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Abstract

This paper reviews the important recent progress in three-dimensional boundary-layer transition research.

The review focuses on the crossflow instability that leads to transition on swept wings with a favorable

pressure gradient. Following a brief overview of swept-wing instability mechanisms and the crossflow problem,

a summary of the important findings of the 1990s is given. The discussion is presented from the experimental

viewpoint, highlighting the ITAM work of Kachanov and co-workers, the DLR experiments of Bippes and co-

workers, and the Arizona State University (ASU) investigations of Saric and co-workers. Where appropriate,

relevant comparisons with CFD are drawn. The recent (last 18 months) research conducted by the ASU

team is described in more detail in order to underscore the latest developments concerning nonlinear effects

and transition control.

Nomenclature

A disturbance amplitude

Ao reference disturbance amplitude

Cp pressure coefficient

C airfoil streamwise chord (along X axis)

c airfoil normal chord (along x axis)

f frequency

k roughness height

"Present address: Mystech Associates, 3233 E. Brookwood Court, Phoenix, AZ 85044. Member AIAA.

?Professor, Associate Fellow AIAA.
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= In(A/A,,), amplification factor

= U_,C/1/, chord lqeynolds mnnl>er

= (..'2 + ..,2)1/2 magnitude, of total velocity, U = U(_j)

bcmndary-laym' edge velocity along X axis

fleestream velocity along X axis

velocity components in (X, Y, Z) coordinates

disturbance velocity in (X, Y, Z) coordinates

global test-section coordinates: X is along the flow axis, Y is wall-normal,

coordinate (positive down)

model-oriented coordinates: x is chordwise, y is wall-normal, z is spanwise

airfoil angle of attack

crossflow disturbance wavelength measured in swept span direction

kinematic viscosity

Z is unswept spanwise

1 Introduction

1.1 Swept-Wing Flows

The study of three-dimensional boundary layers is motivated by the need to understand the fundamental

instability mechanisms that cause transition in swept-wing flows. Research has identified four types of

instabilities for these flows: attachment line, streamwise, centrifugal, and crossflow. The attachment-line

problem is caused by a basic instability of the attachment-line boundary layer or by its contamination with

turbulent disturbances and develops, in general, on swept wings with a large leading-edge radius (Poll 1979,

1984, 1985; Hall et al. 1984; Hall and Malik 1986). The streamwise instability is not unlike the familiar

Tolhnien-Schlichting (T-S) wave in two-dimensional flows. This mechanism is associated with the chordwise

velocity component and is generally stabilized by a favorable pressure gradient. Centrifugal instabilities

can appear over concave regions on the surface and result in the development of G5rtler vortices (Floryan

1991; Benmalek and Saric 1994; Saric 1994). Crossflow waves, on the other hand, are an inviscid instability

mechanism caused by the combined effect of wing sweep and pressure gradient. All of these instabilities can

appear individually or together depending on the combination of Reynolds number, wall curvature, wing

sweep, pressure gradient, and external disturbances. Thus, the swept wing provides a rich environment in

which to study the stability behavior of three-dimensional boundary layers.



1.2 Crossflow Instability

The present, review focuses on the. crossflow instability that occurs On swept wings in regions of strong,

favorable pressure gradient. Unlike T-S instabilities, the crossflow problem exhibits stationary (f = 0) as

well as traveling disturbances that arc amplified. Even though both types of waves are presmlt in tyl_i_:al

swept-wing flows, transition is usually dominated by either the stationary or the traveling waves. Lin_ar

theory predicts that the traveling disturbances are more highly amplitied, however ll.lan3" experiments are

dominated by stationary waves. Whether the stationary or traveling waves dominate is directly related

to the receptivity process. Stationary waves dominate transition in low-distm'bance environments, while

traveling waves are more important in high-disturbance environments (Miiller and Bit_pes 1989; Bippes

1990, 1991; Bippes 1991; Deyhle and Bippes 1996; Bippes 1997). Since the low-disturbance environment is

more characteristic of flight, the stationary waves are expected to be more important.

