NASA-CR-204901

The distribution of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere: Implications for changes in O_3 due to emission of NO_v from supersonic aircraft

R. J. Salawitch¹, S. C. Wofsy¹, P. O. Wennberg¹, R. C. Cohen¹, J. G. Anderson¹, D. W. Fahey², R. S. Gao², E. R. Keim², E. L. Woodbridge², R. M. Stimpfle¹, J. P. Koplow¹, D. W. Kohn¹, C. R. Webster³, R. D. May³, L. Pfister⁴, E. W. Gottlieb¹, H. A. Michelsen¹, G. K. Yue⁵, J. C. Wilson⁶, C. A. Brock⁶, H. H. Jonsson⁶, J. E. Dye⁷, D. Baumgardner⁷, M. H. Proffitt², M. Loewenstein⁴, J. R. Podolske⁴, J. W. Elkins⁸, G. S. Dutton⁸, E. J. Hintsa¹, A. E. Dessler⁹, E. M. Weinstock¹, K. K. Kelly², K. A. Boering¹, B. C. Daube¹, K. R. Chan⁴, S. W. Bowen⁴

Abstract. In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower stratosphere during SPADE are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N_2O_5 agree well with measured concentrations of NO and ClO, but concentrations of HO₂ and OH are underestimated by 10 to 25%, concentrations of NO₂ are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for [OH] and [HO₂] are reduced if we allow for higher yields of $O(^1D)$ from O_3 photolysis and for heterogeneous production of HNO2. The data suggest more efficient catalytic removal of O₃ by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommended rates and cross sections. Increases in [O₃] in the lower stratosphere may be larger in response to inputs of NO, from supersonic aircraft than estimated by current assessment models.

Introduction

Data collected during the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE) in May 1993 offer a unique opportunity to investigate the chemistry of HO_x , NO_x , and ClO_x radicals in the lower stratosphere. We assimilate into a photochemical model data for pressure, temperature, aerosol surface area, long-lived precursors of free radicals (O₃, H₂O, CH₄, NO_y, and Cl_y inferred from CCl₃F and CO₂), total column ozone, and

Paper number 94GL02781 0094-8534/94/94GL-02781\$03.00 planetary albedo obtained by the ER-2 aircraft on latitude transects from 15 to 58°N. Concentrations of radicals (OH, HO₂, NO, NO₂, ClO) and HCl are computed and compared to observations to test our understanding of key photochemical processes.

Theory and Observation

We focus on segments of two flights, to Moffett Field, CA $(37.4^{\circ}N)$ from the south on 14 May 1993 (930514) and from the north on 18 May 1993 (930518), that provided the most complete set of measurements during SPADE. Each segment began with a descent from ~50 mb to ~120 mb near noon, followed by a climb and cruise at maximum altitude (~50 mb), and a second descent and ascent near the midpoint. Fig. 1 shows measurements (used as inputs to the photochemical model) of pressure, temperature, aerosol surface area, and long-lived radical precursors.

The aerosol surface area was measured by the Focused Cavity Aerosol Spectrometer (FCAS) and the Forward Scattering Spectrometer Probe (FSSP), optical particle counters that determine the size of ambient particles with diameters between 0.1 and 0.9 μ m, and diameters between 0.4 and 20 μ m, respectively. The surface area estimated by the FSSP for the overlap region between the two instruments was approximately 50% larger than the area measured by the FCAS. We have adopted an estimate of aerosol surface area for the size range 0.1 to 20 μ m using data from the FCAS for the overlap region. Model results are relatively insensitive to this assumption, since total surface area changes by ~20% depending on which measurement is used for the overlap region.

