
NASA/TM-1998-206913

Evaluation of Heating Methods for

Thermal Structural Testing of Large
Structures

Kamran Daryabeigi, Joseph G. Sikora and Darrell L. Caldwell, Jr.

Langley Research Center, Hampton, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 1998



Available from the following:

NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 487-4650



Abstract

An experimental study was conducted to

evaluate different heating methods for thermal structural testing of large

scale structures at temperatures up to 350 °F as part of the High Speed

Research program. The heating techniques evaluated included:

radiative�convective, forced convective, and conductive. The

radiative�convective heaters included finned strip heaters, and clear and

frosted quartz lamps. The forced convective heating was accomplished

by closed loop circulation of heated air. The conductive heater consisted

of heating blankets. The tests were conducted on an 1/8 inch thick

stainless steel plate in a custom-built oven. The criteria used for

comparing the different heating methods included test specimen

temperature uniformity, heater response time, and consumed power.

The parameters investigated included air circulation in the oven,

reflectance of oven walls, and the orientation of the test specimen and

heaters (vertical and horizontal). It was found that reflectance of oven

walls was not an important parameter. Air circulation was necessary to

obtain uniform temperatures only for the vertically oriented specimen.

Heating blankets provided unacceptably high temperature non-

uniformities. Quartz lamps with internal air circulation had the lowest

power consumption levels. Using frosted quartz lamps with closed

loop circulation of cool air, and closed loop circulation of heated air

provided the fastest response time.

Introduction

As part of the High Speed Research (HSR) program, components and subcomponents of the proposed

High Speed Civil Transport (HSCT) wing and fuselage will be subjected to structural testing at

temperatures up to 350°F. The wing and fuselage to be tested have wetted surface areas of 1600 and 1100

squared feet, respectively. It is desirable to design the most efficient method of uniformly heating these

large HSCT components. The main considerations are the initial cost of the heating technique and set up,

the required power to reach and maintain steady state conditions at the desired temperature, the uniformity of

temperatures over the specimen to avoid inducing thermal stresses, and the number of control zones required

to achieve uniform temperatures.

The overall objective of this investigation was to evaluate different heating methods in a small scale

test set up, with the results of the study to be used in determining the heating method for large scale

components. Evaluation criteria included heater response time, power consumption, and test article

temperature uniformity. Heater cost and number of control zones were not investigated in this study,

because they are closely related to the overall size and shape of test specimen. The test article chosen for

this study was a stainless steel plate mounted on one of the walls of a custom-built oven. Three general

types of heating techniques were used: radiative/convective, forced convective, and conductive. The

radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The heaters

radiated directly upon the test article, and convection heat transfer took place either through natural

convection in the oven or through forced convection by either internal circulation created by fans, or by
closed loop circulation of cool air. The forced convective heating was accomplished by closed loop

circulation of heated air, with the air being heated externally by strip heaters. The conductive heater

consisted of installing heating blankets on the test specimen. The parameters investigated included air

circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters.



Background

Thermal-structural testing has been the subject of various reports since the 1950's, but the majority of

work has concentrated on elevated temperature applications. Berman compared the behavior of various

resistance heaters with infrared lamps for elevated temperature tests in 1954 (ref. 1). The resistance heaters

included corrugated nickel-chromium strip heating elements, Kanthal rod heating elements, coiled nickel-

chromium heating elements on refractory coves, and silicon carbide heaters. The infrared heaters included

clear and translucent (frosted) quartz lamps. He recommended using clear quartz lamps due to their higher

energy density, low thermal inertia, and relatively high efficiency. Duberg provided a brief survey of

techniques used at NACA for experimental research on aircraft structures at elevated temperatures (ref. 2).

An oven with internal electrical heating elements was used for temperatures up to 900°F; carbon rods, quartz

lamps, and supersonic nozzles were used for higher temperatures. He preferred the quartz lamps for higher

temperature applications because of their faster response time and longer life time compared to carbon rods.

Moran and Schiff compared quartz lamps and arc-powered devices for high-temperature structural test

methods (ref. 3). Fields and Vano described a quartz lamp heating facility for simulating aerodynamic

heating loads on the X-15 stabilizer in the temperature range of-50 to 750°F (ref. 4).

