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THE EFFECTS OF CROSSFLOW

ON THE PRESSURES AND LIFT
INDUCED BY THE FOUNTAIN GENERATED

BETWEEN TWO IMPINGING JETS

By

Richard E Kuhn

INTRODUCTION

When a jet or fan powered STOVL aircraft is hovering, or in
transition between hover and conventional flight, the lifting jet
streams induce suction pressures on the lower surface that cause a
lift loss and, generally, a nose up pitching moment. Sketches of
the flow fields involved are presented in figure 1. These flow
fields and the forces and moments they induce have been studied in
many investigations, such as those summarized in references 1-6.

In hover out of ground effect (upper left in figure 1), the
entrainment action of the downward directed jets induced suction
pressures on the lower surface causing a small lift loss. Close to
the ground, (upper right in figure 1) the wall jets flowing
radially outward from the point at which the jets impinge greatly
increase the entrainment area and the resulting lift loss or
suckdown. A fountain flow is generated where the wall jets from
multiple jet configurations meet. The impingement of this fountain
flow on the configuration partially offsets the suckdown induced by
the wall jets. Early methods for estimating the net suckdown are
presented in references 7 and 8. These methods were extended to
include estimation of the pitching moments in reference 9.

In transition out of ground effect (lower left in figure 1) the jet
streams are swept rearward by the interaction with the free stream
and roll up into vortex pairs. These vortices, and to a lesser
extent the blockage and viscous entrainment action of the jet(s)
induce suction pressures on the lower surface of the aircraft,
generally causing a loss in lift and a nose up pitching moment.
The path that the jets take and the pressures and forces induced
are summarized in references 2 - 4 and the development of empirical
methods for estimating the aerodynamic effects induced are
presented in references 6, 7, 10 and 11.



In ground effect at transition speeds (STOL operation) all the
above flow phenomena are present, but modified by the proximity of
the ground. In addition a ground vortex is formed by the action of
the free stream in opposing the wall jet flowing forward from the
impingement point of the front jet(s) (lower right in figure 1).
Studies of the ground vortex and methods for estimating its effects
are presented in references 5, 6, 10, 12, 13, 14 and 15.

Reference 15 analyzed the detailed pressure data from reference 14
for the single jet case and presented a method for including the
effects of the ground vortex in the induced lift estimates. The
present study extends the work of reference 15 to two jet configu-
rations and the effect of crossflow on the contribution of the
fountain generated between tandem and side-by-side jets.

SYMBOLS

A Aspect ratio of planform or element of
configuration under consideration

Aj Jet exit area, total area unless otherwise sqg. ft.
noted

Bt Planform area aft of rear jet sq. ft.

q“m” Planform area between zero pressure line sq. ft.
and front jet

Aﬂmu P}anform area forward of zero pressure sq. ft.
line

Ck Power off 1ift curve slope

Cy Pressure coefficient C;=A5qu

Chg Pressure coefficient on the ground

d Diameter of individual jet(s) ft.

D, Equivalent diameter of total jet area ft.

Dp Equivalent diameter of planform area ft.

e Half distance between jets ft.

fp Planform fineness ratio

h Height above ground ft.

h¢ Height of break in fountain lift curve ft.
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Kr,»
K, high
s,inb
s, out
K'w

Ktgv

AL
NPR

AP

per

Height parameter used in hover suckdown
calculation (eq. 20)

Height below which trapped vortex condi-
tion occurs in hover (egqg. 58)

Ratio of crossflow lift to hover suckdown
(eq. 55 & 63)

Factor used to account for aspect ratio on
jet induced lift loss (eq. 28-29)

Factor used to account for effect of jet
position on jet induced lift loss (eq.
30)

Factor used to account for mutual inter-
ference between side-by-side jets (eq. 61)

Factor used to account for tandem jet
effect on jet induced lift loss (eq. 31)

Factor used to account for jet position on
jet flap effect (eq. 33)

Factor used to account for jet span on jet
flap effect (eq. 34-35)

Factor used in calculating hover suckdown
at higher heights (eq. 22)

Factor used in calculating hover suckdown
on areas inboard of the jets (eq. 21)

Factor used in calculating hover suckdown
on areas outboard of the jets (eq. 23)

Adjustment factor for effect of 'trapped
vortex' in hover (eq. 56 and 57)

Adjustment factor for effect of trapping
of the ground vortex at low heights (eq.
50)

Lift
Lift increment
Nozzle Pressure Ratio, NPR = 2.0

Increment of pressure induced by ground
proximity

Total perimeter of jets
Free stream dynamic pressure

Jet dynamic pressure, q = T/2Aj

1b.
1b.

