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FOREWORD

This report presents the results of the design of an Advanced Low-Noise Research Fan Stage. This design

incorporates many advanced technology features to improve specific fuel consumption and reduce noise. The fan

stage will be integrated into a powered subscale nacelle model for combined aerodynamic, acoustic, and structural

testing of these features.

This design was conducted as Task XLIX under the Large Engine Technology (LET) program, National Aero-

nautics and Space Administration (NASA) Contract NAS3-26618, under the direction of Dennis Huff, NASA

Project Manager.

The NASA task manager for Task XLIX was Brian Fite, NASA Lewis Research Center (LeRC), and Robert

Neubert was task manager for Pratt & Whitney (P&W). Acknowledgments are given to the following P&W princi-

pal contributors for their efforts in the following areas:

Fan Aerodynamics

Acoustics

Structures

Mechanical Design

Belcan

Robert Neubert, David Spear, William Sprout, David Hopwood

Lawrence Bock, John Low, Douglas Mathews

Eric Malmborg, William Owen-Peer

Gregory Reinhardt

Jay Benson, Kevin Bowers, Pat Callahan, Scott Brown.

The continued interest and active participation of NASA LeRC personnel and their respective counterparts in

the design of this fan stage was a significant benefit to the design process.



SUMMARY

This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch

design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff

and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and
core stators.

The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale

model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel.

The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan

and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and

aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA con-

tract.

The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerody-

namic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attach-

ment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable

operating range without resonant stress or flutter.

The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/

FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts.

The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to
form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and anal-

ysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.
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I. INTRODUCTION

Major airports in the nation's air transportation system face a serious problem in providing greater capacity to

meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase

their operating time, now restricted by curfews and by relaxing present limits on takeoff and landings. A key oper-
ational issue in extending the present curfews is noise.

In response to these increasing restrictive noise regulations, NASA is executing a Noise Reduction Program as

part of the Advanced Subsonic Technology Program. The goal of the program is to reduce the noise level of aircraft

by a cumulative 30 dB, relative to 1992 technology, by the end of the decade. This implies noise reduction of 10 dB
in each of the three aircraft flight phases where aircraft noise is measured -- takeoff, sideline, and approach. A

series of 22-inch fan tests are being conducted to investigate noise reduction concepts. The Pratt & Whitney
(P&W) Fan 1 model completed testing in December 1995 in the 9 × 15 ft wind tunnel at NASA Lewis Research

Center (LeRC).

An advanced low-noise fan stage has been designed to further reduce noise from lower fan tip speed and

Navier-Stokes optimized blading. This report describes the aerodynamic, acoustic, and structural design of this
model.



2. FAN STAGE AERODYNAMIC DESIGN

2.1 OBJECTIVE

The low-noise fan stage was designed to model a reduced speed low-noise research fan for use in combined

acoustic, aerodynamic, and nacelle testing. The goal of the low-noise fan stage is to contribute to reducing engine

noise approximately 6 dB, relative to 1992 technology, at each of the three flight conditions where aircraft noise is

measured -- takeoff, sideline, and approach. This fan stage was designed to reduce takeoff rotor speed 10 percent

relative to the current 22 in. fan designed under NASA Contract NAS3-26618 Tasks 2 and 31 (Figure 1) with the

main design constraint being this fan must fit within the current flowpath (Figure 2).
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2.2 FAN BLADE DESIGN

Table 1 compares the advanced low-noise fan design parameters to those of the current 22-in. low-noise fan

and the 17-in. rig fan.

Table 1. Fan Design Parameters

P& W-NA SA

Fan/Nacelle P& W-NASA Advanced

Fan Parameters 17 in. Rig Low-Noise Fan 1 Low-Noise Fan 2

Pressure Ratio

(Duct, Stage)

SLTO 1.20 1.284 1.284

Cruise 1.21 1.294 1.294

Approach -- 1.077 1.077

Cutback -- 1.209 1.209

Corrected rpm
SLTO 11,675 8,750 7,875

Cruise 11,200 8,400 7,557

Approach -- 5,000 4,425
Cutback -- 7,740 6,950

Corrected U-tip (ft/sec)

SLTO 836 840 756

Cruise 802 806 725

Approach -- 480 425
Cutback -- 743 667

Corrected W/A (lbra/sec ft2)

SLTO 32.6 36.9 36.9

Cruise 40.8 42.5 42.5

Approach -- 22.7 22.7

Cutback -- 33.3 33.3

Bypass Ratio -- Cruise 20.4 13.3 13.3

Blade Number 16 18 18

Vane Number 22/40 45 51

Hub/Tip 0.443 0.426 0.426

Diameter -- LE 17.0 22.0 22.0

See Appendix A for design velocity vectors and Appendix B for towpath coordinates.

2.3 FAN BLADE OPTIMIZATION

Navier-Stokes three-dimensional (3-D) analysis of the Advanced Low-Noise Fan 2 indicated that boundary

layer separation on the suction surface of the fan increased significantly, relative to baseline Low-Noise Fan 1 at

takeoff (Figure 3), due to the lower fan speed increasing loading levels. To minimize this effect, radial work distri-

bution and incidence were optimized (Figures 4 and 5). A small improvement was achieved with the outside diam-

eter (OD) biased radial profile (Figure 6). Predicted fan wakes, although slightly larger than Low-Noise Fan 1, are

not thought to be big enough to offset the acoustic benefit of lower tip speed (Figure 7).
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2.4 FAN BLADE AIRFOIL SECTIONS

Controlled diffusion airfoil sections were used for the fan rotor, similar to those used for Low-Noise Fan 1.

Airfoil section parameters were optimized for good performance as shown in Figure 8.

At cruise and takeoff operating line conditions, all airfoil sections were predicted to be free of boundary layer

separation at all spans, on a two-dimensional (2-D) basis. In addition, all sections were predicted to be separation-

free at the maximum flow condition, indicating they could meet 2-D incidence and loading requirements

(Figure 9). However, 3-D Navier-Stokes analysis did indicate that there would be some separation at the takeoff

condition, as described previously in Section 2.3.
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2.5 CASING TREATMENT DESIGN

Low-Noise Fan 1 testing as well as other Pratt & Whimey (P&W) testing has verified that casing treatment can

improve fan operability. The basic advanced low-noise configuration is based on these previous designs scaled to

the advanced low-noise tip speed and pressure ratio. In addition, adjustable geometry is incorporated to allow

determining performance and acoustic sensitivities to geometry variations. The goal is to minimize noise with

acceptable operability and performance.



2.6 FEGV DESIGN

The number of fan exit guide vanes (FEGVs) was determined from the acoustic analysis presented in Section 4

of this report. The goal is to minimize noise with a realistic configuration. The aerodynamic design was optimized
with Navier-Stokes analysis to remove all airfoil separations.

The initial conventional FEGV design resulted in an airfoil with no predicted separation on a 2-D basis

(Figure 10). However, 3-D Navier-Stokes indicated significant separation in the outer 10-percent span. This sepa-

ration is a result of the high turning requirements in a FEGV with a low tip speed fan. Using Navier-Stokes analysis

to optimize the design, it was possible to remove this area of separation (Figure 11).
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2.7 CORE STATOR DESIGN

A core stator design was completed for this advanced low-noise fan. Figure 12 compares the design point
Mach contours of this stator to those from the current Low-Noise Fan 1 core stator. Since the two designs were so

similar, it was decided not to build the new stator, but reuse the existing core stator from Low Noise Fan 1.
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"- 3. FAN STRUCTURAL DESIGN

3.1 FAN BLADE ANALYSIS

3.1.1 Objective

The low-noise model fan blade is designed for use in a muitidisciplinary test for acoustics, aerodynamics,

nacelle, and structures. The model blade features a solid titanium construction with a circular dovetail attachment

to permit variable pitch capability. This section summarizes design considerations and the analyses performed to
determine stress, deflection, resonance frequencies, and flutter.

3.1.2 Design Conditions

The geometric parameters, rotational speeds, and aerodynamic conditions used in the structural analyses are

summarized in Table 2. Frequency analyses are performed at the minimum cruise and redline conditions. Cold air-

foil geometry is defined for the cruise condition. Steady stresses are computed at maximum climb and redline rotor

speeds.

Table 2. General Airfoil Information

Material AMS 4928

Blade Count 18

Fan Pressure Ratio at Design Point 1.29

Flow Rate at Design Point (lbmft2/sec) 91.8

Design Point Nl,,c _ (rpm) 7557

Redline N1,,,_ (rpm) 9596

Hot Day Sea-Level Takeoff N 1.... (rpm) 8077

Minimum Cruise N/,,c _ (rpm) 7287

Redline "lip Speed (ft/sec) 903

Average Root Radius (in.) 4.83

Average Tip Radius (in.) 11.00

Standard Day Temperature 59"F

Hot Day Temperature (Standard Day + 27"F)

11



3.1.3 Material Selection

Titanium, AMS 4928 is the fan material. AMS 4928 properties are listed in Table 3.

Table 3. AMS 4928 Material Properties at 150°F

Parameter Symbol Value

Density 9 0.160

Elastic Modulus E 16.06 psi

Poisson's Ratio v 0.160

0.2% Yield Strength Cy s 125.03 psi

Ultimate Strength Cul t 132.03 psi

Smooth Endurance Strength Cendure 45.03 psi

Source: Pratt & Whitney Material Test Data

3.1.4 Airfoil Finite-Element Model

The blade finite-element model was generated for use with MSC/NASTRAN Version 68.1.1 Three element

types were used to construct the model. Plates were used in the airfoil, and beams were used for the attachment.
Bar elements fled the airfoil to the attachment. Air pressure loads were included using PLOAD2 cards for the

design point, sea-level takeoff (SLTO), maximum climb, and redline. The finite-element model is configured for

varying angles of attack corresponding to the design conditions through coordinate system rotation.