Stationary crossflow waves (that is, the v' and w' distm'banees) are t.ypically very weak, hence al_alylical

models have long been based on linear theory. However, experiments ofl.en show evidence of strong nonline.ar

effects (Dagenhart et al. 1989, 1990; Bippes and Nitschke-Kowsky 1990; Bippes et al. 1991; Deyhle et at.

1993; Reibert et al. 1996). The resolution of this apparent paradox lies in the understanding of the physical

mechanism by which the stationary waves disturb the boundary layer. The key to the stationary disturbance

is that the wave fronts are fixed with respect to the model and nearly aligned with the potential-flow direction

(i.e., the wavenumber vector is nearly perpendicular to the inviscid streamline). Consequently, although the

(v', iv') motion of the wave is weak, its stationary nature produces an integrated effect that causes a strong u'

distortion in the streamwise boundary-layer profile. This integrated effect and the resulting local distortion of

the mean boundary layer leads to the modification of the basic state and the early development of nonlinear

effects.

An interesting feature of the stationary crossflow waves is the destabilization of secondary instabilities.

The u' distortions created by the stationary wave are time-independent, resulting in a spanwise modulation

of the mean streamwise velocity profile. As the distortions grow, the boundary layer develops an alternating

pattern of accelerated, decelerated, and doubly inflected profiles. The inflected profiles are inviscidly unstable

and, as such, are subject to a high-frequency secondary instability (Kohama et al. 1991; Malik et al. 1994).

This secondary instability is highly amplified and leads to rapid local breakdown. Because transition develops

locally, the transition front is nonuniform in span and characterized by a "saw-tooth" pattern of turbulent

wedges.



1.3 Literature Surveys

There is no shortage of lml>lieations in the field of boundary-layer slabili_y mM transition: certainly more

than can be discussed in detail here. C,omtnehensivc reviews for both two- and three-dimensional flows are

given by Arnal (1984, 1986, 1992, 1994), Mack (1984), Poll (1984), Smic (19921_), and Iteshotko (1994).

lleed et al. (1996) give an up-to-date discussion of effectiveness and lilnitat.i,ms of linear theory in describing

bomldary-laycr instabilitie.s. The readm' is referred to these reports for overviews of much of the em]y work

in stability mad transition.

Several key papers provide in-depth reviews of st.alfility and transition research in three-dimensional

boundary layers and, in particular, swept-wing flows. Much of the early theoretical and exlmrimental work

is discussed by Reed and Saric (1989). Swept wings, rotating disks, axisynmmtric bodies (rotating cones

and spheres), corner flows, and attachment-line instabilities are reviewed, as well as the stability of flows for

other three-dimensional geometries. This paper gives an excellent overview of the unique stability probleIns

in three-dimensional flows. For swept wings, a historical account of the earl 3, investigations concerning the

crossflow instability is given, along with a detailed literature survey.

1.4 Overview

Recently, improvements in both experimental techniques and computational methods have opened the door

to a new understanding of transition in three-dimensional boundary layers. This paper will focus on the

latest developments, with emphasis on the experimental work and relevant comparisons with CFD In

particular, the leading labs for three-dimensional boundary-layer research will be highlighted: Kachanov

and co-workers at ITAM, Novosibirsk studying principally traveling erossflow waves; Bippes and co-workers

at DLR, G6ttingen investigating linear/nonlinear growth and the sensitivity to freestream conditions; Saric

and co-workers at Arizona State University (ASU) focusing on the linear/nonlinear growth of stationary

crossflow waves and the importance of surface-roughness-induced initial conditions. Both the ITAM and

DLR work use a swept flat plate while the ASU model is a sinmlated infinite-span swept wing.

Bippes (1997) reviews the European contributions to stability and transition in three-dimensional bound-

ary layers and as such is a companion paper to this work. In another paper, Kachanov (1996) reviews the

efforts in ITAM, Novosibirsk. We therefore concentrate here on the U.S. efforts.