1b./ft?

£t .
1b. /£t}
1b./ ft?



x'
Xl

Rac

x"

s, out

jet
X8,

Yave

L

nac

Aa

Total planform area of configuration, or
part of configuration under consideration

Planform area aft of the jet
Planform area forward of the jet

Reference area used in calculation of
coefficients

Area of sections 1, 2, 3 or 4 used in
calculating hover suckdown (see eq. 15)

Total jet thrust

Effective velocity ratio. V_ =/q, qy
Longitudinal distance ahead of jet station

Half width of fountain in x direction (eq.
5-6)

Longitudinal distance, on model center-
line, of zero pressure point ahead of jet
(eq. 40)

Longitudinal distance of zero pressure
line ahead of jet at lateral station of
MAC (eq. 47)

Distance from center of ground vortex to
wing leading edge at spanwise position of
mean aerodynamic chord (eq. 46)

Distance from jet to center of area aft of
rear jet

Station at which jet is located

Station at which leading edge of MAC is
located

Half width of planform at point midway
between jets

Width of planform at jet location

Average width of planform ahead of jet
station

Lateral distance from centerline
Lateral distance of MAC from centerline

Upwash angle induced by ground vortex.
(eq. 48 and 49)

sq.

sq'
sq.
sq.

sq.

1b.

ft.

ft.

ft.

ft.

ft.

ft.

ft.
ft.

ft.

ft.
ft.

ft.
ft.

deg.



SUBSCRIPTS

aft Aft jet, or aft of jet

cf Crossflow term

data Experimental data

est Estimate

fwd Forward jet, or forward of the jet

£ Fountain

f,h Fountain estimate in hover

GV,p Positive ground vortex contribution

GV.,n Negative ground vortex contribution

h Hover

high at the higher heights, (eq. 17)

inb Inboard, between jet and fountain, (eq.
16)

3 Jet

if Jet flap effect

out Outboard of jet, (eq. 18)

neg Negative pressure region

mac Mean aerodynamic chord

pos Positive pressure region

s,h Suckdown estimate in hover

tv Trapped vortex condition

us Upper surface contribution

Jet wake contribution

w,t Truncation of jet wake

EXPONENTS

b Exponent used in estimating fountain width
(eq. 7)

f Exponent used in fountain pressure estimate

(eq. 10 & 11)

g & i Exponents used in hover suckdown estimates
(eq. 24 & 25)



TANDEM JETS

PRESSURE DATA

Data for three tandem jet configurations with 12, 8, and 4 inch jet
spacings (e/d = 5, 3.33 and 1.67 respectively) are available in
reference 14. The model used in reference 14 (fig. 2) was a simple
flat plate configuration with replaceable centerline plates to
facilitate providing various jet locations and spacings. The jet
configurations used in this analysis are defined below.

Configuration e/d Jet Station Jet dia. Ref. station
front rear in. in.
I 3.33 12 20 1.2 16
II 5 12 24 1.2 18
v 1.67 20 24 1.2 22
side-by-side 1.48 12 -- .85 12

The jets were simple convergent jets with moderate contraction
ratio and perforated plates upstream of the nozzle to provide
smooth exit flow. The data available from reference 14, and the
analysis presented here, are limited to circular vertical jets.

Unfortunately during the investigation reported in reference 14 it
was found that the impingement of the jets on endless-belt moving-
ground board caused the belt to distort and the tests had to be
made over a fixed ground board. Reference 15 shows a considerable
effect of moving over the ground on the ground vortex position and
on the pressures and lift induced by a single impinging jet. There
are probably related effects on the fountain and pressures induced
between jets but there is no data available to evaluate these
effects.

