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ABSTRACt

An algorithm for maximum likelihood (ML) estimation is developed with

an efficient method for approximating the sensitivities. The algorithm was

developed for airplane parameter estimation problems but is well suited for

most nonlinear, multlvariable, dynamic systems. The ML algorithm relies on

a new optimization method referred to as a modified Newton-Raphson with

estimated sensitivities (MNRES).

MNRES determines sensitivities by using slope information from local

surface approximations of each output variable in parameter space. The

fitted surface allows sensitivity information to be updated at each itera-

tion with a significant reduction in computational effort. MNRES deter-

mines the sensitivities with less computational effort than using either a

finite-dlfference method or integrating the analytically determined sensi-

tivity equations. MNRES eliminates the need to derive sensitivity equa-

tions for each new model, thus eliminating algorithm reformulation with

each new model and providing flexibility to use model equations in any

format that is convenient.

A random search technique for determining the confidence limits of ML

parameter estimates is applied to nonlinear estimation problems for air-

planes. The confidence intervals obtained by the search are compared with

Cramer-Rao (CR) bounds at the same confidence level. It is observed that

the degree of nonlinearity in the estimation problem is an important factor

in the relationship between CR bounds and the error bounds determined by

the search technique. The CR bounds were found to be close to the bounds

determined by the search when the degree of nonlinearity was small.

Beale's measure of nonlinearity is developed in this study for airplane

identification problems; it is used to empirically correct confidence

levels for the parameter confidence limits. The primary utility of the

measure, however, was found to be in predicting the degree of agreement

between Cramer-Rao bounds and search estimates.
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Chapter I

INTRODUCTION

Problems in dynamics may be divided into three categories. By

considering a general dynamical system, f, with input, U, and output, Y,

the categories can be defined as: (I) the classical problem where input,

U, and system, f, are given and the response, Y, is to be determined; (2)

the controls problem where system, f, and the desired response, Y, are

given and input, U, is to be determined; and (3) the identification problem

where input, U, and output, Y, have been measured and the system, f, is to

be modelled.

The theory for system identification provides a way for modelling an

unknown system based upon input and output information. The identification

theory incorporates a priori knowledge of the dynamic processes and sto-

chastic processes involved; thus, the identification problem is not usually

characterized as a black box problem. In fact, system identification prob-

lems are usually characterized, as done in reference I, by three factors:

(I) class of models; (2) class of inputs; and (3) a criterion for state and

parameter estimation. The models and inputs may be deterministic or

stochastic and the criterion (cost function) may be based on statistical

theory or numerical considerations.

Implementation of the identification theory usually follows four basic

stages. The first stage requires the design of an experiment. This

requires the identification objectives to be specified, system configura-

tion and conditions to be stated, and an input form selected. Determining

an optimal input for identification can be critical to identification

success; all the modes of a system must be excited in order to identify the

system correctly and completely. The second stage is for model structure

determination (a more comprehensive term is model characterization). The

model is assumed to be linear or nonlinear, time varying or time invariant,

with or without process noise, and with or without measurement noise, etc.

The unknown parameters in the model may include system parameters as well

as initial conditions, bias terms, measurement and process noise character-

istics. The third stage involves parameter and state estimation. Para-

meter and state estimation provide mean values and standard error esti-

mates; these are obtained by finding an extremum of some optimality



criterion. State estimation can be better characterized as a filtering

problem; a Kalman filter is commonlyused for this problem. The fourth
stage is verification. This is accomplished by comparing estimates from

different data sets and different estimation techniques. In addition,
other sources provide comparisons; in the case of airplanes, both wind

tunnel and theoretical predictions are used. Verification is also

accomplished through sensitivity analysis and through analysis of residuals

and model predictive capabilities.

The importance of system identification theory to aircraft technology

has developed for several reasons. A primary reason is that it provides an
alternate approach to determining aircraft characteristics (parameters).

Comparing results with other techniques is always good scientific prac-
tice. Purely theoretical approaches or purely experimental approaches

(wind tunnels) have in many instances failed to accurately predict proto-

type characteristics. Flight testing offers an opportunity to observe

actual vehicle performance resulting in better calibration and understand-

ing of wind tunnel results and more accurate modelling for ground-based
simulators.

The development of aircraft parameter estimation paralleled the

developments in estimation and system theory. Early flight test studies
centered on steady-state maneuvers and free oscillations. These studies

were time consuming and provided limited information. The main interest

was to obtain basic aerodynamic parameters, termed stability and control

derivatives, from linear dynamic models combined with linear aerodynamic

models. In the early 1950's Greenberg and Shinbrot developed a least

squares approach to analyze simple transient maneuvers (ref. 2,3,4). How-
ever, without computers the simplest flight test problem with only four

unknownparameters took 24 hours to analyze (ref. 5). A major development
for aircraft parameter estimation occurred in the mid 1960's. This devel-

opment was the introduction of large-capacity, high-speed digital computers
and highly automated data acquisition systems. In 1968, when Larson

applied the method of quasi-linearization (ref. 6) and Taylor and lliff
(ref. 7) introduced the modified Newton-Raphsonmethod, a new stimulus

- 2 -



was given to parameter estimation. Other contributions came in the early

1970's from Mehra (ref. 8), Mehra and Stephner (ref. 9), and Rault
(ref. I0).

During the past decade an increasing concern has been the application

of estimation theory to nonlinear systems. Much of this has been stimu-

lated by aerospace applications. Today, incorporating nonlinear dynamics

with linear aerodynamic models is commonlyperformed in flight test data

analysis. The techniques are well established for flight regimes where the

aircraft aerodynamic model can be expressed as a linear function of states

and control inputs. However, modelling the combination of nonlinear dyna-
mics with nonlinear aerodynamics and estimating the parameters associated

with that model present manydifficulties. The need to identify the best

mathematical representation (model structure) and estimate the associated

parameters for nonlinear flight regimes has motivated further development

of identification and estimation techniques.

A new approach to airplane parameter estimation and confidence

interval determination is offered in this study as a contribution toward
building a more general and unified airplane identification methodology.

The more general methodology starts with the work done in reference ii. In

reference II a useful technique for model structure determination, where
nonlinear aerodynamic effects are present, is suggested. The suggested

technique uses a Modified Stepwise Regression (MSR), along with several

testing criteria to determine a parsimonious, yet adequate, model. The

limitation of this technique (as with any least squares method) is that the

estimates are asymptotically biased and variance estimates are based on

simplifying assumptions which are valid only for the "classical" linear
regression. This limitation can be skirted by applying the commonlyused

MaximumLikelihood (ML) technique using the model structure determined by

the regression and the regression estimates as an initial guess. The ML

approach has much more favorable asymptotic properties (ref. 12), and it

provides estimates of the Cramer-Rao (CR) bounds for the parameter
variance.

- 3 -



There is a computational cost, however, for the more favorable asymp-

totic properties of the ML technique. Dynamic systems, such as aircraft

systems, require substantial computational effort at each step of the

optimization process. At each step the equations of motion must be inte-
grated to obtain time histories of each state and output variable. In

addition, most ML algorithms use a Modified Newton-Raphson(MNR) optimiza-

tion scheme which requires integrating sensitivity equations. This

accounts for most of the computational effort since the number of state and

sensitivity equations to be integrated at each iteration is equal to the
numberof states plus the product of the number of states and the numberof

unknown parameters. Several states and 20 to 30 parameters are not

uncommonfor one flight condition. If a model is desired throughout the
entire flight envelope, the computational requirements becomeoverwhelming

since analysis of various flight conditions may require more than one

candidate model. A very efficient ML estimation algorithm is desirable to

reduce the computational requirements for processing a large number of

parameters and candidate models.
Besides the greater computational cost associated with the ML/MNR

algorithm an additional difficulty in using the algorithm is that it

requires the user to have prior knowledge of the model structure to formu-
late the sensitivity equations and, thus, to formulate the algorithm. This

can be very burdensomewhenmodelling aircraft in nonlinear flight regimes
since model structure may change significantly from one flight condition to

another. Therefore, it is very advantageous to have an algorithm which is

independent of sensitivity equations.

Reducing computational requirements of the ML method requires careful

examination of the optimization methods utilized in the algorithm.

Although nonlinear, unconstrained optimization problems have been studied

quite extensively (ref. 13), little has been done to improve the optimiza-

tion techniques as they apply to aircraft estimation problems. Gupta and
Mehra considered the numerical aspects of computing ML estimates for linear

dynamic systems in state-vector form and methods for speeding up conver-

gence (ref. 14). Trankle, et al., considered the difficulties associated

- 4 -



with the use of a nonlinear dynamic model in ML parameter estimation and

parameter covariance estimation; sensitivity calculation methods were also
considered (ref. 15). More recently, Trankle, et al., considered the

overall methodology of system identification for nonlinear aerodynamic

models including computational aspects of the problem (ref. 16). In

reference 17, a nonlinear least-squares algorithm is developed which uses a
linear-surface approximation of a scalar-response variable to eliminate

derivative calculations altogether. The algorithm is applied to test prob-
lems which do not involve dynamic systems. Presented in the current study

is a significantly improved maximumlikelihood algorithm which relies on an

optimization scheme referred to as a modified Newton-Raphsonmethod with

estimated sensitivities (MNRES). A surface approximation is also used in

MNRES;however, it is treated differently by developing an algorithm which

retains derivative information in a Newton-Raphsonmethod for multivari-
able, dynamic systems. This is done to provide directional information for

the convergence process and to provide covariance information. With the

MNRESapproach, sensitivity equations are eliminated and a significant
reduction in computational demandis obtained.

Another difficulty in using the ML technique is that the CRinequality

provides only a lower bound measure of precision for an unbiased estima-

tor. It is known from practical application of ML that this lower bound

can differ from the variance obtained, for example, by repeated measure-

ments (Klein ref. 18). Attempts have been made, therefore, to either

modify the CR bounds by considering a band-limited measurement noise

(Balakrishna, ref. 19, and Maine and Iliff, ref. 20) or to estimate the

parameter variance directly from measured data (Rault ref. 10). Advances
in statistical methods also cameabout with the availability of high-speed

computers. Beale, in 1960, considered the problem in nonlinear estimation
of determining the approximate parameter confidence regions using likeli-

hood ratios (ref. 21). In addition, a measure of nonlinearity was devel-

oped to assess the quality of the approximation. Surprisingly, Beale's

work has had very little application since it was published (ref. 23). In

1979, Mereau and Provost (ref. 23) made use of the likelihood ratio

- 5 -



approach to determine confidence regions for aircraft systems. In 1980,

Mereau and Raymond(ref. 24) developed a search procedure to find the
"iso-distances" defining the confidence regions.

The goal of the current study is to provide improved techniques for

estimating parameters and their confidence limits in nonlinear, multivari-

able dynamic systems, in particular, aircraft systems. The improved tech-

niques will provide: (I) increased efficiency for the estimation process;

(2) elimination of the need for a priori knowledge of sensitivity equa-
tions; (3) more accurate assessment of the parameter error bounds than

obtained using Cramer-Raobounds; and (4) an adaptation of Beale's approach
to the airplane estimation problem. In addition, a unified methodology for

solving nonlinear airplane identification problems is inherent in this
study.

The development of this work begins in chapter II with a description

of the airplane model and the regression method used to determine it.

Chapter III describes the parameter estimation techniques used and their
statistical properties. The primary estimation method used to determine

airplane parameters, in this study, is maximumlikelihood. Linear regres-

sion methods are also presented since special forms are developed for use
in MNRESand because they are used in the model structure determination

schemeof Chapter II. In Chapter IV the MNRESmethod is presented with a

discussion of its various forms and properties. Also presented briefly are
some commonly used optimization methods which are used to compare with

MNRES. Chapter V develops the theory for confidence interval estimation

and the adaptation of Beale's work to the airplane problem. Finally,

chapter VI presents the results and discussion for the application of these
methods to simulated and real data.
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Chapter II
MODEL(_IARACTERIZATION

Model characterization, as discussed in the introduction, establishes
the knownor assumedcharacteristics of the model to be used in the identi-

fication process. Since system identification usually does not involve a

black box problem where nothing is knownabout the model in advance, quali-

tative statements describing the class of model, optimal inputs and

statistical properties of the measurementsare normally provided.

Generally, the more information available to characterize the model

the greater the likelihood of successful identification. Of course,

attempting a complete representation of a dynamic system, such as an air-

plane, is extremely difficult, if not impossible. Actually, a complete
model is unnecessary. The objective in identification is to select the

simplest model that allows proper determination of the desired unknown

parameters from measured data. The principle of parsimony is usually

applied. This principle states that given a choice of two models having

equal residual variances choose the model with fewer parameters. There-

fore, the objective in identification is to choose a parsimonious, yet

adequate, model. Very complex models may be justified to obtain an accu-

rate description of the system motion but it is clearly detrimental to the

estimation process. If the information content in the measured data is

very limited, or if too manyparameters are required, the estimation algo-
rithm mayprovide inaccurate estimates or it may fail.

The models considered in this study represent dynamic systems. Dyna-

mic systems are characterized by having derivatives with respect to time
included in the model in addition to the dependent and independent vari-

ables. One of the possible general forms for these systems is

s = f(Xs,U,0,t) Xs(0) = Xs0 (2-I)

Y = h(X ,U,0,t) (2-2)s

- 7 -



where Xs is a vector of state variables, Y is a vector of output vari-

ables, U is a vector of input variables, and e is a vector of unknownpara-

meters. The time variable, t, may or may not appear explicitly. This form
is not as restrictive as it first appears; manyproblems can be cast into
the matrix differential form above.