2 Summary of the Last Seven Years

Al_hough crossflow disturlmnces have been observed expcrinLentally since the early 1950s (Gray 1952)_ much

of _he important advances have occurred within this decade. The primary accomplishments are brieity

sumlnarized in the following paragraphs. A more detailed review of recent findings is given in section 3.

Micro-Thin Hot-Film Elements Multielemcnt, mi(:rothin hot fihns develot)ed at NASA Lat,gley iRe-

search Center have been successfully used at ASU to obtain multipoint me_surements in swept-wing flows

(Dagenhart et al. 1989; Mangalam et al. 1990). The surface-mounted sensors can be distrilmtcd in the

chordwise direction for multipoint monitoring of the transition location, or with the elements aligned ahmg

the stationary crossflow vortex axis for structure identification. The develot)ment of these gauges within a

controlled transition experiment aided their implenmntation in the flight environm(mt.

Secondary Instability In early experiments at ASU, Kohama et al. (1991) show that when the b(mndary

layer is dominated by the stationary crossflow instability, transition is caused by a high-frequency secondary

instability. This instability results from the local distortion of the mean streamwise boundary-layer profile by

the stationary disturbance. As the stationary crossflow wave grows downstream, the mean boundary layer

develops an alternating pattern of accelerated, decelerated, and doubly inflected profles. The secondary

instability develops locally as a result of the inviscidly unstable inflected profiles. The secondary instability

is highly amplified, leading to rapid local breakdown and the characteristic "saw-tooth" transition front.

Malik et al. (1994) put the idea on firm footing with an analysis of the secondary instability and obtained

agreement with Kohama et al. (1991).

Linear Growth In the earlier work of Nitschke-Kowsky and Bippes (1988), Miiller (1990), Deyhle et al.

(1993), Kachanov and Tararykin (1990), and Kachanov (1996), the observed wavelength and growth rate of

the crossflow wave is initially in general agreement with linear theory and is independent of the freestream

turbulence level. However, it is reported that superposing a spanwise periodicity on the flow fixes the

wavelength of the stationary disturbance.

Forced Traveling Modes Deyhle et al. (1993) and Kachanov (1996) develop techniques to create con-

trolled traveling waves within the boundary layer and observe the growth of traveling modes. Linear theory

was verified in this case. The importance of traveling modes and their dependence on freestream conditions

and are put into perspective by Bippes (1997).



Sensitivity to FreestreamConditions TheDLRexperinmnt,,s()f Bil)t)¢_s and c(_-work(w,_ l)r¢)vi(h ' impor-

talll results concerning th(, role of frcestream disturbances. The primary findings are report_'d by Nitsc.hk(.-

Kowsky aml Bippes (1988), Miiller and Biplms (1989), Bippes (199(I, 1991), Bippes and Miillcw (l,q911),

Bippes and Nit.schke-I,[owsky (1990), Miiller (1990), Miiller et al. (199(I), and t]iplms et. al. (1991). II('c,_nl

results are summariz(-_d by Deyhle et al. (1993), Lerche mid Biptms (1995), Deyhl(! and Bippes (1996), and

Bippes (1997). These experiments measure both stationary and traveling crossflow wav(_s, hr_wever their

relative importance in influencing the details of transition is found to depend on the fieestream lmbul_n('e

level. M/iller and Bippes (1989) describe a series of comparative exlmrim(nlts using the s_-llll(_swept flat. plate

in both low- and high-turbulence tmmels. The stationary waves are found t() dominate transition in {.he?low-

disturbance environment, however in the high-turbulence t.unm;1 both the growth rate and final amplitude

of tile stationary disturbance are reduced. At the same time, the traveling waves show larg('r growth rates

and donfinate transition.

Not only does the type of transition depend on freestream conditions, but Deyhle and Bippes (1996)

show that transition can be initially delayed by incrcasin9 the fleestream turbulen(x' levels. In this case. the

strong stationary modes are not as effective in causing the secondary instability because of the unsteadiness

in the boundary layer.

