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1 INTRODUCTION

1.1 TRELLIS REPRESENTATION OF CODES

A code trellis is a graphical representation of a code, block or convolutional, in
which every path represents a codeword (or a code sequence for a convolutional
code). This representation makes it possible to implement maximum likelihood
decoding (MLD) of a code with reduced decoding complexity. The most well
known trellis-based MLD algorithm is the Viterbi algorithm [23, 79, 105]. The
trellis representation was first introduced and used for convolutional codes [23].
This representation, together with the Viterbi decoding algorithm, has resulted
in a wide range of applications of convolutional codes for error control in digital
communications over the last two decades.

The recent search for efficient MLD schemes for linear block codes has moti-
vated some coding theorists to study the trellis structure of these codes so that
trellis-based decoding algorithms can be devised to reduce decoding complexity.
Trellis representation of linear block codes was first presented in [1] and then
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2 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

in [67, 109]. The first serious study of trellis structure and trellis construction
for linear block codes was due to Wolf. In his 1978 paper [109], Wolf presented
the first method for constructing trellises for linear block codes and proved that
an N-section trellis diagram for a g-ary (N, K') linear block code has at most
gmin{K,N-K) gtates. He also presented a method for labeling the states based on
the parity-check matrix of a code. Right after Wolf’s work, Massey presented
a simple but elegant paper [67] in which he gave a precise definition of a code
trellis, derived some fundamental properties, and provided implications of the
trellis structure for encoding and decoding of codes. However, these early works
in trellis representation of linear block codes did not arouse much enthusiasm,
and for the next 10 years, there was basically no research in this area.

There are two major reasons for this inactive period of research in this area.
First, most coding theorists at that time believed that block codes did not have
simple trellis structure like convolutional codes and maximum likelihood decod-
ing of linear block codes using the Viterbi algorithm was practically impossible,
except for very short block codes. Second, since almost all of the linear block
codes are constructed algebraically or based on finite geometries, it was the
belief of many coding theorists that algebraic decoding was the only way to
decode these codes. These two reasons seriously hindered the development of
efficient soft-decision decoding methods for linear block codes and their appli-
cations to error control in digital communications. This led to a general belief
that block codes are inferior to convolutional codes and hence, that they were

not useful.

In fact, for more than two decades, most of the practicing communication
engineers believed that the rate-1/2 convolutional code of constraint length 7
with Viterbi decoding was the only effective error control coding scheme for
digital communications, except for perhaps ARQ schemes. To achieve higher
reliability for certain applications such as NASA’s satellite and deep space
communications, this convolutional code concatenated with a Reed-Solomon
outer code was thought the best solution.

It was really Forney's paper in 1988 [24] that aroused enthusiasm for research
in the trellis structure of linear block codes. In this paper, Forney showed that
some block codes, such as Reed-Muller (RM) codes and some lattice codes,
do have relatively simple trellis structures, and he presented a method for con-
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INTRODUCTION 3

structing sectionalized trellises for linear block codes and asserted that the con-
struction results in minimal trellises with respect to the state complexity (the
number of states). Motivated by Forney's work and the desire to achieve max-
imum likelihood decoding of linear block codes to improve error performance
over traditional hard-decision algebraic decoding, there have been significant
efforts in studying the trellis structure and devising trellis-based decoding algo-
rithms for linear block codes over the last eight years. Developments have been
dramatic and rapid, and the new results are exciting and encouraging. Trellis-
based decoding algorithms that are more efficient than the conventional! Viterbi
decoding algorithm have recently been devised [32, 37] and implementation of
trellis-based high-speed decoders for NASA's high-speed satellite communica-
tions is now underway [52, 63]. All of these new developments make block codes
more competitive with convolutional codes.

1.2 ORGANIZATION OF THE BOOK

Chapter 2 gives a brief review of linear block codes. The goal is to provide
the essential background material for the development of trellis structure and
trellis-based decoding algorithms for linear block codes in the later chapters.
Chapters 3 through 6 present the fundamental concepts, finite-state machine
model, state space formulation, basic structural properties, state labeling, con-
struction procedures, complexity, minimality, and sectionalization of trellises.
Chapter 7 discusses trellis decomposition and subtrellises for low-weight code-
words. Chapter 8 first presents well known methods for constructing long
powerful codes from short component codes or component codes of smaller
dimensions, and then provides methods for constructing their trellises which
include Shannon and Cartesian product techniques. Chapter 9 deals with con-
volutional codes, puncturing, zero-tail termination and tail-biting. It shows
that trellis construction procedures for both block and convolutional codes are
essentially the same, except that the trellises for convolutional codes or termi-
nated convolutional codes are time-invariant and the trellises for block codes
are in general time-varying. For both types of codes, trellis states are defined
based on a certain set of information bits, called the state-defining information
set.
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4 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Chapters 10 through 13 present various trellis-based decoding algorithms,
old and new. Chapter 10 first discusses the application of the well known
Viterbi decoding algorithm to linear block codes, optimum sectionalization of
a code trellis to minimize computation complexity, and design issues for IC
(integrated circuit) implementation of a Viterbi decoder. Then it presents a
new decoding algorithm for convolutional codes, named differential trellis de-
coding (DTD) algorithm. DTD algorithm is devised based on the principle of
compare-select-add (CSA) which is simply the opposite of the principle of
add-compare-select (ACS) used in the Viterbi algorithm. This new algo-
rithm is more efficient than the Viterbi decoding algorithm. For rate-1/2 an-
tipodal convolutional codes and their higher rate punctured codes, it requires
about 1/3 less real number operations than the Viterbi decoding algorithm.
This DTD algorithm can also be applied to trellis decoding of block codes.
Chapter 11 presents a trellis-based recursive MLD for linear block codes, the
RMLD algorithm. This decoding algorithm is devised based on the divide
- and conquer principle. The implementation of this algorithm does not re-
quire the construction of the entire code trellis; only some special one-section
trellises of much smaller state and branch complexities for constructing path
metric tables recursively are needed. This reduces the decoding complexity
significantly and it is more efficient than the Viterbi decoding algorithm. Fur-
thermore, it allows parallel/pipeline processing of received sequences to speed
up decoding. Chapter 12 presents a suboptimum reliability-based iterative de-
coding algorithm with a low-weight trellis search for the most likely codeword.
This decoding algorithm provides a good trade-off between error performance
and decoding complexity. All the decoding algorithms presented in Chapters 10
through 12 are devised to minimize word error probability. Chapter 13 presents
decoding algorithms that minimize bit error probability and provide the corre-
sponding soft (reliability) information at the output of the decoder. Decoding
algorithms presented are the MAP (maximum a posteriori probability)
decoding algorithm and the SOVA (soft-output Viterbi algorithm) algo-
rithm. Finally, the minimization of bit error probability in trellis-based MLD

is discussed.
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2 LINEAR BLOCK CODES

Chapter 2 gives a brief review of linear block codes. The goal is to provide
the essential background material for the development of trellis structure and
trellis-based decoding algorithms for linear block codes in the later chapters.
We mainly present the basic concepts of encoding and decoding of linear block
codes and state some facts without derivations or proofs. Since in most present
digital data communication systems, information is coded in binary digits, ‘0’
or ‘1’, we discuss only linear block codes with symbols from the binary field
GF(2). First, linear block codes are defined and described in terms of generator
and parity-check matrices. Second, coset partition of a linear block code is dis-
cussed, which is needed in analyzing the code trellis structure and construction.
Third, the concepts of minimum distance, weight distribution and distance pro-
file are presented, which are needed in the later chapters for presenting decoding
algorithms and their error performances. Finally, the concepts of hard-decision,
soft-decision, and maximum likelihood decoding are presented.
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6 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

References 3, 9, 14, 59, 63, 78 and 79 contain excellent treatments of linear
block codes.

2.1 GENERATION OF LINEAR BLOCK CODES

In block coding, an information sequence of binary digits (called bits) is divided
into message blocks of fixed length; each message block consists of K informa-
tion bits. There are a total of 2% distinct messages. Each message is encoded
into a codeword (or code sequence) of IV bits according to certain rules, where
N > K. Therefore, corresponding to the 2X possible messages, there are 2%
codewords. This set of 2X codewords forms a block code of length N. For
a block code to be useful, the 2X codewords must be distinct. Hence, there
should be a one-to-one correspondence between a message and a codeword.

Definition 2.1 A binary block code of length N and 2% codewords is called an
(N, K) linear block code if and only if its 2K codewords form a K-dimensional
subspace of the vector space of all the N-tuples over the binary field GF(2).
The parameter K is called the dimension of the code space.

An (N, K) linear block code C is generated by a K x N generator matrix
over GF(2),

9 gu Gz - Qi . GIN
92 921 922 0 G2 0 G2N
G=| . |=}| . . . . (2.1)
9k gk1 9k2 - 9Ki ‘' GKN
where the rows, g,, g;, ---, 9k, are linearly independent over GF(2). The 2%

linear combinations of the K rows of G form the codewords of C. We say that
the rows of G span the code C, or C is the row space of G. Let

a = (a,az,...,ex)

be a message to be encoded. A natural encoding mapping is that the codeword
u = (uy,ug,...,unN)

for the message a = (ay,az,...,ax) is given by

u = a-G
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LINEAR BLOCK CODES 7

9
92
= (01,02,...,01() .
9k
= a;-9,+062:9,+- - +ax- gk (2.2)

From (2.1} and (2.2), we find that for 1 <i < N, the i-th component of u is
given by
u;=ay-g;i +6z2-g2 +- - +ax-gki (2.3)

During an encoding interval, K information bits are encoded into N code
bits. These N code bits are shifted onto the channel, one at a time, in N units
of time. An encoding interval, denoted T', is represented by a set of N +1 time
instants,

r={o0,1,2,...,N} (2.4)
For 1 < i < N, the i-th unit of time is the interval from time-(i — 1) to time-:.
During this interval, the i-th code bit u; is formed and transmitted. By time-i,
the transmission is completed. This interval is called a bit interval.

Example 2.1 Consider a binary (8, 4) linear block code which is generated by
the following generator matrix:

o 11111111
00001111
6=|9|= (2.5)
s 00110011 :
9 01010101

If a = (1101) is the message to be encoded, its corresponding codeword, ac-
cording to (2.2), is given by
u = 1.g,+1-9,+0-9;+1-9,
(11111111) + (00001111) + (01010101)
= (10100101).

The 16 codewords of this code are listed in Table 2.1.
AL
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8 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Table 2.1.  The codewords of the code generated by (2.5).
Messages Codewords Messages Codewords
(0000)  (00000000) (o001)  (01010101)
(1000)  (11111111) (1001)  (10101010)
(0100)  (00001111) (0101)  (01011010)
(1100) (11110000) (1101)  (10100101)
(0010)  (00110011) (0011)  (01100110)
(1010) (11001100) (1011)  (10011001)
(0110) (00111100) (o111)  (01101001)
(1110) (11000011) (1111)  (10010110)

A binary (N, K) linear block code C is also uniquely specified by an (V —

K) x N matrix over GF(2), called a parity-check matrix,

where the rows are linearly independent. A binary N-tuple u = (u;,uz,...,uy)

hy-x.

hn_k2

hy_x N

is a codeword in C if and only if the following condition holds:

where 0 denotes the all-zero (N — K)-tuple, (0,0,...,0).
the dual (or null) space of H. H itself generates an (N, N — K) linear code,
denote C+. For any codeword u = (uj,us,...,uy) € C and any codeword

u-HT =0,

v = (v;,vz,...,vn) € C*, the inner product

u-v

a
= wprvptuz-vz+-+uNcUN

= 0.

C1 is called the dual code of C and vise versa.
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LINEAR BLOCK CODES 9

In general, the generator matrix G of a linear block code C is used for
encoding, while the parity-check matrix H is used for decoding, particularly
for error detection.

Example 2.2 Consider the (8,4) linear block code given in Example 2.1. A
parity-check matrix for this code is the generator matrix itself given by (2.5),

ie.,
11111111
HeG= 00 001111
0 0 110011
01 010101

In this case, C = C* and C is said to be self-dual.
AA

For an (N, K) linear block code C, the ratio R = K/N is called the code
rate which represents the average number of information bits carried by a code
symbol (or the average number of information bits transmitted per channel
usage).

2.2 COSET PARTITION OF A LINEAR BLOCK CODE

Consider a binary (N, K) linear block code C with a generator matrix G. Let
K, be a nonnegative integer such that 0 < K; < K. A subset of 2K1 codewords
in C is said to be a linear subcode of C if this subset itself is a K;-dimensional
subspace of the vector space of all the N-tuples over GF(2). Any K, rows of
the generator matrix G span an (V, K)) linear subcode of C, and they form a
generator matrix for the subcode. If K; = 0, the subcode consists of only the
all-zero codeword 0 of C. For K, = K, the subcode is just the code itself.

Let C; be an (N, K,) linear subcode of C. Then C can be partitioned into
2K-K1 disjoint cosets of C;; each coset is of the following form:

v ®C, 2 {vi+u:uel} (2.8)

with 1 <1 < 2K-K1 where for v; # 0, v; is in C but not in C; and for v; = 0,
the coset 0 @ C is just the subcode C) itself. This partition of C with respect
to C, is denoted with C/C), and the codewords v; for 1 <1 < 2K-Ki are called
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10 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

the coset representatives. Any codeword in a coset can be used as the coset
representative without changing the composition (the codewords) of the coset.
Important properties of cosets are:

(1) The sum of two codewords in a coset is a codeword in the subcode C;.

(2) Let z and y be two codewords in cosets v;®C) and v;®C) , respectively,
where i # j. Then the sum £+y is a codeword in the coset (v;+v;)®C,
with v; + v; as the coset representative.

The set of representatives for the cosets in the partition C/C, is denoted [C/C)]
which is called the coset representative space for the partition C/C,. Code
C can be expressed as the direct-sum of C; and [C/C)] as follows:

C=[C/Cll$01é{v+u:v€[C/Cl] andueCl}. (29)

Let G, be the subset of K rows of the generator matrix G which generates
the subcode C;. Then the 2X-K: codewords generated by the K — K rows in
the set G\ G can be used as the representatives for the cosets in the partition
C/C,. These 2K-K:1 codewords form an (N, K — K) linear subcode of C.
Let C; be an (N, K3) linear subcode of C, with 0 < K; < K,. We can
further partition each coset v; ® C) in the partition C/C; based on C; into
2K:1-Ki cosets of Cy; each coset consists of the following codewords in C:

vid(we®Cs) 2 {vi+wr+u:u€Cy) (2.10)

with 1 <! < 2K-%1 and 1 < k < 2K1-K3 where for wy # 0, wy is a codeword
in C; but not in C,. We denote this partition with C/C,/C,. This partition
consists of 2K K2 cosets of C;. Now C can be expressed as the following

direct-sum:
C=[C/C]8[Ci/C 8 C,. (2.11)

Let C1,C5,...,C., be a sequence of linear subcodes of C with dimensions
Ki,K,,...,Kn, respectively, such that

C2Ci2C;2-2Cnm (2.12)

and
K>K >Ky>-->Kn>0. (2.13)
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LINEAR BLOCK CODES 11
Then we can form a chain of partitions,
C/C\,C[Cy[Ca,...,C[C[Caf -+ |Cp, (2.14)
and C can be expressed as the following direct-sum:

C=[C/CI]|®[C1/C2] @ ®[Crm-1/Cm] ® Cpn. (2.15)

2.3 THE MINIMUM DISTANCE AND WEIGHT DISTRIBUTION OF A
LINEAR BLOCK CODE

Let u and v be two N-tuples over GF(2). The Hamming distance between

u and v, denoted d(u,v), is defined as the number of places where they differ.

