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Abstract--Samples from every half-centimeter dissection interval of double drive tube 60013 / 14 (sections

60013 and 60014) were analyzed by magnetic techniques for Fe ° concentration and surface maturity

parameter ls/FeO, and by neutron activation for concentrations of 25 lithophile and siderophile elements.
Core 60013/14 is one of three regolith cores taken in a triangular array 40-50 m apart on the Cayley

plains during Apollo 16 mission to the Moon. The core can be divided into three zones based both on
1JFeO and composition. Unit A (0-44 cm depth) is compositionally similar to other soils from the

surface of the central region of the site and is mature throughout, although maturity decreases with depth.

Unit B (44-59 cm) is submature and compositionally more feldspathic than Unit A. Regions of lowest

maturity in Unit B are characterized by lower Sm/Sc ratios than any soil obtained from the Cayley plains
as a result of some unidentified lithologic component with low surface maturity. The component is

probably some type of mafic anorthosite that does not occur in such high abundance in any of the other

returned soils. Unit C (59-62 cm) is more mature than Unit B and compositionally equivalent to an 87:

13 mixture of soil such as that from Unit A and plagioclase such as found in ferroan anorthosite. Similar

soils, but containing greater abundances ofanorthosite (plagioclase), are found at depth in the other two

cores of the array. These units of immature to submature soil enriched to varying degrees (compared to
the mature surface soil) in ferroan anorthosite consisting of _99% plagioclase are the only compositionally

distinct subsurface similarities among the three cores. Each of the cores contains other units that are

compositionally dissimilar to any soil unit in the other two cores. These compositionally distinct units

probably derive from local subsurface blocks deposited by the event(s) that formed the Cayley plains.

The ferroan anorthosite with _99% plagioclase, however, must represent some subsurface lithology that

is significant on the scale of tens of meters. The compositional uniformity of the surface soil (0-10 cm

depth) over distances of kilometers reflects the large-scale uniformity of the plains deposits; the fine-

structure reflects small-scale nonuniformity and the inefficiency of the impact-mixing process at depths
as shallow as even one meter.

INTRODUCTION

THE MOON, asteroids, and those terrestrial planets with minor

atmospheres are covered with regoliths produced by countless

impacts of meteoroids with the surfaces. These regoliths ob-

scure bedrock from access by both sample-return missions

and remote sensing. For the Moon, virtually all of our samples

are from the regolith and nearly all spectral data obtained

remotely from orbit or Earth-based telescopes is for regolith

occurring only at the very surface. As a result, most of what

we know about the Moon derives from the regolith (Mc KAY

et al., 1991 ). This situation is, or for future missions is likely

to be, largely true for Mars and asteroids as well. Thus, an

understanding of regolith formation processes is essential to

interpretation of both sample and remotely sensed data.

Because the Moon is airless and large, the lunar regolith

is thick, on the order of 5-15 m. Most information on its

nature at depth is based on seismic data, cores taken by Apollo

astronauts, and photographs of craters, rille walls, and shallow

trenches. The cores have shown that the regolith is highly

layered with respect to grain size, color, composition, modal

petrography, and other parameters. Although these one-di-

mensional probes reveal little of the 3-dimensional structure

of the regolith, we can infer that lunar stratigraphy resulting

from overlapping ejecta deposits of countless impact craters

differs substantially from terrestrial sedimentary stratigraphy.

(See Mc KAY et al. ( 1991 ) for a review of current knowledge

of the lunar regolith.)

The 60013/14 double drive tube (sections 60013 and

60014, 62 cm deep) is one of three regolith cores taken 40-

50 m apart in a triangular array on the Cayley plains at station

10 southwest of the LM (lunar module) on the Apollo 16

mission to the Central Highlands ( Figs. 1 and 2). This trio,

which includes double drive tube 60009/10 (59 cm deep)

and drill core 60001-7 (220 cm deep), is the only such array

of cores returned from the Moon and, thus, is the only set

of samples in which stratigraphically continuous layers of

regolith might be sought. In this work we compare new data

for surface maturity and composition in recently opened core

60013/14 with similar data for previously studied cores

60009 / 10 and 60001-7 ( MORRIS and GOSE, 1976; MC KAY

et al., 1976; 1977: GOSE and MORRIS, 1977; KOROTEV, 1991 )

in order to seek stratigraphic correlations among the cores

and understand what the cores reveal about regolith formation

and Apollo 16 site geology.

SAMPLES AND METHODS

As in our previous joint core studies, we obtained ferromagnetic
resonance (FMR J, magnetic, and instrumental neutron activation
analysis ( INAA ) data on 50-mg ( nominal ) samples of < 1 mm fines
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FIG. 1. Schematic map of the LM/ALSEP area (station 10) of the

Arx_llo 16 landing site, indicating the relative positions of the three

cores discussed in this work (based on Fig. 1 of SCHAI_ER+ 1981).

from each half-centimeter dissection interval of the core (KOROTEV

et al., 1984; MORRXS et al., 1989). These 124 samples are from the

first dissection pass of both core tube sections (SCHWARZ, 1991, 1992 ).
Neutron irradiation for 1NAA occurred after the magnetic studies,

and data for twenty five elements were obtained. The FMR intensity,

1_, divided by the concentration ofFeO ( total Fe expressed as percent

FeO) determined by INAA defines the surface maturity parameter

L/FeO ( MORRIS, 1976 ). Analytical methods are described in previous

papers (FM R and magnetic: MORRIS, 1976; MORRIS and GOSE, 1976;
and MORRIS et al., 1978, 1979; INAA: KOROTEV, 1991.

As is customary for lunar samples, saturation magnetizations are

assumed to result entirely from metallic iron and are reported as

weight percent Fe ° by dividing the value measured for the sample

by that for pure metallic iron; the measurement uncertainty is about

_+0.02 wt%. The saturation magnetization (at room temperature) of

Fe-Ni alloys having 0-15 wt% Ni are within 5% of the value for pure

metallic iron (e.g., BOZARTH, 1951 ); if alloys having >15 wt% Ni

are present, then the actual concentration of metal alloy present is

larger than reported values of Fe °. However, most metal in Apollo

[6 soils has <8 wt% Ni (below). Consequently, our reported Fe °
concentrations are essentially equivalent to the total metal concen-

tration, i.e., fine-grained, single domain Fe from soil maturation pro-

cesses plus coarser-grained Fe-Ni alloys from meteorites (MORRZS,

1978b; MORRIS et al., 1989).

Results of INAA indicate that some samples contain anomalously

high concentrations of gold compared to nickel and iridium, pre-

sumably as a result of contamination from some unknown source.