A sketch of the pressures induced ahead of the jet, on the model
and on the ground, by the ground vortex is shown in figure 3a. An
overview of the pressures induced by the three tandem jet configu-
rations analyzed here is given by the centerline pressure distribu-
tions shown in figure 4. At the lowest heights the positive
pressures induced by the impingement of the fountain, and the added
suckdown pressures induced ahead of and aft of the fountain
(between the fountain and the jets) are clearly shown between the
jets. Also the ground vortex induced positive pressure ahead of,
and the negative pressures induced in the region of, the ground
vortex are shown at the lowest heights ahead of the front jet. At
the higher heights the negative pressures induced in the wake of
the rear jet predominate; and these are increased by the suckdown
pressures induced at low heights.

The effect of height and velocity ratio on the location and
spanwise distribution of the fountain and ground vortex induced
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pressures are illustrated in figures 5, 6, and 7. Comparison of
the estimated location of the zero pressure line (the line between
the positive pressures forward, and the negative pressures induced
by the ground vortex) is in good agreement with the experimental
data. These estimates were made on the basis of the front jet
operating alone.

BAnalysis of all the data available from the three jet spacings
shows that the predominant factors in determining the net lift loss
are the suckdown induced when hovering in ground effect and the jet
wake lift loss induced out of ground effect. These two increments,
and the other factors that add up to the net induced lift loss, are
shown schematically in figure 8. The net lift loss can be
expressed as;

L. (4L) - (4% +(£) +(A_r:) + (4% +(;A_L) +(£) . (4Z) @

T T s,k T | 4 T w. t T GvV,p T Gv,n T us T 4 T ct

where (1%?) is the hover suckdown lift loss (in ground effect)
8, h

estimated by the method of reference 9, and (5%?) is the 1lift loss
v

induced at forward speed out of ground effect (jet wake term)
estimated by the method of reference 11. The analysis indicates
that the sum of these two increments can generally be thought of as
a "worst case"” estimate of the lift loss experienced at transition
speeds close to the ground. Some of the other terms increase the
1ift loss but those that reduce the lift loss are larger, resulting
in a net reduction from the "worst case” sum of the hover suckdown
and the jet wake terms as shown in figure 8. The factors determin-
ing all these terms are examined in the following sections. For
completeness key expressions from references 9, 11, and 15 for
estimating Hover suckdown and fountain, jet wake and ground vortex
effects needed in the analysis are included below.

HOVER SUCKDOWN AND FOUNTAIN

For the present flat plate configuration with circular vertical
jets the method of reference 9 for estimating the hover fountain
lift and suckdown, can be reduced to;

(5, (). (7L @

Fountain

The fountain term (from ref. 9) is the average pressure in the



fountain region multiplied by the area and, in hover, is given by;

(A_T{‘ = Cpr Qs Se /T (3)
£,h

where the area is;
S=4YX, (4)

and Y is the half width of the planform midway between the jets and
X, is the half width (in the x direction) of the fountain region.
For closely spaced jets ((e/d<1.5) the fountain positive pressure
region extends from jet to jet and;

X=e (5)

(]

For spacing ratios greater than e/d=1.5, and at the lower heights,
the half width of the fountain for the present configuration;

X,=e .36(71;)"“ (—he)" (6)

where the exponent b is given by;

b= (2 (Y 1)

At the higher heights X, reaches a limit which is taken as;
X = .5e (8)

The average pressure is calculated in two height ranges. At the
lower heights the average pressure coefficient is given by;

Cp. e .16(7;19;]-'72 (5)"’ (-c‘-;)'” (-g)’ (9)

where the exponent £ is given by:

= -4[8)° 10
f 4(d) for e/d> 3.3 (10)
f=-2.2 for e/d < 3.3 (11)

At the higher heights the average pressure falls off at a much more
rapid rate because we are basically seeing the effects of the
unsteady 'top' of the fountain (ref. 9). The height at which these

8



effects become apparent is given by:

h,= 3.7 (NPR) % (—g)"z (12)

Above hg the average fountain pressure is given by;
-.72 3
_ sY: e\--5 .25 ( h£ [ h, (13)
o 2 5) (8 (7 () (3]

Suckdown

The suckdown term (5%? (as presented in ref. 9) is the sum of the
s, h

suckdown in 4 areas; the area ahead of the front jet (Sl)' between

the fountain and the front jet (Sz), between the fountain and the

rear jet (S3) and aft of the rear jet (SQ). The hover suckdown is

given by;

(_A_L.) =(AL3,1 . ALg , + ALg , + ALs.c) (14)
T 8,h

T T T T

For the present configuration with equal thrust from each of the
two jets the suckdown in each of the four regions is given by;

AL
X L@y 5 /T (15)

where 5, is the area of the region under consideration. For the
regions ahead of the front jet and behind the rear jets S, is the
geometric area. For the regions between the jets and the fountain
S is the difference between the geometric area and half the
fountain impingement area S;.