The minimum (Hamming) distance of a block code C, denoted dmin(C),

is defined as the minimum Hamming distance between all distinct pairs of

codewords in C, i.e,,
dmin(C) £ min{d(u,v): u,v € C,u # v}. (2.16)

The (Hamming) weight of an N-tuple v, denoted w(v), is defined as the
number of nonzero components of v. It follows from the definition of Hamming
distance and the fact that the sum of two N-tuples over GF(2) is an another
N-tuple over GF(2) that the Hamming distance between two N-tuples, u and
v, is equal to the Hamming weight of the sum of u and v, i.e.,

d(u,v) = w(u + v). (2.17)
For a linear block code C, it follows from (2.16) and (2.17) that

dmin(C) = min{w(u+v):u,veCu#v}
min{w(z) : ¢ € C,x # 0}
2 wnia(0). (2.18)

The parameter Wiy (C) £ min{w(z) : * € C,z # 0} is called the minimum
weight of C. Eq.(2.18) simply says that the minimum distance of a linear block

code is equal to the minimum weight of its nonzero codewords. The minimum
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12 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

weight of the (8,4) linear block code given in Table 2.1 is 4; therefore, its
minimum distance is 4.

Let C be an (N, K) linear block code. For 0 < i < N, let A; be the number
of codewords with weight i. The numbers Ay, A;, A;,..., AN are called the
weight distribution of C. It is clear that Ag = 1. The weight distribution of
the (8,4) linear block code given in Table 2.1 is

Ao:l, A1=A2=A3=0, A4=14, A5=As=A7=0, As:l.
The weight distribution is often expressed as a polynomial,
A(X)= Ao+ A1X +--- + An XY,

which is called the weight enumerator of C. Let W = {0,w;,w,,...,wm}
denote the set of all weights of codewords in C such that:

(i) 0<w, <wy<--<wy <N;and

(ii) For 1 < i < m, the number of codewords in C with weight w; is not

equal to zero.

This set is called the weight profile of C. The weight profile of the (8,4)
linear block code given by Table 2.1 is {0,4,8}. Let u be any codeword in
C. The weight distribution of C actually gives the distribution of distances of
codewords in C from the codeword u. The weight profile W of C gives the
profile of distances of codewords in C from the codeword u.

The error performance of a linear block code is determined by its minimum
distance and weight distribution. For an (N, K) linear block code with min-
imum distance dm;n, we often use the notation (N, K,dmi,) to represent the
code. Therefore, the code given by Table 2.1 is an (8,4, 4) linear block code.

2.4 DECODING

Suppose an (N, K) linear block code C is used for error control over an ad-
ditive white Gaussian noise (AWGN) channel. Let « = (uj,us,...,un) be
the codeword to be transmitted. Before the transmission, a modulator maps
each code bit into an elementary signal waveform. Binary PSK or FSK are
commonly used signal waveforms for transmitting the bits in a codeword. The
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LINEAR BLOCK CODES 13

resultant signal sequence is then transmitted over the channel and corrupted
by noise. At the receiving end, the received signal sequence is processed by a
demodulator and sampled at the end of each signal (bit) interval. This results
in sequence of real numbers,

r=(r1,r2,...,TN),

which is called the received sequence. For 1 < i < N, the i-th received
component r; is the sum of a fixed real number ¢; and a Gaussian random
variable n; of zero-mean and variance Ny /2 where ¢; corresponds to the trans-
mitted code bit u; at time-i. These received components may or may not be
quantized. At one extreme, the demodulator can be used to make firm deci-
sions on whether each transmitted code bit is a ‘0’ or a ‘1’. Thus the output
is quantized to two levels, denoted as 0 and 1. We say that the demodulator
has made a “hard decision” on each transmitted code bit. This hard decision

results in a binary received sequence,
z = (ZlaZZa"' ’ZN)y

which may contain transmission errors, i.e., for some 1, z; # u;. This bi-
nary hard-decision sequence is fed into a decoder which attempts to correct the
transmission errors (if any) and recover the transmitted codeword u. Since the
decoder operates on the hard decisions made by the demodulator, the decoding
process is called hard-decision decoding. At the other extreme, the unquan-
tized outputs from the demodulator can be fed directly into the decoder for pro-
cessing. We refer to the resulting decoding as soft-decision decoding. Since
the decoder makes use of the additional information contained in the unquan-
tized received samples to recover the transmitted codeword, soft-decision decod-
ing provides better error performance than hard-decision decoding. Decoding
based on the quantized outputs from the demodulator, where the number of
quantization levels exceeds two, is also referred to as soft-decision decoding.
Soft-decision decoding provides better error performance than hard-decision
decoding; however, hard-decision decoding is much simpler to implement. Var-
jous hard-decision decoding algorithms based on the algebraic structures of
linear block codes have been devised. These hard-decision decoding algorithms
are also termed algebraic decoding algorithms. Recently, effective soft-decision
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14 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

decoding algorithms have been devised, and they achieve either optimum error
performance or suboptimum error performance with reduced decoding com-
plexity.

Let u® be the estimate of the transmitted codeword at the output of the
decoder. If the codeword u was transmitted, a decoding error occurs if and
only if u* # u. Given that r is received, the conditional error probability of
the decoder is defined as

P(E|r)2P(u"#u]|r). (2.19)
The error probability of the decoder is then given by

P(E)=)_P(E|r)P(r). (2.20)

P(r) is independent of the decoding rule used since r is produced prior to
decoding. Hence, an optimum decoding rule (i.e., one that minimizes P(E))
must minimize P(E | r) = P(u® # u | r) for all r. Since minimizing P(u* #
u | r) is equivalent to maximizing P(u™ = u | r), P(E | r) is minimized for a
given r by choosing u* as the codeword that maximizes
P(r| u)P(u)

P(u|) = =i,

(2.21)

that is, u" is chosen as the most likely codeword given r is received. If all
the codewords are equally likely, maximizing (2.21) is equivalent to maximizing
P(r | u). For an AWGN channel,

N
P(r|u) =[] P(r: | w), (2.22)

since each received symbol depends on the corresponding transmitted symbol.
A decoder that chooses its estimate to maximize (2.22) is called a maximum
likelihood decoder and the decoding process is called the maximum like-
lihood decoding (MLD). Maximizing (2.22) is equivalent to maximizing

N
log P(r | u) = Zlog P(ri|ui) (2.23)

which is called the log-likelihood function.
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LINEAR BLOCK CODES 15

Suppose BPSK signaling is used. Assume that each signal has unit energy.
Let u = (uj,uz,...,uy) be the codeword to be transmitted. The modulator
maps this codeword into a bipolar sequence represented by

c=(c1,c2,...,¢n)

where for 1 <i < N,

¢ =2u; — 1. (2.24)
From (2.24), we see that
-1, ifu;=0,
c; = . 2.25
{ +1, if u; = 1. ( )

The squared Euclidean distance between the received sequence r = (ry, r3,
.., rn) and c is given by

N
Ir~cf’ 2 (ri— i) (2.26)
i=1
For an AWGN channel, maximizing the log-likelihood function is equivalent to
minimizing the squared Euclidean distance between r and c. If we expand the
right-hand side of (2.26), we have

N

N N
|r—c|2=2r?—22r.~c.~+zc?. (2.27)
=1 i=1

=1

N .
1‘2 is a common term and

In computing |r — ¢* for all codewords in C, ., 7

N ¢ = N. Therefore, minimizing |r — ¢ % of (2.26) is equivalent to maxi-
=1 q

mizing

N

E T~ Cy

=1

N
Y o (2ui-1). (2.28)

=1

>

The inner product given by (2.28) is called the correlation between the re-

ceived sequence r and the codeword u.
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16 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Furthermore, (2.28) can be expanded as follows:

N N
r'c=22r.-'u.-—2r.v. (2.29)
i=1 i=1

Since the second term }:f;l r; in (2.29) is a common term in computing 7 - ¢
for all codewords in C, maximizing r - ¢ is equivalent to maximizing

N
rutd ru (2.30)
i=1

The inner product given by (2.30) is called the binary correlation between
the received sequence r and the codeword u.
Summarizing the above, MLD can be stated in four equivalent ways:

(1) Log-likelihood function
Decode the received sequence r into a codeword u for which the log-
likelihood function

N
log P(r | u) = Zlog P(ri|us)
=1

is maximized.
(2) Squared Euclidean distance
Decode the received sequence 7 into a codeword u for which the squared

Euclidean distance

N

r—ul? 23 (ri - (2w — 1))

i=1
is minimized.
(3) Correlation function

Decode the received sequence r into a codeword u for which the corre-

lation function

N
m(r,u) 2 Z ri+(2u; — 1)
i=1

is maximized.
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LINEAR BLOCK CODES 17

(4) Binary correlation function
Decode the received sequence r into a codeword u for which the binary
correlation function

N
b(r,u) = E rc U,
i=1

is maximized.

2.5 REED-MULLER CODES

Reed-Muller (RM) codes form a class of multiple error-correction codes. These
codes were discovered by Muller in 1954 [78], but the first decoding algorithm
for these codes was devised by Reed, also in 1954 [83]. They are finite geometry
codes and rich in algebraic and geometric structures. The purpose of including
these codes in this reviewing chapter is that they have very simple and regular
trellis structures and their trellises can be easily constructed. These codes can
be decoded effectively with trellis-based decoding algorithms. Furthermore,
they provide good example codes. Throughout this book, many example codes
are RM codes.

For any nonnegative integers m and r with 0 < r < m, there exists a binary
r-th order RM code, denoted RM; ,,, with the following parameters:

Length N =27
Dimension Kem=1+(T)+-+(7)
Minimum distance d,, =2™"".

In the following, we first present the original construction of RM codes and

then we describe an alternate construction for these codes. For 1 <i < m, let
v; be a 2™-tuple over GF(2) of the following form:

0.---0,1---1,0- 1) (2.31)

v = ( - 0,... ,1
2i-1 2i-1 2i-1 2i-1

which consists of 2™~ +! alternate all-zero and all-one 2'~!-tuples. For m = 3,

we have the following three 8-tuples:

vy = (00001111),
v, = (00110011),
v; = (01010101).
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18 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

Let a = (a;,82,...,an) and b = (by,bz,...,by) be two binary N-tuples.
Define the following logic (boolean) product of @ and b,

a b2 (a;-by,a2-bs...,ax5 - by),

where ‘* denotes the logic product (or AND operation), i.e. a; - b; = 1 if and
only if both a; and b; are ‘1’. For m = 3,

vy-v = (00000101).

For simplicity, we use ab for a - b.
Let 1 denote the all-one 2™-tuple, 1 = (1,1,...,1). For 1 <1, <iz3 <+ <
1; < m, the product

UiV, * 0 Yy

is said to have degree l. Since the weights of v,,v2,..., v, are even and powers
of 2, it can be shown that the weight of the product v; v, --- v;, is also even
and a power of 2, in fact 2™~/

The r-th order RM code, RM, ,, of length 2™ is generated by the following
set of vectors:

GRM(T,m) = {1s011v2)'--)vm$v1v2avlv31"-1vm—lvma

... up to products of degree r}. (2.32)

There are

Kom=14(7)+ (3 4+ (7)

vectors in Gru(r,m) and they are linearly independent. If the vectors in
Gru(r,m) are arranged as rows of a matrix, then the matrix is a generator
matrix of the RM code, RM, m. For 0 <! < r, there are exactly (7 ) rows
in Grm(r,m) of weight 2™~ All the codewords of the RM code, RM.,. ,, with
0 < r < m, have even weights. It is also clear that the (r — 1)-th order RM
code, RM,._} m, is a proper subcode of the r-th order RM code, RM, .
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Example 2.3 Let m = 4. The 2nd order RM code of length 16 is generated
by the following 11 vectors:

vo=1 1111111111111111

v, 0000000011111111
v3 0000111100001111
v 0011001100110011
v, 0101010101010101

v3vy 0000000000001111
VU4 0000000000110011
VU4 0000000001010101
v2v3 0000001100000011
v1v3 0000010100000101
vV 0001000100010001

This is a (16, 11) code with minimum distance 4.
AA

The code given in Example 2.1 is the 1st order RM code, RM; 3, of length 8.
Let

11
G = [ o 1 ] (2.33)

be a 2 x 2 matrix over GF(2). The two-fold Kronecker product of G(3 3 is
defined as

[1 1 11
G = 0 1]® 0 1]
[1 1 1 1
01 0 1
= (2.34)
0 01 1
0 0 0 1

where @ denotes the Kronecker product. The 3-fold Kronecker product of
G(2,2) is defined as

11 11 11
G e
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20 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

11111111
01010101
00110011
_loo0oo0100001
" o000 1111 (2:35)
00000101 .
0000O0UO0T11
| 000000 O 1|

Similarly, we can define the m-fold Kronecker product of G(2 7). Let N = 2™,
We use G(n,n) to denote the m-fold Kronecker product of G(;2). G(n,n) is a
2™ x 2™ matrix over GF(2). The rows of G(n,n) have weights, 2°,2!,22 ... 2™,
and the number of rows with weight 2™ ' is (') for 0 <1 < m.

The RM codes of length N = 2™ can be expressed in terms of the rows of
G(n,~)- Let Gru(r,m) denote the matrix formed by the rows of Gy, ¥) With
weights equal to or greater than 2™~". Then Gry(r,m) is a generator matrix
for the r-th order RM code, RM, 1, of length N = 2™ [24]. Actually, Grum(r,m)
is the same set of rows as that given in (2.32). In the above construction of
RM codes, we can also set the base matrix G(3 ) of (2.33) as

10
s [10],

For m = 3 and r = 1, the rows of weights 4 and 8 in G (33 23) of (2.35) form
the generator matrix of the 1st order (8,4) RM code given in Example 2.1.

Let u = (uj,us,...,un) and v = (v1,v2,...,vn) be two N-tuples over
GF(2). From u and v, we form the following binary 2N-tuple:

fulu + v| £ (wy,...,un, U +v1,...,un + UN). (2.36)

Let C; and C; be an (N, K,,d,)} and an (N, K,,d;) binary linear codes, re-
spectively. Assume that dy > d;. Form the following code:

|C1]Cy + C2| £ {Juju +v|: u € C; and v € Cp}. (2.37)
Then |C1|C) + C;| is an (2N, K; + K3, d) binary linear code with

d = min{2d;,d,}. (2.38)
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LINEAR BLOCK CODES 21

The above construction of a code from two component codes is called the
||y + v]-construction [66] which is a powerful technique for constructing pow-
erful long codes from short codes.