Measurements of $[NO_y]$ were not available for the latter portion of 930514 and were estimated from data for $[N_2O]$ using the compact correlation observed between these species. Concentrations of inorganic chlorine (CL₂) were computed from in situ measurements of halogenated source gases and $[CO_2]$ [Woodbridge et al., 1994]. We adopted the mean of H₂O concentrations reported by two instruments since the ~15% systematic difference between the measurements is not understood. Other inputs to the model include measured [CH₄], [CO] estimated from its correlation with $[O_3]$ [Murphy et al., 1993], and $[C_2H_6]$ and concentrations of inorganic Br estimated from their correlations with $[N_2O]$ [D. Blake, private communication, 1994; Schauffler et al., 1993].

Concentrations of HO_x ([OH]+[HO₂]) are sensitive to the column abundance of O₃ due to its role in regulating production of $O(^{1}D)$; partitioning of NO_x ([NO]+[NO₂]) is sensitive to planetary albedo due to photolysis of NO₂. Photolysis rates were calculated

¹Harvard University

²NOAA Aeronomy Laboratory

³ Jet Propulsion Laboratory

⁴NASA Ames Research Center

⁵NASA Langley Research Center

⁶University of Denver

⁷National Center for Atmospheric Research

⁸NOAA Climate Monitoring and Diagnostics Laboratory

⁹Goddard Space Flight Center

Copyright 1994 by the American Geophysical Union.

Figure 1. Values of pressure, temperature, aerosol surface area, and mixing ratios of O_3 , NO_y , Cl_y , and H_2O obtained during the return segment of ER-2 flights 930514 and 930518. Dashed lines indicate values inferred from other tracers (see text).

using a radiative transfer model that accounts for Rayleigh and aerosol scattering [Prather, 1981] using ultraviolet albedo specified from observations by the Total Ozone Mapping Spectrometer (TOMS). Profiles for O_3 were scaled to the column abundances measured by TOMS assuming changes occur only for altitudes < 24 km (26 km for latitude > 50°N). Profiles for temperature and aerosol extinction for May 1993 were obtained from the National Meteorological Center and from observations by the Stratospheric Aerosol and Gas Experiment II, respectively.

The photochemical model includes 35 reactive species and approximately 220 chemical reactions. Reaction rates and absorption cross sections were adopted from DeMore et al. [1992], unless noted otherwise, except for extrapolations to longer wavelengths of cross sections for H_2O_2 , HNO_2 , and HNO_4 . A reaction probability of 0.1 was used for the heterogeneous hydrolysis of N_2O_5 [DeMore et al., 1992]. The formulation of Hanson et al. [1994] was adopted for the rate of the heterogeneous hydrolysis of ClNO₃, which has a negligible effect on model results for temperatures encountered during these flights.

A Newton-Raphson iterative technique was used to find the set of diurnally varying species concentrations that repeats every 24 hours [Logan et al., 1978]; i.e., we assumed that each species reached a balance between production and loss, over 24 hours, for the temperature, pressure, and latitude at which an air parcel was sampled. Time constants for equilibration are <<1 day for HO_x, ~1 week for NO_x, and ~1 month for HCl. Winds were weak during May, the flow was primarily zonal, and the atmosphere does not have strong latitudinal gradients in the [ClNO₃] to [HCl] ratio; therefore, we expect on average relatively small deviations from steady state for [NO_x] and [ClNO₃].

Model results appropriate for the solar zenith angle at the time of measurement are compared to observations in Fig. 2. Calculations neglecting heterogeneous chemistry underestimate concentrations of OH, HO_2 , and ClO and overestimate concentrations of

Figure 2. Measurements (points) of [OH], [HO₂], [NO], [NO₂], [CIO], and [HCI] for 930514 and 930518 compared to model simulations using rates and cross sections from DeMore et al. [1992]: neglecting all heterogeneous processes (*JPL-Gas*, blue dotted line); including heterogeneous hydrolysis of N₂O₅ and CINO₃ (*JPL-Het*, blue solid line); and same as *JPL-Het* except allowing for updated absorption cross sections for HNO₃ and quantum yields of O(¹D), and the heterogeneous production of HNO₂ (*Model B*; red line). Measurements of [CIO] and [NO] (obtained every 16 and 1 seconds, respectively) have been smoothed using a 1 minute median filter.