Several difficulties arise when estimation techniques are applied to

dynamic systems. A major difficulty is the significantly greater computa-

tional demandassociated with solving matrix differential equations. In an

estimation algorithm these equations are solved repetitively. A difficulty
can also arise when integrating the equations of motion because the bound-

ary conditions or initial conditions are not always known exactly. There-
fore, in many estimation problems the initial conditions are treated as

unknownparameters. Another difficulty is that the solution to the differ-

ential equations can be very different depending on sometimes very small

changes in the unknownparameters. For example, a first degree system is

stable or unstable depending only on the sign of the damping term. Non-

linear systems can amplify this type of problem. The success of the esti-

mation can depend on the initial guesses for the parameters since failure

may occur when a parameter is outside a stability boundary. Unfortunately,

obtaining stability boundaries is really only practical for linear, time-

invariant systems. Finally, numerical difficulties with truncation and
rounding errors are always present where numerical differentiation and

integration are performed.

A..:_. AIRPLANE EQUATIONS OF MOTION

The particular dynamic system of interest to

airplane, modelled by equations in the general form

this study is the

s = f(Xs'U'8) Xs(O) = Xso (2-3)

Y = g(Xs,U,8) (2-4)

- 8 -



The equations of motion used are referred

fig. I).

I.

2.

3.

4.

5.

to a body axes system (See

The equations were developed with the following assumptions:

The airplane is a rigid body.

The effect of spinning rotors is negligible.

The airplane has a plane of symmetry in xz plane.

There are no external disturbances to the airplane.

Thrust is accounted for as part of CZ and CX where

Cx = CT cos aT + _ sin a - _ cos a

CZ = CT sin aT - _ cos a - _ sin a

The resulting nine equations represent a six degree-of-freedom,

coupled, nonlinear system where the kinematic relations are expressed in

terms of direction cosines. They are given as follows:

EQUATIONS OF MOTION

• qS w

u = -qw + rw + g%xz + --m CX
(2-5)

v -- -ru + pw + g£yz + mqsw Cy (2-6)

w = -pw + qu + g_zz + mqSw CZ (2-7)

I I

= z F1 + zx 2 F2 (2-8)
I I - 12 I I - I
X Z ZX X Z ZX

I I - I q S c

IZX (r2 + p2) + pr Zl x + lW Cm
Y Y

(2-9)
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I I

r = x F2 + xz F1
1 I - 12 I I - 12
X Z ZX X Z XZ

(2-I0)

= r £ - q _ (2-11)
xz yz zz

= -r £ + p £ (2-12)
yz xz zz

= p _ - p £ (2-13)
zz xz yz

whe re

= ly - b C£ (2-14)F I ( - Iz) q r + Izx p q + q Sw w

F 2 = (I x I )p q I q r + q S b C (2-15)
y zx w w n

The nondimensional aerodynamic forces and moments, CX, Cy, CZ, C£,

Cm, C n (shown in fig. I), are usually approximated by a Taylor series

expansion around steady trimmed flight conditions or by polynomial splines

(see ref. 25). The form of the aerodynamic model equations is

y(t) = e0 + 81 x I + e 2 x2 + ... + 8 x (2-16)
n_l n_l

or in vector form

Yi = Xi 8 (2-17)

where y(t) or Yi represent one of the nondimensional aerodynamic forces

or moments at time t or at the ith data point. The stability and control

derivatives are represented by 8 1 to enp_ 1 and corresponding to an

initial trim flight condition the trim forces or moments are represented by

- I0-



e0. The x I to Xnp-i represent any function of the state and

control variables chosen for the model. The row vector X i is given as

X i = [1 xI x2 ... Xn ] (2-18)
p-1

In general, the form of the aerodynamic equation is unknown; however, for

estimation the form must be postulated. The form may vary significantly

from one flight condition to another.

The output equations for this study are as follows:

2 v 2 2V = u + + w (2-19)

B = sin-l(v/V) (2-20)

= tan-l(w/u) (2-21)

@ sin -I
= (-Zxz) (2-22)

= tan -I [£ /£ ] (2-23)
yz zz

I [u + q w - r v - q £xz]
ax -- _

(2-24)

i re l

a =- Iv + r u- p w- g £yzJY g
(2-25)

]a = -- + p v - q u - g £ (2-26)
z g zz
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The airplane identification problem can be made more tractable by

treating longitudinal and lateral cases separately. This is accomplished

by providing the required lateral information to the longitudinal case (or

the required longitudinal information to the lateral case) in the form of

measured input variables. This has been used successfully in many other

studies, for example, reference 18. Thus, the states, outputs, and inputs

for the two cases are given as follows:

for the longitudinal case,

X = [u w q £ £ _ ]T (2-27)
s xz yz zz

Y = [V a q 0 a a ]T (2-28)
X Z

U = [6e BE VE PE rE _E IT (2-29)

and for the lateral case,

X = [v p r % & £ ]T (2-30)
xz yz zz

Y = [_ p r _ ay] T
(2-31)

U = [_a dr UE WE 0E qE aE]T
(2-32)

where the subscript E indicates a measured quantity.

B. MODEL STRUCTURE DETERMINATION

The goal of model structure determination is to determine an analyti-

cal representation of the system which can be classified as an adequate
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model. An adequate model is one which sufficiently fits the data, allows

successful estimation of the parameters, and has good prediction capabili-
ties. In aeronautical applications the form of the rigid body equations of

motion is known. The only uncertainty, with regard to model structure, is
in the aerodynamic model equations (eq. (2-16)). One of the successful

methods for determining the model structure of these equations from

measureddata is based on stepwise regression.

In the stepwise regression approach, after postulating the aerodynamic

model equation, the determination of significant terms amongthe candidate
variables and estimation of corresponding parameters follows. The variable

chosen for entry into the regression equation is the one that has the

largest correlation with y after adjusting for the effect on y of the vari-

ables already selected. The parameters are estimated by the least squares

technique. At every step of the regression, the variables incorporated
into the model in previous stages and a new variable entering the model are

reexamined. Any variable which provides a nonsignificant contribution (due
to correlation with more recently added terms) is removed from the model.

The process of selecting and checking variables continues until no more

variables are admitted to the equation and no more are rejected. Experi-

ence shows, however, that the model based only on the significance of indi-

vidual parameters in model equation (2-16) can still include too many terms

and, therefore, may have poor prediction capabilities. Several criteria
for the selection of an adequate model are introduced in reference ii and

the details of the whole procedure are explained in references 11 and 26.
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Chapter III

PARAMETER ESTIMATION

In this study Maximum Likelihood (ML) and Linear Regression (LR)

techniques are used to estimate parameters. ML is used to estimate both

airplane parameters and their standard errors (Cramer-Rao lower bounds)

from flight data. The ML algorithm is used with various optimization

schemes which are described in chapter IV. LR is used for three different

applications in this study. The three applications are: (1) estimating

aerodynamic model structure; (2) estimating airplane parameters (starting

values for ML); and (3) estimating sensitivities in MNRES. The first and

second applications of LR were accomplished using stepwise regression as

described in the last chapter. The third application was accomplished

using an algorithm developed in this study.

A. LINKARREGRESSION

Linear regression analysis is a part of statistical theory which

generally deals with the determination of relationships between response

and predictor variables. One application of LR theory is curve fitting or

surface fitting. In this application, the predictor variables (independent

variables) are assumed to be deterministic and known without error;

response variables (dependent variables) may have error. A numerical

method commonly used in curve fitting to compute empirical coefficients is

the method of Least Squares (LS). In this method, the same model form as

equation (2-16) can be used to fit the curve or surface. The solution for

the unknown parameters or coefficients are found by minimizing the sum of

squares of the error between known data points and computed data points

determined by the model. The LS method is valid only for linear problems;

that is, problems where the unknown parameters occur linearly in the model

regardless of whether the model structure itself is linear or nonlinear.

LS can be solved in a batch mode or recursive mode and both modes have

application for determining the sensitivities in MNRES.
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k'--I BATCH PROCESSING

Batch processing of data in the LS method is probably the most

commonly used approach for curve fitting problems. The model form given by

equation (2-17) can be written as

Yi = Xi S + e i i = I, 2 .... , N (3-i)

where Yi is the ith value of one response variable; Xi is the ith

vector of predictor variables; S is the vector of unknown coefficients; and

e i is the equation error at the ith data point. This error may contain

measurement noise, process noise, and/or modelling error. However, no

assumptions are made about the statistical properties of e. In application

to MNRES, Yi represents one element of the output vector, Y(B); X i

represents the ith set of values for the vector of unknown parameters, 8;

and S is the np vector of coefficients to be computed. If a first degree

np-polynomial expansion is chosen for Xi, then each element of S will

be the desired sensitivities (slopes).

Applying the least squares criterion which requires minimization of

the mean square error gives the cost function as

N N

J(S) = _ e2i = _ [Yi- Xi S]2
i=l i=l

(3-2)

and minimization requires

_J(S)

_S

N

--= 0 = I xTi [Yi- Xi S]
i=l

(3-3)

Solving for S gives

^ N N

S [ I xT -I XT= i Xi] [ i Yi
i=1 i=l

(3-4)
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/_-2 RECURSIVE PROCESSING

Recursive processing provides a significant reduction in memory

requirements for the MNRES algorithm. However, a specialized form of

recursive least squares is needed for surface fitting in MNRES. Normally

in a recursive least squares problem the purpose is to update parameter

estimates based on N data points with some new information so that the

updated estimates are based on N+I data points. In the following deriva-

tion a least squares recursive algorithm is designed specifically for the

MNRES algorithm. MNRES requires the parameters be updated using both

incoming new information and outgoing old information so that the estimates

are always based on a constant number of data points.

As in the batch mode the surface fitting is performed to obtain slope

or derivative information. Consider the least squares problem formulated

as

Y = XS + E (3-5)

where Y is a vector of n data points on a surface to be fit by the model

given as XS. S is a vector of np unknown coefficients (slopes) and X is

an n by np matrix defined as

X

I Xll x12 ... Xlj
I x21 x22 ... x2j

... xij i=n, j=nxi_ xi2 • p

(3-6)

Least squares estimation gives a solution as

^

S = -[xTx] -I X T Y n > n (3-7)
-- p
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Now defining a recursive relation for the k+l iteration

Pk+,= ×kit (3-8)

and the updating equation as

where the row vector ak is the new set of e to be included in X and a°

is the outgoing set of 8 to be removed from X which produced the highest

value of the cost function. The recursive relation for S is

_ o T (aT ak ak T ak)Sk]Sk+l -- Sk Pk+l[ak T Yk- me Yk + (3-1o)

where y_ and Yk are one of the scalar elements of the outgoing and incom-

ing vector Y, respectively, at the kth iteration.

The derivation for equations (3-9) and (3-10) is as follows. Define Z

as the common elements of X between two iterations. Partitioning X for the

k-I and kth iterations results in

r°]ak

Xk_ 1 = Zk

xI-Iz

(3-11)

(3-12)

By using equations (3-11) and (3-12), the following relations can be

written:

T oT o T Zk (3-13)Xk- 1 Xk_ I = ak ak + Zk
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T T T
Xk Xk = ak ak + Zk Zk (3-14)

From equation (3-13)

T Zk T _ akT akZk = Xk_I Xk- 1 (3-15)

Substituting equation (3-15) into (3-14) gives

T Xk T _ akT ak + aT akXk = Xk_1 Xk-1 (3-16)

Substituting equation (3-16) into (3-8) gives

Pk+1 = [Xk_I Xk_1 - akT ak + aT ak]-I (3-17)

which can also be written as

Pk+l--[Pk I - akT ak + aT ak]-I (3-18)

Applying the samedevelopment to equation (3-7) gives

o T
Sk+l = Pk+1 [Xk-I Yk-i - akT Yk + ak Yk] (3-19)

and substituting equations (3-7) and (3-8) delayed a step into (3-19):

oT o T yk]Sk+l = Pk+I [p[1Sk _ ak Yk + ak (3-20)

Expanding equation (3-20) gives

-i oT o T
Sk+l = Pk+l P Sk- Pk+l ak Yk + Pk+l ak Yk (3-21)
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Noting that

_ p-I S k = 0Sk Pk+l k+l
(3-22)

and then adding equation (3-21) to (3-22) gives

_ p-I Sk + - Sk oT o a_ Yk (3-23)Sk+1 = Sk Pk+l k+l Pk+l Pk I - Pk+l ak Yk + Pk+l

Sk+1 = Sk- Pk+l[Pk1+l Sk + Pk I Sk + akT

o T
Yk- ak Yk ] (3-24)

Combining terms in (3-24) gives

O

= - (Pk+1Sk+l Sk Pk+l [ -! - Pk I) Sk- ak T Yk- ak Yk ] (3-25)

and using equation (3-18) yields the desired relation

= _ _ o T
Sk+1 Sk Pk+l [( aT ak ak T ak ) Sk + ak T Yk- ak Yk] (3-26)

k-3 STATISTICAL PROPERTIES OF LS ESTIMATES

Although the least squares technique, a numerical procedure, is not

based on any statistical formulation, the least squares estimator is often

characterized in statistical terms since the estimates can be treated as

random variables.

In the general least squares problem both process noise and measure-

ment noise occur in the data. The model has the form

Yt = Xt 0 + w (3-27)
P

where Yt is an N by 1 vector of the response variable for the N data

measurement points. Subscript t indicates this is the true value of the

variable without noise. X t is an N by np matrix of the state and input
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variables and O is the np by 1 vector of unknown parameters.

