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Abstract

An approach for computing worst-case flutter margins
has been formulated in a robust stability framework.
Uncertainty operators are included with a linear model
to describe modeling errors and flight variations. The
structured singular value, 4, computes a stability mar-
gin which directly accounts for these uncertainties.
This approach introduces a new method of computing
flutter margins and an associated new parameter for
describing these margins. The u margins are robust
margins which indicate worst-case stability estimates
with respect to the defined uncertainty. Worst-case
flutter margins are computed for the F/A-18 SRA us-
ing uncertainty sets generated by flight data analysis.
The robust margins demonstrate flight conditions for
flutter may lie closer to the flight envelope than previ-
ously estimated by p-k analysis.

Introduction

Aeroelastic flutter is a potentially destructive insta-
bility resulting from an interaction between aerody-
namic, inertial and structural forces [4]. Design of a
new aircraft, or even a configuration change of a cur-
rent aircraft, requires study of the aeroelastic stability
before a safe flight envelope can be determined. The
aeroelastic community has identified several areas of
research that are essential for developing an accurate
flutter test program [6]. These areas focus on the dra-
matic time and cost associated with safely expanding
the flight envelope to ensure no aeroelastic instabilities

are encountered.

An important research topic for aeroelasticity engi-
peers is the development of more confident flutter or
instability margins. Experimental methods of deter-
mining fAutter usually consist of approximating modal
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damping from flight data [11]. These methods are un-
reliable due to the often sudden onset of flutter which
may not be accurately indicated by an approximate
damping value.

Several analytical methods are developed to determine
the conditions for aerocelastic instability. A traditional
method, known as the p-k method, utilizes a struc-
tural model coupled with equations for the unsteady
aerodynamics [12). This method is based on a finite
element model of the aircraft and does not directly
consider flight data from the physical aircraft. A pa-
rameter estimation algorithm is developed that uti-
lizes flight data to formulate elements of a state-space
model [19]. This method suffers from poor excitation
and data measurements that may lead to inaccurate
modal parameters.

A novel approach to computing flutter instability
boundaries has been developed that utilizes a theo-
retical model while directly accounting for variations
with flight data [14]. The aeroelastic stability problem
is formulated in a framework suitable for well devel-
oped robust stability theory. Flight data is analyzed to
describe’a set of uncertainty operators that account for
variations between the theoretical model and the phys-
ical aircraft. A robust stability measure known as the
structured singular value, u, is used to compute flutter
boundaries that are robust to these variations [2]. In
this sense, a worst-case flutter boundary is computed
that directly accounts for flight data.

This paper computes robust, or worst-case, flutter

margios for the F/A-18 Systems Research Aircraft,

SRA, being flown at NASA Dryden Flight Research
Center. The SRA is a two-seat configuration fighter
with production engines. Recent flutter testing was
initiated due to a structural modification to the left
wing. Internal fittings were replaced with larger and
heavier ones to accommodate flight testing advanced
aileron concepts. The flight data presented in this pa-
per was generated using the new internal fittings but
with a standard aileron. A wingtip excitation system
for generating aeroelastic flight data is shown in Fig-

ure 1.



Figure 1: F/A-18 Wing with DEI Exciter

The Autter results in this paper represent a significant
improvement to accepted flutter results for the F/A-
18 SRA computed using the traditional p-k method.
Nominal flutter margins computed using the 4 method
but ignoring all uncertainty operators are shown to
match closely with the p-k metbod flutter margins.
This result lends validity to the 4 method as an accu-
rate indicator of Butter instability. Directly account-
ing for modeling uncertainty and flight data variations
in the u based flutter analysis generates robust flutter
margins which are more conservative than the nominal
margins.

These robust flutter margins are generated with a
great deal more confidence than the nominal flutter
margins. Flight data from the actual aircraft is ana-
lyzed to generate realistic uncertainty operators that
ensure the family of plant models covers the true air-
craft dynamics. Robust stability theory guarantees
the robust flutter margins are worst-case margins with
respect to the indicated amount of modeling uncer-
tainty. This procedure may greatly reduce the time
and cost associated with experimental flight envelope
testing since the instability limits may be more ac-
curately and confidently identified. Additionally, the
uncertainty levels in the theoretical model may be de-
termined using flight data from a safe flight condition
without requiring the aircraft to approach a flutter in-
stability point.

Robust Stability and u

Any aeroelastic model is an approximate represen-

tation of the aircraft dynamics. Inaccuracies in the
model, such as errors in coefficients and unmodeled
dynamics, must be considered in the stability analysis
and coantrol synthesis procedures. Uncertainty opera-
tors are included in the system model to account for
these inaccuracies in the robust stability framework.

Define z € R™ as the vector of states, z € R as the
vector of uncertainty outputs, ¢ € R"™ as the vector
of errors, w € R™ as the vector of uncertainty inputs
and d € R™ as the vector of disturbances. The state-
space description of a linear time-invariant plant can
be represented as
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where 4 € R™*" By € R™ ™", B; € R™"™ () €
R"~*" (C; € R**" | and the E matrices of appro-

priate dimensions.