RM codes of length 2™ can be constructed from RM codes of length 2™~!
using the |u}u + v|-construction [66]. For m > 2, the r-th order RM code
RM; ,, in u|u + v|-construction is given below:

RM,,, = {|ulu+v|: u € RM, n_; and v € RM,_;,,n_1} (2.39)

with generator matrix

GRM (1‘, m) =

Gru(rm 1) Gru(rm—1) ] (2.40)

0 Gnu(r—l,m—l)

where O is a zero matrix. Equation (2.40) shows that a RM code can be
constructed from short RM codes by a sequence of |u|u + v|-constructions.
Consider a boolean function f(z1,2s,...,2m) of m variables, z,,z3,...,Zm,
which take values 0 or 1. For each combination of values of z,,z2,..., and z,
the function f takes a truth value either 0 or 1. For the 2™ combinations of
values of z;,Z2,...,Zm, the truth values of f form a 2™-tuple over GF(2).
For a nonnegative integer { less than 2™, let (by, bi2, . - -, bin) be the standard
binary representation of I, such that ! = buy + 412246322 +--- +b;;n2™ L. Fora

given boolean function f(z1,22,...,Zm), we form the following 2™-tuple (truth
vector):
v = (V1,V2,. .., Vl41,-00, V2m) (2.41)
where
vier 2 f(bu,bizs- . bim) (2.42)
and (b1, bz, ..., bim) is the standard binary representation of the index integer

1. We say that the boolean function f(z1,22,...,Zm) represents the vector v.
We use the notation b(f) for the vector represented by f(z;,z2,... s Tm)-
For 1 € i < m, consider the boolean function

f(zl)IZa"'aIm)=$i' (243)

It is easy to see that this boolean function represent the vector v; defined by
(2.31). For 1 < 4,j < m, the function

f(z1,22,. .., Zm) = TiZ; (2.44)
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22 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

represents the logic product of v; and v;, represented by g(z,,z2,..., Zm) = ;i
and h(z;,z2,...,ZTm) = T;j, respectively. For 1 <4, <i3 <:-- < i, < m, the
boolean function

f(zl,zz,...,::m)=:c.-,::,-,---z,~r (2.45)
represents the logic product of v;,,v;,,..., and v;,. Therefore, the generator
vectors of the r-th order RM code of length N = 2™ are represented by the
boolean functions in the following set

B(r,m) = {1,21,232,...,2m, 2122, Z1%3,... , Zm—-1Zm,

. up to all products of r variables}. (2.46)

Let P(r,m) denote the set of all boolean functions (or polynomials) of degree
r or less with m variables. Then

RM, . = {b(f) : f € P(r,m)}. (2.47)

Finally, we want to point out that the dual code of the r-th order RM code,
RM; m, is the (m — r — 1)-th order RM code, RMpm_r_1 m.
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3 TRELLIS REPRESENTATION OF
LINEAR BLOCK CODES

A code trellis is a graphical representation of a code, block or convolutional, in
which every path represents a codeword (or code sequence). This representation
makes it possible to implement maximum likelihood decoding (MLD) of a code
with a significant reduction in decoding complexity. Chapter 3 presents the
fundamental concepts and basic structural properties of trellises for linear block
codes. An encoder with finite memory for a linear code is modeled as a finite-
state machine. With this model, representation of the dynamic behavior of the
encoder by a trellis diagram is easy to conceive. During an encoding interval,
the state of the encoder at a specific time instant is simply defined by the
information bits stored in the memory which affect both the past and future
outputs of the encoder. To facilitate the construction of a code trellis, the
generator matrix of a code is put in trellis oriented form. From this trellis
oriented generator matrix, some basic structural properties can be derived.
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24 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

3.1 TRELLIS REPRESENTATION OF CODES

An encoder for a linear code C with a finite memory, for which the output
code bits at any time instant during an encoding interval ' = {0,1,2,...}
are uniquely determined by the current input information bits and the state
of the encoder at the time can be modeled as a finite-state machine. The
dynamic behavior of such an encoder can be graphically represented by a
state diagram expanded in time, called a trellis diagram (or simply trellis)
as shown in Figure 3.1.

The encoder starts from some initial state, denoted 9. At any time instant 1
during its encoding interval I', the encoder resides in one and only one allowable
state in a finite set. In the trellis diagram, the set of allowable states at time-
i is represented by a set of vertices (or nodes) at the i-th level, one for each
allowable state. The encoder moves from one allowable state at one time instant
to another allowable state at the next time instant in one unit of time. This
is called a state transition which, in the trellis diagram, is represented by
a directed edge (or branch) connecting the starting state to the destination
state. Each edge is labeled with the code bits that are generated during the
state transition. The set of allowable states at a given time instant i is called
the state space of the encoder at time-i, denoted Z;(C). A state o; € L;(C)
is said to be reachable if there exists an information sequence that takes the
encoder from the initial state oy to state o; at time-i. Every state of the encoder
is reachable from the initial state g¢. In the trellis, every vertex at level-i for
i € [ is connected by a path from the initial state og. The label sequence of
this path is a code sequence (or a prefix of a code sequence). Every vertex
in the trellis has at least one incoming edge except for the initial state and at
least one outgoing edge except for a state called the final state. Encoding of
an information sequence is equivalent to tracing a path in the trellis starting
from the initial vertex ogo. If the encoding interval I" is semi infinite, the trellis
continues indefinitely; otherwise it terminates at a final state, denoted oy.
Convolutional codes have semi infinite trellises, while the trellises for linear
block codes terminate at the end of each encoding interval.

For i € T, let I; and O; denote the input information block and its corre-
sponding output code block, respectively, during the interval from time-i to
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i-th level
i

2nd level o

1 o

1st level

l

{O— O e e o0 ({—\J

f

state

Time —
transition

Figure 3.1.  Trellis representation of a finite state encoder.

time-(i + 1). Then the dynamic behavior of the encoder for a linear code is

governed by two functions:

(i) Output function,
O;: = filoi, L),

where fi(o:, ;) # fi(oi, I}) for I # I;.
(ii) State transition function,
oi+1 = giloy, 1),

where ; € Z;(C) and 0i4) € L4 (C) are called the current and next states,
respectively. In the trellis diagram for C, the current and next states are

connected by an edge (0i,0i1+1) labeled with O;.
A code trellis is said to be time-invariant if there exists a finite period

{0,1,...,v} C T and a state space E(C) such that
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(1) i(C)cE(C)for0<i<vandZ;(C)=2X(C)fori>vand
(2) fi=fandgi=gforalliel.

A code trellis that is not time-invariant is said to be time-varying. A trellis
diagram for a linear block code is, in general, time-varying. However, a trellis
diagram for a convolutional code is usually time-invariant. Figure 3.2 and 3.3
depict a time-varying trellis diagram for a block code and a time-invariant trellis
diagram for a convolutional code, respectively.

3.2 BIT-LEVEL TRELLISES FOR BINARY LINEAR BLOCK CODES

Consider a binary (N, K) linear block code C with generator and parity-check
matrices, G and H, respectively. During each encoding interval, a message
of K information bits is shifted into the encoder memory and encoded into a
codeword of N code bits. The N code bits are formed and shifted onto the
channel in N bit times. Therefore, the encoding span T is finite and consists
of N + 1 time instants,

r={o0,1,2,...,N}.

C can be represented by an N-section trellis diagram over the time span T". Let
£(C) denote the encoder for C.

Definition 3.1 An N-section trellis diagram for a binary linear block code C
of length N, denoted T, is a directed graph consisting of N + 1 levels of vertices
(called states) and edges (called branches) such that:

(1) For 0 < i < N, the vertices at the i-th level represent the states in the
state space X;(C) of the encoder £(C) at time-i. At time-0 (or the 0-th
level) there is only one vertex, denoted oy, called the initial vertex {or
state). At time-N (or the N-th level), there is only one vertex, denoted
oy, called the final vertex (or state).

(2) For 0 < i < N, a branch in the i-th section of the trellis T connects
a state g;_; € L;_1(C) to a state o; € I;(C) and is labeled with a
code bit u; that represents the encoder output in the bit interval from
time-(i — 1) to time-i. A branch represents a state transition.
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28 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS

(3) Except for the initial state, every state has at least one, but no more
than two, incoming branches. Except for the final state, every state has
at least one, but no more than two, outgoing branches. The initial state
has no incoming branches. The final state has no outgoing branches.
Two branches diverging from the same state have different labels.

(4) There is a directed path from the initial state og to the final state oy
with a label sequence (uy,uz,...,uy) if and only if (u1,uz,...,ux)is a
codeword in C.

fa¥a¥

Two states in the code trellis are said to be adjacent if they are connected
by a branch. During one encoding interval I, the encoder starts from the initial
state g, transverses a sequence of states

(UO,UD-'- 1Tiyees )af))
generates a code sequence
(u1,Uz, .0y Uiy oo UND,

and then reaches the final state oy. The bit-level 8-section trellis diagram
for the (8,4) linear block code given in Example 2.1 (Table 2.1) is shown in

Figure 3.2, ,
For 0 < i < N, let |E;(C)| denote the cardinality of the state space I;(C).

Then, the sequence,
(1Z(CW [Z2(CY; - - -, [EN -1 (C)), | 2N (C)D),

is called the state space complexity profile, which is a measure of the
state complexity of the N-section code trellis . We will show later that for
0<i< N, |Zi(C)| is a power of 2. Define

pi(C) % log, |E:(C)),

which is called the state space dimension at time-i. When there is no
confusion, we simply use p; for p;(C) for simplicity. The sequence,

(Po,Pl,---.PN),
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is called state space dimension profile. From Figure 3.2, we see that the
state space complexity and dimension profiles for the (8,4) code given in Ex-
ample 2.1 are (1,2,4,8,4,8,4,2,1) and (0,1,2,3,2,3,2,1,0), respectively.

3.3 TRELLIS ORIENTED GENERATOR MATRIX

To facilitate the code trellis construction, we put the generator matrix G in a
special form. Let u = (u;,uz,... ,un) be a nonzero binary N-tuple. The first
nonzero component of u is called the leading ‘1’ of u and the last nonzero
component of u is called the trailing ‘1’ of u.

A generator matrix G for C is said to be in trellis oriented form (TOF)
if the following two conditions hold:

1) The leading ‘1’ of each row appears in a column before the leading ‘1’
g

of any row below it.

(2) No two rows have their trailing “ones” in the same column.

Any generator matrix for C can be put in TOF by two steps of Gaussian

elimination.

Example 3.1 Consider the (8,4) RM code given in Example 2.1 with following

generator matrix,

11111111
0 00O0C1111
00110011
01010101

It is not in TOF. By interchanging the second and the fourth rows, we have

11111111
01010101
00110011
0000 1111
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Add the fourth row of the above matrix to the first, second and third rows.
These additions result in the following matrix in TOF:

91 11110000
c=|9|= 01011010
g3 00111100
94 00001111
AA
The span of a row g = (g1,92,-..,9gn) in a trellis oriented generator matrix

(TOGM) G is defined as the smallest interval {i,i +1,...,j} which contains

all the nonzero bits of g. This is denoted as span(g) £ [i,j]. For arow g in

a TOGM G whose span is [i, j], the active span of g, denoted aspan(g), is

defined as aspan(g) £ [i,j — 1] for i < j and aspan(g) £ @ (empty set) for i = j.
Let g,,95,...,9 x be the K rows of a TOGM G with

9= (911,912,---,9m)
for 1 <1 < K. Then

5 g g1z ... GQiN

g g g2 ... 2N
e=| =" " )

9k gk1 9K2 .- 9KN

Let (a;,az,...,ax) be the block of K information bits (called a message) to
be encoded. The corresponding codeword is given by

u = (ul,uz,...,uN)

= al.gl+a2.gz+...+ax.g1{_

We see that the {-th information bit a; affects the output u of the encoder
£(C) over the span of the I-th row g, of the TOGM G. This span(g;) may be
regarded as the constraint length of the code associated with the [-th input
information bit a;.

At time-i with 1 < 1 < N, the number of information bits that affect the next
output code bit u;;; is equal to the number of rows in G whose active spans
contain i. These information bits define the state of the encoder at time-:.
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3.4 STATE SPACE FORMULATION

In the following, we give a mathematical formulation of the state space of the
N-section trellis for an (N, K) linear block code C over GF(2) with a TOGM
G.

At time-i, 0 < i < N, the rows of G are divided into three disjoint subsets:

(1) GP consists of those rows of G whose spans are contained in the interval
[1,4].

(2) G{ consists of those rows of G whose spans are contained in the interval

[i + 1,N].
(3) G? consists of those rows of G whose active spans contain 1.

Let A?, A/ and A} denote the subsets of information bits that correspond to
the rows of G, G;-' and G}, respectively. The information bits in A? do not
affect the encoder outputs after time-z, and hence they become the past with
respect to time-i. The information bits in A/ only affect the encoder outputs
after time-i. Since the active spans of the rows in G} contain the time instant
i, the information bits in A? affect not only the past encoder outputs up to
time-i but also the future encoder outputs beyond time-i. We say that the
information bits in A} define a state of encoder £(C) for the code C at time-i.
Let p; 2 |A?| = |G?|. Then there are 2#* distinct states that the encoder £(C)
can occupy at time-i; each state is defined by a specific combination of the p;
information bits in A?. These states form the state space I;(C) of the encoder
£(C) (or simply of the code C). The parameter p; is the dimension of the
state space £;(C). In the trellis representation of C, the states in I;(C) are
represented by 27 vertices at the i-th level of the trellis.

Example 3.2 Consider the TOGM G for the (8,4) RM code given in Exam-
ple 3.1. The spans of the four rows are: span(g,) = [1,4], span(g;) = [2,7],
span(g,) = [3,6), and span(g,) = [5,8]. Their active spans are therefore:
aspan(g;) = [1,3), aspan(g,) = (2, 6], aspan(g;) = [3,5] and aspan(g,) = [5,7].
For each i with 0 < i < 8, counting the number of rows which are active at
time-i yields the state space dimension profile (0,1,2,3,2,3,2,1, 0).

AN
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The above formulation of a state space actually provides a sequential ma-
chine model for the encoder £(C).

3.5 STATE TRANSITION AND OUTPUT

For 0 < i < N, suppose the encoder £(C) is in state g; € £;(C). From time-i
to time-(i 4+ 1), £(C) generates a code bit u;4; and moves from state o; to a
state 041 € L;41(C). Let

G! = {g(l‘),g;‘),...,gf;?} (3.1)
and .
Al = {al,a’,... 0} (3.2)

where p; = |G?!|. The current state o; of the encoder is defined by a specific
combination of the information bits in A?.

Let g* be the row in G/ whose leading ‘1’ is at position-(i + 1). The unique-
ness of this row g~ (if it exists) is guaranteed by the first condition in the
definition of a generator matrix in TOF given in section 3.3. Let g7, , denote
the (i + 1)-th component of g*. Then g}, = 1. Let a* denote the infouma-
tion bit that corresponds to row g=. It follows from (2.3) and the structure of
the TOGM G that the output code bit u,,; generated during the bit interval
between time-i and time-(i + 1) is given by

Pi . R
Ui+l = a” + Z ag‘)gf:i')+11 (3-3)
i=1

where gf’?“ is the (i + 1)-th component of gfi) in G. Note that a* begins
to affect the output of the encoder £(C) at time-(i 4+ 1). For this reason, the
bit a* is regarded as the current input information bit. The second term
in (3.3) is the contribution from the state o; defined by the information bits
in A = {agi),a(zi),...,aﬁ,ii)} which are stored in memory. From (3.3), we see
that the current output u,4+; is uniquely determined by the current state o; of
the encoder £(C) and the current input a*. The output bit u;,; can have two
possible values depending on the current input information bit a*; each value
takes the encoder £(C) to a different state at time-(i + 1). That is, there are

two possible transitions from the current state o; to two states in £,4,(C) at
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time-(i + 1). In the code trellis, there are two edges (or branches) diverging
from the vertex o; labeled with ‘0’ and ‘1’, respectively.

Suppose there is no such row g* in G,-!. Then the output code bit is given
by

Pi . .
Uiyl = z “f') : 9;,1')4-1- (3.4)
=1

In this case, we may regard that the current input information bit a* is being
set to “0”, i.e. a* = 0 (this is called a dummy information bit). The output
code bit u;,; can take only one value given by (3.4) and there is only one
possible transition from the current state o; to a state in X;4,(C). In the
trellis T, there is only one branch diverging from the vertex o;.

Example 3.3 Again we consider the (8,4) code with its TOGM G given in
Example 3.1. Consider time-2. Then we find that G% = 0,GJ = {g,,9,} and
G3 = {9,,9,}. Therefore, the information bits a; and a; define the state of the
encoder at time-2 and there are 4 distinct states defined by four combinations
of values of a; and @, {00,01,10,11}. We also see that g* = g;. Therefore,
the current input information bit is a* = a3. The current output code bit u;
is given by

us = az+a;-giz+az-gs

as; + a;.

For every state defined by a; and a;, u; has two possible values depending on
a;. In the trellis, there are two branches diverging from each state at time-2,
as shown in Figure 3.2.

Now consider time-3. At i = 3, we find that G = 0, GJ = {g,} and
G} = {91,92,93}. Therefore, the information bits a;,a; and a3 define 8 states
at time-3, as shown in Figure 3.2. There is no row g in G{ with leading ‘1’
at position (or time) i = 4. Hence we set the current input information bit
a* = 0. The output code bit u4 is given by

ug = a1-G1ataz-gzqtaz-gs

= a t+az2 +as.
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In the trellis, there is only one branch diverging from each of the 8 states, as
shown in Figure 3.2.

