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An important part of building mathemalical models based on measured data iscalculating the accuracy associ-
ated with statistical estimates of the model parameters. Indeed, witheut some idea of this accuracy, the Imrameter

estimates themselves have limited value. An expression is developed for computing quantitatively conreet param-
eter accuracy measures for maximum likelihood parameter estimates when the output residuals are colored. This
result i_ important because experience in analyzing flight test data reveals that the output residuals from maximum
likelihood estimation are almost always ce/orod. The calculations involved can be appended to conventional maxi-
mum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accaracy

measures from the new technique accurately reflect the quality of the parameter estimates from maaimum likefi.
hood estimation without the need for correction factors or frequency domain analy_ of the output residuals. The
technique was applied to flight test data from repeated maneuvers flown on the F-I8 High Alpha Research Vehicle.
As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter
in the parameter estimates from repeated maaeuvers, whereas conventional parameter accuracy measures were
optimistic.

Nomenclature z(i) = ith measured scalar

a_ = vertical acceleration, g z(i) = measured no x 1 output vector at time ff - 1)At
CL = lift coefficient ct = angle of attack, rad

Cu = pitching moment coefficient At = sampie time, s
Cz = vertical force coefficient _ij = Kronecker delta

= mean aerodynamic chord, ft 6, = stabilator deflection, rad
D = dispersion matrix ® = pitch angle, tad

dj/ = jth diagonal element of D 0 = element of the parameter vector 0

E{.} = expected value 0 = n e x 1 parameter vector
e(i) = ith equation error residual tr = Cram6r-Rao bound for the standard error of
g = gravitational acceleration, 32.174 ft/s 2 v(i) = measurement noise vector at time (i - 1)At
ly = pitch axis moment of inertia, slug-ft 2 Vo = gradient with respect to 0
J = cost function • = roll angle, rad
M = information matrix 0 = zero vector

m = mass, slug

N = total number of sample times Subscripts
no = number of outputs

np = number of parameters c = corrected
q = body axis pitch rate, rad/s m = measured

= dynamic pressure, lbf/ft 2 o = initial or bias
R = discrete noise covariance matrix w = wind axes

_,, = autocorrelation matrix of vector v

S = wing area, ft2 Superscripts

S(i) = output sensitivity matrix at time (i - 1)At T = transpose
s = sample standard error - 1 = matrix inverse

t = time, s ^ = estimate
u(t) = control vector - = mean value
V = airspeed, ft/s
v(i) = output residual vector at time (i - l)At = time derivative
x(t) = state vector

y(i) = noxl output vector at time (i -- 1)At Introduction

y(t) = no x 1 output vector g IRCRAFT dynamic models include parameters that quantify
the dependence of aerodynamic forces and moments on state

and control variables. The values of these parameters are often es-
timated from flight test data. A good quantitative assessment of the

accuracy of these parameter estimates is important for a variety

of reasons related to experiment design, modeling, simulation, and
flight control.

Maximum likelihood L2 is commonly used to estimate aero-

dynamic parameters from flight test data. Assuming the model
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structure is correct, maximum likelihood parameter estimates ap-

proach the true parameter values, and the parameter variances ap-
proach their theoretical minimum values (the Cram6r-Rao lower
bounds), as the number of measured data points increases. Gener-
ally, a flight test data record length at least two to three times the

period of the slowest dynamic mode to be modeled is sufficient
for the parameter variances to closely approach the Cram6r-Rao
butmds) In such cases, the Cram&-Rao bound can be used as a

good approximation to the variance of maximum likelihood parame-
ter estimates. References 3-5 compare and contrast the Cramdr-Rao

bound with other methods for assessing the accuracy of parameter
estimates. Theoretical properties of maximum likelihood estimators
and related arguments discussed in Ref. 3 indicate that the Cram6r-
Rao bound is the best accuracy measure for maximum likelihood
parameter estimates.