Harpur described fatigue testing of large scale components of the Concorde supersonic transport

between temperatures of -4 to 248o1: (ref. 5). Initially, quartz lamps were used for the heating cycle to
simulate climb and cruise conditions, while ducted cool air was used for the cooling cycle to simulate

descent and recovery conditions. Finally, it was decided to unify the heating and cooling technique by using
ducted air for both purposes. Air was heated to 320°F using gas heaters and circulated in a closed-circuit

wind tunnel around the specimen. In the cooling phase, the circulating air was cooled by injection of liquid

nitrogen. An advantage of such a system was the simplicity of the control system. The system only

required control of the air inlet temperature and mass flow rate, while the earlier quartz lamp heater had

required about a dozen control zones for regulating the heat input in different areas.

Test Setup

For this experimental investigation, an oven was built from one inch thick ceramic boards made from

refractory fibers, mounted on a carbon steel unistrut frame. The interior dimensions of the oven were 32

inches wide, 48 inches high, and 20 inches deep. The test specimen used in this study was a stainless steel

plate 32 inches wide, 48 inches high, and 1/8 inch thick, mounted on one of the oven walls. The front side
of the plate, the side lacing the interior of the oven, was painted using a high emittance flat black paint to

increase its radiation absorption characteristics. There were a total of 29 type K (nickel-chromium/nickel-

aluminum) thermocouples, 0.010" in diameter, spot welded to the backside of the plate (the side attached to

the oven wall). One thermocouple was used for feedback to the temperature controller. A schematic
showing th-e lay0iat o-f the thermocoupies is shown in Figure i. There were i5 thermocouples spaced 3

inches apart mounted along the plate's vertical axis of symmetry, and 7 thermocouples spaced 4 inches apart

mounted along the plate's horizontal axis of symmetry. There were 7 additional thermocouples mounted at

various locations on the plate as shown in Figure 1. A picture of the oven with the stainless steel test

specimen mounted on the back wall is shown in Figure 2. The finned strip heaters and quartz lamps were

mounted on the wall opposite the stainless steel plate, approximately 20 inches from the test specimen. In

each case, nine heaters were installed with uniform spacing ( 5 inch center to center spacing) along the

height and centrally located along the width of the heated wall, as shown schematically in Figure 1. A thin

sheet of reflective alzac (aluminum subjected to electroplating and then a thin anodic coating) was fLrSt

mounted on the oven wall before the heaters were installed. The purpose of the reflective sheet was to help

reflect the heat from the heaters towards the test specimen. A picture of the heated wall with the mounted

frosted quartz lamps is shown in Figure 3.

The effective heated area of the finned strip heaters was 2 inches wide by 12 inches long. The quartz

lamps were 3/8 inches in diameter with an effective heating length of 11 inches. The heating blankets were

23 inches wide, 46.5 inches long and 1.75 inches thick, and included resistance heaters wrapped m:l

packaged in insulating material. For the tests with the heating blankets, the oven side wall consisting of

the test specimen and the one inch thick insulation was removed from the overall oven assembly. The



heatingblanketwasinstalleddirectlyon top of the test specimen and bolted to it using 6 bolts. Since the
heating blanket could not cover the entire area of the test specimen, only the temperature readings from the

thermocouples that were directly covered by the heating blanket were used. The tests were conducted with

the specimen in the vertical and horizontal position. In the horizontal position, tests were conducted with

the heating blanket located either above or below the test specimen.

Air circulation in the oven was achieved through either internal or external circulation. Two fan blades

were mounted on the oven walls to produce internal circulation. Each fan blade was 5 inches in diameter

and produced 400 cubic feet per minute internal circulation in the oven. A commercially available air

recirculating system was used to produce external circulation. This unit was capable of closed loop

circulation of unheated and heated air with variable volumetric flow rates up to 540 cubic feet per minute.