The four samples between 12.0 and 14.0 cm depth, the four samples
between 24.5 and 26.5 cm depth, and the bottom sample in each

core section {28.0-28.2 and 61.7-61.9 cm) have chondrite-normalized

Au/Ni ratios ranging from 3.7 to 47, compared to 1.47 ± 0.24 ( mean
± standard deviation ) for other samples in the core. Also, one sample

(60013,171 from parent split 48 at 37.2-37.7 cm depth ) is anomalous

in containing high concentrations of ITEs (incompatible trace ele-
ments, presumably from a large fragment of ITE-rich melt breccia)

and another (60013, 164 from parent split 36 at 34.2-34.7 cm depth )

has exceptionally high concentrations of all siderophile elements (from

a large metal grain, see below ). We obtained twelve additional splits

each _ 120 mg in mass from the dissection intervals in which most

of the anomalous samples had been obtained; ten of these were from

the vicinity of the two 2-cm-wide zones of stratigraphically adjacent

samples with Au contamination. These twelve splits were each divided

into two 60-mg samples and analyzed by neutron activation, for a

total of twenty four additional analyses. The analyses indicate that
none of the replicate splits are contaminated with Au or otherwise

anomalous. We do not know the cause of the gold contamination in

the original samples as they were handled and analyzed in random

order with respect to stratigraphy in both analytical laboratories. In

the figures, 2-element plots include points for all 148 samples analyzed

by INAA, whereas depth profiles include only data for the original

124 samples, except that we disregard the ITE-rich sample (60013,

171 ) as a sampling anomaly and plot instead the mean of the two
nonanomalous splits. We also present new INAA data for samples

from every half-centimeter dissection interval of 64002, the upper
half of the double drive tube at station 4 (Fig. 2), and for regolith

samples from station 1 I at North Ray crater. The latter include sam-

ples 67011, 67020, 67031, 67410, 67450, 67610: most of these are

atypical and previously unstudied fines each derived primarily from

a single, friable rock.

RESULTS

Surface Exposure (Maturity)

Soil in the core is submature to mature, with ls/FeO rang-

ing between 35 and 110 units (Fig. 3a). (See MORRIS, 1976,

1978b for a discussion of 1+/FeO and other surface exposure

(maturity) indices.) The most mature soil is at the top and

maturity decreases gradually with depth to about 44 cm; an

exception is the top 3 cm of soil, which is somewhat less

mature ( Is� FeO = 90 _+ 2) than the 7 cm of soil immediately

below it (lJFeO = 102 + 4). Between a depth of 44 and 46

cm maturity drops abruptly. We will refer to the mature soil

between the surface and 44 cm depth as Unit A. All soil

below 45 cm depth is submature. The inflection at 45 _+ 1

cm is the most prominent feature in the maturity profile of

the core and corresponds to the dark/light contact observed

during core processing (SCHWARZ, 1992), with the subma-

ture, deeper soil being lighter in color. As shown below, the

composition also becomes more feldspathic below the dark/
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FIG. 3. Depth profiles for l,/FeO, FeO (total Fe as FeO), Fe °, and Ni in 60013/14. The horizontal dashed line
represents the break between the two core sections. In a), the data have been smoothed by a three-point running
average: vcrlical dotted lines represents the division between submalurc and mature soils I MORRIS, 1976, 1978 ). The
low-Sm/Se soils (open symbols: see Fig. 5) approach immalurity (/JFeO < 30). The error bars at _63 cm depth

represent 2-a analytical uncertainties.

light contact. Although differences in shade resulting from

composition (change in the marie to feldspathic mineral ratio)

occur in 60009/10 (MORRB and GOSE, 1976), the shade

change in 60013/14 results primarily from the difference in

maturity as the change in composition is minor. A similar

shade difference resulting from a change in maturity occurs

in section 60002 of the deep drill core (GOSE and MORRIS,

1977). The region of lowest maturity in 60013/14 (34 < L_/

FeO <48) extends from 46 to 58 cm depth. From 58 to 59

cm the maturity increases and between 59 cm and the bottom

of the core at 62 cm, a region we designate Unit C, maturity

is relatively constant (L/FeO = 53 _+2 ). We will refer to the

region between Units A and C as Unit B (44 to 59 cm depth,

i.e., the transition zones are assigned to Unit B). Unit C is

somewhat darker than Unit B (ScI'tWARZ, 1992), although

astronaut Charles Duke noted that the material at the bottom

of the core was whitish and coarse grained when compared

to material at the surface (SUTTON, 1980).

Composition

Concentrations of the twenty-five mostly-trace elements

determined here indicate that, to a first approximation, soil

samples from core 60013/14 are all very similar in compo-

sition to each other and to other soils collected at the central

stations (stations 1,2, and 10). Thus, most of the discussion

below involves small differences in concentrations and ratios

that result from minor variations with depth in the abundance

of various lithologic components of the soil. The similarities

in trace-element abundances between 60013/14 samples and

surface soils for which major element abundances are well

characterized (KOROrEV, 1981 ) allow us to predict with some

confidence, for example, that A1203 concentrations in the

60013/14 soils range from about 26_!_ to 28%, which corre-

sponds to about 73-79% normative plagioclase. Because pla-

gioclase abundances are so high, relative differences in com-

position between different units of soil are demonstrated best

by elements associated with the nonplagioclase phases

(mainly pyroxene) than by A1 or Ca. Among elements de-

termined here, Sc is particularly useful for this purpose ( KOR-

OTEV, 1991 ).
The three units established on the basis of maturity are

each compositionally distinct. In Unit A, i.e., the mature

section from the surface to about 44 cm depth, there is no

systematic compositional variation with depth, no unambig-

uous structure, and little compositional variation of any kind

among lithophile elements (Fig. 4 ). For example, the relative

standard deviation in Sc concentrations in the eighty-eight

samples of Unit A is only 2.3% (Table 1 ). The average com-

position of Unit A is similar to that of surface reference soil

60601 (Fig. 5), which is also mature. Below Unit A the soil

becomes more feldspathic, i.e., there is a general decrease in

concentrations of elements associated with marie phases (Sc,

Cr, Fe) and ITEs (e.g., Sm). Correspondingly, concentrations

of Ca, the only element determined here that correlates pos-

itively with ptagioclase abundance, average 2°,_ greater in the

soils of Units B and C than in Unit A (not shown).

Although both Sc and Sm concentrations are lower in Unit
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FIG. 4. Depth profiles for Sc. Sm, Sm/Sc, and La/Sm in 60013/14 (see Fig. 3). The vertical dotted lines are for
reference and represent the mean concentration or ratio for the core. The limits of stratigraphic Units A, B, and C are
indicated in c). The open squares represent regions of low Sm/Sc ratio in Unit B.