NO and NO₂ by nearly a factor of 2, significantly larger than the uncertainty of measurement for each gas (20 measurement uncertainties, including random and systematic effects, are estimated to be 30% for [OH], 40% for [HO₂], 20% for [NO], 25% for [NO₂], 25% for [CIO], and 20% for [HC1]).

Calculated concentrations of radicals are within the uncertainty of measurement for OH, HO₂, NO, NO₂, and ClO if we allow for heterogeneous hydrolysis of N₂O₅ and ClNO₃ (*JPL-Het* in Fig. 2). Hence simultaneous observations of HO_x, NO_x, and ClO_x radicals demonstrate the importance of heterogeneous reactions on sulfate aerosols (primarily hydrolysis of N₂O₅) in regulating the abundance of radicals in the lower stratosphere, consistent with previous studies using in situ measurements of [ClO] [King et al., 1991] and [NO] [Fahey et al., 1993].

Values of [OH] and [HO₂] observed during early morning and late afternoon at 37°N are represented poorly by the JPL-Het model (discrepancies exceed a factor of 3 near sunrise) [Wennberg et al., 1994; Salawitch et al., 1994]. Concentrations of HO_x during mid-day are underestimated by ~20%. Concentrations of NO₂ are overestimated by ~25% and [NO] is slightly underestimated, suggesting possible errors in the partitioning of NO_x [Jaeglé et al., 1994]. Differences between observed and calculated concentrations of HO₂ and NO₂ during mid-day suggest contributions from HO_x and halogen cycles to the removal rate of O₃ in the lower stratosphere are larger than predicted by models that use recommended rates and cross sections, although these differences lie within the 20 uncertainty of the measurements.

Wennberg et al. [1994] proposed heterogeneous decomposition of HNO₄ as a source of HNO₂ to account for the rapid rise in [OH] and [HO₂] at sunrise. This reaction would increase [HO_x] at mid-day due to reduction of the OH+HNO₄ sink. Michelsen et al. [1994] suggested that photolysis of vibrationally and rotationally excited states of O₃ result in quantum yields for O(¹D) approximately 25% higher than values recommended by DeMore et al. [1992], leading to enhanced production of HO_x from the reaction of O(¹D)+H₂O. Recent measurements of the temperaturedependent absorption cross section for HNO₃ reported by Burkholder et al. [1993] result in a 20% reduction in the photolysis rate of HNO₃ for a temperature of 220 K compared to models using cross sections from DeMore et al. [1992], lowering calculated [NO_x] and [HO_x], and raising [CIO].

Agreement between theory and observation for [OH] and $[HO_2]$ is improved if we adopt absorption cross sections for HNO₃ from Burkholder et al. [1993] and quantum yields for $O(^1D)$ from Michelsen et al. [1994], and allow for the heterogeneous decomposition of HNO₄ to form HNO₂ with a reaction probability of 0.2 (*Model B*, Fig. 2). This model results in an excellent simulation of the diurnal variation of [OH] and [HO₂] observed at 37°N [Salawitch et al., 1994].

Comparisons between observed and calculated $[NO_x]$ and [ClO] are unable to distinguish between various heterogeneous models. Calculated values of [NO] and $[NO_2]$ are sensitive to uncertainties in the rates of processes that regulate the ratio of NO to NO₂ (including the photolysis rate of NO₂) and the ratio of NO_x to NO_y (including aerosol surface area, the reaction probability of hydrolysis of N₂O₃, and the influence of variations in latitude of air parcels during the 2 weeks prior to measurement) [Kawa et al., 1993; R. Cohen et al., in preparation, 1994]. Comparisons between observed and calculated CIO are complicated further by uncertainties in estimating $[Cl_y]$ and processes that regulate production and loss of CINO₃ and HCl. Stimpfle et al. [1994] demonstrate that in situ [ClO] and $[NO_2]$ are inversely correlated; therefore, errors in the simulation of NO_x will be reflected directly in the simulation for ClO. Significant refinements in atmospheric

and laboratory observations are required to define the significance of the discrepancies for $[NO_r]$ and [CIO] illustrated in Fig. 2.

