tcif_random drop( ifgqp ) /* from tcif_ether_output */
struct ifqueue *ifqp;
{ /* splimp or higher */

int skip:
struct mbuf *dp, /* packet to drop */

410



*pp = 0; /* ptr before dp, or NULL */

if ( (dp = ifgp->ifg_head) NE ({(struct mbuf *) NULL )
return ( 0 );

skip = ifqgp->ifq_len;

#ifdef MT_TCDATA

if ( dp->m_type EQ MT_TCDATA )

{

do

{

pp = dp;

gskip--;

} while ( ((dp = pp->m_act) NE (struct mbuf *) NULL)

AND (dp->m_type EQ MT_TCDATA) );

if ( (skip <= 0) OR (dp EQ (struct mbuf *) NULL) )
return ( 0 );

}
#endif MT_TCDATA

/* Find which packet to drop */

skip = (time.tv_sec " time.tv_usec) % skip;

for ( ; (skip > 0) AND (dp NE (struct mbuf *) NULL) ; skip-- )
{

pp = dp;

dp = pp- >m_act;

}

if ( (skip <= 0) OR {(dp EQ (struct mbuf *) NULL) )

return ( 0 );

if ( pp EQ (struct mbuf *) NULL )

{ /* drop first packet */

if ( (ifgp->ifq_head = dp->m_act) EQ (struct mbuf *) NULL )
ifgp->ifq_tail = pp; /* I.e., NULL */

}

else

{

if ( (pp->m_act = dp->m_act) EQ (struct mbuf *) NULL )
ifgp->ifqg_tail jo) e

}

if ( dp->m_type EQ MT_TCDATA )
skip = dp->m_tcrsrc;
else

{
skip = dp->m_len;
if ( (pp = dp->m_next) NE (struct mbuf *) NULL )

411



do

{
skip += pp->m_len;

} while ( (pp = pp->m_next) NE (struct mbuf *)} NULL );
}

ifgp->ifg_len--; /* update queue length */
m_freem ( dp ): /* free packets */

return ( skip );

}

/*

S* tcif udp usrreq ( sop, reqg, mp, namep, rightsp )

S*

s* This routine replaces the udp_usrreq entry in the IPPROTO_UDP

s* entry of inetsw([]. It is used to intercept the new traffic
g* control and resource management ioctls.

s*

*/

int

tcif udp_usrreq( sop, reqg, mp, namep, rightsp )
struct socket *sop;
int req;
struct mbuf *mp,
*namep,
*rightsp;

if ( req NE PRU_CONTROL )
return ( udp_usrreg( sop, req, mp, namep, rightsp ) );

if ( ({(int) mp >> 8) & OXFF) EQ ‘i’ )
{

switch ( (int) mp )

{

#ifdef MROUTING
case SIOCADDMULTI:
case SIOCDELMULTI:

#endif MROUTING
case SIOCDARP:
case SIOCGARP:
case SIOCSARP:
case SIOCGIFCONF:
case SIOCGIFFLAGS:
case SIOCSIFFLAGS:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
case SIOCLOWER:
case SIOCSIFMTU:
case SIOCSPROMISC:

412



case SIOCUPPER:

#ifdef TRAFFIC_CONTROL
case SIOCSIFBWCONFIG:
case SIOCSIFBWPKTOVRHD:
case SIOCSIFCOSTS:
cage SIOCSIFCPU:

case SIOCSIFDELAY:
case SIOCSIFDELAYVAR:
case SIOCSIFERRORS:
cagse SIOCSIFPROPDELAY:
#endif TRAFFIC_CONTROL

return ( tcifioctl( sop, (int)

#ifdef TRAFFIC_CONTROL

mpl

(caddr_t)

namep ) };

case SIOCGTCALG: /* Read traffic control algorithm */
cage SIOCSTCALG: /* Set traffic control algorithm */

return ( tcif_ioctl( (int) mp,

{struct ifnet *) rightsp )
#endif TRAFFIC_CONTROL

default:

break;

} /* end of switch */
}

return ( in_control( sop, mp,

}

/*

S* tcifioctl ( sop, cmd, datap
s*

s* Similar to ifioctl ().

s*

*/

int

tcifioctl( sop, cmd, datap )

struct socket *sop;

int cmd ;

caddr_t datap;

{

struct ifnet *ifp,
*if2p;

struct ifreq *ifrp;

int oldpri;

#ifdef TRAFFIC_CONTROL

struct aNetIf *nifp;

extern int st2_usrreq (/*sop,

namep,

)

(caddr_t)

)

req,

rightsp )

mp,

413

namep,

namep,

)

rightsp*/);



#endif TRAFFIC_CONTROL

switch ( cmd )

{
cagse SIOCGIFCONF: return ( tcifconf( cmd, datap ) )

case SIOCSARP:
case SIOCDARP: if { suser() == 0 ) return ( u.u_error );

/* Fall through */

case SIOCGARP: return ( arpioctl( cmd, datap ) )
} /* end of first cmd switch */

ifrp = (struct ifreq *) datap;

if ( (ifp = ifunit( ifrp->ifr name, sizeof (ifrp->ifr_name) })
== (struct ifnet *) NULL )

return ( ENXIO );

switch ( cmd )

{
case SIOCGIFFLAGS: ifrp->ifr_flags = ifp->if_flags; break;

case SIOCGIFMETRIC: ifrp->ifr_metric = ifp->if metric; break;

case SIOCSIFFLAGS: if ( suser() == 0 ) return ( u.u_error });

if ( ((ifp->if_flags & IFF_UP) != 0)

&& ((ifrp->ifr_flags & IFF_UP) == 0) )

{

oldpri = splimp();

if_down( ifp )

splx( oldpri );

}

if ( ifp->if_snd.ifq_maxlen == 0 )
ifp->if_snd.ifg maxlen = ifgmaxlen;

ifp->if_ flags = (ifp->if_flags & IFF_CANTCHANGE)
| (ifrp->ifr_flags & ~ IFF_CANTCHANGE) ;

if ( ifp->if_ioctl != (int (*)()) NULL )

(void) (*ifp->if_ioctl) (ifp, cmd, datap );

break;

case SIOCSIFMETRIC: if ( suser() == 0 ) return ( u.u_error );
ifp->if_metric = ifrp->ifr_metric;
break;

case SIOCSIFMTU: if ( suser() == 0 ) return ( u.u_error );
ifp->if_metric = * (unsigned int *) &( ifrp->ifr_data[0] )
break;

#ifdef TRAFFIC_CONTROL
case SIOCGTCALG: /* Fall through */

case SIOCSTCALG:
return ( st2_usrreq ( sop, PRU_CONTROL, cmd, datap,

414



ifp ) )

cagse SIOCSIFBWCONFIG:
if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *)0) )
return ( EINVAL ) ;
nifp->rsrcifp->bw_cnfg ifrp->ifr_rsrcnet_reqg.parml;
nifp->rsrcifp->bw_load ifrp->ifr rsrcnet_reqg.parm2;
nifp->rsrcifp->bw_resv = ifrp->ifr_rsrcnet_req.parm3;
break;

case SIOCSIFBWPKTOVRHD:
if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *)0) )
return ( EINVAL );
nifp->rsrcifp->bw_pkt = ifrp->ifr_rsrcnet_reqg.parml;
break;

case SIOCSIFCOSTS:

if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *)0) )
return ( EINVAL );

nifp->rarcifp->cost = ifrp->ifr rsrcnet_reqg.parml;

nifp->rsrcifp->cost_pkt = ifrp->ifr_rsrcnet_req.parm2;
nifp->rsrcifp->cost_byte ifrp->ifr_rsrcnet_req.parm3;
nifp->rsrcifp->cost_msec = ifrp->ifr_rsrcnet_req.parm4;
break;

case SIOCSIFCPU:

if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *)0) )
return ( EINVAL );
nifp->rsrcifp->cpu_in_byte =

ifrp->ifr_ rsrcnet_req.parml;
nifp->rercifp->cpu_in_pkt =

ifrp->ifr rsrcnet_req.parm2;
nifp->rsrcifp->cpu_out_byte =

ifrp->ifr resrcnet_req.parm3;
nifp->rsrcifp->cpu_out_pkt =
ifrp->ifr_rsrcnet_req.parm4;
break;

case SIOCSIFDELAY:
if ( ({nifp = IF Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *)0) )
return ( EINVAL );
nifp->resrcifp->dly_in = ifrp->ifr rsrcnet_req.parml;
nifp->rsrcifp->dly_out ifrp->ifr_rsrcnet_req.parm2;
nifp->rsrcifp->dly_ que ifrp->ifr_rsrcnet_reg.parm3;
break;

case SIOCSIFDELAYVAR:

415



if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rercifp == (struct aRsrcNet *)0) )
return ( EINVAL );
nifp->rsrcifp->dly_in_var =
ifrp->ifr_rsrcnet_req.parml;
nifp->rsrcifp->dly_out_var =
ifrp—>ifr_rsrcnet_req.parm2;
nifp->rsrcifp->dly_ que_var =
ifrp->ifr_rsrcnet_reg.parm3;
break;

case SIOCSIFERRORS:
if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) I}

(nifp->rsrcifp == (struct aRsrcNet *)0) )

return {( EINVAL );
nifp->rsrcifp->ber = ifrp->ifr_rsrcnet_req.parml;
nifp->rsrcifp->droprate = ifrp->ifr_rsrcnet_reqg.parm2;
break;

case SIOCSIFPROPDELAY:
if ( ((nifp = IF_Ext(ifp)) == (struct aNetIf *)0) ||
(nifp->rsrcifp == (struct aRsrcNet *y0) )
return ( EINVAL );
nifp->rsrcifp->dly prop = ifrp->ifr rsrcnet_req.parml;
break;
#endif TRAFFIC_CONTROL

case SIOCUPPER: if2p = ifunit( ifrp->ifr oname,

sizeof (ifrp->ifr_oname) );

if ( if2p == (struct ifnet *) NULL )
return ( ENXIO ):

if ( if2p->if_imput == (int (*)()) NULL )
return ( EINVAL );

ifp->if_ upper = if2p;

break:

case SIOCLOWER: if2p = ifunit( ifrp->ifr_oname,

gsizeof (ifrp->ifr_oname) );

if ( if2p == (struct ifnet *) NULL )

return ( ENXIO );

if ( if2p->if_output == (int (*) ()) NULL )
return ( EINVAL ):

ifp->if_lower = if2p;

break;

cage SIOCSPROMISC: if ( suser{) == 0 ) return ( u.u_error );
return ( ifpromisc( ifp, *(int *) datap ) );

/* #ifdef MROUTING */

cagse SIOCADDMULTI:

cagse SIOCDELMULTI: if ( suser() == 0 ) return { u.u_error );
/* Fall through */

416



/* #endif MROUTING */

default: 1if ( sop->so_proto == (struct protosw *) NULL )
return ( EOPNOTSUPP ) ;
return ( (*sop->so_proto->pr_usrreq) ( sop, PRU_CONTROL,

cmd@, datap, ifp ) ):
} /* end of second cmd switch */

return ( 0 );

}

int

tcifconf( cmd, datap )

int cmd;

caddr_t  datap;

{

struct ifnet *ifp = ifnet;

struct ifconf *icp = (struct ifconf *) datap;
int left = icp->ifc_len,

retcod = 0;
char *cp,
*up = (char *) icp->ifc_buf;
struct ifreq 1rsp;
#if IF_NADDR
char *ep = &( rsp.ifr_name(0] ) + sizeof (rsp.ifr_ name) - 5;
/* 4 = 3 digit unit + 1 ‘\0’ + idx */
#else !IF_NADDR
char *ep = &( rsp.ifr_namel0] ) + sizeof (rsp.ifr name) - 4;
/* 4 = 3 digit unit + 1 *\0' */
#endif IF_NADDR
struct ifaddr *ifap;

for ( ; (left > sizeof (struct ifreq)) && (ifp != (struct ifnet *) NULL)
; ifp = ifp->if_next )

{

bcopy( ifp->if name, &( rsp.ifr name[0] ), sizeof (rsp.ifr_name) - 2 };

/* #ifndef sun3

* for ( cp = &( rsp.ifr _name[0] ) ; cp < ep ; cp++ )
* {
* if ( *cp == '\0O’ )
*+ break;
* 1
* #else /* sun3 */
cp = &( rsp.ifr_namel0] );
while ( {(cp < ep) && (*cp != *‘\0’') )
cp+t++;

/* #endif */
if ( ifp->if_unit > 99 )

417



*cp++ = (ifp->if_unit / 100} + *0’;

if ( ifp->if_unit > 9 )

*cp++ = ((ifp->if _unit % 100) / 10) + ‘0';
*cp++ = (ifp->if_unit % 10) + '0°;
#if IF_NADDR
xcp++ = ‘\0’; /* point to byte for address index */
*cp = 0;
#else !IF_NADDR
*cp = '\0";

#endif IF_NADDR

if ( (ifap = ifp->if_addrlist) == (struct ifaddr *) NULL )
{

bzero( (char *) &{ rsp.ifr_addr ), sizeof (rsp.ifr_addr) ):

if ( (retcod = copyout( (char *) &( rsp ), up, sizeof (rsp) ))
1= 0 )

break;

left -= sizeof (rsp);

up += sizeof (rsp);
}
else
{
for ( ;: (left > sizeof (resp)) && (ifap != (struct ifaddr *) NULL)
; ifap = ifap->ifa_next )
{
rsp.ifr_addr = ifap->ifa_addr;
#if IF_NADDR

*cp += 1;
#endif IF_NADDR
if ( (retcod = copyout( (char *) &( rsp ), up. gsizeof (rsp) 1))
1= 0 )
break:
left -= sizeof (rsp);:

up += sizeof (rsp);
} /* end of returning all of interface’s addresses loop */

}

} /* end of processing all interfaces loop */
icp->ifc_len -= left;
return ( retcod );

}

#ifdef DOCUMENTATION

/i

S* tcif output_func ( ifp, mp, dstp )
si

418



s* Example of a driver output routine using Traffic Control

s* functions.

s* Called at splimp (or
S*

*/

int
tcif_output_func ( ifp,
gstruct ifnet *ifp;
struct mbuf *mp;

struct sockaddr *dstp;

{

struct aNetIf *gifcp;

caddr_t flowp,
nethdrp;

int validlen;

unsigned long key,
rsrc;

unsigned short pf:

gtruct mbuf *mhp = mp:

higher,

mp,

struct local_header *1lhp;

d

epending on driver).

dstp )

void (*ngfuncp) ();

if ( (ifp->if_flags & (IFF_RUNNING | IFF_UP))

NE (IFF_RUNNING | IFF_UP) )

{

IF_DROP ( &{ ifp->ifc_snd ) );

/* update drop stats -- no good way to do keep accurate stats */

** /* bytes_dropped += len */

m_freem ( mp );:
return ( ENETDOWN ) ;
}

/* Map ifgqueue pointer back to ifnet,

/* Mkp
gifcp =

pf =
nethdrp =
validlen =

PF_UNSPEC;
mtod ( mp,
mp->m_1len;

if ( mp->m_type EQ MT_TCDATA )

{

flowp = mp->m_tcflowp:
rsrc = mp->m_tcrsrc;
key = mp->m_tckey;

}

else

( unsigned long,
tcif_ifp2gifcp( ifp ):

ifgp,

caddr_t);

(_

Offsetof
/* dummyif0 /ng ?2?? */

419

then to extended ifnet

(aNetIf)

(if_snd, struct ifnet)) )

*/

*/



{
flowp = (caddr_t) NULL;

rgrc = 0;
key = 0;
}

/* Map protocol specific address in sockaddr to local network address */

/* .
pf =
*/

/* Find space for local network header */

if ( (mp->m_off < (unsigned long) ( OffsetOf (m_tcdat(0],struct mbuf)
+ sizeof (struct local_header)))
OR ( M_HASCL( mp )
#ifdef MCL_STATIC_HDR
AND (mp->m_cltype NE MCL_STATIC_HDR)
#endif MCL_STATIC_HDR
) ) /* no room in first mbuf, prepend another */

{
mhp = (struct mbuf *) m_get ( M DONTWAIT, MT_TCDATA )Y ;

if ( ! mhp )

{

IF_DROP { &( ifp->ifc_snd ) );

/* update drop stats -- no good way to do keep accurate stats */
«» /+ bytes_dropped += len */

m_freem ( mp );
return ( ENOBUFS };
}

/* XXX 8 => mod x10 aligned */
mhp->m_off = Offset0f (m_tcdat[8],struct mbuf);
mhp->m_next = pktp; /* prepend */

mhp->m_len = sizeof ( struct local_header );
}

else /* insert header */

{

mhp->m_off -= sizeof ( struct local_header );
mhp->m_len += sizeof ( struct local_header );

}
/* Construct local header */
lhp = mtod ( mhp, struct local_header ¥*);

VAR

len = mhp->m_len;
if ( (mp = mhp->m_next) NE (struct mbuf *) NULL )

420



do
{
len += mp->m_len;
** } while ( (mp = mp->m_next) NE (struct mbuf *) NULL };

mhp->m_tcrsrc = rsrc;
mhp->m_tckey = key;

key = mhp->m_type; /* *** mbuf stats update below */
mhp->m_type = MT_TCDATA;

if ( flowp EQ (caddr_t) NULL )
{
if ( gifcp->iftc_classify NE (caddr_t (*)()) NULL )
{
flowp = (*gifcp->iftc_classify) ( gifcp, mhp, pf,
nethdrp, validlen );

#ifdef lint
#define
aTv(id,name,clsfy, fsclk,cntrl,dq,drain,enfrc,init,nqg,quit,aloc,ctrl, idget, prob
e,idrel, rlse) \
flowp = clsfy ( gifcp, mhp, pf, nethdrp, validlen )
aTcVectorList;
#undef aTVv
#endif lint
}
/* ?2?? else “flow 0“ */
}
mhp->m_tcflowp = flowp;

/* Enqgueue packet for output & start driver */

oldpri = splimp ();

{

if ( key NE MT_TCDATA ) /* *** ypdate mbuf usage stats now */
{

mbstat.m_mtypes[key]--;

mbstat.m _mtypes [MT_TCDATA] ++;

}

if ( (gifcp->iftc_enforce EQ (int (*) ()) NULL)
OR ((validlen = (*gifcp->iftc_enforce)
( gifcp, mhp, len, (struct timeval *) NULL)) EQ -2) )
{
if ( validlen EQ -2 ) /* No enforcing */
{
mhp->m_type = PKT_DATA;
mbstat.m _mtypes[ PKT_DATA ]++;
mbstat.m _mtypes|[ PKT_TCDATA ]--;
}

421



validlen = O0:

if ( IF_QFULL( &( ifp->if_snd ) ) )

{

/* Queue is full */ /* drop a pkt */

validlen = tcif_random_drop ( &( ifp->if_snd ) );
}
}

if ( validlen EQ -1 )} /* drop this packet */

{

IF_DROP ( &( ifp->ifc_snd Y )

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_gueued += validlen - len */

m_freem ( mhp );
splx ( oldpri );
return ( ENOBUFS ) ;

if ( gifcp->iftc_ng NE (void (*) ()) NULL )
{
(*gifcp->iftc_nqg) ( gifcp, mhp });
}
else
{
IF_ENQUEUE ( &( fip->if_snd ), mhp )

}

if ( validlen > 0 )

{

IF_DROP ( &( ifp->ifc_snd ) );

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_gqueued += validlen - len */

/* don’t want to return an error as it may have higher layer
ramifications for pkt instead of what was dropped */

}

start_output ( ifp->if_unit ); /* (re)start device output */

}
splx ( oldpri ):

return ( 0 );

}
#endif DOCUMENTATION

422



#ifndef _ST2_RESOURCE_H_
#define _ST2_RESOURCE_H_

#ifndef lint

static char rcsid_st2_resource_h[] = "\

@(#) SHeader: st2_resource.h,v 1.98+ 93/04/08 18:00:00 clynn Exp $ \n”;
/* ______________________________________________________________________

Copyright (c)

1991-1993 by BBN Systems and Technologies,

A Division of Bolt Beranek and Newman Inc.

Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice
and this permission appear in all copies and in supporting

documentation,

and that the name of Bolt Beranek and Newman

Inc. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission. BBN makes no representations about the suitability
of this software for any purposes. It is provided "AS IS”
without express or implied warranties.

#endif lint

/*

M* st2_ resource.h Definitions for ST-II Resource Management.

M*
*/

/*
m*
m*
m*
m*
m*
m*

*
~

* % * * * * * % * * * * % *

Status:
Features:

Untested Features:
Restrictions/Bugs:

Things to do:

Module Revision History

bugid 9,0

$Log: st2_resource.h,v §

Revision 1.11

92/04/03 18:31:35 clynn

Releagse for DARTNet. Virtual Clock enforcement & related changes.

Revision 1.10
Fixed typo.

91/11/26 23:12:48 clynn

Revision 1.9 91/11/04 09:23:00 clynn
Updated for Public Domain Release. Major changes: addition of Source
Routing, IP Encapsulation, HELLO protocol between neighbors, tracking

of neighbors,

detection of component or agent failures & notification

423



* to applications. More consistant naming and format, including making
* 311 external names begin with “st2_". Moved some routines and data
* gtructures to reduce external references.

*

Minor documentation changes.

»

* Revision 1.8 91/05/28 16:17:20 clynn

* New features: Add new targets from Application layer, UserData support,
* basic bandwidth reservation for point-to-point links, more complete

* gtate tables, added pcode parameter to InitaFlowSpec3, extended packet
* puffer abstraction, added network interface abstraction; ststat utility.
*+ Bug fixes: ADDR IN USE problem, data send problem, causes of some

* crashes, cleanup of protocol control blocks.

* Work around: DARTNET receive memory leak.

* Eliminated several small modules to reduce globals; adeded Makefile.