N by 1 vector of process noise. The measurements provide

Wp is the

Y = Yt + v (3-28)Y

X = X t + v x (3-29)

where Vy and vx are the measurement noise in Y and X. A typical

assumption made about the process and measurement noise is that they are

stationary, zero mean and independent random processes• The solution to

this least squares problem (from the last section) is

= [XT X] -I xTy (3-30)

Premultiplying equation (3-27) by [xTx]-Ix T and substituting equa-

tions (3-28), (3-29), and (3-30) it is found that

= + Vy Vx8 ]8 + IXT X] -I XT [Wp - (3-31)

Therefore, the expected value of the estimate error has the form

E{8 - 8} = -E{[X T X] -I XT Vx} 8 (3-32)

and the covariance matrix is

cov(8 - @) = E{[X T X) -I XT e eT X[X T X) -I}

+ E{[X T X) -I XT vx 8 8T vx X[X T X) -I} (3-33)

where

e = w + v
P Y
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From these equations it can be seen that the least squares estimator is

biased even if the measurement noise Vx, Vy, and process noise, Wp,
are zero meanand independent. Only with the additional assumption that X

is known without error (i.e., vx = 0), as might be the case in a curve

fitting problem, will the estimates be unbiased. Note the covariance

matrix is affected by all the measurementand process noise.

B. MAXIMUM LIKELIHOOD (ML)

The general parameter estimation problem for an airplane involves

solving the nonlinear estimation problem in the presence of both process

and measurement noise while modelling the airplane with the coupled, non-

linear equations of motion. One of the advanced techniques commonly used

for this problem because of its superior statistical properties is maximum

likelihood.

B-I ALCORITm_DEVELOPEm_

Assume the outcome of an experiment is N observations of the (noxl)

output vector Z i, i=l,2,...,N, which depends on the unknown parameter

vector 0. In general, the unknown parameters are the aerodynamic para-

meters, initial conditions, and measurement and process noise statistics.

Let f(ZI,Z2,...ZN/e) be the conditional probability density function

for the measurements given 8. The maximum likelihood estimate is the esti-

mate for which the outcome of the experiment Zi, i=1,2,...,N is most

likely to occur; that is, the probability density is maximized. The

problem is stated as

^

0 = max f(Z1,Z2,...,ZN/0) (3-34)

Using the property of joint probability density functions that

f(Z1,Z2,Z3/0) = f(Z3/Z2,Z1,0) f(Z2/Z1 ,0) f(Z1/0)
(3-35)

the density function can be written as
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f(Z i,i=l,N/0) = f(ZN/Z'N-I'0)f(ZN- I/Z'N_2,0)..f(Z2/Z 1,0) f(Zl/8) (3-36)

wher e

N
= N f(Zi/Z__1,e)

i=l

Z' = Zi_ Zi_ 2 Z1i-! I' '''''

(3-37)

(3-38)

If the Zi measurementsare treated as fixed, the density function becomes
a function of 8 only. This function is usually referred to as the likeli-

hood function; that is,

N
LI(0) = _ f(Zi/Z__l,0)

i=!
(3-39)

Consequently, the problem of finding a maximumlikelihood estimate becomes

the problem of finding the O which maximizes the likelihood function.
To define the likelihood function, the distribution of the measure-

ments given 0 must be defined. If the distribution of the measurementand
process noise is Gaussian, then the distribution of the measurementsgiven

0 will also be Gaussian and can be uniquely determined by computing the

meanand covariance. The meanis given as

E{Zi/Z[_I, e} = Yi/i-1
(3-40)

where _i/i-i is the best estimate of the measurement at time i given

measurements up to and including the previous point. By definition, the

covariance is given as
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cov{Zi/Z[_l, 8} = E{[Z i - Yi/i_l][Z i - Yi/i_l ]T}

" :'ijil (3-41)

where v i are the residuals. Now the problem is to compute the condi-

tional mean, _i/i-l, and covariance, Bi/i_ 1. For systems including

process noise, these values can be obtained by use of a Kalman filter. It

has been shown (ref. 8) that for high sampling rates (as is commonly used

to collect flight test data), the residuals _i tend toward a Gaussian

distribution. Therefore, the distributions for both _i and for

(Zi/Zi_I,B) are reasonably assumed to be Gaussian. In systems without

process noise, some simplifications are possible. In particular, the resi-

dual error may be written as

9i = Zi - Yi (3-42)

where Yi is the predicted value of the output vector at time i. Also,

the mean and covariance of the residuals may be assumed constant in time

and written as

E{_il = 0 (3-43)

E{vivj T} = R_i; (3-44)

where 6ij is the Kronecker delta. With these assumptions, the condi-

tional probability density function can be written as

-no/2

f(Zi/Z__l, 0) = (27) IRI -I/2 exp{-I/2 _i R-I _il (3-45)
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Hence the likelihood function using equation (3-45) is

N , N -I/2
El(e) = _ f(Zi/Zi=l ,8) = (2_) -Nn°/2 _ IRl

i=l i=l

N

exp{-i/2 I T -I
u.R ui}z

i=i

(3-46)

The negative log of the density function is more convenient to use and

since the function is monotonic, there is no change to the problem except

that maximizing the density function equates to minimizing the negative log

of the density function. Thus, the more commonly used negative log likeli-

hood function becomes

1 N _ ^ )T R-I N
L(8) = _ _ (Z i Yi (Zi - Yi ) + _ £nlRI

i=l

+ constant (3-47)

The unknown R can be estimated by minimization of the likelihood function

with respect to R. This produces

^ N

I I
R=Ni= 1

(3-48)

where

^ ^

u i = Z i - Yi(0) (3-49)

A

After substituting R into equation (3-47), the final form of the cost

function, as used in this study, is obtained. This cost function is given

as

N

i I
J(0) =

i=l

(Z i - _i)T _-1 (Z i - _i ) + constant ( 3-50 )
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The cost function given by (3-50) is the same as that used in an

output error technique except the measurement noise covariance matrix is

used as a weighting matrix. The problem is now in the form of an uncon-

strained optimization problem where the cost function given in equation

(3-50) must be minimized with respect to the unknown parameter vector, 8.

The unknown parameters determined by this method, for this study, are the

airplane stability and control derivatives and trim coefficients. In

addition, measurement noise statistics (weighting matrix) and parameter

standard errors are determined.

The standard errors determined are the Cramer-Rao lower bounds provid-

ing a measure of the maximum achievable accuracy for the parameters. These

are defined by the Cramer-Rao inequality

where

E{(0 - 0)(0 - _)T} >__-E{

-E{ 32L(0) } = M

_0_0 T

_2L(0) -I
}

_030 T
(3-51)

(3-52 )

and M is usually referred to as the Fisher Information matrix. It is

assumed in this study that the approximated Hessian matrix, H, from the

optimization procedure is a good approximation of the Fisher Information

matrix. The solution using a gradient optimization scheme generally has

the following form for the kth iteration

0k+l = 0k- _lk 1 gk (3-53)
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where

aj(e) , ^

gk = De .Ie0 and H _ M

6-2 STATISTICAL PROPERTIgS OFHL ESTIM&TES

The maximum likelihood method is popular, especially in flight test

data analysis, because of the excellent large sample properties of its

estimates. Although ML estimates do not possess optimal properties for

small samples, sampling experiments (ref. 27) have shown that the ML method

produces acceptable estimates in many situations. The ML estimate is

robust and sufficient when a sufficient statistic exists. The large sample

properties of an ML estimate are summarized here (derivation of these

properties is given by Cramer, ref. 28):

f A _

1. Asymptotically unbiased: lim E[Ot = 8

N÷=

2. Asymptotically efficient: E{(e-e)(8-e) T} > ....Ef82L(e)} -I
-- L_8_sT

3 Consistent: lim Pr{(• 8-8) J E} = l, with _ arbitrarily small

4. Asymptotically normal: e = N(e, M-I)

Asymptotic unbiasedness and consistency are very similar• However,

consistency implies that if an estimator is consistent for 8, it is also

consistent for any well behaved function of 8. Thus, consistency is more

significant than unbiasedness. Asymptotic efficiency is a statement of the

Cramer-Rao inequality; therefore, for large samples the Cramer-Rao lower

bounds are obtained.
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Chapter IV

OPTIliIZATION TECHNIQUES

The ML parameter estimates are obtained by solving an unconstrained,

nonlinear optimization problem; that is, find e* which minimizes the cost

function J(e). The necessary and sufficient conditions for this problem

are as follows:

i. j(e) is differentiable at 8*.

2. ?J(O*) = 0.

3. V2j(O *) > O.

The theory for solving unconstrained, nonlinear optimization problems is

often based on the assumption that the cost function J(O) is a quadratic

function of O. This approximation provides a more tractable theory and

allows basic theorems and properties of the optimization methods to be

readily established. Corresponding theorems for solving general nonlinear

functions of O are very difficult to prove. However, techniques developed

using the quadratic assumption are still very effective for nonlinear func-

tions. Many techniques for solving nonlinear minimization problems are

developed from practical experience.

Optimization techniques for unconstrained problems can be divided into

two categories: derivative methods and search methods. Derivative methods

may be further classified by the order of the derivatives used; search

techniques can be divided into direct search and random search. Some tech-

niques combine search and derivative methods; however, these hybrid methods

are not considered in this study.

The choice between optimization categories depends on the particular

problem. Search methods determine the optimization path solely from cost

function evaluations and, therefore, do not require as much algorithm

preparation as needed when using sensitivity equations. Search methods

also do not need the regularity and continuity conditions that derivative

methods need for the cost functions. In many unconstrained, nonlinear

programming problems, however, derivative methods will converge faster

(ref. 13), particularly for estimation problems involving dynamic systems.
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This was demonstrated for airplane systems both in this study and in

reference 29.

Various derivative techniques are available for a variety of nonlinear

programming problems; however, no one technique is best for all problems.

For example, the steepest descent method works better away from the minimum

whereas Newton's method works better near a minimum. A compromise between

these two techniques is the modified Newton-Raphsonmethod (MNR). MNR

belongs to a class of methods known as quasi-Newton or large step gradient
methods; these methods approximate the Hessian matrix or its inverse while

only using first derivative information.
The derivative information can be computed in a variety of ways. For

dynamic systems, integrating analytically-derived expressions (sensitivity
equations) for the derivatives is probably the most accurate as well as the

most time-consuming. One alternative is a numerical approximation scheme.
Finite difference (f.d.) methods are often used since they eliminate the

additional burden of deriving and incorporating sensitivity equations into
the algorithm. However, the f.d. methods require about the same level of

computational effort as integrating the sensitivity equations. Another

option is the proposed surface fitting method of the MNRESalgorithm

presented in section IV-B.

A. COMMONLY USED NETHODS

Two optimization schemes, representing the two main categories of

methods, are selected in this study primarily to provide a benchmark com-

parison with MNRES. They are commonly used in aircraft estimation and con-

trol problems and, therefore, are a good indicator of the relative merit of

MNRES. The two optimization methods are the flexible polyhedron search

(FPS) and the modified Newton-Raphson (MNR) method. More details are pro-

vided in references 13 and 30 for the FPS and in references 12 and 31 for

the MNR. A variation of the MNR will be used in which the derivative

information is computed by using finite differences (refs. 15 and 16).

Both the f.d. form and the sensitivity equation form of MNR are used in

this study.
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&'-I FLEXIBLE POLYHEDRON SEARCH

Since FPS has been found to be advantageous in some aircraft design

and control applications (ref.32), it may be a good candidate for reducing

computational demands in aircraft estimation problems. FPS avoids deriva-

tive calculations, where the quasi-Newton methods spend most of the compu-

tational time. The algorithm is independent of model form and, thus, is

readily applicable to any aerodynamic model.

Consider the unconstrained optimization problem of minimizing a scalar

function of np variables J(e). The FPS method uses a flexible polyhedron

surface with np + 1 vertices where each vertex is defined by a vector

e. The vertex eH, producing the highest value of J(0), is projected

through the centroid of the remaining vertices to define a new vertex.

This new vertex, and the remaining ones without eH, form a new polyhe-

dron. This operation is called a "reflection." Figure 2 shows two steps

in this process for the case with two unknown parameters. If the new

vertex produces a lower cost than eL (the vertex producing the smallest

J(e)), then an expansion takes place and a new vertex is located farther

out along the same projection. Similarly, if higher costs are found, a

contraction takes place. The minimum of the cost function is found by

repeatedly deleting the point having the highest value of J(e) and adding

new projected points that produce lower J(0). The flexible polyhedron is

able to adapt to the shape of J(8) by stretching down slopes, contracting

near minima, and changing direction in curved valleys.

&'-2 NODIFIEDNEb'TON--RAPHSONNETHOD

This report is primarily concerned with nonlinear aircraft estimation

problems. Since the MNR approach is commonly used for these problems, it

is included as a benchmark algorithm. Although it is computationally

burdensome to estimate derivatives, this information enables relatively

fast convergence of the optimization process. In fact, Newton's method

converges in one pass for cost functions which are quadratic. Hence,

Newton and quasi-Newton techniques used for estimation problems of dynamic

systems are expected to converge faster when the quadratic approximations
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for the cost functions are valid. Also, these methods provide both step

size and direction for each iteration. In some problems, however, addi-
tional control of step size is needed to ensure convergence. Since remov-

ing the requirement to solve sensitivity equations is desirable, the MNR

algorithm in this report will use a simple flnlte-difference method except

when otherwise noted. This is not too costly in terms of computational
time (refs. 15 and 16); however, care must be taken to obtain the deriva-

tives as accurately as possible.
The MNR and the MNRESalgorithms are the derivative methods of

interest to this study. As discussed in an earlier section the problem is

to minimize the weighted square of the errors between the computed model

outputs and the actual measured outputs. It is assumedthat only the mea-

sured outputs are corrupted by noise and that the noise is zero mean and

uncorrelated. This leads to a nonlinear estimation of unknownparameters.
Consider the system equations (repeating (2-3) and (2-4)) and the measure-

ment equations,

Xs s Xs0= f(Xs,U,8) X (0) = (2-3)

y = h(Xs,U,8 ) (2-4)

with

Zi -- Yi + vi i = 1,2,...,N (4-I)

E(vi) = 0 and E(vivT ) -- R6ij (4-2)

where Xs, U, and Y are the state, input and output vectors, respec-
tively. 6 is the unknown parameter vector. Zi and vi are the measure-
ment vector and measurementnoise vector, respectively, at t = t i. R is

a diagonal measurementnoise covariance matrix which is, under the above

assumptions, equal to the covariance matrix of the residuals. Without

process noise the ML cost function to be minimized is given by equation
(3-50), where the added constant and multiplicative factor of I/2 are

dropped without affecting the solution.
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N
J(8) = _ (Zi - Yi )T R-I(z i - Yi) (3-50)

i=!