3.1.5 Blade Airfoil Steady Stress

Airfoil steady-stress levels are calculated at maximum climb and redline. Acceptable low-cycle fatigue (LCF)

life is predicted for the airfoil, Appendix C. A maximum number of LCF cycles was determined using a NASA

LeRC guideline, three times the number of estimated rig startup-shutdown cycles. The maximum of 1,000 cycles

was estimated. A maximum nominal steady stress equal to 52.7 ksi occurred at redline. Applying stress concentra-

tion factors to the nominal steady stress at the root fillet result in a concentrated stress of 61.4 ksi and a predicted

airfoil stage life greater than 1,000 cycles.

3.1.6 Blade Attachment Steady Stress

Attachment steady-stress levels peak at the redline desi_ma condition. Peak nominal stresses are 20.5 ksi, 14.1

ksi, 26.5 ksi, and 27.1 ksi for combined membrane and bending, tooth bending, tooth shear, and bearing stress,

respectively. Attachment stage life is predicted to be greater than 1,000 cycles under a peak concentrated combined
stress of 51.7 ksi.

3.1.7 Resonance Vibration and Flutter

Figure 13 is a Campbell diagram for the low-noise fan. The fan blade geometry provides acceptable resonance

frequency characteristics. Reduced velocity flutter parameters as listed in Table 4 are acceptable by NASA LeRC

compressors and turbines design criteria. 2

1 MSC/NASTRAN Version 68 Release Notes, © MacNeal-Schwendler Corporation, June 1994

2 NASA LeRC Design Criteria: Compressors and Turbines, Section 1.18.8.4
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3.2 ROTOR ANALYSIS

3.2.1 Objective

The purpose of the rotor analysis is to ensure acceptable safety factors and life for all components in the rotor

assembly. A stress analysis of the spinner, forward and aft disks, seal, pitch plug, torque sleeve, and balance ring, as

determined using finite-element methods, is summarized in this section.

3.2.2 Finite-Element Model

The finite-element analysis software ANSYS was used to model and analyze the rotor. ANSYS PLANE42 ele-

ments were used to build an axisymmetric model. The tie rod and retainer were modeled with plane stress elements

with the appropriate thickness input. Orthotropic material properties were calculated for the holes based on the vol-

umetric ratio of the region. The material properties for the rotor components are listed in Table 5.

Table 5. Rotor Material Properties (150°F)

F ty F tu E c_ p

Material Part (103 lb/in. 2) (103 Ib/in. 2) (106 lb/in. 2 ) #_. (10 -6 in./in./*F) (lbf/in. 3)

AL 2024-T4 Forward and 42 61 10.5 0.33 12.8 0.I01

Mid Spinner

17-4PH 1025 Aft Spinner 139 150 28.0 0.27 6.2 0.283

Torque Sleeve

Pitch Plug
Seal

Balance Ring

15-5PH 1025 Disk 139 150 28.3 0.27 6.3 0.283

TI 6-4 Receiver 125 132 16.1 0.31 5.8 0.160

AMS 5662 Disk "13eRod 147 181 29.1 0.29 7.0 0.297

(Into 718)

Source: MIL-HDBK-5F

3.2.2.1 Bolt Hole Region Modeling Description
Rotor hardware bolt interfaces are modeled by coupling components in the radial and/or axial .directions. The

torque sleeve flange is coupled in the radial and axial directions to the mid spinner. The pitch plug is coupled in the

radial and axial directions to the aft spinner. The forward disk flange is coupled in the radial and axial directions to

the aft spinner. The aft disk flange is coupled in the axial direction to the seal. The balance ring is coupled in the

axial and radial direction to the aft disk. The torque sleeve aft flange is coupled in the axial direction to the aft disk.

3.2.2.2 Contact Region Modeling Description
Initial (preload) interferences and gaps for the rotor are included in the finite-element mode]. Contact elements

are used to model the interferences and gaps. The preload for the disk tie rod was calculated as follows:

(5 = F*L / A*E = coL / E = 0.0126 in.

where 8 =

G =

L =

E =

Axial deflection (preload interference input)

0.75OGy s @ 150°F = 147 ksi

Bolt length from forward disk face to aft disk face = 3.3155 in.

Young's Modulus @ 150°F = 29.16 psi
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3.2.3 Constraints

The model is constrained in the axial direction at the inner diameter forward face of the balance ring.

3.2.4 Loading

The loading per blade was developed for four load cases: cruise, SLTO, maximum climb, and redhne. The

loads apphed to the model were an axial force, radial force, moment about the hoop axis, and angular velocity. The

actual loads input into the analyses are for all eighteen blades. The model was analyzed at a uniform temperature of
150°E

3.2.5 Analysis Results

A nonlinear analysis with stress stiffening was performed for preload, cruise, SLTO, maximum climb and red-
line load cases.

3.2.5.1 Maximum Principal Stress

The maximum principal stresses for each component at the redline condition are summarized in Table 6. The

peak stress location for the rotor for all load cases is located at the forward fillet of the aft disk T snap. The redline
load case stress at this fillet is 78.6 ksi.

Table 6. Rotor Maximum Principal Stress

Component Redline Maximum Principal Stress (ksi)

Spinner 21.9

Torque Sleeve 22.0

Pitch Plug 17.0

Disk 78.6

Seal 10.6

Balance Ring 25.2

3.2.5.2 Weld and Ultimate Margin of Safety

The yield and ultimate margins of safety were calculated for the worst load case: redline. The margins were

calculated using the peak maximum principal stress for each component. The smallest margins of safety occur at

the aft disk T snap forward fillet and are 0.77 and 0.91 for the yield and ultimate MS, respectively. Table 3.6 sum-

marizes the margins for the redline load case.

Table 7. Margin of Safety

]"wldMS Ultimate MS

Component (Redline) (Redline)

Spinner 5.33 5.83

Torque Sleeve 5.31 5.81

Pitch Plug 7.18 7.83

Disk 0.77 0.91

Seal 12.07 13.11

Balance Ring 4.51 4.94
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3.2.5.3 Low-Cycle Fatigue Life
The nominal stress value used to calculate the LCF life for each component was obtained by calculating the net

section maximum principal stress at the peak stress regions. The largest net section stress occurred at the aft disk T

snap region with a value of 31 ksi and a peak stress Kt = 2.53. The calculated life for the highest stress region (aft

disk T snap) at the worst toad case (redline) is greater than the goal of 1,000 cycles (Appendix C).

3.2.5.4 Burst Margin of Safety

The burst margin of safety was calculated using the average hoop stress for the forward and aft disks and the

allowable burst stress (MSburs t = (Fburst/Ohoopaverage)-l). The allowable burst stress was calculated using

Fburs t = (0.7 x Ftys)/1.5. The burst margin of safety for the redline load case was 2.75.

3.2.5.5 Snap Contact Surface Status

All of the snap contact surfaces with an initial interference remained in contact for all load cases. The contact
surface between the forward disk and pitch plug (initial interference 0.0 in.) does not make contact.

3.2.5.6 Disk / Spinner Flow Path Split Line Radial Displacement

The radial displacements at the OD of the aft spinner and aft disk at the split line are determined for aerody-

namic concerns. The radial displacement of the aft disk is greater than the aft spinner creating a step in the flow

path. The largest step occurs at the redline load case (0.00055 in.).

3.2.6 Conclusions

• Margins of safety for yield, ultimate, and burst are acceptable for all load cases

• LCF life of the rotor exceeds the life goal

• Forward and aft disk remain in contact along the entire split line for all load cases

• All snaps with initial interference remain in contact for all load cases.

3.3 FAN EXIT GUIDE VANE ANALYSIS

3.3.1 Objective

The purpose of the fan exit guide vane (FEGV) analysis is to:

• Analyze the stresses in the vanes for normal, limit, and ultimate load cases

• Perform modal analysis of a single vane.

3.3.2 Finite-Element Model

The finite-element analysis software ANSYS was used to model and analyze the FEGV assembly. Two rig

configurations were analyzed: bellmouth inlet and flight nacelle. These two configurations were modeled using

elastic plate elements (ANSYS SHELL63 elements). The stress and displacements results reported in this analysis
were calculated using these plate element models unless otherwise noted. In addition, a detailed solid model of a

vane sector was modeled using 3-D tetrahedral solid elements with midside nodes (ANSYS SOLID92 elements).

3.3.2.1 Plate Element Modeling

The shell elements in the nacelle model approximately model the midplane of the structure. The aft nacelle is

attached to the FEGV outer ring by a ring of plate elements. The elements throughout the model use variable thick-

ness to better approximate thicknesses, especially for the vanes.

3.3.3 Material Selection

The FEGV material is AMS 5659 (15-5PH Stainless Steel). The material properties used for 150°F were:

E=28.26 psi, p= 0.283 1b/in. 3, v=0.27 (MIL-HDBK-5F).
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3.3.4 Constraints

The nacelle and bellmouth models are constrained at the FEGV inner ring. The forward edge is constrained in

the radial direction and the aft edge is constrained in all three translational degrees of freedom.

3.3.5 Loading

Four load cases were analyzed for both bellmouth and nacelle models. A uniform reference temperature of
150°F was used for all load cases. Table 8 describes each load case. The following list describes each load:

Gravity

Gas loads

Angle of Attack

Stall Pressures

Rub Forces

Impact Load

A lg acceleration representing gravity.

Airflow pressures on the forward (concave) surface of the FEGVs. Pressures vary

chordwise and spanwise.

These loads represent the inlet flow forces resulting from a 25-deg yaw angle. The
forces are: 600 lb to the left (forward lkg aft) and 100 lb aft. The forces are applied
at a node on the centerline forward of the inlet and distributed rigidly to the nacelle

inlet. The forces are distributed to the inlet using constraint equations.

Surface pressures on internal hardwall between fan rotor and FEGVs along the

right hand side (forward lkg aft) from top dead center to bottom dead center

(BDC).

This load models the effects of the fan rubbing against the internal walls at the fan

stacking line. The forces are applied tangentially along right hand inner side (for-

ward lkg aft) over a 90-deg span (225 through 315 deg). The forces increase coun-
terclockwise (ccw) in a sinusoidal manner. The total torque about the centerline =

27,200 in-lb.