Concentrations of HCl computed using all models are higher than measured values by about a factor of 2. Our study demonstrates that this discrepancy does not arise from errors in simulating HO_x. The origin of this discrepancy and its implications for understanding the response of O₃ in the lower stratosphere to natural and anthropogenic perturbations remain unclear.

Effects of NO_v Emitted from Aircraft on O₃

The contributions of HO_x , NO_x , and halogen catalytic cycles to the loss rate of O_3 is shown in Fig. 3a-c. Models with hetero-

Figure 3. (a-c) The odd oxygen ([O]+[O₃]) loss rate, averaged over 24 hours, for HO_x (dark line; rate limiting step primarily HO₂+O₃), halogen (grey line; primarily BrO+ClO, ClO+HO₂, BrO+HO₂, and ClO+O), NO_x (dotted line; primarily NO₂+O), and O+O₃ (dashed line) catalytic cycles for the simulations shown in Fig. 2. (d) Total loss rate of odd oxygen, averaged over 24 hours, for the JPL-Gas (dotted line), JPL-Het (dark line), and Model B (grey line) simulations, and the production of odd oxygen from photolysis of O₂ (dashed line). (e) Change in the loss rate of odd oxygen (percent) calculated assuming a 20% increase in the concentration of NO_y for the JPL-Gas (dotted line), JPL-Het (dark line), and Model B (grey line) simulations, using the observed aerosol surface area (Fig. 1). (f) Same as (e), except using estimates of aerosol surface area for background (non-volcanic) conditions (-1×10^{-8} cm⁻¹ at pressure = 60 mbar).

geneous chemistry on sulfate aerosols indicate larger contributions from HO_x and halogen cycles and larger total loss rates (Fig. 3d) than models based solely on gas phase reactions [Rodriguez et al., 1991; McElroy et al., 1992].

Emission scenarios for the proposed fleet of High Speed Civil Transports (HSCT) indicate possible increases in $[NO_y]$ of 20 to 100% at ER-2 flight levels. The gas phase model predicts decreases in $[O_3]$ as $[NO_y]$ rises due to NO_x -related chemistry, in contrast to models with heterogeneous chemistry that predict increases due to deactivation of the more efficient HO_x and halogen cycles [Weisenstein et al., 1993]. The decrease in the chemical removal rate of O₃ for an increase in $[NO_y]$, for aerosol loading encountered during SPADE, is ~30% larger for *Model B* than for *JPL-Het* (Fig. 3e), reflecting increased rates for HO_x and halogen cycles in *Model B*. Loss rates exhibit a more pronounced difference to a perturbation of $[NO_y]$ for background (nonvolcanic) aerosol loading due to larger contributions from the NO_x cycle in each heterogeneous model (Fig. 3f).

The region of the atmosphere accessible to the ER-2, 16 to 20 km, is characterized by slow rates for chemical removal of O_3 . Perturbations to $[O_3]$ at higher altitudes (20 to 30 km) by HSCT aircraft will be sensitive to chemical partitioning of radicals and to the transport of NO₂ emitted from aircraft. Simultaneous measurements of HO₂, NO₂, and ClO₂ radicals and long-lived precursors at these altitudes are essential for constraining future assessment models.

Conclusions

Models that include heterogeneous hydrolysis of N_2O_5 on sulfate aerosols provide a good description of observed concentrations of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere. Nevertheless, the relative contribution to chemical removal of O_3 from cycles involving HO_x and halogens appears to be underestimated by models based on recommended rates and cross sections. Consequently, emission of NO, from supersonic aircraft may result in larger increases in concentrations of O_3 in the lower stratosphere than predicted by current assessment models [e.g., Weisenstein et al., 1993].