The matrix R is given by equation (3-48)

where

N

 =gi=1

--zl -  i(eo)

(3-48)

(3-49 )

and 80 is the initial estimate of the unknown parameter vector. The MNR

method accomplishes the minimization by expanding Y, the computed output

vector, about 80, the initial unknown parameter vector. A Taylor Series

expansion of Y truncated to first order is

(4-3)

where A0 = 8 - 80 . Then by substituting into J, a quadratic approxima-

tion of J is obtained. The increment A8 is the unknown. Differentiating J

with respect to 8 and equating the derivative to zero to find a minimum

results in

N ^-l

a88J_ - N[ GiT _-I 9i + [ G i R Gi AO = 0 (4-4)
i=l i=l

where

Yk

Gi = { _--_. }i
3

(4-5)
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Yk and Bj are the kth and jth elements of the Y and e vectors, respec-
tively. Solving for AO,

N N
T _-I -I T _-I vi (4-6)A8 = _ Gi gI _ Gi

i=l i=I

This is often written as

_J
= _M-I eo

(4-7)

emphasizing the Fisher Information matrix, M, and gradient terms. For the

kth iteration the estimate 8k+ 1 is given as @k+1 = Ok + Aek+1" In

this study convergence is achieved when AJk/J k and Aek/8 k are less

than .001. The sensitivities, Gi, are determined separately from the

above steps. This may be done by integrating the sensitivity equations or

using a finite difference approximation or by using MNRES.

B. MNRES EI_OD

The MNRES method developed in this paper is essentially an MNR

optimization algorithm with an efficient method for estimating sensitivi-

ties. As in the ML/MNR algorithm previously described, the same equations

(eqs. (4-I) through (4-7) and (3-48) through (3-50)) apply for ML/MNRES;

however, the sensitivities, Gi, are computed by using slope information

from local surface approximations of Y(8). The approximations are made

near the series expansion point of equation (4-3). The sensitivities

obtained from the fitted surface are determined with less computational

effort than that obtained by either a finite-difference method or integrat-

ing analytically-determined sensitivity equations.

The MNRES algorithm is readily optimized for a particular application

in that the user can select both the type of surface and the method of

fitting the surface. Two types of surfaces which are very practical in
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aeronautical applications are nth-order polynomials and splines. Two effi-

cient methods of fitting the surface are by solving np simultaneous equa-

tions for np unknowns (algebraic solution) and by solving a redundant set

of equations for np unknowns (least squares solution). The tradeoffs in
choosing a surface and a surface fitting method involve the choice between

accuracy of the sensitivities and computational effort.

B--I ALGEBRAIC SOLUTION

The MNRES algorithm is best described by considering the computation-

ally least demanding approach of using a linear-surface approximation.

Expanding Y(B) in a first-degree polynomial in e for each point in time

and at np+l different points in the np parameter space gives

. ... ejY i (ej) = skO + Skl O_ + + Skp P (4-8)

where i indicates the ith point in time; k indicates the kth element of the

output vector Y(e); and j indicates one of the np+l sample points used

to fit equation (4-8) to Y(e). Note that

yJk(ej) = yk(e) (4-9)

at each of the np+l points. The sample points are chosen by allowing a

small perturbation of each parameter around the point where the sensitivi-

ties are desired. Alternatively, the perturbation size can be selected to

reflect the relative significance of each parameter to the model. This

allows for larger perturbations of the less sensitive parameters and

smaller perturbations for the very sensitive parameters, thus providing

higher quality derivative calculations. This alternative is discussed

further at the end of this section. The slopes Skl to Skn are the

desired sensitivities, (_yk/_ej) i. Sk0 is the value of yk(8)

evaluated at the series expansion point of equation (4-3). Note that

because this is a linear surface, the slopes are constant over the surface
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and need not be evaluated specifically at Sk0. If a higher degree poly-

nomial is fit to yk(8), the slopes will vary across the fitted surface

and, therefore, must be evaluated specifically at Sk0. Consider the
matrix representation of (4-8) for the first element of Y and for the

np+1 sample points at time "i'°:

Yli = X Sli (4-10)

Note that Yk is the kth element of the output vector, Y, and YJk is

the jth element of the surface fitting vector, Yk" Matrix X contains

np+l rows defining the np+1 sample points• Expanding equation (4-10)
to show the vector and matrix elements gives:

" 0
Yli

I
Yli

n

Yli

1

1

0 0
81 82 •..

i 1
8 1 e2 •..

n n

Ol 82

O0
n sl0e

81
n Slli

• • I

• • I

• • I

8 n
n SlnJ i

(4-11)

Since Sl0 is a known point, equation (4-11) can be simplified. The first

line in equation (4-11) can be eliminated by subtracting it from the other

np equations. Thus,

AYIi = AX Sli (4-12)
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1 O
Yll- Yll

2 0
Yli - Yli

n 0
Yli - Yli

" 1
AO 1

8021

AO_ """ AOl'n

AO_ ... A8 1n

AO_ ... AOnn

"Sl 1]

s121

S
1hi

(4-13)

where

0

Thus, at time "i" the sensitivities for the first element in Y are given by

Sli = [_x]-lAYli (4-14)

Note that the AX matrix is independent of time• This enables the sensitiv-

ities to be calculated rapidly during each iteration of the algorithm•

This is a key factor in reducing the computational effort of the algorithm;

in effect, the integration of the nsn p sensitivity equations has been

replaced by a set of no matrix multiplications.

Figure 3 shows, geometrically, two iterations for the case where 0 is

of dimension two and a linear surface is used to fit a scalar y. The

expansion at time "i" is

y - -AO 1

i

(4-15)
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During the first iteration, this expansion requires that y(O) be evaluated

at np+l=3 points: y0, yl, y2. Computationally, the first itera-
tion is the most costly phase of the MNRESalgorithm. Each evaluation of Y

requires that the equations of motion be integrated. The linear surface

(indicated by the solid-line triangle in fig. 3) is fit and the slopes

(sensitivities) are thereby determined. The algorithm proceeds, as in the

ordinary MNRmethod, using equation (4-7) to obtain

ek+l = _k + &ek+l (4-16)

The estimated sensitivity values, Ski , are used to define the elements of
matrix G in equation (4-6). The new Y is evaluated (by integration of

equations of motion) at ek+I to get y3(8). At this point the MNRES

algorithm has reduced the sensitivity problem to solving a set of simulta-
neous equations. This is done by eliminating the eJ in X which produced

the greatest contribution to the cost in J(e) and replacing that informa-

tion with the newest estimate of 8. The new surface (indicated by the
dotted triangle) in figure 3 assumes y0 was the high cost point and so

eliminated it from the fitted surface. The slopes of the new surface pro-

vide the sensitivities for the MNRESalgorithm to proceed. In this scheme,

a check should be made to ensure the new YJ(ek+I) produces a smaller
value of J(e). In somecases step-size control or complete restarting may

be needed. Note that initialization of the algorithm requires that np+1

integrations be performed for the np+1 trajectories, YJ. After this
initializing pass only one integration of the system equations is needed to

evaluate the cost, J(e); outputs, Y(e); and to update parameter estimates
for each iteration.

As mentioned previously, in practice it is beneficial to choose the

perturbation size in a different fashion from that used in a simple finite-
difference method. Simply using a ! percent perturbation on each element

of 8 to obtain the corresponding perturbation in each element of Y(e) is
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not optimum for derivative calculations. Experience has shown that it is

beneficial to use perturbation sizes which reflect the importance of the

parameter to the model. By computing the sensitivities of Oj2Mjj for
each parameter and then letting the perturbation sizes be scaled inversely

proportional to the normalized ratios of sensitivities, more accurate deri-
vative information can be obtained. Of course, this applies only when an
initialization or "restart" is needed. The fundamental issue is that the

less sensitive a parameter, the larger the perturbation necessary to obtain

an appropriate size response in the outputs. This approach could also be

applied to an MNRmethod. Theoretically, the samederivative should be

obtained for any sufficiently small perturbation in e; however, because of

both the sometimes widely varying sensitivities of the parameters and the

numerical-precision limitations, it is beneficial to vary the perturbation

size according to the aforementioned rule. The sensitivity defined as

ej2Mjj was introduced in reference 33 and used again in reference 34
as a meansof quantifying the significance of a parameter to the model.

B-2 LEAST S_U_S SOLUTION

The least-squares approach to fitting the surface Y(8) offers another

advantage if a recursive least-squares method is used. The recursive

method provides a memory device reducing the storage requirements from

np+1 sets of output time histories to just two time histories. One of

the two corresponds to the new response predicted by the most recent esti-

mate of e, and the other corresponds to the outgoing e that produced the

highest cost. The penalty for this advantage is the need to integrate

equations of motion twice per iteration; this result still requires sub-

stantially less computational effort than that required with the usual MNR

method.

When using the recursive least-squares approach, only two changes are

made to the MNRES algorithm just described. The first change is in the

calculation of the AX matrix, and the second change is in the sensitivity

calculation. The development of this formulation will begin with equa-

tion (4-8) in condensed form (shown below). Everything discussed up to

this equation in the previous development applies here.
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Y_i = XJSki (4-17)

Simplifying the notation by dropping the i subscript and writing the matrix

form of the equation (which removes the j superscript) gives

Yk = X Sk. (4-18)

The least squares solution for the sensitivity vector is

Sk = [xTx]-I XTYk (4-19)

Now, dropping the k subscript and letting the following apply to the kth

element of the output vector Y, a recursive relation can be defined for the

r+l iteration

Pr+l = [XT Xr ]-I (4-20)

and the updating equation defined as

Pr+l = [Pr I + aTar r - a°Tr a°]-Ir (4-21)

where the row vector ar is the new set of 8 to be included and a°r is

the outgoing set of 8 which produced the high cost in J. The recursive

relation for S, which has already been derived in chapter Ill-A, is now

oT o T T oT O)Sr] (4-22)= - - a - a m rSr+l Sr Pr+l[ar Yr ar Yr + far r r
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o and Yr are the outgoing and incoming elements of Yk, respec-where Yr
tively, at the rth iteration. With the new sensitivities determined, the

algorithm proceeds as before.

W-3 PROPERTIES OF MI_,ES

Properties of MNRES are discussed in comparison with the commonly

used MNR algorithm. This approach allows comparison of convergence charac-

teristics and computational advantages and disadvantages against a well-

known benchmark.

Convergence of NR or MNR algorithms, both with and without finite-

difference derivatives, has been well documented (ref. 13). Convergence of

MNRES can be shown, at least heuristically, by considering several

details. First, the MNRES method is still fundamentally an NR method or,

for this study, an MNR method. The only critical difference is that the

derivatives are approximate which makes MNRES closer to MNR with numeri-

cally determined derivatives. Second, note that fitting a first-degree,

np-term polynomial to np+l data points is equivalent to a simple

finite-difference method. In effect, as AsJ (the distance between points

on the fitted surface for MNRES) becomes small enough, the sensitivities

become identical to that given by a simple finite-difference method,

regardless of the actual functional representation of Y(8). The MNRES

algorithm simply relaxes the accuracy of the sensitivities in order to

reduce substantially the integration requirements; the degree of relaxation

varies during the optimization process but can be controlled by limiting

step size.

The relaxation of sensitivity accuracy generally appears to be a very

beneficial trade-off for Newton-Raphson algorithms. Before considering

this relaxation of sensitivity accuracy, note that during an MNRES optimi-

zation there are two times that the MNRES scheme computes sensitivities

which are very close to that computed by a finite-difference scheme. These

times are, first, during the initialization or first pass of the algorithm

and, second, toward the end of the optimization process. During
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initialization of the algorithm, np different e are chosen (a perturba-

tion on each element of e is sufficient) giving np different response
time histories, y(e). The surface given by Y(e) is fitted. The initial
eJ can be chosen such that

I(e 3- e°)/e° I << l (4-23)

for each J. For the algebraic solution form of MNRES this is completely

equivalent to a simple finite-difference scheme and for the least squares

form it is a very close approximation. In this study, the same beJ was

used in the MNR with finite-difference derivatives as that used in the

initialization of MNRES. This was done for comparison purposes; in prac-

tice, the choice of perturbation size for e may be very different, as dis-

cussed later. Towards the end of optimization the MNRES scheme again

becomes equivalent to a simple finite-difference scheme since the be become

very small. This forces the surface that is fit to Y(e) to become very

small; thus, the slope information is computed for a surface fit to a very

small area.

The relaxation of sensitivity accuracy occurs between the two stages

discussed above, i.e., after initialization and before convergence. During

this part of the optimization large be may occur; this is characteristic of

NR, MNR, or MNRES algorithms. For MNRES, unlike NR or MNR, these large

steps cause the surface fit area to expand which means the slopes or sensi-

tivities no longer approximate the slope of the Y(e) surface at a "point,"

i.e., no longer approximate the limit requirements of a derivative but

rather average the slope over a larger area. This is a critical time

period for the MNRES optimization.