A picture of the air recirculating system with its ductwork attached to the oven is shown in Figure 4. In

order to investigate the effect of reflectance of oven walls, tests were conducted with two oven wall

reflectances: high and low. Use of the bare ceramic boards resulted in a low reflectance oven. Installing

alzac sheets in the oven interior to cover the other 5 walls resulted in a high reflectance oven. Tests were

conducted using two oven orientations, vertical and horizontal. The heater wall and test specimen were both

parallel to gravity in the vertical orientation, and perpendicular to gravity in the horizontal orientation. For

the latter orientation, the oven was turned on its side in such a way that the heaters were located below the

test specimen.

The measured root mean square (rms) current and voltage were used to calculate the instantaneous

power supplied to the heaters. A single phase, 230 volt, 40 ampere, phase angle temperature control

system was used in conjunction with a Proportional, Integral, Derivative (PID) temperature controller to

provide power to the radiative/convective and conductive heaters. The commercially available air

recirculating system used for the forced convective heater used 3 phase, 460 volt, 24 ampere power. Strip
heaters internal to the unit and controlled by a PID temperature controller were used to heat the circulating

air to the desired set point temperature. The thermocouple and the rms voltage and current data were

collected using a personal computer controlled data acquisition system.

Test Procedure

Two types of tests were conducted: controlled temperature, and system response. In the controlled-

temperature tests, experiments were conducted by setting a set point temperature of 350°F and letting the

PID temperature controller self tune to the desired set point. In this mode, the controller applied 100

percent power until the control thermocouple reached approximately the halfway point between the initial

and set point temperature. At this point the controller determined the ideal PID parameters and adjusted the

power. For these tests, the investigated parameters included oven orientation, reflectance of oven walls, md

air circulation in the oven. A summary of all the performed tests is given in Table 1. In each case, the

average and standard deviation of all the temperature sensors were calculated after the specimen had reached
steady state conditions. The settling time, defined as the time required for the temperature sensor located in

the center of the test specimen to reach and stay within ±5% of the set point temperature, was measured.

The average consumed power was also measured.

In the system response tests, the response time of the heating systems were determined by subjecting

them to a step power input. This was accomplished by specifying a fixed power level as a percentage of the

maximum power available on the PID temperature controller. This way the true response of the

heater/specimen combination could be calculated. The time required for the thermocouple located in the

center of the test specimen to reach 63.2 percent of its steady state value was calculated as the time

constant. The power level and the overall temperature rise were recorded. All these tests were conducted
with the oven in the vertical orientation, with oven wall reflectance being low, and with air circulation.

Results and Discussion

In the controlled-temperature tests, the PID controller was operated in the self-tune mode. This mode of

operation should have produced a critically damped overall system response. However, it was observed that
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the self-tuning mode of operation sometimes resulted in an underdamped response. The temperature

oscillations were sometimes large in magnitude and would take a long time to decay. The settling time and

power consumption level determined using these tests were not only a function of the response time and the

overall power requirements of the heater and specimen combination, but also a function of the PID

parameters chosen by the controller. Therefore, the settling time and power consumption levels are not

presented here. The results of the system response tests presented in Table 3 should be consulted for this

purpose.

The temperature distributions obtained along the width of the test specimen using the finned strip
heaters, with the oven in vertical and horizontal positions, with and without the reflective alzac sheets, and

with and without internal air circulation are shown in Figure 5. The temperature distributions along the

height of the plate under the same test conditions are given in Figure 6. As seen in this figure the
reflectance of oven walls was not a significant parameter, while the oven orientation and internal air

circulation were more important. The same results applied to all the other tested heating techniques. Large

temperature gradients developed along the test specimen height with the oven in the vertical orientation and

without air circulation. This was a result of natural convection, with the rising heated air causing higher

temperatures at the top of the test specimen. Adding internal circulation reduced this temperature gradient,
causing a more uniform temperature distribution along the plate height. The thermocouple located at the 33

inch vertical position along the plate height would consistently read lower than expected. As expected,

internal flow circulation was not an important parameter for the tests with the oven in the horizontal

orientation. In these tests, the oven was oriented with the heater located below the test specimen. Even in

the absence of forced convection, the plate was heated uniformly. Similar conclusions applied to all the

other heating techniques used as shown in Figures 7 through 11.