*

* Revision 1.1 91/03/15 18:33:08 clynn

* Tnitial revision

*/

#ifndef TRAFFIC_CONTROL
/* def/name/aloc getid probe relid rlse */

#define aRmVectorlist \

aRV (P2P,point-to-point,tcif_PtpAlloc,NoRmCtrl, tcif RsIdGet, \
NoRmProbe, tcif_ RsIdRel, tcif_PtpRlse) \

aRV (BCST,broadcast,tecif_ PtpAlloc,NoRmCtrl, tcif_ RsIdGet, \
NoRmProbe, tcif_ RsIdRel, tcif_ PtpRlse) \

aRV (NUN, ,NoRmAlloc, NoRmCtrl, NoRmIdGet, NoRmProbe, NoRmIdRel, NoRmR1lse) \

/* def/name/classify clockfast control dq drain enforce init ng quit
aloc ctrl getid probe relid rlse */

#ifdef FAIR_SHARE

#define MAYBE FAIR_SHARE \

aTV (FS1, fair-share, fs_classify_func, fs_clockfast_func, fs_control_func,\
gen_dq_func,NoDrain, fs_enforce_func, fs_init_func, \
fs_nqlq_func,NoQuit, \
fs_aloc_func,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, fs_rlse func)

#else

#define MAYBE_FAIR_SHARE

#endif FAIR_SHARE

#ifdef SFQ
#define MAYBE_SFQ \
aTV (SFQ,sfq,NoClassify,NoClockfast, NoControl, NoDg,NoDrain, \

424



NoEnforce,NoInit, NoNg, NoQuit, \
NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, |\
NoRsrcRelid, NoRsrcRlse)

#else
#define MAYBE_SFQ
#endif SFQ

#ifdef VIRTUAL_CLOCK

#define MAYBE VIRTUAL_CLOCK \

aTv (VC,vc,NoClassify,NoClockfast,NoControl,gen_dq_func,NoDrain, \
ve_enf_func,ve_init_func,ve_ng_func,NoQuit, \
ve_aloc_func,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, NoRsrcRlse)

#else

#define MAYBE_VIRTUAL_CLOCK

#endif VIRTUAL_CLOCK

/* %°*% cpp! no #ifdefs in a #define */

#define aTcVectorList \

aTV (FIFO, fifo,NoClassify,NoClockfast,NoControl, gen_dq_func,NoDrain, \
gen_enforce_func,NoInit,gen ng_func,NoQuit, \
NoRsrcAlloc, NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \
NoRsrcRelid, NoRsrcRlse) \

MAYBE_FAIR_SHARE \

aTv (RD,random-drop,NoClassify,NoClockfast,NoControl,gen_dq_func, \
NoDrain, gen_enforce_func,NoInit,gen_nq_func,NoQuit, \
NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \

NoRsrcRelid, NoRsrcRlse) \

MAYBE_SFQ \

MAYBE_VIRTUAL_CLOCK \

/* This must be last -- it has the largest enum value */ \

aTV (NUN, ,gen_classify func,gen_clockfast_func,gen_control_func, \
gen_dqg_func,gen_drain_func,gen_enforce_func, \
gen_init_func,gen_nqg_func,gen_quit_func, \
NoRsrcAlloc,NoRsrcCtrl, NoRsrcGetid, NoRsrcProbe, \

NoRsrcRelid, NoRsrcRlse)

enum RM_Strategy {

#define aRV(id, name,aloc,ctrl, idget, probe, idrel, rlse) Ident (RM_)id,
aRmVectorList

#undef aRV

}i

enum TC_Algorithm {

/* @#$% cpp is too primative to allow \ in the formal parameter list */
#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel, rlse) \

Ident (TC_)id,

425



aTcVectorList
#undef aTV

b

#ifdef lint

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NoRmAlloc LintRmAlloc
NoRmCtrl LintRmCtrl
NoRmIdGet LintRmIdGet
NoRmProbe LintRmProbe
NoRmIdRel LintRmIdRel
NoRmRlse LintRmRlse

NoClassify LintClassify
NoClockfast LintClockfast
NoControl LintControl
NoDg LintDg

NoDrain LintDrain
NoEnforce LintEnforce
NoInit LintInit

NoNg LintNg

NoQuit LintQuit
NoRsrcAlloc LintRsrcAlloc
NoRsrcCtrl LintCtrl
NoRsrcGetid LintRsrcGetid
NoRgrcProbe LintRsrcProbe
NoRsrcRelid LintRsrcRelid
NoRsrcRlse LintRsrcRlse

#else !lint

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NoRmAlloc ((int (*) ()) 0)
NoRmCtrl ((int (*) (})) O)
NoRmIdGet ((int (*) ()) O}

NoRmProbe {(int (*) (}) 0)
NoRmIdRel ((int (*) (}) O}
NoRmRlse ({int (*) ()) 0)

NoClassify ((caddr_t (*) ()) 0)
NoClockfast ({void (*) ()} 0)
NoControl ((int (*) (}) 0}
NoDg ((struct mbuf *(*) (})) 0)
NoDrain ((void (*) ()) 0)
NoEnforce ((int (*) (}) 0)
NoInit ((int (*) (}) 0)

NoNg ({void (*){()) O

NoQuit ((veoid (*) ()) 0)
NoRsrcAlloc ((int (*) ()) 0)
NoRgsrcCtrl ((int (*) (}) 0)
NoRsrcGetid ((int (*) {()) 0)
NoRsrcProbe ((int (*) ()) 0)

426



#define NoRsrcRelid ((int (*) ()) 0)
#define NoRsrcRlse ((int (*) (})) 0)

#endif lint

#define aRV(id,name,aloc,ctrl, idget,probe, idrel, rlse) \

extern int aloc (), ctrl (), idget (), \
probe (), idrel (), rlse ();
aRmVectorList

#undef aRV

#define

aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel, rlse) \
extern caddr_t clsfy (); extern void fsclk (); \

extern int cntrl (); extern struct mbuf *dqg (); \
extern void drain (); extern int enfrc (); \
extern int init ()}; extern void ng (); \
extern void quit (); \
extern int aloc (), ctrl (), idget (), \

probe (), idrel (), rlse ();

aTcVectorList

#undef aTV
#endif TRAFFIC_CONTROL

#endif _ST2_RESOURCE_H_

427



#ifndef lint

static char rcsid[] =

“@(#) $Header: hsis.c,v 1.98 1.98 93/03/24 00:00:00 clynn Rel $";
static char copyright[] =

“Copyright (c) 1990 Regents of the University of California”;
#endif

/

Copyright (c) 1990 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the University of California, Lawrence Berkeley Laboratory,
Berkeley, CA. The name of the University may not be used to
endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS'’ AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

/

* % % % % % % %+ F * % * ¥ % * * *

#include “hsis.h”

#if NHSIS > O

#include <sys/param.h>
#include <sys/mbuf . h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <net/if .h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <net/netisr.h>
#include <sys/stream.h>
#include <sys/ttycom.h>
#include <sys/tty.h>
#include <sys/time.h>

#include <sys/sockio.h>

#include <sundev/zsreg.h>
#include <sundev/mbvar.h>
#include <sund4c/intreg.h>

#include <sundc/auxio.h>
#include “bpfilter.h”

#if NBPFILTER > 0
#include <net/bpf.h>

428



#endif

#include “z16c35.h"
#include "hsisreg.h”
#include "syncmode.h”
#include “syncstat.h”
#include “codecmode.h”
#include “hsiscom.h”
#include “ppp.h”

#ifndef AF_RAWSYNC
#define AF_RAWSYNC AF_IMPLINK
#endif

int hsidebug = 0;

extern int hz;

#ifdef HSIS_TRACE

int hsis_trace_lock = Ox7FFFFFFF;

#endif

#define dprintf(x) if (hsidebug)printf x;

/
Like most things that have to deal with Zilog chips, this driver

requires two interrupt levels: a hardware level that should be as
high asgs posgssible (SBus level 5-7) and a software level that should

be at or below splimp (i.e., at level 4 or 6 on a sgsparc). Very little
time is spent at hardware interrupt level. Packet copies to and

from the board (<300 us, worst case) and almost all the device and
gsystem stuff (20-100 us typically, 300 us if we have to call Sun’‘s
incredibly slow Streams NIT) is done at the software interrupt level.

* * % % * % * *

»*

*/
#define splboard spl4d
#define HARDINT_LEVEL 5

/*
* Software interrupt level, state and status bits.
*/

#define SOFTINT_LEVEL 4

#define splsoft spl2

u_int hsis_isum;
#define RECV_DONE 1
#define XMIT_DONE 2
#define XMITDMA_ DONE 4

#define SOFTINT (softc, event) (hsis_isum |= 1 << (sc)->sc_if.if_unit, \
(sc)->sc_event |= (event))
/*
* default set-up for scc (possibly modified by user-specified ‘syncmode’).

* gee hsis_init for how this is interpreted. Each entry is a particular
scc reg. The scc requires register be set in a particular order and
* not all bits (in particular, the rx & tx enables) can be locaded from

429



* here

*/

(see hsis_init) . Be careful when changing this array.

u_char hsis_scc_setup[] = {
o */ 0,
#ifdef HSIS_EXTERNAL_ RCVDONE
/* 1 */ ZSWR1_SIE,

/*

#else

/* 1 */ ZSWR1_SIE |

#endif

/t
/*
/*
/*
/t

2

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

0,

ZSWR1_RIE_SPECIAL_ONLY,

ZSWR3_RXCRC_ENABLE | ZSWR3_RX_8,

ZSWR4_SDLC,

ZSWRS_TXCRC_

0,

ENABLE | ZSWR5_RTS |

ZSWR7_SDLCFLAG,

0.

ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR

ZSWR10_PRESET_ONES,

ZSWRS_TX_S8,

ZSWR9_VECTOR_INCL_STAT,

ZSR15_SDLC_FIFO_ENA | ZSR15_TX_UNDER,

u_char hsis_scc_codec_setup{] = {

/*
/*
/t
/*
/*
/ﬁ
/t
/t
/*
/t

0

o N0 W

S

/*10
/*11
/*12
/*13
/*14

i

/*

* default

*/

/*15

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

0,
ZSWR1_SIE,
0,
ZSWR3_HUNT |
0.

ZSWRS_RTS |

ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR

ZSWR3_RX_8,

ZSWR5_TX_8,

ZSWRS_VECTOR_INCL_STAT,

ZSR15_SYNC, /* XXX ZSR15_TX_UNDER needed for CLI? */

‘gsyncmode’

(clock and loopback options) for scc.

struct syncmode hsis_default_sm =
TXC_IS_BAUD, RXC_IS_BAUD, 1, O,

}:

{

%600, O,

430

0



~

int hsisidentify (), hsisattach{()};

struct dev_ops hsis _ops = {

1,

heisidentify,

hsisattach,

}i

int nhsisboard; /* total # of hsis boards found */

struct hsiscom *hsiscom;

struct hsiscom *hsiscom_end;
struct hsis_softc *hsis_softc;
struct hsis_softc *hsis_softc_end;

int hsis_init(), hsis_output(), hsis_ioctl({(), hsis_reset(),
hsisintr(), hsissoftint();

void hsis_start();

void rawsyncinit () ;

void hsis_dmarecv_time();

void hsis_recv_done() ;

void

hsis_scc_attach(unit, hs, addr)

register u_char unit;

regigter struct hsiscom *hs;

register u_char *addr;

{

static int nhsischan;

register struct zscc *zs = &hs->hs_zs{unit];
register struct zdma *zd = &hs->hs_zd[unit >> 1];
register u_char *zsdev = addr;

register struct hesig_softc *sc = &hsis_softc[nhsischan];
register struct ifnet *ifp = &sc->sc_if;

zs->zg_unit = unit;
zgs->zs_addr = zsdev;

/* disable rx, tx and interrupts. */
SCC_WRITE(1, 0);
SCC_WRITE(3, 0);
SCC_WRITE(5, 0);

/* disable external rcv done interrupt */
hs->hs_board{unit + HSIS_EINT_ENA_A] = O0;

/* set up the softc and make us known to the network code.
Bc->8c_28 = 28;

sc->sc_zd = zd;

sc->sc_hs = hs;

sc->sc_sm = hsis_default_sm;

sc->sc_fifop sc->sc_fifo;

ifp->if_name = “hsis”;

431

hsis_watchdog (),

*/



ifp->if_unit = nhsischan++;

ifp->if_mtu = HSIS_MTU;

#ifdef MULTICAST

ifp-»>if_flags = IFF_POINTOPOINT | IFF_MULTICAST;
#else

ifp->if_flags = IFF_POINTOPOINT;

#endif MULTICAST

ifp->if_init = hsis_init;

ifp->if_output = hsis_output;

ifp->if_ijoctl = hsis_jioctl;

ifp->if_reset = hsis_reset;

ifp->if _watchdog = hsis_watchdog;
ifp->if_snd.ifq _maxlen = HSIS_MAX_SENDQ;

#if NBPFILTER > 0

bpfattach(&sc->sc_bpf, ifp, DLT_PPP, PPP_HDRSPACE);
#endif

if_attach(ifp);

}

void

hsis_dma_attach({unit, zd, addr)
register u_char unit;

register struct zdma *zd;
register u_char *addr;

{

register u_char *zddev = addr;
zd->zd_addr = zddev;

/
so we get a simple value to switch on when interpreting intr.

Set the DCR to increment addresses rather than decrementing.
Set the ICR to enable master interrupt but leave individual

Reset the dma section. Clear out the ‘interrupt vector’' address

channels disabled (any HDLC event that would generate a dma intr
also generates an scc intr -- we waste enough time dealing with
this stupid chip and don’'t need to double all the interrupts),

don’'t put a vector on the bus when reqg. intr but do include
‘gtatus’ in the IVR on intr.

Zero out the dma address registers so we don't have to write
the high bytes when switching buffers.

* % % % * % * * * * *

*

*/
DMA_WRITEO (ZSDMA_CCAR_DMA_RESET) ;
DMA_WRITEO (ZSDMA_CCAR_RESET_IUS) ;
DMA_WRITE (ZSDMA_IVR, 0);
DMA_WRITE (ZSDMA_ICSR, 0);
DMA_WRITE (ZSDMA_DCR, O0xf);

DMA_WRITE (ZSDMA_ICR, ZSDMA_ICR_NV | ZSDMA_ICR_VIS | ZSDMA_ICR_MIE) ;

DMA_WRITE (ZSDMA_RDARA, 0};
DMA_WRITE (ZSDMA_RDARA+1, 0);
DMA_WRITE (ZSDMA_RDARA+2, 0);

432



DMA_WRITE(ZSDMA_RDARA+3, 0);

DMA_WRITE (ZSDMA_TDARA, 0);

DMA_WRITE (ZSDMA_TDARA+1, 0);
DMA_WRITE (ZSDMA_TDARA+2, 0);
DMA_WRITE (ZSDMA_TDARA+3, 0);

DMA_WRITE (ZSDMA_RDARB, 0);

DMA WRITE (ZSDMA_RDARB+1, 0);
DMA_WRITE (ZSDMA_RDARB+2, 0);
DMA_WRITE (ZSDMA_RDARB+3, 0);

DMA_WRITE (ZSDMA_TDARB, 0);

DMA_WRITE (ZSDMA_TDARB+1, 0);
DMA_WRITE (ZSDMA_TDARB+2, 0);
DMA_WRITE (ZSDMA_TDARB+3, 0);

int

hsisidentify (name)

char *name;

{

if (strcmp(name, *“HSI”) == 0) {
++nhsisboard;
return (1) ;

} else
return (0} ;

int

hsisattach(dev)

register struct dev_info *dev;
{

static int curhsis = 0;
register struct hsiscom *hs;
register u_char *hsboard;
regigter int i;

dev->devi_unit = curhsis;
if (curhsis > sizeof (hsis_isum) * 8 / 4) {
/* each hsis channel needs a bit in hsis_isum */
printf(”hsis: maximum number of channels exceeded.\n");
return (-1);
}
if (hsiscom == NULL) {
hsiscom = (struct hsiscom *)new_kmem_zalloc(
(u_int) (nhsisboard * sizeof (struct hsiscom)),
KMEM_SLEEP) ;
if (hsiscom == NULL) {
printf(“heis: no space for data structures.\n”);
return (-1);

}

433



hsiscom_end = &hsiscom[nhsisboard] ;

hsis_softc = (struct hsis_softc *)new_kmem_zalloc |
(u_int) (nhsisboard * 4 * sizeof (struct hsis_softc)),
KMEM_SLEEP) ;

if (hsis_softc == NULL) {

printf(“hsis: no space for data structures\n”);

return (-1);

}

hsis_scftc_end

&hsis_softc[nhsisboard * 4];

rawsyncinit () ; /*XXX*/

}

hs = &hsiscom[dev->devi_unit]);
hs->hs_dev = dev;

/*
* register our interrupt handler, map the board intoc kernel memory,
* then reset it. Note that the interrupt level must be <= splimp
* (and, given the constraints imposed by the braindead Zilog dma,
* the level should be as high as possible, e.g., splimp).
*/
addintr (dev->devi_intr->int_pri, hsisintr, dev->devi_name, curhsis);
addintr (SOFTINT_ LEVEL, hsissoftint, “HSI-soft”, curhsis);
hsboard = (u_char *)map_ regs(dev->devi_reg->reg_addr,
dev->devi_reg->reg_size,
dev->devi_reg->reg_bustype) ;
hs->hs_board = hsboard;

/*
* get up the free buffer list.
*/
for (i = HSIS_SRAM_SIZE; (i -= HSIS_BUFSIZE) »>= 0; ) {

register struct hsisbuf *bp;

bp = (struct hsisbuf *) (hsboard + i + HSIS_SRAM);
bp->next = hs->hs_free;

hs->hs_free = bp;

}

/*
* Initialize the two dma channels and 4 scc channels.
* First reset each chip and set its bus configuration reg.
* Then set up the software data structures.
*/
hsboard [HSIS_RST ISSCO]
hsboard [HSIS_RST_ISSC1]
DELAY (10) ;
hsboard [HSIS_SCC_A]
hsboard [HSIS_SCC_C]

0; /* reset chips */
0;

0; /* clear BCR */
0;

hsis_dma_attach(0, &hs->hs_zd[0], &hsboard[HSIS_DMA_0]);

434



hsis_dma_attach(l, &hs

hsis_scc_attach(0, hs,
hsis_scc_attach(l, hs,
hsis_scc_attach(2, hs,
hsis_scc_attach (3, hs,

report_dev (dev) ;
++curhsgis;
return (0);

int
copy m_to b(sc, m, cp)
register struct hsis_s

->hs_zd[1], &hsboard[HSIS_DMA 1]);

&hsboard[HSIS_SCC_A]);
&hsboard [HSIS_SCC_B]) ;
&hsboard [HSIS_SCC_C]);
&hsboard[HSIS_SCC_D]);

oftc *sc;

register struct mbuf *m;

register u_char *cp:

{

register long len, tot
register struct mbuf *

totlen = 0;

do {

len = m->m_len;

bcopy (mtod (m, caddr_t
cp += len;

totlen += len;

len;
mO0 = m;

), ({(caddr_t)cp, (u_int)len);

} while (m = m->m_next);

m_£freem(m0) ;

if (sc->sc_raw && (sc->sc_raw->so_snd.sb_flags & SB_WAIT

sc->sc_raw->so_snd.sb_sel))

sbwakeup {sc->sc_raw,
return (totlen);

}

&sc->gc_raw->so_snd) ;

hsis_output (ifp, m, dst)

register struct ifnet
register struct mbuf *
struct sockaddr *dst;

{

register int s;

*ifp;
m;

register struct hsis softc *sc;

#ifdef TRAFFIC_CONTROL
struct aNetIf *gifcp;
caddr_t flowp,

nethdrp;
int rsrclen,
validlen:

unsigned long key,

rsrc;

unsigned short pf;

435



struct mbuf *mp,
* (*dgfuncp) ()
#endif TRAFFIC_CONTROL

sc = (struct hsis_softc *)ifp;
TRACEL (T_OUTPUT, s8cC, 0)
#ifdef HSIS_TRACE
/t
* keep trace unlocked; ignore miniscule interrupt race.
*/
if (hsis_trace_lock > 100) heis_trace_lock = Ox7FFFFFFF;
#endif
if ((ifp->if flags & IFF_UP) == 0) {
m_freem(m) ;
return (ENETDOWN) ;
}

#ifdef TRAFFIC_CONTROL
/* Map ifnet pointer to extended ifnet (aNetIf) */

gifecp = tcif_ifp2gifepl {(unsigned long) ifp )

pf = PF_UNSPEC;
nethdrp = mtod ( m, caddr_t);
validlen = m->m_len;

if ( m->m_type == MT_TCDATA )
{

flowp = m->m_tcflowp;

rsrc = m->m_tcrsrc;

key = m->m_tckey;

}

else

{
flowp = (caddr_t) NULL;

rsrc = OL;
key = OL;
}
#endif TRAFFIC_CONTROL

if (dst->sa_family != AF_UNSPEC) {
/* Add a PPP header */
register u_int off = m->m_off;

if (off <
#ifdef TRAFFIC_CONTROL
{ (unsigned long) &({(struct mbuf*)0)->m_tcdat(0]))
#else !TRAFFIC_CONTROL
MMINOFF
#endif TRAFFIC_CONTROL
+ PPP_HDRSPACE 1l
(off >= MSIZE && m->m _cltype !-= MCL_STATIC_HDR)) {

436



/* need new mbuf for
* then fix whatever
register struct mbuf

#ifdef TRAFFIC_CONTROL
MGET (m0, M_DONTWAIT,

#else !TRAFFIC_CONTROL
MGET (m0, M_DONTWAIT,

#endif TRAFFIC_CONTROL
if (m0 ==
m_freem(m) ;

return (ENOBUFS) ;

}

#ifdef TRAFFIC_CONTROL
m0->m_off = ((int) &(

#endif TRAFFIC_CONTROL
m0->m_next = m;
m0->m_len
m = mO0;
} else {
m->m_off -
m->m_len +
}

#ifdef STII

hdr (should really panic here
isn’'t leaving space for header)
*m0;

MT_TCDATA) ;

MT_DATA) ;

(struct mbuf *)0) {

/* XXX 8 => mod x10 aligned */
((struct mbuf*)0)->m_tcdat([8]));

PPP_HDRSPACE;

PPP_HDRSPACE;
PPP_HDRSPACE;

if (dst->sa_family == AF_COIP)

{

*mtod(m, u_int *) = PPP_STII;

pf = PF_COIP;

}
else if (dst->sa_family == (0x8000 | AF_COIP))
{

*mtod(m, u_int *) = PPP_SCMP;

pf = PF_COIP;
}
else
#endif STII
#ifdef TRAFFIC_CONTROL
{
pf = PF_INET;
*mtod(m, u_int *} =
}
#else !TRAFFIC_CONTROL

PPP_INET; /* XXX */

*mtod(m, u_int *) = PPP_INET; /* XXX */

#endif TRAFFIC_CONTROL

#ifdef TRAFFIC_CONTROL
rerclen = m->m_len;
if ( (mp = m->m_next)

do
{

= (struct mbuf *) NULL )

rerclen += mp->m_len;
} while ( (mp = mp->m _next) != (struct mbuf *} NULL

437

*/

)



m->m_tcrsrc = rsrc;
m->m_tckey = key;

if ( m->m_type != MT_TCDATA )
{

s = splimp();
mbstat.m_mtypes[m—>m_type]—-;
mbstat .m_mtypes [MT_TCDATA] ++;
m->m_type = MT_TCDATA;

splx( s )

}

/* If no packet has not been classified, try to do so now */

if ( flowp == {(caddr_t) NULL )

{

if ( gifcp->iftc_classify != (caddr_t (*) (})) NULL )

flowp = (*gifcp->iftc_classify) ( gifcp, m, pf, nethdrp, validlen );
/* 2?? else “flow 0" */

}

m->m_tcflowp = flowp;
s = splimp(); /* for mbufs / mbstat */
{

/* Submit packet for enforcement */

if ( (gifcp->iftc_enforce == (int (*)()) NULL)
|1 ((validlen = (*gifcp->iftc_enforce)

{ gifecp, m, rsrclen, ({struct timeval *) NULL)) == -2} )
{

/* Packet not subject to traffic control */

if ( validlen == -2 )

{

m->m_type = MT_DATA; /* No-sort */
mbstat.m_mtypes{ MT_DATA ]++;
mbstat.m _mtypes [ MT_TCDATA ]--;

}

validlen = 0O;

#ifndef SFQ_VC
if ( IF_QFULL( &( ifp->if_snd )) )
#else
if ( (m->m_type == MT_TCDATA) && IF_QFULL( &( ifp->if_snd )) )

#endif
validlen = -1; /* Ignore minor race reading if_glen */

}
/* Drop this packet */

if ( validlen == -1 )

438



{
IF_DROP({ &( ifp->if snd ) );
TRACE (T_QFULL, sc, 0)

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += rsrclen */
/* bytes_queued += validlen? - rsrclen */

m_freem ( m );

splx ( s );

return ( ENOBUFS }; /* ??? better error */
}

}
splx( s );
s = sgplboard();

{

/* If no specific enqueue function is supplied, use generic engueue */

if ( gifcp->iftc_ng != (void (*)()) NULL )
(*gifcp->iftc_nq) ( gifep, m );
else

IF_ENQUEUE ( &( ifp->if snd ), m );
m = (struct mbuf *) NULL; /* pkt enqueued */

#ifndef SFQ_VC
if ( ifp->if_snd.ifq _len == 0 )
{
splx( 8 );
return ( 0 );
}
#endif
}
splx( s );
#endif TRAFFIC_CONTROL
}

/* Either raw (AF_UNSPEC) & m != 0, or m == 0 */

if (sc->sc_ostate == 0) {
register struct hsisbuf *bp = sc->sc_curout;
register int len;

#ifdef TRAFFIC_CONTROL
if ( m == (struct mbuf *) NULL )

{
8 = splboard();

/* If no specific dequeue function is supplied, use specified queue */

if ( (dgfuncp = gifcp->iftc_dqg) != (struct mbuf * (*)()) NULL )
m = (*dgfuncp) ( gifcp ); /* Use specific dequeue function */
else /* Use generic dequeue function */

439



IF_DEQUEUE({&sc->sc_if.if_snd, m);
splx( s );

if ( m == (struct mbuf *) NULL )
return ( 0 );
}

#endif TRAFFIC_CONTROL

len = copy_m_to_b(sc, m, BUFtoCP(bp));
s = splboard();
TRACE (T_OUT_COPY, sc, (int)bp | len)
bp->cnt = len;
sc->sc_ostate = 2;
hsis_start(sc);

#ifdef HSIS_EXTERNAL_RCVDONE

} else if (sc->sc_if.if_snd.ifq_len == 0 && sc->sc_nextout->cnt == 0) {
#else
} else if (sc->sc_codec.datalen &&
sc->sc_if.if_snd.ifqg _len == 0 && sc->sc_nextout->cnt == 0) {
#endif

register struct hsisbuf *bp = sc->sc_nextout;
register int len;

#ifdef TRAFFIC_CONTROL
if (m == (struct mbuf *) NULL )

{
8 = splboard():

/* If no specific dequeue function is supplied, use specified queue */

if ( (dgfuncp = gifcp->iftc_dq) != (struct mbuf * (*)()) NULL )
m = (*dgfuncp) ( gifcp ): /* Use specific dequeue function */
elge /* Use generic dequeue function */

IF_DEQUEUE (&sc->sc_if.if_snd, m);

splx( s };

if ( m == (struct mbuf *) NULL )
return ( 0 );
}

#endif TRAFFIC_CONTROL

len = copy_m_to_b(sc, m, BUFtoCP(bp));
8 = splboard();
TRACE (T_OUT_COPY, sc, (int)bp | len)
bp->cnt = len;
if (sc->sc_ostate == 0) {
/t
* last packet completed while we were doing copy --
* flip buffers & restart output.
*/
{sc->sc_nextout = sc->sc_curout)->cnt = 0;
sc->sc_curout = bp;

440



sc->sc_ostate = 2;
hsis_start(sc);
}
} else {
register struct ifqueue *ifq = &ifp->if snd;

#ifdef TRAFFIC_CONTROL

if ( == (struct mbuf *) 0 )
return ( 0 ); /* already enqueued */

#endif TRAFFIC_CONTROL

}

8 = splboard();

if (IF_QFULL(ifq)) f{
IF_DROP(ifq);

TRACE (T_QFULL, sc, 0)
splx(s) ;

m_freem(m) ;

return (ENOBUFS) ;

}

IF_ENQUEUE(ifqg, m);

if (sc->sc_ostate == 0)
hsis_start(sc);

}

splx(s);

return (0);

/*

* start new output operation. This routine *must* be called at splboard.