FAVAN

Let g° be the row in G? whose trailing ‘1’ is at the position-(i + 1). (Note
that this row g° may not exist.) The uniqueness of the row g° (if it exists)
is guaranteed by the second condition of a generator matrix in TOF given in
Section 3.3. Let a® be the information bit in A} that corresponds to row g°.
Then at time-(i + 1),

Gl =(G\{g°})u{g} (3.5)

and

A = (ANa"}H)u {a7}. (3.6)

The information bits in Aj}, define the state space Li+1(C) at time-(i + 1).
The change from A{ to A? +1 defines a state transition from the current state o;
defined by A? to the next state Oit+y defined by Af,,. Therefore from AL AL,
(3.3) and (3.4), we can construct the N-section code trellis T for C.

The construction of the N-section trellis T is carried out serially, section by
section. Suppose the trellis has been constructed up to section-i. Now we want
to construct the (i + 1)-th section from time-i to time-(i + 1). The state space

Z;(C) is known. The (i + 1)-th section is constructed by taking the following
steps:

(1) Determine GZ,, and Aiy, from (3.5) and (3.6). Form the state space
Li4+1(C) at time-(i + 1)

(2) For each stateo; € £(C), determine its state transition(s) following the

state transition rules given above. Connect o; to its adjacent state(s) in
Zi+1(C) by edge(s).

(3) For each state transition, determine the output code bit Ui+ from the

output function of (3.3) or (3.4), and label the corresponding edge in
the trellis with Uigy.
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3.6 TIME-VARYING STRUCTURE

During the encoding interval I' = {0,1,...,N}, the output function of the
encoder £(C) changes between (3.3) and (3.4). Also, the set {g{'}“,ggz“, ey
92),.' +1} in the summations of (3.3) and (3.4) may change from one time instant
to another. This is because each column in the TOGM is, in general, not a
downward shift of the column before it. Therefore, the output function of £(C)
is time-varying. As the encoder £(C) moves from time-i to time-(i 4 1), its
state space may also change, i.e., £;31(C) # Zi(C). Consequently, the trellis
for £(C) is time-varying.

To describe the time-varying state space of £(C), there are four cases to
consider.

Case I: There is no such row g° in G2, but there is a row g* in G{. As
the encoder moves from time-i to time-(i + 1), the active span of g*
contains the time instant : + 1. Therefore, g~ is added to the set G}
to form G{,,. The information bit a” that corresponds to g~ is now
in the encoder memory and is included in determining the next and
future states of the encoder. The next state ¢4, is determined by the
information bits

(1) (i) -

G
8, ,0, ,...,ap.),a.

Since |Gi,,| = |G + 1, pis1 = pi + 1. This results in state space

expansion.

Case II: There is a row g° € G?! and a row g~ € G{. When the encoder
moves from time-: to time-(i + 1), the span of g° moves into the interval
[1,i + 1] and g° is replaced by g~ in Gi,,. In this case, the information
bit a® that corresponds to g% becomes part of the past with respect to
time-(i+ 1) and will not affect the encoder outputs further; however, the
information bit @~ is now in the memory and is included in determining
the next and future states of the encoder. Assuming that a° = agi), the
next state o;4; of the encoder is then determined by the information
bits

a;i),agi), ces ,aﬁ,';),a'.
Therefore, from time-i to time-(i + 1), the state space of the encoder

and its dimension remain the same, i.e., pi41 = pi.
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Case III: There is no such row g° in G? and no such row g* in G/. In this
case, Gi,, = G! and there in no change in the state space dimension
as the encoder moves from time-i to time-(i + 1). The next state is
determined by the same set of information bits as at time-i, i.e.,

a(li), a;i), ceey af,"__).

Case IV: There exists a row g° € G? but there is no such row g* € Gl-’ . In
this case, g° is excluded from G} to form G, and its corresponding
information bit a® becomes part of the past as the encoder moves from
time-i to time-(i + 1). Assuming that a® = agi), the state o;4, of the
encoder is determined by the information bits

ag"),ag"), ey aﬁ,‘?.

Consequently, |Gf+1| = |G?| -1 and pi41 = p; — 1. This results in state

space reduction.

Example 3.4 Consider the (8,4) code given in Example 3.1. From its TOGM
G, we see that for i = 0,1 and 2, there is no such row g° in G?, but there is
arow g* in G{. Hence there is state space expansion from time-0 to time-3
as shown Figure 3.2. We note that there is such a row g° in G§ and there is
no such row g~ in G{ . Therefore, there is state space reduction from time-3 to

time-4, as shown in Figure 3.2.
fAVAY

From the above analysis of the N-section trellis for an (N, K) linear block
code C, we have the following observations. At time-i, with 0 <1 < N,

(1) The information bits in A? become the past and do not affect the future
outputs of the encoder beyond time-i.

(2) The information bits in A/ affect the encoder outputs only beyond time-

i, i.e., they are the future input information bits.

(3) The information bits in A} are the bits stored in the encoder memory

that define the encoder state at time-i.

The above observations make the formulation of a trellis diagram for a block
code the same as for a convolutional code [62].
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3.7 STRUCTURAL PROPERTIES

For 0 < i < j < N, let C;; denote the subcode of C consisting of those
codewords in C whose nonzero components are confined to the span of j — 1
consecutive positions in the set {i +1,i +2,...,j}. Clearly, every codeword in
C;,;j is of the form,

(0,0,...,0,u,~+1,u,-+2,...,uj,O,O,...,Oi.
i N-j
It follows from the definition of C;; and the structure of the TOGM G for
C that C;; is spanned by those rows in G whose spans are contained in the
interval [i + 1,j]. The two subcodes, Cy; and C; n, are spanned by the rows
in G? and G'{ , respectively, and they are called the past and future subcodes
of C with respect to time-i.

For a linear code D, let k(D) denote its dimension. Then, k(Cy,;) = |G¥|
and k(Ci n) = |G{]. Recall that the dimension of the state space £;(C) at
time-7 is

pi(C) = |G|l =K |G| ~|G]|
= K —k(Cqo:) - k(Cin). (3.7
This gives a relationship between the state space dimension p;(C) at time-i
and the dimensions of the past and future subcodes, Cp ; and C; n, of C with
respect to time-1.

Note that Cp; and C;n have only the all-zero codeword 0 in common.

The direct-sum of Cp; and C; v, denoted Co; ® C; v, is a subcode of C with

dimension

k(Co‘,') + k(C.',N).

Let C/(Co,i ® Ci n) denote the partition of C with respect to Co,; & C; n.
Then this partition consists of

(C/(Cos® Ciw)| = 2K-HEITHE)
= 2 (3.8)

cosets of Cp ; ® C; n. Eq.(3.8) says that the number of states in the state space
£;(C) at time-i is equal to the number of cosets in the partition C/(Co,i®C;i N).
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Time 0 1 N
1)) or
o

A coset in A coset in
poi(C)/Ci'n  Pin(C)/Cln

Figure 3.4. The paths in the code trellis that represent the 2X—Pi codewords in v &
(Co,i ® Ci,N).

Let S; denote the subspace of C that is spanned by the rows in G{. Then
each codeword in S; is given by

v = (a(‘), (i)).G§
- a(l) (')+a(l) g8 (1) +- +a(') gi:.) (3.9)

where afi) € A} for 1 <1 < p;. The 27 codewords in S; can be used as
the representatives for the cosets in the partition C/(Co; ® Ci n). Therefore,
S;: is the coset representative space for the partition C/(Co; ® Ci n). From
(3.9), we see that there is one-to-one correspondence between v and the
state g; € I;(C) defined by (a(l'),a(z'), af,',)) Since there is a one-to-one
correspondence between v and a coset in C/(Cy; @ C; n), therefore, there is
a one-to-one correspondence between a state in the state space X;(C) and
a coset in the partition C/(Co; ® Ci,n)-

With the above one-to-one correspondence in the trellis T, the codeword v
given by (3.9) is represented by a path that passes through the state o; defined
by the information bits, a(l'), ag'), .. af,') (i.e., a path that connects the initial
state og to the final state oy through the state ¢;). If we fix the information
bits, al'), ag'), .. af,'), and allow the other K — p; information bits to vary, we

obtain 2X-Picodewords of C in the coset
v@(Co,,'QC.',N)é {v+u:u€Co,.-$C’g‘N} (3.10)

with v as the coset representative. In the trellis, these 2K~#: codewords are
represented by paths that connect the initial state o9 to the final state oy
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through the state o; at time-i defined by the information bits, a(li), agi) y -
'), as shown in Figure 3.4. Note that

“

K-p;,= k(Co',') + k(C."N) (3.11)

which is simply the dimension of Cy; ® C; n.

For 0 < i < j £ N, let p; j(C) denote the linear code of length j —i obtained
from C by removing the first i and last N — j components of each codeword
in C. This code is called a punctured (or truncated) code of C. Let C}’;
denote the punctured code of the subcode C; ;, i.e.,

Ct; 2 pii(Cij)- (3.12)
It follows from the structure of the TOGM G that
k(p:;(C)) = K — k(Co i) — k(Cj,n) (3-13)

and
k(C{) = k(Cij). (3.14)

Consider the punctured code po (C). Partition py;(C) based on Cg;. It
follows from (3.13) and (3.14) that the partition po ;(C)/Cy'; consists of

2K_k(cﬂ,i)-k(C|,N) = 2P|

cosets of C’;. We can readily see that there is a one-to-one correspondence
between the cosets in po ;(C)/Cy'; and the cosets in C/(Co i®C;,n), and hence a
one-to-one correspondence between the cosets in po i(C)/Cy'; and the states
in the state space £;(C). The codewords in a coset in po ;(C)/Cy'; are simply
the prefixes of the codewords in its corresponding coset in C/(Co,; ® Ci n).
Hence the codewords in a coset of po ;(C)/Cy'; will take the encoder £(C) to
a unique state o; € 5;(C). In the trellis T, they are the paths connecting the
initial state og to the state o; as shown in Figure 3.4. Let L(09,0;) denote the
paths in the trellis T that connect the initial state oy to the state o; in I;(C).
Then L(0y,0;) is a coset in the partition py ;(C)/Cg';-

Now we consider the punctured code p; 5(C). Partition p; 5(C) based on
Cty = pi,n(Cin). Then it follow from (3.13) and (3.14) that the partition
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Time 0 i 0 j N

Figure 3.5.  Paths in the code trellis that represent the codewords in C; ;.

pin(C)/C}y consists of

9K —k(Co,i)-k(Ci.N) = 90:

cosets of C}'y. Again we see that there is a one-to-one correspondence
between the cosets in p; n(C)/C}'y and the cosets in C/(Co,i ® Ci n), and
hence a one-to-one correspondence between the cosets in p; ¥(C)/C}’y and
the states in the state space £;(C). In the trellis, the codewords in a coset
pi,n(C)/C}'y form the paths that connect a state o; € E;(C) to the final state
o as shown in Figure 3.4. Let L(04,0) denote the paths in the trellis T that
connect the state o; € Z;(C) to the final state g5. Then L(c;,0y) is a coset in
the partition p; ~(C)/C{'y-

For0<i< j<N,let 050) and a';o) denote two states on the all-zero path 0
in the trellis T at time-7 and time-j, respectively. Let L(a’,(-o),a';.o)) denote the
paths of length 7 — ¢ in T that connect a$°’ to ago)' Consider the paths in T
that start from the initial state oq, follow the all-zero path O to the state a§°’ ,
transverse through the paths in L(o'(-o),a'go)) to the state aﬁo), then follow the
all-zero path 0 until they reach the final state o5 as shown in Figure 3.5. These
paths represent the codewords in the subcode C; ; of C. This implies that

L(a‘(O),agm) =C¥,. (3.15)

Let v = (v1,v2,...,vn) be a path in the code trellis T. For0<i:<j <N,

let as") and a';-") be two states on the path v at time-t and time-j, respectively.
(v)
Hi
Consider the paths in T that start form the initial state gg, follow the path v

to the state o!®, transverse through the paths in L(%®,{®), then follow the
i i j

Let L(ag"),ag")) denote the paths of length j — i that connect ag") to o
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Time 0 i v j N

9

pii(v) + C{j
Figure 3.6. Paths in the code trellis that represent the codewords in the coset u @ C; ;.

path v until they reach the final state oy as shown in Figure 3.6. These paths
represent the codewords in the following coset of C; ;:

v C,"J' £ {v +u:uc€ C,"J'}. (3.16)

This is a coset in the partition C/C; ;. This implies that L(o{", aﬁ-")) is a coset
of C!%; in p; ;(C), i.e.,
(v} _(v)y _

L(a;”,0;”) = pi,j(v) + CF; € pi;(C)/CL5, (3.17)
where p; ;(v) denotes the vector of length j—1i obtained from v by removing the
first i and last N — j components of v. For any two connected states o; € £,(C)
and ¢; € X;(C) with 0 < i < j < N, they must be on a path in the trellis T
It follows from (3.17) that

L{ci,0;) € p,',j(C)/C:"j. (3.18)
Therefore, the number of paths that connect a state o; € E;(C) to a state
o; € £;(C) is given by

2"(C:-'J), if o; and o, are connected,

|L{oi,05)| = { (3.19)

0, if oy and o are not connected.

For 0 < i< j <k < N,let £;(04,0x) denote the set of states in Z;(C)
through which the path in L(0,0) connect the state o; to the state o) as
shown in Figure 3.7. Let

L(oi,0;)0 L(0j,0k) £ {uov:u€ L(si,0;),v € L(0j,04)} (3.20)
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Time i ] k

)

LOA ok

gi

]

Bj(oi,0%)

Figure 3.7.  The state set L;(04,0%).

where u o v denotes the concatenation of two sequences u and v. In the trellis,
L(0:,0) o L(oj,0%) consists of those paths in L(0y,0%) that connect the state
o; to the state o through the state ;. Then,

L(oi,ok) = U L(o;,0;) 0 L(j,0k). (3.21)

a;€T;(0i,0n)

The above developments give some fundamental structural properties of an
N-section trellis T for a linear block code C.
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4 STATE LABELING, TRELLIS
CONSTRUCTION PROCEDURES AND
TRELLIS SYMMETRY

The construction of a code trellis can be facilitated by labeling the states at
each level of the trellis. State labeling is also necessary in the implementation
of a trellis-based decoding algorithm. This chapter presents three methods
for labeling the states of the N-section trellis for an (N, K) linear block code.
The first two methods are based on the information set that defines the state
space at a particular encoding time instant and the third method is based on
the parity-check matrix of the code. The first two methods are more efficient
than the third one for codes with K < N — K; however, the third method is
more efficient for codes with N — K < K. Based on these labeling methods,
construction procedures for the N-section trellis for an (N, K) linear block code
are presented. Also presented in this chapter is the mirror symmetry structure
of a code trellis. This symmetry structure is useful in decoding.
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4.1 STATE LABELING BY THE STATE DEFINING INFORMATION
SET

In a code trellis, each state is labeled by a fixed sequence (or given a name).
This can be accomplished by using a K-tuple A with components correspond-
ing to the K information bits, a;,482,...,a8x, in a message. At time-i, all the
components of A are set to zero except for the components at the positions
corresponding to the information bits in A} = {a(l*),a;‘), . ,af,?}. Every com-
bination of the p; bits at the positions corresponding to the information bits
in A} gives the label /(0;) for the state o; defined by the information bits,
agi) ,agi), ceny af,'?.

Example 4.1 Consider the (8,4) code given in Example 3.1. At time-4, we
find that A{ = {a;,a3}. There are 4 states corresponding to 4 combinations of
az and a3. Therefore, the label for each of these 4 states is given by (0, a3, a3, 0).

FAVAY

The construction of the N-section trellis for an (N, K) linear block code C
can be carried out as follows. Suppose the trellis T' has been constructed up to
section-i. At this point, G}, A} and Z;(C) are known. Each state o; € I;(C)
is labeled by a K-tuple. The (i + 1)-th section is constructed by taking the
following steps:

(1) Determine G§,, and Af,, from (3.5) and (3.6).