B than Unit A, many of the Unit B samples have Sm/Sc

ratios distinctly less than those of Unit A ( Fig. 4 ). Two bands

oflow-Sm/Sc soil occur in Unit B, one at 47-49 cm and the

other at 55-58 cm depth (symbolized by hollow squares in

the figures). The two bands of low-Sm/Sc ratio correspond

to minima in the Is/FeO profiles (Fig. 3).

In Unit C, Sm/Sc ratios return to the higher values char-

acteristic of Unit A, but absolute Sc concentrations are the

lowest observed in the core. Concentrations of Sc and Sm in

the seven samples of unit C average 88% of the mean con-

centrations in Unit A. As noted below, this occurs because

Unit C is compositionally equivalent to a mixture of Unit

A-like soil (87%) and plagioclase (13%). Mean concentrations

of elements in the three stratigraphic units and in the two

bands of Iow-Sm/Sc soil in Unit B are given in Table 1.

Because mean grain size correlates inversely with ls/FeO

(MORRIS, 1976) and specific area (cm2/g) correlates inversely

with radius, mass concentrations (e.g., ug/g) of surface-cor-

related elements correlate with ls/FeO. This is roughly what

is observed for Zn, suggesting that most of the Zn in 60013/

14 is surface-correlated (Fig. 6). Extrapolation of the trend

to ls/FeO = 0 leads to 5 ug/g Zn, which is typical of the

concentrations observed in Apollo 16 rocks. The source of

the surface-correlated Zn in the lunar regolith is not well

understood (HASKIN and WARREN, 1991 ).

DISCUSSION

Causes of Compositional Variation

The range of compositional variation in 60013/14 (e.g.,

8 to 9.5 ug/g Sc) is less than observed in 60006 and 60007,

the top two sections of the deep drill core, and much less

than observed in the other double drive tube, 60009/10 (Fig.

7). Core 60009/l0 shows more compositional variation with

depth than any lunar core yet sampled. Most of the com-

positional variation in 60009/10 is consistent with variation

in the proportions of two components, (1) a soil with 9-10

ug/g Sc such as that found at the top of all three cores, and

(2) ferroan anorthosite consisting almost entirely (_99%)

of plagioclase (McKAY et al., 1976, 1977; KOROTEV, 1991 ).

(Ferroan anorthosite is the name for the common form of

lunar plutonic anorthosite in which marie minerals have rel-

atively low molar Mg/(Mg + Fe) ratios (0.5-0.7) despite

high (An_96) anorthite content of the plagioclase; see WAR-

REN, 1990.) Because the anorthosite component is virtually

pure plagioclase, and thus has very low concentrations of Sc

and Sm, and because the variation in its modal abundance

is large, concentrations of the two elements are highly cor-

related among different samples of core soil. Consequently,

on most two-element plots, such as the Sc-Sm plot of Fig.

8b, 60009/l0 samples define a mixing line. Most soils from

the central and southern stations plot along the mixing line

defined by the 60009/l0 soils, although variation in the pro-

portions ofsubcomponents of the soil component cause some

deviations from the line (KOROTEV, 1991 ).

Soils from North Ray crater at the northern portion of the

site (Fig. 2) do not plot on the 60009/10 mixing trend (Fig.

5a) as these are composed primarily of noritic anorthosite

in the form of feldspathic fragmental breccias excavated from

the crater. The fragmental breccias are variable in compo-

sition. On a lateral scale oftens of meters, fines derived from

these different breccias are also variable in composition and
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Table I. Mean concentrations and ls/FeO for stratigraphic units
from double drive tube 60013/14.

Unit A Unit A Unit B Unit B Unit C

S.D.* all lo-SrrdSc

depth: cm In=88) 0-43.7 433-58.7 46.248.7 58.7-62.0
54.7-58.7

Na20 % 0007 0.453 0.432 0.422 0.440

CaO % 0.3 15.2 15.5 156 156

Sc pg/g 0.22 932 881 8.81 819

Cr pg/g 17 762 723 713 670

Fe 0 % (002) 077 058 0.58 060

FeO t % (006) 548 505 5.07 476

Co _ag/g (004) 346 29.3 308 27.6

Ni /ag/g (18) 510 396 405 386

Zn _tg/g 2 26 15 17 20

Sr p.g/g 14 179 175 172 176

Zr pg/g 19 183 154 144 153

Cs lag/g 0.02 0.14 0.12 0.11 0.12

Ba pg/g 7 138 117 110 118

La lag/g 0.7 12.9 112 10.6 113

Nd lag/g 1.4 19.9 173 165 171

Sm lag/g 0.21 5.94 5 19 4.90 525

Eu pg/g 0.02 1.19 1.13 1.11 1.13

Tb lag/g 0.05 1.24 1.06 1.00 1.06

Yb lag/g 0.15 4.23 369 3.49 3.68

Lu lag/g 0.020 0.586 0513 0.485 0.518

Hf p.g/g 0.30 4.50 3.87 3.64 3.83

Ta pg/g 0.03 0.54 0.45 0,43 0.45

Ir ng/g (1.0) ]'16.3 125 11.8 125

Au ng/g (1.0) 59.9 74 7.4 89

Th _g/g 0.09 2.11 1.84 1 75 1.84

U llg/g 0.05 0.57 0.50 048 0.48

IsfzeO 84.6 44.7 396 52.5

* For lithophile elements, this column contains the sample
standard deviation in concentrations for the 88 samples of
Unit A, thus the values reflects both analytical and sampling
uncertainties in this compositionally uniform unit. For sider-

ophile elements (in parentheses), for which concentrations
are not normally distributed, this column contains the esti-

mated 1-_ analytical uncertainty.
]' Excludes sample with lr-rich iron micrometeorite.
$ Excludes samples believed to be contaminated with Au (see

text).

immature because they have not been gardened substantially

by micrometeorite impact since the formation of North Ray

crater approximately 50 Ma ago. Feldspathie fragmental

breceias are believed to represent the Descartes formation

underlying the Cayley plains at the site (STOFFLER et al.,

1985). Like the anorthosite component in 60009/10, the

feldspathic fragmental breccias are poor in Sm, but because

they are more mafic ( _80% plagioclase, by mass, instead of

_99%), they have higher abundances of Sc, 6-9 gg/g

(Fig. 5).

All soils from the central and southern part of the Apollo

16 site contain some mare material in the form of volcanic

glasses, impact glasses, and crystalline basalt ( HEIKEN et al.,

1973; VAN1MAN et al., 1976; KOROTEV, 1991 ; DELANO, 1991,

1992). The abundance of mare material is not known exactly,

but is probably about 2-5% in the < 1 mm surface fines. The

portion of the deep drill core known as Unit B of VANIMAN

et al. (1976) ( 103-187 cm depth, mostly the 60003-60005

sections) is unusual in that it contains an additional _ 1%

(absolute) mare material compared to typical surface soil

( KOROTEV, 1991 ). Because Sc concentrations in mare basalts

and mare glass are high (50 to 90 #g/g), Sc concentrations

in Unit B of 60002-7 are anomalously high (mean: 10.4 gg/

g; Fig. 8c) and soils from Unit B plot offand to the high-Sc

side of the 60009/10 mixing line. Similarly, soil between 26

and 48 cm deep in the station-4 core also contains an excess

of mare material and samples from this unit also plot offthe

60009/10 trend (Fig. 8d).