*/

void
hsis_start(sc)

{

register struct hsis_softc *sc;

register struct zscc *zs = sc->sc_zs;
register u_char *zsdev = zs->zs8_addr;
register u_char *zddev = sc->sc_zd->zd_addr;
register u_char unit = sc->sc_if.if unit;
register u_char *cp;

register int 1len;

register u_int baddr;

register int s;

register u_int resid;

register int i;

cp = BUFtoCP(sc->sc_curout);

if (sc->sc_ostate == 3} /* take handoff from hardware intr */
sc->gc_ostate = 0;

if (sc->sc_ostate == 0) {

register struct hsisbuf *bp;

if (len = (bp = sc->sc_nextout)->cnt) {

441



/i

* 'pext’ output buffer is full - swap current and
* next. (The weird assignment below fools Sun-4 cc
* into generating reasonable code -- maybe one day
* Sun will discover ANSI C ‘volatile’ and this

* crap can go away.)

*/

(sc->sc_nextout = sc->sc_curout)->cnt = 0;

sc->sc_curout = bp;

cp = BUFtoCP(bp):

} else {

/t
* on-board xmit buffer is empty. try to copy a new
* packet to it. (we want to overlap the copy with
* the scc sending the final crc and flag bytes to
* avoid taking an extra xmit interrupt).
*/

register struct mbuf *m;

#ifdef TRAFFIC_CONTROL
struct aNetIf *gifcp;
struct mbuf * (*dgfuncp) ()

/* Map ifnet pointer to extended ifnet (aNetIf) */
gifcp = tcif_ifp2gifcp( (unsigned long) &{ sc->sc_if ) );

/* If no specific dequeue function is supplied, use specified queue */

if ( (dqfuncp = gifep->iftc_dq) != (struct mbuf * (*)()) NULL )
m = (*dgfuncp) ( gifcp ); /* Use specific dequeue function */
else /* Use generic dequeue function */

#endif TRAFFIC_CONTROL
IF_DEQUEUE (&sc->sc_if.if_snd, m);

if (m == NULL) {

sc->sc_if . if_timer = 0;
TRACE (T_EMPTY_0Q, sc, 0)
return;

}

len = copy_m_to_b{sc, m, cp);

TRACE (T_OUT_COPY, sc, (int)bp | len)
}
} else

len = sc->sc_curout->cnt;

sc->sc_if.if_timer = HSIS_WATCHDOG_TIME;

if (!sc->sc_codec.datalen) {

/*
* if the transmit buffer is full it means that crc/flag
* gending is still in progress. the stupid scc will jam
* two packets together if we enable dma xmit so we have

442



to turn on the xmit interrupt (which should come when
the crc and flag have been sent) and exit waiting for
that interrupt. If the transmit buffer is empty, we
can just start the next packet (this should be the

* usual case at Tl speeds).

* * * ¥

*/
SCC_READO (resid) ;
if ((resid & ZSRRO_TX_READY) == 0) {
/*

* we lose - wait for xmit intr.

*/

SCC_BIS(1, ZSWR1_TIE);
sc->sc_ostate = 2;

sc->sc_curout->cnt = len;

return;

}
}
/*

* Transmit buffer empty -- start up dma.
*/

baddr = cp - sc->sc_hs->hs_board;

SCC_WRITEO (ZSWRO_RESET_TXCRC); /* no harm for codec mode */
if (unit & 1) {

/* B channel */

register u_int c;

DMA_READ(ZSDMA_TDCRB, resgid) ;
DMA_READ(ZSDMA_TDCRB + 1, ¢);
resid |= ¢ << 8;

DMA_WRITE (ZSDMA_TDCRB, len);
DMA_WRITE (ZSDMA_TDCRB+1, len >> 8);

DMA_WRITE (ZSDMA_TDARB, baddr);
DMA WRITE (ZSDMA_TDARB+1, baddr >> 8);

e = splhigh{();

DMA_WRITE (ZSDMA_CCAR, ZSDMA_CCAR_ENA_TX_B);
} else {

/* A channel */

register u_int c;

DMA_READ (ZSDMA_TDCRA, resid);
DMA_READ (ZSDMA_TDCRA + 1, c);

resid |= ¢ << 8;

DMA_WRITE (ZSDMA_TDCRA, len);
DMA_WRITE (ZSDMA_TDCRA+1, len >> 8);

DMA_WRITE (ZSDMA_TDARA, baddr);
DMA_WRITE (ZSDMA_TDARA+1l, baddr >> 8);

443



s = splhigh{();
DMA_WRITE (2SDMA_CCAR, ZSDMA_CCAR_ENA_TX_A);
}
if (!sc->sc_codec.datalen) {
/*
Cretinous chip requires that EOM not be reset until dma has
loaded first data character into buffer but must be reset
before last character loaded into buffer. We’'ve locked out
to prevent the obvious race so just wait until character
gets there.
/
for (i = 10; --i >= 0; ) |
DELAY (2) ;
SCC_READO (baddr) ;
if ((baddr & ZSRRO_TX_READY) == 0)
goto rdy;
}
TRACE (T_NO_XMIT_RDY, sc, baddr)
dprintf((“hsis%d: hsis_start: xmit didn‘t load (rr0=0x%x)\n”,
unit, baddr))
rdy:
SCC_WRITEO (ZSWRO_RESET_EOM) ;
}

* * % % * ¥

TRACE (T_START_OUT, sc, (resid << 16) | len)
sc->sc_ostate = 1;
splx(s):

if (resid) {
++sc->gc_if.if oerrors;
++BCc->s8c_estats.sse_underrun;

}

++sc->gc_if.if_ opackets;

++sc->gsc_dstats.ssd_opack;

sc->sc_dstats.ssd_ochar += len;

#if NBPFILTER > O

if (sc->sc_bpf)
bpf_tap(sc->sc_bpf, cp, len);

#endif

/*
* if there’'s more in the snd g, copy another packet to the
* on-board ‘next’ buffer (we do it now to overlap the copy
* with the send of the last packet to approximate back-to-back
* output packets).

/

*

#if defined (HSIS_EXTERNAL_RCVDONE) && !defined(SFQ_VC)
if (sc->sc_if.if_snd.ifq_len)
#elif !defined(SFQ_VC) && !defined(HSIS_EXTERNAL_RCVDONE)
if (sc->sc_codec.datalen && sc->sc_if.if_ snd.ifq_len)
#endif

{ /* Here to avoid confusing tgrind */

register struct mbuf *m;
#ifdef TRAFFIC_CONTROL

444



struct aNetIf *gifcp;
struct mbuf * (*dgfuncp) ();

/* Map ifnet pointer to extended ifnet (aNetIf) =*/
gifcp = tcif_ifp2gifep( (unsigned long) &( sc->sc_if ) );

/* If no specific dequeue function is supplied, use specified queue */

if ( (dgfuncp = gifcp->iftc_dq) != (struct mbuf * (*)()) NULL )
m = (*dgfuncp) ( gifcp ); /* Use specific dequeue function */
else /* Use generic dequeue function */

#endif TRAFFIC_CONTROL
IF_DEQUEUE (&sc->sc_if.if_snd, m);

if (m) {
register struct hsisbuf *bp = sc->sc_nextout;

bp->cnt = len = copy_m_to_b{(sc, m, BUFtoCP(bp));
TRACE (T_OUT_COPY, sc, (int)bp | len)
}

int
hsis_start_dma_read(sc)

register struct hsis_softc *sc;

{

register u_char *zddev = sc->sc_zd->zd_addr;
register int baddr BUFtoCP (sc->sc_inbuf) - sc->sc_hs->hs_board;
register u_char bl = baddr;

register u_char bh baddr >> 8;

register int s = splhigh();

register u_int rl;

register u_char rh;

/
disable the dma channel, set it to xfer into sc_inbuf,
then re-enable. If there are back-to-back packets inbound,
we have to re-enable the dma channel before the 3 byte scc
rcv fifo overflows. E.g., at Tl (5.2us/byte) the time

from disable to enable should be no more than 10us. So,

we make sure nothing interrupts us during this window and
the code below is as fast as I can make it.

Data from the next packet probably got stuffed into the
buffer containing the current packet so we save and return
the current dma count reg. before overwriting it (so the
higher level routine can undo the damage done by this
braindead dma model) .

* % % % % % % * * * * »

»*

*/
if (sc->sc_zs->zs_unit & 1) {
/* B channel */

445



/* if the TX DMA is just about finished, wait for it */
/* to avoid re-enabling it when disabling RX DMA * /
DMA_READ(ZSDMA_TDCRB, rl):

DMA_READ(ZSDMA_TDCRB + 1, rh);

rl |= rh << 8;
if (rl > 0 && rl < 4) {
do {

DELAY (2) ;

DMA_READ (ZSDMA_DER, rh);
} while (rh & ZSDMA_DER_TX_B_ENABLE) ;
}

/* epin until the rcv fifo is empty */
for (rl = 10; --rl != 0; } {
register u_char *zsdev = sc->sc_zs->zs_addr;
SCC_READO (rh)
if ({(rh & ZSRRO_RX READY) == 0)
break;
DELAY (2) ;
}
if (rl == 0)
TRACE (T_FAIL, sc, rh);

/* repeat the disable until it works (harware bug) */
DMA_READ (ZSDMA_DER, rh);

do {

DMA_WRITE (ZSDMA_DER, rh &- ZSDMA_DER_RX_B_ENABLE) ;
DMA_READ (ZSDMA_DER, rh);

} while (rh & ZSDMA_DER_RX_B_ENABLE) ;

DMA_READ (ZSDMA_RDARB, rl);
DMA_WRITE (ZSDMA_RDARB, bl);
DMA_READ (ZSDMA_RDARB+1, rh);
DMA_WRITE (ZSDMA_RDARB+1, bh);

DMA_WRITEO (ZSDMA_CCAR_ENA_RX_B) ;

/* set count after enabling to minimize time */

/* disabled; lsb first to prevent borrow from msb */
DMA_WRITE (ZSDMA_RDCRB, HSIS_MAXPACKET & Oxff):
DMA_WRITE(ZSDMA_RDCRB+1, HSIS_MAXPACKET >> 8);

} else {

/* A channel */

DMA_READ(ZSDMA_TDCRA, rl);

DMA_READ(ZSDMA_TDCRA + 1, rh);

rl |= rh << 8;
if (r1 > 0 && rl < 4) {
do {

DELAY (2) ;

DMA_READ (ZSDMA_DER, rh);
} while (rh & 2ZSDMA_DER_TX_A_ENABLE) ;

446



for (rl = 10; --rl != 0; ) {

register u_char *zsdev = sc->sc_zs->zs_addr;
SCC_READO (rh)
if ((rh & ZSRRO_RX_READY) == 0)
break;
DELAY (2) ;
}
if (rl == 0)

TRACE (T_FAIL, sc, rh);

DMA_READ (ZSDMA_DER, rh);

do {

DMA_WRITE (2SDMA_DER, rh &- ZSDMA_DER_RX_A_ENABLE) ;
DMA_READ(ZSDMA_DER, rh) ;

} while (rh & ZSDMA_DER_RX_ A ENABLE);

DMA_READ (ZSDMA_RDARA, rl);
DMA_WRITE (2SDMA_RDARA, bl);
DMA_READ (ZSDMA_RDARA+1, rh);
DMA_WRITE (ZSDMA_RDARA+1, bh);

DMA_WRITEO (ZSDMA_CCAR_ENA_RX_A) ;

DMA_WRITE (ZSDMA_RDCRA, HSIS_MAXPACKET & Oxff);
DMA_WRITE (ZSDMA_RDCRA+1, HSIS_MAXPACKET >> 8);

}

rl |= rh << 8;
TRACE (T_START_READ, sc, (((bh << 8) | bl) << 16) | rl)
splx(s);

return ({int) (rl - sizeof (struct hsisbuf)) & (HSIS_BUFSIZE - 1});

/*

* This routine is called if an output operation takes longer than
* HSIS_WATCHDOG_TIME (usually 2 minutes) to complete. Reset and
* restart the channel (current output packet will be lost).

*/
hsis_watchdog (unit)

register int unit;

{

register struct hsis_softc *sc = &hsis_goftc[unit];

register u_int errcnt = sc->sc_oerrcnt;

register int s;

if (sc->sc_inbuf == NULL || (sc->sc_if.if flags & IFF_UP))
/* we have been manually turned offline or online */
return;

if (errcnt == Q)
printf (*hsis%d: watchdog timeout.\n”, unit);

447



s = splboard();
sc->sc_oerrcnt = ++errcnt;
hsis_reset (unit);
hsis_init(unit);
hsis_start(sc);

splx{s);

void

hsis_jerr_timer (sc)

register struct hsis_softc *sc;

{

register int unit = sc->sc_if.if_unit;
register int s;

if (sc->sc_inbuf == NULL || (sc->sc_if.if_ flags & IFF_UP))
/* we have been manually turned offline or online */
return;

printf(“hsis%d: reset and restarted.\n”, unit);

s = splboard();

hsis_init(unit);

hsis_start(sc);

splx (8);

void

hsis_ierror(sc, zs, zsdev, msg)

register struct hsis_softc *sc;
register struct zscc *zs;

register u_char *zsdev;

register char *msg;

{

register int unit = sc->sc_if.if_unit;
register u_jint errcnt = sc->sc_ierrcnt;

sc->s8c_ijerrcnt = ++errcnt;
if (errcnt >= HSIS_RESET_THRESH) {
4ifdef HSIS_TRACE
if (hsis_trace_lock > 100) hsis_trace_lock = 100;
#endif
hsis_reset (unit);
if (errcnt >= HSIS_OFF_THRESH)
timeout (hsis_ierr_timer, sc, HSIS_OFF_TIME);

else
hsis_ierr_timer (sc);
return;

}

if (errcnt == 1)

printf(“hsis%d: %s (p#%d).\n", unit, msg,
sc->sc_dstats.ssd_ipack);

/-ﬁ

448



* book says we have to disable then re-enable
* fifo to clear it. Then toss input qQueue in (vain) hope that
* we'll end up with input stream and fifo in sync.
*/
* (u_char *)AUXIO_REG = AUX_MBO|AUX_EJECT;
SCC_BIC(3, ZSWR3_RX_ENABLE)
SCC_BIC(15, 2SR15_SDLC_FIFO_ENA)
++gc->sc_if.if_ierrors;
SCC_BIS(15, ZSR15_SDLC_FIFO_ENA)
SCC_WRITEO (ZSWRO_RESET_ERRORS) ;
(void) hsis_start_dma_read(sc) ;
SCC_BIS(3, ZSWR3_RX_ENABLE)
if (sc->sc_intail) {
sc->sc_intail->next = sc->sc_hs->hs_free;
sc->sc_hs->hs_free = sc->sc_ing;
sc->sc_ing = NULL;
sc->sc_intail = NULL;
}
bzero(sc->sc_fifo, sizeof(sc->sc_fifo));
sc->sc_fifop = sc->sc_fifo;
sc->sc_inoff = NULL;
*(u_char *)AUXIO_REG = AUX MBO|AUX_EJECT|AUX_LED;
}

void

hsis_dmarecv_time (sc)

register struct hsis_softc *sc;
{

register u_char *zddev = sc->sc_zd->zd_addr:
register struct hsiscom *hs;
regigter struct hsisbuf *bp;
register struct hsisbuf *qgp;
register int *fp;

regigter int cnt;

register int did_something = 0;
register int 8 = splboard();

TRACE (T_RECVDMA_INT, sc, 0)

hs = sc->sc_hs;

if ((bp = sc->sc_inbuf) == 0 || !sc->sc_codec.datalen) {
/* channel is offline or no longer codec mode */
/* (void)hsis_start_dma_read(sc); DO NOTHING */
eplx(s);
return;

}

if ((gp = hs->hs_free) == NULL) {

#ifdef HSIS_TRACE
if (hsis_trace_lock > 100) hsis_trace_lock = 100;

#endif
/* no free buffers - just toss input */
(void)hsis_start_dma_read(sc) ;
timeout (hsis_dmarecv_time, sc, sc->sc_ticks);

449



TRACE (T_RCVINT_BUF, sc, 0)
splx(s);

return;

}

hs->hs_free = gp->next;
sc->sc_inbuf = gp:

cnt = hsis_start_dma_read(sc);

timeout (hsis_dmarecv_time, sc, sc->sc_ticks);

if ((bp->cnt = cnt) == 0) {
bp->next = hs->hs_free;
hs->hs_free = bp;
} else {
bp->next = NULL;
if (gp = sc->sc_intail)
gp->next = bp;
else
sc->sc_ing = bp;
sc->sc_intail = bp;

sc->sc_bytesread += cnt;
while (sc->sc_bytesread >= sc->sc_readlen)

sc->sc_bytesread -= sc->sc_readlen;
fp = sc-»>sc_fifop;
*fp++ = gc->sc_readlen;

if (fp >= &sc->sc_fifo[HSIS_NFIFO])
fp = sc->sc_fifo;
sc->sc_fifop = fp;

/*

{

* Reset readlen to full length after first

*/
sc->sc_readlen = sc->sc_codec.datalen;
++did_something;
}
if (did_something) {
(void) splsoft();
hsis_recv_done (sc);
}
}
splx(s);
}

void
hsis_dmaxmit_intr (sc)
register struct hsis_softc *sc;

{

register u_char *zddev = sc->sc_zd->zd_addr;

register u_char unit = sc->sc_if.if_unit;
register u_char *cp;

register int len;

register u_int baddr;

register struct hsisbuf *bp;

450

block.



TRACE (T_XMITDMA_INT, sc, 0)

DMA_WRITE (ZSDMA_ICSR, ZSDMA_ICSR_RESET_IP_IUS |

(ZSDMA_ICSR_TX_A >> ((unit&l)<<1)));

if ((len = (bp = sc->sc_nextout)->cnt) == 0) {
sc->sc_ostate = 0; /* no ‘next’ buffer, go idle */
return;
}
/*
* 'next’ output buffer is full - swap current and
* next. (ditto ’volatile’)
*/
(sc->sc_nextout = sc->sc_curout)->cnt = 0;

sc->sc_curout = bp:
cp = BUFtoCP (bp) ;

sc->sc_if.if_timer = HSIS_WATCHDOG_TIME;

baddr = cp - sc->sc_hs->hs_board;

if (unit & 1) {

/* B channel */

DMA_WRITE (ZSDMA_TDCRB, len);
DMA_WRITE (ZSDMA_TDCRB+1, len >> 8);

DMA_WRITE (ZSDMA_TDARB, baddr);
DMA_WRITE (ZSDMA_TDARB+1, baddr >> 8)

’

DMA WRITE (ZSDMA_CCAR, ZSDMA_CCAR_ENA_TX_B);

} else {

/* A channel */

DMA_WRITE (ZSDMA_TDCRA, len);
DMA_WRITE(ZSDMA_TDCRA+1, len >> 8);

DMA_WRITE (ZSDMA_TDARA, baddr);
DMA_WRITE (ZSDMA_TDARA+1, baddr >> 8)

’

DMA_WRITE (ZSDMA_CCAR, ZSDMA_CCAR_ENA_TX_A);

}

TRACE (T_START_OUT, sc, len)
sc->8c_ostate = 1;
++gc->8c_if.if_ opackets;
++gc->sc_dstats.ssd_opack;
sc->sc_dstats.ssd_ochar += len;
SOFTINT (sc, XMITDMA_ DONE) ;

void
hsis_sccrecv_intr(sc, zs, zsdev)

{

register struct hsis softc *sc;
register struct zscc *zs;
register u_char *zsdev;

register struct hsiscom *hs;

451



register struct hsisbuf *bp;
register struct hsisbuf *qp;
register int *fp:

~
*

Stash the current contents of the sdlc fifo. This should

be done before we call ‘start_dma_read’' or we can end up
with the fifo & dma counts different: For god-only-knows
what reason, Zilog made the sdlc fifo count bytes that have
entered the 3 byte receive data fifo while the dma counts
bytes that have left the receive data fifo. Thus the fifo
can record the end of a packet that the dma hasn’'t finished.

* % % % * * 2 *

~

fp = sc->sc_fifop;

while (1) {

register u_char rrl, rré, rr7;
register int i;

SCC_READ(7, rr7)
SCC_READ(6, rré6)
SCC_READ(1, rrl)

i = (({(rrl << B8) | rr7) << 8) | rré6;

TRACE (T_RCVINT FIFO, sc, i)

if (rrl & ZSRR1_DO) {

/*

data overrun - the way the Zilog fifo works

we don’'t have a prayer of recovering so toss
everything in the fifo and input gqueue, put
the scc in hunt mode to skip to the start of
the next packet, then hope the fifo eventually
gets back in sync with the input stream.
/

hsis_ierror(sc, zs, zsdev, "“receive data overrun”);
++8c->8c_estats.sse_overrun;

return;

}
switch (rr7 & Oxc0) {

* * * * * * *

case 0x80:

case 0xcO0:

/* fifo overflow */

hsis_ierror(sc, zs, zsdev, "status fifo overflow”);
return;

case 0x00:

/* fifo empty */

goto fifo_empty:

}

if (*fp) {

hsis_ierror(sc, zs, zsdev, “status fifo array overflow”):
return;

}

452



*fp++ = 1;
if (fp »>= &Sc->sc_fifo[HSIS_NFIFO])
fp = sc->sc_fifo;

}

fifo_empty:

if (fp == sc->sc_fifop)
/* did nothing (spurious read interrupt) */
return;

sc->sc_fifop = fp;

hs = sc->sc_hs;
if ((bp = sc->sc_inbuf) == 0) {
/* channel is offline */
(void) hsis_start_dma_read(sc);
return;
}
if ((gp = hs->hs_free) == NULL) {
/* no buffer - have to toss input or we lose sync with fifo */
TRACE (T_RCVINT_BUF, sc, 0)
hsis_ierror(sc, zs, zsdev, "no free bufs”);
return;
}
hs->hs_free = gp->next;
sc->sc_inbuf = gp;
if ((bp->cnt = hsis_start_dma_read(sc)) == 0) {
bp->next = hs->hs_free;
hs->hs free = bp;
} else {
bp->next = NULL;
if (gp = sc->sc_intail)
gp->next = bp;
else
sc->sc_ing = bp;
sc->sc_intail = bp:
}
SOFTINT (sc, RECV_DONE) ;
}

void

heis_stat_intr(sc, zs, zsdev)
register struct hsis_softc *sc;
register struct zscc *zs;
register u_char *zsdev;

{

register u_int rro0;

SCC_READO (rr0) ;

SCC_WRITEO (ZSWRO_RESET_STATUS) ;

SCC_WRITEQ (2ZSWRO_CLR_INTR) ;

TRACE (T_STAT_INT, sc, rr0)

if ((rr0 & ZSRRO_TXUNDER) && sc->sc_ostate) {

/* packet completed - start a new one if possible */

453



sc->sc_oerrcnt = 0;
sc->sc_ostate = 3; /* don’'t let hsis_output sneak in */
SOFTINT (scC, XMIT_DONE);
} else if (rr0 & ZSRRO_BREAK) {
/*
*+ ‘abort' received -- reset input (because scc fifo
* gtate is messed up and we have no way to figure
* out packet boundaries).
*/
hsis_ierror(sc, zs, zsdev, “received ‘abort’'”);
++gc->s8c_estats.sse_abort;
} else if (! (rr0 & ZSRRO_SYNC)) {
/t
* In codec mode, have established sync so receive data
* will now start to come in. Start the timer for
* restarting receive DMA.
*/
SCC_BIC(15, ZSR15_SYNC);
if (sc->sc_codec.datalen)
timeout (hsis_dmarecv_time, sc, sc->sc_ticks);
} else {
/* XXX - should do something. */
dprintf((“hsis%d: scc stat interrupt, rr0=0x%x.\n",
sc->sc_if.if_unit, rr0))
}
}

void

heis_scexmit_intr(sc, zs, zsdev)
register struct hesis_softc *sc;
register struct zscc *zs;
register u_char *zgdev;

{

register u_int rro0;

SCC_READO (rro0);
SCC_BIC(1, ZSWRl_TIE);
SCC_WRITEO (ZSWRO_RESET_TXINT) ;
SCC_WRITEO (ZSWRO_CLR_INTR) ;
TRACE (T_XMIT_INT, sc, (sc->sc_ostate << 16) | rro0)
if (sc->sc_ostate == 2) {
/i
* we were waiting for CRC/flag send to finish and it
* has -- start next packet.
*/
SOFTINT (sc, XMIT_DONE):
} else {
/*
* gince we never enabled xmit interrupt, something’s weird.
* it would be nice to print a warning message but there’s
+ a small race in hsis_start where we TIE then find xmit is
* done & turn it off. Zilog says the disable should clear

454



* the interrupt but, of course, they lie & we can end
* up here.