(2) Form the state space L;;1(C) at time-(i + 1) and label each state in
Li+1(C) based on A ,. The state in £;;,(C) form the vertices of the
code trellis T at the (i + 1)-th level.

(3) For each state g; € £;(C) at time-i, determine its transition(s) to the
state(s) in I;41(C) based on the information bits of a* and a°. For each
transition from a state o; € L;(C) to a state 041 € L;41(C), connect
the state o; to the state 0,4, by an edge (a,-,a,-+1).

(4) For each state transition (0y,0;41), determine the output code bit 4,
and label the edge (o, 0:41) with u;y;.

Recall that at time-i, there are two branches diverging from a state in £;(C)
if there exists a current information bit a*. One branch corresponds to ¢* =
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Table 4.1.  State defining sets and state labels for the 8-section trellis for the (8, 4) linear

block code.
i | G! l a l a® | A? l State Label
0 e a | — ) (0000)
1 {91} a; | - {a1} (a,000)
2 {9:,92} a | — {a1,a2} (a1a200)
3| {91,92:93} | — | @ {a1,82,a3} | (a;a2a30)
4 {9293} ay | — {a2,03} (0a2a30)
5| {92:93,94} | — | a3 | {a2,03,a4} | (0aza3a4)
6| {929 | — |62| {aza4} (0az0ay4)
7 {94} - | a4 {a4} (000a4)
8 0 - | - ) (0000)

0 and the other corresponds to a* = 1. For the convenience of graphical

representation, in the code trellis T, we use the upper branch to represent
@™ = 0 and the lower branch to represent a* = 1. If a* is a dummy information
bit, then there is only one branch diverging from each statein Z;(C). This single
branch represents a dummy information bit. Using the above representation,
we can easily extract the information bits from each path in the trellis (the
dummy information bits are deleted).

Example 4.2 Consider the state labeling and trellis construction for the (8, 4)
RM code given in Example 3.1 whose TOGM G is repeated below,

o 11110000
col®@|_|0101 1010
gs 00111100
94 00001111

For 0 € i € 8, we determine the submatrix G? and the state defining in-
formation set A! as listed in Table 4.1. From A, we form the label for each
state in £;(C) as shown in Table 4.1. The state transitions from time-i to time-
(i + 1) are determined by the change from A] to Aj,,. Following the trellis
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Figure 4.1. The 8-section trellis diagram for the (8,4) RM code with state labeling by

the state defining information set.

construction procedure given above, we obtain the 8-section trellis diagram for
the (8,4) RM code as shown in Figure 4.1. Each state in the trellis is labeled
by a 4-tuple.

AL

In many cases, we do not need K bits for labeling the states of the N-section
trellis for a binary (N, K) linear block code C. Let (pg, p1,...,pn) be the state
space dimension profile of the trellis. Define

Pmax(C) £ max p; (4.1)

which is simply the maximum state space dimension of the trellis. From (3.7),
we find that pnax(C) < K. In general, ppay is smaller than K. Since the
number of states at any level of the trellis is less than or at most equal to
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Table 4.2.  State labeling for the (8,4) RM code using pmax(C) = 3 bits.

i| Ar | StateLabel
0 ] (000)

1 {a:} (a,00)

2 {a1,82} (a1a20)

3 | {a1,0z2,a3} (aya2a3)
4 {az, 03} (02630)

5 {(12,(13,64} (020304)
6 {az,a4} (aza40)

7 {as} (a400)

8 ] (000)

2Pmax(C), Pmax(C) bits are sufficient for labeling the states in the trellis. Con-
sider the state space £;(C) at time-i with 0 < ¢ < IV which is defined by the set
{a(l"),a(z"), ... ,af,il)} of p; information bits. For each state o; € X;(C), we form
a pmax(C)-tuple, denoted [(o;), in which the first p; components are simply

a(i),a(i),. .. ,a(i) and the remaining pnax(C) — pi components are set to 0, i.e.,
1 282 i g

1(0:) 2 (a”,al",...,ad,0,0,...,0). (4.2)
Then {(o;) is the label for the state o;.

Example 4.3 Again we consider the (8,4) RM code given in Example 4.2.
From the TOGM G of the code, we find the state space dimension profile of
the 8-section trellis for the code tobe (0,1,2,3,2,3,2,1,0). Hence pax(C) = 3.
Using 3 bits for labeling the states as described above, the state labels are given
in Table 4.2. Compared to the state labeling given in Example 4.2, one bit is
saved.

AN
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4.2 STATE LABELING BY PARITY-CHECK MATRIX
Consider a binary (N, K) linear block code C with a parity-check matrix
H=[h1,hz,..‘,hj,...,h1q], (4.3)

where, for 1 € j < N, h;j denotes the j-th column of H and is a binary
(N — K)-tuple. A binary N-tuple c is a codeword in C if and only if

c-HT =(0,0,...,0), (4.4)

N-K

where HT denotes the transpose of H. C is called the null space of H.
Let On_x denote the all-zero (N — K)-tuple (0,0,...,0). For1 <i < N,
let H; denote the submatrix that consists of the first i columns of H, i.e.,

H; =[h1,ha,...,hi}. (4.5)
It is clear that the rank of H; is at most N — K, i.e,
Rank(H;) < N — K. (4.6)
Then for each codeword ¢ € C§';,
c-HF =0y_k. (4.7)

Cy'; is the null space of H;.
Now we consider the partition

PO.i(C)/Céf.'-
Let D be a coset in po,i/Cg"; and D # Cy';. For every vector a € D,
a-H‘-T=(sx,sz,...,sN_K);£0N_K (4.8)
and is the same for all vectors in D, i.e., for a;,a; € D and a,; # a,,
al-H?'=a2-H?=(31,52,...,3N_K). (4.9)

The (N — K)-tuple (s;,383,...,5n-x) is called the label for the coset D. Let
D, and D, be two different cosets in po ;(C)/Cq;. Let a; € D and a; € D,.
It follows from the theory of linear block codes that a; # a2 and

al'H?¢az'H?.
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This says that different cosets in pg,:(C)/C{"; have different labels.

Recall the mathematical formulation of the state spaces of a code trellis.
There is a one-to-one correspondence between a state o in the state space
Z;(C) at time-i and a coset D € Po,i(C)/Cy’;, and the codewords of po ;(C) in
D form the paths that connect the initial state o to state o. This one-to-one
correspondence leads to the definition of a state label.

Let L(o9,0) denote the set of paths in the code trellis for C that connect
the initial state op to a state o in the state space ;(C) at time-i.

Definition 4.1 For 0 < i < N, the label of a state ¢ € L;(C) based on a
parity-check matrix H of C, denoted {(c), is defined as the binary (N — K)-
tuple

l(a)éa-H;r=(31,sz,...,sN_K), ‘ (4.10)

for any a € L(09,0). For i =0, H; = @ and the initial state oy is labeled with
the all-zero (N — K)-tuple, O _g. Fori = N, L(d¢,0;) = C and the final state
oy is also labeled with Oy _ k.

AA

It follows from the above definition of a state label, the one-to-one correspon-
dence between the states in T;(C) and the cosets in p; ;(C)/C}; for 0 < i < N,
and (4.10) that every state o € X;(C) has a unique label and different states
have different labels.

For 0 < ¢ < N, let 0; and o4, be two adjacent states with o; € Zi(C)
and g;4; € Z;41(C). Let u;1; be the label of the branch in the code trellis
that connects state o; to state o;4;. The label u;,; is simply the encoder
output bit in the interval from time-i to time-(i + 1) and is given by (3.3) or
(3.4). For every path (u1,us,...,u;) € L(oy,0;), the path (u,u2,. .., U4, Uig1)
obtained by concatenating (u;,u2,...,u;) with the branch u;;, is a path that
connects the initial state oo to the state oy, through the state ;. Hence,
(u1,u2,...,ui,ui41) € L(00,0i+1). Then it follows from the definition of a
state label that

o) = (unuz,...,uiui) HE,
= (u1,u2,...,u)  HY +uip1-h,
= 1(0‘,’) + iy - h;’;_r (411)
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Eq.(4.11) simply says that given the starting state labeled I{0;) at time-i and
the output code bit u;; during the interval between time-i and time-(i + 1),
the destination state labeled (1) at time-(i + 1) is uniquely determined.

Now we present a procedure for constructing the N-section trellis diagram
for a binary (N, K) linear block code C by state labeling using the parity-
check matrix of the code. Let u = (u;,us,...,un) be a binary N-tuple. For
0 < i € N, let poi(u) denote the prefix of u that consists of the first i
components, i.e.,

Poi(v) = (u1,uz,...,1). (4.12)

Suppose that trellis has been completed up to the i-th section (or time-i). At
this point, the rows of the TOGM G in the set G = {g!",¢\",...,¢%} and
their corresponding information bits ai"),agi),...,aﬁ,? uniquely define a state
o; € T;(C). Let

(), ) ()
2

u=a;,"-g; +a gi)

g +...+a£;;).g$;;)_

Then po,i(u) is a path connecting the initial state g to the state o; defined by

agi),agi),... ,aﬁ,';). The label of state o; is given by

(o) = poi(u) - HT.

The construction of the (i + 1)-section of the code trellis is accomplished by
taking the following four steps:

(1) Identify the special row g~ (if any) in the submatrix G/ and its cor-
responding information bit a*. Identify the special row g° (if any) in
the submatrix G7. Form the submatrix G, by including g~ in G} and
excluding g° from G?.

(2) Determine the set of information bits, A?,, = {a(li+1), ag“l) yeees a‘(;;.ﬂ) },

that correspond to the rows in G7 ;. Define and label the states in
Zin1(C).

(3) For each state o; € L;(C), form the next output code bit u;y; from
either (3.3) (if there is such a row g* in G/ at time-i) or (3.4) (if there
is no such row g* in G/ at time-i).
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Figure 4.2. 8-section trellis for (8,4) RM code with state labeling by parity-check matrix.

(4) For each possible value of uiy; (two if computed from (3.3) and one if
computed from (3.4)), connect the state o; to the state oi41 € Tis (o))
with label

Uois1) = 1(o3) + winr - Ry

The connecting branch, denoted L(gi,di41), is labeled with u;4,. This
completes the construction of the (i + 1)-th section of the trellis.

Repeat the above steps until the entire code trellis is constructed.

Example 4.4 Consider the (8,4) RM code given in Example 3.1. This codeis
self dual. Therefore, a generator matrix is also a parity-check matrix. Suppose
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we choose the parity-check matrix as follows:

Q = O
O =

1
0
1
1

S O e
QO = e
Pt pt et b

1
0
0
1

o O O =

1

Using this parity-check matrix for labeling and following the above trellis con-
struction steps, we obtain the 8-section trellis with state labels shown in Fig-
ure 4.2. To illustrate the construction process, we assume that the trellis has
been completed up to time-3. At this time instant, G§ = {g,,9;,9;} and

$ = {a;,02,a3} are known. The eight states in X3(C) are defined by the
eight combinations of a;,a2 and a3. These 8 states and their labels are given

below:
states defined | state labels
by (a1,a2,a3)
o (000) (0000)
oV (001) (1010)
o (010) (1001)
¥ (011) (0011)
o (100) (1011)
ol (101) (0001)
o® (110) (0010)
ol (111) (1000)

Now we want to construct the 4-th section of the trellis up to time-4. At time-3,
from the TOGM G, we find that g° = g, and there is no such row g* with
leading ‘1’ at time-4. Therefore, G = {g;,9;} and A} = {@2,a3}. The four
states in £4(C) at time-4 are defined by the four combinations of a; and a3.

The four codewords generated by the rows in G are:

(az,a3) I paths

(0,0) | uo = (00000000)
(0,1) | u; = (00111100)
(1,0) | uz = (01011010)
(1,1) | us = (01100110)
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The four paths that connect the initial state oo to the four states, denoted a'io),
o, o® and 67, in £,(C) are:

po,a(uo) = (0000),
Poa(u1) = (0011),
po,a(uz) = (0101),
pg‘q(‘ug) = (0110).
The submatrix Hy is
1 111
H= 0 0 0 O
0 011
01 01

From py 4(u;), with 0 < 7 < 3 and H,, we can determine the labels for the four

states, oio),a’i”,af) and 0¥, in £4(C) which are given below:

states defined | state labels
by (a2,a3)
o (00) (0000)
oV (01) (0001)
o (10) (0010)
o (11) (0011)

The four states and their labels are shown in Figure 4.3 at time-4. Now suppose
the encoder is in the state 0':(,5) with label I(a{*)) = (0001) at time-3. Since no

such row g* exists at i = 3, the output code bit u4 is computed from (3.4) as

follows:
ug = 1-9144+0-gag+1-934
= 1-140-1+41-1
= 0.

Then the state ags) is connected to the state in £4(C) with label

1(0{¥) +us-hT = (0001)+0-(1011)
= (o001),
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Time-3 Time-4

Figure 4.3. State labels at the two ends of the 4-th section of the trellis for (8,4) RM

code.

which is state a’ﬁl). The connecting branch is labeled with u4 = 0. The connec-
tions from the other states in £3(C) to the states in L4(C) are accomplished

in the same manner.
AL

State labeling based on the state defining information sets requires K (or
pmax(C)) bits to label each state of the trellis; however, state labeling based on
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the parity-check matrix requires N — K bits to label each state of the trellis.
Therefore, labeling method-1 is more efficient for codes with K < N — K while
labeling method-2 is more efficient for codes with K > N - K.

4.3 STRUCTURAL SYMMETRY
Consider a binary (N, K) linear block code C with even length N and TOGM

9 qu Q2 " GQIN

92 g 922 " @2N
G=| . | = ] . }

9k gK1 9kx2 ' 9KN

Let T denote the N-section trellis diagram for C. Suppose the TOGM G has
the following symmetry property: For each row g in G with span(g) = [a,}],
there exists a row ¢’ in G with span(g’) = [N +1—b,N +1 — a]. With this
symmetry property in G, we can readily see that for 0 < i < N/2, the number
of rows in G that are active at time-(N — 1) is equal to the number of rows in
G that are active at time-i. This implies that

[Zn-i(C)| = |2:(C)]

for 0 < ¢ < N/2. We can permute the rows of G such that the resultant matrix,
denoted G', is in a reverse trellis oriented form:

(1) The trailing ‘1’ of each row appears in a column before the trailing ‘1’

of any row below it.
(2) No two rows have their leading “ones” in the same column.

If we rotate the matrix G’ by 180° counter clockwisely, we obtain a matrix G"
in which the i-th row g” is simply the (K + 1 — i)-th row g%, _; of G’ in
reverse order (the trailing ‘1’ of g, _; becomes the leading ‘1’ of g and the
leading ‘1’ of g, _; becomes the trailing ‘1’ of g). From the above, we see
that G” and G are structurally identical in the sense that

span(g;’) = span(g;)
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for 1 < i € K. Consequently, the N-section trellis T for C has the following
mirror symmetry [101}: The last N/2 sections of T form the mirror image
of the first N/2 sections of T (not including the path labels).

Example 4.5 Consider the (8,4) RM code given in Example 4.2 with TOGM

9 11110000
co|®|_[01to1 1010
g5 00111100
g4 00001111

We find that span(g, ) = [1,4], span(g,) = [5, 8], and g, and g, are symmetrical
with each other. Row g, has span [2,7] and is symmetrical with itself. Row
g4 has span [3,6] and is also symmetrical with itself. Suppose we permute the
second and third rows of G. We obtain the following matrix in reverse trellis

oriented form:

g4 11110000
ool {001 11100
“legsl o101 1010

g4 00001111

Rotating G’ 180° counter clockwisely, we obtain the following matrix:

g 11110000
gyl |01011010
g7l ]loo1 11100
A 00001111

We find that G and G are in fact identical, not just structurally identical.
Therefore, the 8-section trellis T for the (8,4) RM code has mirror symmetry
with respect to the boundary location 4, the last four sections form the mirror
image of the first four sections as shown in Figures 3.2 and 4.1.