Samples from Units A and C in 60013/14 plot generally

along the mixing trend of 60009/10: however, the samples

from Unit B with the low Sm/Sc ratios and low maturity

plot offand to the high-Sc side of the trend ( Figs. 5, 8a). No

other surface or core soils from the central and southern sta-

tions plot in the region of these Unit B soils in Sc-Sm space.

Apparently these soils contain a significant abundance of

some Iow-Sm/Sc component. We cannot identify this com-

ponent with certainty on the basis of the compositional data

obtained here, but its general characteristics can be inferred

and some possible components can be excluded from con-

sideration.

In terms of Sc and Sin, the Iow-Sm/Sc samples of Unit B

could be explained by starling with a soil such as that of Unit

A and adding anorthosite to lower the concentrations of Sc

and Sm along the 60009/10 mixing line and also by adding

mare material to increase the concentration of Sc (arrow MB

in Fig. 5a). However, addition of mare material to highlands

material lowers the La/Sm ratio, and La/Sm ratios in 60013/

14 remains remarkably constant with depth at 2.17 _+ 0.02

(mean + standard deviation ) (Fig. 8d). This is essentially

the same ratio observed throughout 60009/10 (La/Sm

= 2.16 _+ 0.02: KOROTEV, 1991). For comparison, even the

1% excess abundance of mare material in Unit B of 60001-

7 lowers the La/Sm ratio of these soils to 2.13 _+ 0.03 (KO-

ROTt3V, 1991 ). Thus, because the low-Sm/Sc soils in 60013/

14 do not also have low La/Sm ratios, it is unlikely that the

apparent Sc excess is caused by a component with low La/

Sin, such as mare basalt or mare glass.

It is more likely that the Iow-Sm/Sc component is some

type of highlands noritic anorthosite. One potential candidate

is rcgolith such as that from North Ray crater ( KOROTEV et

al., 1993 ). Although it is unlikely that ejecta specifically from

North Ray crater occurs half a meter deep at station 10

(STOVVLER et al., [981 ), it is possible that material similar

to that excavated from North Ray crater underlies station 10

and that some crater local to station 10 sampled the same

formation. It is clear that if the Iow-Sm/Sc soils are derived

from mixing of a Iow-Sm/Sc component with typical Unit

A soil (Fig. 5a), then the Iow-Sm/Sc component must be

compositionally similar to typical North Ray crater regolith,

i.e., it must have an intermediate concentration of Sc (5-9

rig/g) and low concentration of Sm (probably <3 #g/g).

However, low-Sm/Sc soils from 60013/14 are also charac-

terized by low Na and Eu concentrations, while most North

Ray crater soils have greater Na and Eu concentrations than

do the 60013/14 soils (Fig. 5b). Thus, the Iow-Sm/Sc com-

ponent cannot be material such as soil sampled at North Ray

crater. Nevertheless, a specific North Ray crater sample might

represent the Iow-Sm/Sc component as some samples satisfy

the implied mass balance for all elements determined here.

including Na. For example, the mean composition of the

Iow-Sm/Sc soil of Unit B can be modeled as a mixture of

80% soil from Unit A and 20_ noritic anorthosite with the

composition of 67075,11 of W,_NKE et al., 1975 (a friable



4818 R.L. Korotev and R. V. Morris

7

6

5

3

range of 8 subsamples of • ""

surface reference soil 60601 ,_

" "

..x :/\-
mixing_ ..-'" x / \
line ...'" / \

..-'" x x ? ?

XX X

x x NA AN

X

67450 (a)

I I I I I I

0.8

0.7

_- 0.6

0
e,l

0.4

0.3

60013/14

• Unit A

• o Unit B

• Unit C

x stationll

X

X

X X X X

X

x -
•.._° .... •

o.. ..... •

X

X

67450

I I I I I

5 6 7 8 9

Sc  g/g)

(b)

I

10

FIG. 5. Comparisons of compositions of 60013/14 samples with soils from North Ray crater at station 11 (Fig. 2).

The open squares represent the low-Sm/Sc soils from Unit B of 60013/14, which must contain some low-Sm/Sc

component in greater abundance than other soils in the core. a) The dashed line is the 60009/10 mixing line (Fig.

8b). Mixing of soil with the composition of Unit A (Fig. 4) and a low-Sm/Sc, noritic-anorthosite component generally
similar in composition to soil from North Ray crater can account for the composition of the low-Sm/Sc soils (arrow

NA). b) However, Descartes material such as that excavated from North Ray crater is usually rich in Na (and Eu).

Thus, the noritic-anorthosite component is probably from some other source, although some individual North Ray

crater samples do satisfy the mixing relationship, such as 67450 (residue fines accompanying 67455). Alternatively,

the low-Sm/Sc soils may be a mixture of soil from Units B or C that plots on the 60009/10 mixing line and some

low-Sm/Sc component. In this case, the low-Sm/Sc component is more marie (greater Sc concentration) than soil

from North Ray crater, i.e., an anorthositic norite (arrow AN). The low Sm/Sc component is unlikely to be mare

basalt (arrow MB, see text). In b), the dashed line is the mixing line for 60009/10 soils from the feldspathic part of
the core only (36-57 cm; see Fig. 6a of KOROTEV, 1991 ). The X's include all station-I 1 soils (KOROTEV, 1982 and

this work). In a), the station 11 soils that plot near the 60009/10 mixing line (samples 67940, 67960) are dissimilar

to the core soils when other elements are considered (Na, Mg). Data for 60601 are from MCKAY et al. (1986) and
KOROTEV ( 1991 ).
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FIG. 7. Scandium profiles for the three station 10 cores. For simplicity, the data have been smoothed ( 3-point running

average, [1 + 1 + 1]/3), with a few anomalous high-Sc points excluded from the mean (nuggets of mare-derived

material or marie melt breccias; see Fig. 4 and KOROTEV, 1991 ). The top half of the deep drill core is disturbed and
stratigraphy is not well preserved; the 60006 and 60005 sections were only partially filled and the contents were mixed

(ALLTON and WALrZ, 1980; KOROTEV, 1991 ). The vertical line in the 60005 section represents the average Sc con-

centration of the 21 samples from the 60005 section (KOROTEV 1991 }.
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composition of ferroan anorthosite containing _99% plagioclase, very. near the origin (KOROTEV, 1991 ). Thus, samples
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to higher Sc concentrations. In c), the Na-rich soils from Unit A are excluded for clarity ( 187-220 cm depth; mostly
60001 and 60002). Data from KOROrEV et al. (1984), KOROTEV ( 1991 ), and this work (previously unreported data
for 64002: see Fig. 10).