Sensitivity to Roughness At ONERA-CERT, Arnal et al. (1990) use isolated roughness to verify the

roughness correlation of von Doenhoff and Braslow (1961). This involves using rougtmess elements a.s a

bypass, i.e., transition occurs just downstream of the roughness element.

In the DLR experiments, Miiller and Bippes (1989) show that the stationary waves remain fixed with

respect to the model regardless of the wind tunnel in which the experiment is conducted. This indicates that

the stationary crossflow instability is sensitive to initial conditions provided by surface roughness.

In work reported by 1Radeztsky et al. (1993), the ASU team investigated the sensitivity of stationary cross-

flow waves to roughness-induced initial conditions by introducing isolated, micron-sized, artificial roughness

elements near the leading edge. These experiments show that a single, three-dimensional roughness element

can locally amplify the stationary wave leading to premature transition behind the roughness element. Only

single roughness elements are used in these tests, and the effects on transition are observed to occur only in

the region downstream of the roughness element. Moreover, the roughness element causes early transition

only when its diameter is larger than 10% of the most-unstable-mode wavelength and is placed near Branch I

of the stationary instability.



Nonlinc, ar Saturation In all lh_, l)Ll{ exlmrimenl,_, tim growlh _t Ill(, stalionary and Iraveling crosstlmv

waves shows initial qualitalive a_r¢,mm_nl with linear theory, ttmvev('r, the disturbance amplitude satur;lt(_s

dll(' 1o llolllilI(,ar ('t[',.'cls. Also, _h(' amplitude ()f the t.lav(_lill_ waves sllow.s ;I spanwisc modulation indicating

nonlin_,ar intcraction._ with the :tat i()lmrv Iuodos.

II1 (_xperinlt!nis _iI ASia', Rcil)elI cI al. (1995, 1996) invesligalc lhe llolllin('.al' satlullt.ioll of ,'-;{.ationarv

waves using micron-sized artiticial rcmghness elements to control the initial c(mditions. Full-span arrays of

roughness elements arc used Io pr(,serw, the spanwise periodicity of the (list.url)ance. By forcing the most

mlstal)le mode. (according to linear dwory), nonlinear satm'arion of the disturbance amt_lilude is 01)served

well before transition. Although the initial growth rat(! illcl(_as(_s with increr_sing roughness height, the

saturation amplitude remains largely unaffected by changes in the rougtmess height.

The presence of a large laminar extent of nonlinear saturation gives rise to a certain difficulty in using

linear methods--such as :,N or linear PSE--to predict transition. The flltility of such approaches is expressed

by Arnal (1994) and Reed et. al. (1996), who show that linear methods do not work in three-dimensional

boundary layers.

Modal Decomposition R,adeztsky et al. (1994) describe a measurement technique that allows the ex-

perimentally obtained stationary crossflow structure to be decomposed into its spatial modes. Using a

l,igh-resolution traversing mechanism, hot wires are carefully moved through the boundary layer along a

predetermined path. Data are acquired at numerous spanwise locations, from which modal information

is extracted using a spatial power spectrum. Reibert et al. (1996) use a slightly modified technique to

more objectively determine the modal content. Under certain conditions, the amplitude of the fundamental

disturbance mode plus eight harmonics are successfully extracted from the experimental data.

Excitation of Less Unstable Modes Using the modal decomposition technique described above, Reibert

et al. (1996) investigate the effect of roughness-induced forcing at a wavelength three times that of the most

unstable stationary mode (according to linear theory). A cascading of energy from the fundamental to

higher modes (smaller wavelengths) is observed, leading to nonlinear interactions among the fundamental

mode and its harmonics. Transition is observed to occur slightly earlier compared to forcing at the most

unstable wavelength, and the saw-tooth transition front is much more "regular" in span. These data indicate

that nonlinear interactions among multiple modes is important in determining the details of transition.