Define P(s) as the Laplace transform of this sys-
tem. The system with plant and uncertainty operators
is represented as a Linear Fractional Transformation
(LFT) of plant, P, and uncertainty operator, 4, in

Figure 2.
A
z[ ] w

P

€ . d

Figure 2: Robust Stability Framework

The uncertainty operator is allowed to lie within a
norm bounded set. This leads to the consideration of
a family of plant models. Weighting matrices are usu-
ally included to restrict the uncertainty norm bound
to unity.
A={A:]lAlle <1}

Robust stability considers stability of the system over
the entire range of uncertainty. The issue of ro-
bust stability for LFT systems is associated with well-
posedness to guarantee that all internal signals are fi-
nite and bounded. The small gain theorem is used to
define robust stability for LFT systems [2, 18]:

Complex systems can have several types of uncertainty
operators. Treating these types separately leads to
structured uncertainty. It is well known robustness
measured using the small gain theorem can be overly
conservative for systems with structured uncertainty.

Define the structured singular value, u.
") = .
M) = Sn(5(d) - A € A, det(I — PA) = 0}

4 is an exact measure of robustness for systems with
structured uncertainty. The inverse of u can be inter-
preted as a measure of the smallest destabilizing per-
turbation. The system is guaranteed to be robustly
stable for all uncertainty operators bounded by the

smallest destabilizing value.

Theorem 0.1 Given stable operator P, the system in
Figure 2 is well-posed and stable for all A € A with

lAlleo <1 if and only if u(P) < 1.

Unfortunately, p is difficult to compute. Upper and
lower bounds for i bave been derived which utilize
two sets of structured scaling matrices (7). These scal-
ing matrices are similar in structure to the uncertainty
block structure and commute with the uncertaiaty ele-
ments. An upper bound can be written as a linear ma-
trix inequality (LMI) by considering a maximum eigen-
value value condition utilizing the structured scaling
matrices [2].




Worst-Case Flutter Method

A worst-case method of computing flutter margins uti-
lizes y-analysis for evaluating system stability. A lin-
ear system is formulated with associated uncertainty
operators.

Consider the generalized equation of motion for the
structural response of the aircraft (10].

M4+ Cn+ Kn+3Q(s)n=0

For a system with n modes, define M € R™*" as the
mass matrix, C € R™*™ as the damping matrix and
K € R™*® as the stiffness matrix. § € R is a scalar
representing the dynamic pressure and Q(s) € C™*"
is the matrix of unsteady aerodynamic forces.

The unsteady aerodynamic forces are fit to a standard
finite-dimensional state-space system. This form can
be shown to encompass the traditional forms of Roger
and Karpel that include lag terms for the transient

aerodynamics [14].
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Given the number of generalized states, n, and
aerodynamic states, ng, define Aq € R"e*"9,
BQ e Rﬂqxﬂ’ CQ E Rnan and DQ € Rﬂxﬂ

as state-space elements approximating Q(s).

The method should compute a u value which relates
an unstable flight conditions. This is accomplished
by introducing an uncertainty operator to consider a
range of flight conditions. Dynamic pressure is treated
as an unknown quantity for worst-case flutter analysis.

Consider an additive perturbation, & € R, on the
nominal dynamic pressure, §,,,,-

T=Tnom + 6?
Two signals, z and w, are introduced into the formu-

lation to represent uncertainty input and output. The
uncertainty output is formulated from system states.

z=M"'Dgn+M'Cqz
w is related to z by the dynamic pressure perturbation.
w = &5z

The state-space aeroelastic model is formulated with
the additional signals to account for the parameteriza-
tion of the dynamic pressure uncertainty. Formulate
the plant, P(s), using state vector [n; 7; ] such that
z = P(s)w. Define M = -M~".
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The input to P(s) is the uncertainty input, w, and the
uncertainty output, z, is the output of P(s). Defining
additional signals for errors and disturbances allows
P(s) to be formulated in the robust stability frame-
work of Figure 2 with &7 as the uncertainty operator.

Additional uncertainty operators are included to ac-
count for modeling errors between the theoretical sys-
tem and the physical aircraft. They also allow the
analysis to consider a range of aircraft dynamics that
may change due to variations in parameters such as
mass or variations in the aerodynamics such as small
deflections in the aircraft surfaces.

Errors in elements of the state-space matrices are of-
ten represented by parametric uncertainty [3]. This
uncertainty may be a real scalar parameter to reflect
variation in physical parameters such as mass and dy-
namic pressure or real values such as modal frequency
and damping.

Unmodeled dynamics and nonlinearities are often ac-
counted for by including a complex uncertainty. The
complex operator allows uncertainty to enter simulta-
neously in magnitude and phase of the signals. This
dynamic uncertainty may be a scalar or a matrix re-
flecting unstructured uncertainty for a set of signix.ls.

