Electrodeposited CuInSe$_2$ Thin Film Junctions

R.P. Raffaelle and J.G. Mantovani
Florida Institute of Technology, Melbourne, Florida

S.G. Bailey and A.F. Hepp
Lewis Research Center, Cleveland, Ohio

E.M. Gordon and R. Haraway
Wilberforce University, Wilberforce, Ohio

Prepared for the
1997 Fall Meeting
sponsored by the Materials Research Society
Boston, Massachusetts, December 1-5, 1997

National Aeronautics and
Space Administration

Lewis Research Center

November 1997
Acknowledgments

We wish to thank F. Montegani, the Ohio Aerospace Institute (OAI), and the NASA-ASEE program for their support of R.P. Raffaele; NASA Cooperative Agreement NCC3-535 for support of E.M. Gordon; and National Renewable Energy Laboratory's HBCU Photovoltaic Research Associates Program for support of R. Haraway.

This report contains preliminary findings, subject to revision as analysis proceeds.

Available from

NASA Center for Aerospace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Price Code: A03

National Technical Information Service
5287 Port Royal Road
Springfield, VA 22100
Price Code: A03
ELECTRODEPOSITED CuInSe₂ THIN FILM JUNCTIONS

*Florida Institute of Technology, Melbourne, FL 32901, rpr@pss.fit.edu
**NASA Lewis Research Center, Cleveland, OH 44135
***Wilberforce University, Wilberforce, OH 45384

ABSTRACT

We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

INTRODUCTION

Copper indium diselenide (CIS) is one of the best optical absorber materials used in polycrystalline thin film photovoltaic solar cells [1]. This is due to its favorable electrical and optical properties, stability, and inexpensive means of production. Conversion efficiencies of 17.8% have been achieved for a vapor deposited CIS based solar cell [2]. Electrochemical deposition is an inexpensive alternative to the standard vapor deposition techniques for producing thin-film CIS [3].

Stoichiometric variation in polycrystalline CIS leads to a high concentration of electrically active native defects. Small variations from a Cu-to-In ratio of unity have been shown to result in large changes in the carrier density [4]. In fact, the semiconductor type changes from n to p as the Cu to In ratio changes from less than one to greater than one. However, CIS has been shown to be electrically and structurally stable over a wide range of stoichiometries and their associated native defect concentrations [5]. This behavior has been recently explained in terms of electrically inactive and ordered defect pairs [6].

The stoichiometry of our electrodeposited thin films is potentiostatically controlled. We have previously shown that the Cu-to-In ratio will demonstrate a linear dependance with deposition potential over a fairly wide range [7]. Therefore, we are able to deposit thin films with different electrical, optical properties, and semiconductor type from the same aqueous solution by simply changing the deposition voltage [8].

The optical band gap of CIS can be calculated from its absorption spectrum assuming a direct energy gap [9]. CIS has been shown to have a low electron effective mass...
Therefore, these materials become degenerate at low electron carrier densities and we would expect a Burstein-Moss shift in the optical bandgap [11]. This effect has been observed in CIS single crystals grown by the vertical Bridgman method [12].

The current versus voltage (I-V) characteristics can be used to determine the barrier heights of metal to CIS junctions. For an ideal Schottky contact with an n-type semiconductor, the barrier height \(q\phi_b \) is the difference in the metal work function \(q\phi_m \) and the semiconductor electron affinity \(q\chi \).

\[
q\phi_b = q\left(\phi_m - \chi\right)
\]

When the metal work function is comparable to or smaller than the semiconductor’s electron affinity we would expect an ohmic contact for an n-type semiconductor. In the case of a p-type semiconductor, the barrier height is the difference between the metal work function and the sum of the electron affinity and the bandgap. Assuming ideal junctions and an Al work function of 4.28 eV [13], electron affinity of 4.48 eV and a CIS bandgap of 1 eV [14], we would expect Al to make an ohmic contact on n-type CIS and a Schottky contact to p-type CIS, with a barrier height of around 1.2 eV. However, if there is a large density of surface states, the barrier height is determined by the semiconductor surface and is independent of the metal work function [13]. Schottky barrier junctions have been produced on both n and p type CIS (Au and Al, respectively) [14].