Excitation of Snbcritical Nlodes Continuin_ the exl_eriment.s _f" l_t,ilm_t ,,I al. (1996). Carrilh_ (199(;)

describes a set. of e_xperinmnts in which the stat.itmary crossltow dist.mlmnce is ti)rced with sul_critical l_mgh-

hess spacing, i.e., the spacing between roughness elements is less than the wavelength of the lnode unstal_le

mode. Under these conditions, the rapid growth of tho forced mode c()ml)lelely sut)lnesses the linemlv lnOS!

unstable mode, thereby delaying transition beyond its "natural" location (i.e., where transition occurs in the,

absence of artificial roughness). These data demonstrate that surface roughness can be used to coTi.tvol the

stationary crossflow disturbance wavenumber spectrum in order to delay transition on swept wings.

Structure Identification Using POD Using data collected at ASU, Chapman et al. (1995, 1996) ap-

ply linear stochastic estimation (LSE) and proper orthogonal decomposition (POD) to identify the spatio-

temporal evolution of structures within a swept-wing boundary layer. Detailed measurements are acquired

using multielement hot-fihn, hot-wire, and cross-wire anemometry. These data allow the POD to (,l@ctively

determine (based on energy) the modes characteristic of the measured flow. Data are acquired through the

transition region, from which an objcctivc transition-detection method is developed using t,he streamwise

spatial POD solutions.

CFD Comparisons (DNS) Direct numerical simulations (DNS) have historically been constrained by

computer resources and algorithmic limitations, however some successes have been achieved in relation to

the stationary erossflow problem. Reed and Lin (1987) and Lin (1992) perform DNS for stationary waves

on an infinite-span swept wing similar to the ASU experiments. Meyer and Kleiser (1990) investigate the

disturbance interactions between stationary and traveling erossflow modes on a swept flat plate using Falkner-

Scan-Cooke similarity profiles for the basic state. The results are compared to the experiments of M/iller

and Bippes (1989). With an appropriate initial disturbance field, the nonlinear development of stationary

and traveling crossflow modes is simulated reasonably well up to transition. Wintergerste and Kleiser (1995)

continue this work by using DNS to investigate the breakdown of crossflow vortices in the highly nonlinear

final stages of transition.

CFD Comparisons (PSE) Combining the ability to include nonparallel and nonlinear effects with com-

putationally efficient parabolic marching algorithms, the parabolized stability equations (PSE) developed

by Herbert (1994) have recently been used to successfully model the crossflow instability. For swept-wing

flows, nonlinear PSE calculations exhibit the disturbance amplitude saturation characteristic of the DLR

and ASU experiments. Wang et al. (1994) investigate both stationary and traveling crossflow waves for the



sweptairfoilusedin ltw AS[; _'×p_rinwm,_andl>redictnonlinemalnt>litu,h'smurali_mfor l_olhtyl.,.',of

disturbances.It issuggesledI ha_ the int _,raclion betw¢,en the st ationary ;rod t ravt,ling waves is ;m iml>ortant

aspect of the transition process.

\Vithin the last year, the PSE have, ]_een us(!d at ASU t,_ m_>dc] the gr_>wth and dcvvlolmmn! _>f'l.hc

stationary crossflow wave with remarkable precision. Using the e×l,(wim,,ntal data of l_cil)crt (199(;) t.o

guide the initial conditions, Haynes and [Iced (1996) are able to accurat.e]y in'edict, the nonlinear amplitude

saturation and model the de.taih,d struct.ure and evolution of tlw stationary crossllow wave. An in|.C,lC'sting

discovery of Haynes (1996) is a hylmr-scnsilivily t,(_s,'clningly m_ligil>h' slt_!mnlim, and 1,(,dy cm,,',_*t tu_' in

the ASU experiments.

3 Recent Results

The preceding section briefly summarizes the important findings (if tlm 1990s and lays the foundation for

understanding the current state of knowledge related to the crossflow instability. Buihting on that foundation,

this section presents a inore detailed review of the last 18 months. In the interest of brevity, the focus will

shift exclusively to the ASU experiments of Saric and co-workers and computations of Reed and co-workers.

The reader is referred to Bippes (1997) for a more detailed review of recent DLR and other European work.