*/

#define ZS_A_INTR (ZSRR3_IP_A_STAT|ZSRR3_IP_A_RX|ZSRR3_IP A TX)
#define ZS_B_INTR (ZSRR3_IP_B_STAT|ZSRR3_IP_B_RX|2ZSRR3_IP_B_ TX)

#define ZINTSCAN (rmask, smask, tmask) { \
if (rr3 & rmask) { \
SCC_WRITEO (ZSWRO_RESET_ERRORS) ; \
SCC_WRITEO (ZSWRO_CLR_INTR) ; \
hsis_sccrecv_intr{sc, zs, zsdev); \
PA
if (rr3 & smask) \
hsis_stat_intr{(sc, zs, zsdev); \
if (rr3 & tmask) \
hsis_sccxmit_intr(sc, zs, zsdev); \

}

#define ZCHECK_INT (chan) ZINTSCAN(ZSRR3_IP_/*+*/chan/**/ RX, \
ZSRR3_IP_/**/chan/**/_STAT, \
ZSRR3_IP_/**/chan/**/_TX)
#ifndef HSIS_ EXTERNAL_RCVDONE
#define ZCHECK_BOTH { \
if (sc->sc_codec.datalen) { \
register u_char *zddev = sc->sc_zd->zd_addr; \
register u_char dma0; \
\
DMA_READO (dma0) ; \
if (dma0 & (2ZSDMA_DSR_TX_A_ABORT|ZSDMA_DSR_TX_A TERM)) { \
++did_something; \
hsis_dmaxmit_intr(sc); \
FA
if (dma0 & (ZSDMA_DSR_TX_B_ABORT|ZSDMA_DSR_TX B _TERM)) { \
++did_something; \

heis_dmaxmit_intr(sc + 1); \
P
A
zs = sc->sc_zs; \
zsdev = zg->zs_addr; \

SCC_READ (3, rr3); \

if (rr3 & 2S_A_INTR) { \
++did_something; \
ZCHECK_INT(A) \

P

++s8c; \

if (rr3 & ZS_B_INTR) { \
++did_something; \

zs = sc->sc_z8; \

zsdev = zs->zs_addr; \

455



ZCHECK_INT(B) \

FA

++sc; \

}

#else

#define ZCHECK_BOTH { \

if (sc->sc_codec.datalen) { \
register u_char *zddev = sc->sc_zd->zd_addr; \
register u_char dma0; \

\
DMA_READO (dmao0); \

if (dma0 & (ZSDMA_DSR_TX_A_ABORT|ZSDMA_DSR_TX_A_TERM))

++did_something; \
hsis_dmaxmit_intr(sc); \

FA

if (dma0 & (ZSDMA_DSR_TX_B_ABORT|ZSDMA_DSR_TX_B_TERM) )

++did_something; \
hsis_dmaxmit_intr(sc + 1); \
FA
A
zg = gc->sc_zs; \
zsdev = zs->zs_addr; \
if ((hsis[HSIS_EINT_STS] & rcvintmask) == 0) {\
++did_something; \
hsis[zs->zs_unit + HSIS_EINT _CLR_A] = 0; \
hsis_sccrecv_intr(sc, zs, zsdev); \
P
rcvintmask <<= 1; \
SCC_READ(3, rr3); \
if (rr3 & ZS_A_INTR) { \
++did_something; \
ZCHECK_INT (A) \

PoA
++8c; \
if ((hsis[HSIS_EINT_STS] & rcvintmask) == 0) {\

++did_something; \
zs = sc->sc_z8; \
zgsdev = zs->zs_addr; \
hsis[zs->zs_unit + HSIS_EINT_CLR_A] = 0; \
hsis_sccrecv_intr(sc, zs, zsdev); \
PA
rcvintmask <<= 1; \
if (rr3 & ZS_B_INTR) { \
++did_something; \
zs = sc->s8c_zS; \
zsdev = zs->zs_addr; \
ZCHECK_INT (B) \
FA
++8c; \
}
#endif

456

{

{

\

\



/*

* Handle HSIS board(s) interrupt(s).

*/

int

hsisintr(

{
register
register
register
register
register
register

)

struct
struct
struct
u_char
u_char

hsis_softc *sc;

hsis_softc *sc_end = hsis_softc_end;
zscc *zs;

*zsdev, *hsis;

rr3;

int did_something = 0, last_round;

* It’'s costly to take an interrupt and likely that some other

* channel finished while we were servicing the current channel.
* We loop here until we make one full pass through the status

* registers and don’'t find new work to do.

*/

TRACE (T_INTR_ENTRY, hsis softc, 0)

do {

last_round = did_something;

/*

* we can’'t reliably read the status registers on the

* * * 2 »

/

for (sc

#tendif
hsis =

}
} while

zilog chip so we look at the hsis board status register
to find interrupt requests. This means we loop over
four zilog channels at a time.

NOT TRUE ANYMORE per VJ 11-19-91

= heis softc; sc < sc_end; ) {
#ifdef HSIS_EXTERNAL_RCVDONE
register u_char rcvintmask = 1;

sc->sc_hs->hs_board;
ZCHECK_BOTH
ZCHECK_BOTH

(did_something != last_round);

if (hsis_isum)
set_intreg (IR_SOFT_INT4, 1);

TRACE (T_INTR_EXIT, hsis_softc, did_something)
return (did_something) ;

}

void

heis_drop_input(sc, len, bufoff, buflen)
register struct hsis_softc *gc;
register int len, buflen;

register u_char *bufoff;

{

457



Note:
interrupt levels,
below be done *after* we

»

»

works with Sun’s current

* % % * *

/

register int s splboard() ;
register struct hsiscom *hs
register struct hsisbuf *bp

if
/*

(bp == NULL) {

To avoid races between the hardware & software
it’'s important that the load of

lbpr

are at splboard. In particular,

this means that the load of bp *cannot* be put in the
delay slot of the spl call. The statement order below

compiler technology but may give

problems in the future (one day they’ll discover “volatile”...

sc->sc_hs;
sc->sc_ing;

* timeout or hardware intr probably did a reset --
* exit, making sure that input state stays clean.

*/
sc->s8c_inoff = 0;
splx(s);
return;
}
while (len) {
if (buflen <= 0) {

buflen = bp->cnt;
bufoff = BUFtoCP(bp);
}

if (buflen > len) {
buflen -= len;

bufoff += len;

break;

} else {

register struct hsisbuf *np;

buflen;
0;
NULL;

len -=
buflen =
bufoff

np bp->next;
bp->next hs->hg_free;
hs->hs_free = bp;
if ((sc-»>sc_ing
sc->sc_intail
break:;
}
}
}
if (buflen)
bp->cnt
sc->sc_inoff
splx(s);

bp = np)

NULL;

buflen;
bufoff;

NULL) {

458



* % * * % % *

*

*

*

*

Following is mbuf offset to get nice alignment of packets.

Choice determined by:

1. IP header *must* be aligned on a word (4 byte) boundary.

2. bcopy will go much faster if data is cache aligned (i.e., at
16-byte boundary) .

3. We need space to prepend a 14 byte ethernet header (if
forwarding packet).

MMINOFF is 12 (thanks to Bill Joy for this horrible kludge) and the
next mult-of-16 above 12+14 is 32 so we offset 20 (= 32 - MMINOFF)

in an mbuf and 16 in a cluster.

/

#define HDRSPACE (16)
#define MBUF_HDRSPACE (32 - MMINOFF)

/*

*

following macro drops ‘len’ input bytes (used on input errors).

/

#define DROP_INPUT (len) { \
hsis drop_ input(sc, len, bufoff, buflen); \
if ((bp = sc->sc_ing) == NULL) \
/* input was reset by timeout or error */ \
return; \
if (bufoff = sc->sc_inoff) \
buflen = bp->cnt; \
else \
buflen = 0; \

* % F F % % * % O+ »

~

vo
hs

This routine goes through the software copy of the scc
status fifo (which records the lengths of incoming packets)
and sc_ing (the gueue of unprocessed, incoming data) and
breaks the data up into packets then queues them for higher
level network processing. The loop structure is complicated
by the fact that packet boundaries are mapped randomly onto
the input queue (there may be more than one packet per input
buffer and packets may cross buffer boundaries).

id
is_recv_done (sc)

register struct hsis_softc *sc;

{

register int *fp:

register u_char *bufoff;

register int buflen;

register struct hsiscom *hs = sc->sc_hs;
register struct hsisbuf *bp;

/* find the first unprocessed packet in the fifo array */

459



for (fp = sc->sc_fifop - 1; --fp) {
if (fp < sc->sc_fifo)

fp = &sc->sc_fifo[HSIS_NFIFO - 1]:
if (*fp == 0)

break;

if (pbufoff = sc->sc_inoff) {

if ((bp = sc-»>sc_ing) == NULL)
return;

buflen = bp-’cnt;

} else

buflen = 0;

while (1) {

register struct mbuf *m;
register u_char *op;
register int sfifo;

if (++fp >= &sc->sc_fifo[HSIS_NFIFO])
fp = sc->sc_fifo;

if ({(sfifo = *fp) == 0)
break;

*fp = 0;

TRACEL (T_RCVINT, sc, sfifo)

if (sfifo & (ZSRR1_FE << 16)) {
++g8c->8c_estats.sge_cCrc;
++gc->sc_if.if_ierrors;

sfifo &= Ox3fff;

DROP_INPUT (sfifo)

continue;

}

sfifo &= Ox3fff;

if (sfifo > MCLBYTES - HDRSPACE) {
/* packet too big */
++gc->sc_1if.if_ierrors;
DROP_INPUT (sfifo)

continue;

}

MGET (m, M_DONTWAIT, MT_DATA):
if (m == (struct mbuf *)0) {
DROP_INPUT(Sfifo)

continue;

}

if (sfifo <= MLEN - MBUF_HDRSPACE)
m->m_off += MBUF_HDRSPACE;

elge {

/* too big for mbuf - use cluster */
MCLGET (m) ;

if (m->m_len != MCLBYTES) {

460



/* no clusters - drop this packet */
m_freem(m) ;
DROP_INPUT (sfifo)
continue;
}
m->m_off += HDRSPACE;
}
/*
* if we're in codec mode and this is the first
* packet after syncing up, prepend the sync byte(s)
* that the 8530 stripped.
*/
if (sc->sc_codec.datalen) {
m->m_len = sfifo;
op = mtod(m, u_char *);
if (sfifo < sc->sc_codec.datalen) {

if (sc->sc_codec.synclen == 8) {
m->m_len += 1;
m->m_off -= 1;
opl-1] = sc->sc_codec.syncpat;
} else {
m->m_len += 2;
m->m_off -= 2:
opl[-2] = sc->sc_codec.syncpat;
op[-1] = sc->sc_codec.syncpat >> 8;
}
}
} else {
if (! sc->sc_raw)
m->m_off -= PPP_HDRSPACE;
m->m_len = sfifo - 2;

op = mtod(m, u_char *);
}
sc->sc_dstats.ssd_ichar += sfifo;
++gc->sc_dstats.ssd_ipack;
++gc->sc_if.if_ipackets;
while (sfifo) {
if (buflen <= 0) {
bp = sc->sc_ing;
if (bp == NULL) ({
/*
* nothing on input queue - probably
* had an overrun at hardware intr
* level. just bail.
*/
m_freem(m) ;
return;
}
buflen = bp->cnt;
bufoff = BUFtoCP(bp);
}
if (buflen > sfifo) {

461



}

bcopy (bufoff, op, sfifo);

buflen -= sfifo;
bufoff += sfifo;
break;

} else {

register int s;
register struct hsisbuf *bp;

bcopy (bufoff, op, buflen);

sfifo -= buflen;
op += buflen;
buflen = 0;
bufoff = NULL;

s = splboard{():

if ((bp = sc->sc_inqg) == NULL)
splx(s);

m_freem(m) ;

return;

}

if ((sc->sc_ing = bp->next) ==

sc->sc_intail = NULL;
bp->next = hs->hs_free;
hs->hs_free = bp;
splx(s);
}

/*

* gueue the packet to the appropriate network

*/

#if NBPFILTER > O
if (sc->sc_bpf) {

}

register u_char c;

op = mtod(m, u_char *);
Cc = "'Op;
*op = 0; /* ‘in’ direction */

NULL)

bpf_tap(sc->sc_bpf, op, m->m_len);

*Op = C;

#endif
if (sc->sc_raw) {

register struct socket *so = sc->sc_raw;

if (m->m_len > sbspace(&so->so_rcv))

++sc->sc_idrops;
m_freem(m);
} else {

register struct mbuf *n = so->so_rcv.sb_mb;

if (m) |
while (n->m_next)

462

protocol.



n = n->m_next;
n->m_next = m;
} else
so->so_rcv.sb_mb = m;

so->so_rcv.sb_cc += m->m_len;
sorwakeup (so) ;
}
} else {
register struct ifqueue *ing:
register int s;
#ifdef STII
struct ifqueue *st2_ fromhsis();
int st2_intr();
#endif STII

/

Note: the protocol input routines all require
an ifp at the front of the buffer. We make
use of the fact that a PPP header is the same
size as an ifp & just overwrite the 4 bytes
of header without allocating new space.

* % % * * * *

/
s = gplimp();

op = mtod(m, u_char *);
switch (*({u_int *)op) {

case PPP_INET:
ing = &ipintrq;
schednetisr (NETISR_IP) ;
break;
#ifdef STII
case PPP_SCMP:
case PPP_STII:
ing = st2_fromhsis( &sc->sc_if, m, op };

if (! ing ) {
splx(s);
gc->sc_ierrcnt = 0;
continue;

}
softcall (st2_intr, (caddr_t)O0});
break:

#endif STIIT
default:
splx(s):
++gc->8c_ibadtype;
m_freem(m) ;
continue;
}
if (IF_QFULL(inq)) {
++sc->sc_idrops;
m_freem(m) ;

463



} else {
*({struct ifnet **)op = &sc->sc_if;
IF_ENQUEUE (ing, m);

}

splx(s) ;

}

sc->sc_ierrcnt = 0;
}
/*

* done with fifo -- if there’s data left in the current buffer,
* remember where we are.

*/

if (bufoff && (bp = sc->sc_inq))
bp->cnt = buflen;
sc->sc_inoff = bufoff;

}

void

hsis_xmit_done (sc)

register struct hsis_softc *sc;
{

register int len;

register int s;

/t
* if there's more in the snd q, copy another packet to the
* on-board ‘next’ buffer.
*/
e = splboard(); /* %%% necessary? */
#ifndef SFQ_VC
if (sc->sc_if.if_snd.ifq_len)
fiendif
{
register struct mbuf *m;
#ifdef TRAFFIC_CONTROL
struct aNetIf *gifcp;
struct mbuf *(*dgfuncp) ();

/* Map ifnet pointer to extended ifnet (aNetIf) */
gifcp = tcif_ifp2gifcp( (unsigned long) &( sc->sc_if ) );

/* If no specific dequeue function is supplied, use specified queue */

if ( (dqfuncp = gifcp->iftc_dq) != (struct mbuf * (*)()) NULL )
m = (*dqgfuncp) ( gifcp ); /* Use specific dequeue function */
else /* Use generic dequeue function */

#endif TRAFFIC_CONTROL
IF_DEQUEUE (&sc->gc_if.if_snd, m);

if {(m) {
register struct hsisbuf *bp = sc->sc_nextout;

464



bp->cnt = len = copy_m_to_b(sc, m, BUFtoCP(bp));
TRACE (T_OUT_COPY, sc, (int)bp | len)
}

}

splx (s} ;

}

int

hsissoftint ()

{

register u_int isum;

register int did_something = 0;

TRACE(T_SOFTINT, hsis_softc, hsis_isum)

while (1) {

register struct hsis_softc *sc;

register struct hsis_softc *sc_end = hsis_softc_end;
register int s;

register u_int event;

g = splboard();:

isum = hsis_isum;
hsis_isum = 0;
splx(s) ;

if (isum == 0)
break;

++did_something;
sc = hsis_softc;
for ( ; isum && sc < sc_end; ++sc) {
if (isum & 1) {
s = splboard();
event = BCc->s8C_event;
sc->sc_event = 0;
splx(s) ;

if (event & XMIT_DONE) {
s = gplboard():
hsis_start (sc);
splx(s);
}
if (event & RECV_DONE)
hsis_recv_done(sc);
if (event & XMITDMA_DONE)
hsis_xmit_done(sc) ;

}

isum >>= 1;

}

}
TRACE (T_SOFTINT_EXIT, hsis_softc, did_something)

return (did_something);

465



int

hsis_ioctl (ifp, cmd, data)
register struct ifnet *ifp;
register int cmd;

register caddr_t data;

{

register int unit = ifp->if_unit;

register struct hsis_softc *sc = &hsis_softclunit);
register struct ifreq *ifr = (struct ifreqg *)data;
register int s = splboard(), error = 0;

TRACE (T_IOCTL, sc, cmd)
switch {(cmd) {

case SIOCSIFADDR:

bzero({caddr_t)&sc->sc_dstats, sizeof (sc->sc_dstats));
bzero({caddr_t) &sc->sc_estats, sizeof (sc->sc_estats));
error = hsis_init(unit);

break;

cagse SIOCSIFDSTADDR:
break;

case SIOCSIFFLAGS:
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {

case IFF_UP:

/* down interface just marked up */

bzero( (caddr_t) &sc->sc_dstats, sizeof (sc->sc_dstats));
bzero( (caddr_t) &sc->sc_estats, sizeof (sc->sc_estats));
error = hsis_init(unit);

heis_start(sc);

break;

case IFF_RUNNING:

/* up interface just marked down */
hsis_offline(unit);

break;

}

break;

case SIOCSSDSTATS:
* (struct ss_dstats *)ifr->ifr_ data
break:

sc->sc_dstats;

case SIOCSSESTATS:
* (gtruct ss_estats *)ifr->ifr data
break;

sc->sc_estats;

case SIOCGETSYNC:

466



* (struct syncmode *)ifr->ifr_data = sc->sc_sm;
break;

case SIOCSETSYNC:

if (ifp->if_flags & IFF_RUNNING)
hsis_offline(unit);

sc->sc_sm = *(struct syncmode *)ifr->ifr_ data;

if (sc->sc_sm.sm_baudrate != 0} {
bzero((caddr_t) &sc->sc_dstats, sizeof (sc->sc_dstats));
bzero({caddr_t) &sc->sc_estats, sizeof (sc->sc_estats));
error = hsis_init(unit);
hsis_start (sc);

}

break;

case SIOCSETCODEC:
if (! sc->sc_raw)
/* must be raw socket to use codec mode */
error = EINVAL;
else {
struct codecmode *cm =
(struct codecmode *}ifr->ifr data;

/*
* Note that sc->sc_codec.datalen != 0 is the
* driver’'s internal flag indicating codec mode.

*/

if ((u_int)cm->datalen > HSIS_MTU ||

sc->sc_sm.sm_baudrate == 0 ||
(cm->synclen != 8 && cm->synclen != 16))
error = EINVAL;
else {

if (ifp->if_flags & IFF_RUNNING)
hsis_offline(unit);
sc->s8c_codec = *cm;
sc->sc_ticks = hz * cm->datalen * 8 /
sc->sc_sm.sm_baudrate;
if (sc->sc_ticks == 0)
sc->sc_ticks = 1;
error = hsis_init(unit);
}
}

break;

#ifdef MULTICAST
case SIOCADDMULTI:
case SIOCDELMULTI:
switch (ifr->ifr_addr.sa_family) {
#ifdef INET
case AF_INET:
break;

467



#endif INET
default:
error = EAFNOSUPPORT;
break;
}
break;
#endif MULTICAST

default:

error = EINVAL;
}

splx(s);

return (error);

}

int

hsis_init{unit)

int unit;

{

register struct hsis softc *sc = &hsis_softc{unit];
register struct zscc *zs = sc->8cC_2S;

register u_char *zsdev = zs->zs_addr;

register u_char *zddev = sc->sc_zd->zd_addr;
u_char wreg(sizeof(zs->zs_wreg)];

register int s;

register int clk = 0, txin = 0;

TRACEL (T_INIT, sc, sc->sc_if.if flags)
if (sc->sc_if.if_flags & IFF_RUNNING)
return (0);

/* set appropriate defaults for scc */

if (sc->sc_codec.datalen)

bcopy ((caddr_t)hsis_scc_codec_setup, (caddr_t)wreg, sizeof (wreg));
else

bcopy ( (caddr_t)hseis_scc_setup, (caddr_t)wreg, sizeof (wreg));
/*

* modify defaults as per Sun’s ‘syncmode’ (hsi compatibility).
*/

switch (sc->sc_sm.sm_txclock) {

case TXC_IS TXC:

wreg[11l] }= ZSWR1l1l_TXCLK_TRXC;
txin = 1;

break;

cage TXC_IS_RXC:
wreg[11l] |= ZSWR11l_TXCLK_RTXC;

break;

case TXC_IS_BAUD:

468



wreg[11] |= ZSWR11l_TXCLK_BAUD;
clk = 1;
break;

case TXC_IS_PLL:
wreg[11l] |= ZSWR1l1l_TXCLK_DPLL;

clk = 2;
break;

default:
return (EINVAL) ;
}

switch (sc->sc_sm.sm_rxclock) {
case RXC_IS_RXC:
wreg([11l] |= ZSWR11l_RXCLK_RTXC;

break;

case RXC_IS_TXC:

wreg[11l] |= ZSWR11l_RXCLK_TRXC;
txin = 1;
break;

case RXC_IS_BAUD:

wreg([11] |= ZSWR11l_RXCLK BAUD;
clk = 1;
break;

case RXC_IS_PLL:
wreg(11l] |= ZSWR11_RXCLK_DPLL;
clk |= 2;

break;

default:

return (EINVAL);

}

if (clk) {

register long tconst;

if (clk > 2)
return (EINVAL) ;

tconst = sc->sc_sm.sm baudrate;

if (clk == 2) {

if (! sc->sc_sm.sm nrzi)
return (EINVAL);

tconst <<= 5;

}

tconst = HSIS_PCLK / (tconst * 2) - 2;
if (tconst == 0)
return (EINVAL);
sc->sc_sm.sm_baudrate = (HSIS_PCLK / 2)

469

/

(tconst

+

2);



wreg[12] = tconst;

wreg{13) = tconst >> 8;

wreg[14] |= ZSWR14_BAUD_FROM PCLK | ZSWR14_BAUD_ENA;
}

if (! txin)

wreg[11] |= ZSWR11l_TRXC_OUT_ENA | ZSWR11l_TRXC_XMIT;
if (sc->sc_sm.sm_loopback)

wreg[14) |= ZSWR14_LOCAL_LOOPBACK;

if (sc->sc_sm.sm_nrzi)
wreg[10] }= ZSWR10_NRZI;

/*
* if we don’'t have read and write buffers yet, get them.
*/
s = sgplboard();
if (sc->sc_inbuf == NULL) {
if ((sc->sc_inbuf = sc->sc_hs->hs_free) == NULL) {

printf(“heis%d: heis_init: no free bufs.\n",
sc->s8c_if.if unit);
splx(s);
return (ENOBUFS) ;
}
sc->sc_hs->hs_free = sc->sc_inbuf->next;
}
if (sc->sc_curout == NULL) {
if ({sc->sc_curout = sc->sc_hs->hs_free) == NULL) {
printf(“hsis%d: hsis_init: no free bufs\n”",
sc->sc_1if.if_unit);
splx(s);
return (ENOBUFS) ;
}
sc->sc_hs->hs_free
sc->s8c_curout->cnt
}
if (sc->sc_nextout == NULL) {
if ((sc->sc_nextout = sc->sc_hs->hs_free) == NULL) {
printf(“hsis%d: hsis_init: no free bufs\n”,
sc-»sc_if.if_unit);
splx(s);
return (ENOBUFS) ;
}

sc->sc_curout->next;
0;

sc->sc_hs->hg_free = sc->sc_nextout->next;
sc->sc_nextout->cnt = 0;

}
/*

* Set sync mode and sync pattern for codec mode.
*/
if (sc->sc_codec.datalen) f{

wreg[6] = sc->sc_codec.syncpat & OxFF;

if (sc->sc_codec.synclen == 16} {

470



wreg[4] |= ZSWR4_BISYNC;

wreg[7] = (sc->sc_codec.syncpat >> 8) & OxFF;
}
}
/*

* If we got here, sm contents must be reasonable and wreg contains
* the new scc configuration. Disable rcvr & xmitter, locad in new
* modes then re-enable.

*/

sc->sc_hs->hs_board[zs->zs_unit + HSIS_INT_CLK_A] = 0;
#ifdef HSIS_EXTERNAL_RCVDONE
/*
* if there’s an external receive clock, use the external
* done interrupt. Otherwise, enable the chip’'s receive intr.