The summary of the controlled-temperature test results are presented in Table 2. Because the oven wall

reflectance was not an important parameter, only the data for low oven wall reflectance are presented in this
table. The mean and standard deviation of all the measured temperatures on the test specimen are listed.

The ratio of the standard deviation to mean temperature, defined as the temperature non-uniformity ratio, is

provided as a non-dimensional comparative measure of non-uniformity between tests. For the tests with the

closed loop circulation of heated air and the oven in the vertical orientation, the supply and return lines
were switched so that the flow direction would be either against gravity (up) or aligned with gravity (down).

The former resulted in a less uniform temperature distribution with a significant temperature variation over

the bottom 25 percent of the plate height as shown in Figure 10. The same observation also applied to the

tests with frosted quartz lamps and external circulation of cool air as shown in Figure 9. The use of heating

blankets resulted in the highest temperature non-uniformity ratios on the test specimen: 18.1 percent in the

vertical orientation and 10 percent in the horizontal orientation. For all the other heating techniques the

following results were obtained: in the vertical position the temperature non-uniformity ratio was between

7.5 to 9.7 percent for tests without air circulation, but between 1.4 to 3.9 percent for tests with air

circulation. Tests in the horizontal orientation with and without air circulation resulted in temperature non-

uniformity ratios between 1.2 to 1.9 percent.

The results of the system response tests are presented in Table 3. These include the applied power, the

time constant, and the resulting steady-state temperature rise. The ratio of the applied power to the steady-

state temperature rise, defined as the efficiency factor, is also provided in Table 3. The finned strip heaters

had the longest time constant, 2830 seconds, and an efficiency factor of 8 Watts/°F. The long time
constant is due to a much higher thermal inertia associated with the metallic resistance heaters. The clear

and frosted quartz lamps, with internal air circulation, had time constants of 1610 and 1570 seconds with

efficiency factors of 7.38 and 7.25 Watts/°F, respectively. Their time constants were almost half that of the
metallic heaters, while their power ratings were almost identical. The tungsten heating element in a quartz

lamps has negligible thermal inertia, resulting in a shorter time constant. The frosted quartz lamps with
closed loop circulation of cool air had the lowest time constant, 790 seconds, but an efficiency factor of

18.9 Watts/°F. The closed loop circulation of cool air resulted in a higher convective heat transfer to the

plate, and thus a reduced time constant. It also resulted in large convective losses from the test specimen to
the cool air, which required higher heating powers applied to the quartz lamps. The closed loop circulation
of heated air resulted in a time constant of 1030 seconds with an efficiency factor of 29.1 Watts/°F. The
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closed loop air circulation unit was a commercially available unit, and was not necessarily the most

efficient convective heating system design. A significant amount of heat was lost to the external

circulation loop, increasing the total power requirement. In summary, the fastest response time was

achieved with frosted quartz lamps with closed loop circulation of cool air and with the closed loop

circulation of heated air. The lowest efficiency factor was achieved with quartz lamps with internal air
circulation.

Concluding Remarks

A series of tests were conducted to evaluate different heating methods for heating a large scale specimen

to 350°F. This research was motivated by the need to evaluate different heating techniques for efficiently

heating large High Speed Civil Transport (HSCT) components for thermal structural testing at temperatures

up to 350°F. The heating techniques used included radiative/convective, forced convective, and conductive.

The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced

convective heating was accomplished by closed loop circulation of heated air. The conductive heater

consisted of heating blankets. The test specimen used was an 1/8 inch thick stainless steel plate installed

in a custom-built oven. The parameters investigated included air circulation in the oven, reflectance of oven

walls, and the orientation of the test specimen and heaters (vertical and horizontal). The criteria used for

comparing the different heating methods included test specimen temperature uniformity, heater response

time, and consumed power.