ferroan anorthosite; RYDER and NORMAN, 1979) or regolith

sample 67450 (Fig. 5). Therefore, if the low-Sm/Sc com-

ponent is related to material such as that from North Ray

crater, it is most likely derived from some specific lithology

and is not a mixture of several rock types. The combination

of low concentrations of Na, Sm, and Eu, moderate concen-

trations of Sc (5-20 #g/g), and a low Sm/Sc ratio is char-

acteristic of moderately mafic members of the ferroan an-

orthosite suite (WARREN, 1990) of lunar igneous rocks, or

brecciated derivatives. In contrast, the higher Na and Eu

concentrations of the North Ray crater soils are typical of

more magnesian lithologies (greater Mg/Fe; e.g., LINDSTROM

and LINDSTROM, 1986).

To account for approximately identical Sm/Sc ratios, but

lower Sc and Sm concentrations, in Unit C compared to

Unit A, Unit C must contain a greater abundance of some

low-Sc and low-Sm component than does Unit A. This com-

ponent is probably ferroan anorthosite with a very, high modal

abundance of plagioclase (_99%) because feldspar crystals

similar to those found in 60009/10 are abundant in this unit

(BASU el al., 1993) and the 60013/14 samples plot on the

Sc-Sm trend defined by the 60009/10 samples (Fig. 8). A

mixture of 87% average Unit A soil and 13% plagioclase such

as that found in the plagioclase-rich layers of 60009 / 10 ( KOR-

OTEV, 1991 ) accounts for the average composition of the

Unit C soil (Table 1 ). Because of the relatively small excess

of anorthosite in 60013/14 compared to 60009/10, the

compositional data alone do not require that the anorthosite

component has as much as 99% plagioclase, as they do in

60009/10 (KOROTEV, 1991 ); however, the anorthosite can-

not be substantially more marie (greater Sc) or the Unit C

soils would have a different Sm/Sc ratio and not plot on the

60009/10 trend of Fig. 8.

Stratigraphic Correlation among the Three Station 10
Cores

The regolith sampled by the three cores is thought to be

typical of the Cayley plains in the vicinity of the landing site
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(Fig.2).Theareaofthe60013/14corewassmoothinap-
pearance,withnoobviouscratersandnolargerocks:5-20
cmblocksweremoderatelyabundantatthesurface.The
areaof60009/10wasgenerallyfiatwithcentimeter-sized
rocksatthesurface:thecorewastakenontheedgeofa
degradedcrater,50-60cmindiameter.Thedeepdrillcore
wastakeninafiatareawithabundant10-15-cmblocks.
(DocumentationtakenfromSUTTON, 1980; also MUEHL-

BERGER et al., 1980.) Because of problems encountered with

the rotary drill, the upper half of deep drill core does not

preserve a continuous column of regolith and some material

has been lost (Am,TON and WALTZ, 1980: KOROTEV, 1991 ).

For all three cores, maturity generally decreases with depth

from the surface, at least over the 0-60 cm interval sampled

by each core (Fig. 9). The same trend is observed in other

lunar cores and is attributed to the gardening process on the

lunar surface (MORRIS, 1978a) in which lunar soil is mixed

at decreasing frequency with increasing depth from the surface

by meteorite impact (GAULT et al., 1974; ARNOLD, 1975).

There is thus evidence for a mature surface layer _40 cm

deep in the LM/ALSEP area of the Apollo 16 site because

L/FeO profiles for 60001-7 and 60013 / 14 overlay down to

a depth of 40 cm (Fig. 9) even though compositional differ-

ences are present over the same interval. Stratigraphic vari-

ation in maturity can develop independent of any compo-

sitional stratigraphy. For example, a meteorite impact can

I i I i I I I I i i iimmature submature __ ma!u. re__
0 _ , •__'T .i._+_

I qlwR • I _IW _

20 _,_," 0_
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FIG. 9. Comparison of !,/FeO profiles for the three station-10
cores. For this plot, the L/FeO data of MORRIS and GOSE (1976)
for 60009/10 and of GOSE and MORRIS (1977) for 60002-7 and
have been recalculated using concentrations of FeO reported by KOR-
OTEV ( 1991 ). (The bit section, 60001, of the deep drill core was not
studied by GOsE and MORRIS, 1977.) This does not make a significant
difference for the 60009/l0 data, but the values of Is/FeO for the
60002-7 core were increased by an average of _ 10%. The data have

bccn smoothed, as in Figs. 3a and 7.
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sample and mix together on a scale of 2 m (vertical) soils

having different compositions but the same maturity. Because

smaller impacts are more frequent than larger ones, subse-

quent maturation (mixing) drives the resultant soil in the

direction of compositional homogeneity. It is also possible

for a slab of soil initially homogeneous with respect to com-

position and maturity to become heterogeneous with time

because infrequent large impacts bury mature surface soil

and deposit immature, compositionally distinct subsurface

material at the surface. However, because maturity is acquired

only in the upper _ I mm of soil during micrometeorite

gardening, overall the surface becomes more mature with

time.

In part because the surface soil is the most well mixed soil,

the soil at the very top of each core is virtually identical in

composition among the three cores (Fig. 7). The zones of

compositionally similar soil extend from the surface to 44

cm depth in 60013/14 (i.e., Unit A), to 13 cm in 60009/

10, and to 12 cm in 60001-7. For example, means and stan-

dard deviations for Sc concentration (_g/g) in the top 10 cm

of each core are 9.44 _+0.18 for 60014, 9.35 _+0.27 for 60010,

and 9.11 + 0.22 for 60007 (N _ 20 samples each; Fig. 4).

(The lower value for the deep drill core may be because the

soil at the top of the core was mixed with the more feldspathic

soil underneath during the drilling process: KOROTEV, 1991 ).

Nearly all surface and trench soils from the central stations

( I, 2, and 10) are similar in composition ( KOROTEV, 1981 ).

Even the top 10 cm of the station 4 core, 3.7 km to the south

(Fig. 2 ), is similar (Sc = 9. I 1 ___0.36; Fig. 10 ). Although we

use Sc here as an example, the similarities extend to all ele-

ments measured. The only surface and trench soils that are

dissimilar in composition are submature and immature soils

collected near craters (e.g., samples 60051, 61221 ); these

contain higher abundances ofanorthosite and feldspar grains

(HEIKEN et al., 1973; MORRIS et al., 1983) and, consequently,

have lower concentrations of Sc, Sin, and other elements

characteristic of mafic rocks.