This load models a blade striking the inner wall at the fan stacking line. An 8600-1b

force is applied radially outward at BDC.

Table 8. FEGV Load Case Description

Model

Description

Load Angle of Stall Rub Impact

Case Gravity Gasloads Attack Pressures Forces Force

Nacelle Gravity

Bellmouth Gravity

Nacelle Normal ¢" _ ¢"

Bellmouth Normal ¢" "/

Nacelle Limit _ ¢" ¢" _"

Bellmouth Limit _" _" _/ ¢"

Nacelle Ultimate ¢" ¢" '/ ¢" ¢"

Bellmouth Ultimate '¢" "/ ¢"

./

,/
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3.3.6 Analysis

Elastic linear static stress analyses were performed for the four load cases described previously.

3.3.6.1 Gravity Load Case

The gravity load case was mn as a check to help verify the model and post-processing.

3.3.6.2 Normal Load Case

The gasloads on the vanes causes a ccw rotation of the nacelle about the centerline. This displacement causes

tensile stresses on the inner diameter of the vanes. For the nacelle model, the 600-1b angle of attack (AOA) load

creates bending about the nacelle vertical axis. This bending increases the stresses on the trailing edge of the right
side vanes (forward lkg aft). The maximum principal stress for the FEGVs is: Bellmouth = 36 ksi, Nacelle = 46 ksi.

3.3.6.3 Limit Load Case

The effects of the rub forces dominate the limit load case stress results. These tangential forces significantly
increase the nacelle ccw rotation about the centerline and thus increase the bending stress on the vane inner diame-
ter. The peak stress for each vane is fairly constant for the vanes of the bellmouth model. The nacelle model stress

results are similar to the bellmouth with increased stresses on the right side vanes due to the load. The stall pressure

does not appear to have a large impact on the peak stress in the vane due to the close proximity of the load to the

vane. The maximum principal stress for the FEGVs is: Bellmouth = 108 ksi, Nacelle = 115 ksi.

3.3.6.4 Ultimate Load Case

The ultimate load case loads are the same as the limit load case with the exception of the impact force. The

impact force causes the nacelle to rotate about its horizontal axis and thus imposes more bending on the vanes in
the region of TDC and BDC. The maximum principal stress for the FEGVs is: Bellmouth = 140 ksi, Nacelle = 149
ksi.

3.3.6.5 Ultimate Load Case _ Sector Model

The peak stress for all of the load cases is highly localized and the plate element mesh in this concentrated
stress region is relatively coarse for such a large stress gradient. Therefore, a detailed solid element sector model of

one vane was created to better analyze the stress concentrations in the vane. The sector model also contains the fil-

lets that the plate model lacked. The displacements at the vane sector cut planes from a plate element model analy-

sis were applied to the sector model for the ultimate load case. The resulting stress distribution is very similar to the

plate element analysis. The peak stress of the sector model (157 ksi) is 5 percent greater than the plate element
model.

3.3.6.6 Stress Results Summary

The peak vane maximum principal stress is listed in Table 9 for each load case. Membrane and bending
stresses are calculated using the maximum principal stress. This assumes that the radial stress component domi-

nates the maximum principal stress.

Table 9. Stress Results (psi)

Max Principal Membrane Bending

Model Loadcase Stress Stress Stress

Nacelle Normal 46,165 36,454 9,7 ! 1

Bellmouth Normal 35,919 25,846 10,073

Nacelle Limit 115,316 83,853 31,463

Bellmouth Limit !08,448 76,528 31,920

Nacelle Ultimate 148,636 1! 8,299 30,337

Bellmouth Ultimate 139,942 103,898 36,04,4

18



3.3.6.7 Margin of Safet]FSummary

The yield margins of safety are summarized in Table 10. The stress values used for the normal and limit load
cases are the concentrated maximum principal stress for the peak stress vane.

Table 10. Yield Margin of Safety

Load Case Margin of Safety

Normal Limit

Model (ksi) (ksi) Normal Limit

Nacelle 46 I 15 2.02 0.21

Bellmouth 36 108 2.86 0.29

The ultimate margins of safety are summarized in Table 11. The stress values used for the ultimate load case

are the concentrated maximum principal stress for the peak stress vane. The peak stress region in the vane is highly
concentrated.

Table 11. Ultimate Margin of Safety

Load Case Margin of

Model Elements Ultimate (ksi) Safety

PI ate 149 0.01Nacelle

Nacelle

Bellmouth

Solid 157 -0.05

Plate 140 0.07
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3.3.6.8- Low-Cycle Fatigue

The stress results from the normal loadcase were used to calculate fatigue life. The net section stress is the

averaged stress from the nodes along 25 percent of the total chord len_h of the FEGV, starting at the concentrated

stress region (trailing edge root). This net section stress was then multiplied by the fillet Kts (Ktmembran e = 1.38,

Ktbending = l. 1 8).

The calculated life for the highest stress region at normal operating loads is greater than the goal of 1,000
cycles. Table 12 summarizes the results.

Table 12.

3.3.7 Modal Analysis

Model

Low-Cycle Fatigue Life

Total

Calculated Stress Life

(ksi) (cycles)

Nacelle 41 > 1.000

Bellmouth 26 > 1.000

The modal analysis consisted of one FEGV vane fixed in all degrees of freedom at all the nodes along the inner
and outer platforms. The first ten modes are summarized in Table 13.

Table 13. FEGV Modal Frequencies

Frequency

Mode (cycles/sec )

1 1,364

2 1,950

3 3,419

4 4,041

5 5,964

6 6,429

7 7,279

8 8,570

9 9,267

10 9,354
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3.3.8 Conclusions " -

• The linear analysis predicts a small negative margin of safety for the ultimate load case. However, this

analysis does not account for the effects of plastic deformation in the concentrated stress region of the

FEGV. A plastic analysis would more accurately model the vane stresses for this Ioadcase. This analy-
sis would most likely show that the highly concentrated stress would redistribute to create an overall

lower concentrated stress. Only ten of the vanes show concentrated stresses greater than yield strength

for this loadcase.

• Margins of safety for yield are acceptable for normal and limit load cases.

• The LCF life of the FEGVs exceeds the life goal.
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4. FAN STAGE ACOUSTIC DESIGN

4.1 OBJECTIVE AND APPROACH

The Task 49 objective was to design an advanced model low noise fan stage to be used in combined acoustic

and aerodynamic fan and nacelle testing. The stage design was to be based on the low noise stage design completed
and tested in Task 2 and 31 under NAS3-26618 and fit within the existing model nacelle. 3 The existing model is a

22-in. (.56m) fan diameter scale model of an advanced ducted propulsor (ADP) concept achieving substantial noise

reduction through low fan speeds relative to current turbofans. The objective of this subtask was to provide a coor-
dinated acoustic design input to the aerodynamic design of the advanced low noise fan stage design, hereafter

referred to as Fan 2. This fan stage design was to provide additional noise reduction relative to the low-speed fan

stage design, referred to as Fan 1, recently completed under the aforementioned contract. The design was to be
based on the 18-blade rotor, 45-vane fan exit guide vane (FEGV), 63-core inlet stator, Fan 1 design and include the

fan, advanced fan tip casing treatment, FEGV, and core inlet stator. The FEGV assembly provided the structural

support for the nacelle as there were no intermediate case struts in this design. The goal was to obtain a 10-percent

tip speed reduction relative to Fan 1 with a corrected tip speed of 756 fps at sea-level takeoff (SLTO), 650 fps at

cutback and 469 fps at approach. The fan pressure ratio was to be 1.284 _ 0.005 at SLTO and 1.294 ± 0.005 at

cruise. The aerodynamic design was to have higher aerodynamic loading and include 3-D Navier-Stokes optimized

blading and advanced fan tip casing treatment. The aero design was to be closely coordinated with acoustic analy-

sis methods and criteria to produce airfoil shapes, spacing, and numbers to provide an optimized low noise, aerody-

namic design.

The design process resulted in a recommended vane number of 51 FEGVs achieving a reduction in fan noise
due to vane number alone of 1.1 EPNdB (cumulative at three conditions) relative to the Fan 1 stage with 45 vanes.

The expected reduction in fan noise due to the 10 percent reduction in tip speed and the new vane number should
result in a cumulative noise reduction of 7.1 EPNdB relative to Fan 1.

The approach to optimize vane number follows:

1. Predict tone power levels from the rotor wake interaction with the FEGVs and core inlet stators as a func-

tion of speed and vane number

2. Calculate tone As relative to 18-blade fan and 45-vane FEGV

3. Use existing data from the 22-in. (0.56m) ADP fan/nacelle model with Fan 1 as a database to apply the
tone As as a function of vane number at the three acoustic design conditions of SLTO, cutback, and

approach speeds

4. Optimize the overall noise in a simulated flyover as a function of vane number.

The process to estimate the noise reduction of Fan 2 relative to Fan 1 was as follows:

1. Use the Fan 1 (hardwall with the fan tip casing treatment) levels for SLTO, cutback, and approach flight

conditions as a baseline level.

2. Using a 50*log10 (tip speed ratio) relationship between fan tip speed and noise level, apply As to baseline

levels for a 10-percent tip speed reduction at each condition. The noise level metric is the EPNL of fan

noise alone of static data projected to flight. The 50*logl0 (tip speed ratio) relationship is based on Pratt &

Whitney (P&W) experience.

3. Apply the A for optimum vane number.

3 Hobbs,D.E., Malmborg, E.W., Neubert, R.J., Philbrick, D.H., Low Noise Research Fan Stage Design, NASA ContractReport 195382,
lap21-29, March 1995.
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4. Afterthevaneoptimization study was completed, new information became available indicating fan broad-

band noise could increase with increasing vane number. This information was not applied to the design

study, but took on significance as Fan 1 data showed fan broadband noise to be the significant contributor
to the total noise. Therefore, an estimate of this A was applied to the Fan 2 noise estimate.