*/
if (!sc->sc_codec.datalen) {
if (sc->sc_sm.sm_rxclock == RXC_IS_RXC)
sc->sc_hs->hsg_board{zs->zs_unit + HSIS_EINT_ENA_A] = Oxff;
else {
sc->sc_hs->hs_board{zs->zs_unit + HSIS_EINT_ENA_A] = 0;
wreg[1l] |= ZSWR1_RIE_SPECIAL_ONLY;
}
}
#endif

SCC_BIC (3, ZSWR3_RX_ENABLE) ;
SCC_BIC(5, ZSWR5_TX_ENABLE) ;

SCC_WRITE(4, wregl(4]);

SCC_WRITE(10, wreg[10]);
SCC_WRITE(6, wregl[6]);

SCC_WRITE (7, wreg(7]);

SCC_WRITE(3, wreg([3]);

SCC_WRITE(5, wreg[5]);

SCC_WRITE (1, wregll]):

SCC_WRITE (Y9, wregl[91);

SCC_WRITE (11, wregli1]):

SCC_WRITE (12, wreg[1l2]);
SCC_WRITE (13, wreg[13]);

if (clk == 2) {

SCC_WRITE (14, ZSWR14_DPLL_SRC_BAUD) ;
SCC_WRITE (14, ZSWR14_DPLL_NRZI);

} else

SCC_WRITE (14, ZSWR14_DPLL_DISABLE) ;
SCC_WRITE(14, wreg[l4]):
SCC_WRITE(15, wreg[15]);

if (txin) {

/*
* TRXC pin is input (i.e., we're using an external clock).
* Set latch that allows clock to get to the pin.

471



*/

register u_char *board = sc->sc_hs->hs_board + zs->zs_unit;

board [HSIS_INT_CLK_A} = 1;

/* XXX - ext. clocks are inverted */
board [HSIS_RX_CLK_A] 1;

board [HSIS_TX_CLK_A] = 1;

}

SCC_WRITEO(ZSWRO_RESET_ERRORS);
SCC_WRITEO(ZSWRO_RESET_STATUS);
SCC_WRITEO (ZSWRO_RESET_TXCRC) ;

/*
* Everything should be configured. Start a dma read then
*+ enable recv dma and the receiver.
*
* For codec mode, first dma will be missing sync bytes -
* get first readlen to account for this, start dma for
*» first read then enable receiver (which puts us in
+ hunt mode). readlen will be reset by hsis_dmarecv_time
* to the full blocksize after first block is read.
*/
if (sc->sc_codec.datalen) {
sc->sc_readlen = sc->sc_codec.datalen - sc->sc_codec.synclen/8;

sc->sc_bytesread = 0;
(void)heis_start_dma_read(sc);
if (unit & 1)
DMA_BIS(ZSDMA_ICR, ZSDMA_ICR_TX_B_ENA);
} else {
DMA_BIS (ZSDMA_ICR, ZSDMA_ICR_TX_A_ENA);
1
} else {
(void)hsis_start_dma_read(sc);
}
SCC_BIS(1, ZSWR1_REQ_ENABLE)
SCC_BIS (3, 2ZSWR3_RX_ENABLE);
/*
* Enable the transmitter and turn on DTR.
*/
SCC_BIS(5, ZSWRS_TX_ENABLE|ZSWRS_DTR) ;

SCC_WRITEO (ZSWRO_RESET_ERRORS) ;
SCC_WRITEO (ZSWRO_RESET_STATUS) ;
SCC_WRITEO (ZSWRO_RESET_TXCRC) ;

sc->8c_ostate = 0;

sc->sc_if.if_flags |= IFF_UP|IFF_RUNNING;
TRACE (T_INIT_DONE, sc, *zsdev)
splx(s).

return (0);

472



hsis_reset (unit)
register int unit;

{

register int s = splboard():

register struct hsis_softc *sc = &hsis_softc[unit];

register struct zscc *zs = s8c->8cC_zs;
register u_char *zsdev = zs->zs_addr;
register u_char *zddev = sc->sc_zd->zd_addr;
register struct hsisbuf *bp;

TRACE (T_RESET, sc,
SCC_WRITE (3, 0);
SCC_WRITE(5, 0);
SCC_WRITE (15, 0);

*zgdev)

#ifdef HSIS_EXTERNAL_RCVDONE
sc->sc_hs->hs_board[zs->zs_unit + HSIS_EINT_ENA_A]
#endif

untimeocut (hsis_dmarecv_time, sc);

{void) hsis_start_dma_read(sc);

if (zs->zs_unit & 1) {

DMA_BIC (ZSDMA_DER,
DMA_BIC(ZSDMA_ICR,
} else {

DMA_BIC (ZSDMA_DER,
DMA_BIC(ZSDMA_ICR,

ZSDMA_DER_RX_B_ENABLE) ;
ZSDMA_ICR_TX_B_ENA) ;

ZSDMA_DER_RX_A_ENABLE) ;
ZSDMA_ICR_TX_A_ENA) ;

}

(void) hsis_start_dma_read(sc);

if (sc->sc_intail) {

sc->sc_intail->next = sc->s8c_hs->hs_free;
sc->sc_hs->hs_free = sc->sc_ing;
sc->sc_inqg = NULL;

sc->sc_intail = NULL;

}

bzero(sc->sc_fifo, sizeof (sc->sc_fifo));
sc->sc_fifop = sc->sc_fifo;

sc->sc_inoff = NULL;

sc->sc_ostate = 0;

if (bp = sc->sc_curout)

bp->cnt = 0;

if (bp = sc->sc_nextout)

bp->cnt = 0;

sc->sc_if.if_ flags &=~ (IFF_UP|IFF_RUNNING);
splx(s);

hsis_offline(unit)
register int unit;

{

register int s = splboard();

register struct hsis_softc *sc = &hsis_softclunit];

register struct hsisbuf *bp;

473



/* reset channel, then free any resources it holds */

hsis_reset (unit);

if (bp = sc->sc_inbuf) {
sc->sc_inbuf = NULL;

bp->next = sc->sc_hs->hs_free;
sc->s8c_hs->hs_free = bp;

}

if (bp = sc->sc_curout) {
sc->sc_curout = NULL;

bp->next = sc->sc_hs->hs_free;
sc->sc_hs->hs_free = bp;

}

if (bp = sc->sc_nextout) {
sc->sc_nextout = NULL;
bp->next = sc->sc_hs->hs_free;
sc->sc_hs->hsg_free = bp;

}

splx (s);

}

/*

* Remainder of this code is support for ‘raw sync’ protocol domain.

It should probably be in a separate file since it (should not be)
hsis specific but I‘'m too lazy to set that up just now.

*/

#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/user.h>
#include <sys/uio.h>

int rawsync_usrsend(), rawsync_usrrecv(), rawsync_usrreq();
extern struct domain rawsyncdomain;

struct protosw rawsyncsw([] = {

{ SOCK_RAW, &rawsyncdomain, 0, PR_ATOMIC,
o, o0, O, O,

rawsync_usrreq,

o, o0, O, O,

rawsync_usrsend, rawsync_usrrecv},

|

struct domain rawsyncdomain =
{ AF_RAWSYNC, “rawsync”, 0, 0, O,
rawsyncsw, &rawsyncsw[sizeof (rawsyncsw)/sizeof (rawsyncsw[0])] };

void

rawsyncinit ()

{

474

~



register struct domain *dp;

rawsyncdomain.dom next = domains;
domains = &rawsyncdomain:

}

int

rawsync_usrsend(so, nam, uio, flags, rights)

register struct socket *so;
struct mbuf *nam;

regigter struct uio *uio;
int flags;

struct mbuf *rights;

regigster int len;

register int error = 0;
register int s;

register struct hsis_softc *sc;
register struct mbuf *m;

static struct sockaddr dst = { AF_UNSPEC };

#ifdef lint

nam = nam; rights = rights;

#endif lint

if ((sc = (struct hsis_softc *)so->so_pch)
so != sc->sc_raw)

return (EINVAL);

len = uio->uio_resid;
if (len <= 0 || len > sc->sc_if.if mtu)
return (EMSGSIZE) ;

if (so->so_state & SS_CANTSENDMORE) {
psignal (u.u_procp, SIGPIPE);

return (EPIPE);

}

while (1) {

s = splboard();

if (! IF_QFULL (&sc->sc_if.if_snd))
break;

sbwait (&so->so_snd) ;
splx(s);

}

(void) splnet();

MGET (m, M_DONTWAIT, MT_DATA);
if (m == (struct mbuf *)0) {
error = ENOBUFS;

goto out;

}

if (len <= MLEN - MBUF_HDRSPACE)
m->m_off += MBUF_HDRSPACE;

475



else {
/* too big for mbuf - use cluster */
MCLGET (m) ;
if (m->m_len != MCLBYTES) {
/* no clusters - drop this packet */
m_freem(m);
error = ENOBUFS;
goto out;
}
m->m_off += HDRSPACE;
}
m->m_len = len;
error = uiomove (mtod(m, caddr_t), len, UIO_WRITE, uio);
if (! error)
error = hsis_output(&sc->sc_if, m, &dst);
out:
splx(s);
return (error);

}

int
rawsync_usrrecv(so, anam, uio, flags, arights)
register struct socket *so;

struct mbuf **anam;

register struct uio *uio;

int flags;

struct mbuf **arights;

register int len, mlen;
register int error = 0;
register int s;

register struct hsis_softc *sc;
register struct mbuf *m, *n;
register gstruct sockbuf *sb;

if (anam)

*anam = NULL;

if (arights)
*arights = NULL;

if ((sec = (struct hsis_softc *)so->so_pcb) == NULL ||
so != sc->sc_raw)
return (EINVAL);

len = uio->uio_resid;
if (len <= 0) {
error = EMSGSIZE;
goto out;

}
if (so->so_state & SS_CANTRCVMORE)

goto out;

476



sb = &so->so_rcv;
sblock (so, sb);
s = splboard();
if (sb->sb_cc == 0) {
if (so->so_error) {
error = SO->SO_error;
so->go_error = 0;
goto release;
}
if (so->so_state & SS_NBIO) {
error = EWOULDBLOCK;
goto release;
}
while (sb->sb_cc == 0) {
sbunlock (so, sb);
sbwait (sb) ;
if (so->so_error) {
error = SO->S0O_error;
so->so_error = 0;
goto release;
}
}
}
m = sb->sb_mb;
sb->sb_mb = m->m_next;
mlen = m->m_len;
sb->sb_cc -= mlen;
splx(s);
sbunlock (so, sb);
m->m_next = NULL;
if (mlen > len) {
error = EMSGSIZE;
mlen = len;

}

error = uiomove (mtod(m, caddr_t), mlen,
MFREE (m, n).

out:

return (error);

release:

splx(s);

sbunlock (so, sb);
return (error);

}

/*ARGSUSED*/

rawsync_usrreq(so, req, m, nam,

struct socket *s0;

int req;

struct mbuf *m, *nam, *rights;

{

register struct hsis_softc *sc;
register int error = 0;

rights)

477

UIO_READ,

uio) ;



if (req == PRU_CONTROL) {

int cmd = (int)m;

caddr_t data = (caddr_t)nam;

register struct ifnet *ifp = (struct ifnet
if (ifp == 0 || ifp->if_ioctl == 0)

return {(EOPNOTSUPP) ;
return ((*ifp->if ioctl) (ifp, cmd, data));
}

if (rights && rights->m_len) {
error = EOPNOTSUPP;
goto release;

}
sc = (struct hsis_softc *)so->so_pcb;
if {(sc != NULL && so != sc->sc_raw) {

error = EINVAL;
goto release;

}

switch (req) {

case PRU_ATTACH:

if ((so->so_state & SS_PRIV) == 0)
error = EACCES;

else if (sc)
error = EINVAL;

elge if (sbreserve(&so->so_snd, 4096)
error = ENOBUFS;

else if (sbreserve(&so->so_rcv, 4096)
sbrelease (&s0->s80_snd) ;
error = ENOBUFS;

}

break;

1]
It
o

1]
]
o

/w

*)rights;

* Destroy state just before socket deallocation.
* Flush data or not depending on the options.

*/
case PRU_DETACH:
if (sc == 0)
error = ENOTCONN;
else {
register int s = splboard();

if (sc->sc_codec.datalen) {
/* turn off codec mode if left on */
hsis_offline(sc->sc_if.if_unit);

sc->sc_codec.datalen = 0;
}

sc->sc_raw = NULL;
so->so_pcb = NULL;

478



sofree(so) ;
splx(s);
}

break;

case PRU_BIND:
if (sc)
error = EISCONN;
else {
register struct sockaddr *addr =
mtod(nam, struct sockaddr *);

if (addr->sa_family != AF_RAWSYNC) {

error = EINVAL;

break;

}

sc = (struct hsis_softc *)ifunit(addr->sa_data, MLEN);
if (sc == NULL)

error = EADDRNOTAVAIL;

else if (sc->sc_raw)

error = EADDRINUSE;

else {

register int s = splboard();

sc->s8c_raw
so->so_pch

s0;
(caddr_t)sc;

splx(s);
}
}
break;
/*
* Mark the connection as being incapable of further input.
*/

case PRU_SHUTDOWN:
socantsendmore (so) ;
break;

case PRU_ABORT:
if (sc != NULL && (so->so_state & SS_NOFDREF)} {

register int s = splboard();

if (sc->sc_codec.datalen) {
/* turn off codec mode if left on */
heis_offline(sc->sc_if.if_unit);

sc->sc_codec.datalen = 0;
}

sc->sc_raw = NULL;
so->so_pcb = NULL;

splx(s);
}

sofree(so) ;
soisdis:onnected(so);

479



break;

case PRU_SENSE:

/*
* gtat: don’t bother with a blocksize.
*/

return (0);

/*
* Not supported.
*/

case PRU_CONNECT:
case PRU_CONNECTZ2:
case PRU_DISCONNECT:

case PRU_RCVOOB:
cagse PRU_RCVD:

case PRU_LISTEN:
case PRU_ACCEPT:
case PRU_SENDOOB:

case PRU_SOCKADDR:
case PRU_PEERADDR:
error = EOPNOTSUPP;
break;

default:
panic ("rawsync_usrreq”) ;
}
release:
if (m != NULL)
m_freem(m):
return (error);

}

#endif

480



#ifndef 1lint

static char rcsid_st2_proto_c[] = *“\
@(#) SHeader: st2_proto.c,v 1.98+ 93/04/08 18:00:00 clynn Exp $ \n”;

Copyright {(c) 1991-1993 by BBN Systems and Technologies,
A Division of Bolt Beranek and Newman Inc.

[

!

I

| Permission to use, copy, modify, distribute, and sell this

| software and its documentation for any purpose is hereby

| granted without fee, provided that the above copyright notice
| and this permission appear in all copies and in supporting

| documentation, and that the name of Bolt Beranek and Newman

| Inc. not be used in advertising or publicity pertaining to

| distribution of the software without specific, written prior
| permission. BBN makes no representations about the Suitability
| of this software for any purposes. It is provided "AS IS”

| without express or implied warranties.

#endif lint

/*
M* st2 proto.c ST-II Configuration and Site-dependent Routines.
M*
M* This module contains the Configuration Databases and Initialization
M* Routines for ST-II. It also serves as a common point for access to
M* and from the underlying OS.
M*
*/

/*
m* Status:

m* Features:

m* IP Encapsulation.

m* Untested Features:

m* Portability: nothing'’'s portable until you'’'ve ported it!

m* Restrictions/Bugs:

m* Some interaction with DARTNet mbufs causes them to be dropped;
m* offending code in st2_fromXXX disabled.

m* Thinge to do:

m* Hooks for other protocols over ST-II.

m* ST-II from IP (version 5).

m*

*/

/* Module Revision History

*

* SLog: st2_proto.c,v §

* Revision 1.11 92/04/03 18:31:23 clynn

* Release for DARTNet. Virtual Clock enforcement & related changes.
*

481



Revision 1.10 91/11/26 23:12:12 clynn
Make DEF_TIMEQUTFACTOR independent of STIIDEBUG option.

Revision 1.9 91/11/04 09:22:28 clynn

Updated for Public Domain Release. Major changes: addition of Source
Routing, IP Encapsulation, HELLO protocol between neighbors, tracking
of neighbors, detection of component or agent failures & notification
to applications. More consistant naming and format, including making
all external names begin with “st2_". Moved some routines and data
structures to reduce external references.

Simplified since everybody gets the full source.

Revision 1.8 91/05/28 16:17:55 clynn

New features: Add new targets from Application layer, UserData support,
basic bandwidth reservation for point-to-point links, more complete
state tables, added pcode parameter to InitaFlowSpec3, extended packet
buffer abstraction, added network interface abstraction; ststat utility.
Bug fixes: ADDR IN USE problem, data send problem, causes of some
crashes, cleanup of protocol control blocks.

Work around: DARTNET receive memory leak.

Eliminated several small modules to reduce globals; adeded Makefile.

Revision 1.1 91/03/15 18:33:26 c¢lynn
Initial revision

/

* % % 2 % % * * * #* % % * * % % % * * * % # * * % %

#define _FILE_ Strpro /* Module bugid 7,13 */

/* External definitions */

#include <errno.h> /* ENODEV EOPNOTSUPP */

#include <sys/param.h> /* includes <machine/param.h> * [/

#include <sys/mbuf.h> /* needs sys/types.h & sys/param.h */

#include <sys/protosw.h>

ginclude <sys/domain.h>

#include <sys/time.h> /* struct timeval */

#include <sys/types.h> /* for netinet/in.h; caddr_t u_ XXX for
net/if.h */

#include <sys/user.h> /* u. */
#include <sys/socket.h> /* gsockaddr for net/if.h */
#include <netinet/in.h> /* before st2.h -> st2_api.h; IPPROTO_* .

in_addr */
#include <net/if.h> /* ifgqueue */

#include “st2_api.h” /* Global Definitions, before st2.h */
#include *“st2.h” /* ST-II Implementation definitions,

482



* includes st2_api.h, before st2_cmp.h */

#define NUM_NEXTHOP 64 /* number of nexthops for all streams */
/* (used in st2_cmp.h) */

#include "st2_cmp.h” /* SCM Protocol definitions */
#include “st2_resource.h” /* RM_*, aRmVectorList, TC_*, aTcVectorList */

extern int arpresolve (/* acp, mbufp */);
extern void st2_RsrclInit (/* */);

#ifdef TRAFFIC_CONTROL

extern ExpAry (a,NetIf,1) tfic_genifs;
extern struct aNetIf *tcif gifcheadp;
#endif TRAFFIC_CONTROL

/* Local routines */

static void init_STTables (/* */);

void st2_dbgstp (/* stopflag, errcode, unigue_id, string,
file_id, line_number */);

static void st2_at_check ();

static void st2_at_stop ();

static int st2_ClkFast (/* */);

static struct ifqueue *st2 fromether (/* ifnetp, pktp, ehp */);

unsigned char *st2_GetSpace (/* pktpp, al, a2, a3 */);

int st2_init (/* */);

boolean st2_IPAdrFunc (/* fnc,ipadrp */};

static int st2_toether (/* sockaddrp, pktp, ifnetp, eap */);

#include <sys/ioccom.h> /* _IOC*, SIOCxxx */
#if 0

#include <sys/types.h> /* for sys/socket.h */
#include “sys/socket.h” /* for net/if.h */
#include *“net/if.h” /* IFNAMSIZ */

#ifndef TRAFFIC_CONTROL
#ifdef DOCUMENTATION
<sys/ioccom.h>

#define _TIOCPARM_MASK Oxff /* parameters must be < 256 bytes */
#define _JOC_VOID 0x20000000 /* no parameters */

#define _IOC_OUT 0x40000000 /* copy out parameters */

#define _IOC_IN 0x80000000 /* copy in parameters */

#define _IOC_INOUT (_IOC_IN|_IOC_OUT)

/* the 0x20000000 is so we can distinguish new ioctl’'s from old */
#define _IO(x,y) (_IOC_VOID]| (‘x'<<8)|y)

483



#define _IOR(x,y,t)
#define _JORN(x,y.t)
#define _IOW(x,y,t)
#define _IOWN(X,y, t)

(_IOC_OUT| ( (sizeof (t) & _IOCPARM_MASK)<<16) | ('x'<<8) |y)

(_IOC_OUT| (((t)&_ IOCPARM_MASK)<<16) | ('x'<<8) |y)
(_IOC_IN| ((sizeof (t)& IOCPARM_MASK)<<16) | ('x°<<8) |y)
(_IOC_IN| (((t)& IOCPARM MASK)<<16) | (’'x'<<8)|y)

/* this should be _IORW, but stdio got there first */

#define _IOWR(x,y,t)

(_IOC_INOUT| ((sizeof (t) & IOCPARM_MASK) <<16) | ('x’'<<8) |y)

#define IOWRN(x,y.,t) (_TOC_INOUT| ({(t)&_ IOCPARM_MASK)<<16) | ('x'<<8)]y)

<sys/sockio.h>

/* socket i/o controls */

#define SIOCSHIWAT _IOW(s,
#define SIOCGHIWAT _IOR (s,

#idefine SIOCGLOWAT _IOR(s,

, int) /* set high watermark */
, int) /* get high watermark */

, int) /* get low watermark */

0
1
#define SIOCSLOWAT _IOW(s, 2, int) /* set low watermark */
3
7

#define SIOCATMARK _IOR (s,

, int) /* at oob mark? */

#define SIOCSPGRP _IOW(s, 8, int) /* set process group */
#define SIOCGPGRP _IOR(s, 9, int) /* get process group */

#define SIOCADDRT _IOW(r, 10, struct rtentry) /* add route */

#define SIOCDELRT _IOW(r, 11, struct rtentry) /* delete route */

#define SIOCSETRTINFO _IOWR(r, 12, struct fullrtentry) /* change aux info */
#define SIOCGETRTINFO _IOWR(r, 13, struct fullrtentry) /* read aux info */

#define SIOCSIFADDR _IOW(i, 12, struct ifreq) /* set ifnet address */
#define SIOCGIFADDR _IOWR(i, 13, struct ifreq) /* get ifnet address */
#define SIOCSIFDSTADDR _IOW(i, 14, struct ifreq) /* set p-p address */
#define SIOCGIFDSTADDR _IOWR(i, 15, struct ifreq) /* get p-p address */
#define SIOCSIFFLAGS _IOW(i, 16, struct ifreq) /* set ifnet flags */
#define SIOCGIFFLAGS _IOWR(i,17, struct ifreqg) /* get ifnet flags */
#define SIOCSIFMEM _IOW(i, 18, struct ifreq) /* set interface mem */
#define SIOCGIFMEM _IOWR(i,19, struct ifreq) /* get interface mem */
#define SIOCGIFCONF _IOWR(i, 20, struct ifconf) /* get ifnet list */
#define SIOCSIFMTU _IOW(i, 21, struct ifreq) /* set if_mtu */

#define SIOCGIFMTU _IOWR (i, 22, struct ifreq) /* get if mtu */

/* from 4.3BSD */

#define SIOCGIFBRDADDR _IOWR(i, 23, struct ifreq) /* get broadcast addr */
#define SIOCSIFBRDADDR _IOW(i, 24, struct ifreq) /* set broadcast addr */
#define SIOCGIFNETMASK _IOWR(i,25, struct ifreq) /* get net addr mask */
#define SIOCSIFNETMASK _IOW(i,26, struct ifreq) /* set net addr mask */
#define SIOCGIFMETRIC _IOWR(i, 27, struct ifreqg) /* get IF metric */
#define SIOCSIFMETRIC _IOW(i, 28, struct ifreq) /* set IF metric */

#define SIOCSARP _IOW(i, 30, struct arpreqg) /* set arp entry */
#define SIOCGARP _IOWR(i, 31, struct arpreq) /* get arp entry */
#define SIOCDARP _IOW(i, 32, struct arpreq) /* delete arp entry */
#define SIOCUPPER _IOW(i, 40, struct ifreq) /* attach upper layer */
#define SIOCLOWER _IOW(i, 41, struct ifreq) /* attach lower layer */
#define SIOCSETSYNC _IOW(i, 44, struct ifreq) /* set syncmode */
#define SIOCGETSYNC _IOWR (i, 45, struct ifreq) /* get syncmode */
#define SIOCSSDSTATS _IOWR(i, 46, struct ifreq) /* sync data stats */
#define SIOCSSESTATS _IOWR(i, 47, struct ifreq) /* sync error stats */

484



#define SIOCSPROMISC _IOW(i, 48, int) /* request promisc mode
on/off */

#define STOCADDMULTI _IOW(i, 49, struct ifreq) /* set m/c address */

#define SIOCDELMULTI _IOW(i, 50, struct ifreq) /* clr m/c address */

/* FDDI controls */

#define SIOCFDRESET _IOW(i, 51, struct ifreq) /* Reset FDDI */

#define SIOCFDSLEEP _IOW(i, 52, struct ifreq) /* Sleep until next dnld reg */
#define SIOCSTRTFMWAR _IOW(i, 53, struct ifreq) /* Start FW at an addr */
#define SIOCLDNSTRTFW _IOW(i, 54, struct ifreq) /* Load the shared memory */
#define SIOCGETFDSTAT _IOW(i, 55, struct ifreq) /* Get FDDI stats */

#define SIOCFDNMIINT _TIOW(i, 56, struct ifreq) /* NMI to fddi */

#define SIOCFDEXUSER _IOW(i, 57, struct ifreq) /* Exec in user mode */
#define SIOCFDGNETMAP _IOW(i, 58, struct ifreq) /* Get a netmap entry */
#define SIOCFDGIOCTL _IOW(i, 59, struct ifreq) /* Generic ioctl for fddi »/