AN

For the case that N is odd, if the TOGM G of a binary (N, K') code C has
the mirror symmetry property, then the last (N —1)/2 sections of the N-section
trellis T for C form the mirror image of the first (N — 1)/2 sections of T'.
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For the case that G” = G, the N-section trellis T of C has full mirror
symmetry structure [101]. For N even, the last N/2 sections of T in reverse
direction (the final state o is being regarded as the initial state) is completely
identical to the first N/2 sections of T' (including the path labels). The 8-section
trellis of the (8,4) RM code has full mirror symmetry as shown in Figure 4.1.
For N odd, the last (N — 1)/2 sections of T in reverse direction are completely
identical to the first (N — 1)/2 sections of T (including the path labels).
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5 TRELLIS COMPLEXITY

This chapter is devoted to analyzing the complexity of an N-section trellis
diagram for an (N, K) linear block code. Trellis complexity is, in general, mea-
sured in terms of the state and branch complexities. These two complexities
determine the storage and computation requirements of a trellis-based decod-
ing algorithm, such as the Viterbi decoding algorithm. The state complexity of
a trellis is measured by its state space dimension profile and the branch com-
plexity is measured by the total number of branches (or edges) in the trellis.
In Section 5.1, a simple upper bound on the maximum state space dimension
is derived. It is proved that the state complexity of a linear block code is the
same as that of its dual code. In Section 5.2, the concepts of a minimal trellis
diagram and optimum bit permutation in terms of state complexity are intro-
duced. It is proved that the trellis construction based on a TOGM results in
a minimal trellis. In Section 5.3, the branch complexity of an N-section trellis
diagram is analyzed. Finally, in Section 5.4, the general structure of N-section
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trellis diagrams for cyclic codes is givez;. It it shown that the maximum state
space dimension meets the upper bound derived in Section 5.1.
5.1 STATE COMPLEXITY

For a binary (N, K) linear block code C, the state complexity of an N-section
bit-level code trellis is measured by its state space dimension profile

(pprl»p2a" . spN))

where for0 <i: < N,
pi = log, [E:(C)|.

Let pinax(C) denote the maximum among the state space dimensions, ie.,

Pmax (C) max pj.

T 0<i<N

Using the construction method described in Chapter 3, the state space dimen-
sion at time-: is given by (3.7),

pi = K — k(Co,s) — k(Ci n),
for 0 <4 < N. Since k(Cy,;) and k(C; n) are nonnegative, we have
Pmax(C) < K. (5.1)

However, it follows from (4.6) and the definition and uniqueness of a state label
at any time-i (see (4.10)) that

[Z:(C)| < 2V-K

and
pi<N-K (5.2)

for 0 < i < N. Eq.(5.2) implies that
Pmax(C) < N - K. (5.3)

Combining (5.1) and (5.3), we have the following upper bound on the maximum
state complexity:
Pmax(C) < min{K,N - K}. (5.4)
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This bound was first proved by Wolf [109]. In general, this bound is quite loose.
However, for cyclic (or shortened cyclic) codes, this bound gives the exact state
complexity. For noncyclic codes, tighter upper bounds on pmax(C) have been
obtained.

If the Viterbi algorithm is applied to the N-section trellis of a code, then the
maximum numbers of survivors and path metrics needed to be stored are both
2°=ax(C) | Therefore, the parameter pyax(C) is a key measure of the decoding
complexity (or trellis complexity).

For 0 < i € min{K,N — K}, it follows from the structure of a TOGM G
that the number of rows in G whose active spans contain the time index ¢ is no
greater than i. For i > max{K, N — K}, since there is one-to-one correspon-
dence between the states in £;(C) and cosets in the partition pi,n(C)/Cy,

pi = k(pin(C))-K(Ci'y)
< k(pin(C))
< N-i
< min{K,N - K}. (5.5)

Therefore, for 0 < i < N, we have the following upper bound on p;:
pi < min{i, K,N — K,N —i}. (5.6)

Let C+ denote the dual code of C. Then C+ is an (N, N — K) linear block
code. Consider the N-section trellis diagram for Ct. For 0 < i < N, let
£;(C*) denote the state space of C* at time-i. Then there is a one-to-one
correspondence between the states in £;(C1) and the cosets in the partition
pO,;(CL)/Co{“-'" where C(i‘;" denotes the truncation of Cg; in the interval [1,1].

Therefore, the dimension of E;(Cl) is given by
pi(C*) = k(po i(CH)) — K(Cy"). (5.7)

Note that po;(C1) is the dual code of C§; and Cy;" is the dual code of

Po,i(C). Therefore,
k(po,s(C*)) i—k(Ce)

i—k(Coy) (5.8)
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and
k(Co¥") = i — k(po,i(C)). (5.9)
It follows from (5.7), (5.8) and (5.9) that
pi(CL) = K — k(Cy ) — k(Ci n)- (5.10)
From (3.7} and (5.10), we find that for 0 < i < NV,
pi(C*) = pi(C). (5.11)

This says that C and its dual code C have the same state complexity.

5.2 MINIMAL TRELLISES

An N-section trellis is said to be minimal if the total number of states in the
trellis is minimum. A minimal trellis is unique within isomorphism [77}, i.e.,
two minimal trellises for the same code are isomorphic (structurally identi-
cal). The above definition of minimality is commonly used in the literature.
However, a more meaningful and useful definition of minimality of a trellis is
in terms of its state space dimension profile. An N-section trellis is said to
be a minimum state space dimension trellis if the state space dimension
at each time of the trellis is minimum. A more precise definition is given as
follows. Let T be an N-section trellis for an (N, K) code C with state space
dimension profile (pg,p1,...,pn). T is said to be minimal if, for any other
N-section trellis T' for C with state space dimension profile (pg,p,...,p%),
the following inequality holds:
pi < pl,

for0<i < N.

Suppose a minimum state space dimension trellis T exists. Then, it is clear
that T is a minimal trellis in total number of states. The formulation of state
spaces given in Section 3.4 results in a minimum state space dimension trel-
lis (or minimal trellis) for an (N, K) linear block code. This will be proved
in Theorem 5.1. This says that a minimum state space dimension trellis T
exists for any linear block code C. From the uniqueness of a minimal trellis
in total number of states within graph isomorphism, the minimal trellis is a
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minimum state space dimension trellis. This gives the equivalence between the
two definitions of minimality of a trellis for a linear block code.

Theorem 5.1 Let C be a binary (¥, K) linear block code with trellis oriented
generator matrix G. The N-section trellis T for C constructed based on G is a
minimum state space dimension trellis.

Proof: We only need to prove that for 1 < i < N, the number of states, 27,
at time-1 in the trellis T is minimum over all the trellises for C, where

pPi = K - k(Co',') - k(C;.N).

Let C! denote the linear subcode of C that is spanned by the rows in the
submatrix G! of G. Then |C?| = 2#:. For two different codewords u and v in
C}, it follows from condition (1) of a TOGM that

po.i(u) # poi(v).

This implies that
Hpo,i(u) : u € C{}| = 27

Suppose there is a trellis 7’ for C whose number of states at time-1 is less
than 2#:. Then, there must be two different codewords u and v in C} such
that: (1) there are two paths connecting the initial state to a state o at time-i
in T’ whose label sequences are pg i(u) and pg i(v), respectively; and (2) there
is a path connecting the state ¢ to the final state in 7/ whose label sequence is
pi.~(u). Without loss of generality, we assume u # 0.

Let u’ denote the binary N-tuple such that pg ;(u’) = po,i(v) and p; n(¥’) =
pi,n(u). Since u' is a path in T' connecting the initial state to the final state,
it follows from condition (4) of Definition 3.1 of an N-section trellis for a linear
block code that u’ is a codeword in C. Therefore, u + u’ € C. Note that
Po.i(u+u') = po,i(u) +poi(v) # 0 and p; n(u+u') = pin(u) +pin(uv’) =0.
This implies that u + u’ € Cy ;. There are three cases to be considered:

(1) Suppose u’ € Coi. This implies that u € Cy; which is a contradiction
to the hypothesis that u € C! and u # 0.

(2) Suppose u’ € C?. This implies that u + '’ € C?. Since u + v’ # 0,
u + u' can not be in both C? and Cy ;. This results in a contradiction.
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(3) Suppose u’ € Cin. This implies that u € Co ® Cin, which is not
possible.

Therefore, u + u' can not be a codeword in C. This results in a contradiction
to our earlier hypothesis that there exists an N-section trellis T for C whose
number of states at time-i is less than 2#:. Therefore, the hypothesis is invalid
and 27 gives the minimum number of states at time-i for 1 <i < N.

AL

It follows from Theorem 5.1 that Eq.(3.7) gives the minimum state space
dimension p; with 0 < i < N for an N-section trellis for an (N, K) linear block
code. From (3.7), we see that the state space dimension p; at time-i depends
on the dimensions of the past and future codes, Cp; and C; . For a given
code C, k(Co ;) and k(Ci n) are fixed.

Given an (N, K) linear block code C, a permutation of the orders of the bit
(or symbol) positions results in an equivalent code C' with the same weight
distribution. Different permutations of the bit positions may result in different
dimensions, k(Co ;) and k(C; ), of the past and future subcodes, Co; and
C;,n, and hence different state space dimensions p; at time-i. A permutation
that yields the smallest state space dimension at every time of the code trellis is
called an optimum permutation (or bit ordering). It is clear that an optimum
permutation reduces the state complexity and is often desirable. Optimum
permutation is hard to find, however optimum permutations for RM codes
are known [45] but they are unknown for other classes of codes.

5.3 BRANCH COMPLEXITY

The branch complexity of an N-section trellis diagram for an (N, K) linear
block code C is defined as the total number of branches in the trellis. This
complexity determines the number of additions required in a trellis-based de-
coding algorithm to decode a received sequence.

Consider the N-section trellis diagram T for C which is constructed based
on the rules and procedures described in Chapters 3 and 4. Recall that at
time-i with 0 < i < N, there are two branches diverging from a state in £;(C)
if there exists a row g* in G{ : and there is only one branch diverging from a

DRAFT January 6, 1998, 8:40pm DRAFT



TRELLIS COMPLEXITY 65

state in £;(C) if there exists no such row g* in G!. Define

1, ifg ¢G!
L(g*) & ’ ! 5.12
(g7) { 2, if g~ €Gl. (5.12)
Let E denote the total number of branches in the N-section trellis T. Then
N-1
E = Y |5(O) Lg)
1=0
N-1
= Y 2% L(g") (5.13)
=0

Example 5.1 Again we consider the (8,4) linear block code given in Exam-
ple 3.1. From Table 4.1, we find that

Io(g™) = I(g") = I(g") = Ii(g") = 2
and

Ii(g") = Is(g") = Is(9") = I(g") = 1.
The state space dimension profile of the 8-section trellis for the code is (0, 1,
2,3,2,3,2,1,0). From (5.13), we have

E = 2°.242'.2422.242% 14222420 142214211
= 24+4+8+8+8+8+4+2
= 44.
AN

An N-section trellis diagram for an (N, K) linear block code is said to be
a minimal branch (or edge) trellis diagram if it has the smallest branch
complexity. A minimal trellis diagram has the smallest branch complexity [69].
Branch complexity also depends on the bit ordering of a code. Proper permuta-
tion of the bit positions of a code may result in a significant reduction in branch
complexity. A permutation that results in minimal branch complexity is called
an optimum permutation. From (5.13), we can readily see that a permutation
which minimizes each product in the summation of (5.13) is a minimal edge
trellis diagram. A good permutation in terms of branch complexity should have
the following property: for 0 < i < N, when p; is large, /;(g") should be equal
to 1.
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5.4 TRELLIS STRUCTURE OF CYCLIC CODES

Consider an (N, K) cyclic code C over GF(2) generated by the following poly-
nomial [62],

IX) =14+ X +@X* +-- +gy_g1 XN K1 4 XN-K

where for 1 <1 < N — K, g; € GF(2). A generator matrix for this cyclic code
is given by

1 g1 92 *c o gN-K-1 1 00 “ea 0
01 QG2 - e gN—K—ll 0 [ 0

G= . . (5.14)
-0 0.-.-0 1 a1 g2 C e gN—K -1 lj

The K rows of G are simply the K cyclic shifts of the first row. This generator
matrix has the following properties:

(1) It is in trellis oriented form.
(2) For 1 <i< K, the span of the i-th row g, is
span(g;) =[i,N — K +1].

(3) The active spans of all the rows have the same length, N — K.

Now we consider the bit-level trellis structure for this (N, K) cyclic code.
There are two cases to be considered: K > N — K and K < N — K. Consider
the case for which K > N - K. For 1 <i < N ~ K, the number of rows whose
active spans contain the time index i is i. These rows are simply the first i
rows. For N — K < i < K, the number of rows whose active spans contain the
time index i is N — K. For K < i < N, the number of rows whose active spans
contain the time index-i is N — . Since : > K,

N-i<N-K.

From the above analysis, we see that the maximum state space dimension is
Pmax(C) = N — K and the state space profile is

©1,...,N-K-1,N-K,...,.N-K,N-K~—1,...,1,0).
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Now consider the second case for which K < N — K. For 1 <1 < K, the
number of rows whose active spans contain the time index i is i (the first ¢
rows). For K <i < N — K, the number of rows whose active spans contain the
time index i is K. For N — K < i < N, the number of rows whose active spans
contain i is N —i. Since i > N — K, N —i < K. From the above analysis, we
find that the maximum state space dimension is

Pmax(c) =K,
and the state space dimension profile is
(,1,....,K -1,K,...,K,K -1,...,1,0).

Putting the results of the above two cases together, we conclude that for an
(N, K) cyclic code, the maximum state space dimension is

Pmax(C) = min{K,N — K'}.

This is to say that a code in cyclic form has the worst state complexity (i.e., it
meets the upper bound on the state complexity).
The generator polynomial g(X) of an (N, K) binary cyclic code C divides
X% 4+1[62]. Let
XV +1=g(X)h(X).

Then h(X) is a polynomial of degree K of the following form:
h(X) =l+hX+ thz +-- 4 hK_lXK—l + XK

with h; € GF(2) for 1 < i < K. This polynomial is called the parity-check
polynomial. The dual code C* of C is an (N, N — K} cyclic code with generator
polynomial

XKh(X’l)zl+hK_1X+...+hlxK—1+XK.

The generator matrix for the dual code C Lis

Vhp_ghgog +or  eee woones D N T 0
0 1 hyg_rhygog - coneee ei eee 1.0 440

H= 0 0 1 hK—l hK—Z ...... hee ene een 1 ---0 (515)
0 O ... 01 hK-lhK—2 ......... 1
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which is in trellis oriented form. The trellis structure for C* can be analyzed
in the same manner as for C.

The trellis of a cyclic code has mirror symmetry, i.e., the right-half and
left-half of the trellis with respect to the center are structurally identical.

To reduce the state complexity of a cyclic code, a permutation of the bit
position is needed [45, 46].

The branch complexity of the IN-section trellis diagram T constructed based
on the TOGM G given by (5.14) can be evaluated easily. First we note that

2, for0<i< K,
1, otherwise.