3.1 The ASU Experiment

The ASU crossflow experiments are conducted in the Arizona State University Unsteady Wind Tunnel- a

low-speed, low-turbulence, closed-circuit facility in which the stability and transition of laminar boundary

layers are studied (Sarie 1992a). The NLF(2)-0415 airfoil model (Somers and Horstmann 1985) is mounted

vertically in the 1.4 m x 1.4 m x 4.9 m test section. Floor and ceiling contours installed in the test section

produce an infinite-span swept-wing flow (figure 1). With a 45 ° sweep and a -4 ° angle of attack, the

favorable pressure gradient produces considerable crossflow while suppressing T-S modes (figure 2).

The aluminum surface of the NLF(2)-0415 is hand polished to a 0.25 pm rms finish so that even micron-

sized artificial roughness elements are well above the background roughness level. Detailed hot-wire mea-

surements within the boundary layer provide two-dimensional maps of the stationary disturbance structure,

while spectral techniques are used to identi_" and follow specific stationary modes.



3.2 Nonlinear Interaction and Amplitude Saturation

3.2.1 Natural Roughness

In l lu'al,svnce,)f' artificial surface roughn¢_ss, t],o natural]v occurring stationary cr_ssth_w waves are nommi-

form in span due m submicron surface irregularities near the h'adint4 edge. This is shown ill figure 3, which

displays a contour plot of the normalized t)omldary-layer velocity at :r/c-- 0.45 for Re,. = 3.0 x 10 (;. The

figure shows the streamwise velocity v/U_ in the (}', z) plane. The ttow is toward the r(_ader (i.e., the observer

is looking upstream into the oncoming bou,_dary-layer tlow), and the stationary vortices are turning in the

right-handed sense. The velocity contours are constructed from 100 ll|(_an-flow boundary-layer profiles each

sqmrated by 1 mm in spm_. It, is imporlant t.o note that the wave-like structure of figure 3 represents the

integrated effect of the weak stationary vortices on the streamwise velocity.

Figure 3 displays a dominant fe.aturc at a 12 mm spanwise spacing, which is approximately the most

amplified stationary wavelength according to linear theory. At the same tinm, the richness in the spectral

content is evident and indicates nonlinear inte.raction among many modes. This is typical of all the early

experiments (Miiller and Bippes 1989; Dagenhart et al. 1989, 1990; Bippes and Nitschke-Kowsky 1990;

BiI_pes et al. 1991).

3.2.2 Critical Forcing

The initial conditions are controlled by applying a full-span array" of k = 6 tLm rougtmess elements at

:r/c = 0.023. The spanwise spacing of the elements is 12 mm, corresponding to the naturally occurring

most-amplified wavelength. Figure 4 shows the streamwise velocity contour with the roughness installed.

The dominance of the 12 mm mode is striking, and allows a direct calculation of the stationary disturbance

amplitude (see Reibert et al. 1996 for a description of the technique).

Figure 5 compares the experimental amplification factor ("N-factor") for the 12 mm roughness forcing

with the predictions of the Orr-Sommerfeld equation (OSE), the linear parabolized stability equations, and

the flail nonlinear parabolized stability equations. All computational results are provided by Haynes (1996).

The saturation phenomenon is clearly evident, and can be quantified. The early growth shows excellent

agreement with linear PSE, however strong nonlinear effects develop well before transition at (X/C)tr = 0.52.

The importance of nonparallel effects is indicated by the failure of traditional linear stability, theory' (OSE)

to accurately predict the growth even in the linear range. When nonlinearity is added, the agreement is

remarkable over the entire measurement region and all aspects of the growth are predicted. This is explained

10



ill moredetailill Reibert vt al. (1996), Reibert (1996), aml llavn,,s (19!15).