The primary effort to closely coordinate the aerodynamic and acoustic design was to use fan aerodynamic per-
formance and geometry as input to the rotor wake/stator interaction noise prediction code prepared under Task 10

of NAS3-25952. 4 This code predicts inlet and aft in-duct tone power levels assuming a constant area duct. The

code used P&W-generated fan aero performance and geometry of the Fan 2 stage as input to predict the tone power
levels of the fan blade passage frequency and its harmonics as a function of rotor tip speed and the number of

FEGVs. The Fan 1 stage design of 18 blades, 45 FEGVs and 63 core inlet stators was acoustically cut off for blade

passage frequency at all speeds on the sea-level operating line. It was the design intent of Fan 2 to maintain that

cutoff condition of blade passage frequency. Tone power levels of blade passage frequency (bpf) and four harmon-

ics (up to 5 x bpf) were calculated for vane numbers from 11 to 79 with 63 core inlet stators, and for fan rotor tip

speeds from 350 to 850 fps. Additional detail is provided in Section 4.2.

During the initial stages of the Fan 2 fan stage design, preliminary, diagnostic, and far field acoustic data were
obtained from the 22-in. ADP model with Fan 1 in the NASA Lewis 9 x 15 ft Low-Speed Wind Tunnel. This pro-

vided an opportunity to use data from the same model in which the new fan stage design would be incorporated.
The test installation is shown in Figure 14. Far-field acoustic data used in this analysis were obtained on a 88-in.

(2.2m) sideline traversing microphone at 32 angles, and 12 speeds that included the acoustic off-design points of

approach, cutback, and SLTO. A description of the data and data processing is presented in Section 4.3. Pratt &

Whitney computer codes were used to separate the tones from each spectrum and store them in a separate matrix.

The broadband only spectrum for each condition and angle was also stored, permitting a means to apply predicted
tone As to the tone levels of the Fan 1 data as a function of vane number. The new tone levels were then logarithmi-

cally combined with the broadband to create a new spectrum with tone levels corresponding to different vane num-
bers.

The final step in the analysis calculated a simulated flyover level for each vane number at the three acoustic

conditions of approach, cutback, and SLTO. The resultant calculated metric, tone-corrected perceived noise level

(PNLTi), was an angle-integrated, tone-corrected, perceived noise level as a function of vane number, which is a

close approximation of a flight EPNL. Each PNLTi was compared to the 18-blade, 45-vane PNLTi at each of the
three conditions and As were established. The vane number that produced the greatest reduction in cumulative
PNLTi relative to the Fan 1 45-vane FEGV was chosen.

4.2 FAN-TONE NOISE PREDICTION

The rotor/stator interaction noise prediction procedure was used to calculate fan-tone power levels generated
by the interaction of the fan rotor wakes interacting with the fan exit guide vanes and the core inlet stators. 5 The

theoretical formulation and philosophy of the code are discussed in a separate report by Meyer and Envia. 6

Input for the code came from 2-D or steady, axisymmetric streamline, fan stage aerodynamic performance pre-

diction code and geometry files generated during the fan stage design process. Recommendations from the Fan/

Compressor group suggested the FEGV vanes be nominally radial. Fan aerodynamic performance suggested there
may be benefit in extending the chord at the tip and incorporating some amount of circumferential lean in the tip

region. Subsequent computational fluid dynamics (CFD) calculations showed the tip chord extension would actu-

ally increase flow separation on the vane, and this feature was removed from the design. Beyond that limited depar-

ture from a nominal radial design, anything more radical in terms of lean and sweep was considered as structurally

4 Mathews, D.C., Topoi, D.A., Rotor Wake/StatorInteractionNoise Prediction Code -- TechnicalDocumentation and User's Manual,
prepared under NASA Contract NAS3-2592 (Task 10), April 1993.

5 Ibid.

6 Envia, E., Meyer, H.D., Aeroacoustic Analysis of Turbofan Noise Generation, NASA ContractReport 4715, March 1996.
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72067.psd

Figure 14. NASNP&W 22-in. ADP in LeRC 9 x l5 .t't Wind Tunnel

risky based on the FEGV assembly stress analysis available at the time. The small amount of tangential lean was

incorporated in the tip region of the acoustic input of the prediction code. The 2-D aero and geometry files pro-

vided the input data for the simplified duct and airloil model geometry, air angles, and mean flow conditions neces-

sary tor the tan-stage tone noise predictions. The noise prediction input tiles were run tbr a series of model speeds

so the calculated tone power levels could be expressed in the output tiles as a function of both rr-rodel speed and

vane number. Cases were run for every other vane number from 11 through 79 with a constant 63 core inlet stators.

The only modification to the input tile made as a f'unction of vane number was the vane chord. As vane number

increased, the chord decreased proportionally to maintain constant solidity in the design. A lower vane number

resulted in a longer chord. The leading edge position of the FEGV was maintained so axial spacing remained con-

stant.

The output from the code gave the circumterential, radial, and total in-duct tone power levels for the upstream

and downstrearn propagating modes for the rotor/FEGV interaction, the rotor/core stator interaction, and the total
power level for the two interactions. The code assumed the rotor/core stator interaction propagating modes, propa-

gated only upstream and radiated as inlet noise. The tone power levels tbr all propagating rnodes were output by

individual tan harmonics. A post-processing code read the output of the tone power prediction code and stored the

tone power levels as a function of speed, vane number, and fan hatmonic. Thus a complete tone power level file
was struclured to study the behavior of the tone power levels throughout the entire range of speeds on the operating

line for any given vane number, and the behavior of the tone power levels as a function of vane number at any

given speed. The results were plotted and studied graphically.

Observations were first made with the blade = 18 and vane = 45 case. This was expected to be somewhat simi-
lar to Fan 1 at the three acoustic off-design conditions of approach, cutback, and SLTO, which corresponded to cor-

rected fan tip speeds of 521, 722, and 840 tps. Observations of the Fan I measured data (described in Section 4.3)

seemed to approximate the trends tiom the predictions tor Fan 1 and the Fan 2 predictions tbr the blade = 18 and

vane = 45 case. Figures 15 and 16 show the Fan 2 predicted total inlet (rotor/FEGV and rotor/stator interactions)

and aft power levels for fan harmonics 2 times blade passage frequency (zbpfl through 5bpf as a function of tip
speed. Figures 15 and 16 also show that after the (-9,1) acoustic mode cuts on, 2bpf will contribute significantly to
the aft radiated noise above 450 fps tip speed. The significant rise in 2bpf and 3bpf around 450 tps is a result of the
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(-9,1)modejustcut-on.The3bpfbecomessignificantat650fps,and3bpfaftshowsprogressive radial modes cut-

ting on as a function of speed. Additional comments about these observations, and observations made from mea-
sured data, are discussed in Section 4.3.
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4.3 DESCRIPTION OF 22 IN. ADP MODEL FAN 1 DATA PROCESSING

The data used in this study were digitally processed with a 59 Hz bandwidth filter and data from 234 Hz to

41250 Hz in model scale were put into a 700 spectral line matrix of sound pressure level of frequency and angle.
Angle was measured from the inlet centerline. These data were adjusted from sideline measurement in the tunnel to

1 ft (0.3048 m), lossless day, data. The data were then amplitude and frequency-scaled to a full-scale engine size

and extrapolated to a uniform radius. The extrapolated data were corrected for atmospheric absorption at FAA stan-

dard day conditions of 77°F and 70 percent relative humidity.

The full-scale narrowband data were noise source separated into fan-tones and fan broadband components.

(The data were expected to contain fan noise only.) A code developed at P&W was used for this process. The code

identified fan-tone frequencies based on number of fan blades and the mechanical rotor speed of the model at each

data point condition. Then it searched at lower to higher frequencies around the calculated frequency in the spec-

trum for a fan-tone. A fan tone was identified and isolated by the application of mathematical rules governing the

change in level of successive spectral lines. The broadband level at the tone and elsewhere in the spectrum was thus

determined as any part of the spectrum not identified as a fan-tone and the interpolated level of broadband on. either

side of an identified tone. If successive spectral lines did not increase and decrease according to the predetermined

rules relative to the broadband, the code indicated that no fan-tone was present and assigned a level of 0.0 to that

particular tone. When the rules were satisfied indicating a fan-tone was present, the sound pressure level of the

broadband under the tone was logarithmically subtracted from the logarithmic sum of any spectral lines making up

the tone. Thus, a fan-tone matrix was created consisting of zeroes where no tones were present and tone-only sound

pressure levels where they were present. The fan-tone-only matrix and the broadband definition-only matrix were

stored in a database separately. The scaled, extrapolated and separated narrowband data were then converted to
one-third octave band (OB) using an analogue filter shape (conforming to the International Standard filter shape

described in IEC-225) developed at P&W. The fan-tone only matrix was identical in format to the one-third octave

band matrix for the broadband-only noise. The tones were stored in the appropriate one-third octave bands and

band sharing values were calculated conforming to the filter shape, when any tone was at the edge of a one-third

octave band. The logarithmic sum of these two matrices would equal the measured spectrum. The tone only matri-

ces were prepared for the application of the tone level As calculated from the procedures described in Sections 4.2
and 4.4.