At depth, however, each of the three station 10 cores con-

tains units or layers of soil compositionally dissimilar to any

found in the other station 10 cores or at the surface. The two

bands oflow-Sm/Sc soil discussed above in Unit B of 60013/

14 have no counterpart in 60009/10 and 60001-7. The

component causing the low Sm/Sc ratios may occur in the

other two cores, but not in sufficient abundance to alter the

Sm/Sc ratio of any region of soil to the extent seen in 60013/

14. Likewise, in 60009/10, the layer of soil at 18-21 cm

depth (Unit 2 of DUKE and NAGLE, 1976) is dissimilar to

any soil in the other two cores (Figs. 7, 8b). This submature

soil contains a greater abundance of melt breccia than the

soil at the tops of the cores (MCKAY et al., 1977 ). In 60001-

7, the soil of Unit B ( 103-187 cm depth) is unusual in con-

taining an excess of mare material, as discussed above. At

the bottom of this unit ( 177-187 cm) the soil is also enriched

in siderophile elements because of an unusually high abun-

dance of chondritic material, a feature not seen in the other

cores. Between 187 cm and the bottom ofthe deep drill core

at 220 cm (Unit A of VANIMAN et al., 1976: primarily the

60001 and 60002 sections of the core) is an immature to

submature soil (Fig. 9) that is unusually rich in Na, possibly

because of a component of regolith breccia of unknown der-

ivation. Nearly all of these compositionally distinct layers are
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FiG. 10. Scandium profile for the station 4 core from Stone moun-
tain, about 4 km south of station 10 (Fig. 2). For comparison with
Fig. 7, the figure is drawn to the same scale, although Sc concentrations
are anomalously high in some regions of the core as a result of an
excess of mare material (KOROTEV and MORRIS, 1984: BASU and
Mc KAy, 1984: DELANO, 1991 ). The top _ 10 cm of soil in the core,
as well as the bottom 12 cm, is nearly identical in composition to
the soil from the surface of station 10. This is a major argument that
station 4 is not representative of the Descartes formation, as expected
from premission planning (MUEHLBERGERet al., 1980), but that
the surface regolith (at least) is typical of the Cayley plains. The
feature at 17-19 cm depth is unusual in containing some unidentified
component with a high Sm/Sc ratio ( Fig. 8d), in contrast Unit B of
60013/14.

less mature than the surface soil. (Summary above based on

KOROTEV, 1991.)

Together, these observations indicate that the composi-

tional variation with depth that occurs in the regolith of the

Cayley plains results from incomplete mixing, on the scale

of the core depths, of the wide assortment of lithologies of

which the plains are composed and that the surface regolith

(0 to 10+ cm depth) is simply the well-mixed average. The

origin of the Cayley plains is controversial, but the plains are

almost certainly a deposit of ejecta related primarily or sec-

ondarily to the Imbrium impact, and possibly Orientale

(HODGES and MUEHLBERGER, 1981: SPUDIS, 1984; STOF-

FLER et al., 1985; WII.HEI_MS, t987). The thickness of the

plains at station 10 is estimated to be 70-220 (COOPER et

al., 1974). However, the regolith thickness is thought to be

only 10-15 m, and 1-10 m blocks are observed in the walls

of South Ray crater within _60 m of the preimpact surface

( KOVACH and WATKtNS, 1973; MUEHLBERGER et al., 1980).

Judging by rock fragments collected at the surface, the Cayley

plains consist of impact melt breccias of a wide variety of

compositions, dimict breccias, regolith breccias, granulitic

and fragmental breccias, anorthosites of variable composition

and affinity, and a few mafic, plutonic rocks (e.g., JAMES,
1981 ). Undoubtedly after deposition, these rocks occurred

as a rubble layer with some large blocks, some fine debris,
and a continuum of sizes in between. The size distribution

was larger than that now observed at the surface and many

rocks were large compared to the dimensions of the cores.

Some rocks were exposed at the surface, and the plains were

not as smooth as they were when visited by the astronauts.

Since formation of the plains more than 3 Ga ago, the surface

has been subjected to continual bombardment by meteoroids
that have produced a few craters on the order of a kilometer

in diameter (e.g., North Ray crater) but many smaller ones.

This bombardment has been sufficient to produce a layer of
fine debris at the surface of the site. The fact that mature

surface soils from the central stations ( 1, 2, 10) are all very

similar to each other in composition and generally similar

to surface soils from the southern stations (4, 5, 6, 8, 9)

indicates that on the lateral scale of up to a few kilometers,

any column through the Cayley regolith ( 10-100 m deep) is

going to encounter the same suite of lithologies in roughly

the same proportions as any other such column. However

locally, even decimeters below the surface, nonuniformity

exists on the scale of centimeters that is ultimately associated

with earlier nonuniformities on the scale of meters to tens

of meters. An impact large enough to excavate material from

more than even a few meters depth may sample one or more

compositionally distinctive lithologies with little previous

surface exposure, or lenses of old regolith. A similarly-sized

impact 50 m away may sample a difli_rent set of lithologies

or the same set of lithologies occurring in different propor-
tions.

Thus, it is unlikely that any of the subsurface, composi-

tionally distinct units of soil observed in these cores represents

a stratigraphically contiguous layer extending over the dis-

tances of 40 to 50 meters that separate the cores. The low

Sm/Sc ratio and low maturity of Unit B of 60013/14 may

be the result of one or more impacts into a single subsurface

boulder. Other than the soil at the surface, the only likely

correlation among the cores involves plagioclase. Each of the

cores contains regions that correspond compositionally to

soil such as that at the surface, but diluted to varying degrees

with nearly monomineralic plagioclase such as that occurring

in ferroan anorthosite. This is most pronounced in 60009/

10 where the soil between 52 and 55 cm depth corresponds

to a 66:34 mixture of plagioclase and surface-soil-like com-

ponent; other areas or the core contain less extreme plagio-

clase enrichment (Fig. 8). The most plagioclase-rich region

of 60001-7 occurs between 17.5 and 22.5 cm depth (the

60007 section) where the mixing ratio is 32:68. (The plagio-

clase-rich layer may extend below 22.5 cm as the 60006 and

60005 core sections were incompletely filled, but it is unlikely

to be more than about 10 cm wider; KOROTEV, 199t.) In

60013/14, between 58 cm and the bottom of the core at 62

cm, the mixture averages 13:87 (plagioclase:surface-soil-like

component); more feldspathic soil may occur below this as

the trend appears to be more feldspathic with depth (Fig.