Experimental flight data can be used to generate un-
certainty weightings. Transfer functions of the andlyt-
ical model can be compared with experimental flight
data transfer functions. Different size perturbations
are allowed to affect specific system parameters to the
degree that the resulting transfer functions cover the
range of experimental flight data.

Model validation algorithms are used to verit';' that the
amount of uncertainty in the linear model is sufficient
to generate the flight data sets. This paper uses an al-
gorithm based on p-analysis of the linear system with
frequency domain flight data [14, 13]. The model vali-
dation condition is derived as a standard u calculation.
The u value at each frequency relates the required size
of perturbations at that frequency. This information
is used to compute frequency varying weightings to
scale the uncertainty set. The model validation proce-
dure is repeated until a small amount of uncertainty is
defined that still validates the model but reduces the
conservatism in the resulting flutter analysis.

Robust flutter margins are computed using p-analysis
on the linear system with the uncertainty operators.
The flutter margin is found as the smallest destabiliz-
ing perturbation for the dynamic pressure uncertainty,
&5, for the linear system with the given amount of mod-
eling uncertainty. This margin is the worst-case flutter
condition for the allowed range of aircraft dynamics.



Worst-Case Flutter Parameter

The flutter computation method described in this pa-
per uses u as the worst-case flutter parameter. There
are several advantages to using 4 as the flutter param-
eter. 4 is a much more informative futter margin as
compared to traditional parameters such as pole loca-
tion and modal damping.

The conservatism introduced by considering the worst-
case uncertainty perturbation can be interpreted as
a measure of sensitivity. Robust u values which are
significantly different than the nominal flutter margins
indicate the plant is highly sensitive to modeling errors
and changes in flight condition. A small perturbation
to the system can drastically alter the flutter stability
properties. Conversely, similarity between the robust
and nominal flutter margins indicates the aircraft is
not highly sensitive to small perturbations.

Robustness analysis determines not only the norm of
the smallest destabilizing perturbation but also the di-
rection. This information relates exact perturbations
for which the system is particularly sensitive. u can
thus indicate the worst-case flutter mechanism which
may naturally extend to indicate active and passive
control strategies for flutter suppression.

Damping is only truly informative at the point of insta-
bility since stable damping at a given flight condition
does not necessarily indicate an increase in dynamic
pressure will be a stable flight condition. u computes
the smallest destabilizing perturbation which indicates
the nearest flight conditions that will cause a flutter
instability. In this respect, 4 is a stability predictor
while damping is merely a stability indicator.

These characteristics of 4 make the worst-case flutter
algorithm especially valuable for flight test programs.
Aerocelastic flight data can be measured at a stable
flight condition and used to evaluate uncertainty op~
erators. The yx method, unlike damping estimation,
does not require the aircraft to approach instability for
accurate prediction. u can be computed to update the
stability margins with respect to the new uncertainty
levels. The worst-case stability margin then indicates
what flight conditions may be safely considered.

Safe and efficient expansion of the flight envelope can
be performed using an on-line implementation of the
worst-case stability estimation algorithm. Comput-
ing p does not introduce an excessive computational
burden since each F/A-18 flutter margin presented in
this paper was derived in less than 2 minutes using
standard off-the-shelf hardware and software packages.
On-line algorithms are curreatly being developed to
demonstrate this procedure for a flight test {17].

F/A-18 Aeroelastic Data

Extensive flight data from the F/A-18 SRA is used to
generate uncertainty descriptions for an analytical air-
craft model [16]. Over 30 flights were conducted in two
sessions between September 1994 and February 1995
and between June 1995 and July 1993 at Dryden Flight
Research Center. Each flight performed maneuvers for
different conditions throughout the flight envelope. A
total of 260 different data sets are generated from var-
ious conditions throughout the flight envelope [5].

The aeroelastic flight data is generated using an ex-
ternal structural excitation system developed by Dy-
pamic Engineering Incorporated (DEI). This DEI ex-
citer is a modification of an excitation system used
for F-16 XL flutter research [20]. The system consists
of a wingtip exciter, an avionics box mounted in the
instrumentation bay, and a cockpit controller.

Aerodynamic forces are generated by the wingtip ex-
citer. This exciter consists of a small fixed aerody-
namic vane forward of a rotating slotted hollow cylin-
der. Rotating the cylinder varies the pressure distribu-
tion on the vane and results in a wingtip force changing
at twice the cylinder rotation frequency. The magni-
tude of the resulting force is determined by the amount
of opening in the slot. The F/A-18 aircraft with a left
side wingtip exciter is shown in Figure 1. *

The cockpit controller commands a frequency range,
duration and magnitude for the wingtip excitation sig-
nal. Frequency varying excitation is generated by
changing the cylinder rotation frequency with sine
sweeps. Each wingtip exciter is allowed to act in-
phase, 0 degrees, or out-of-phase, 180 Jdegrees, with
each other. Ideally, the in-phase data excites the sym-
metric modes of the aircraft and the out-of-phase data
excites the anti-symmetric modes.