Three factors aid in preventing divergence during the critical time

period. The first factor is that as the optimization process advances,

MNRES continually eliminates values of e which are far from e*, the optimal

solution. This, in effect, contracts the expanding surface which is

fitting Y(8) balancing the expansion process. As the updated estimates of

e get close to e* the contraction process will dominate and slope (sensi-
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tivity) information will approach that given by a finite-difference

scheme. The second factor is that Newton's algorithm and variations like

NR, MNR,and MNRESadvance more quickly as the quadratic approximation of

the cost function improves; moreover, the Newtonalgorithm converges in one

step for a quadratic cost function. Since the quadratic approximation of

the cost function will generally improve the closer e gets to 8*, and since
initial estimates of 8* are often given by a least-squares procedure or

knowledgeable user, e0 tends to be "close" to 8*. Thus, for aircraft
estimation problems, MNRESwill generally start in a region conducive for

convergence. The third factor is that step-size control logic can always

be incorporated. Carried to the extreme, MNREScould always be forced to

approximate the derivatives the same as a finite-difference method. Of

course, convergence would be very slow becauseof the very small steps. In

practice, one would let the algorithm take steps determined by the NR logic
(as done in this study); and then if a convergence problem develops, step-

size control would be incorporated.
The computational advantage of MNRESis tied to two primary factors.

The first factor is the number of unknownparameters, np. Both MNRand

MNRESmust integrate ns+nsnp differential equations on the first
iteration; after that, however, MNRESintegrates only ns state equations

each pass and MNR continues to integrate ns state plus nsnp sensitiv-

ity equations. It appears that as np gets larger so does the advantage
for MNRES. A limiting factor in MNRESis in equation (4-14) where AX must

be inverted. This npXnp matrix becomes more difficult to invert as

np gets larger and, unfortunately, is made up of very small numbers as
the optimization process converges. Also, note that the information gained

each pass is not equivalent between the two methods. MNRESperforms less
computation each pass and, consequently, has less information to update the

estimates. However, when sufficient passes are performed to make the work

done by MNRESequal to MNR,MNRESwill have already performed np+l para-
meter updates. This allows MNRESto step more quickly towards the final

solution. MNRESwill achieve convergence faster than MNR as the cost

function becomesmore quadratic in nature.
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The second factor and primary reason for the success of MNREShas to

do with the degree to which the cost function can be approximated by a

quadratic function. The quadratic approximation is inherent to the Newton

type of optimization scheme and, therefore, both MNRand MNRESimprove
performance as the quality of this approximation improves. However,

convergence occurs more quickly with MNRES. This makes sense in light of

the way convergence takes place.

Convergence takes place through an iterative process where estimates
of the unknownsare updated each iteration. The updates are estimated by

equation (5-9) which is the product of the information matrix and the
gradient of the cost function. It is well known that convergence can be

speeded up by holding the information matrix constant (see e.g. ref. 14)
for a limited number of iterations. This eliminates the need to integrate

the sensitivity equations for a limited number of iterations; note that
integrating the sensitivity equations accounts for the majority of the com-

putational effort. There are two choices, each representing one extreme,
for optimization: (I) integrate the sensitivity equations to obtain the
most accurate derivative information for each iteration (this is the most

costly in terms of computational effort); or (2) hold the information
matrix constant for a limited number of iterations (this is the least

costly in terms of computational effort and the least desirable since there

is no way to know what number of iterations to hold the information matrix
constant without causing divergence). A compromise between these extremes

is preferred.
MNRESprovides this compromise in a very efficient manner. A trade-

off between computational effort and sensitivity accuracy is made automa-

tically by MNRES. By using the surface fitting technique only the state

equations need be integrated each pass and this information is incorporated
in the solution with relatively little computation. The sensitivities are

only approximated in this process, however, their accuracy is controlled

sufficiently to allow convergence.

The primary disadvantage of using MNREScomes from the computer memory

required, np+l sets of output variable time histories must be retained
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in this procedure. The recursive least-squares method discussed earlier

reduces this problem to 2 sets of time histories; however, the computa-

tional effort increases from ns to 2ns equations to be integrated each

pass. The user's computer system would dictate which approach is more

appropriate.

- 43 -



Chapter V

CONFIDENCE INTERVAL ESTIMATION

Confidence interval estimation (CIE) is an integral part of the

parameter estimation problem. Point estimates of parameters without any

qualifications to indicate their accuracy are of little value. An interval

estimate which incorporates both variance and confidence level information

provides a complete statement of the estimate quality. Although the

Cramer-Rao lower bound is commonly used to qualify the ML parameter esti-

mates, it is well known that in aircraft applications these bounds do not

accurately reflect the true parameter variance. They are usually too opti-

mistic (ref. 18). The difference between the lower bound and the actual

parameter variance can be due to incorrect assumptions about measurement

and process noise, bias errors in the estimates, or modelling error. How-

ever, the nonlinearity of the estimation problem appears to contribute

significantly. In this chapter a method is discussed for determining

confidence intervals by analysis of the confidence region contours using a

search scheme. In addition, a measure of nonlinearity is developed to

further characterize the problem.

A. CONFIDENCE REGION DESCRIPTION

Confidence regions are described by a surface in parameter space

representing a certain confidence level. The surface is defined by a sta-

tistic which reflects the distribution of error in e. From the distribu-

tion of the statistic, a statement can be made about the probability of the

statistic being in a certain interval, I. Assuming the relationship

between the statistic and the parameters can be described, a further state-

ment can be made that the parameters are contained in region, Rc, with

the same probability. Region Rc reflects the variation in 0 as the sta-

tistic varies in interval I. The above procedure is the general process by

which any confidence interval or region is defined. This definition will

obviously vary according to the definition of the statistic. A useful
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statistic for composite hypothesis tests is created using the ratio of
likelihood functions.

Let ZI, Z2, ..., ZN be N independent random variables with
probability density functions

f(Zi, 8) , i = 1,2,...,N (5-i)

The testing hypothesis is formulated as Ho:Se_ , where _ is a subset of

parameter space _. Defining the likelihood functions as

N

L(_) = T_ f(Zi, 8) , 8efl
i=l

(5-2)

N

L(_) = T] f(Z i, O) , Oeo_
i=l

(5-3)

and denoting L(fl) and L(m) as the maxima of the likelihood functions, the

likelihood ratio is defined as

L(_)
---- (5-4)

L(_)

This ratio forms a statistic which has a value between 0 and 1 since the

numerator is limited by the H0 hypothesis. The value of _ reflects the

degree to which the H0 hypothesis is accepted and, therefore, can be used

as a statistic to test the hypothesis. If a probability density function

can be defined for I and the relationship between % and 8 can be solved,

then a confidence region, Rc, can be defined. With the confidence region

determined the confidence intervals (extrema of parameters within the

confidence region) can be defined.
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The confidence region, Rc, provides an exact description of the
parameter error bounds. However, for the general nonlinear estimation

problem, an approximation may be involved in defining the confidence level

associated with Rc. To resolve this problem, Beale (ref. 21) recommended
the statistic for the linear estimation problem be used along wlth a cor-
rection factor to account for moderate nonlinearity in the model. Since

this approach for solving the nonlinear problem is based upon a correction

to the linear problem, the development will continue with the linear case
first.

A-I CIE FOR THE LINEAR. ESTIMATION PROBLEM

The estimation problem is defined to be linear if the model equations

are linear in the unknown parameters; the state, input and response vari-

ables may or may not appear linearly in the model equaions. The form of

the linear estimation model (single output) is given by equation (3-5),

repeated here using e as the vector of unknown parameters (the number of

measurements is taken to be N for this discussion)

Y = xe + _ (3-5)

In this linear regression problem, if Y is N(xe, Ig 2) and the testing

hypotheses are considered as

H0: S t = 8 (5-5)

HI: e t ¢ e (5-6)

where the subscript t indicates the true value.

likelihood ratio has the form

It can be shown that the

I = exp{- _ [j(e) - J(e)]}
2g 2

(5-7)
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where

J(8) = (Y - xe)T(Y - Xe) (5-8)

and

J(6) = (Y - xe)T(Y - xe) (5-9)

The statistic _ can be equivalently replaced by

= J(8) - j(e) (5-i0)

or in practice by the statistic

N-n j(e)-J(e)

F = _R (5-11)
n j(e)
p

where F is the l-ap point of the F(np, N-np) distribution and _p is

the confidence level. This is possible when the model is correct and J(8)-
A

J(e) is independent of J(8) (ref. 26). In addition, for the linear estima-

tion problem, it is known that (ref. 23):

I. 8 is an unbiased estimate of e.

2. Cramer-Rao bound is reached.

Once the data is determined, J(e) is a function of the np-
A

dimensional parameter space. In parameter space the function j(e)-j(e) can

be represented by the contours of a surface. The contours are defined by

J(8)=constant. Again considering the general linear problem (single

output)

Y = X e + E (3-5)
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the cost, J(8), can be expanded as

J(e) = (Y - xe)T(Y - XS) (5-12)

= yTy _ 28TxTy + 8TxTxe (5-13)

Differentiating and setting to zero, the normal equations are obtained

0 = -xTy + xTxe (5-14)

and the solution for e is

-- [xTx] -I xTy (5-15)

The ellipsoidal surface with center at e is expressed in terms of 8 as

J(8) - J(e) = eTxTxe - 28TxTy + 28TxTy - eTxTx_ (5-16)

Substituting for xTy from the normal equations gives

J(8) - J(e) = (8 - _)T xTx (8 - _) (5-17)

which defines an ellipsoidal surface in the np-dimensional parameter

space. For the linear estimation problem, the contours form an ellipsoidal

surface with a single global minimum. The slopes and orientation of the

contour depends on the model and data; in addition, they give an indication

of parameter correlation and conditioning of the problem. If the contours

are greatly elongated (indicating many values of 8 give the same cost), an

ill-conditioned problem may exist. Inadequate data or possibly overpara-

meterization may be the problem.
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With the relationship in equation (5-11), a confidence ellipsoid in

np-dimensional parameter space with center _ is defined such that the

probability is 100(l-ap)% that the true parameter point 8 is contained

within the ellipsoid. This can be expressed by substituting equa-
tion (5-17) into (5-11)

(8 - _)TxTx( 8 - _) < n s2F
-- p a (np, N-

P np)
(5-18)

where

2

s = J(0)/(N- rip) (5-19)

The confidence limits are determined by realizing the true value of 8

lies inside the ellipsoid if and only if it lies between all points of

parallel tangent planes to the ellipsoid. Therefore, the true value lies

between the two tangent planes orthogonal to vector b (b_0) if and only if
(see ref. 35)

IbT(0- 0)I -< (bTH_ lb) 1/2 (5-20)

where

H = {npS2F (n N }H
P p, - np) (5-21)

and H is the Hessian matrix of J.

that for all b Therefore, the probability is 1-ap

IbT0 - bT01 < n s2_ P F (np, N- (DTH-Ib) I/2
P np) (5-22)

This states that the probability is 1-_p that for all Oi, i=l,2,...np

(5-23)
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or, expressed in terms of confidence limits, the probability is 1-_p that

simultaneously for all 8i

6 < e < 6 + (5-24)

where

k = n F (n N- n ) (5-25)
p a p' p

P

_Oi^ = s _ (5-26)

H-I = {dij} (5-27)

&-2 CIE FOR THE NONLINEAR ESTIMATION PROBLEM

The nonlinear estimation problem occurs when the unknown parameters

appear nonlinearly in the model equations. In the nonlinear problem,

several results will change from that found in the linear case (ref. 26):

I. Assuming s is normally distributed will not imply 8 is normally

distributed.

2. s2 = J(8)/(N - np) is no longer an unbiased estimate of 02 .

3. There is no covariance matrix in general.

4. F tests and lack of fit tests are not valid in general.

There are some results which remain true, however. These are:

I. The sum of squares, J(8), still represents the square of the dis-

tance from (ZI,Z2,Z3,...,Z N) to a point in the estimation

space.

2. Minimization of J(e) still corresponds to finding a point in esti-

mation space closest to (ZI,Z2,...,ZN).

3. Confidence regions can still be defined; however, the confidence

level will be an approximation.

In reference 20 Beale recommends using a correction factor, N_, as a

means to extend the confidence level definition of % to moderately nonlin-

ear problems. For this case, equation (5-11) becomes
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N(n +2) _)J(8) - J(8) = nps2Fa (np, N- np) i + (N-_p.)n N
P P P

(5-28)

and for the multi-output case,

2J(B) - J(8) = n s
P Nno(np+2 ) )

(n Nn -n ) I + N_
F p, o p (Nno-np)n pP

(5-29)

where s is now given as

2 J(_)
S --

(Nno-n p)

(5-30)

N_ represents a measure of nonlinearity (normalized curvature) of the

solution locus near J(_). The method of computing N_ for the multivari-

able aircraft estimation problem is discussed in the next section.

Determining the confidence contours, defined by equation (5-29), can-

not be accomplished analytically as done in the linear case since the con-

tours are not necessarily ellipsoidal. The contours may be very irregular

and possibly with several local and global minima. Figure 4 shows the

construction of a confidence interval for a one-dimensional problem. The

solid and dashed curves in the figure represent nonlinear and linear cases,

respectively. In parameter space, the dashed curve would form a symmetric

ellipsoidal surface, whereas the solid curve would vary from this shape

depending on the degree of nonlinearity. The confidence interval for the

nonlinear case is indicated by Omi n and 0max; for the linear case, the

confidence interval is given by the dashed vertical lines, equidistance

from O. The search algorithm used in this study for finding the contour

boundaries was presented in reference 24. This method tests a series of

randomly selected points in parameter space to determine the position of

the confidence region. Through many iterations, the limits of the region
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are determined by retaining and updating the points on the boundary which

maximize or minimize the unknown parameters. This turns out to be

computatlonally very demanding even for problems with relatively few

parameters.

B. NONLINEARITY MEASURE FOR AIRCRAFT APPLICATIONS

The following is a generalization and adaptation of Beale's develop-

ment (ref. 21) of an intrinsic nonlinearity measure, N_, to the multlvar-

iable problem of airplane parameter estimation. This is an empirical

measure of nonlinearity which, in this study, has demonstrated some utility

in CIE problems.