The outstanding agreement shown in tigure 5 resulls i)_m, the indusi_m of curval mt' in t h,' colIlplllntiolls,

without which the disturbance growth is significantly overpredicted. The sensitivity 1o very w('ak cmvatm,_

is due to the stronr, stabilizing GSrller effect with convex curvature (Ih_mnah_k and Smic 199-1). This ix

the reason for the disagreement between the linear exlmriments of Itadeztsky _'i al. (1994) and lin(,m theory

without curvature. More information on the sensitivity to curw_ture can be f(mnd in Haynes (1996).

3.2.3 Multiple-Mode Crossflow Waves

Multiple-mode crossflow waves are produced by increasing the space between the roughness elements. Fig-

ure 6 shows the stremnwise velocity contour obtained with a roughness spacing of 36 ram. The primary struc-

tures are 36 mm apart corresponding to the roughness spacing. In addition, sutmrharmonics are l)resenl, al.

integer multiples of the primary wavenmnber. This is clearly indicated by the power spectral density (PSD)

plotted in figure 7, which displays amplified modes with wavelengths of 36 ram. 18 ram, 12 ram, 9 ram,

7.2 mm, 6 ram, 5.1 ram, 4.5 mm, and 4 mm. The presence of this roughness-induced harmonic sequence

indicates that the stationary crossflow pattern is not predetermined by external tlow conditions, l}ul. c;m be

completely controlled by the surface characteristics.

3.3 Distributed Roughness and the Importance of Spanwise Spacing

Two important observations concerning the long-wavelength (A, = 36 nun) data of Reibert et al. (1996) are:

1. Unstable waves occur only at integer multiples of the primary disturbance wavenumber, and

2. No subharmonic disturbances are destabilized.

In other words, spacing the roughness elements 36 mm apart excites disturbances with spanwise wavelengths

of 36 mm, 18 mm, 12 ram, 9 mm, etc., but does not produce any unstable waves with "intermediate"

wavelengths or with wavelengths greater than 36 ram.

Following this lead, the Carrillo (1996) investigates the effects of distributed roughness whose primary dis-

turbance wavenumber does not contain a harmonic at ,_, = 12 mm (the most unstable wavelength according

to linear theory).

11



3.3.1 Noncritical Forcing

The harmonic nat ure of the roughness-induced stati<mary cr{)s_flc_w di_t urbance is contirn_od by chan,_ing thP

tundanmntal disturban(x_ wavclc,xgt.h (i.e., the roughness spadng) t{> 1S ram. Fi_mc S sh{}ws the s,r{'amwis¢'

veMcity conttmrs at :c/c ---- 0.,t5 and Re,. = 2.d x ]{Y; for this t:{mliguralion. The ,:orresp{mding PSD is shown

in figure 9.

The velocity cont ours clearly shmx: the 1}resence of the 18 mm and 9 mm waveh,n_;t.h, and the PSD ctmtirms

that the 18 mm forcing has produced the sequence of harmonics at..X, = 1S ram. 9 ram. 6 iron, etc. The mosl

import,ant feature of tigurc 9, howtwer, is (.hat the li'ltcarl 9 'most _tT_.s-tablc dis/.'ttrb,_tcc (,\_ = 12 "re'm) has b,c'll

cOm.lJlctcl?/ svppr(_ss_d. Moreovor (and consistent with all previous results), ltO sul}harmonic dislmbances aro

{}]}scrvod,

3.3.2 Subcritical Forcing

The 18 mm forcing case proves that. an appropriately designed roughness configurati{}n can, in fact, inhibit

the growth of the (naturally occurring) most-unstable disturbance. Unfortunately, the transit.ion location

remains relatively unchanged due to the nonlinear interaction between the As = 18 mm and the A, = 9 mm

nlo(les.

The disturbance field changes remarkably, however, when the roughness spacing is reduced to inhibit the

growth of all disturbances whose wavelength is greater than that of the linearly most unstat}lc disturbance.

Figures 10 and 11 show the streamwise velocity contours for 8 mm spaced roughness at z/c = 0.3{} and

:r/c = 0.60, respectively. The corresponding PSD are shown in figures 12 and 13. These data clearly indicate

that the disturbance is initially dominated by the .X_ = 8 mm mode, yet transforms to a '%road-1}and"

{listurbance downstream.