Flight data sets are recorded by activating the exciter
system at a given flight condition. The aircraft at-
tempts to remain at the flight condition throughout
the series of sine sweeps desired by the controller. The
sine sweeps were restricted within 3 Hz and 35 Hz
Smaller ranges were sometimes used to concentrate on
a specific set of mode responses. Multiple sets of either
linear or logarithmic sweeps were used with the sweep
frequency increasing or decreasing.

Aeroelastic flight data generated with the DEI exciter
system is analyzed by generating transfer functions
from the excitation force to the sensor measurements.
These transfer functions are generated using standard
Fourier transform algorithms. There are several inher-
ent assumptions associated with Fourier analysis that
are violated with the flight data. The assumptions



of time-invariant stationary data composed of sums of
infinite sinusoids is not met by this transient response
data. The analysis presented in this paper is based
on Fourier analysis, although current research investi-
gates wavelet techniques to analyze the flight data [5].

The excitation force is not directly measured but
rather a strain gauge measurement is used to approx-
imate this force. The strain gauge records a point
response at the exciter vane root. This point response
is considered representative of the distributed excita-
tion force load over the entire wing surface. Vane root
strain is assumed to be directly proportional to the
vane airloads due to excitation [5].

Analysis of the recorded flight data indicates the DEI
exciters did not operate entirely as expected. The
exciters displayed erratic behavior at higher dynamic
pressures due to binding in both the motor drive mech-
anism and rotating cylinders. At low dynamic pres-
sures the system operated better but still displays
some phase drift between the left and right cylinder
rotations.

Further erratic behavior is demonstrated by compar-
ing measurement signals due to excitation sine sweeps
of increasing and decreasing frequency. Transfer func-
tions from a symmetric excitation to the wingtip
accelerometers clearly show different modes are ex-
cited by the direction of the sweep even though the
flight conditions are identical and the data sets were
recorded 30 seconds apart of each other [16].

F/A-18 Nominal Model

The generalized equations of motion are used to derive
a linear, finite-dimensional state-space model of the
aireraft. This model contains 14 symmetric structural
modes, 14 antisymmetric structural modes and 6 rigid
body dynamic modes. The control surfaces are not
active and no control modes are included in the model.

A finite element model of the SRA is used to compute
the modal characteristics of the aircraft. Frequencies
of the dominant modes for flutter are presented in Ta-
ble 1. These modal frequencies are computed for the
aircraft with no aerodynamics considered. The pre-
dicted flucter results for this aircraft are computed
from the finite element model using the p-k method. A
detailed explanation of the SRA flutter analysis using
traditional methods is given in Reference [21].

Values of the unsteady aerodynamic force matrix at
distinct frequencies are computed for the finite ele-
ment model using a computer package developed for
NASA known as STARS [9]. This code solves the sub-
sonic aerodynamic equations using the doublet lattice

Mode Symmetric | AntiSymmetric
Wing 1* Bending 5.59 8.84
Fuselage 1°* Bending 9.30 8.15
Wing 1*¢ Torsion 13.98 14.85
Wing 2™¢ Bending 16.95 16.79
Wing Outer Torsion 17.22 -
Fuselage 2"¢ Bending 19.81 18.62
Fuselage Torsion - 24.19
Wing 2" Torsion 29.88 29.93

Table 1: Modal Frequencies

method [8]. The supersonic forces are generated us-
ing a different approach known as the constant panel

method [1].

The doublet lattice and constant panel methods are
used to compute the frequency varying unsteady aero-
dynamic forces for several subsonic,transonic and su-
personic Mach numbers. The Mach numbers, M =
.8,.9,.95,1.1,1.2,1.4,1.6, are available. The unsteady
aerodynamic forces are computed as a function of re-
duced frequency, k.

T

k=wiv
The reduced frequency is a function of the ttue fre-
quency, w, the true velocity, V, and € the mean agro-
dynamic chord. Aerodynamic forces generated for 10
reduced frequency points between k = .0001 and k = 4
are sufficient for flutter margin computation for this

aircraft.

The unsteady aerodynamic forces are fit to a finite-
dimensional state-space system. The system identifi-
cation algorithm is a frequency domain curve fitting
algorithm based on a least squares minimization. A
separate system is identified for each column of the
unsteady forces transfer function matrix. 4*» order
state-space systems are used for each column of the
symmetric forces and 2™¢ order state-space systems
are used for each column of the antisymmetric forces.
These systems are combined to form a single multiple-
input and multiple-output state-space model of the
unsteady aerodynamics forces, previously designated -
Q(s), with 56 states for the symmetric modes and 28
states for the antisymmetric modes.

The analytical aeroelastic model has inputs for sym-
metric and antisymmetric excitation forces. It is as-
sumed the excitation force will be purely symmetric or
antisymmetric. There are 6 sensor measurements gen-
erated by accelerometers at the fore and aft of each
wingtip and on each aileron.