/* protocol i/o controls */
#define SIOCSNIT _IOW(p, 0, struct nit_ioc) /* set nit modeg */
#define SIOCGNIT _IOWR(p, 1, struct nit_ioc) /* get nit modes */

#endif DOCUMENTATION
#endif 0

/* for <sys/sockio.h> */
/* <net/if.h> has struct ifreq */

#define SIOCSETTCALG _IOWR(i, 8, struct ifreq) /* set next Traffic Control
Algorithm */

#define SIOCGETTCALG _IOWR(i, 9, struct ifreq) /* read current Traffic Control
Algorithm */

#define SIOCTCFSSTATUS _IOW(i, 90, struct ifreq)
#define SIOCTCFSINTFC _IOW(i, 91, struct ifreq)
#define SIOCTCFSADD _IOW(i, 92, struct ifreq)
#define SIOCTCFSINS _IOW(i, 93, struct ifreq)
#define SIOCTCFSMVADD _IOW (i, 94, struct ifreq)
#define SIOCTCFSMVINS _IOW(i, 95, struct ifreq)
#define SIOCTCFSMOD _IOW(i, 96, struct ifreq)
#define SIOCTCFSREM _IOW(i, 97, struct ifreq)
#define SIOCTCFSSHOW _IOW(i, 98, struct ifreq)
#define SIOCTCFSEPARMS _IOW(i, 99, struct ifreq)
#define SIOCTCFSCPARMS _IOW(i, 100, struct ifreq)
#define SIOCTCFSQPARMS _IOW(i,101, struct ifreq)
#define SIOCTCFSDPARMS _IOW(i, 102, struct ifreq)
#define SIOCTCFSSTATS _IOW(i, 103, struct ifreq)
#define SIOCTCFSTRAFFIC _IOW(i, 104, struct ifreq)
#define SIOCTCFSTPARMS _IOW(i, 105, struct ifreq)

#endif TRAFFIC_CONTROL

485



/i

/*

*

*/

ST2 Permanent Data Structures */

Site-gpecific configuration information

#define CTLFLG (ST2FlgOwnLE)

#ifdef STIIDEBUG
#tdefine DBGFLG 0 /*DBG__PRINTl"’/
#else !STIIDEBUG
#define DBGFLG 0
#endif STIIDEBUG

#define MAX_ TRAPS 256

/*
m*
m*
m*
m*
m¥*
m*
mw*
m*
m*
m*
m*
m*
m*
m*
m*
m*
m*
me*
m*

*/

/*
m*
m*
m*
m*
m*
m*
m*
m*
m*
m*
m*

Received packets are dispatched (queued) by the receiving interface
to one of several protocol families, based on information in the
link-level header. This may take one of two forms: ST packets
delivered to the IP family, using IP Version 5, or, for testing
purposes, through a specific link-level identifier that specifies
ST directly. For now, the packets will be queued for ST
(st2_intrqg); unresolved is the issue of whether the call to do the
enqueueing must return quickley in order not to loose the next
packet, or whether it can push a data packet through to the output
queue before returning. When removed from the queue (by st2_intr),
the ST Header will be validated and the connection id (HID)
extracted. The HID will be anded with ConfigParm (hid_mask) to
generate an HID_BITS-bit index into the st2_ConHsh table. That
entry will contain the full HID and a pointer to the associated
control block (aST2pcb). The associated control block has all of
the connection-specific information.

st2_ConHsh{ HID & ConfigParm (hid_mask) ]<HID,cp> -> aST2pcb<...>

HIDs are used to bind ST-II data packets to their stream, on a
hop-by-hop basis. A HID is approved by the receiving ST Agent and
given to the previous-hop Agent for it to place into data packets
that is sends to the receiving Agent. When network-level multicast
is used, all of the receiving Agents must approve the same HID.
HIDs contain 16 bits, of which we use the HID_BITS least
significant bits to index into the st2_ConHsh table to find the
ST-II protocol control block (aka aST2pcb) for the associated
stream. HID O is used for SCMP (control) messages. HID 1 may be
used by HELLO messages that are to be treated as “data” packets by
are also passed to SCMP. HIDs 2-3 are reserved. Each stream may

486



m* have up to MAX HIDS_PER_STREAM associated with it (multiple
m* st2 ConHsh entries pointing to the same aST2pcb). (2 ** HID_ BITS)
m* should be greater than (MAX STREAMS * average number of HIDs per
m* stream), where (average number of HIDs per stream) is <=
m* (MAX HIDS_PER_STREAM). (2 ** VLNK_BITS) should be >= (1 + average
m* number of next-hop agents per stream) * MAX_STREAMS.

>/

/*
¢* Maximum number of simultaneous streams (MAX_STREAMS), and
¢* HID bits used (HID_BITS).

*/

# define MAX STREAMS (64) /* Configured to less than 64 streams */
# define HID_BITS (8) /* Number of LSB in HID we use */

/*
¢* Maximum number of targets placed into a target list (TARG_LISTS) and
c* maximum number of target lists per SCMP message (TARG_PER_LIST).

*/

# define TARG_LISTS 1
# define TARG_PER_LIST 1

#ifndef TRAFFIC_CONTROL
/*
c€* Number of generic network interfaces (DEF_GENIFS). Dummy plus one
c* per physical network interface plus one per Origin and Target on
c* local system.
*/
#ifdef STIIAPI
#define DEF_GENIFS (10 + 32) /* Physical plus API pseudo */
#else
#define DEF_GENIFS (10) /* Physical */
#endif STIIAPI
#else TRAFFIC_CONTROL
#define DEF_GENIFS 99999 /* It‘s in if_aux.c */

#endif TRAFFIC_CONTROL

/*
d* ST-II packet Input Queue (st2_intrq).
*/
struct ifqueue st2_intrq = { /* queue of input packets from

networks, splimp */

487



/* ifq_head ifq_tail ifqg_len ifg_maxlen ifq_drops */
0, 0, 0, 50, O };

/* Masked net-order HID -> Con idx */
struct aConHshEntry st2_ConHsh[ (1 << HID_BITS) ]; /* splnet */

struct aST2pcb *st2_ConTblFreep, /* List of free st2_ConTbl entries,

splnet */
*st2_ConTblTailp,
st2_ConTbl [ MAX_STREAMS ];

char st2_fsver3, /* Init. to min legnth of flowspec */
st2_fsverd,
st2_fsvers5,
st2_fsveré6;

struct NextHopTbl st2_nexthops;
struct aVLinkTbl s&t2_vlinks;

/* ST-II Experimenters */

enum Experimenters {

#define aExp(value,site,contact) site = value,
ExperimenterList

#undef aExp

|

/* ST-I1 Configuration Paramteres */

struct aConfigBlock st2_config = {

#define aCfgParm(name,cv,nv,xv,cs, fo,desc) (unsigned long) (cv),
ConfigParmList

#undef aCfgParm

b

/* ST-II Statistics counters */
struct aStatsBlock st2_stats = {

sizeof (struct aStatsBlock), Experimenter|ST2StatsVersion

}i

/i
* Tables for debugging information.

*/

struct aStateName

488



#define aState(name,desc) { (int) name, 0, “name”, desc },

st2_pcb_states[] =

st2_hid_states]]

st2_fwdr_states(]

st2_nhop_states|]
#undef aState
#define aTState (name, si

st2_targ_states]|] =
#undef aTState

{ PCB_STATE_LIST },

{ HID_STATE LIST },
{ FWDR_STATE_LIST },
{ NHOP_STATE_LIST 1},

de,desc) { (int) name, (int)
{ TargetStatelList };

int 8t2_npcb_states = DimensionOf (st2_pcb_states),
st2_nhid states = DimensionOf (st2_hid_states),
st2_nfwdr_states = DimensionOf (st2_fwdr_states),

st2_ntarg_states
st2_nnhop states

/*
* Debugging Strings.
*/

char *st2_dbgstrings|]
{

DimensionOf (st2_targ_states),
DimensionOf (st2_nhop_states);

#define aString(name, text) text,

StringList
#undef aString
};

char *{(mtype_names[ PKT_DIM ]) =

{ “FREE”, "DATA”, “HEADER", “SOCKET”, “PCB“, “RTABLE",
“SONAME”, “ZOMBIE", ~SOOPTS”, “FTABLE”, “CONTROL",
»IPMADDR"

“IFMADDR”, “MRTABLE”, “TIMESTAMP“, “197, 20", *21",
“24”, “25", 26", 27", 28", 29", 307, ~31~,

“TCDATA”, “NEIGHBOR”,

struct atrap

/*

* Tranlate internal error codes to offical ST-II code,

*/

“NETIF"”, *“NXTHOP”, *“PARSEDSCM”,

st2_traptable[ MAX TRAPS ];

struct aErrorXlate st2_reasontable[ MAX_ST ERRORS ]

#define Q(x) | (unsigned int) (1 << ((8*sizeof (int)
##define anError(vi,vx,n,f,def) { vx, n, (unsigned int)
/* *1v for init_STTables () */

489

“"HTABLE",
*IPMOPTS",

“ATABLE”,
“IF",

loosing information.

})-1-(int)x))



ST2ErrorList
ImplErrorList
#undef anError
#undef Q

}i

/*
D* BSD-style Protocol Configuration & Dispatch Table (protosw coipsw).
d*
d * Currently, no protocols are defined above ST-II.
di

*/

#ifndef STIIAPI

gtatic int /* Next bugid 0x70102 */
nosubr ()

{
BUGRETURN (-,45/*EOPNOTSUPP*/,0x70101, int);

}
#endif STIIAPI

extern struct domain coipdomain; /* Forward reference */

static struct protosw coipsw[] = { /* Protocols supported by COIP */
/* ST2 */
{ SOCK_RAW, &coipdomain, IPPROTO_ST, PR_ATOMIC | PR_ADDR | PR_RIGHTS,
/*st2_input*/ 0, /*st2_output*/ 0, /*st2_ctlinput*/ 0, /*st2_ctloutput*/ 0,
#ifndef STIIAPI

nosubr, /* Gateway-only */
#else
st2_usrreq, /* Local applications */

#endif STIIAPI
st2_init, st2_ClkFast, st2_ClkSlow, /*st2_drain*/ 0,
b,

};
/*
D* BSD-style Protocol Domain Table (coipdomain).
>/
STATIC struct domain coipdomain = /* Define COIP Protocol Family/domain */
{ PF_coIlP, “COIP", 0, O, O, /* ??? is it a PF or an AF, or assumption they are

s */

coipsw, &coipsw[DimensionOf (coipsw)] };

/*

490



S* coipdomaininit ( count )

*/

void

coipdomaininit( count )

int count; /* ARGSUSED */
{

extern int protocel_family ();

(void) protocol_family( &coipdomain, /*sthash*/ NULL,
return;

1

/* Optional (ha, ha) Ethernet Support */

/* 1f you get an error here, the lines:

* sunif/if_ie.c optional ie INET device-driver
* sunif/if_le.c optional le INET device-driver
* are missing from the file sys/sun<N>/conf/files.
*/

#include *ie.h”

#if defined (NIE)

#if NIE

#ifndef WANT_ETHERNET

#define WANT_ETHERNET 1

#endif WANT_ETHERNET

#endif NIE

#endif defined (NIE)

#include *le.h”

#if defined (NLE)

#if NLE

#ifndef WANT_ETHERNET
#define WANT_ETHERNET 1
#endif WANT ETHERNET
#endif NLE

#endif defined (NLE)

#ifndef WANT_ ETHERNET

#define WANT_ETHERNET 0
#endif WANT_ETHERNET

#if WANT_ETHERNET

/*stnetmatch*/ NULL ) ;

#include <net/if_arp.h> /* ether_family, for netinet/if ether.h */
#include <netinet/if_ether.h> /* ether_addr, ether_ header, wants

net/if.h, netinet/in.h */

491



/* Routine to register our ethertype */
extern void ether_register ();

/* Ethernet callable dispatch routine */
extern struct ifqueue *st2_fromether ();

/* AF_COIP ethernet address resolution routine in ethernet context */
extern int st2_toether ();

/* Linkage from ethernet for an ethertype */
static struct ether_family st2_ether_family =
/* vvvvvv gets replaced by ConfigParm (ethertype) on startup */
{ AF_COIP, 0x5354, st2_fromether, st2_toether, st2_intr, 0 },
st2_ether_family_in =
{ AF_COIP, 0x5354, st2_fromether, st2_toether/ st2_intr, 0 };

/*

S* gt2_fromether ( ifnetp, pktp, ehp )

Si

s* Routine to save ethernet header information.
s*

* Ethernet layer (do_protocol) calls this routine via the st2_ether_family

* gtructure when an ST-II ethertype packet is received. It may dispose of

* the packet directly (and return NULL), or it may return a pointer to the
* jfqueue structure to which the packet should be queued (and a softcall to
* st2_intr will be scheduled). This is the last chance to see the actual

* ethernet header -- e.g., destination & source.

*

* Since its an interrupt routine, it may be called while rest of code is

* running.

L

“/

static struct ifqueue * /* Next bugid 0x70200 */
st2_fromether( ifnetp, pktp, ehp ) /* from */
struct ifnet *ifnetp; /* Receiving interface structure */
struct aPktDesc *pktp; /* Network level data (m_len may */
/* include padding trash) */
/* If return NULL, we dispose of it */
/* If return ifqueue*, caller queues */
struct ether_header *ehp; /* Ethernet header */
{
int oldpri;
struct aPktDesc *hdrp;
struct LocalNetInfo *1lnhp;

hdrp = NO_PKTDSCP;

oldpri = splimp {(); /* Lock out other drivers */

492



if ( IF_QFULL ( &{ st2_intrqg ) ) )

{ /* 1f our queue is full, not doing */
/* reservations very well! */

IF_DROP ( &( st2_intrqg ) );

Count (net_in_drop_pkts,1);

/*Count (net_in_drop_bytes,n);*/

FreePkts (pktp):; /* Queue full, flush packet */

}

else

{

if ( ConfigFlag (ST2FlgNoSrcChking) )

{

hdrp = pktp; /* Do not want header */

}
else

{

lnhp = GetSpace (struct LocalNetInfo *, &( hdrp ), PKT_HEADER,

PKT_MD_NEW, PKT_XA_ PS,
0,0, sizeof (struct LocalNetInfo) ,0,0);

if ( lnhp EQ (struct LocalNetInfo *) NULL )

{

hdrp = pktp; /* Continue w/o header */

}

else /* Remember local net info */

{

hdrp->pkt_nxtmsgp = NO_PKTDSCP;

unigtime ( &( lnhp->rcvdts } };

lnhp->gifcp = IF_Ext (ifnetp); /* ??? ethertype too */

lnhp->linkmux = (ehp->ether_type NE 0x800) ? ehp->ether_type

lnhp->len = sizeof (struct ether_addr);

/* WARNING: make sure that:
* pizeof (struct ether_addr) <= ST2_MAX LNH_ADRLEN
* T'd use an #if if cpp could evaluate sizeof ()

*/

/* LocalNetInfo assumes len (src) EQ len (dst) */

Bcopy (&( ehp->ether_dhost.ether_addr_octet[0] ),
&( lnhp->dst([0] ),lnhp->len);

Bcopy (&( ehp->ether_shost.ether_addr_octet[0] ),
&( lnhp->src{0] ),lnhp->len);

hdrp->nextp = pktp;
}
}

/* Put packet in gqueue */
IF_ENQUEUE ( &( st2_intrq )}, ((struct mbuf *) hdrp) );

}

(void) splx ( oldpri );

493

0;



if ( hdrp NE NO_PKTDSCP )
softcall ( (int (*) ()) st2_intr, 0 ); /* Go process it later */

return ( (struct ifgqueue *) NULL ); /* pktp disposed */
#ifdef NOTYET

| /* queue pktp in st2_intrg, softcall ( st2_intr )y */
| return ( &st2_intrq );

#endif NOTYET

} /* end of st2_fromether */

/*

S* st2_toether | sockaddrp, pktp, ifnetp, eap )

g* Routine called to do ST2 to ethernet address translation.

Called by ethernet layer when AF of destination sockaddr does not
contain either AF_UNSPEC (raw ethernet header) or AF_INET for et = 800.

*

*/

static int /* Next bugid 0x70302 */

st2_toether ( sockaddrp, pktp, ifnetp, eap } /* from */
struct sockaddr *sockaddrp; /* our structure in aNxtHop */
struct aPktDesc *pktp.

struct ifnet *ifnetp;

struct ether_ addr *eap:

{

struct arpcom *acp = (struct arpcom *) ifnetp;

struct ether_header *ehp;

/* if AF_COIP, do arp lookup & update nxthop */

if ( sockaddrp->sa_family NE ConfigParm (coip_family) )
{

Count (net_out_drop_pkts,1);

/*Count (net_out_drop_bytes,n);*/

FreePkts (pktp):

BUGSTOP (-,sockaddrp->sa_family, 0x70301);

return ( 1 ); /* failed, we keep pkt */

}

if ( (Mkp (struct in_addr *, & sockaddrp->sa_data(2] ), 0))->s_addr

NE acp->ac_lastip.s_addr )
{

acp->ac_lastip.s_addr =
(Mkp (struct in_addr *, &( sockaddrp->sa_data[2] ), 0))->s_addr;

494



/* ?7?? make a trash pkt to send, as pkt initiating arp may be lost
* (sent with IP ethertype)
*/

if ( arpresolve ( acp, (struct mbuf *) pktp ) EQ 0 )
{
acp->ac_lastip.s_addr = 0; /* not valid */
return ( 1 ); /* failed, arp keeps pkt */
/* NB: lost if not retransmitted */

/* Record ethernet address in our aNxtHop & switch to AF_UNSPEC
to avoid future translations (paths are fixed in ST) */

ehp = Mkp (struct ether_ header *, &( sockaddrp->sa_data[0] ), 0);

Becopy (&( acp->ac_lastarp ), &( ehp->ether_dhost ),

sizeof (struct ether_addr)});
ehp->ether_type = ConfigParm (ethertype); /*??? per interface*/
sockaddrp->sa_family = AF_UNSPEC; /* length SB 14 */

Bcopy (&( acp->ac_lastarp ),eap,sizeof (struct ether_addr));
return ( 0 ); /* go send pkt */

} /* end of st2_toether */

#ifndef TRAFFI C_CONTROL

#include <sys/errno.h>

#include <netinet/in.h> /* for netinet/if_ ether.h */

#include <net/if_arp.h> /* ether_ family, for netinet/if_ether.h */
#include <netinet/if_ether.h>

extern struct ether_addr etherbroadcastaddr;
extern struct ether_ family *ether_families;

extern int tcif_ether_ output ();
extern struct timeval time;

#if NIE

/*

S* tcif_ ieoutput ( ifp, pktp, sockaddrp )
S*

s* Routine called to send packets via the ethernet.
*

495



*+ Just because we don't have source to be able to recoompile
* ether_output with a different IF_ENQUEUE macro in <net/if.h>
* & fix randomdrop.
S*
« Ccalled via ifnet if_output dispatch.

*

*/

extern void iestartout (};

/*static*/ int /* Next bugid Ox */
tcif_ieoutput( acp, pktp, sockaddrp )
struct arpcom *acp;

struct mbuf *pktp;

struct sockaddr *gockaddrp;

{

return tcif_ether_output( acp, pktp, sockaddrp. iestartout ) )

}

#endif NIE

#if NLE

/*
s* tcif_ leoutput { ifp, pktp., sockaddrp )
s*
e* Routine called to send packets via the ethernet.
*
* Just because we don’'t have source to be able to recoompile
* ether_output with a different IF_ENQUEUE macro in <net/if .h>
* & fix randomdrop.
S*
« Called via ifnet if_output dispatch.

*

*/

extern void lestart ();

/*static*/ int /* Next bugid O0x */

tcif_leoutput( acp, pktp, sockaddrp )

gtruct arpcom *acp;

struct mbuf *pktp;

struct sockaddr *sockaddrp:

{

return tcif_ether_output( acp, pktp, sockaddrp, lestart ) };

}

#tendif NLE

496



S* tcif ether_output ( acp, pktp, sockaddrp, fnc_start )

s* Routine called to build ethernet packets and queue them for

8* transmission.

*

* Just because we don’‘t have source to be able to recoompile

* ether_output with a different IF_ENQUEUE macro in <net/if.h>
* & fix randomdrop.

s*

* Called indirectly via ifnet if_output dispatch.

*

*/

static int
tcif_ether_output( acp, pktp, sockaddrp, fnc_start )

struct arpcom *acp; /* begins with struct ifnet */

struct mbuf *pktp: /* packet to be sent, we dispose of it */
struct sockaddr *sockaddrp; /* sockaddr of some flavor */
void  (*fnc_start) (); /* driver output-start function */

{

unsigned short ether_type; /* ether_type */

int len, /* of packet */

oldpri;

Btruct ether_addr dst_ea; /* an ethernet address */

struct ether_ family *efp; /* to find appropriate dispatches */
struct ether_header *ehp; /* ehternet header */

struct mbuf *mh = pktp, /* mbuf that will have ether header */

*bestp = NULL, /* copy of packet if to be broadcast */
*mp; /* to scan packet to find length */

#ifdef TRAFFIC_CONTROL

struct aNetIf *gifcp;

caddr_t flowp,

nethdrp;
int validlen;
unsigned long key,
rsrc;

unsigned short pf;
#endif TRAFFIC_CONTROL

if ( (acp->ac_if.if_flags & (IFF_RUNNING | IFF_UP))
NE (IFF_RUNNING | IFF_UP) )

{

m_freem ( pktp };

return ( ENETDOWN ) :

}

#ifdef TRAFFIC_CONTROL

497



gifcp = tcif_ifp2gifepl {(caddr_t) acp ): /* dummyif0 ??2? */

pf = PF_UNSPEC;
nethdrp = mtod ( pktp, caddr_t);
validlen = pktp->m_len;

if ( pktp->m_type EQ MT_TCDATA )
{

flowp = pktp->m_tcflowp;
rsrc = pktp->m_tcrsrc;
key = pktp->m_tckey;

}

else

{

flowp = (caddr_t) NULL;
rsrc = 0;

key = 0;

}
#endif TRAFFIC_CONTROL

/* Map protocol specific address in sockaddr to local network address */

switch ( sockaddrp->sa_family )
{
case AF_INET: /* 2 IP packets */
oldpri = splimp ();
{
if ( acp->ac_lastip.s_addr /* is translation in cache */
NE ((struct sockaddr_in *) sockaddrp)->sin_addr.s_addr )
{ /* no */
acp->ac_lastip = ((struct sockaddr_in *) sockaddrp)->sin_addr;
if ( NOT arpresolve ( acp, pktp ) ) /* look it up */
{ /* not in table, arping it */
acp->ac_lastip.s_addr = 0; /* no valid translation */
splx ( oldpri ):
return ( 0 ); /* held til arp’d, if_output called */
}
}

#ifdef sparc /* alignment is at least octet2 */

+ (short *) &( dst_ea.ether_addr_octet[0] ) /* lint ppap */
* (short *) &¢( acp->ac_lastarp.ether_addr_octet[0] )y
(short *) &( dst_ea.ether_addr_octet[2] ) /* lint ppap */
* (ghort *) & acp->ac_1astarp.ether_addr_octet[2] )

» (short *) &( dst_ea.ether_addr_octet([4] ) /* lint ppap */

= * {(short *) &( acp->ac_lastarp.ether_addr_octet[4] )
#else !sparc

dst_ea = acp->ac_lastarp;
#endif sparc

ether_type = ETHERTYPE_IP:
#ifdef TRAFFIC_CONTROL

pf = PF_INET;
#endif TRAFFIC_CONTROL

»

498



}
splx ( oldpri });
break;

case AF_UNSPEC: /* 0 Ethernet packets */
/* sockaddr has ethernet header */
ehp = (gstruct ether_ header *) & sockaddrp->sa_data[0) ); /* lint ppap */

#ifdef sparc /* alignment is at least octet2 */

* (short *) &( dst_ea.ether_addr_octet[0] ) /* lint ppap */
= * (short *) &( ehp-)ether_dhost.ether_addr_octet[0] )

* (short *) &( dst_ea.ether_addr_octet[2] ) /* lint ppap */
= * (short *) &( ehp—>ether_dhost.ether_addr_octet[2] )
* (short *) &({ dst_ea.ether_addr_octet[4] ) /* lint ppap */
= * (short *) &( ehp->ether_dhost.ether_addr_octet[4] );

#else !sgparc

dst_ea = ehp->ether_dhost;

#endif sparc

ether_type = ehp->ether_type; /* use specified ether_type */

#ifdef TRAFFIC_CONTROL

if | ether type EQ ETHERTYPE_IP )
pf = PF_INET;

#ifdef sSTII

else if ( ether_type EQ ConfigParm (ethertype) )
pf = PF_COIP;

#endif STII

#endif TRAFFIC_CONTROL

break;

default: /* Lookup other types */
efp = ether_families; /* List of known types */
while ( efp )