If P(O) represents the estimation space (or solution locus) in sample
A

space, then P(O) is the point on the solution locus closest to the

measurement Z. O is the point in parameter space which minimizes the cost

function. If T(O) is defined as a point on a tangent plane at P(_) and W

different values are chosen for the vector O near O (i.e. Ow, w=l,...,W),

then a crude measure of nonlinearity can be written as

W

Q_ = _ IP(O w) - T(Ow) 12
w=!

(5-31)

A graphical representation of these quantities for a two dimensional sample

space is shown in figure 5. Q_ is the sum of squares of the distances

from the points P(O w) to the associated points T(O w) on the tangent

plane at P(_). Clearly, Q_ depends on the number of points, P(Sw) , and

on their distances from P(_). Beale suggests that these distances are

proportional to the square of the distance of P(O w) to P(_). If D is

defined as the sum of squares of the squared distances then

w 14D: I IP(ew)
w=l

(5-32)

and, thus, Q_ is normalized as
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N_ = npS2Q_/D (5-33)

The values of this measure may still depend on the configuration or orien-

tation of the points P(Sw) relative to P(_), but it should not depend

significantly on the number of points, P(ew), chosen or on their
distances from P(_) (if not too large).

To obtain the "intrinsic nonlinearity", N_, that Beale recommends,

N_ must be further restricted. N_ is the value of N_ when the para-
meters are chosen such that T(O) is always at the foot of a perpendicular

from P(e) on to a tangent plane at P(_). In other words, N_ is the

minimum value of N_ if the model and the experimental design are fixed
(see fig. 5).

The practical computation of the intrinsic nonlinearity measure is

described in the following development. The sensitivities determined dur-

ing the estimation process are needed in advance of the following calcula-

tions. According to Beale, an empirical estimate of N_ is

N_ = nps2Q_/D (5-34)

where np is the number of unknown parameters, s2 is the sum of squares
of residuals. For the multiple output case, s2 is given by

equation (5-30).

The denominator, D, in equation (5-34) can be formulated as

W N
D = [ { [ (Yi(ew) - Yi(8)) T _-I I_i(Sw ) _ _i(_))}2

w=l i=l

(5-35)

where i is the time variable up to N data points.

By letting T(8) be expressed as a first order Taylor expansion while

using the sensitivity information from the estimation, Q_ can be computed

as
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W N
Q_= _

w=l i=l
(_±(ew) - _i(_) - Gi_w)T_-1(_i(ew) - _i(_) - Gi_wl (5-36)

where

8Yk

Gi = { _-_7 }i
3

(5-37)

A

_w = 8 - 8 (5-38)w

Rewriting Q_ and letting

6_i = fi(ew) - qi(_) (5-39)

then

W N

[ [_Y i - Gi_w)TR-I(_Yi- GlOw) (5-40)
Q_ = w=l i=l

This is now in the form of a standard least squares problem. The problem

is to find the value of _ which minimizes Q_; that is, minimize the

distance (see fig. 5) given as

d = IP(Sw) - T(8)I 2 (5-42)

Therefore, the value of $ which minimizes Q$ is $ given by W sets of

least squares minimizations:

N N

T^-I -1 T _-1 _yifor w=l,2,...,W: _w = _ GiR Gi _ Gi (5-43)
i=l i=l

Thus
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W N

w=l i=l
(5-44)

For application to the parameter error bound problem for aircraft, the

following assumptions were made:

i Selecting W = 2nD is sufficient to adequately sample the
local surface of J(8) near e.

2. Selecting A8 as

IA8il -- gel (5-45)

provides a reasonable distance from 8 to sample the surface

J(8). The goal is to detect the nonlinearity from the

tangent plane without going too far into the nonlinear range

where the curvature (based on sensitivity information at _)

no longer applies.

These assumptions represent a proposal for a unified approach in

computing N_. Using this approach, results of various studies can be

compared and the differences between confidence limits based on Cramer-Rao

bounds and random search can be examined. N_ and the error bounds deter-

mined by random search can also indicate the effect of experimental design,

especially input form and model error, on identifiability.
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Chapter VI

APPLICATION TO SIHULATED AND REAL DATA

The examples considered in this chapter demonstrate the ML/MNRES

algorithm for estimating parameters and the search technique for estimating

confidence intervals of the parameters. These methods are compared against

commonly used techniques to provide a benchmark for comparison. The

commonly used techniques are the ML/MNR for parameter estimation and the

Cramer-Rao bounds for confidence interval determination. ML/MNR is used

with both analytically- and numerically-determined derivatives. The

Cramer-Rao bounds, taken from the information matrix, are adjusted to the

95 percent confidence level.

Only dynamical systems or airplane estimation problems are used in

this study rather than classical test problems such as Rosenbrock's func-

tion (ref. 13). Using classical optimization problems, which usually

require very little computational time to evaluate the cost function, could

lead to different conclusions about the algorithms. For aircraft estima-

tion problems, the bulk of computer time is spent performing integrations

of the state and sensitivity equations. To prevent any bias in the results

due to variations in programming efficiency or integration techniques, only

estimation algorithms using the same integration method are compared.

The performance of the methods used in this report will be evaluated

with the following criteria:

I. Accuracy of estimates

2. CPU time to termination

Termination is obtained when parameter and cost function fractional changes

are computed to be within a specified precision. Both cost function

change, 4J/J, and parameter change, 48/8, are required to be satisfied sim-

ultaneously to prevent premature termination on a plateau where 4J<<I and

48 is relatively large or on a steep slope where 48<<I and 4J is relatively

large.
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Besides estimate accuracy and CPUtime to termination, an additional

observation provided is the number of "equivalent evaluations." One unit

of this measure is the amount of calculation required to integrate the

system equations and to evaluate time histories of the output variables.

Each method described in this report requires a different number of equiva-

lent evaluations to make one update in the parameter estimates. This

measure provides an indication of how efficiently information gained from

system integrations is utilized. System integrations are the primary
computational burden for any estimation method applied to dynamical

systems.

The examples in this study use both simulated data (examples I-III)

and flight data (examples IV-VI). Except for the first two examples, the

parameters estimated are the nondimensional aircraft stability and control

derivatives conforming to standard NASAnotation. For examples I and II a
simple linear system is integrated with an Euler integration method. Exam-

ples III-VI involve the airplane problem and use the general equations of
motion given by equations (2-5) to (2-15). These equations are integrated

with a fourth-order Runge-Kutta integration scheme. For comparison pur-

poses, the sameintegration step size and the samecomputer (CYBER175) are

used in each example.

For the airplane examples, the ML/MNRESalgorithm is applied through

program MAX. MAXis a very modular FORTRAN5 code with dynamic memory.

The modular format allows aerodynamic models or entire system models to be

changed easily. The dynamic memorycapability adjusts core memoryautoma-

tically to the dimensions required. A block diagram of the general comput-
ing schemefor ML/MNRESis given in figure 6. A block diagram for program

MAX is given in figure 7 followed by table 1 defining the elements in

figure 7.

A. S_'IIYLATED DATA STUDIES

Simulated data offers three advantages for testing a new estimation

algorithm. The first and most important advantage is that the true values
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of the parameters are known; the second advantage is that the problem can

be well posed and defined without modelling error; and third, the degree of

complexity can be selected. In this study, the first two of three simula-

tion examples use a single-input/double-output, linear second-order system,

= + BU, Xs(0) = 0 (6-I)Xs AXs

Y = X (6-2)s

These examples are used to demonstrate the relative speeds and accuracy of

the sample estimation algorithms and to initially indicate the preferred

methods. The third simulation, uses a nonlinear aircraft model and simu-
lates varying levels of measurementnoise found in real flight data. This

example demonstrates the accuracy of program MAX.

A--IEXAMPLEI

Example I demonstrates and compares the FPS, MNR,and MNRESoptimiza-

tion schemes in a simple ML estimation problem. The MNRmethod uses a
finite difference method to compute derivatives. This satisfies one

requirement of this study, which is to eliminate the need to derive analy-

tical gradients. MNRgenerally performs with about the samespeed using

either numerically-determined derivatives or integrated sensitivity equa-
tions (ref. 15). MNRESuses the same finite difference method as MNRto

determine sensitivities during initialization; however, MNRESuses the
recursive least squares form of the algorithm during optimization. Because

of the small memory requirements to store time histories in this example,

only one integration per pass is performed. The purpose of this example is

to compare the relative performance of each method on a problem involving a

simple dynamic system.

Example I has six unknown parameters. The six unknown parameters in

equation (6-I) are the four elements of the 2x2 system matrix, A, and two

elements of the control input matrix, B. The input form was chosen as
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I sin t , 0 < t < 2_
U

0 , t > 2_

and data points were generated every .25 seconds. Process and measurement

noise were excluded for this example.

Table II shows the true values, initial values, and final estimated

values of the six unknown parameters. Figure 8 shows the input and

response time histories. All three algorithms accurately converged to the

true parameter values using only the first 5 seconds of data. The MNR

method was 30 times faster than FPS and MNRES was twice as fast as MNR or

60 times faster than FPS. The number of equivalent evaluations had similar

ratios, i.e. 715:28:12.

Table II shows clearly that optimization problems having reasonable

starting values and involving time consuming cost function evaluations

should not be solved with direct search schemes, such as FPS. This result

is supported by an independent study using aircraft estimation problems in

reference 29. Reasonable initial values tend to provide a more quadratic-

like cost function for which Newton's method is most effective. If reason-

able initial values are not available, the FPS may be more attractive. In

light of the results of Example I, further study concentrated only on the

gradient methods.

k-2 EXAMPLE II

Example II is provided to demonstrate the robustness of MNRES compared

with the commonly used MNR. The more common form of MNR with analytically-

derived sensitivity equations is used to prevent any deterioration of the

algorithm due to approximating the sensitivities. The system from

example I is analyzed again except measurement noise is added and a pulse

input is used to excite the system. Two cases are considered, each with

different levels of measurement noise. The noise is zero mean and Gaussian

with standard errors of 0.0001 and 0.001 for cases I and 2, respectively.

Figure 9 shows time histories of the input and response variables for the

two cases. Table III shows the estimation results.
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In case 1 both methods produce equally degraded results; however,

MNRESstill converged to the sameprecision level more quickly. In case 2,

with a severe noise level and limiting the information to 3 seconds of

data, MNRESwas unable to converge. The results showed that it was oscil-
lating about a solution, unable to find a new parameter vector which would

produce a lower cost. The MNRESused on this example had no special step-
size control logic. The solution that was obtained, however, was as

accurate as that obtained by MNR,which did converge.

Meeting convergence requirements does not guarantee accurate results;

the error in the estimates ranged from 5 percent error to 130 percent
error. MNRhad both the most accurate and the least accurate estimate.

The importance (sensitivity) of a parameter to the model wlll significantly

affect the accuracy of the estimate, particularly under these adverse con-
ditions. Based on these examples, it appears that MNRESis computationally

more efficient than MNRwhile providing the same level of accuracy.

A--3 KT_MIPLE IIl

In this example, the accuracy and robustness of ML/MNRES are demon-

strated by application to a nonlinear aircraft simulation with known

measurement noise levels. In addition, program MAX is validated. For this

example and all other aircraft examples, the computationally least

demanding form of MNRES is used to compute sensitivities. This form uses

the linear surface fit with equation (4-14) instead of the recursive least

squares form with equation (4-22). The simulation involves a nonlinear

lateral model of a general aviation aircraft.

Three cases are considered: case i without any measurement noise;

case 2 with a representative noise level typical of flight data for the

aircraft; and, case 3 with twice the noise level of case 2. The standard

errors of the simulated measurement noise are shown in table IV. In each

case, the noise is zero mean and Gaussian. The simulated data was created

by a fourth-order Runge-Kutta integration with a step size of .05 sec.

Table V shows the terms used in the nonlinear aerodynamic model to create

the simulation and the parameter estimates obtained through analysis of the
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simulated data. Time histories are provided for the three cases in

figure I0. The control inputs were the same for all three cases and are

shown in figure II.

Program MAXwas applied using two convergence criteria: AJ/J _ I.E-03

and Ae/e < I.E-03. As expected, the estimates of the less easily identi-

fied nonlinear terms, such as Cnar and C£_ , are more quickly

corrupted as the noise levels increase; however, t_e estimates are still

very reasonable and the time histories are accurately predicted. Table V

shows that the MNRES method can be used effectively in estimating

parameters for nonlinear aircraft systems.

B. REAL FLIG'H'rDATA SYI_)IES

In this section three examples are considered. In each example the

model structure and initial parameter estimates were determined using the

MSR program of reference II. For the first two examples, the parameter

estimation problem is solved by using two different ML programs. The first

is program MAX which uses the ML/MNRES algorithm as described in

example IIl. The second is program MAXLIK which uses an ML/MNR algorithm.

This MNR algorithm integrates analytically derived sensitivity equations to

obtain sensitivities. MAXLIK is a proven code for aircraft-parameter

estimation documented in reference 31. In the last example, program MAX is

used to compute parameter estimates and Cramer-Rao bounds. These bounds

are adjusted to the 95 percent confidence level and compared with that

obtained using the search method.