F/A-18 Uncertainty Description

Noise and uncertainty operators are introduced to the
linear aeroelastic model to account for variations be-
tween the analytical model and the actual aircraft.
These operators are developed by physical reasoning
of the modeling process and also using the flight data
generated by the DEI excitation system [16].

Standard analysis of the linear model is used to deter-
mine the framework for how uncertainty operators en-
ter the system. Two uncertainty operators and a single
noise input are used to describe the modeling uncer-
tainty in the linear aeroelastic model. The magnitude
of each uncertainty operator and the noise level is de-
termined both from physical reasoning of the model
and analysis of the flight data.

An uncertainty operator, dmode, i8 introduced to the
modal elements of the state-space F/A-18 model. This
parametric uncertainty allows variations in both the
natural frequency and damping values for each mode.
This uncertainty covers errors in the coefficients of the
equations of motion and the corresponding state-space
elements of the linear model. An example of such an
error arises in considering the mass of the aircraft. The
linear model uses a single mass value while in reality
the mass varies considerably due to fuel consumption.
Mass variations for a simple second order system af-
fect the natural frequency, w = /k/m, and may be
represented as parametric modal uncertainty. This
modal uncertainty allows a worst-case flutter point to
be computed that accounts for parametric changes in
the aircraft such as those due to mass variations.

The second uncertainty operator, A;p, is a multiplica-
tive uncertainty on the force input to the linear model.
This uncertainty is used to cover nonlinearities and
unmodeled dynamics. The linear model contains no
dynamics above 40 Hz so the high frequency compo-

nent of this operator will reflect this uncertainty. This-

operator is also used to model the excitation uncer-
tainty due to the DEI exciter system. Analysis of the
flight data indicates the input excitation signals rarely
had the desired magnitude and phase characteristics
that they were designed to achieve. The low frequency
component of the input uncertainty reflects the uncer-
tainty associated with the excitation system used to
generate the flight data.

A noise signal is included with the sensor measure-
ments. Knowledge of the aircraft sensors is used to
determine a level of 10% noise is possible in the mea-
sured flight data. An additional noise may be included
on the force input due to the excitation system but it
is decided the input multiplicative uncertainty is suf-
ficient to describe this noise.

The magnitude of the parametric modal uncertainty,
Smode, 18 determined from flight data analysis. The
linear model contains 14 modes for the symmetric re-
sponse and 14 modes for the antisymmetric response
of the aircraft. Unfortunately, the flight data does not
indicate each of these is sufficiently excited to allow
analysis and comparison with the theoretical model.
Only the modes given in Table 1 are observed in the
data. A linear model is formulated from a subset of
the full model which contains only the experimentally
observed modes. The modal parameters of this re-
duced order model are compared with the flight data
and uncertainty levels are determined.

Scalar uncertainty parameters, §, are used to affect
the modal parameters. The state matrix of the linear
model is formulated as a block diagonal matrix with a
2 x 2 block for each mode. The diagonal component
of each block is the real part of the natural frequency
and the off-diagonal elements are the imaginary parts
such that the natural frequency, w;, and the damping,
¢, of the i** mode may be determined.

A; = r. 1 o u.-=\/r§+:5‘
—-ir i =—rfw;

Scalar weightings, w, and w;, are used to affect the
amount of uncertainty in each matrix element. Jhe
amount of variation in the matrix elements, ahd cor-
respondingly the amount of variation in the natyral
frequency and damping, are determined by the mag-
nitude of these scalar weightings. Define ¥ and 1 as
the varying elements of the state matrix affected by
the uncertainty 4.

Aeroelastic modes typically show low damping val-
ues caused by the real component being quite small
as compared to the imaginary component. Since lin-
ear modeling techniques often identify the natural fre-
quency better than the damping value, the weighting
for the real component should be larger than that for

the imaginary component.

The weightings are chosen using the observed modal
parameters in the flight data. The natural frequencies .
show variations of +5% from the theoretical model
while the uncertainty in the damping needs approxi-
mately £15% to validate all the fight data. The scalar
weightings are chosen accordingly.

w, = .15
w; = 05

The flight data is only able to determine uncertainty
levels for the modal paramters of the experimentally
observed modes. It is assumed the uncertainty lev-
els in the unobserved modes should be consistent with



these values. Parametric uncertainty is introduced for
each modal block in the state matrix, affecting ob-
served and unobserved modes, with the weighting val-
ues given above.

The block diagonal state matrix also contains some
real valued scalar blocks. These scalar blocks appear
as approximations to lag terms in the state-space iden-
tification of the unsteady aerodynamic forces. The
identified system with these lag approximations does
not accurately model the aerodynamic forces at all fre-
quencies. Parametric uncertainty affects each of these
lag terms with a weighting of wiay, = .15 that allows
15% variation.