The average pressure between the jets and the fountain is given by:

Cp,e= Ka, 100 Hs at the lower heights (16)
Cp.s= Ko nign Ha' " at the higher heights an

Similarly average pressure outboard of the jets is given by;

C,.e™ K, out H} at the lower heights, while (18)



C,

o8~ Ko, nigh Ht-8 at the higher heights (19)

where the height parameter H, is given by;
h

H = —2 _NDPR-&/ WY/ (20)
s D,-D,
and
-1
=-~.3[|5) [/ 21
K, i '3(A,) (d) (21)
-1 -.36
- - S) (et X (22)
K, nign = —+135 (A_.,) (d) (d)
-.84 .25 -.5
- - S 1l [ Xoioue (23)
= -2 (2] (3] (22
The exponents used above are given by;
.36 -.15
- -3 [S)7 (&)X (24)
o= -3 (&) (87 (3]
.38
i = -.96 (&% | Xa.ou (25)
i .96(d) ( d)

The above expressions calculate two values of suckdown at each
height. The change over height is not given. The larger (less
negative) value is used.

OUT-OF-GROUND-EFFECT LIFT LOSS

In transition the free stream deflects the jets aft and causes them
to generate vortex pairs in their wake. The jet induced effects due
to this wake flow field can be estimated by the method of reference
1l1. For each jet there are two components to the estimate; a 1ift
loss induced by the jet/free-stream interaction and a lift gain due
toa "jet-flap' type effect which partially offsets the jet induced
lift loss. There is also a lift loss increment that occurs in
hover out of ground effect. With a two jet configuration there are

10



therefore five parts to the lift estimate;
_A_é) = (&) + (&) + (A_I_- + (AI:) + (A&) (26)
T/l \Thirwa \Tlitowma \ Tliaee \ Thlig,are \ T ly,m0

where t%#) is the hover 1ift loss (from ref. 9) out of ground
V=0
effect;

(A—zf' = -.0001/37A; (per/d)':*® (NPR)" (27)
V=0

The jet induced lift loss in transition for the current twin-jet
flat-plate configuration is (from ref. 1ll) given by;

AL 2.4(5/A, poup) ~°* S -18
(F =['1° v () W Bk (28)
J, fwd 4, fwd
where
K, = Al for A<1 (29)
K =1 forA> 1 (30)
Kpy=1.4 -.8(Spu/S) —(1-Spu/S* (31)
S
K, =1 +.005—od _2€ (32)

Aj,M dM

The 'jet flap' effect lift gain for the current twin-jet flat-plate
configuration is given by;

ALy af_s \° _a (33)
(T)jr.m 30 Ve (Aj.t-d) Avz | e foe
where

15
K= .7+ .3(ff§'£') —.7(1-5_2'-”) (34)
and
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K p= %l A forA<1 (35)

K, p= % forA> 1 (36)

With tandem jet configurations the rear jet is operating in the
wake of the front jet and therefore operating at a lower effective
velocity ratio. The effective velocity ratio at the rear jet is
given by:

(2e/d,y) -1
Vc, aft™ v, d

¢ (2e/dgpy) +.75 (37)

The jet induced lift loss and the 'jet flap' type lift gain are
therefore calculated at this effective velocity ratio;

2.4(8/ )08 18
(ATI:) ) [-10 Vorare T4 4 2 ( y ) Vorare| K2 Ki,x (38)
1, aft 'y, aft
and
AL 2 s )*_a (39)
=L = 0V
( T )Jt. art 30 Verare (Ai:ﬂft) A+2 Tox Frp

It must be noted that the above expressions ( eq. 27-39) contain
only those factors from ref. 9 and 11 necessary to estimate the
induced effects on the present flat-plate tandem-jet configura-
tions. For other configurations resort must be made to references
9 and 11l.