Acknowledgements. This work was supported by NASA grants NAG2-731, NAGW-1230, NAS1-19955 and NSF grant ATM-89-21119 to Harvard University. We thank J. Herman and the GSFC processing team for providing data from TOMS and P. Newman and R. Nagatani for providing data from NMC.

References

- Burkholder, J. B., R. K. Talukdar, A. R. Ravishankara, and S. Solomon, Temperature dependence of the HNO₃ UV absorption cross sections, J. Geophys. Res., 98, 22937-22948, 1993.
- DeMore, W. B. et al., Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation No. 9, JPL Publication 92-20, Jet Propulsion Lab., Pasadena, CA, 1992.
- Fahey, D. W. et al., In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion, Nature, 363, 509-514, 1993.

- Hanson, D. R., A. R. Ravishankara and S. Solomon, Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations, J. Geophys. Res., 99, 3615-3630, 1994.
- Jaeglé, L. et al., In situ measurements of the NO₂/NO ratio for testing atmospheric photochemical models, *Geophys. Res. Lett.*, this issue, 1994
- Kawa, S. R. et al., Interpretation of NO_x/NO_y observations from AASE-II using a model of chemistry along trajectories, *Geo*phys. Res. Lett., 20, 2507-2510, 1993.
- King, J. C. et al., Measurements of ClO and O₃ from 21°N to 61°N in the lower stratosphere during February 1988: implications for heterogeneous chemistry, *Geophys. Res. Lett.*, 18, 2273-2276, 1991.
- Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, Atmospheric chemistry: response to human influence, *Phil. Trans. R. Soc.*, BA 290, 187-234, 1978.
- McElroy, M. B., R. J. Salawitch, and K. Minschwaner, The changing stratosphere, *Planet. Space Sci.*, 40, 373-401, 1992.
- Michelsen, H. A., R. J. Salawitch, P. O. Wennberg, and J. G. Anderson, Temperature and wavelength dependence of the quantum yield of O(¹D) from O₃ photolysis, *Geophys. Res. Lett.*, in press, 1994.
- Murphy, D. M. et al., Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere, J. Geophys. Res., 98, 8751-8773, 1993.
- Prather, M. J., Ozone in the upper stratosphere and mesosphere, J. Geophys. Res., 86, 5325-5338, 1981.
- Rodriguez, J. M., M. K. W. Ko, and N. D. Sze, Role of heterogeneous conversion of N₂O₅ on sulphate aerosols in global ozone losses, *Nature*, 352, 134–137, 1991.
- Salawitch, R. J. et al., The diurnal variation of hydrogen, nitrogen, and chlorine radicals: implications for the heterogeneous production of HNO₂, *Geophys. Res. Lett.*, this issue, 1994.
- Schauffler, S. M. et al., Measurements of halogenated organic compounds near the tropical tropopause, *Geophys. Res. Lett.*, 20, 2567-2570, 1993.
- Stimpfle, R. M. et al., The response of CIO radical concentrations to variations in NO₂ radical concentrations in the lower stratosphere, *Geophys. Res. Lett.*, this issue, 1994.
- Weisenstein, D. K., M. K. W. Ko, J. M. Rodriguez, and N. D. Sze, Effects on stratospheric ozone from High-Speed Civil Transport: sensitivity to stratospheric aerosol loading, J. Geophys. Res., 98, 23133-23140, 1993.
- Wennberg, P. O. et al., The removal of stratospheric ozone by radical catalysis: in situ measurements of OH, HO₂, NO, NO₂, ClO, and BrO, *Science*, in press, 1994.
- Woodbridge, E. L. et al., Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ measurements during AASE II, J. Geophys. Res., in press, 1994.

R. J. Salawitch, Harvard University, Cambridge, MA 02138.

(Received: May 19, 1994; Revised: August 29, 1994; Accepted: September 7, 1994)