For comparison purposes, both program MAX and MAXLIK use a fourth-

order Runge-Kutta integration method with the same integration step size

(.05 sec in example IV and .04 sec in examples V and VI). A convergence

criterion is set at AJ/J = .001 for both codes. Program MAX normally uses

an additional criterion restricting the parameter change AS/e; however, it

is removed in these examples to ensure that both programs converge for the

same criterion. Both programs use the same bias and scale-factor correc-

tions to the flight data for each example. These corrections were deter-

mined by using a compatibility program developed in reference 34. The same

initial parameter values are used by both MAX and MAXLIK.
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B-! EXAMPLE IV

Example IV uses flight data from a general aviation aircraft operating

at an angle of attack of 8 ° . The estimation problem involves the nonlinear

lateral model. Table VI presents a comparison between parameter estimates

and Cramer-Rao bounds from both MAX and MAXLIK. Initial values and

sensitivities computed as 82jMjj are also given. Again, there is

reasonable agreement between the two approaches. Cramer-Rao bound esti-

mates tend to be a little higher for program MAX. This is probably due to

their sensitivity to the derivative information.

Repeating the calculations with program MAX, by allowing the sensitiv-

ity ratios to be incorporated into the initializing derivative calcula-

tions, provided a small improvement in the overall speed of the algorithm.

This occurred because only one restart was required during the optimization

process. More improvement would be realized in problems where restarting

occurs several times. Time histories of the measured flight data and pre-

dicted response using the estimated model are shown in figure 12. Execu-

tion times for example IV are 793 seconds for program MAX and 1036 seconds

for program MAXLIK.

B-2EKANPLE V

This example uses flight data from an advanced twin engine fighter

operating at an angle of attack of 6 ° . A nonlinear longitudinal model is

used. Table VII presents a comparison of parameter estimates and their CR

bounds for both MAXLIK and MAX (case I). Also shown for each program is

the time to reach convergence expressed in seconds. Program MAX converged

very close to the same values as program MAXLIK except processing was done

in one fourth the time. This example reflects the effectiveness of MNRES

under fortunate conditions (that is, where the cost is well approximated by

a quadratic and a moderate number of unknowns (ii parameters) are deter-

mined). The quadratic nature of the cost is indicated by a very small

value of N_. The value of N_ was .003 for this example. The mean

value estimates of MAX are very good and the CR bounds are good but tend to

indicate a slightly larger error bound than MAXLIK.
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Although the Fisher information matrix is updated each iteration by

both programs, program MAX delays updating the weighting matrix, R-l,

until convergence is achieved. The example is solved once more by program

MAXand the weighting matrix is updated twice. The results are shown in
table VII, MAX(case 2). The meanvalues are essentially the samesince

they are independent of the weighting matrix used, except possibly through

some numerical errors. The standard errors are slightly closer to the

MAXLIKresults and further updating brings only very small improvements.
These estimates were obtained by MAXin about 40 percent of the MAXLIK

processing time.

B-3 ETJk_PLEVI

The sixth example uses flight data from an advanced single engine

fighter operating at an angle of attack of 4 °. This example involves a

nonlinear lateral model. In this example, 95 percent confidence intervals

are estimated using two approaches. One approach is based on the CR bound

using program MAX and the other on a random search technique. The 95

percent confidence intervals determined by each approach are presented in

table VIII. In this example N_ was found to be .02; however, it was set

to zero for the interval computations. Even with this correction, only a

very small increase in interval size would be obtained. The confidence

intervals determined by the search method are significantly larger than the

corresponding CR estimates and indicate an asymmetric confidence interval.

C. DISCUSSION OF RESULTS

The general experience with ML/MNRES and the examples chosen for this

study indicate that ML/MNRES will perform better than ML/MNR for estimation

problems involving dynamic systems such as aircraft systems. In general,

MNRES should perform well in any problems for which the Newton-Raphson

family of methods is appropriate (that is, where the cost can be reasonably

approximated by a quadratic). The results of this study also indicate that

a search technique is needed to accurately assess the parameter error

bounds in the nonlinear estimation problem; for the linear problem or prob-

lems with very little nonlinearity, the Cramer-Rao bounds should agree with

values determined by the search technique.
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C-1 PARAMETER ESTIMATION

Two important goals in this study were to develop an estimation algo-

rithm which, first, eliminated the requirement to reformulate the algorithm

for each new model and, second, provided a more efficient method to deal

with the computationally more burdensome nonlinear problems. The first

goal has been surpassed through the ML/MNRES algorithm coded in program

MAX in two respects: (I) it does not require the derivation of sensitivity

equations to complete the formulation of the algorithm and the modular form

of MAX allows easy application to any system; and (2) it provides many

computationally efficient options to the user as to how the sensitivities

will be approximated (accuracy and order of derivatives, also options for

memory requirements) and these options are readily incorporated because of

the modular format. The second goal has been demonstrated in the examples

but further discussion will clarify the conditions under which this goal

has been met.

The first two examples use a simulated linear system with and without

noise. This system is readily identifiable except when severe noise and

nonoptimal inputs are included. The initial values were relatively close

to the final solution and so allowed a good quadratic approximation of the

cost function thus providing a condition conducive to convergence. The two

Newton-Raphson methods, MNR and MNRES, were substantially faster than the

search method as expected under these conditions. MNRES, however, capital-

ized more efficiently than MNR on the information obtained from each inte-

gration of the system equations. Each integration of the system equations

provides information which is immediately incorporated into the numerical

process when using MNRES. When using MNR, np+l system integrations

(equivalent evaluations) are required before each updating operation, MNRES

requires only one; for example I, the ratio of equivalent evaluations was

28:12. MNRES made much more efficient use of the system integrations. The

results indicated both MNR and MNRES to be very fast relative to the search

technique, thus search methods were eliminated from any further study. The

MNRES approach was a little more than twice as fast as MNR.
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The third example demonstrated that the ML/MNRESalgorithm was a

viable method for a nonlinear aircraft estimation problem with both realis-

tic and heavy noise levels. This example provides confidence in the

ML/MNRESapproach. However, since it is a simulated example, it cannot be

accepted as conclusive. Simulations always provide optimal conditions for

estimation algorithms since problems such as modelling error, bias errors,

unknownnoise spectra and general data incompatibility are not present.

Unlike simulated data, real flight data often present problems (as

just mentioned) for any estimation method; these problems may slow the
convergence process or even stop it. The last three examples consider real

flight data; these examples were specially selected to reflect differing

levels of difficulty for the estimation algorithms. Examples IV and VI

comparedwith example V demonstrate a representative range in the degree of

difficulty (measured by computational effort) for the algorithms and,

unsurprisingly, the degree of nonlinearity (measured by N_) is also

largely varying. N_ differed by an order of magnitude between example V
and Vl (Vl being more nonlinear). ML/MNRESwas again faster than the

benchmark program, ML/MNR. For the more nonlinear examples, convergence
time for ML/MNRESwas 70 to 80 percent of the time required for ML/MNR;in

the less difficult problem, ML/MNRESrequired only 40 percent of the bench-

mark time. These examples give some credence to the superiority of

ML/MNRES.However, they also indicate a large variability in the superior-

ity.

The variability appears to be that as the degree of nonlinearity

increases, the methods approach the samespeed of convergence. The compu-
tational advantage of ML/MNREStends to be reduced as the nonlinearity
increases. A moderate number of unknownsare used in each case (examples V

and Vl) so the advantage due to the difference in ns+nsnp integra-
tions per pass and ns integrations per pass is probably a small factor
(see IV-B). The main factor, however, is the quality of the quadratic

approximation of the cost function which, of course, is directly related to

the degree of nonlinearity of the cost. Both methods are slowed as the

nonlinearity increases or the quadratic approximation becomes poorer, but
the MNRESmethod is much more dependent on the quality of the quadratic
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approximation since in effect it is an approximation of the MNRmethod. As

the nonlinearity increases, MNRESlooses its advantage over MNR.

Figure 13 offers a graphical view of the performance of MNRand MNRES

in exampleV, where the quadratic approximation is fairly good. The graphs

show the value of the convergence criterion versus CPUtime. Program

MAXLIKusing MNRfollows a typical convergence pattern; the small oscilla-
tions before convergence are due to the updating of the weighting matrix,

R, each pass after the criterion falls below .01 in value. This approach
with MNRhas been found to be beneficial in these problems. Program MAX,

on the other hand, updates the information matrix each pass but holds the

weighting matrix constant until the first convergence is achieved. At this

point the final parameter estimates are obtained, however, the Cramer-Rao
bounds (determined from the information matrix) are not converged. The

information matrix, M, will not converge until the weighting matrix, R-1,

is updated sufficiently. This is understandable since the parameter esti-

mates are asymptotically independent of the weighting matrix whereas the
Cramer-Raobounds depend on the information matrix which in turn depends on

the value of R. Therefore, two more cycles are made to convergence ensur-
ing that the weighting matrix has stabilized. Note that the first step in
each method takes the sameamount of time and achieves the same reduction

in cost; this is expected since initializing MNRESrequires the same
computations as the first pass in MNR.

A key feature of ML/MNRESis in the method of updating the information

matrix. Although both ML/MNRESand ML/MNRupdate the information matrix

each pass, they each do it quite differently. One well known way to

improve the speed of techniques which involve the Hessian matrix, or

approximations to it, is to hold the information matrix, M, constant for

one or more iterations. This reduces the amount of integration required

per pass to be the same as in MNRESsince no sensitivity equations are

integrated. How many iterations M can be held constant is unknown and
unknowable in advance. So there are two alternatives generally known and

used. One is to integrate the sensitivity equations each pass requiring
maximumcomputational effort but giving maximumaccuracy to the optimiza-

tion process. The other alternative is to skip integrating the sensitivity
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equations for a necessarily infrequent number of iterations to hopefully
increase convergence speed. In methods like the ones considered in this

study where large steps in the optimization process may occur, there is a

lot of danger in not updating the information matrix. ML/MNRESfinds an
effective compromisebetween the alternatives discussed above.

The compromise is achieved by updating the information matrix each

pass. However, only the information obtained from integrating the equa-

tions of motion once each pass is incorporated. Thus, a compromise is

achieved where updating is occurring at minimal computational cost.

Because of the limited information to update the information matrix, a sub-

optimal but computationally more efficient path is followed to conver-

gence. The result is that ML/MNRESrequires many more passes to reach

convergence, but each pass requires much less computational effort than
ML/MNR. The net result is much faster convergence depending on the degree

of nonlinearity of the cost and the quality of the quadratic approximation

used by the method.

0-2 CONFIDENCE I_TI'ERVAL ESTIMATION

Confidence intervals obtained in example V were found to be very close

to the CR bounds adjusted to the 95 percent confidence level. In addition,

the value of N_ was very small and convergence occurred relatively

quickly. This indicates that the cost function was very well approximated

by a quadratic function. In analogy to figure 4, the construction of the

confidence intervals for example V would place the dashed and solid lines

virtually on top of each other at the error level selected. The quality of

the quadratic approximation is confirmed by the very fast convergence of

MNRES relative to MNR.

Confidence intervals obtained in the sixth example were found to be 5

to I0 times the size of the CR bound adjusted to the 95 percent confidence

level (Table VIII). This is in agreement with references 18 and 23 on the

values generally found in analyzing actual flight data. Reference 23 used

the search technique and reference 18 estimated the confidence intervals by

computing an ensemble average. This also indicates that this cost function
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is muchmore nonlinear than that for the first example, and it is not well

approximated by a quadratic function at the error level considered. This
is confirmed by the relative speed of convergence between MNRESand MNR.

MNRES,with two updates of R, required 85 percent of the time MNRrequired.

It appears from the examples considered that a primary factor in
determining the confidence interval size for airplane stability and control

derivatives is the degree of nonlinearity of the cost function. Other

factors, such as bias errors, modelling errors, noise level and noise spec-

tra, may contribute directly to confidence interval size or may manifest

themselves as part of the nonlinearity of the cost function. In this

study, the other factors were not tested to determine their contribution.

At present, the random search technique is the only method to deter-
mine confidence bounds accurately. Clearly, the CR bounds, which are tied

to the quadratic approximation inherent in the information matrix, will
always be different from the parameter variance. This difference will

mainly depend on the quality of the quadratic approximation. The only
disadvantage of the search technique is its relatively poor convergence

rate combined with the large computational effort required in this type of

problem. Although Beale's measure of nonlinearity, N¢, was designed to
correct the confidence level in the CIE problem, there seems to be more

utility in considering N¢ (or some similar measure) as a way to discern
if the lengthy computations of the random search are needed. If very

little nonlinearity exists, the user can be reasonably confident that the

Cramer-Raobounds provide accurate error bound information.
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Chapter VII

SUMMARY AND CONCLUDING REMARKS

A. SUGARY

An algorithm for maximum likelihood (ML) estimation is developed with

an efficient method for approximating the sensitivities. The algorithm is

applicable to most parameter estimation problems and is particularly suited

for nonlinear, multivarlable, dynamic systems. The ML algorithm relies on

a new optimization method closely related to a modified Newton-Raphson

(MNR) technique; the new method is referred to as a modified Newton-Raphson

with estimated sensitivities (MNRES).

MNRES determines sensitivities by using slope information from local

surface approximations of each output variable in parameter space. The

fitted surface allows sensitivity information to be updated at each itera-

tion with a significant reduction in computational effort. MNRES deter-

mines the sensitivities with less computational effort than using either a

finlte-difference method or integrating the analytically-determined sensi-

tivity equations. The choice of the type of surface (for example, nth-

order polynomial or spline, etc.) and the method of fitting the surface

(for example, least squares or simply solving simultaneous equations) is

made by the user to suit the particular need. MNRES eliminates the need to

derive sensitivity equations for each new model, thus eliminating algorithm

reformulation with each new model and providing flexibility to use model

equations in any format that is convenient.

Two surface-fitting methods are discussed and demonstrated, while

other possibilities are indicated. Comparisons are made between MNRES and

other commonly used optimization methods such as a search method called the

flexible polyhedron search (FPS) and a gradient method called the modified

Newton-Raphson method. Several sample problems are solved to compare the

techniques. Simple linear systems are used at first, and then nonlinear

aircraft estimation problems are solved by using both real and simulated

data. MNRES is found to be equally accurate and substantially faster than
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the commonly used techniques. The reduction in computational effort

provided by MNRESis dependent on several factors: the choice of surface-
fitting method; the numberof unknownparameters; data quality; accuracy of

the sensitivity calculations; and, particularly, the degree of nonlinearity
of the cost function.