The narrowband data and the one-third octave band data from the three Fan 1 test points were reviewed. The

three conditions of approach, cutback, and SLTO were studied, which corresponded to corrected fan tip speeds of

521,722, and 840 fps. This was done to see the relative importance of fan-tones and fan broadband in the spectra

and identify what tones generated by the rotor wake/stator interaction from the 18-blade fan and 45-vane FEGV

were the most significant. A tone was considered significant when the tone sound pressure level exceeded the

broadband sound pressure level by more than 3 dB in the one-third octave band spectrum. These results indicated

that 2 times blade passage frequency (2bpf) and 3bpf were significant at the approach condition in the inlet quad-

rant and 2bpf was significant the aft quadrant (Figures 17 and 18). Tones typically were not significant in the inlet
angles at the cutback and SLTO conditions (Figures 19 and 20). 2bpf was significant in the aft angles at the cutback

and the SLTO conditions, as shown in Figures 21 and 22. The vane number optimization process for Fan 2 would

consider 2bpf as an important tone to attempt to reduce relative to the blade = 18, vane = 45 count of Fan 1. Addi-

tionally, the review showed the scaled fan broadband noise peaked in the frequency range of 500 Hz to 2500 Hz

while 2bpf was 500 Hz or below at all three conditions. Therefore, broadband was viewed as contributing more sig-

nificantly to an Effective Perceived Noise Level as would be measured and calculated in flight than the tones. This

was considered consistent with previous tone and broadband sensitivity studies for Advanced Ducted Propulsor

model and full scale engine data. However, the analysis proceeded with the objective of reducing overall noise by

reducing the fan-tone levels with an optimum number of FEGVs. As mentioned in the previous section, similarities

in the measured data and the predicted data for blade = 18, and vane = 45, added confidence to the fan-tone power-

level prediction procedure and the approach for this analysis.
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4.4 APPLICATION OF TONE PREDICTIONS TO DATA

Section 4.2 described the prediction of in-duct tone power levels as a function of model speed and vane number

from the output of the Rotor Wake/Stator Interaction Prediction Code. The predictions were in-duct power levels

and thus required a means to apply the Fan 2 tone power-level As to the far field sound pressure level data of Fan 1.

A simplifying assumption was made to expedite the design process. All tone power-level As, relative to the 18-

blade, 45-vane case, were assumed to be equally distributable to all the far field angles. The inlet tone power-level

As were applied to the inlet angles of 24 to 80 deg, and the aft tone power-level As were applied to the aft angles

greater than 80 deg for the approach condition and greater than 70 deg for the cutback and SLTO condition. This

assumption did not precisely account on an angle-by-angle basis, the differences in the directivities of the various

cut on modes, but was considered reasonable and applicable to all modes equally in the far field.

Plots were made of the predicted tone power levels for two or three speeds near each of the three speeds at the

acoustic flight conditions of approach, cutback, and SLTO as a function of vane number. Trends were observed

along with the detailed prediction output, to note where specific modes were cutting on or off, the relative levels of
the fan harmonics, and how sensitive the tone power levels were to vane number. Figures 23 and 24, 25 and 26, and

27 and 28 show those plots as a function of vane number. Inlet-total (FEGV and core stator combined) data are dis-

played on the left hand side of the plot and aft data are displayed on the right hand side of the plot.

Some observations from the plots are summarized:

• Approach -- 2bpf cuts off at about vane = 47; 3bpf has low levels at vane = 37 and peaks at Fan 1 vane =

45; 4bpf has minimums at about vane = 51; and 5bpf has generally low levels relative to the other harmon-
ics.

• Cutback m 2bpf cuts off at about vane = 57; 2bpf aft and 3bpf inlet peak at about the Fan 1 vane = 45; 2bpf

inlet peaks at about vane = 32; the higher harmonics are generally lower in level.

• SLTO _ 2bpf cuts off at about vane = 59; 2bpf aft peaks again at the Fan 1 vane number = 45; 3bpf inlet is

lowest at vane = 71 and 3bpf aft is lowest at about vane = 45; 4bpf and 5bpf are lower in level than 2bpf

and 3bpf and not strongly dependent on vane number.

The trends from the predictions did not lend themselves to an obvious selection of optimum vane number.

Interaction with the P&W Fan/Compressor and Structures group indicated the maximum vane number from a

structural perspective would be about 60. It was decided to curve fit trend lines through the predictions, normalize
all the levels to vane = 45, and create As at each of the three conditions relative to vane = 45. These normalized As

are shown for each of the three conditions as a function of vane number in Figures 29 and 30. Inlet-total (FEGV

and core combined) data are displayed on the left-hand side of the plots and aft data on the right. Observations from

these plots are summarized:

For vane numbers < 45 --

• 2bpf increases significantly in the inlet and decreases with vane number in the aft

• 3bpf decreases in the inlet, but increases at cutback and SLTO in the aft

• 4bpf and 5bpf increase at approach and decrease slowly at cutback and SLTO

• 4bpf and 5bpf levels are generally 10 dB or more lower than 2bpf and 3bpf as observed from Figures 23
and 24, 25 and 26, and 27 and 28.
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For vane number > 45 --

- 2bpf is reduced at all three conditions

- 3bpf increases then decreases in the inlet and aft

- 4bpf increases in the inlet

- 4bpf decreases at cutback and SLTO in the aft

- 4bpf and 5bpf levels are generally 10 dB lower then 2bpf and 3bpf as observed from Figures 23, 24, 25,
26, 27, and 28.

Special one-third octave band fan-tone-only files were created with As from the curve fit data shown in Figures

29 and 30 so tone levels relative to vane = 45 could be read and then edited into the proper frequency location in

the file. All frequencies not containing fan-tones were set to zero. The tone A files were then arithmetically added

to the vane = 45 file to produce a set of tone level matrices for each vane number. Each fan-tone file was then log-
arithmically added to the broadband noise level that was previously source separated and defined from the vane =

45 Fan 1 data set, to create new fan noise spectra for each vane number. This was done at each of the three condi-
tions of approach, cutback, and SLTO.

A series of examples are shown in one-third octave band spectra. Each figure shows the vane = 45 spectrum

and a newly created spectrum consistent with the fan-tone As for vane = 51 applied and recombined with the broad-

band (Figures 31 through 35). By studying the figures, it can be seen how the predicted fan-tone A, applied to the

measured data, altered the spectra.

4.5 CALCULATION OF SIMULATED FLIGHT PREDICTIONS

A calculation was performed that provided a single number metric for a simulated flyover. The spectra as

described in Section 4.4 consisted of model data that had been scaled and extrapolated to a full-scale engine size

and a uniform radius. Fan-tone As were applied to each spectrum to shape the spectrum for each vane number at the

conditions of approach, cutback, and SLTO. Matrices of these spectra consisted of 32 angles, from 24 to 130 deg
off the forward centerline.

The approach matrices were then extrapolated to an altitude of 121.9m (400 ft) and the cutback and SLTO

matrices were extrapolated to an altitude of 457.2m (1500 ft). Atmospheric absorption was included over the

extrapolated distances at FAA standard day conditions of 77°F and 70 percent relative humidity. An integration

routine calculated a PNLTi for each matrix and included a weighting to simulate the contribution of the different

angles, inlet to aft, during a flyover event. This simulated flyover metric was called an integrated PNLTi. A PNLTi
was calculated for each odd vane number from 31 to 61 at each of the conditions of approach, cutback and SLTO.

Thirty-one was the lowest vane number calculated because below this number bpf would be cut on for the approach
condition. A cut on bpf was considered unacceptable. Sixty-one was the highest vane number calculated because

structural considerations with the smaller chord became unacceptable. The PNLTi was the metric to be optimized

to select the vane number for the Fan 2 stage design.
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4.6 OPTIMIZATION OF NUMBER OF FEGVS

Observations from Sections 4.2 and 4.3 (predicted Fan 2 tone power levels and measured Fan 1 data) indicated

a vane number that reduced 2bpf would be beneficial. However, a simple optimization of reducing 2bpf would

ignore the contributions of other fan tones, including frequency weighting, to the overall noise. Therefore the

PNLTi was selected as the metric to optimize based on discussions in Section 4.5.

Fan 1 stage had 18 blades and 45 vanes. It was assumed for the purpose of optimizing the vane number for the

new fan stage, the Fan 2 stage design of 18 blades and 45 vanes would be used to represent the baseline fan stage

design. It was noted in Section 4.3 how the predicted tone power-level trends were similar for Fan 1 and Fan 2 as a

function of vane number, even though Fan 2 is designed for 10 percent lower operating speeds. Therefore As rela-

tive to 45 vanes were calculated to optimize the vane number. The calculated PNLTi for the Fan 2 stage of 18

blades and 45 vanes was subtracted from the calculated PNLTi for each vane number and at each of the three con-

ditions of approach, cutback, and SLTO. Therefore, a negative A represented lower noise.

One vane number could provide lower noise at one condition, i.e., approach, but increased noise at one or both

of the other conditions. Figure 36 illustrates the results of these calculated As at each of the three conditions. Note

that for the approach condition, there is a significant noise increase below a vane count of 45. (Referring to Figures

23 and 24, one can see this was due to the increasing levels of 2bpf.) One can also observe the A for the approach

condition at vane = 53 was optimum, but the SLTO A was minimal. Increasing the vane count beyond 53 shows the

approach A vanishing and the SLTO A maximizing and the cutback A decreases to zero slowly, then becomes posi-

tive beyond 58. Below 49, the approach A rises dramatically.

This study then assumed noise at each of the three conditions was equally important. Therefore, a cumulative

PNLTi A was calculated and plotted for all three conditions. The cumulative A at all three conditions is shown in

Figure 37. The plot indicated the maximum noise benefit due to a change in vane count was either 51 or 53 and was

equal to 1.1 cumulative EPNdB at the three conditions.
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A comparison of the predicted fan-tone power levels for 2bpf through 5bpf for the nominal baseline of vane =
45 and vane = 51 is shown as a function of fan tip speed in Figures 38 and 39. In almost every instance, the vane

count of 51 provides equal or lower tone power levels than 45 vanes. This is particularly evident in the case of aft

radiated 2bpf. There are noted exceptions for 3bpf and 5bpf at fan tip speeds near the cutback condition.

The question of what the maximum noise reduction would be if all the tones could be completely eliminated

still remained. The broadband-only (fan tones removed) spectra for the vane = 45 case was used to calculate an

effective perceived noise level (PNL) and this was assumed to remain constant over the range of vanes = 31

through 61. This level was compared to the total PNLTi as described in Section 4.5 to see what the maximum

reduction in noise would be if no tones were present in the spectra. This was done for the three flight conditions

and the results are shown in Figures 40, 41, and 42. The maximum reduction in total noise was 2.1, 0.9, and 0.9
EPNdB for three conditions with vane = 45. (Cumulative benefit = 3.9 EPNdB.) The vane = 51 case reduced total

noise relative to vane = 45, by 0.5, 0.3 and 0.3 EPNdB, achieving a 1.1 EPNdB cumulative reduction relative to the

maximum reduction of 3.9 EPNdB by eliminating all fan tones from the spectra.