It was found that the reflectance of oven walls was not a significant parameter. Air circulation was

necessary to obtain uniform temperatures only for the vertically oriented specimen. In the vertical

orientation, the temperature non-uniformity ratio was between 7.5 to 9.7 percent for tests without air

circulation, but between 1.4 to 3.9 percent for tests with air circulation. For testing a horizontal specimen

perpendicular to gravity, air circulation was not necessary to achieve temperature uniformity. Tests in the

horizontal orientation with and without air circulation resulted in temperature non-uniformity ratios between

1.2 to 1.9 percent. Heating blankets were found to produce unacceptably high temperature non-

uniformities (10 to 18 percent). The frosted quartz lamps with closed loop circulation of cool air and the
closed loop circulation of heated air provided the lowest time constant. Quartz lamps with internal air

circulation produced the lowest power consumption per unit temperature rise.

The choice of heating technique for large scale structural component testing is based on which

parameter is more important to the researcher, the response of the heating system, or the overall power

consumption. For faster response time, either quartz lamps with closed loop circulation of cool air, or

closed loop circulation of heated air should be used. For lowest power consumption, quartz lamps with
internal air circulation should be used.
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Table 1. Listing of Different Test Configurations

Test Type Heating
Technique

Heat Source

icontrolled radiative/ finned strip

temperature convective
clear quartz lamp

convective

conductive heating blanket

system response radiative/ finned strip ...........
convective

convective

frosted quartz lamp

heated air circulation

clear quartz lamp

frosted quartz lamp

heated air circulation

Parameters
orientation; circulation; reflectance

vertical, horizontal; none, internal; high, low

vertical, horizontal; none, internal; high, low

vertical, horizontal; none, internal, external;
hi_h, low
vertical, horizontal; external; low

vertical, horizontal

vertical; internal; low

vertical; internal; low

ivertical; internal, external; low

r
vertical; internal; low
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Table2. Summaryof Controlled-TemperatureTestResults

HeatSource

finnedstrip

finned strip

finned strip

finned strip

clear quartz lamp

clear quartz lamp

clear quartz lamp

clear quartz lamp

frosted quartz lamp

frosted quartz lamp

frosted quartz lamp

frosted quartz lamp

frosted quartz lamp

frosted quartz lamp

frosted quartz lamp

Heated air circulation

Heated air circulation

Heated air circulation

Heating blankets

Heating blankets

Heating blankets

Orientation; circulation; Flow
Direction

vertical; none

vertical; internal

horizontal; none

horizontal; internal

vertical; none

vertical; internal

horizontal; none

horizontal; internal

vertical; none

vertical; internal

horizontal; none

Mean
Temperature

(OF)

339.7

346.8

341.5

347.4

332.3

341.9

341.4

342.1

330.7

337.4

339.9

horizontal; internal 342

vertical; external; down 340

vertical; external; up

horizontal; external; lateral

vertical; external; down

vertical; external; up

horizontal; external; lateral

vertical

horizontal (heater on top)

horizontal (heater on bottom)

.1

.3

338

342

344.2

338.2

346

385.1

326.94

344.41

Temperature
Standard

Deviation (°F)

33.1

6.7

6.4

4.2

25

4.9

5.6

5.1

30.4

12.6

6

5.7

10

13.3

6.2

5.9

Temperature
Non-

Uniformity
Ratio

(percent)
9.7

1.9

1.9

i.2

7.5

1.4

1.6

1.5

9.2

3.7

1.8

1.7

2.9

3.9

1.8

1.7

10.9 3.2

4.7

69.9

1.4

18.1

30.1 9.2

37 10.7

Table 3. Summary of System Response Test Results

Heat Source

finned strip

clear quartz lamp

frosted quartz lamp

frosted quartz lamp
heated air circulation

Circulation

internal

internal

internal

external

external

Applied Power
(Watts)

1794.2

2388.2

2434.9

2151.7

2600

Time
constant

(seconds).

2830

1610

1570

790

1030

Steady-state
Temperature

Rise (°F)

Efficiency
Factor

(Watts/°F)

224.1 8.01

323.5 7.38

335.6 7.25

113.5 i 8.9

89.3 29.1
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different heating methods included test specimen temperature uniformity, heater response time, and consumed

power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the

orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls

was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the

vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz

lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with

closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
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