{

if | efp->ef family EQ sockaddrp—>sa_family )
break; /* Found address family */

efp = efp->ef_next; /* try next */
}

if ( efp ) /* if found table entry */
{
if ( efp->ef outfunc ) /* better have address tranglation */
{
if ( efp->ef_outfunc ( sockaddrp, pktp, acp, &( dst_ea ) ) )
return ( 0 ); /* ef_outfunc disposed of pktp */
/* classify, enforce, ng ??2? */

if ( efp->ef_ethertype EQ 1500 ) /* ? ETHERMTU */
{

len = 0; /* find packet length */

if ( mp = pktp )

do

499



{
len += mp->m_len;
mp = mp->m_next;
} while ( mp )
ether_type = len; /* use length as “ether_type” */
/* leave pf = PF_UNSPEC */
break;
}
ether_type = efp->ef_ethertype; /* ether_type from table */
#ifdef TRAFFIC_CONTROL
pf = efp->ef_family;
#endif TRAFFIC_CONTROL
break;
}
}

identify ( acp ); /* unsuported ether_type, drop pkt */
printf ( “can’t handle AF 0x%x", sockaddrp->sa_family )
m_freem ( pktp )

return { EAFNOSUPPORT ):

break;

} /* end of sockaddrp->sa_family switch */

/* Check if destined to the broadcast address */

if ( ( * (short *) &( etherbroadcastaddr.ether_addr_octet[4] )

EQ * (short *) & dst_ea.ether_addr_octet[4] )) /* lint ppap */
AND ( * (short *) & etherbroadcastaddr.ether_addr_octet[2] )

EQ * (short *) &( dst_ea.ether_addr_octet[2] )) /* lint ppap */
AND ( * (short *) &( etherbroadcastaddr.ether_addr_octet[0] )

EQ * (short *) & dst_ea.ether_addr_octet[0] )) ) /* lint ppap */

{
/* yes, make copy for local delivery */
bcstp = (struct mbuf *) m_copy ( pktp, 0, M_COPYALL );

}

/* Find space for ethernet header */

if ( (pktp->m_off <
#ifdef TRAFFIC_CONTROL
(unsigned long) OffsetOf (m_tcdat [0],struct mbuf)
#else !TRAFFIC_CONTROL
MMINOFF
#endif TRAFFIC_CONTROL
+ sizeof (struct ether_header))
OR ( M_HASCL{ pktp )
#ifdef MCL_STATIC_HDR
AND (pktp->m_cltype NE MCL_STATIC_HDR)
#endif MCL_STATIC_HDR
y ) /* no room in first mbuf, prepend another */

500



{
#ifdef TRAFFIC_CONTROL

mh = (struct mbuf *) m_get ( M_DONTWAIT, MT_TCDATA );
#else !TRAFFIC_CONTROL

mh = (struct mbuf *) m_get ( M_DONTWAIT, MT HEADER ) :
#endif TRAFFIC_CONTROL

if (! mh)

{
m_freem ( pktp );
m_freem ( bcstp );
ether_error ( acp, “WARNING: no mbufs” )
return ( ENOBUFS ) ;
}

#ifdef TRAFFIC_CONTROL /* XXX 8 => mod x10 aligned */
mh->m_off = OffsetOf (m_tcdat[8],struct mbuf):
#endif TRAFFI C_CONTROL

mh->m_next = pktp; /* prepend */

mh->m_len = sizeof ( struct ether_header );

}

else /* insert header */

{

pktp->m off -= sizeof ( struct ether_header );
pktp->m_len += sizeof ( struct ether header );

}

/* Construct ethernet header */

ehp = mtod ( mh, struct ether_header *);

#ifdef sparc /* alignment is at least octet2 */

* (short *) &( ehp—)ether_dhost.ether_addr_octet[O] } /* lint ppap */
= * (short *) &( dst_ea.ether_addr_octet[0] );

* (short *) &( ehp->ether_dhost.ether_addr_octet[2] ) /* lint ppap */
= * (short *) &( dst_ea.ether_addr_octet[2] ):

* (short *) &( ehp—>ether_dhost.ether_addr_octet[4] ) /* lint ppap */

* (short *) &( dst_ea.ether_addr_octet[4] );
#else !sparc

ehp->ether_dhost = dst_ea;

#endif sparc

ehp->ether type = ether_type;

/* Deliver local copy if broadcast */

if ( bestp )

{

mp = bcstp;

len = 0; /* find length */
/* if ( bcstp ) */

501



do

{

len += mp->m_len;
mp = mp->m_next;
} while ( mp );

#ifdef sparc /* alignment is at least octet2 */

* (short *} &¢( ehp->ether_shost.ether_addr_octet [0] ) /* lint ppap */
= * (ghort *) &¢{ acp-)ac_enaddr.ether_addr_octet[O] Y

* (short *) &l ehp—>ether_shost.ether_addr_octet[2] ) /* lint ppap */

= * (short *} &( acp-)ac_enaddr.ether_addr_octet[2] )

* (short *} &( ehp—>ether_shost.ether_addr_octet[4] ) /* lint ppap */
= * (short *) &{ acp—>ac_enaddr.ether_addr_octet[4] Y

f#felse !sparc

ehp->ether_shost = acp->ac_enaddr;

#endif sparc

/* deliver local copy */
do_protocol { ehp, bcstp, acp, len )Y
}

#ifdef TRAFFIC_CONTROL
len = mh->m_len;

if ( (mp = mh->m_next) NE (struct mbuf *) NULL )
do
{
len += mp->m_len;
} while ( (mp = mp->m_next) NE (struct mbuf *) NULL ):
mh->m_tcrsrc = ISrc;

mh->m_tckey = key;

key = mh->m_type; /* *** mbuf stats update below */
mh->m_type = MT_TCDATA;

if ( flowp EQ (caddr_t) NULL )
{
if ( gifcp->iftc_classify NE (caddr_t (*) ()) NULL )
flowp = (*gifcp->iftc_classify) { gifcp, mh, pf, nethdrp, validlen ) ;
/* ??7? else “flow 0~ */
}
mh->m_tcflowp = flowp;
#endif TRAFFIC_CONTROL

/* Enqueue packet for output & start driver */

oldpri = splimp ();

{
#ifdef TRAFFIC_CONTROL

if ( key NE MT_TCDATA ) /* *x* ypdate mbuf usage stats now */
{

mbstat.m_mtypes[key]—-;

502



mbstat.m_mtypes [MT_TCDATA] ++;
}

if ( (gifcp->iftc_enforce EQ (int (*) ()) NULL)
OR ((validlen = (*gifcp->iftc_enforce)

( gifcp, mh, len, (struct timeval *) NULL)) EQ -2) )
{

/* Packet not subject to traffic control */

if ( validlen EQ -2 )

r

mh->m_type = PKT_DATA; /* No-sort */
mbstat.m_mtypes[ PKT _DATA ]++;
mbstat.m _mtypes|[ PKT _TCDATA ]--;

}

validlen = 0;

#ifndef SFQ_VC
if ( IF_QFULL( &{ acp-rac_if.if_snd ) ) )
#else
if ( (m->m_type == MT_TCDATA) && IF_QFULL( &( acp->ac_if.if_snd )) )
#endif SFQ_VC
{

/* Queue is full, make room for this packet */

ether_error ( acp, “WARNING: if_snd full” );

/* drop a pkt */

validlen = tcif_ random_drop ( &( acp-rac_if.if snd ) );
}

}

/* Drop this packet */

if ( validlen EQ -1 )

{

acp->ac_if.if snd.ifq _drops++;

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_queued += validlen - len */

m_freem ( mh );

splx ( oldpri );

return ( ENOBUFS ); /* ??? better error */
}

if ( gifep->iftc_ng NE (void (*) ()) NULL )
{

(*gifep->iftc_nqg) ( gifcp, mh );
}
else
{
IF_ENQUEUE ( &( acp->ac_if.if snd ), mh );

503



if ( validlen > 0 )

{

acp->ac_if.if_snd.ifq _drops++;

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_queued += validlen - len */

/* don’t want to return an error as it may have higher layer
ramifications for pkt instead of what was dropped */
}
#else !TRAFFIC_CONTROL
if ( IF_QFULL( &{ acp->ac_if.if snd ) ) )
{
/* Queue is full, make room for this packet */
ether_error ( acp, “WARNING: if_snd full” );

/* drop a pkt */

len = tcif_random_drop ( & acp->ac_if.if_snd ) );

if ( len > 0 )

{

acp-)ac_if.if_snd.ifq_drops++;

/* update drop stats -- no good way to do keep accurate stats */
/* bytes_dropped += len */

/* bytes_queued += validlen - len */

}
}

/* append new paacket */

IF_ENQUEUE ( &( acp-vac_if.if_snd ), mh );
#endif TRAFFIC_CONTROL

{(*fnc_start) ( acp->ac_if.if_unit ); /* (re)start device output */

}
splx ( oldpri ):

return {( 0 )

}

#endif WANT_ETHERNET
#endif TRAFFIC_CONTROL

/* Optional HSI/S Support */
/* If you get an error here, the line:

* hsisdev/hsis.o optional hsis device-driver
* ig miseing from the file sys/sun<N>/conf/files.

*/

504



#include “hsis.h”
#if NHSIS

#include <net/ppp.h> /* PPP_ @efinitions for ST_II */

/* HSI/S callable dispatch routine */
struct ifqueue *st2_ fromhsis (/* ifnetp, pktp, ppphdrp */);

/* AF_COIP PPP address resolution routine */
static int st2_tohsis (/* sockaddrp, pktp, ifnetp, ppphdrp */);

#ifdef NOTWANTED
extern void hsis_register (); /* Routine to register our PPP type */

/* Linkage from hsis for an PPP type */
static struct register_family st2_stii_family =
/*net_family, net_ppptype, net_infunc, net_outfunc, net_netisr, net_next*/
{ AF_COIP, PPP_STII_PROTO, st2_fromhsis, st2_tohsis, st2_intr, 0 },
8t2_scmp_family =
{ 0x8000 | AF_COIP, PPP_SCMP_PROTO, st2_fromhsis, st2_tohsis, st2_intr, 0 };
#endif NOTWANTED

/*

S* st2_fromhsis ( ifnetp, pktp, ppphdrp )

s*

s8* Routine to save HSI/S header information.
si

*/

struct ifgqueue * /* Next bugid 0x70400 */
st2_fromhsis( ifnetp, pktp, ppphdrp ) /* from */
struct ifnet *ifnetp; /* Receiving interface structure */
Btruct aPktDesc *pktp; /* Network level data (pkt_length may */
/* include padding trash) */
/* If return NULL, we dispose of it */
/* If return ifqueue*, caller queues */
caddr_t ppphdrp; /* PPP header */ /* ARGSUSED */
{
int oldpri;
struct aPktDesc *hdrp;
struct LocalNetInfo *1lnhp;
etruct ifaddr *ifaddrp;
unsigned short 1linkmux = *(((unsigned short *) ppphdrp) + 1); /* lint ppap */

hdrp = NO_PKTDSCP;
oldpri = splimp (); /* Lock out other drivers */
if ( IF_QFULL ( &( st2_intrq ) ) )

{ /* If our queue is full, not doing */
/* reservations very well! */

505



IF_DROP ( &( st2_intrg ) ):

Count (net_in_drop_pkts,1):

/*Count (net_in_drop_bytes,n);*

FreePkts (pktp); /* Queue full, flush packet */
}

else

{

/* We are required to supply the ifnet pointer as the first four
bytes of the first data packet. Since the PPP header is 4
bytes long, we just overwrite it with the ifnet pointer. */

/* ??? NOTYET: check if data or control & process data,
* gueue control

*/
*pkt2data (pktp, struct ifnet **) = ifnetp;

if ( ConfigFlag (ST2F1gNoSrcChking) )

{

hdrp = pktp; /* Do not want header */
}

else

{
lnhp = GetSpace (struct LocalNetInfo *, &( hdrp ), PKT_HEADER,

PKT_MD_NEW, PKT_XA_PS,
0,0, sizeof (struct LocalNetInfo) ,0,0);
if ( lnhp EQ (struct LocalNetInfo *) NULL )
{
hdrp = pktp; /* Continue w/o header */
}
else /* Remember local net info */
{
unigtime ( &( lnhp->rcvdts ) )
ifaddrp = ifnetp->if_addrlist; /* ??? look for IP entry */
hdrp->pkt_nxtmsgp = NO_PKTDSCP;
lnhp->gifcp = IF_EXt (ifnetp); /* ??? PPP type too */
inhp->linkmux = (linkmux NE PPP_STII_PROTO) ? linkmux : 0;
lnhp->len = sizeof (INETADDR) ;

/* WARNING: make sure that:
sizeof (INETADDR) <= ST2_MAX_LNH_ADRLEN
I'd use an #if if cpp could evaluate sizeof () */

/* ?77? always assume len (src) EQ len (dst) */
Bcopy (&( ifaddrp-)ifa_addr.sa_data[2] ),
&{ lnhp->dst[0] ).lnhp->len);
Bcopy (& ifaddrp-)ifa_dstaddr.sa_data[2] ).
&( lnhp->src(0] ),lnhp->len);

hdrp->pkt_nxtbufp = pktp:
}

506



/* Put packet in queue */
IF_ENQUEUE ( &( st2_intrqg ), ((struct mbuf *) hdrp) ):
}

(void) splx ( oldpri );

if ( hdrp NE NO_PKTDSCP )
softcall ( (int (*) ()) st2_intr, 0 ); /* Go process it later * /

return { (struct ifqueue *) NULL ); /* pktp disposed */

#ifdef NOTYET

| /* gueue pktp in st2_intrqg, softcall ( st2_intr ) »/
| return ( &st2_intrqg );

#endif NOTYET

} /* end of st2_fromhsis */

/*

S* st2_tohsis ( sockaddrp, mbufp, ifnetp, ppphdrp )

B*

s* Routine called to do ST2 to PPP address translation.

s*

* Called by link layer when AF of destination sockaddr does not
* contain AF_UNSPEC (raw link layer header)

*/

static int /* Next bugid 0x70502 */
8t2_tohsis( sockaddrp, pktp, ifnetp, ppphdrp ) /* from */
struct sockaddr *sockaddrp;

sBtruct aPktDesc *pktp;

struct ifnet *ifnetp; /* ARGSUSED */

caddr_t ppphdrp;

{

if | sockaddrp->sa_family NE ConfigParm (coip_family) )
{

Count (net_out_drop_pkts, 1) ;

/*Count (net_out_drop_bytes,n);*/

FreePkts (pktp);

BUGSTOP (—,sockaddrp—>sa_fami1y,Ox70501);
return ( 1 ); /* failed, we keep pkt */
}

return ( 0 ); /* go send pkt */

} /* end of st2_tohsis */

#endif NHSIS

507



#ifndef TRAFFIC_CONTROL
/w
» pre-defined Resource Management vectors

*/

extern int tcif_BctAlloc (), tcif_BctRlse [}, tcif_Ptpalloc (),
tcif_PtpRlse (), tcif_RsIdGet (), tcif RsIdRel ()

struct aRmVector {

char name [16] ;

struct aResourceManagement rmf;

} tcif_rmvectors|[] =

{ /* #<--- name ---->" rercalloc rsrcctrl rsrcgetid rsrcprobe
*» rsrcrelid rsrcrelse */

#define aRV(id,name,aloc,ctrl,idget,probe,idrel,rlse) \
{ *name”, { aloc, ctrl, idget, probe, idrel, rlse } o},

aRmVectorList /* Defined in st2_resource.h */
#undef aRV

}i

/t
» pre-defined TrafficControl vectors

*/

#ifdef VIRTUAL_CLOCK

extern int ve_aloc_func (/* gifcp, arsclp, bw, srcp, dstp, ctlp */);
extern int ve_enf_func (/* gifcp, pktp, totlen, timevalp */);

extern int ve_init_func (/* gifcp */)i

extern void vc_nq_func(/* gifcp, mp */);

#endif VIRTUAL_CLOCK

#ifdef FAIR_SHARE
extern caddr_t fs_classify_ func (/* gifcp, mp, PF_xxx, nethdrp, validlen */);
extern int fs_aloc_func (/* gifep, arsclp, bw, srcp, dstp, ctlp */),
fs_control_func (/* gifcp, op. xxXxXp, XxxXl */),
fs_enforce_func (/* gifcp, mp, totlen, timevalp */).
fs_init_func (/* gifcp */);
extern void fs_clockfast_func {(/* gifcp */).,
fs_nqglq_f£func (/* gifcp, mp */):
extern int fs_rlse_func (/* gifcp, arsclp, bw, srcp. dstp, ctlp */);
#endif FAIR_SHARE

struct aTcVector {

char name [16] ;

struct aTrafficControl tcf;
} tcif_tcvectors|] =

508



{ /* @#$% cpp is too primitive to allow \ in the formal parameter list */
#define
aTv(id, name, clsfy, fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl, idget, prob
e, idrel, rlse) \

{ *name”, { clsfy, fsclk, cntrl, dq, drain, enfrc, init, ng, quit, \

aloc, cntrl, idget, probe, idrel, rlse } 1},

aTcVectorList /* Defined in st2_resource.h */
#undef aTV
bi

/*
* Bandwidth
*/

struct aBandwidthInfo {
char name[16] ;
unsigned long bw_conf,
bw_load,
bw_resv;
} bws (] =
{ /*"<--- name ---->" conf load resv */
#define ENET_10MB 0
/* nfs complains
{ “ethernet_10mb~, 1250000, 40000, 20000 },
*/
{ “ethernet_10mb”, 1250000, 400000, 200000 },
#define HSIS_1344 1
{ “hsis_1344", 168000, 134400, 115000 },
{ )
};
#endif TRAFFIC_CONTROL

#ifndef TRAFFIC_CONTROL

/i

S* tcif_AlgSwitch ( gifecp, quit )

s*

s* Switch to new traffic control algorithm on the specified interface.
s*

*/
static int /* Next bugid 0x71203 */
tcif_AlgSwitch( gifcp, quit )} /* from init_gifcs */
struct aNetIf +*gifcp;
int quit;
{
gtruct mbuf *mp;
int alg = (int) gifcp->alg_next,
oldpri;

509



unsigned long nbytes,
npkts;
gtruct aTrafficControl *tcp;

/* Verify can switch before make changes */
switch ( alg )
{
default: BUGSTOP (-,alg,0x71200);
gifcp->alg_next = gifcp->alg;
return {( EINVAL );

case TC_FIFO: break;

#ifdef FAIR_SHARE
case TC_FS1: break;
#endif FAIR_SHARE

case TC_RD: break;

#ifdef MY_FIFO
case TC_MY_ FIFO: break;
#endif MY_FIFO

/*

#ifdef SFQ

case TC_SFQ: break:
#endif SFQ

*/

#ifdef SPQ_VC

case TC_SFQ_VC: break;
#endif SFQ_VC

#ifdef VIRTUAL_CLOCK

case TC_VC: break;
#endif VIRTUAL_CLOCK

} /* end of alg switch */

if ( (int) TC_NUN > TC_MAX )

{

BUGSTOP (-, TC_NUN<<16|TC_MAX, 0x71201) ;
return ( ENOSR );

}

oldpri = spl4 (); /* bring interface down, wait, ... */

/* Locate cache area */

if ( gifcp->per_alg EQ (caddr_t) NULL )

{

if ( tcif_cache.allocated < (tcif_cache.nxtfree + TC_MAX) )
return ( ENOMEM ): /* ??? add more */

510



tep = &( tcif_cache.TrafficControls[ tcif_cache.nxtfree ] );
tcif_ cache.nxtfree += TC_MAX;

bzero ( (char *) tcp, TC_MAX * sizeof (tcif cache.TrafficControls[0]) );
gifcp->per_alg = (caddr_t) tcp;

}

tcp = (struct aTrafficControl *) gifcp->per_alg; /* lint ppap */
#if ©

/* Cache pervious algorithm’s info */

Becopy ( &( gifep->tcf ), /*->*/ (tcp + gifcp->iftc_alg), sizeof (* tcp) );
f#fendif 0

/* Flush old queue(s) */

if ( gifcp->iftc_drain NE (void (*) ()) NULL )

{

(*gifcp->iftc_drain) ( gifcp, gifcp->iftc_statelp, gifcp->iftc_statel2p,
gifecp->iftc_statelul, gifcp->iftc_state2ul,
&npkts, &nbytes );

#ifdef lint

#define

aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob

e,idrel,rlse) \

drain ( gifcp, gifcp->iftc_statelp, gifcp->iftc_state2p, \
gifcp->iftc_statelul, gifcp->iftc_state2ul, &npkts, &nbytes );

aTcVectorlList

#undef aTV
#endif lint
}
else
{
for (;;)
{
if ( gifcp->iftc_dg NE (struct mbuf *(*)()) NULL )
mp = (*gifcp->iftc_dq) ( gifep )
else
{
IF_DEQUEUE ( &( gifcp->osifcp->if snd ), mp );
}

if ( mp EQ (struct mbuf *) NULL )
break;

FreePkts ((struct aPktDesc *) mp);
} /* end of forever loop */

}

if ( quit && (gifcp->iftc_quit NE (void (*) ()) NULL) )
(*gifep->iftc_quit) ( gifep );

#ifdef lint

511



#define
aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel,rlse) \

quit ( gifcp );

aTcVectorlList;

#undef aTV

#endif lint

#if 1

/* Cache pervious algorithm‘'s info */

Bcopy ( &( gifcp->tcf ), /*->*/ (tcp + gifcp->iftc_alg). sizeof (* tcp) )
#endif 1

/* Switch algorithms */
gifcp->alg = (short) alg:

tcp += alg; /* Restore previous parameters */
Becopy ( tcp, /*->*/ &( gifcp->tcf ), sizeof (gifcp->tcf) );

if ( (gifcp->iftc_statelp EQ (caddr_t) NULL)
AND (gifcp->iftc_state2p EQ (caddr_t) NULL)
AND (gifcp->iftc_statelul EQ 0)

AND (gifcp->iftc_state2ul EQ 0) )

{
switch ( alg )
{
default:
BUGSTOP (-,alg,0x71202);
gifcp->alg = (short) TC_FIFO;
gifcp->alg_next = (short) TC_FIFO;
gifep->tcf = tcif_ tcvectors[ (int) TC_FIFO 1.tck;
break;
#define

aTV(id,name,clsfy,fsclk,cntrl,dq,drain,enfrc,init,nq,quit,aloc,ctrl,idget,prob
e,idrel,rlse) \

case Ident (TC_)id: \

gifcp->tcf = tcif_tcvectors[ (int) Ident(TC_)id ].tcf; \
break;

aTcVectorList

#undef aTV
} /* end of alg switch */
}

if ( gifecp->iftec_init NE (int (*)()) NULL )
(void) (*gifcp->iftc_init) ( gifep ); /* 2?7? check for error & undo */

splx ( oldpri ); /* bring interface back up */
#if O

if ( gifep->iftc_clockfast NE (void (*) ()) NULL )

512



(*gifcp->iftc_clockfast) ( gifcp );
#endif

return ( 0 ).

}
#endif TRAFFIC_CONTROL

#ifndef TRAFFIC_CONTROL

/*

S* tfic_init_gifcs ()

S*

s* Routine to initialize generic network interfaces.
S*

*/

static void /* Next bugid 0x70602 */
tfic_init_gifes () /* from st2_init */
{
char *8p;
int left,
len;
struct aNetIf “*agip = &( tfic_genifs.NetIfs[0] )},
**tailpp = &( tcif_gifcheadp );
extern struct ifnet *ifnet; /* BSD's global list of interfaces */
struct ifnet *osifp = ifnet; /* BSD's global list of interfaces */

/* Create a dummy interface to try and fail gracefully if something is
* broken.