The current density versus voltage for a Schottky barrier can be expressed as

\[
J = J_s e^{\left(qV/nkT\right)} \quad \text{for} \quad V >> kT/q
\]

where \(J_s \) is the saturation current density and \(n \) is the ideality factor. The ideality factor is very close to unity at low dopings and high temperature. However, it can depart substantially from unity when doping is increased or the temperature is lowered [15]. The barrier height can be determined using

\[
\phi_b = \frac{kT}{q} \ln \left(\frac{A^{**}T^2}{J_s} \right)
\]

where \(A^{**} \) is the effective Richardson constant which can be estimated based on the effective mass [13].

The capacitance of an ideal Schottky barrier as a function of reverse bias voltage can be expressed as

\[
C = A \left[q\epsilon N_d \left/ 2 \left(V_b - \left(kT/q \right) - V \right) \right. \right]^{1/2}
\]

where \(A \) is the junction area, \(\epsilon_0 \) is the dielectric constant, \(N_d \) is the semiconductor doping density, and \(V_b \) is the built-in voltage [13]. Therefore, the slope of \(1/C^2 \) vs. \(V \) can be used to determine the doping density.

The Shockley ideal \(pn \) junction diode equation follows the same form as equation (2) above. The ideality factor is determined for the forward bias current and equals 2 when the
recombination current dominates and equals 1 when the diffusion current dominates. When both currents are comparable, \(n \) has a value between 1 and 2 [13].

EXPERIMENT

A series of one micron thick films were electrodeposited on mechanically polished Mo substrates using deposition potentials ranging from \(-1.0\) to \(-1.4\) V versus a saturated calomel electrode (SCE). An analogous set of films was also deposited on indium tin oxide (ITO) coated glass. The deposition solutions consisted of \(1\) mM CuSO\(_4\), \(10\) mM In\(_2\)(SO\(_4\))\(_3\), \(5\) mM SeO\(_2\), and \(25\) mM Na-citrate.

The deposition potentials used to deposit our thin films were based upon the results of cyclic voltammetry. These cyclic voltammograms and depositions were generated and monitored by a Keithley 236 Source/Measure Unit interfaced to a personal computer and a EG&G 362 Scanning Potentiostat. The composition of the resulting films were characterized by energy dispersive spectroscopy (EDS).

The thickness of the films was calculated using the following equation based on Faraday’s law

\[
T = \frac{1}{nF} \left(\frac{itM}{\rho} \right)
\]

where \(n \) is the number of electrons transferred, \(F \) is Faraday’s number, \(A \) is the electrode area, \(i \) is the applied current, \(t \) is the deposition time, \(M \) is the formula weight, and \(\rho \) is the density [16].

For our calculations, we used the formula weight (336.28 g/mol) and density (5.77 g/cm\(^3\)) of intrinsic CIS [17]. This is an approximation, since the formula weight and density vary with composition. The number of electrons transferred was taken as 13 according to the total electrode reaction:

\[
\text{Cu}^{2+} + \text{In}^{3+} + 2\text{SeO}_3^{2-} + 12\text{H}^+ + 13\text{e}^- \rightarrow \text{CuInSe}_2 + 6\text{H}_2\text{O}
\]

The absorption coefficient versus photon energy of the films deposited on ITO was determined from transmittance measurements in a Perkin Elmer Lambda 19 spectrophotometer. Optical bandgaps were determined from the absorption coefficient data using linear least-squares analysis and assuming a direct bandgap dependence [9].

Schottky barriers were made on the series of films on Mo by thermal evaporation of aluminum using a positive photo-resist mask of 0.00095 cm\(^2\) pads. Current versus voltage (I-V) measurements were performed on these junctions to determine their barrier heights. Capacitance versus voltage (C-V) measurements were used to determine the carrier density of the films.

Based on our EDS results, we attempted to deposit \(pn \) junction from a single aqueous solution using a step-function potential. A -1.2 V vs. SCE potential was applied for 900 s and then changed to -1.3 V for 90 s. This was done in an attempt to produce an approximately 0.1 \(\mu \)m n-type CIS layer on a 1.0 \(\mu \)m p-type CIS layer. A similar procedure was used to grow a \(pn \) junction with slightly different characteristics (e.g., majority carrier densities) using voltages of -1.1 and -1.3 V vs. SCE. Ohmic contacts were made to the top \(n \)-side of the junctions using thermal evaporation of aluminum and a shadow mask.
The I-V characteristics of the Schottky barriers and pn junctions were measured using a
signatone wafer probing station and a Keithley 236 Source/Measure Unit interfaced to a 486 PC.
The Keithley 236 is replaced by a Keithley 590 CV Analyzer in this setup to measure the
C-V behavior of the Schottky barriers. The C-V measurements were performed at 1kHz.