4.7 ESTIMATE OF TOTAL NOISE REDUCTION OF FAN 2

Fan 1 data were acquired and provided a benchmark against which Fan 2 data could be compared when its
noise is measured. An estimate of the reduction in noise from Fan 1 to Fan 2 was made by summing the following

As. The A noise unit is a simulated flyover noise level in EPNL. A subjective review of Fan 1 and Fan 2 predicted
wakes was made. With no calibration of wake profile or depth to noise, no attempt was made to include this effect

in the estimate.

Table 14. Fan Noise Comparison

Fan Noise A SLTO Cutback Approach Cumulative

-10% Tip Speed -2.3

Optimum Vane Number For Fan Tones -0.5

Increase in Vane Number for Broadband 0.3

Total -2.5

-2.3 -2.3

-0.3 -0.3

0.3 0.3

-2.3 -2.3 -7.1

4.8 RECOMMENDATION AND CONCLUSION

The optimum vane number to reduce noise by fan tone reduction was found to be 51. After consultation with
the aero and structural designers of the fan stage, 51 was deemed acceptable for the 22 in. ADP model and future

product application. Therefore, the final recommendation for optimum acoustic vane number was 51. The expected
reduction in fan noise relative to Fan 1 is 7.1 EPNdB cumulative at three flight conditions.
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Figure 41. Maximum Noise Reduction Achievable at Cutback by Eliminating All Tones
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5. CONCLUSIONS

This report described the aerodynamic, acoustic, and structural design of the Advanced Low-Noise Research

Fan Stage. Based on the design and analysis presented in each of these areas, the model is expected to meet all

design requirements. Testing of this model will provide essential information on the validity of the design assump-
tions and methods.
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APPENDIX A -- DESIGN VELOCITY VECTOR LISTING

Table A- 1. Definition of Parameters

Symbol Definition

-1

-2

SL

V

VM

VO

U

EPSI

B

M

TURN

PCT TE SPAN

Nco_ INLET

Wco_ INLET

Condition at the airfoil leading edge

Condition at the airfoil trailing edge

Streamline number

Velocity

Meridional velocity

Tangential velocity

Tangential velocity of rotor blade

Cone angleoftheflow (PHI)

Air angle measan_ from axial (BETA)

Math number

Turning angle 03" minus B'-2*)

Percent span at trailing edge measured from hub to tip

Correctedrotorangularvelocity[viz, actual tpm dividedby

thesquarerootofupstreamtotaltc_e over288.2K (518.7R)]

Correctedflow[actualmass flowmultipliedby thesquarerootofupstrcamtotal

temperatmeover288.2K (518.7R)and dividedby theupstreamtotalpressureover

1"0332kg/m2(21161bdfta)]

*Primesymbolsindicateaquantityintherotatingframe,,non-primesymbolsindicatethestationaryframe.
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TABLE A-2. FAN BLADE

OESICR POINT ROTOR

SI V-1
m/sec

1 219.0
2 216.9
3 215.9
4 214.6
5 212.7
6 211.0
7 208.6
8 205.5
9 203.9

10 202.6
11 202.2

SL 8-1
degree

1 0.0
2 0.0
3 0.0
4 0.0
5 0.0
G 0.0
7 0.0
8 0.0
9 0.0

10 0.0
11 0.0

SL V-1
ft/sec

1 718.5
2 711.6
3 708.2
4 704.1
5 697.9
6 692.3
7 684.5
8 674.3
9 669.0

10 684.7
11 663.5

Hcorr
inlet

rpm
7558.80

V-2 VM-1 VH-2 ',/0-1 V0-2 U-i U-2
m/sec =/sec m/sec m/sec mlsec m/sec m/sec
220.0 219.0 200.2 0.0 91.3 100.6 106.2
223.6 218.9 197.7 0.0 104.5 106.9 112.2
227.5 215.9 195.2 0.0 116.9 113.3 118.2
233.9 214.6 189.5 0.0 137.1 132.3 136.3
240.3 212.7 187.5 0.0 150.2 157.7 160.4
241.5 211.0 188.6 0.0 150.8 170.4 172.4
241.7 208.6 190.5 0.0 148.6 183.0 184.5
238.4 205.5 192.9 0.0 140.2 195.7 196.5
234.2 203.9 193.1 0.0 132.5 202.1 202.5
227.1 202.6 189.9 0.0 124.6 208.4 208.6
218.0 202.2 181.3 0.0 121.1 214.8 214.6

V'-I V'-2 V0"-I V0"-2
m/sec m/see m/sec m/see
241.0 200.7 -100.8 -14.9
241.8 197.8 -106.9 -7.7
243.8 195.2 -113.3 -1.3
252.1 189.5 -132.3 0.8
264.8 187.8 -157.7 -10.2
271.2 189.8 -170.4 -21.6
277.5 193.9 -183,0 -35.9
283.8 200.9 -195.7 -56.3
287.1 205.4 -202.1 -70.1
290.7 207.6 -208.4 -84.0
295.0 203.9 -214.8 -93.5

8-2 8"-1 8"-2 I1-1 14-2 M'-I M'-2 TORN
degree degree degree degree

24.4 24.65 4.24 0.6718 0.6633 0.7393 0.6052 20.41
27.8 26.29 2.23 0.6648 0.6725 0.7412 0.5951 24.06
30,9 27.78 0.38 0.6614 0.6828 0.7469 0.5857 27.40
35.9 31,80 -0.25 0.6571 0.6978 0.7720 0.5652 32,05
38.7 36.69 3.11 0.6509 0.7119 0.8102 0.5564 33.57
38.7 39.02 6.54 0.G4530.7134 0.82930.5G07 32.49
38.0 41.34 10.66 0.6374 0.7123 0.6479 0.5715 30.68
36.0 43.86 16.29 0.8271 0.7017 0.8860 0.5913 27.37
34.5 44.79 19.94 0.6218 0.6889 0.8754 0.6043 24.85
33.3 45.85 23.85 0.6175 0.6671 0.8859 0.6098 22.00
33.8 46.78 2?.28 0.6163 0.6382 0.8990 0.5970 19.48

V-2 VH-1 VH-2 VO-1 VO-2
ft/sec ft/sec fL/sec ft/sec ft/sec

721.9 718.5 656.8 0.0 299.5 338.1 348.4 790.7
733.6 711.6 648.6 0.0 342.8 350.9 368.2 793.4
746.5 708.2 640.3 0.0 383.7 371.7 387.9 799.8
767.4 704.1 821.7 0.0 450.0 434.1 447.2 827.1
788.3 697.9 615.3 0.0 452.8 517.3 526.2 868.7
792.3 692.3 618.7 0.0 494.9 55fl.0 565.8 889.8
?92.9 684.5 625.2 0.0 487.6 600.6 605.3 910.6
782.3 674.3 632.8 0.0 460.0 642.2 644.8 931.2
788.4 669.0 633.6 0.0 434.7 GG3.0 664.5 941.9
745.2 664.7 623.0 0.0 408.9 683.8 604.3 953.6
715.3 663.5 594.7 0.0 397.4 704.6 704.1 967.8

W¢orr Wcorr P0/P0
inlet inlet inlet

Ibm/see kg/sec
91.8190 41.64188 1.2877

O-1 0-2 V'-1 V'-2 VO'-I VO'-2
ftlsec ftlsec ft/sec ft/sec ftlsec ftlsec

EPSI-1
degree

658.6 -330.1 -48.0 5.674
649.1 -350.9 -25.4 6.835
640.3 -371.7 -4.3 7.077
621.7 -434.1 2.8 7.119
616.2 -517.3 -33.4 6.108
622.7 -559.0 -70.9 5.356
636.1 -600.6 -117.6 4.539
659.3 -642.2 -184.8 3.719
674.0 -663.0 -229.8 3.316
681.2 -683.8 -275.4 3.043
669.1 -704.6 -306.6 2.992

EPSI-1 EPSI-2
radian radian
0.0990 0.0531
0.1158 0.0463
0.1235 0.0441
0.1243 0.0475
0.1066 0.0493
0.0935 0.0452
0.0792 0.0371
0.0649 0.0240
0.0579 0.0143
0.0531 0.0025
0.0522 -0.0140

EPSI-2 PCTTE
degree span

3.041 0.0500
2.654 0.1000
2.527 0.1500
2.722 0.3000
2.825 0.5000
2.589 0.6000
2.126 0.7000
1.377 0.8000
0.818 0.8500
0.143 0.9000

-0.803 0.9500
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TABLE A-3. FAN EXIT GUIDE V/VIE

DESIGN POINT FEGV

SL V-1 V-2 VH-1
m/sec m/sec m/see

1 169.9 141.4 128.7
2 182.5 148.4 140.1
3 192.6 154.6 149.4
4 214.5 170.1 167.6
5 231.8 186.4 181.8
6 235.0 182.7 185.5
7 233.3 196.4 186.1
8 224.7 194.2 182.2
9 215.5 188.5 175.9

10 203.0 179.8 164.3
11 186.6 187.9 145.4

SL 0-1 B-2 M-1
degree degree

1 39.8 0.0 0.5001
2 39.1 0.0 0.5378
3 38.6 0.0 0.5683
4 38.4 0.0 0.6334
5 36,.3 0.0 0.6,6"33
6 37.9 0.0 0.6917
7 37.1 0.0 0.6852
8 35.8 0.0 0.6580
S 35.3 0.0 0.6298