Wake Truncation

Reference 15 shows that the out-of-ground-effect lift loss due the

wake ternu(l%%) is reduced due to the truncation of the wake as the
v

configuration nears the ground (fig. 1). 1In the present analysis
the term used to account for this truncation is taken from
reference 15, using the diameter of the rear jet;

(A'.'"L' e -05 V, (%)—quj Sare /T (40)

12



GROUND VORTEX

Ground Vortex Positive Lift

Positive pressures are induced forward on the configuration (fig.
5) by the action of the ground vortex in forcing the free stream to
flow up and over the vortex (fig. 3). The zero pressure line
between these positive pressures and the negative pressures induced
by the ground vortex appears to be established by the front jet
alone (fig. 5). As presented in reference 15, the location of the
zero pressure point on the model centerline for this model with
vertical jets tested over a fixed ground board is given by;

X -6 (_.5_)2 Ve (%)'“"-"’ (41)

A Ay, fwd

The zero pressure line is parabolic in shape and is given by;
y = 2/X(X-x) (42)

As shown in figure 9, integration of the pressures forward of the
zero pressure line produces lift increments in reasonable agreement
with those estimated by the method of reference 15 based on the
diameter of the front jet. For the present analysis, therefore

(!%?) is estimated by the method of reference 15 using the front
av.p

jet diameter;

(Az%)wf 46 v, £ (4" (SAT]‘ T (43)

T

Ground Vortex Negative Lift

The negative lift induced by the ground vortex are shown in figure
10 by the increased lift loss (increased relative to the sum of the
hover suckdown and the out-of-ground-effect 1lift loss) induced
forward of the front jet. Unfortunately there is no easy way to
separate the ground induced suckdown from the other factors
involved at forward speeds. For the present analysis the factor
representing the ground vortex induced suckdown forward of the

front jet, (!%? , is estimated by the method of reference 15,
6V,n
based on the front jet diameter, using the less negative of the two
following expressions.

At the lower heights;

(_A_L = -10 v.(’[“")-2 (_L)""’m 9 A, (44)
T )ov. dpg) \ g T

13



At the higher heights;

-2

(%

Upper Surface Lift

As indicated in reference 15 the blockage effect of the ground
vortex forces the free stream to flow up and over it (fig. 3)
placing the configuration in an upflow. The method of ref. 15
assumes the 1ift generated is equivalent to operating at an
effective angle of attack;

(Af-L') = Cu Aau‘ qj VOZ Szof /T (46)
us

The effective angle of attack depends on the location of the ground
vortex center relative to the leading edge of the planform MAC
(Mean Aerodynamic Chord) as determined by X";

x" = X’;c = (Xye~ Xp.x.) (47)
where

y2
Ko = X/ - 228 (48)

for negative values of X"

|9 -n X _ag| X!
Acu,-[ﬂ 155 .35|d

1.2

K, (49)
V. h/d

for positive values of X"

Aa,, = [.7 -2 X +.1s(—xi')1.s _Kegv (50)

d d) |v, h/a

and K., accounts for the effects of '"trapping' the ground vortex
under the configuration at low heights (fig. 3).

Below h = .5 JS/A, V, X e

h
5 JSTA; V, Xy

Kegy (51)
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Above h = .5 J37A; V, Xpy.
Ky = 1.0 (52)

EFFECT OF CROSSFLOW

Fountain Lift

The effect of the crossflow on the fountain term (152) (f£ig. 11)
h= r [@72. v ¥/ T/,

and was derived by integrating the positive pressure induced in the
fountain impingement area (see fig. 5) at each height and velocity
ratio. At a given height the 1lift was found to decrease with
increasing crossflow velocity. The ratio of the lift increment
with crossflow, to that determined in hover (V, = 0) is presented
in figure 11. For the present analysis the %ountain lift in a
crossflow can be taken as;

AL) - (AL) -0 _h.)”
Tle \T/en d

where (%# is determined by eq. 3 and d' is the individual
£.h

(53)
v,

diameter of each jet in a tandem pair and the equivalent diameter
of a side-by-side pair.