*/

bzero( (char *) agip, sizeof (struct aNetIf) );:
agip->ifc_nextp = NO_NETIFP;
agip->osgifcp = &( dummyif );

agip->lclhdrlen = sizeof (((struct sockaddr *)0)->sa_data):
agip->ifc_output = tcif_dummy_ output;

(void) strcpy ( &( agip->namebuf[0] ), /*<-*/ *“dummyif0” );
agip++;

tfic_genifs.nxtfree++;

/* Create a Generic Network Interface for each 0S interface */
for ( ; osifp NE (struct ifnet *) NULL ; osifp = osifp->if_ next )
{

/* FYI: ifnet->if_ addrlist not yet valid */

/* Logical end of addresses per interface loop */

if ( (tfic_genifs.nxtfree +1) >= tfic_genifs.allocated )

{

513



BUGSTOP (-,Misconfiguration, 0x70601);
break; /* out for next interface */

}

agip->osifcp = osifp:
agip->lclhdrlen = sizeof (({struct sockaddr *)0)->sa_data);

sp = &( agip->namebuf[0] );

left = sizeof (agip->namebuf) - 2;

{(void) strncpy ( sp, osifp->if_name, left );
len = strlien {( sp ):

sp += len;

left -= len;

if ( left < 5 )
*gp++ = '?';

else

{

len = osifp->if_unit & OXFFFF;

if ( len >= 10000 )

*gp++ = ‘0’ + (len / 10000), len %= 10000;
if ( len >= 1000 )

*gp++ = ‘0’ + {(len / 1000), len %= 1000;
if ( len >= 100 )

*gp++ = ‘0’ + (len / 100}, len %= 100;
if ( len >= 10 )

»gp++ = ‘0 + (len / 10), len %= 10;
*gp++ = ‘0’ + len;

}
*gp = ‘\0';

#if WANT_ETHERNET

/* Don’'t have source access to change:
* 1) IF_ENQUEUE / IF_DEQUEUE macros in ether_output
* nor 2) random drop

*/
#if NLE
if ( stremp (*le”,osifp->if_name) EQ 0 )
{
if ( ConfigFlag (ST2FlgOwnLE) )
{

extern int leoutput (/* ifnetp, pktp, sockaddrp */);

agip->lclhdrlen = sizeof (struct ether_ header) ;
if ( osifp->if_output EQ leocutput )
osifp->if_output = tcif_leoutput;
}

/*

cwl ??? default TrafficControl */
agip->bw_conf bws[ (int) ENET_10MB ] .bw_conf;
agip->bw_load bws[ (int) ENET_10MB ] .bw_load;
agip->bw_resv = bws[ (int) ENET_10MB ] .bw_resv;

514



agip->rmf = tcif_ rmvectors[ (int)

#ifdef VIRTUAL_CLOCK

RM_BCST ] .rmf;

/* agip->tcf = tcif_tcvectors([ (int) TC_VC ].tcf;

agip->alg_next = (short) TC_VC;
#else !{VIRTUAL_CLOCK
agip->alg_next = (short) TC_RD;

#endif VIRTUAL_CLOCK
}

#endif NLE

#if NIE

if ( stremp (*ie”,osifp->if_ name) EQ 0 )

{
if ( ConfigFlag (ST2FlgOwnLE) )

{

extern int ieoutput (/* ifnetp,

pktp,

agip->lclhdrlen = sizeof (struct ether_header);
if ( osifp->if_output EQ ieoutput )

ogifp->if output = tcif ieoutput;

}
/*
cwl ??? default TrafficControl */

agip->bw_conf

agip->bw_locad
agip->bw_resv

bws[ (int) ENET_10MB ] .bw_conf;
bws[ (int) ENET_10MB ] .bw_load;
bws[ (int) ENET_10MB ] .bw_resv;

agip->rmf = tcif_ rmvectors|[ (int) RM_BCST ].rmf;
/* agip->tcf = tcif_tecvectors| (int) TC_VC ].tcf;

agip->alg_next = (short) TC_VC;
}
#endif NIE
#endif WANT_ETHERNET

#if NHSIS

if ( strcmp (“hsis”,osifp->if_name) EQ 0 )

{
agip->lclhdrlen = PPP_HDRSPACE;

/* #ifdef DARTNET */
if ( (osifp->if_unit % 4) EQ 0 )
/* #endif DARTNET */
{
/*
cwl ??? default TrafficControl */
agip->bw_conf
agip->bw_load

bws[ (int) HSIS_1344 ] .bw_conf;
bws[ (int) HSIS_1344 ].bw_load;

agip->bw_resv = bws[ (int) HSIS_1344 ].bw_resv;

agip->rmf = tcif_rmvectors| (int)

#ifdef VIRTUAL_CLOCK

RM_P2P ] .rmf;

/* agip->tcf = tcif_tcvectors[ (int) TC_VC ].tcf;

agip->alg_next = (short) TC_VC;

515

*/

sockaddrp */);

*/

*/



f#else
agip->alg_next =

#endif VIRTUAL_CLOCK
}

}
#endif NHSIS

!VIRTUAL_CLOCK

/i

cwl ??? do “lo”, too? */

/*

(short)

TC_FIFO;

cwl ??? fill in default dg/ng/enf */

tcif_ AlgSwitch( agip,

*tailpp = agip:;
tailpp =

agip++;
tfic_genifs.nxtfree++;

/*quit*/0 );

&( agip->ifc_nextp );

} /* end of all interfaces */

*tailpp = &{( tfic_genifs.NetIfs[0]

return;

}
#endif TRAFFIC_CONTROL

/*
* Debugging hook.
*/

static int st2_stop = 0;

static void
st2_at_stop () {};
static void

st2_at_check () {};

/*
g*
s*
s*
Si

*/

st2_dbgstp ( stopflag,

void

errcode,

/* Next bugid 0x70700 */

unique_id,

STIIDEBUG routine to print error message

string,

file_id, line_number )

st2_dbgstp( stopflag, errcode, unique_id, string, file_id, line_number ) /*

516



from */
int stopflag,
errcode,
unique_id;
char *string;
enum aDbgString file id;
int line number;
{
struct atrap *trapp;
int oldpri;

oldpri = splimp ():
{

trapp = (struct atrap *) s8t2_stats.trapnext;
uniqgtime ( &( trapp->time ) );

trapp->trapid = (unsigned long) unique_id;
trapp->trapinfol = (unsigned long) errcode;
trapp->trapinfo4 = (unsigned long) file _iqg;
trapp->trapinfo5 = (unsigned long) line_number;

if ( ++trapp >= &/{ st2_traptable| ConfigParm (ntraps) ] ) )
st2_stats.trapnext = (unsigned long) &( st2_traptable[0]} );
else
st2_stats.trapnext = (unsigned long) trapp;
Count (trapcount, 1) ;
}
splx ( oldpri ):;

if ( ((ConfigParm (dbgflg) & (unsigned long) DBG_PRINT2) NE 0)
OR ( (stopflag NE 0)

AND ((ConfigParm (dbgflg) & (unsigned long) DBG_PRINT1) NE 0)) )
{
if ( string NE (char *) NULL )

(void) printf ( “**+ BUGCHECK :condition %s failed\n”, string );
(void) printf ( “*%* BUGCHECK:%x reason %d (0Ox%x) ",

unique_id, errcode, errcode );

(void) printf ( STStr (LineNo), line_number, STStr (file_id) );
}

if ( unique_id EQ st2_stop )
st2_at_stop ();

if ( stopflag < 0 )
st2_at_check {();

return;

} /* end of st2_dbgstp */

/*

517



S* st2_GetSpace ( pktpp, al, a2, a3 )
Si

s* General routine to get memory space, accegsed via the GetSpace &

s* AddSpace macros.
Sﬁ

*/

unsigned char * /* Next bugid 0x70815 */
st2_GetSpace( pktpp, ai, a2, a3 ) /* from */
struct aPktDesc **pktpp; /* Only updated when PKT_MD_NEW */
int al,
a2,
a3; /* VARARGS3 */
{
int flag,
provhd,
pr,
space,
ps,
psovhd,
len;
unsigned short *xap;
gtruct aPktDesc *pp;
struct mbuf *mp;
unsigned char *ucp,
*Xcp;

if ( pktpp EQ (struct aPktDesc **) NULL )

{
IfLog (DBG_MEM_ALO)
(void) printf ( “st2_GetSpace (invalid return pointer)\n” );
BUGSTOP (-,InvalidPointer, 0x70801);
return ( {unsigned char *) NULL );
}
if | (PKT_MD_BITS & al) EQ PKT_MD_NEW y /* New space */
{

flag = a2 | a3;
flag |= (flag | al) >> 16;

provhd = (({ (OxOFFF & (al >> 16)) + ALIGNMENT) & -~ ALIGNMENT) ;
pr = (((0OxXOFFF & (a2 >> 16)) + ALIGNMENT) & ~ ALIGNMENT);
space = (OxOFFF & a2);

ps = (((OxOFFF & (a3 >> 16)) + ALIGNMENT) & ~ ALIGNMENT) ;
psovhd = {( (OXOFFF & a3) + ALIGNMENT) & ~ ALIGNMENT);

len = provhd + pr + space * pPS * psovhd;

len = (len + ALIGNMENT) & ~ ALIGNMENT;

}

else /* adding space */
{

len = (0xOFFF & a2);

518



if ( ((PKT_MD_BITS & al) EQ PKT_MD_PROVHD)
OR ((PKT_MD_BITS & al) EQ PKT_MD_PSOVHD) )
{

if ( (len & ALIGNMENT) NE 0 )
BUGSTOP (-,len, 0x70802 + ALIGNMENT) :
len = (len + ALIGNMENT) & -~ ALIGNMENT;

}
Pp = *pktpp;
if ( pp EQ NO_PKTDSCP )
{
IfLog (DBG_MEM_ALO)

(void) printf (¢ "st2_GetSpace {(%d) no existing buffer\n”, len ) ;
Count (scmp_nobuf0,1); /* count no buf to use */

BUGSTOP (—,InvalidPointer,0x70806);

return ( {(unsigned char *) NULL )

if ( len > MCLBYTES )

{

IfLog (DBG_MEM_ALO)

(void) printf ( “st2_GetSpace (%4 too big for buffer (%u))\n",

len, MCLBYTES ) ;

Count (scmp_nobuf3,1); /* no buf big enough */

BUGSTOP (-, ((len << 16) i MCLBYTES) , 0x70807) ;

return ( (unsigned char *) NULL ) ;

}

switch ( PKT_MD_BITS & al )
{

default:
IfLog (DBG_MEM_ALO)
(void) printf ( "“st2_GetSpace (Invalid request mode (%d)\n”,

PKT_MD BITS & al );
Count {scmp_nobufmod,1);: /* count invalid GetSpace mode */
BUGSTOP (-.Inconsistency, 0x70808) ;
return ( (unsigned char *) NULL };

case PKT_MD_PROVHD: /* 0x0100 */
if ( len > PpP->pkt_prepad )

{

IfLog (DBG_MEM_ALO)

(void) printf ¢ “st2_GetSpace (cannot get %d OVHD bytes (%u))\n”",

len, pPp->pkt_prepad );
Count (scmp_nobfxol,1): /* count pre-overhead too small */

BUGSTOP (—,CantGetResrc,Ox70809);

return {( (unsigned char *) NULL ) ;

}
ucp = (unsigned char *) pp + Pp->pkt_offset - pp->pkt_prepad;

PpP->pkt_preovhd += len;

519



pp->pkt_prepad -= len;

xcp = (unsigned char *) pp *+ pp->pkt_offset - pp- >pkt_prepad
- pp->pkt_preovhd;

break:

case PKT_MD_HDR: /* 0x0200 */
if ( len > pp->pkt_prepad )
{
I1fLog (DBG_MEM_ALO)
(void) printf ( “st2_GetSpace (cannot get %d HDR bytes (%u))\n”,
len, pp->pkt_prepad )
Count (scmp_nobthd,l); /* count packet header too small */

BUGSTOP (—,CantGetResrc,0x70810);
return ( (unsigned char *) NULL )
}
pp->pkt_offset -= len;
pp->pkt_prepad -= len;

pp->pkt_length += len;

ucp = (unsigned char *) pp + pp->pkt_offset;

xcp = (unsigned char *) pp + pp->pkt_offset - pp->pkt_prepad
- pp—)pkt_preovhd;

break;

case PKT_MD_PKT: /* 0x0300 */
if ( len > pp->pkt_postpad )
{
1fLog (DBG_MEM_ALO)
(void) printf ( “gt2_GetSpace (cannot extend PKT %d bytes (%u))\n”,
len, pp—)pkt_postpad Y
Count (scmp_nobfxpk,l); /* count packet too small */
BUGSTOP (-,CantGetResrc,0x70811);
return ( (unsigned char *) NULL )
}
ucp = (unsigned char *) pp + pp->pkt_offset + pp->pkt_length;
pp->pkt_length += len;
pp—)pkt_postpad -= len;
xcp = (unsigned char *) pp + pp->pkt_offset - pp->pkt_prepad
- pp->pkt_preovhd;
break;

case PKT_MD_PSOVHD: /* 0x0400 */
if ( len > pp->pkt_postpad )

{

IfLog (DBG_MEM_ALO)

(void) printf ( “gt2_GetSpace (cannot get %d trailer bytes {%u))\n",

len, pp—)pkt_postpad )}

Count (scmp_nobfxo2,l); /* count post-overhead too small */

BUGSTOP (—,CantGetResrc,0x70812);

return ( (unsigned char *) NULL );

520



}
pp->pkt_postpad -= len;
pp->pkt_postovhd += len;

ucp = (unsigned char *) pp + pp->pkt_offset + pp->pkt_length
+ pp->pkt_postpad;
xcp = (unsigned char *) pp + pp->pkt_offset - pp->pkt_prepad

- pp->pkt_preovhd;
break;

case PKT_MD_NEW: /* 0x0500 */

MGET ( mp, M_DONTWAIT, (OxFF & al) );
if ( mp EQ (struct mbuf *) NULL )

{
IfLog (DBG_MEM_ALO)

(void) printf ( “st2_GetSpace (no free mbufs)\n” );
Count (scmp_nobufl,1); /* count no small bufs */
BUGSTOP (-,CantGetResrc,0x70813);

return ( (unsigned char *) NULL );

IfLog (DBG_MEM ALO)
(void) printf ( “MBUF: get m %8x st2_getspace type %2u %s\n”, mp, mp->m_type,
(mp->m_type < DimensionOf (mtype_names)) °? mtype_names | mp->m_type ] oy

Pp = (struct aPktDesc *) mp;
PP->pkt_nxtmsgp NO_PKTDSCP;
pp->pkt_nxtbufp NO_PKTDSCP;
pp->pkt_preovhd provhd;
pp->pkt_prepad = pr;
pp->pkt_length = space;
pp->pkt_postpad = ps;
pp->pkt_postovhd = psovhd;
Pp->pkt_usecnt = 1;
if ( pp->pkt_type EQ PKT_TCDATA )
{
pp->pkt_tcflowp = (caddr_t) NULL;
pp->pkt_tcrsrc = 0;
pp->pkt_tckey = 0;
}

switch ( PKT_XA_BITS & al )

{

case PKT_XA PROVHD: /* 0x1800 */
xap = &( pp->pkt_preovhd );
break;

case PKT_XA PR: /* 0x0800 */

Xap = &( pp->pkt_prepad );
break;

521



default:

case PKT_XA_PS: /* 0x0000 */
xap = &{ pp->pkt_postpad );
break;

case PKT_XA_PSOVHD: /* 0x1000 */
xap = &( pp—)pkt_postovhd )
break;

} /* end of extra switch */

if ( (len <= sizeof (pp-)pkt_intdata))
AND ((flag & PKT_LARGE) EQ 0) )

{

#if 1 /* BSD mbuf */
pp->pkt_size = sizeof (struct aPktDesc);

*xap += sizeof (pp->pkt_intdata) - len;
ucp = & pp-)pkt_intdata[ pp->pkt_preovhd + pp->pkt_prepad 1 );
pp->pkt_offset = (int) ucp - (int) pp:

pp->pkt_length = space;
/* correct for info before and after pktdata in BSD model */
pp->pkt_preovhd += (int) &( pp->pkt_intdatal0] ) - (int) pp:
pp->pkt_postovhd =+= sizeof (pp->pkt_nxtmsgp);

gendif 1 /* BSD mbuf */

pp->pkt_nxtbufp = *pktpp:;
*pktpp = PP:

xcp = {(unsigned char *) NULL;
break;

}

MCLGET ( mp )
if ( pp->pkt_length NE MCLBYTES )

{
(void) m_free ( (struct mbuf *) pp )

IfLog (DBG_MEM ALO)

(void) printf ( “st2_GetSpace (no free cluster mbufs)\n” );
Count (scmp_nobuf2,1}; /* count no large bufs */

BUGSTOP (-, CantGetResrc, 0x70814) ;

return {( (unsigned char *) NULL Y

}
xcp = (unsigned char *) pp + pp->pkt_offset;
I1fLog (DBG_MEM_ALO)

(void) printf ( “MBUF: get cl %8x st2_getspace type %2u %8 for %x\n”, Xcp,
mp->m_type,

522



(mp->m_type < DimensionOf (mtype_names)) ? mtype_names[ mp->m_type ] : ““, mp
)i

pp->pkt_size = pp->pkt_length;

*xap += pp->pkt_length - len;

pPp->pkt_offset += pp->pkt_preovhd + pp->pkt_prepad;
pp->pkt_length = space;

pp->pkt_nxtbufp = *pktpp;
*Pktpp = pp;

ucp = (unsigned char *) pp + pp->pkt_offset;
break;

} /* end of mode switch */

IfLog (DBG_MEM_ALO)

(void) printf ( “st2_GetSpace (%d bytes at %x in %x/%x)\n",
len, ucp, pp, Xcp );

return ( ucp };

}

/*
S* st2_init ()

s*

s* COIP Protocol Family initialization routine. Initialize
§* st2_ConTbl, st2_ConHsh, st2_nexthops, st2_vlinks, Generic
s* Network Interface, and Resource Management structures.

8* Register our ethertype/PPPtype with the ethernet/HSI/S

s8* drivers.

si

*/

/* HID_CONTROL 0 control */
/* HID_HELLO 1 HELLOs */
#define NSPECIALHIDS 2

int /* Next bugid 0x70900 */
st2_init () /* from 08 */

{

int i;

struct aConHshEntry *conHashp;
etruct aST2pcb *cp;

struct timeval tv;

static boolean init_done = FALSE;

/* Only do this once. */
if {( init_done )
return ( 0 );

523



CheckAlignmentl;

st2_stats.trapnext = (unsigned long) &/ stz_traptable[ol ) ;

printf ( “ST-II coftware Copyright (¢) 1991-1993 by BBN Systems and
Technologies\n” );

unigtime ( &tv );
st2_stats.butSeconds = tv.tv_sec; /* too soon to have tod value */

st2_stats.butFract = tv.tv_usec;

/* do what a good compiler/linker ought to do ... —---=-----"""""""°°°7°7 */
/* @#$% C cannot initialize specific array entries @#5% */
{
int i, /* Slot being verified */

j; /* Desired slot, to be vacated &

replaced */

struct aErrorXlate *eip, /* Ptr to slot being verified */

*ejp, /* Ptr to desired slot */

ej, /* Contents for desired slot */

ex; /* Contents removed from desired slot */

i = DimensionOf (st2_reasontable) - 1;

eip = & st2_reasontable[ il ); /* Bottom up should be fastest */
for ( ; i >= 0 ; i--, eip-- )

{

if ( eip->flags EQ O )
continue; /* Unused slot, except NoError */

ex = *eip; /* Save error info */
eip->flags = 0; /* Free the slot */

while ( ex.flags NE 0 )

{

ej = ex; /* Info to be inserted */

3 = (int) ej.internal; /* Desired slot for it */
ejp = & stz_reasontable[ 31 )

ex = *ejp; /* Save contents of slot */

*ejp = ej; /* Put info in desired slot */

} /* end of while loop */
} /* end of for loop */
}

/* ____________________________________________________________________ */
/* 227 get incarnation # from disk?? */

/* ?7?7? static int st2_active = 0;

* and all st2 entry points check it

*/

/* Record supported vergions ----------------=-----------oooooTmooTEEos */

524



{ octetd flowspec_versions|[1];
flowspec_versions[0] = 0;

if ( st2_fsver3 NE 0 )
BitSet32 (flowspec_versions, 3);
if ( st2_fsverd NE 0 )
BitSet32 (flowspec_versions, 4);
if ( st2_fsverS NE 0 )
BitSet32 (flowspec_versions, 5);
if ( st2_fsver6é NE 0 )
BitSet32 (flowspec_versions, 6);:

ConfigParm (flowspec_versions) = flowspec_versions[0];

}
/+ Initialize connection table —=----------=----="""""TTTTTTTTTTTTTTTT TN */

st2_ConTblTailp = & st2_ConTbl[ MAX_STREAMS - 1 1)
st2_ConTblTailp—>nextp = NO_PCBP;
st2_ConTblFreep = st2_ConTblTailp;

for (1 = MAX_STREAMS - NSPECIALHIDS ; 1 > 0 ; --1i)
{

cp = st2_ConTblFreep-—;

st2_ConTb1Freep->nextp = cp;

}

/* Install pseudo connection 0 for control --—----~---=-=-=-----=-=----< */

cp = &( st2_ConTbl[0] ):

Bzero (cp,sizeof (*cp));

SetState (PCB,cp,pcb_state,CINS_PREOPEN);

cp->dspin st2_CMPInput; /* “Connection 0* EQ HID 0 EQ scmp */
cp->nextp = & st2_ConTbl[0] ); /* Initialize circular queue */
cp->prevp &{ st2_ConTbl{0] );

/+ Initialize connection hash table -------=-----"-"""TTTTTITTTTTTTTTT */

conHashp = & st2_ConHsh({0] );

for ( i = (1 << HID_BITS) ; i > 0 : --i)
{

conHashp->hid = 0;

{conHashp++) ->cp = NO_PCBP;

}

/* Install pseudo connections 0 for control & 1 for HELLOS ------------ */

st2_ConHsh[ HID_CONTROL ].hid = HID_CONTROL;
st2_Coanh[ HID_CONTROL ].cp = &{ st2_ConTb1[0] ) ;

525



st2_ConHSh[ HID HELLO ] .hid = HID_HELLO;
st2_ConHsh| HID HELLO ].cp = &{ st2_ConTbl([0] };

/* Call for initialization of each object class ~-----———oo__________

{ struct NextHop *next_hopp;
unsigned long xstkdebug = ConfigParm (dbgflg);
ConfigParm (dbgflg) = 0;

/*lock st2_nexthops*/
{
/* initialize each table entry to empty */
next_hopp = &( st2_nexthops.table([0] );
for (i = 0 ; i < Dimensionof (st2_nexthops.table)
i i++, next_hopp++ )
{
Bzero (next_hopp, sizeof (*next_hopp) ) ;
SetState (NHP,next_hopp,nhop_state,FREE_HOP);

next_hopp->nextp = st2_nexthops. freep;
st2_nexthops.freep = next _hopp;

}

}/*unlock st2_nexthops*/

ConfigParm (dbgflg) = xstkdebug;
}

{ int link_index;

/*lock st2_vlinksg*/

{

/* Empty the free list for reconstruction. */
Bt2 vlinks.first_freep = NO_VLINKP;
8t2_vlinks.last_freep = NO_VLINKP;

/* Scan link table using link_entry. */

for ( link_index = 0 ; link_index < (ConfigParm (vink_mask) + 1)
; link_index++ )

{

struct aVLink *link_entry = &{( st2_vlinks.table]| link_index ] );

/* Mark as not in use. */

s8t2_VLinkReset ( link_entry, (VLID)link_index ) ;
/* ??? error */

/* ??? use incarnation # */

if ( st2_vlinks.first freep EQ NO_VLINKP )
8t2_vlinks.first_freep = link_entry;
else

stz_vlinks.last_freep—>nextp = link_entry;
st2_vlinks.last_freep = link_entry;

526



}
}/*unlock st2_vlinks*/
}

/* Estimate delay and other FlowSpec adjustments for each device */

/* Initialize generic network interfaces --—--=-=-=--=—--me o ________ */
#ifndef TRAFFIC_CONTROL

tfic_init_gifes(); /* everything should be ready */
#else TRAFFIC_CONTROL

if ( tcif gifcheadp EQ (struct aNetIf *) NULL )
tfic_init_gifes(); /* do it for them */

ConfigParm(def_genifs) = tfic_genifs.allocated;

#endif TRAFFIC_CONTROL

/* Reset resource allocation tables for each device -—----—---=-ccmeoweo—n */
#ifdef OBS

| st2_RsrcInit();
#endif OBS

#ifdef NOTWANTED
#if NHSIS

/* Register our PPP type -———=—-—= - - ______ */
hsis_register( &( st2_scmp_family ) );

hsis_register( &( st2_stii_family ) );
#endif NHSIS
#endif NOTWANTED

#if WANT_ETHERNET
/* Register our ethertype -—=------=---o-ommmmomm . */

et2_ether_family.ef_ ethertype = ConfigParm (ethertype) ;

if ( st2_ether family.ef ethertype NE st2_ether_family_in.ef_ethertype )
ether_register( &( st2_ether_family in ) );

ether_register( &( st2_ether_family ) );
#endif WANT_ETHERNET

/* set active flag —---=------omemm .. */
init_done = TRUE;

return ( 0 );

} /* end of st2_init */

527



/*

S* st2_IPAdrFunc ( fnc, ipadrp )

s*

g* Routine to try and encapsulate deatils of native 0OS network interfaces.
s* IPAdrFuncValidate: validate given IPAddress as one of ours.

S*

*/

boolean /* Next bugid 0x71000 */

st2_ IPAdrFunc( fnc,ipadrp ) /* from api_lbind st2_PCBUpdate */
enum IPAdrFuncs fnc;

INETADDR *ipadrp;

{

struct aNetIf *ifp;

struct ifaddr *wifaddrp:

boolean go = TRUE;

switch ( fnc )

{

default:

case IPAdrFuncScan:
return {( FALSE );
break;

cagse IPAdrFuncValidate:
ForAllGifc (ifp, tcif_gifcheadp, go AND)
{
for ( wifaddrp = ifp->osifcp->if_addrlist
; go AND (wifaddrp NE (struct ifaddr *) NULL)
. wifaddrp = wifaddrp->ifa_next )
{
if ( wifaddrp->ifa_addr.sa_family EQ AF_INET )
{
if ( (octetd) ((struct sockaddr_in *)
&( wifaddrp->ifa_addr ))->sin_addr.s_addr EQ *ipadrp )
{
go = FALSE; /* Found match, stop looping */
}
}

return ( (go) ? FALSE : TRUE );

break;
} /* end of switch */

return ( FALSE );
}

528