10 35.9 0.0 0.5810
11 38.8 0.0 0.5403

SL V-1 V-2 VH-1
ft/sec ft/sec ft/sec

1 557.6 463.8 422.2
2 598.8 487.0 459.8
3 632.0 507.4 480.1
4 703.8 557.9 549.9
5 760.4 611.7 596.3
6 771.0 632.1 608.6
7 765.4 644.3 610.6
8 737.1 637.2 597.8
9 707.1 618.5 577.2

10 665.9 590.1 539.2
11 612.2 550.9 477.0

Ncorr _:orr
inlet inlet

rpm lbm/sec
7556.80 91.82

VM-2 VO-1 VO-2 EPSI-1 EPSZ-2
z/see ./see m/see radian radian
141.4 111.0 0.0 0.1572 0.2282
148.4 116.9 0.0 0.1731 0.2148
154.6 121.6 0.0 0.1790 0.2016
170.1 133.9 0.0 0.1679 0.1612
186.4 143.8 0.0 0.1223 0.1042
182.7 144.3 0.0 0,0952 0.0752
196.4 140.7 0.0 0.0675 0. 0459
154.2 131.4 0.0 0,0419 0.0178
188.5 124.5 0.0 0.0305 0.0042
179.8 119.1 0.0 0.0185 -0.0103
167.9 117.0 0.0 0.0070 -0.0284

M-2 TURN
degree

0.4128 39.82
0.4331 39.11
0.4510 38.61
0.4948 38.39
0.5408 38.31
0.5585 37.87
0.5691 37.10
0.5626 35.83
0.5453 35.29
0.5198 35.33
0.4835 38.79

VM-2 VO-1 VO-2 PCT TE EPSI-1 EPSI-2
ft/sec ft/sec ft/sec span degree de9ree

463.8 364.1 0.0 0.0500 9.007 13.078
487.0 383.5 0.0 0.1000 9.815 12. 306
507.4 399.1 0.0 0.1500 10.255 11.551
557.9 439.2 0.0 0.3000 9.818 9.236
611.7 471.8 O. 0 0.5000 7.005 5. 971
632.1 473.3 0.0 0.6000 5.454 4.308
644.3 461.5 0.0 0.7000 3.868 2.632
637.2 431.2 0.0 0.8000 2.399 1.019
618.5 408.4 0.0 0.8500 1.746 0.238
590.1 380.8 0.0 0.9000 1.119 -0.591

550.9 383.8 0.0 0.9500 0.403 -1.630

_orr
inlet
kg/sec
41.65
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TABLE A-4 CORE STATOR

DESIGN POINT CORE STATOR

St V-1 V-2 VM-1 VM-2 VO-1
=/sec =/sec =/see =/sec =/see

1 188.8 133.5 144.7 133.5 87.0
2 171.1 137.0 146.6 137.0 88.3
3 173.4 140.5 148.5 140.5 89.6
4 180.5 151.0 154.3 151.0 93.6
5 130.1 164.5 162.2 164.5 93.2
6 194.9 170.7 166.0 170.7 102.1
7 199.5 176.8 169.6 176.8 105.0
8 204.0 182.7 173.1 182.7 107.9
9 206.6 185.6 175.3 185.6 109.4

10 209.? 188.7 178.0 188.? 110.9
11 212.7 191.7 180.6 191.7 112.3

SL B-1 B-2 PI-1 H--2 TURN
degree degree degree

1 31.5 0.0 0.5015 0.3929 31.48
2 31.5 0.0 0.5086 0.4035 31.49
3 31.5 0.0 0.5156 0.4141 31.49
4 31.5 0.0 0.5373 0.4457 31.54
5 31.7 0.0 0.5668 0.4886 31.73
6 31.9 0.0 0.5815 0.5055 31.65
7 32.0 0.0 0.5957 0.5240 32.03
8 32.2 0.0 0.6095 0.5420 32.24
9 32.4 0.0 0.6177 0.5510 32.39

10 32.7 0.0 0.6273 0.5604 32.66
11 33.0 0.0 0.6369 0.5697 32.38

SL

VO-2 EPSI-1 EPSI-2
=/see radian radian

0.0 -0.2353 -0.0183
0.0 -0.2282 -0.0211
0.0 -0.2212 -0.0240
0.0 -0.2058 -0.0318
O. 0 -0.1978 -0.0406
0.0 -0.1976 -0.0443
0.0 -0.1992 -0.04?9
0.0 -0.2023 -0.0511
0.0 -0.2257 -0.0527
0.0 -0.2730 -0.0542
0.0 -0.3202 -0.0557

V-1 V-2 VM-I VH-2 VO-I VO-2
ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec

1 553.8 437.9 474.7 437.9 285.3
2 561.4 449.5 481.0 449.5 289.6
3 569.0 461 . 1 487.3 461 . 1 293.9
4 592.2 495.5 506.4 495.5 307.1
5 623.8 539.7 532.1 539.7 325.6
6 639.5 560.1 544.7 560.1 334 . 9
7 654.6 580.0 556.6 580.0 344.5
8 669.2 599.3 567.9 599.3 354.1
9 677.9 609.1 575.0 609.1 358.9

10 687.9 619.0 583.9 619.0 363.7
11 697.9 628.9 592.7 628.9 368.5

PCT TE EPSI-1 EPSI-2
span degree degree

0.0 0.0500 -13.482 -1.050
0.0 0.1000 -13.077 -1.211
0.0 0.1500 -12.873 -I .372
0.0 0.3000 -11.790 -1.824
0.0 0.5000 -11.335 -2.324
0.0 0.6000 -11.320 -2.540
0.0 0.7000 -11.415 -2.742
0.0 0.8000 -11.589 -2.926
0.0 0.8500 -12.934 -3.017
0.0 0.9000 -15.640 -3.105
0.0 0.9500 -18.345 -3.194

Ncorr Wcorr Wcorr
inlet inlet inlet
rpm Ibm/see kg/sec

7556.80 91.82 41.65
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APPENDIX B -- FLOWPATH COORDINATES

AXIAL RADIUS

-1Z.75000 11.17150

-12.74216 11.08857

-12.71779 11.00376

-12.67575 10.91779

-12.6151S I0.83151

-12.53545 i0.74584

-12.43645 10.66178

-12.51841 I0.580B4

-12.18203 10.502__53

-12.02843 10.42953

-11-85917 10.36165

-1/..67617 10.30019

-11.(+8166 10.24563

-11.27806 i0.]9842

-11.06790 i@.158_2

-10.85373 10.1269_

-10.63802 10.10270

-10.42310 10.08E,88

-10.21106 10.07613

-10.00375 10.07300

-9.72776 10.07508

-9.45176 10.08131

-9.175"77 10.09164

-8.89977 I0.i0596

-8.62377 10.12416

-8.34778 I0.14&08

-8.07178 I0.17_I

-7.79.%'79 10.20025

-7.51979 10.23202

-7.24380 10.26655

-6.96781 10.3035_

-6.69182 10.34266

-6.41584 10.38357

-6.13985 10.42_R89

-5.86_7 10.46926

-5.58788 10.51330

-5.31190 10.55762

-5.03591 10.60182

-4.75993 10.6q551

-4.q,539_ 10.68831

-4.20795 10.72984

-3.93196 10.76974

-3.65597 10.80765

-3.37998 10.84323

-3.10398 10.87617

-2.82799 10.90619

-2.55199 10.93300

-2.27600 I0.95639

-2,00000 10.97614

-1.80643 10.98673

-1.61266 10.99320

-1.45879 10.99591

-I-27962 11.00000

-1.14030 11.01530

-1.00090 11.02880

-0.86160 11.04060

-0.72220 11.05060

-0.58290 11.05880

FAN LE

Table B-1. Fan Outer Flowpath

AXIAL RADIUS

-o. 4436o 11. 06530

-0.30420 11.07000

-o.16_90 11.07290

-o. o255o ii. 07410

o.1138o ll. 0736o

O. 25310 11.07130

0.39250 11.06720

o.53180 ii.06140

0.67120 11.0.,_380

O. 81050 II. 0_50

o._980 11.03340

1.08920 11.02050

1.22.850 11.00.580

1.36790 I0.98940

1.50721 10.97110 FAN TE

1.6_878 10.972/6

1 . 835_8 10 . 97521

2.01306 10.98232

2.19020 10.99080

2.36724 10. 9_)85

2..._-_ 08 11.00980

2.72078 11.02104

2.89729 11. 03393

3. 07360 11. _k1585

3.24967 11. 06616

3.42549 ii. 06597

3.60114 11.10800

3.776._S 11.13193

3 . 95"3.88 Ii. 15744

'_ .12702 11.1842.l

4.30205 11.21193

4.47701 11.24017

4 .65-198 II.26818

4.82704 11.29513

5.00251 11.32018

5.17787 ii. 342.53

5.35382 11.36133

5 ..K302/ Ii .37609

5.70693 ii ._TS&

5.88387 II.39589

6.06088 iI.402_i

6.23792 ]/.40719

6.41496 11.40986

6.59200 ll.qlO00 FEGV tE

6.77590 11.40718

6.95575 ii .40141

7.13751 II.39281

7.31915 11-38153

7.50061 ii .36751

7 . 68184 ii . 35073

7.86302 11.33369

8 . 04434 II .31918

8.22600 11.31000 FEGV TE

8. 38965 II .30471

8. 55326 ii . 29925

8.71688 Ii. 29%15

8.88057 11 .28994

9 . 04_98 II . 28770

AXIAL

9.21092

9.37866

9.548_6

9.72058

9.89530

10. 07286

I@. 25357

10.43769

10.62544

I 0.81715

11. 01302

11. ?J.357

II. 41844

II. 62855

11.84387

12.06474

12.2<)143

12.52417

12.76325

13.00895

13.26148

13.52_117

13.78824

14. 06299

14.34567

14. &3657

14.93595

15.2_04

15.5611_

IS.Sa7SI

16.225_3

16.56917

16.92496

17.29109

17.66785

18. O5547

18.45422

18.86_41

19.28625

19.72oo5

20.16605

20.62453

21. 09576

21.58000

RADIUS

11-28798

11-29056

11. 29525

11.30185

11.31015

11 - _-1996

Ii .33105

11.34325

ii .35633

ii. 37011

Ii. _437

11.39891

ii. 41354

Ii. 42805

11.442Z3

II. (45588

11.46881

11 -_080

11.49166

11.50119

ii .50917

Ii .51541

II.51970

Ii .52.18'%

ii .52.16_

II.518_S

Ii .S1557

11.50489

11.49326

ii. 47826

ii .45969

ii .43736

Ii. 41105

11.38056

Ii .34570

11.30626

.26204

1I. 21283

Ii. I.R843

11. 09865

ii. 03326

10.96209

I0.88_91

10.80153
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Table B-2. Fan Inner Flowpath