A search technique for determining the confidence limits of ML para-
meter estimates is applied to nonlinear estimation problems for airplanes.

The confidence intervals obtained by the search are comparedwith Cramer-

Rao (CR) bounds at the same confidence level. It is observed that the

degree of nonlinearity of the cost function is an important factor in the

relationship between CR bounds and the error bounds determined by the

search technique. The CR bounds were found to be close to the bounds

determined by the search when the degree of nonlinearity was small. The CR
boundswere 5 to 10 times too conservative (too small) when the nonlinear-

ity was significant. Beale's measure of nonlinearity is developed in this

study for airplane identification problems; it is used to empirically
correct confidence levels for the parameter confidence limits. The primary

utility of the measure, however, was found to be in predicting the degree

of agreement between Cramer-Raobounds and search estimates.

B. CONCLUDING REMARKS

The primary contribution in this study is an efficient maximum likeli-

hood estimation algorithm. However, inherent in this study is a suggested

methodology for solving the nonlinear airplane identification problem. The

use of a modified stepwise regression in conjunction with several testing

criteria is suggested to determine the airplane aerodynamic model struc-

ture. This very efficient scheme was developed in a prior study to handle

the widely varying model structure in nonlinear flight regimes. A maximum

likelihood scheme (ML/MNRES), developed in this study, is then recommended

to obtain optimal parameter estimates. This method is more efficient than

other commonly used techniques in airplane estimation problems and provides

some practical computing options. Finally, a random search procedure is
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required to determine parameter confidence limits for the nonlinear case.

This is used in conjunction with Beale's measure of nonlinearity (adapted

to the airplane problem) to makean empirical correction to the confidence
level. It is also used to determine if the extensive calculations of the

randomsearch are needed to estimate confidence limits.

The new optimization algorithm, MNRES,has three advantages over other

commonly used techniques. The first advantage is that the algorithm

removes the need to derive sensitivity equations for each new model; this
eliminates the computational burden of integrating the sensitivity equa-

tions during each iteration of the algorithm. This also provides much

flexibility, allowing the model equations to be in any format that is

convenient - such as splines, polynomials, or a nonanalytic form. Also the

quickly varying model structure sometimes found in the nonlinear regimes is

readily handled. The second advantage is that the algorithm is effective
for a variety of surface fitting methods chosen to fit the output vector

surface in parameter space (needed for sensitivity estimation); this allows

the user to choose a surface-fittlng method best suited to the problem. An

approach is discussed which reduces storage requirements with little addi-

tional computation. The third advantage of the algorithm is that it

reduces the computational effort in comparison with the commonly used
modified Newton-Raphson(MNR) method. For small problems (fewer than 15

parameters to be estimated), the reduction can be substantial. For larger

nonlinear problems, the reduction may be more modest; however, improvements

may still be significant if data quality, signal compatibility, and sensi-
tivity calculations are good. Even though the application of interest for

this study was an aircraft operating in nonlinear flight regimes, the

approach should be effective for many other nonlinear, dynamic systems.

Based on this study, the ML/MNRESalgorithm generally performs better and

offers more versatility than the commonlyused ML/MNRalgorithm.

The suggested methodology recommendsa random search technique to

obtain parameter confidence limits for the maximumlikelihood estimates.

Since the nonlinear problem does not lend itself to an explicit analytical

solution, the search uses a random sampling algorithm to find the confi-

dence limits; unfortunately, this method is computationally demanding,
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particularly for cases with a large number of unknowns. Unless sufficient

repeated measurementsare available, it is the only method to accurately
determine confidence region boundaries in the nonlinear case. Beale's

measure of nonlinearity is used to provide an empirical correction to the

confidence level used by the search. Although this was Beale's intended

use, it has little affect on the confidence limits for airplane applica-
tions. However, it was shown that the degree of nonlinearity and the

degree to which the Cramer-Raobounds and the randomsearch estimates agree
is closely related. Therefore, it is recommendedto use this or some

similar measure to determine the necessity of the search calculations.

If further studies are madewith MNRES,it should prove beneficial to
use more efficient inversion schemesthan the standard Gaussian elimination

used in this study. This may improve the algorithm for larger numbers of

unknowns. Also, further consideration should be given to defining the
relationship confidence intervals and the nonlinearity of the cost function

have with other factors such as bias errors, modelling errors, input form,
and noise spectra. In addition, more investigation into measures of non-

linearity and their best computing schemeswould be advantageous. Nonlin-
earity measures may be useful for reflecting the quality of the experiment

since parameter error bounds will vary with model error and optimality of

the input form. Finally, significant computational savings would be

achieved if the confidence limits for the nonlinear estimation problem

could be determined using gradient techniques rather than the computation-

ally demandingsearch schemeused in this study.
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Table I. Primary subroutines for program MAX and flowchart block

definitions

Subroutine Description

AERO

COST

DIFFEQ

EST

HICOST

INT

MASTER

OUTPUT

RK4

SENE ST 1

SENEST2

Computes aerodynamic forces and moments with

selected aerodynamic model

Computes residuals, fit error, RTland cost

Computes state derivatives from selected equations

of motion

Computes updated parameter estimates

Determines if new estimates reduce cost and

updates storage of outgoing and incoming

parameters and response time histories

Main integration subroutine, computes initial

conditions and input arrays

Primary subroutine represented by flowchart;

handles initializations, I/O operations and memory

management

Computes selected output time histories for cost

function and plot routines

Fourth-order Runge-Kutta integration scheme

Computes sensitivities using a finite difference

method

computes sensitivities using a selected surface-

fitting method

Decision Blocks Definitions

FAlL

PASSES

PASS #I

RESTARTS

UPDATES

test if new estimates reduce cost

test for maximum number of allowed passes

test for first pass

test for maximum number of restarts

test for maximum number of weighting matrix

updates
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Table II. Comparison of estimates and computation time for FPS, MNR,and MNRESusing
a linear system without measurementnoise (Example I)

Unknownparameters,
O

e
1

e 2

e 3

e 4

e 5

e 6

Cost .e+eeeeeeeeeoee++eo.

Equivalent evaluation ...

_t_ sec ............... ..

True

Value of
e

e

-I .5

1.0

-- .5

.2

.I

Initial

Value of

8

0.01

-i .6

i.I

-- .6

.25

.15

Final estimated values

using method -

FPS

-0.12 E-03

-I .5

1.0

--.5

.2

.i

0.14 E-08

715

2948

MNR

0.89 E-07

-I .5

1.0

--.5

.2

.I

0.61 E-10

28

106

MNRES

0.73 E-06

-1.5

1.0

--,5

.2

.I

0.II E-07

12

47

- 93 -



Table III. Comparison of estimates and computation time for MNR,and MNRES
using a linear system with two noise levels (Example II)

(a) Case I

Unknown parameters,
e

e
1

8
2

83

84

True

Value of

8

.

-I .5

1.0

-- ,5

Initial

Value of

8

0.01

-I .6

I.i

-- .6

Final estimated values

using method -

MNR

-0.0675

-1.471

1.009

- .449

MNRES

-0.0684

-1.471

1.010

- .448

%5

86

COSt .............. ......

Equivalent evaluation ...

At, sec 0................

.2

.I

.25

.15

.202

.098

0. 105 E-06

42

77.54

.202

.098

0.105 E-06

12

24.08

Unknown parameters,
8

8

1

B

2

8

3

(bl

True

Value of

e

.

-I .5

1.0

Case 2

Initial

Value of

8

0.01

-i .6

I.I

Final estimated values

using method -

MNR

- .705

-1.228

1.757

MNRES 1

- .410

-1.549

.799

8

4

8

5

%

6

Cost ....................

Equivalent evaluation ...

_t, sec .................

- .5

.2

.I

- .6

.25

.15

.159

.210

.087

0. 104 E-04

70

134.44

- .238

.251

.037

0.122 E-04

27

56.05

I
MNRES did not converge.
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Table IV. Standard errors of simulated measurementnoise

Output Variable

8, rad .......
p, rad/sec ...
r, rad/sec ...
_, rad .......
a , g units ..Y

Standard deviations for -

Case I

0
0
0
0
0

Case 2

0.010
0.010
0.010
0.005
0.005

Case 3

0.02
0.02
0.02
0.01
0.01
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Table V. Simulated-data analysis of a nonlinear aircraft system using
ML/MNRES

Unknown
parameter,

e

Cy ,0

CYB

Cy
P

Cy
r

Cy_ a

CY6 r

C£ ,0

C_ 8

P

C_
r

C_ a

_r

C;

Tp
C

n,O
C

n 8

C
n

P
C

n
r

C
n_ r

C
n

_r

Parameter estimates for -

Simulation Values

0.13

-.411

-.146

.63

-.053

.075

0

-.123

-.397

.257

-.182

.077

2.63

0

0

-.15

-.083

-.0431

1.7

Case I

0.1299

-.4136

-.1524

.6686

-.0618

.0794

.0001

-.1223

-.3988

.2573

-.1815

.0067

2.6254

-.00005

.000003

-.1488

-.0828

-.0425

1.7343

Case 2

0.1298

-.4261

-.1874

.6070

-.0733

.0775

-.0003

-.1228

-.4026

.2409

-.1778

.0059

2.519

-.00008

.0001

-.1524

-.0861

-.0434

1.4419

Case 3

0.1295

-.4401

-.2379

.5412

-.0872

.0751

-.0005

-.1240

-.4094

.2239

-.1755

.00497

2.4359

-.0001

.0005

-.1558

-.0911

-.0445

1.0118
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Table VI. Real-data analysis of a nonlinear aircraft system
using programs MAXand MAXLIK

Unknown
parameter,

e

Cy,o

CYB

Cy
P

Cy
r

CY8 a

CY r

CYa8

C£,0

C_8

C£
P

C£
r

C£8a

C£6r

C£aS

Cn,o

C
n8

C
n

P
C

n
r

C
n8 a

C
n_ r

ICyB 3
I
C

n83

Initial Value

of 8

.036

- .479

- .186

.522

- .08

.083

.45

O.

- .079

- .47

.187

- .19

.01

- .26

O.

.04

- .056

- .15

0.

- .053

- .39

.08

Program MAX

0.0061

- .4603

-.1378

.6677

- .0504

.0814

.4300

.0002

- .0872

- .5320

.1700

-.2035

.00055

-.2707

- .00063

.0323

-.1043

-.1462

- .0044

- .0550

- .39

.08

0.0006

.0075

.0485

.0289

.0166

.0043

.0592

.00005

.0015

.0102

.0043

.0036

.00024

.0116

.00003

.00045

.0026

.002

.OOl

.0003

Program MAXL IK

0.0213 .0005

-.4608 .0067

i-.0604 .0439

•6209 .0256

-.0375 .0150

.0763 .0037

.4512 .0504

-.0001 .00005

-.08 .0013

-.4823 .0085

•1543 .0045

-.1852 .0031

-.0012 .00072

-.2105 .0091

-.002 .00002

•0329 .0004

-.0916 .0022

-.1534 .0017

-.0037 .0009

-.0532 .0003

-.39

.08

2

8j Mjj

.7533 E+O3

•3756 E+O5

.9373 E+O3

.1915 E-04

.8129 E+O3

.9922 E+O3

.9399 E+O3

.9618 E+O3

.1493 E+O6

.4529 E+O7

.6838 E+O4

.7969 E+O5

.1340 E+04

•6327 E+O4

.1909 E+O4

.1515 E+O6

.1400 E+O6

.5039 E+O5

.1780 E+O4

.9048 E+O7

iparameter held fixed
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Table Vll. Comparison of parameter estimates, their
standard errors and time to reach convergence
for programs MAXand MAXLIK

MAXLIK MAX

CASE1 CASE2
CPUT= 342*

Cxo 1.17017

Cx a .9464

!Cx_e .2789

Cz o -.83946

Cz a -5.311

Czq -18.7

Cz6e -.618

Cm o -.001251

Cm a -.5129

Cmq -16.95

Cm_e -1.3409

CPUT = 105 CPUT = 157

.208E-03 .17078 .249E-03 .17070 .212E-03

.616E-02 .9245 .703E-02 .92511 .555E-02

.404E-02 .2754 .II6E-01 .2755 .876E-02

.896E-03 -.84335 .I06E-02 -.84252 .I03E-02

.230E-01 -5.197 .223E-01 -5.194 .215E-01

•162+01 -20.3 .189E+01 -20.5 .177E+01

.264E-01 -.566 .350E-01 -.570 .324E-01

.828E-04 -.001610 .942E-04 -.001555 .937E-04

.I02E-02 -.5186 .I15E-02 -.5183 .IIOE-02

.157E+00 -19.06 .144E+00 -18.83 .144E+00

.576E-02 -1.4150 .447E-02 -1.4075 .461E-02

* Central processing unit time in sec.
** Cramer-Rao bound.
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Table VIII. Parameter estimates and their confidence limits using
Cramer-Raoboards and a randomsearch technique

Para-
meter

CYB

CY6r

!C_

C_p

C£r

C_a

CnB

Cnp

Cnr

Cn_r

95%Confidence Intervals

Cramer-Rao
bound

-.77 ± .27

.18 ± .27

-.228 ± .021

-.88 ± .13

-4.20 ± .98

-.152 ± .020

.0826 ± .0040

-.0860

i .019

± .19

± .0064

RandomSearch

.92 -.89

.87 -.89

.042 -.i0

.30 - .99

2. i -5.5

.036 -.II

.011 -.013

.050 -.10

.49 -.76

.020 -.021
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