The low frequency magnitude of the input multiplica-
tive uncertainty is determined from the flight data.
Levels of uncertainty are chosen that validate the flight
data for a given amount of noise and parametric modal
uncertainty. The high frequency component of input
uncertainty is determined to reflect the unknown dy-
namics at high frequency for the linear model. The
frequency varying transfer function for weighting the
input uncertainty is given as Wi,.
s+ 100

Win =57 + 5000
The block diagram for the aeroelastic model with the
uncertainty operators is given in Figure 3.
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Figure 3: F/A-18 Uncertainty Block Diagram

Flight data used to validate this uncertainty structure
covers a large range of flight points from the entire set
of 260 flight maneuvers throughout the flight envelope.

Using a single uncertainty description over the entire
flight envelope may be conservative. It is reasonable
to assume the linear models are more accurate at sub-
sonic and supersonic than at transonic. Additionally,
the flight data from the DEI exciter system should be
better at subsonic speeds than at supersonic. How-
ever, it simplifies the analysis process to consider a
single set of uncertainty operators. This process is
equivalent to formulating the worst-case uncertainty
levels at the worst-case flight condition and assuming
that amount of uncertainty is possible for the remain-
ing fAight conditions.

F/A-18 Flutter Points

Flutter margins are computed for a linear model with
the associated modeling uncertainty structure using
the p-analysis method [15]. Linear systems for sym-
metric and antisymmetric structural modes are sepa-
rated for ease of analysis. These systems can easily be
combined and analyzed as a single system; however,
eigenvector analysis would be required to distinguish
which critical flutter modes are symmetric and which
are antisymmetric. Each system contains the same
number of structural modes, 14, and the uncertainty
descriptions are identical for each linear model.

The system given in Figure 3 contains three uncer-
tainty blocks. The parametric uncertainty covering
variations due to dynamic pressure, 47, is a scalar pa-
rameter repeated 14 times, once for each elastic mode.
The parametric uncertainty block affecting the modal
parameters, Smodes, is & diagonal matrix with dimen-
sion equal to the number of states. Separate scalars
along the diagonal represent uncertainty in each elastic
mode, each mode in the aerodynamic force approxima-
tion, and each lag term. The uncertainty paraméters
for the modes are repeated two times while the pa-
rameters for the lag terms are single scalars. Define J;
as the #** uncertainty parameter for the system With
n., modes and n; lag terms. The input multiplica-
tive uncertainty block, A;n, is a scalar for this sifigle
input plant model since we are analyzing symmetric
excitation separately from antisymmetric excitation.

-«

The parametric uncertainty parameters represent
changes in elements of the state-space model. The
variation of &7 between +1 admits dynamic pressures
between 0 < § < 2§,,,n- Allowing the modal uncer-
tainty parameters, 4;,...,0n,, to vary between = 1
allows 5% variation in the imaginary part of the nat-
ural frequency and 15% in the real part. This corre-
sponds to approximately 5% variation in the natural
frequency and 15% in the damping value of each mode.
These parameters are real quantities. The multiplica-
tive input uncertainty contains magnitude and phase
information and is treated as a complex linear time-
invariant uncertainty.

Nominal flutter boundaries are initially computed by
ignoring the modal and input uncertairties. 4 is com-
puted only with respect to the parametric uncertainty
allowing a range of dynamic pressures to be consid-
ered. Robust flutter boundaries are computed with
respect to the structured uncertainty set, 4, described
above using the structured singular value. Traditional
flutter boundaries computed using the p-k method are
presented with the nominal and robust futter bound-
aries computed with u in Table 2



Mach symmetric I antisymmetric

| ap-h anom arob ap-h anom arob
.8 3360 | 3168 | 2909 || 4600 [ 4593 | 3648
.9 2700 | 2706 | 2575 || 3150 | 3057 | 2944
.93 2430 | 2388 | 2329 || 2600 | 2751 | 2572
1.1 5400 | 5676 | 4120 || 5500 | 3265 | 2827
1.2 2469 | 2454 | 2327 || 2850 | 2893 | 2653
1.4 3528 | 3432 | 3034 || 4600 | 4439 | 4191
1.6 || 4470 | 4487 | 3996 || 5700 | 5870 | 4536

Table 2: Nominal and Robust Flutter Points

The nominal flutter dynamic pressures computed us-
ing the u method can be directly compared with those
computed using the traditional p-k method (21]. Each
of these flutter solutions are based on an analytical
model with no consideration of modeling uncertainty.

The pominal flutter points for the symmetric modes
match closely with the p-k method throughout the
flight envelope. The subsonic and supersonic cases
show an especially good correlation with the p-k flutter
points. For each of these flight regions, the y-analysis
flutter dynamic pressures are nearly identical, within
1%, to the p-k method flutter dynamic pressures. The
transonic case at M = 1.1, however, shows a slight
difference between the two methods. The u method
. computes a flutter point that is greater than the p-k
method. In each Mach regime; subsonic,supersonic or
transonic, the nominal flutter points are within 5% for
the two methods.