AXIAL

-7.74119

-7.74023

- 7. 73735

- 7. 73258

- 7.72/91

- 7. 71738

-7.70698

- 7. 69473

-7.68066

-7. 66476

-7.667O6

- 7. 62757

-7. 60630

-7.58326

-7.5.5847

-7.531_

-7.50369

-7.47373

-7.44207

-7.40873

- 7.37372

- 7. 33705

-7.29874

-7.2588O

-7.2.1724

-7.17408

-7.12933

-7. 08301

-7. 03513

- 6. 98569

-6.93_73

- 6.88224

- 6.82824

- 6.77275

- 6.71578

- 6. 65735

-6.59746

-6.53613

- 6.47338

-6.40921

-6.34364

- 6.27669

- 6. 20837

-6.15869

-6. 06767

-5. 99531

-5. 92164

-5. 84666

-5. 77039

-5. 69285

-5.61404

-5.53398

-5.45269

-5.37017

-5. 28645

-5.20153

-5 .i1542

-5. 02815

RADIUS

0.0

0. 07657

o. 15289

o. 22894

0.30471

0.38019

0.45537

0.53025

0.60480

o. 67902

0.75290

0.82642

0.89959

0. 97238

i. 04479

1.11681

1.18842

1.25962

1.33040

1.40073

1.47063

1.54006

1.60904

1.67753

1.74554

1-81304

1.88005

1 - 94653

2.01248

2. 07789

2.14276

2.20706

2.27079

2.33395

2.39651

2.45846

2.51981

2.58053

2.64062

2.70007

2.75_86

2.81698

2.87443

2. 93120

2. 98727

3. 04263

3. 09728

3.15120

3.20438

3.25682

3.30849

3.35940

3.40952

3.45886

3.50740

3.55512

3.60203

3.64810

AXIAL RADIUS

-4 . 93973 3. 69333

-4.85016 3.73771

-4.75947 3.78123

-4. 66766 3. 82387

-4.57475 3.86563

--4.48076 3.90649

.38569 3. _665

-4 .28956 3. 98550

-4 . 19239 4 . 02361

-4. 09418 4. 06080

-3. _96 6. 09703

-3.89475 4.137-32

-3.79350 4.16663

-3.69130 4.19996

-3.58813 4.23231

-3._8602 4.2(_6

-3.37896 4 . _ 00

• -3.27298 4.32332

-3.16609 4.55161

-3 . 05831 4. 37886

_2.9_964 4.40506

-2.84010 4.q3020

-2.72970 4.q5427

-2.61846 4.47725

-2.50639 4.49914

-2.39351 4.S1993

-2.27982 4.53961

-2.16S35 4 .$5816

-2.05010 4.$7558

-1.93409 4.59186

-i .81T53 4.60697

-i. 69988 4 . 62100

-1.58227 4.63476

-1.46466 4 . 64853

-1.34705 4.66230

-1.22944 4.67607

-1. 08416 4 . 69000

-0.99463 4 .69671

-0.87629 4.70176

- 0 . 7Y1"79 4. 70533

-0.63910 4.70777

-0.52019 4.70943

-0.40116 4.71115

-0 . 28229 4.71462

-0.163.88 4.72159

- 0 . 04626 4 . 73382

0 . 07029 6 . 75292

0 . 18.586 4 . 77832

0 . 30081 4.80779

0 . 41551 +. 83904

0 . 53034 4 . 86978

0 . 64565 4.89775

0.76177 4.92095

0 . 87871 4 . 93930

0 . 99634 4 . 95348

1.11450 4. 96420

1 .23311 4 .97215

i . 3564 0 4 . 97803

FAN LE

FAN TE

AXIAL

1.47104

l.S9011

1.70911

1.82797

1.94661

2.06496

2.18295

2.30049

2.41760

2.80000

3.24000

3.50000

3.89000

4.24200

4.67300

S.I7000

5.91000

6.74000

7.80000

10.10o0

12.2100

27.6300

34.0000

RADIUS

4.98254

4.98632

4. 98924

4.99064

4. 98985

4.98620

4.97901

4.96766

4.95216

4.86000

4.7"5000

4.64000

4.51500

4.43000

4.38700

4.40000

4.47S00

4.57500

4.70000

4.70000

4.70000

4.70000

4.70000

Sl LE

Sl "rE
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Table B-3. Fan Duct Inner Flowpath

AXIAL

3.74000

3.75000

5.76000

3.78000

3.83000

3.90000

4.00000

4.10000

4.20000

4.30000

5.25000

5.60000

S.9900o

6.30ooo

6.5920o

6.774OO

6.9740O

7.17400

7.374o0

7.574OO

7.77400

7.97400

8.22600

8.37400

8.5-7400

8.77400

8.974OO

9.17400

9.374OO

9.57400

9-77400

9.974OO

lo.17400

10.37400

10._7400

10.77400

11.974o0

11.17400

11.57400

11.5740o

11.77400

11.97400

12.17400

12.37400

12.57400

12.77400

12.97400

13.1740o

13.37400

13.57400

13.77400

13.97400

Iq.17400

14.37400

14.57400

14.71187

14.9814&

15.2.5109

RADIUS

5.55000

5.5,8100

5.5_50

5.61600

5.65400

5.68850

5.72600

5.75300

5.7745O

5.79100

5.81000

5.81000

5.81000

5.81000

5.81000

5.82900

5.87900

5.95200

6.03900

6.1270O

6.21000

6.282OO

6.35000

6.37600

6.39'900

6.41400

6.42600

6.439O0

6.45100

6.46z, oo

6.47500

6.¢_,600

6.49500

6.50400

6.51200

6.52OOO

6.52800

6.53700

6.54500

6.55500

6.56600

6.57800

6.59100

6.60600

6.62300

6.64OOO

6.65900

6.67900

6.69900

6.72100

6.74300

6.76600

6.79000

6.81400

6.83800

6.85064

6.88534

6.91961

FEGV LE

FECVTE

AXIAL RADIUS

15.5207_ 6.95323

].5.790;4 6.98597

16.66020 7.01760

16.33003 7.04788

16.59995 7.07658

16.86996 7.10369

17.14008 7.1283&

17.41032 7.]-5097

17.68071 7.17_09

17.95123 7.188_9

18.22192 7.2029_

18.49278 7.21421

18.76382 7.22207

19. O3506 7.22629

19.3o650 7.22666

19.57817 7._89

19.85008 7.2.1481

20.12224 7.20218

20.39465 7.18476

20. 66734 7.16232

2G.94031 7.13463

21.213.58 7.10147

21.48712 7. 06251

21 . 7.5836 7.00554

22.02692 6.93859

22.29546 &.ST163

22.564OO 6.80468

22.83253 6.7377"2

23.10107 6.67077

2.3 . 36961 6 .60381

23.638 ]_5 6.53686

9.90671 6.46990

24.17525 6.40Z_5

24.44379 &.3359_

2q.71233 6.26904

2_.98087 6.20208

25.249<*G 6.13513

25.51796 6.06817

25.78650 6.00122

26.05504 5.93426

26.32358 5.86731

26.59212 5.80035

26.86066 5.73340

27.12921 5.66/#d;

27.39775 5.59<_9

27.66629 5.53253

27.93483 5.46558

28.20357 5.39862

28.47191 +5.33167

28.74046 5.26471

29.009G0 5.19776

29.27754 5:1308o

29.54608 5.06385

29.81462 4.99689

30.08316 4.9299_

30.35170 4.86298

30.62025 4.79603

30.88879 4.72907

AXIAL

31.15733

31.47..587

31.69441

31.96295

32.23149

32.50003

32.76859

33.03712

33.30566

33.57420

33.84274

34.11128

34.37982

34.64836

34.91690

RADIUS

.66212

4.59516

.52821

.4&12.5

.39430

4.32734

4.26039

4.19343

.12648

.05952

3.99257

3.9_I

3.8S866

3.79170

3.72475
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Table B-4 Core Outer Flowpath

AXIAL RADIUS

3.74000 5.55000

3.75000 5.49900

3.76000 5.48500

3.78000 5.46000

3.83000 5.42200

3.90000 5.38450

4.00000 5.34550

4.12000 5.31000

4.51500 5.24200

_.90300 5.20200

5.41000 5.20500

5.91000 5.27500

6.74000 5.36400

7.80000 5.41000

10.1000 5.41000

12.2100 5.41000

Z7.6300 5.41000

34.0000 5.96750

$I LE

$1TE
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APPENDIX C _ HARDWARE SAFETY MARGINS

Feature

Blade Airfoil

Blade Attachment

Spinner

Torque Sleeve

Pitch Plug
Disk

Seal

Balance Ring

FEGV

Maximum Yield Ultimate

Principal Margin of Margin of

Stress .__i) ........... Safety Saf.e_ty-
52.7 0.7 1.0

20.5 1.1 1.4

21.9 5.3 5.8

22.0 5.3 5.8

17.0 7.2 7.8

78.6 0.7 0.9

10.6 12.0 13.1

25.2 4.5 4.9

157.0 - -0.05

Life

(cydes)

Stage Life > 1,000

Stage Life > 1,000

Life >1,000

Life >1,000

Life > 1,000

Life >1,000

Life >1,000

Life >1,000

Life > 1,000
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