Suckdown

The effects of the crossflow on the lift induced in each of the
four lower surface areas (obtained by integration of pressures in

each area) are shown in figure 10 for configuration I. As noted
above, the lift induced out of ground effect (h/D, = 25, and the
1ift loss induced in hover (V, = 0), are responsiﬁle for most of

the 1lift loss. The effect of the ground vortex in increasing the
1ift loss on the forward area (Sl) at the lower heights is shown
and discussed above. However over most of the other areas the
crossflow decreases the 1ift loss (particularly between the front
jet and the fountain (Sz)).

A way of developing methods for estimating the 1ift loss in each
area did not appear practical. Instead the effect of the cross-
flow on the combined suckdown was found by subtracting the sum of
the other terms, developed in the previous sections, from the
experimental data;

(82) - (AF) -[A5) {AF) {82 482, {2E),, .13 4R
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The resulting crossflow increment was found to be proportional to
the crossflow velocity ratio V, as shown in figure 1l2a which
presents the ratio of the crossflow increment to the hover suckdown
term. This ratio, K, is a function of height and jet spacing and
decreases rapidly a£ heights below which the hovering trapped
vortex condition (discussed in ref. 9) is encountered. In the
present analysis the crossflow lift increment is given by;

AL AL

—_ =K —_— 55
(7). %= (7)., (55)
where

Ke=K, 4.2V, (%)'5 (56)
and

K, = -hi below h = h,, (57)

tv
K.=1.0 above h = h,, (58)

and hy, (from ref. 9) is given by;
h,, = .2(D,-D,) (59)

Comparison with Experimental Data

Figure 13 shows that the estimates (eq. 1) are in reasonable
agreement with the data on which the expressions are based, except
for the configuration with the closest jet spacing at the lowest
height. The problem here is in the hover estimates as shown in
figure 14. The method of reference 9 significantly over estimates
the suckdown for the most c¢losely spaced pair at the lowest
heights.

FPigure 13 also shows that the simple "worst case'" estimate - the
sum of the hover suckdown term (eq. 14) and the out-of-ground-
effect term (eq. 26) - over estimates the net lift loss at the

higher velocity ratios.

16



SIDE-BY-SIDE JETS

PRESSURE DATA

Data are available for only one side-by-side jet pair, and this
configuration is rather closely spaced as shown in figure 2. The
two jets were located at station 12 and each had a diameter of .85
inches Typical chordwise pressure distributions are shown in figure
15. The positive pressures generated by the fountain between this
closely spaced pair of jets is observed only on the centerline at
the lowest heights.

The effects of the ground vortex are most clearly apparent (fig.
15) in the positive pressures generated forward of the vortex.
Figure 15 also shows that the point at which the pressures go to
zero is further aft on the centerline than at the next outboard
station (y = 1.5 in.)

The location and shape of the zero pressure line for the side-by-
side pair is compared with that for the equivalent single jet in
figure 16. The estimates of the zero pressure line shape and
location, presented in figure 16, were made assuming that each jet
is operating independently; that is, the estimate is made (using
eq. 40 and 41) for each jet alone based on its diameter, area and
height diameter ratio.

Although there is considerable scatter in both the single jet and
jet pair data the zero pressure line for the pair appears to be
even further aft than the estimate indicates. A similar finding
was reported in reference 16 where the zero pressure point (on the
ground rather than on the lower surface of the configuration as in
the present study) was found to be further aft for the side-by-side
pair than for one of the pair operating alone.

The positive lift increment generated by the ground vortex was
obtained by integrating these positive pressures forward of the
zero pressure line and compared with estimates made by equation 42
in figure 17. The method tends to underestimate the lift increment
induced at the lowest heights and higher velocity ratios.

LIFT INCREMENTS
The 1ift increments for the side-by-side pair were examined in the

same manner used for the tandem jets. The net 1ift is given by the
sum of the increments;

%.'_‘ (%é)-.h+ (L;)v" ('AFL)";' (—AFL GV.p+ (-ATE)GV.J: (Afl'-L-)u.+ (_AFL)J!‘. (_AE'I: 2160)
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where(f%?) is the hover suckdown part of the lift loss estimate
s,k

by the method of reference 9 using eq. 14 above, and (!%?) is the
v

1ift loss induced at forward speed out of ground effect. This
increment is estimated by the method of reference 1l using eq. 26,
28 and 33 above with an additional factor added to account for the
mutual interference between closely spaced jets. Equation 28 is
augmented to read;

. .18
(ﬁ) ) [—10 ch.“smj‘m’ “+ 2 ( y ) V03 KL.A KL.X K. KL-Y (61)
T 13, tva Ay, twa
where
K, ,=1.2 -.1 (%9—1) (62)

The fountain lift increment (A%? induced by the side-by-side pair
f

decreases with increasing crossflow velocity at about the same rate

as that for the tandem jets (fig. 11). Equation 53 is therefore

applicable; where d' is the equivalent diameter of the side-by-side

pair.