The broad-band nature of the disturbance for large z/c (figure 13) indicates that the long-wavclengt.h

{listurbances are not subharmonics of the fundamental (A_ = 8 ram) instal}ility. Instead, this indicates broad-

l}and growth of the "background" disturl:}ances, which are only observ{'d once the otherwise dominating

fundamental mode decays. This is clearly indicated in figure 14, which compares the total disturbance

amplitude to that of the As = 8 mm mode as a function of chord position. As the ,X_ = 8 mm triode decays

for z/c >_ 0.30, the long-wavelength, hroad-hand disturbances become unstable so that the total disturbance

energy increases for :c/c > 0.50.
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3.3.3 Transition Location

"fh¢' most rcnmrkal)h, result obtained from the subcritical roughnc'ss Sl)acing is the dramatic affect on t.ran-

siticm location. In the absence of art_ificial roughlless, tralisit.ioi| o('cln's near the ])resslue nlininlnnl at.

.r; _ = t).71 for /'l'c,. = 2.-1 × 1(}li. Adding k = 6/tin roughness with a spamvise spacing equal to (or a multiple

of_ the wavelength of the linearly most unstable wave ()_s = 12 ram) moves transition forward to J:/c < (I.52.

H(_w_'v(_r, the sulmritical forcing at 8 mm spanwisc spacing actually dcla:tl,S tr'tm,sitioTt bcymtd the prcss',rc

mi_d'm_z'm (rod ortto the trailing-critic flap at, x/c = 0.80.

4 Conclusions

Boundary-layer transition in three-dimensional flows is a complicated process involving complex geome-

trises, multiple instability mechanisms, and nonlinear interactions. Yet significant progress has been recently

made toward und(_rstanding the stability and transition characteristics of swept-wing flows. Concerning the

(:r()ssflow problem, the past seven ),ears have produced several intportant discoveries including:

• Developnmnt of instrumentation that can be applied to the flight-test environment.

• Application of POD methods to interpret wind-tunnel and flight-test transition data.

• Effect of environmental conditions in determining the relative importance of stationary and traveling

WilVeS.

• Existence of a secondary instability causing local transition in stationary-crossflow-dominated flows.

• Sensitivity of the stationary disturbance to leading-edge surface roughness.

• Importance of nonlinear effects and modal interaction.

• Development of nonlinear PSE codes to predict all aspects of stationary disturbance growth.

• Sensitivity of stationary wave growth to very weak convex curvature.

• Use of artificial roughness to control the disturbance wavenumber spectrum and delay transition.

Three-dimensional boundary-layer stability is still far from being completely explained. Important factors

such as receptivity--the process by which external disturbances enter the boundary layer and create the

initial conditions for an instability--are still not well understood. Yet in spite of tit :se shortcomings, careful

13



experiments and accuraw computations have resuhed in siKniticam t_,__'ss t¢ma,d umh'tsl;m_Ii,,_ a diflicull

problem.
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Figure 1:NLF(2)-0415 airfoil and wall liners removed from the Unsteady Wind Tunnel test, section.
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Figm'e 2: Unswept NLF(2)-0415 atrfoil contour and theoretical upper-surface free-air Cp for a = -4 °. The
C7, is computed with the NASA Langley code MCARF.
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Figure 3: Streamwise velocity contours at x/c = 0.45, Rcc = 3.0 x 106. No artificial roughness.
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Figure 4: Streamwise velocity contours at x/c = 0.45, Rec = 2.4 x 106.
roughness elements with 12 mm spanwise spacing is at x/c = 0.023.
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Figure 6: Streamwise velocity contours at x/c = 0.45, /_ec = 2.4 x 106. A full-span array of k = 6 iLm

roughness elements with 36 mm spanwise spacing is at x/c = 0.023.
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Figure 8: Streamwise velocity contours at x/c = 0.45, Rec = 2.4 x 106. A full-span array of k = 6 #m
roughness elements with 18 mm spanwise spacing is at x/c = 0.023.
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