The antisymmetric modes show a similar relationship
between the flutter margins computed with the u and
p-k methods. The subsonic and supersonic flutter
points are within 5% for the two methods, but there is
a greater deviatian at the transonic condition. p com-
putes a flutter margin at M = 1.1 that is 40% lower
than the p-k method indicates.

The nominal flutter points for the x and p-k methods
show the greatest difference for both the symmetric
and antisymmetric modes at the transonic case. The
aerodynamics at M = 1.1 are more difficult to model
accurately than at either subsonic or supersonic. Nu-
merical sensitivity to representations of the unsteady
aerodynamic foces causes differences in the nominal

flutter margins.

The robust flutter margins computed using the u
method have lower dynamic pressures than the nomi-
nal margin, which indicates the expected conservative
nature of the robust computation. These new flutter
points are worst-case values for the entire range of al-
lowed uncertainty. The subsonic and supersonic flutter
boundaries are not greatly affected by the uncertainty
set. In each of these cases, the robust flutter point is
within 10% of the nominal flutter point.

The flutter boundary at the transonic case, M = 1.1,
demonstrates significant sensitivity to the modeling
uncertainty. The robust flutter dynamic pressures are
approximately 70% of the nominal flutter margins.
This is explained by considering the rapid transition of
critical Autter boundaries near this region. The criti-
cal flutter frequencies and the flutter dynamic pressure
widely vary between Mach numbers slightly lower and
higher than transonic. The small amount of modeling
uncertainty is enough to cause the worst-case flutter
mechanism to shift and the plant assumes character-
istics more consistent with a non-transonic regime.

The modal natural frequencies for the critical flutter
modes are presented in Table 3. The frequencies com-
puted using the p-k method and the u-analysis method
are close throughout the flight envelope for both the
symmetric and antisymmetric modes. Frequencies for
the robust flutter solutions are slightly different than
the nominal flutter frequencies due to the modeling
uncertainty which allowed 5% variation in the modal
natural frequencies.

[Mach symmetric antisymmetric

Wp—k | Wnom | Wrob || Wp—k | Wnom | Wrob
.8 8.2 7.6 7.7 9.0 9.1 9.1
9 7.4 7.3 7.3 9.2 9.1 9.2
.95 6.8 6.9 6.9 9.1 9.2 9.2
1.1 12.1 | 13.2 | 13.0 {| 28.6 | 28.0 | 28.3
1.2 265 [ 274 | 274 || 26.9 | 28.9 | 289
14 28.1 [ 28.1 | 28.1 || 30.4 | 31.7 | 31.8
1.6 289 | 30.1 | 30.1 |[ 32.8 | 32.3 | 3=1

Table 3: Nominal and Robust Flutter Frequencies

Subcritical flutter margins computed with the 4 and
p-k methods are presented in Table 4. Only nominal
subcritical margins are detected with u since the ro-
bust margins are always worst-case critical margins.

Mach symmetric antisymmetric
-q.p—k anominal ap—k 2irwming_l__‘

9 4700 4583

’ 5300 5093
.95 7450 6919

1.1 6050 6001

1.2 5400 5003 8400 7943
1.4 8970 8959
1.6 8400 8843

Table 4: Nominal and Robust Flutter Points - Subcritical

p-analysis computes subcritical futter margins within
10% of the p-k method for both the symmetric and
antisymmetric modes. The x4 method is even able to
detect the subcritical flutter hump mode occuring for
antisymmetric excitation at 0.9 Mach aumber.



Matched-Point Flutter Margins

The dynamic pressures at which flutter occurs are con-
verted into altitudes, commonly known as matched-
point solutions, using standard atmospheric equations.
These altitudes are plotted for the symmetric modes in
Figure 4 and for the antisymmetric modes in Figure 5.
The flight envelope of the F/A-18 is shown on these
plots along with the required 15% flutter boundary for
military aircraft.
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Figure 4: Nominal and Robust Flutter Points - Matched
Point Solutions for Symmetric Modes
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Figure 5: Nominal and Robust Flutter Points - Matched
Point Solutions for AntiSymmetric Modes

Figures 4 and 5 use several short solid lines to indicate
the p-k flutter solutions throughout the flight regime.
Each of these short solid lines represents the flutter
points due to a specific mode. Flutter points for the
symmetric modes given in Figure 4 show four solid
lines indicating three different critical flutter modes
for the considered range of Mach numbers along with
a subcritical futter mode occuring at supersonic Mach

numbers. The antisymmetric modes show the onset of
flutter from three different critical modes along with
three subcritical fAutter modes throughout the flight
envelope in Figure 5. The frequencies of the critical
flutter modes can be found in Table 3.

The subsonic flutter altitudes for symmetric and anti-
symmetric modes demonstrate a similar characteristic.
The nominal flutter boundary shows a significant vari-
ation from Mach number M = .8 to M = .95 caused
by sensitivity to Mach number for the dynamics associ-
ated with the critical flutter mode. The robust flutter
boundary indicates the sensitivity of the plant to er-
rors and the worst-case perturbation. The higher alti-
tude for the nominal flutter boundary at Mach number
M = .81 than for Mach number M = .80 is reflected
in the large conservatism associated with the robust
flutter boundary. Similarly, slight variation of Mach
number near M = .95 is not expected to increase the
nominal flutter boundary so there is less conservatism
associated with the robust flutter boundary.