4a). In each case the plagioclase-rich soil is immature and

coarser grained than is the soil at the surface.
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Note that a soil of intermediate maturity (e.g., Unit C of

60013 / 14 ), although compositionally equivalent to a mixture

of surface soil and plagioclase, cannot literally be such a mix-

lure because simple admixture ofplagioclase to a mature soil

will not lower l.J FeO. This is because dilution with plagioclase

affects I, (FMR intensity) and the FeO concentration to the

same relative extent as both quantities measure effectively

zero in plagioclase. Thus, the lower maturity of more feld-

spathic soils indicates that the Fe-bearing components have

received less surface exposure than has typical surface soil.

Unit C appears to consist of the same components as Unit

A, but with a greater proportion of ptagioclase and lower

overall surface exposure.

Particularly conspicuous in its absence as a cause of com-

positional variation with depth in these cores is marie, ITE-

rich impact melt breccia. Mass balance models indicate that

such breccias must be major components of the soil ( _35%

at station 10) and are the principal carriers of incompatible

trace elements (KEMPA et al., 1980; MORmS et al., 1986).

Yet, except for the narrow band at 18-21 cm depth in 60009 /

10 (Fig. 7), systematic compositional variation with depth

is not caused by units of soil containing an excess of marie

melt breccia. The fact that most samples from the cores lie

along linear trends between mature soil and plagioclase on

plots involving elements like Sc and Sm (e.g., Fig. 8 ) indicates

that the marie and ITE-bearing components of the soils such

as the marie melt breccias are well mixed compared to the

plagioclase component. This implies that subsurface blocks

of anorthosite volumetrically predominate over blocks of

marie melt breccia.

Metallic Iron, Siderophile Elements, and Anomalous Iron

Micrometeorite

Concentrations of metallic iron (Fe °) determined mag-

netically are highly correlated with those of Ni determined

by INAA because Fe-Ni metal containing about 6-7% Ni is

the major carrier of both constituents in samples with high

metal concentrations (Fig. 11 ). Samples at depths of 4, 28,

and 34 cm contain nuggets or aggregates of metal grains

(possibly enclosed in silicates), leading to anomalously high

concentrations of Fe °, Ni, and FeO (total Fe as FeO) and

low values for Is/FeO (Figs. 3b-d, 11 ). Similar behavior is

observed in other lunar regolith samples, particularly those

from Apollo 16 (GosE and MORRIS, 1977; MORmS et al.,

1979; KOROTEV, 1982, 1991; KOROTEV et al., 1984). With
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FIG. 11. Concentrations of metallic iron (Fe °, determined magnetically) are highly correlated with those of Ni

(determined by INAA ) because of nonuniform distribution of meteoritic metal among the samples. The diagonal line
represents a weighted linear regression in which Ni and Fe ° concentrations are weighted by 10% of their values. (This
procedure presupposes that scatter about the line is caused mostly by variation in Fe/Ni ratio of the metal grains and
not analytical uncertainty. As the slandard deviations in relative residuals for both Fe ° and Ni are approximately 9%,
which exceeds the analytical uncertainties, the assumption is probably valid.) The line has an intercept effectively at

the origin with a slope of 15. I _+0. I (95% confidence), which leads to an average Ni concentration in the meteoritic
metal of 6.6% (essentially, 1/15.1). [As discussed in Samples and Methods, the magnetic measurements give total
concentrations of Fe ° and/or Fe-Ni alloys for alloys having < 15 wt. % Ni.] The same Fe°/Ni slope (15.0) was obtained
on sam pies from the 64001 core by KOROTEV et al. ( 1984 ): however, note thai in that paper the estimate of the average
Ni concentration in the metal was calculated incorrectly.
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6.4% Fe ° and 4740 #g/g Ni, the sample at 34 cm depth has

the greatest concentration of Fe-Ni metal we have observed

in more than 1000 lunar soil samples (caused by a 3.3-mg

nugget, Table 2). The two other samples analyzed from this

depth interval have normal concentrations ofsiderophile ele-

ments (Samples and Methods). Approximately 10% of the

iron in typical, mature Apollo 16 soil is Fe-Ni metal, but that

proportion is highly variable among the small samples ana-

lyzed here. This is why we choose Sc instead of Fe to represent

the abundance of mafic minerals in the figures.

Compositions and masses of the metal grains in these

metal-rich samples can be estimated from the difference in

siderophile-element concentrations between the metal-rich

samples and the average of stratigraphically proximate sam-

ples, assuming that the sum of the concentrations of Fe, Ni,

and Co is 100% in the metal. Of the four samples with more

than 1000 #g/g Ni, the estimated compositions of metal

grains in two of them (28 and 34 cm depth) are composi-

tionally consistent with metal such as that found in mafic

impact melt breccias at Apollo 16, i.e., 6-7% Ni, Ni/Co

,._ 16, subequal concentrations of Ir and Au at the 1 #g/g

level, and subchondritic lr/Ni and Ir/Au ratios (Table 2,

Fig. 12, and KOROTEV, 1987b, 1990). A third grain (58 cm

depth ) is probably also from (or contained in) a mafic melt

breccia, but the Ir concentration is anomalously low (e.g.,

JOLL_FF et al., 1991 ). With nearly chondritic Ni/Co and Ir/

Au ratios and 8.7% Ni, the fourth grain (4.0-4.5 cm depth)

appears to be metal from an H chondrite (RAMBALDI, 1977).

The sample of soil at 2.0-2.5 cm depth (split 60014,133

of 60014,19) is highly unusual in having 427 ng/g Ir, but

normal concentrations of Fe, Ni, Co, and Au. This leads to

an exceedingly high chondrite-normalized Ir/Ni ratio of 17

(Fig. 12). The cause of this anomaly is an agglutinate particle

149 #g in mass consisting largely of an anomalous iron mi-

crometeorite (Table 2). This particle, which contains 148

ug/g lr, is discussed more fully elsewhere (Jot.I.IFF et al.,

1993).

IMPLICATIONS AND CONCLUSIONS

The Apollo 16 landing site was chosen, in part, because it

was atypical in having two relatively young, bright ray craters,

North and South Ray, in close proximity (MUEHLBERGER

et al., 1980). South Ray crater was not visited on the mission,

but North Ray crater was, and soil near the crater differs in

composition from surface soils distant from the crater in being

more aluminous and having lower concentrations of'incom-

patible trace elements. Except near North Ray crater, most

soil samples taken at the surface ( upper 10 cm) of the Apollo

16 site are mature and remarkably uniform in composition

from place to place (KOROTEV, 198 1 ). If viewed by remote

techniques with resolutions on the order of tens to hundreds

of meters, the uniformity of the Apollo 16 surface might lead

to the incorrect conclusion that the site is dominated by a

single lithology when, in fact, the Apollo 16 regolith is a mix-

ture of a number of volumetrically significant lithologies that

vary widely in composition (e.g., JAMES, 1981; KOROTEV,

1991 ).