RESULTS

The cyclic voltammogram of the deposition bath identified the deposition potentials for
the various atomic constituents. These atomic deposition potentials are indicated by the increases
in the deposition current: Cu @ -0.4 V, Se @ -0.8 V, In @ -1.0 V (see Fig. 1). Therefore, films
deposited at less negative potentials should have a larger Cu to In ratio. Comparing cyclic
voltammery of ITO working electrodes to those of Mo showed a shift of -1.0V.

SEM micrographs show that the series of thin films on Mo were polycrystalline and dense
with a sub-micron grain size and a uniform thickness (see Fig. 2). However, surface roughness
increased with more negative deposition potentials.

EDS analysis showed that the atomic percent of Se was between 50 and 53% for
deposition potentials from -1.0 to -1.4 V vs. SCE. However, there is a large degree of variation
in the Cu to In ratio in the films as a function of deposition potential (see Fig. 3). Based on these
results, we would expect that those films deposited at potentials less negative than -1.2 V vs.
SCE would be p-type, and those deposited at more negative potentials would be n-type [15].

Analysis of the transmission spectra of the series of films deposited on ITO revealed a
linear dependence of (\(\alpha h\nu\))^2 versus photon energy, indicating a direct energy gap. Non-linear
behavior occurred below 0.95 eV and was attributed to phonon related mechanisms. The optical
band gap was found to increase for potentials less than and greater than -2.2 V vs. SCE (see
Fig. 4). This change in optical bandgap is consistent with a Burstein-Moss shift, and indicates
an increasing carrier density with deviation from stoichiometry. However, the linearity of
(\(\alpha h\nu\))^2 versus \(h\nu\) was also reduced as the Cu/In ratio deviated from unity, most likely due to the
introduction of second phases.
The I-V behavior of the Al contacts on CIS films deposited at less negative potentials than -1.2 V vs. SCE showed the rectifying behavior of a Shottky barrier. This implies that these films were p-type. Al contacts on the films deposited at more negative potential than -1.2 V vs. SCE showed ohmic behavior indicative of n-type films. The semilog plots of current density versus voltage showed the anticipated linear behavior and yielded barrier heights between 0.55 and 0.64 eV, with ideality factors much greater than one (see Table I). A value for the hole effective mass of 0.71 was used in our calculations [1].

The capacitance versus voltage measurements of the Schottky barriers demonstrated linear $1/C^2$ vs. V behavior. The doping densities based on the least-square slopes were in good agreement with previous studies and our EDS results (see Table I). A value of 8.1 was used for the high frequency dielectric constant in our calculations [1].

The I-V results of the (-1.0/-1.3V) pn junction showed the anticipated rectifying behavior (see Figure 5). The immediate flow of current in the reverse bias direction is indicative of a "backward" diode [14]. This current is due to tunneling between degenerate or nearly degenerate semiconductors. This degeneracy is consistent with the above optical and Schottky barrier results. The (-1.1/-1.3V) pn junction showed less degeneracy as expected, with a more characteristic Schockley diode behavior [13].

<table>
<thead>
<tr>
<th>Deposition Voltage (-V vs. SCE)</th>
<th>Semiconductor Type</th>
<th>Barrier Height (eV)</th>
<th>Carrier Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 P</td>
<td>0.56</td>
<td>1.1x10^{21}</td>
<td></td>
</tr>
<tr>
<td>1.05 P</td>
<td>0.60</td>
<td>7.3x10^{20}</td>
<td></td>
</tr>
<tr>
<td>1.10 P</td>
<td>0.64</td>
<td>2.8x10^{20}</td>
<td></td>
</tr>
<tr>
<td>1.20 N</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.30 N</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.40 N</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

The electrodeposited Cu_{x}In_{2-x}Se_{2} thin films were shown to have stoichiometries which varied linearly with the range of deposition potentials used in this study. The optical band gaps were found to be between 0.88 and 0.98 eV and increase with deviation from stoichiometry. Schottky barrier behavior was observed for Al contacts to films deposited at potentials less negative than -1.2 V. The results are in agreement with these films being p-type as indicated by our EDS results and previous studies on native defects in CIS. Current versus voltage measurements confirmed the ability to deposit a pn junction from a single aqueous solution using a step-function potential.

REFERENCES

Title and Subtitle

Electrodeposited CuInSe$_2$ Thin Film Junctions

Authors

Performing Organization

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

Abstract

We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

Subject Terms

CIS; Electrodeposition; Thin films

Security Classification

Unclassified - Unlimited

Number of Pages

12

Price Code

A03