Ii(g") = {

Suppose K < N — K. Then branch complexity of the trellis T is

K-1 ] K-1 )
E = ) 2.24(N-2K)-2K4+ ) 2K
=0 =0

= 2.(2K-1)+(N-2K)- 2K +2.(2K - 1)
= (N-2K+4)-2¥ -4 (5.16)

For K > N — K, we have

N-K-1 N-K-1

E = Z 2°.242-(2K-N)-2V-K 4 Z gN-K-i
i=0 =0
= (4K -—-2N+4).2V"K 4, (5.17)

5.5 TRELLISES FOR NONBINARY LINEAR BLOCK CODES

The methods for constructing trellises for binary linear block codes can be gen-
eralized for constructing trellises for nonbinary linear block codes with symbols
from GF(q) in a straightforward manner. The symbol-level N-section trellis
diagram for an (N, K) linear block code C over GF(q) has the following basic
properties: (1) every branch is labeled with a code symbol from GF(q); (2)
except for the initial state, every state has at least one, but no more than q,
incoming branches; (3) except for the final state, every state has at least one,
but no more than ¢, outgoing branches; and (4) the initial state has no in-
coming branch and the final state has no outgoing branch. In the definition of
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a trellis oriented generator matrix, the leading “1” and trailing “1” of a row
are replaced by leading and trailing “nonzero components”, respectively. The
maximum state space dimension pmax(C) of the minimal N-section trellis for
C is upper bounded by

Pmax(C) < min{K,N - K},
and the maximum number of states, |Z(C)|max, is upper bounded by
I5(C) mae < =K.
For Reed-Solomon (RS) codes over GF(g), the above equalities hold, i.e.,
pmax(C) = min{K,N — K},

and
|2(C)|mux = qmin(K,N-K}‘
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6 TRELLIS SECTIONALIZATION

So far, we have only considered bit-level N-section trellis diagrams for linear
block codes of length N. In a bit-level trellis diagram, every time instant in
the encoding interval I' = {0,1,2,..., N} is a section boundary location and
every branch represents a code bit. It is possible to sectionalize a bit-level
trellis with section boundary locations at selected instants in the encoding
interval I". This sectionalization results in a trellis in which a branch may rep-
resent multiple code bits and two adjacent states may be connected by multiple
branches. Proper sectionalization may result in useful trellis structural prop-
erties and allow us to devise efficient trellis-based decoding algorithms. This
chapter is devoted in analyzing sectionalized trellis diagrams for linear block
codes. Section 6.1 presents the concepts and rules for trellis sectionalization.
In Section 6.2, the branch complexity and state connectivity are analyzed and
expressed in terms of the dimensions of codes related to the code being con-
sidered. In Section 6.3, construction of a sectionalized trellis diagram for a
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linear block code based on the trellis oriented generator matrix is presented.
Section 6.4 studies the parallel structure of a sectionalized trellis diagram.

6.1 SECTIONALIZATION OF A CODE TRELLIS
For a positive integer L < N, let
U £ {ho,h1,hs,..., AL} (6.1)

be a subset of L + 1 time instants in the encoding interval I = {0,1,2,...,N}
for an (N, K) linear block code C with 0 = hg < h; < hy <--- < hy = N.
An L-section trellis diagram for C with section boundaries at the locations
(time instants) in U, denoted T(U), can be obtained from the N-section trellis
T by: (1) deleting every state in £,(C) for h € {0,1,...,N} \ U and every
branch to or from a deleted state, and (2) for 1 < j < L, connecting a state
o € Ly, _, to a state o' € Iy, by a branch with label a if and only if there is a
path with label & from state o to state ¢’ in the N-section trellis T. In an L-
section trellis with boundary locations in U = {hg,hy,...,hr}, a branch from
a state in Ip;_,(C) to a state in I, (C) represents (h; — h;_;) code symbols.

A subgraph of a trellis diagram is called a subtrellis. The subtrellis of
T(U) which consists of the state space T, ,(C) at time-h;_,, state space
Za,(C) at time-h;, and all the branches between the states in X, ,(C) and
Zx,(C), is called the j-th section of T(U). The length of the j-th section is
hj — hj_;. If the lengths of all the sections of an L-section code trellis T'(U)
are the same, T(U} is said to be uniformly sectionalized. In an L-section
trellis diagram with L < N, two adjacent states may be connected by multiple
branches (called parallel branches) with different labels.

Let pn, £ log, |Za,(C)| be the dimension of the state space £ (C) at time-
h;. Then

(Pﬂ’phx 1Phyy--- 1phL-1vPN)

is the state space dimension profile of the L-section code trellis T(U) with
section boundary set U = {0,hy, hs,...,hp_1, N}. From (3.7), we have

Ph,- =K -~ k(CO,h,) - k(Ch,.’N) . (6.2)

If we choose the section boundaries, U = {ho,hy,...,hL}, at the places where
PhyyPhys- -+ Phy_, are small, then the resultant L-section code trellis T(U) has
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0 ™ 00

Figure 6.1. A 4-section trellis for the (8,4) RM code.

a small state space dimension profile. The maximum state space dimension is

PLmax(C) £ S P, (6.3)

In implementing a trellis-based decoder, such as a Viterbi decoder, a proper
choice of the section boundary locations results in a significant reduction in
decoding complexity.

Example 6.1 Again, we consider the (8,4) RM code given in Example 3.1
whose 8-section trellis diagram is shown in Figure 3.2 (or Figure 4.1). Suppose
we choose L = 4 and the section boundary set U = {0,2,4,6,8}. Follow-
ing the above rules of sectionalization of a code trellis, we obtain a uniform
4-section trellis diagram as shown in Figure 6.1, in which every branch repre-
sents 2 code bits. The state space dimension profile for this 4-section trellis
is (0,2,2,2,0) and the maximum state space dimension is pg,max(C) = 2. It
is a 4-section, 4-state code trellis. From Figure 6.1, we notice that the right-
half of the trellis (the third and fourth sections) is the mirror image of the
left-half of the trellis (the first and second sections). This mirror symmetry
allows bidirectional decoding. Furthermore, the code trellis consists of two
parallel and structurally identical (isomorphic) subtrellises without cross
connections between them. This parallel structure allows us to devise two
identical 2-state (Viterbi) decoders to process the trellis in parallel. The mirror
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symmetry and parallel structure not only simplify the decoding complexity but
also speed up the decoding process. For large code trellises, these structural
properties are very important in IC (integrated circuit) implementations.

JAVAN

An L-section trellis diagram obtained from a minimal N-section trellis dia-
gram by deleting states and branches at places other than the section boundary
locations is minimal, i.e., it is a minimal L-section trellis diagram for a given
section boundary set U.

6.2 BRANCH COMPLEXITY AND STATE CONNECTIVITY

Consider the j-th section of a minimal L-section trellis diagram T(U) with
section boundary set U = {ho,hi,...,hr} for an (N, K) linear code C. The
boundaries of this section are hj_; and h;. Each branch in this section is
labeled with h; — h;_; bits. Let o and ¢’ be two adjacent states in the state
spaces Ty, _, (C) and B, (C), respectively. Let L(a,0") denote the set of parallel
branches connecting ¢ and ¢’. Let L(cg,0) denote the set of paths connecting
the initial state oy to the state . Sometimes, it is convenient to regard the
parallel branches, L(o,0'), between two states as a single branch. This single
branch is called a composite branch, and L{c,o') is called a composite
branch label.

The branch complexity of a trellis section is measured by: (1) the size of a
composite branch; (2) the number of distinct composite branches in the trellis
section; and (3) the total number of composite branches in the trellis section.
The overall branch complexity of the trellis is then the sum of the trellis section
branch complexities. These three branch complexity parameters can be ex-
pressed in terms of the dimensions of Ch,_, »,, Con,_,» Ch;,N, and pr;_, n; (C)
which can be obtained from the TOGM G of C.

Let o5,_, and ox; be two adjacent states with oa,_, € Ep,_,(C) and oy,
€ Ii,(C). It has been shown in Section 3.7 that the parallel branches in
L(Gh

,-1,0h;) form a coset in the partition

Phy_.h;(C)/CE, i hy
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Therefore, the number of parallel branches between two adjacent states oy, _,
and oy, in the j-th section of T(U) is

|L(0’hj_‘,ah,»)l = 2K Choam), (6.4)

In Section 3.7, we have also shown that
L(ao'ahj—l) epo.h,-x(c)/ct'ith,_, (6.5)
and .
L(Uo, O’h,.) € Po,hy (C)/C;:h’ (6.6)

If on;_, and o4, are adjacent, then

L(oo,0n,_,) 0 L(ahj_‘,a,,’,) S

{uov:ue€ L(og,on,_,) and v € L(on,_,,0n,)} (6.7)

is the set of paths in T(U) that diverge from the initial state oy, converge
at the state o4,_,, and then transverse the parallel branches in L(an,_,,0n,)
to the state op, as shown in Figure 6.2. It has also been shown in Sec-
tion 3.7 that L(oo,0n,_,) © L{oh;_,,0h,) is a subcode of a coset in the par-
tition po n; (C’)/C’;fhj. Let Ty, _,(on;) denote the set of states in the state space
Zh,_,(C) that are adjacent to state o; as shown in Figure 6.2. Then

U L(coo,0n,_,) 0 L(on,_,,0n,) 2 L(co,04,) (6.8)

On;_1E€Zh;_,(on;)

is a coset in the partition po,n,(C)/Co'y,-

Note that the dimensions of L(co,0h,_,), L(on,_,,0n;) and L(aq,0n,) are
k(Coln,_,)» k(C) _, n,) and k(C5ln,), respectively. It follows from (6.8) that
the number of states in Zy;_, (ox,) is given by

|Zh,i(on;)] = 9F(Coln,) ~(Coln, ) —H(CR 1))

2"(Co.n,)‘k(co.n)_,)—"(ch,_,.h,). (6.9)

This implies that the number of composite branches converging into a state
oh, € Ip,;(C), called the incoming degree of o4, is given by

deg(d’;.,. )in 7-Y 2’¢(Co.hJ)-k(co.h,-_,)—k(ch,_ph,-). (6.10)
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Time-h;_, Time-h;

Figure 6.2,  State connectivity.

This number is a measure of the state connectivity of the sectionalized code
trellis T(U). In an IC implementation of a Viterbi decoder, this number is
known as the radix number, a key design parameter.

Since each composite branch L(o;_,,os;) in the j-th section of T(U) is a
coset in the partition pp,_, ; (C)/C,‘,’J _1h,» the number of distinct composite
branches in the j-th section of T(U) is

ok(Pn; _ n (CN=k(Ch;_ ;) (6.11)

It follows from (6.2) and (6.10) that the total number of composite branches in
the j-th section of T(U) is given by

oK —k(Can; 1} —k(Ch; N)=k(Ch;_y.n,) (6.12)

From (6.11) and (6.12), we find that each distinct composite branch appears in
the j-th section of T(U)

2K-’°(Co.hj_,)-k(cu, N)—k(pn;_,y.0;(0)) (6.13)
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times.

From (6.2) (with h; replaced by hj_;) and (6.12), we can compute the
number of composite branches diverging from a state on,_, € Iy, ,(C) at
time-h;_; as

zk(ch,_l.N)-k(Cn,.N)-k(Cn,-_,.h,-)' (6.14)
which is called the outgoing degree of o,;_,, denoted deg(on ;—1)out- Equa-
tions (6.4), (6.10)—(6.12) and (6.14) give the branch complexity and state con-
nectivity of the j-th section of a minimal L-section trellis T(U) with section
boundary locations in U = {hg, h1,...,hr}.

Define

5; £ log, deg(o,)in
with o, € Th,(C). The ordered sequence (81,62,...,8L) is called the con-
verging branch dimension profile (CBDP). Define

Aj £ log, deg(on,)out-

The ordered sequence (Ag, A1,...,Ap—1) is called the diverging branch di-
mension profile (DBDP).

Let M; denote the total number of composite branches in the j-th trellis
section (given by (6.12)) and define

B; = log, M.

The ordered sequence
(ﬁlaﬁZ) see )ﬁL)

is called the branch complexity profile (BCP). The branch complexity of
the minimal L-section trellis T'(U) in terms of the total number of branches in
the trellis is given by .
B =3 2% 2K o), (6.15)
i=1
Since each branch in the j-th section of T(U) represents h; — h;_; code bits, it
is equivalent to h; — h;_; branches in the bit-level N-section trellis T' for the
code. Therefore, the branch complexity in terms of bit branches is given by

L
E= (hj—hj_) 2% - 25Cha), (6.16)

=1
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If the section boundary is U = {0,1,2,..., N}, then (6.16) gives the branch (or
edge) complexity of the bit-level N-section minimal trellis of the code.

6.3 A PROCEDURE FOR CONSTRUCTING A MINIMAL L-SECTION
TRELLIS

A minimal L-section trellis diagram for an (N, K) linear block code C can be
constructed directly from the TOGM G. Let U = {ho,hy,...,h.} be the set of
section boundary locations with hg =0 < h; < --- < hp_y < hy = N. Again
the construction of the minimal L-section trellis diagram T(U) with section
boundary set U is carried out serially, section by section. Suppose T'(U) has
been constructed up to the j-th section (i.e., up to time-h;) with 1 < j < L.
Now we begin to construct the (j + 1)-th section from time-h; to time-hj;.
Partition the rows of the TOGM G into three disjoint subsets, G{j, G{j, and
G}, as follows (also shown in Figure 6.3):

(1) G}"j consists of those rows in G whose spans are contained in the interval
(1, Aj].

2) G{j consists of those rows in G whose spans are contained in the interval
[hj +1, N]

(3) G}, consists of those rows in G whose active spans contain the time
index h;.

It is clear that G‘,';j and G,{j generate the past and future codes, Cy »; and
Ch,,n, respectively. Let A)';, be the set of information bits that correspond
to the rows of G . Then the bits in A} define the state space £y, (C) at
time-h;. That is, for any binary gy, = |A;,J |-tuple, which represents values of
information bits in A} , there is a corresponding state in L ;(C).

To determine the composite branches between states in Lj,(C) and states
in £5,,,(C) and the parallel branches between two adjacent states, we further

partition the rows of G{.j into three subsets, G,{;’: hyer? G,{;‘_h’_“ and G = as

hjs1

follows (see Figure 6.3):

1) GIP,  consists of those rows of G whose spans are contained in the
hjhj4a h; P

interval [h; + 1,hj41]
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Time

0 hJ hj+1 N

G, { | 0

P"i-".iﬂ(a;l‘;-h;n) O } ;';"'h,‘u
Ph,- G;‘j ¢ : _ 1
Phjhjsa (G;‘;-“,H-l) } G;';‘h’_‘ﬂ"j'hixﬂ
: Phjsy
f.e -
P"«"""*‘(G"J-*:‘H) } Gir":‘u
I
G{, 3 O O } G";’u
£ .
Pag1(Ghas,) O } G'{,'p-h,“
Figure 6.3.  Partition of the TOGM G.
(2) G ~ consists of those rows of G! _ whose active spans contain the
hj ki h;
time index hj.i.
.« . ! f
(3) The remaining rows in G}, form G}, .
Let A{"’ .., and Ai"h, denote the subsets of information bits that corre-
Js'bi41 SELLIE Y
spond to the rows in Gi‘: hys, 2nd G’,{;’, h;4,> Tespectively. Then the information

bits in these two sets may be regarded as the current input information bits.
These input bits together with the state of the encoder at time-h; uniquely
determine the output code bits between time-h; and time-h;;;. Note that
the information bits in A{J” hyes only affect the output during the interval be-
tween time-h; and time-h;,;. Therefore, they determine the paralle! branches
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between two adjacent states. The information bits in A{;",.j“ determine the
diverging composite branches from a state in £y (C).