The ground vortex increments téé) and (AL) are each the sum
T GV, p T GvV,n

of the increments estimated for each of the jets in the pair based

on their individual diameters, areas and height diameter ratios

using eq. 43 - 45,

The upper surface increment (1%?) is based on the front jet and is
us

estimated using eq. 46.

The wake truncation increment (!%?) is, like the ground vortex
vt

terms, the sum of the increments calculated for each jet based on
their individual diameter and area using eq. 40.

The crossflow increment (1%?) was found, as it was for the tandem
cf

jets by subtracting the sum of the above increments from the
experimental data;

(A5) - (AF)_-[A) +A2) o(82) +8E) {AH) {4%) A1)
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The resulting crossflow increment was found to increase with both
h/d and V, at low V,,s, but to reach a maximum between V, = .10 and
.15 and decrease at higher crossflow velocities. Although there is
considerable scatter in the data the ratio of the crossflow
increment to the hover suckdown increment, Kg, (fig. 18) appears
to be given by:

K= (2V, - 300V,) 3 K, (64)

The decrease in K at the higher ve's for this side-by-side pair is
in contrast to t%e linear variation of K¢ with Vv, found for the
tandem pairs (fig. 12 and eq. 56). It s%ould be noted that the
side-by-side pair data was carried to higher values of Vv, than the
data for the tandem pairs and, had the later been carried to higher
Ve's, they may have also reached a maximum.

COMPARISON WITH EXPERIMENTAL DATA

Figure 19 shows that the estimates (eq. 59) are in reasonable
agreement with the data on which the estimating method is based

except at the lowest heights. The problem here is in the hover
estimates as shown in figure 20 as it was for the closely spaced
tandem pair. The method of reference 9 significantly over

estimates the suckdown for closely spaced pairs at the lowest
heights.

Figure 19 also shows that the simple "worst case'" estimate of the

sum of the hover suckdown term and the out-of-ground-effect term
over estimates the net lift loss at the higher velocity ratios.
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CONCLUDING REMARKS

In transition while in ground effect (STOL operation) the suckdown
and fountain effects experienced in hover and the jet wake effects
induced in transition out of ground effect are still present but
modified by ground proximity. In addition a ground vortex is
generated ahead of the forward jet(s) that induced both suckdown
and lifting pressures on the configuration.

The results of this analysis of data from twin jet configurations
indicate that the suckdown induced in hover, and the jet wake
effects induced out of ground effect are the primary contributors
to the net lift loss in STOL operation.

The analysis also indicates that the direct 1ift due to the
impingement of the fountain generated between two jets is reduced
by the crossflow. Fortunately the additional suckdown induced
between the fountain and the jets is also reduced. This reduction
plus the net effect of the ground vortex results in a net reduction
in the 1ift loss relative to the simple summation of the hover
suckdown and the out-of-ground-effect lift loss.

The expressions developed here for estimating elements of the
lift loss should be used with caution for several reasons. The
data were taken over a fixed ground board. The effects of movement
over the ground (the effect of the scrubbing action of the ground
on the wall jet generated by the impinging jet) are not known. The
data and analysis are also limited to low pressure, circular jets
exiting vertically from a simple flat plate configuration.
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Figure 9.~ Comparison of estimated positive lift induced by the
ground vortex with the experimental data from integration of
pressures forward of the zero pressure line.
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Figure 13.- Comparison of estimated net lift loss with

experimental data.
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Figure 13.- Continued.
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Figure 16.- Comparison of location of zero pressure line for side-
by-side pair with that for an equivalent single jet.
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Figure 16.- Continued.
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Figure 16.- Concluded.
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