Data presented here suggest that if the top half-meter of

regolith could be removed from the site, there would be a

significant increase in variation of the composition and ma-

turity of grab samples taken on the scale of _ 50 meters lateral

distance at the new surface. However, these variations may

not be perceived in geochemical data obtained from lunar

orbit and would be largely irrelevant from the regional per-

spective.

The core data also indicate that half a meter below the

surface, regolith in the immediate vicinity of the landing area
is somewhat more anorthositic and much less mature then

at the surface. The anorthosite component at depth is plutonic

ferroan anorthosite containing _99% plagioclase. It is com-

positionally dissimilar to the more mafic ( _80% plagioclase)

feldspathic fragmental breccias characteristic of the ejecta

from North Ray crater, 5 km to the north. It is possible that

the ferroan anorthosite component of the cores was emplaced

at station 10 by a single impact event. For example, ferroan

anorthosite is thought to be a major component of ejecta

from recently formed South Ray crater, 6 km to the southwest

(JAMES, 1981 ), and ejecta from South Ray crater occurs dis-

continuously at the surface of station 10 now (SCHABER,

1981 ). However, it is unlikely that South Ray crater is the
source of the anorthosite in the station 10 cores because the

anorthosite is buried too deeply (STOFFLER et al., 1981 ) and

the overlying surface soil is too mature to have developed by

in situ maturation since formation of South Ray crater 2 Ma

ago ( MORRIS, 1978a). Nevertheless, the presence of ferroan

anorthosite in both the South Ray crater ejecta and at depth

in the station 10 cores indicates that ferroan anorthosite is a

Table 2. Estimated compositionof metal in sampleswithanomalouslyhigh siderophileelement concentrations.

sample depth mass Fe Co Ni Ir Au CI-normalized likelysource
cm m_ % % % la_]g _g/_ Ni/Co Ir/Au

60014,133" 2.0-2.5 0.10 92.9 0.46 6.6 225* <3 0.65 >22 iron micrometeorite
60014,136 4.0-4.5 1.1 90.8 0.45 8.7 4.6 1.1 0.88 1.3 H--chondrite
60014,183 27.5-28.0 0.9 92.9 0.43 6.7 0.7 1.5 0.72 0.13 ancient meltbreccia
60013,164 34.2-34.7 3.3 92.6 0A3 7.0 1.6 1.6 0.75 0.29 ancient meltbreccia
60013,211 57.7-58.2 0.9 94.0 0.45 5.6 <0.3 1.4 0.57 <0.06 ancient meltbreccia ?

* For the othersamples listed here, the metalcompositionswereestimated frombulk soil analyses,as describedin
the text. For the iron micrometeorite in 60014,133, the composition was estimated from direct analysis of a
separated agglutinate particle (JOLLIFFet al., 1993). The particle (149 lagin mass) contained62.2% total iron, of
which we estimate 1.2% to be Fe2÷and 61.0% to be Fee based on the Sc concentration of the particle (3.1 lag/g)
and the typical Fe2+/Scratio of Apollo 16 regolith (from Table 1). The listed composition assumes that the
estimated Fe° and all the Ni, Co, It, and Au in the particle is contained the metal, that the sum of these
constituentsin the metal is 100%, and that all of the Sc is in the silicates. These assumptions also lead to the
results that the particleis 66% metal and 34% lunar silicate (by mass) and that the silicates have 9.2 lag/g Sc, a
reasonablevalue for soils from Unit A (Table 1).
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by larger impacts that puncture the Cayley deposit and expose

underlying material (Descartes formation?). If the feldspathic

fragmental breccias ejected from North Ray crater are typical

of the material underlying the Cayley plains in the vicinity

of the site, then the ferroan anorthosite must be primarily a

Cayley component because compositional variation in the

regolith of the central and southern stations does not involve

a North-Ray-crater-like component.

From the point of view of regolith dynamics it would

probably have been more interesting if the three cores had

been taken closer together, perhaps a few meters apart. From

the perspective of site geology, however, the 40-50 m spacing

tells us that ferroan anorthosite with a ve_' high modal abun-

dance of plagioclase plays some unique role in the subsurface

geology of the landing area.

Acknowh,dgments--This work was funded by NASA grant NAG 9-

56 to L. A. Haskin (RLK)and RTOP 152-17-40-21 to D. S, McKay

(RVM). We thank Dr. H. V. Lauer, Jr. (Lockheed ESC, Houston,

TX ) for the ferromagnetic resonance measurements, B. L. Jolliffand

K. M. Rockow tbr assistance in neutron activation analysis, and

L. A. Haskin for the compilation of Zn data in Apollo 16 rocks.

Reviews by A. Basu and G. Heiken improved the manuscript.

Edit_ria/handling S. R. Taylor

FIG. 12. Profiles of chondrite-normalized Ir/Ni ratios in 60013 /

14. The tbur samples not connected by the solid line that connects

the majority of points are metal rich, i.e., they are the high-Ni, high

Fe ° samples of Fig. 3. The metal in these four samples probably

occurs as single grains or possibly aggregates in the milligram mass

range (Table 2). In the three samples with Iow-lr/Ni ratios, the metal

most likely derives from ancient Apollo 16 impact melt breccias,
which contain an abundance of metal with subchondrilic Ir/Ni and

Ir/Au ratios ( KOROTEV, 1987b, 1990). The fourth sample (4.0-4.5

cm depth ) has a nearly chondritic Ir/Ni ratio, suggesting the metal

probably derives from an ordinary ehondritc (Table 2 ). Most samples

have Ir/Ni ratios between these two extremes as lr and Ni in typical

samplcs derives subequally from thc ancient melt breccias, of which

the soil is in large part composed, and chondritic micrometeorites

that are continually striking the lunar surface (KOROfF:V, 1987a).

The sample at 2.0-2.5 cm depth is highly enriched in Ir because it
contains a small particle (0.15 mg) consisting largely of an iron mi-

crometeorite with an extremely high Ir concentration (JOLLIFF et al.,

1993).

major, regional subsurface lithology. Thus, one or several

smaller impacts local to station 10 may have contributed the

ferroan anorthosite found in the cores.

The peculiar aspect of the anorthosite component of

60009/10 (with certainty) and the other two cores (with less

certainly because of the lower abundances) is its nearly

monomineralic nature. With _99% plagioclase, it is less

marie than typical large samples (>10 g) of ferroan anor-

thosite collected at the surface (KOROTEV, 1991; WARREN,

1990), which is primarily ejecta from South Ray crater. This

provides weak evidence that the anorthosite in all three cores

derives from a common source, perhaps by a common im-

pact.

We do not know for certain whether Apollo 16 ferroan

anorthosite is a lithology of the Cayley plains, i.e., occurring

as scattered subsurthce blocks deposited in the plains-forming

event and excavated by South Ray and other cratering events,

or whether it is a sub-Cayley lithology occasionally excavated
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