Let Ph,,h,-“(G;,.‘f;,j“), p;.,.,;,j“(G{;"hj“) and pn, h;,, (G},) denote the trun-
cations of G,{;’: hyert G,{‘;h’,“ and G}, from time-h; to time-h;;;. The rows in
Ph,—'h;ﬂ(G{',fh,“) span the code G ,, ., and the rows in Ph,-.h,-u(G{.',fh,“)’
Phjhju (G{:h’_“) and ph, h,,, (G4,) span the truncated code pi, b,,,(C). Then
every composite branch between a state gn; € Ip,(C) and a state oy ,, €
$h,4:(C) is a coset in the partition pa,,n,,,(C)/CK, 4,,,- The number of par-
allel branches between two adjacent states is therefore [C} , |-

Let on; be the state at time-h; defined by the binary pj;-tuple formed by

the binary information bits in the set A} ,

(a‘l”,aﬁ’), s ,aﬁ,’;)j ) (6.17)
G G ()

where pn; = log, [, (C)| = |G}, Let {97",97",-..,96x,} denote the rows
in G} . Then

u = aﬁ’) .g(lJ) + ag’) .g(zJ) 4ot ag‘)j ._QS’J;‘)j (6.18)

is a codeword (or path) passing through the state o, at time-h;. Let pn,,n,,, (%)
denote the branch on u from time-h; to time-h;,1. Let By, »,,, denote the
code of length hj;, — h; generated by pa; a,,, (G,{;"h’_“ ). Then for every vector
b € Bh, n,,,, there is a composite branch diverging from the state o5, which
consists of the following parallel branches,

{Ph,,h,+; (u) +b+z:xz€E Cﬁ:,h,“}' (6.19)

Therefore, the number of composite branches diverging from the state oy, is

Ith.hjn |
Next, we analyze the state transitions. Partition the matrix G} into two

: 8,p 8,8
submatrices, G,y and Gy s where

(1) GRP),,, consists of those rows in G}/ whose active spans do not contain

the time index hj,;, and

(2) G7°,... consists of those rows in G} whose active spans contain the
AR 2 el

time index hj+1 .
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Let A;?, and Ap’,  denote the sets of information bits corresponding
N j 41 SAMFE 2
to Gh’j’t h;4, and G;.‘j' h;41 Tespectively. Then the set of information bits that

+

defines the state space Iy, (C) at time-h;, is given by

i+1
—— . ,‘
Abe = (AR NA JUAL .,
_ 8,8 I,
= hjhses U A"j-hjﬂ' (6'20)

Therefore, the state transitions from time-h; to time-h;;, are completely spec-
ified by the change from A} to A} .
Define
Phj,hj41 2 |Al'n’:,h,+;| = |G}, I (6.21)

TTLYPSY

Then it follows from (6.20) (also Figure 6.3) that

I ;"J'prh)‘+l| = phi - pthhJ+l’ (622)
and
1 -
IAhJ‘vhj«HI = Phjpy ~ Phyhyy- (623)

Let a?,’ be the binary (pn; — pn, n,,, )-tuple formed by the binary information

bits in the set A;'j’"hj“, an, be the binary pp u,.,-tuple formed by the infor-
mation bits in the set 4}°, ., and a; be the binary (pa,,, — ph, h,,,)-tuple
formed by the information bits in the set A,{;’,hj“. Then (aj,an,) defines a
state, denoted a(a‘,"j y@h, ), in the state space Iy, (C) at time-h;, and (a4, a}, )
defines a state, denoted o(ay;, aaj), in the state space Ij,,, (C) at time-hj4,.
State a(a',"j,a;.’.) is adjacent to state o(an,,a}, ). The composite branch that

connects these two states in the trellis is given by (6.19) with

b= a;lj 'ph,,h;‘“(Gl{:h,“)‘ (6'24)

Note that these two states share a common ay,. For a;., # an;, the state a(a‘,fIJ )
ay,) at time-h; is not adjacent to thestate o(a}, ,a} ) at time-h;,,. Therefore,
from each state a(aﬁj, an;) in Ep,(C), there are 2°*5+17#*;-*41 possible tran-
sitions to the states o(an,,a; ) in By, (C) with e} € {0, 1}Ph5+1 7045 M50,
This completely specifies the state transitions from time-h; to time-h, ;.
State labeling based on the state defining information set A;‘j with0<j; <L
is exactly the same as described in Section 4.1. We may use either a K-tuple
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or a pr max(C)-tuple to label a state. In general, p; nax(C) is much smaller
than K, and hence using a pz max(C)-bit label for a state is more efficient.

Suppose an L-section trellis diagram T'(U) with boundary location set U =
{ho,h1,...,hL} has been constructed up to time-h;. The trellis section from
time-h; to time-h;,; can be constructed by the following procedure:

(1) Form and label the states in Ij,,, (C) based on Ah

(2) For each state in Ip (C), determine its transitions to the states in
Th,,.(C) based on the state transition rules described above.

(3) For two adjacent states, cr(a',’b_,a;,j) and o(a;,j,a,‘.’_), at time-h; and
time-h;,;, connect them by parallel branches given by (6.19).

Repeat the above procedure until the L-section trellis T(U) is completed.

Example 6.2 Consider the (8,4,4) RM code with the TOGM G as

0
1
1
1

—_ - O O
[ = R -]
-~ O O O

1
1
1
0

OO0 O
O O = =
S = O =

Suppose we want to construct a 4-section trellis for this code with boundary
locations in U = {0,2,4,6,8}. First, we find from G that the state space
dimension profile is (0,2,2,2,0). Therefore, p4 max(C) = 2. We also find that

C('sz = Céf« = C:c = Céfa = {0}:

. 11 .
Po2(Gl3) = [ 0 1 }, P24(GY) = [ 11 ]

Pes(GL3) = [ 11 ], Pes(Gl3) = 0.

The state defining information sets at the boundary locations, 0, 2, 4,6, and 8,
are given in Table 6.1. Following the constructing procedure given above, we
obtain the 4-section trellis diagram for the (8,4,4) RM code as shown in Fig-
ure 6.4, where the states are labeled based on the information defining sets
using p4,max(C)-tuples with pg max(C) = 2.

AA
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Table 6.1.  State defining information sets for a 4-section trellis for the (8, 4,4) RM code.

Time —
0 2 4 6 8
Ay ] {a1,a2} {a2,03} {az,a.} O
ARphs s @ {a1}  {as} {az,a} 0
Al [Hanal  {as}  {add o 0
State label (a1,a2) (a2, a3) (82,a4)

Figure 6.4. A minimal 4-section trellis diagram for the (8, 4, 4) RM code with 2-bit state

labels.

Construction of T(U) can be achieved by using the state labeling based on
a parity-check matrix H for C [101]. Let

th,h,+| = [hh’,+1,hh’.+2,...,hh.’-+‘] (625)

denote the submatrix of the parity-check matrix H of C that consists of columns
Let {(on;) be the label for the state ox,. Then the

from hy 4 to hp,,,.

composite branch given by (6.19) connects the state o5, to the state op;,, €
Zh,,,(C) at time-h;,, that is labeled by
l(dh_ﬁ»x) =l(on,) + (phj,'l;'n(u) +b)- H)’f,,h,“' (6.26)
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Eq.(6.26) gives the connection from a starting state o5, at time-h; to a desti-
nation state o4,,, at time-hj1.

To facilitate the construction of the (j + 1)-th trellis section between time-
h; and time-hj;,, we form a table, denoted Q4,, at the completion of the
construction of the j-th section. Each entry in Qj; is a triplet,

(£,4(e), ).

The first component f is a binary pj,-tuple formed by a specific combination
of the pj; information bits in A;.’,. This pp;-tuple defines a specific state o in
T4,(C). The second component I(g) is simply the label of state o. The third

component is given by

c = ph;rhj+l(u)
= Phjh(f-GR)s (6.27)

where u = f - G}, is given by (6.18).
Construction of the (j + 1)-th section of T(U) is carried out as follows:

(1) Form Cy , . and Baj ;-

(2) For every entry (f,l(c),c) € Qx,; and every b € By, »,,,, form the
composite branch,

{b+c+z:zeCy ... } (6.28)

h11h5+1

(3) For every starting state ¢ € Zj,(C), and b € By, »,,,, the destination
state ¢’ € Iy, ,(C) is labeled with

I(c") = (o) + (b+¢)- H , (6.29)

J+1°

Repeat the above process until the L-section trellis T(U) is completed.

The trellis construction procedures presented in Section 4.1, Section 4.2, and
this section only provide the general steps of construction. A detail and efficient
trellis construction procedure is given in Appendix A.
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6.4 PARALLEL STRUCTURE

Consider the trellis section from time-h; to time-h;,,. For a given pp, n;,,-

tuple ay,, define the following two sets of states at time-h; and time-hj;,,
respectively:

Si(an,) 2 {o(ad, an,): af, € {0,175 7 imin } (6.30)
and
S(an,) 2 {o(an,,a7,) : a7, € {0,1)sm17Prsmm ). (6.31)

Then Sr(ax,) and Sgr(an;) are subspaces of the state spaces, Xj,(C) and

Ty
section, we observe the following:

C), respectively. From the state transition analysis given in the previous

(1) Every state in Sp(an,) is adjacent to all the 2”*+17#%i*5+1 states in
Sr(an;) and is not adjacent to any other state in T, (C).

(2) Every state in Sgr(an,) is adjacent from all the 2Ph;~Ph; i1 states in
Si(an,) and is not adjacent from any other state in £p (C).

Therefore, the states in Sp(ay,), the states in Sg(as,), and the composite
branches connecting them form a completely connected subtrellis (known
as a complete bipartite graph). Since there are 2°*i*i+1 possible Phj k"
tuple an;, there are 27%i:%+1 such completely connected subtrellises in the
trellis section time-h; and time-h;,;. All these subtrellises are structurally
identical (isomorphic), and there are no cross connections between them.
These subtrellises are called parallel components. The parallel structure of
a trellis section is shown in Figure 6.5.

It follows from the definition of pp, 5 ,, given by (6.21) and the partition of

the TOGM G shown in Figure 6.3 that
Phjhjpy = K - k(ch;'N) = k(Corhj+l) + k(Ch;‘hjirl ) (6'32)

Therefore, the total number of parallel components in the trellis section from
time-h; to time-h;,, is

oK —k(Ch; N)=k(Con; ) )+E(Ch,nyy, ) (6.33)
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f time h; hjy1
208, TPh b 4 2P 5417 Ph M 4y
states states
2Phihi41
parallel )
components ¢
L]
L]
L)
92Ph; PR B 4 2Phi41 PR A 4
states states
.
Eh, (C) Eh;‘“(c)

Figure 6.5.  Parallel structure in a trellis section.

From (6.2) and (6.33), we find that the numbers of states in Si(an;) and
Sr(an,) are:
9k(Conj 4y ) —k(Cony) —k(Chjin;4y) (6.34)

and
zk(cr.,,‘v)*k(ch,-“.N)-k(Chj.h_,-“), (6.35)

respectively. Equations (6.30) to (6.35) completely characterize the parallel
components in the (j + 1)-th trellis section of T'(U).

Consider the 4-section trellis diagram for the (8,4) RM code shown in Fig-
ure 6.4. There are two parallel componentsin both the second and third sections
of the trellis. Each component has two states at each end.

Analysis of the parallel structure of a sectionalized code trellis is presented

in the Appendix A.
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4 states 4 states

7\

"N
[~}
or
24
[ad
&

D)

i

Y
¢

e\

(Q Q%j?

(4] ofr

=2
RERE
2oy

C@oSiole)

4 states 4 states 4 states
a coset of RMg 2 in RM3 5

Figure 6.6. The 4-section minimal trellis diagram T'({0,4,8,12,16}) for RM> 4.

Example 6.3 Consider the RM; 4 code which is a (16,11) code. The 4-
section minimal trellis diagram T(U) with section boundary locations in U =
{0,4,8,12,16} is depicted in Figure 6.6. There are two parallel and structural
identical components in both the second and third sections of the trellis, and
each component is a complete bipartite graph. Each component has 4 states at
each end. Each state at boundary location 8 has 4 composite branches diverg-
ing from it. For 1 < j < 4, pa(j-1),4j(RMz24) = RM; 2 and C‘;Ei—l)ﬂj = RM, ;.
Therefore, there are 2 parallel branches between any two adjacent states whose
4-bit label sequences form a coset of RMp 2 in RM; ;. In both the second and
third sections of the trellis, each coset in RM; 3 /RMj 2 appears 4 times as the
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composite branch label. In fact, the entire trellis consists of two 4-section par-
allel and structurally identical subtrellises without cross connections between
them. The maximum state complexity is 8. Therefore it is possible to devise
two identical trellis-based decoders, say Viterbi decoders, to process the entire
trellis in parallel. This not only simplifies the decoding complexity but also
speeds up the decoding process.

FAYAN

The parallel components in a trellis section can be partitioned into groups of
the same size in such a way that [44]: (1) two parallel components in the same
group are identical up to path labeling, and (2) if there is a common label
sequence in two parallel components, then they are in the same group. Since all
the parallel components in a group have the same label set, in a trellis-based
decoding algorithm, only the metrics of the branches in one of the parallel
components need to be computed. This results in a reduction of branch metric
computation.

Let Ch,n,,, denote the subcode of C that consists of those codewords
whose components from the (h; + 1)-th bit to the h;;;-th bit positions are

Anjh

all zero. Then each group consists of 2 5+1(€) identical parallel components

where [44]

Ahjyhj«i»l(c) = k(éhj‘h;'-n) - k(PO,h, (Co.h,+1) nPO.hj (C'h;‘|hj+l)) - k(Ch;'-uyN)'
(6.36)

Each parallel component can be decomposed into subtrellises with simple
uniform structure [44] as shown in Figure 6.7. Consider a parallel compo-
nent, denoted A. Let X5 (A) and Iy ,, (A) denote the state spaces at two ends
of A. We first partition I, (A) into blocks, called left U-blocks, which satisfy
the following condition:

(B1) If two states o4, and ¢}, in Ep,(A) are in the same left U-block, then
they have the same set of diverging composite branches, i.e.,

{L(ahj)ahj+l) *O0hjn € Eh)‘-ﬂ(A)}
= {L(a;"_,ah,“) 10h;,, € Eh,H-l(A)} (6'37)
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A left A U-block pair and A right

U-block branches between them U-block
r -~ ~—
I - = ~ -
l T~ s
I ‘ T~o

g5 hi41(C) | Tt
states! D

I “h
| 8
|

t

NS “ I

Lo t
T~ | 2""1’"‘)‘+1(C)

\ NS / t states

!

R ]

'

N\ '

2th.r.1+1(c)
states

9h;h;41(C)
states

Time hj

&

j+1

Figure 6.7.  Partition of a parallel component.
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and otherwise

{L(cr;,j,a;.,,“) $Ohj € Eh,'-n(A)}
n{L(a;lj’ahj+l) 10h;,, € EhH,(A)} =0. (6.38)

We next partition Zj,,,(A) into blocks, called right U-blocks, which satisfy
the following conditions:

(B2) If two states op,,, and d;“_“ in Xp;,,(A) are in the same right U-block,
then they have the same set of converging composite branches, i.e.,

{L(a'lj’dhjq»l) 10h; € 2",' (A)} = {L(ahj’d;tj+|) 10h; € Eh;(A)}
(6.39)

and otherwise
{L(on; 0n,,,) :0n, € Tn,(A)}N {L(ah,,df‘)“) ton, €L, (A)} =0
(6.40)

Each left U-block (or right U-block) consists of 2***:+1{%) states [44], where
Vhjhjs (C) = k(povhj+l(chj;hj+x n (Covhj+l @ Ch,’»N))) - k(COJlJ‘)' (6'41)

A pair of a left U-block and a right U-block is called a U-block pair. It follows
from the conditions (B1) and (B2), that each U-block pair (Bx, By,,, ) has the
following uniform properties:

(1) For any two states oy,,, and ";:,-ﬂ in By,,,,

{L(o'hjyah)+;) : Uhj E Bh,} = {L(U’l,‘)a;a,_‘_l) : U’l, e th }' (6'42)

(2) For any two states o, and o, in By,

{L(ah,’ahnx) 10k, € th-n} = {L(a;t,’ahj«bl) 10h;,, € Bh,‘-n}'
(6.43)
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The first property simply says that for a U-block pair (Bh;, Bhn,,,), the set
of composite branches from states in the left U-block Bj; converging to any
state in the right U-block By, is the same. The second property simply
says that the set of composite branches diverging from any state in By, to
states in By,,, is the same. Two different U-block pairs have mutually disjoint
composite branch sets.
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