An interesting trend is noticeable for the symmetric
mode robust flutter points in Figure 4 at the super-
sonic Mach numbers. The flutter mechanism results
from the same modes from M = 1.2 to M = 1.6 with
some increase in frequency. Similarly the altitudes of
the nominal flutter margins show little change for these
Mach numbers. The aeroelastic dynamics associated
with the critical flutter mode are relatively unaffeéted
by the variation of Mach over this range and conse-
quently each flutter boundary has the same sensxthty
to modeling errors.

The robust flutter margins for the antisymmetric
medes at supersonic Mach nurbers show a slightly
different behavior than the symmetric mode flutter
margins. The flutter mechanism is again caused by
a single mode from M = 1.2 to M = 1.6 with similar
frequency variation as symmetric. The robust flutter
margins demonstrate a similar sensitivity to modeling
errorsat M =12and M =14 butat M =16a
greater sensitivity is shown. The greater conservatism
at M = 1.6 may indicate impending transition in flut-
ter mechanism from the subcritical mode at slightly
higher Mach number.

The dark solid line on Figures 4 and 5 represents the
required boundary for flutter points. All nominal and
robust futter points lie outside this region indicating
the flight envelope should be safe from flutter instabil-
ities. The robust flutter boundaries computed with u
indicate there is more danger of encountering flutter
than was previously estimated with the p-k method.
In particular, the robust flutter margin for symmetric
excitation at Mach M = 1.2 lies considerably closer to
the boundary than the p-k method indicates.



Computational Analysis

The 4 analysis method of computing flutter margins
presents significant analytical advantages due to the
robustness of the resulting flutter margin, but it also
has several computational advantages over the p-k
method. The p algorithm requires a single linear
aeroelastic plant model at a given Mach number to
compute critical and subcritical Autter margins. An
entire set of flutter margins may be easily generated
using a standard engineering workstation in a few min-
utes using widely available software packages [2].

The p-k method is an iterative procedure that requires
finding a matched-point solution [21]. The aircraft is
analyzed at a particular Mach number and air density.
The airspeed for these conditions resulting in a flutter
instability is computed. This airspeed, however, often
does not correspond to the unique airspeed determined
by that Mach number and air density for a standard
atmosphere. Various air densities are used to compute
flutter solutions and the corresponding air speeds are
plotted. An example of an air speed plot for flutter is
given in Figure 6.
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Figure 6: AntiSymmetric P-K Flutter Solutions for Mach
M=1.4

The vertical lines in Figure 6 represent two antisym-
metric modes that may flutter at Mach M=1.4. The
p-k method computes a flutter solution at the airspeed
indicated where the modal line crosses the standard
atmosphere curve. This flutter solution is difficult to
compute from only a few air density computations.
Typically several air densities are used to compute air
speed flutter solutions and a line is extrapolated be-
tween the points to determine the matched-point solu-
tion at the standard atmosphere crossing point. The
noalinear behavior shown for mode 1 near the standard
atmosphere crossing point indicates an accurate flutter
boundary would be extremely hard to predict unless

1000 1100_ v.-ao. 1300 1400 1500 1800 1700
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10

many solutions are computed near the true matched-
point solution.

The p-k method also may have difficulty predicting
the subcritical Autter margins. The second mode in
Figure 6 may or may not intersect the standard atmo-
sphere curve. More computational analysis is required
to determine the behavior of this mode at higher air-
speeds. The p-analysis method accurately detects
both the critical and subcritical flutter margins with-
out requiring expensive iterations.

Conclusion

Nominal and robust flutter margins are computed for
the F/A-18 SRA aircraft. Nominal flutter margins are
computed using a u-analysis method and a traditional
p-k method. The similarity of these flutter margins
demonstrates the u-analysis method is a valid tool for
computing flutter instability points and is computa-
tionally advantageous. Extensive flight data is ana-
lyzed to develop a set of uncertainty operators for a
linear model. Robust flutter margins are computed
using pu. The resulting flutter margins are worst-case
values with respect to the modeling uncertainty. These
margins are accepted with a great deal more confidence
than previous flutter estimates by directly accounting
for modeling uncertainty in the analysis process. The
robust flutter margins indicate the desired flight en-
velope should be safe from aeroelastic flutter instabil-
ities; however, the flutter margins may lie noticeably
closer to the flight envelope than previously estimated.

This method replaces damping as a measure of ten-
dency to instability from available flight data. Since
stability norms generally behave smoothly at instabil-
ity boundaries, this method is recommended for pre-
flight predictions and post-flight analysis with a min-
imum amount of flight time. Additionally, the robust
flutter stability framework extends naturally to robust
flutter control synthesis for aeroelastic control.
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