The research described here focuses on the output error formula-
tion of maximum likelihood parameter estimation. This formulation

includes measurement noise, but no process noise. L2 A modified
Newton-Raphson optimization procedure s was used to determine
the maximum likelihood parameter estimates. With this approach,

the Cram6r-Rao bounds are computed as part of the estimation pro-
cedure. It is well known, however, that the Cram_r-Rao bounds

computed in this way are usually optimistic (too small) compared
to the scatter in the parameter estimates from repeated flight test
maneuvers. 3._ This prompted the work of Maine and Ilif_ .3 (also
Refs. 8 and 9) and Balakrishnan and Maine, _° who traced the dis-

crepancy to the fact that the output residuals are colored for real
flight test data analysis because some deterministic modeling error
is always present. Output error techniques lump the deterministic
modeling error together with the broadband random part of a mea-

sured signal and call this the measurement noise. This means the

measurement noise is model dependent and colored, because the de-
terministic modeling error usually lies in the same frequency band as

the aircraft rigid body dynamics and accounts for a large part of the
total noise power. References 2, 3, and 8-10 describe how this kind

of culored measurement noise is responsible for the discrepancy be-
tween the conventional calculation of the Cram_r-Rao bounds and

the observed scatter in flight-determined parameter estimates from
repeated maneuvers.

The theory underlying the output error formulation of maximum
likelihood estimation assumes that the measurement noise is white

Gaussian and band limited by the Nyquist frequency. The band
limit is the result of discrete measurements taken at the sampling

frequency, which is twice the Nyquist frequency. This measurement

noise is broadband and incoherent. The term incoherent implies
amplitude discontinuity and a lack of consistent phase-amplitude

relationships, causing the autocorrelation function to be close to

the impulse function. This part of the residual would be commonly
recognized as having no deterministic component. If the structure
of the model were correct, the residuals would be expected to be

reasonably dose to this type of noise. In real flight test data analy-

sis, however, the residuals contain deterministic components from

such sources as approximations to real aircraft aerodynamic de-
pendencies, unmodeled dynamics such as structural modes, and lin-

earization of the equations of motion. The result is colored residuals,
which violate the assumption of white measurement noise in conven-

tional maximum likelihood theory, leading to the aforementioned
discrepancy.2.3.s-10

In Ref. 3, several engineering solutions were proposed to correct
for the discrepancy. Each solution was based on the assumption that

most of the power in the output residuals for real flight data analysis
is concentrated in roughly the same frequency band as the rigid body
dynamics and is due to deterministic modeling error. This assump-
tion is stretched when relatively high-frequency structural modes

appear in the data or when the broadband random noise has a large
enough magnitude to rival the power of the narrow-band noise due to

deterministic modeling error. For multiple outputs, the noise power
from broadband random noise compared to that from narrow-band

deterministic modeling error is different for each output because of

differences in the sensor characteristics and the physical quantity

being measured. The solutions offered in Ref. 3 depend on knowing

something about the bandwidth of the dominant source of power

in the residuals. Obtaining this information requires Fourier trans-

forms of the residuals and analysis in the frequency domain. The
spectra of the residuals depend on the model structure, the maneu-
ver, the flight condition, and the instrumentation characteristics. All

of these factors can change over the course of a flight test program,
requiring changes in the corrections for the Cram6r-Rao bounds.

In addition, the bandwidths of the deterministic modeling error for

the various measured outputs can be different from one another for

the same maneuver. The solutions from Ref. 3 require some engi-

neering judgment in the form of determining a correction factor or
estimating the bandwidth of the dominant power in the residuals.

Both of these approaches require an experienced analyst and limit

the accuracy of the results.

In the present work, a technique first put forth in Ref. 11 was
used to process the residuals from a conventional maximum like-

lihood estimation to compute accurate Cram6r-Rao lower bounds

for colored residuals. The approach accounts for colored residu-

als using a simple estimate of the residual correlation in the time
domain. Existing maximum likelihood estimation routines can be

easily upgraded because the technique involves a postprneessing
of the output residuals to correct the Cram6r-Rao lower bounds

from the conventional calculation. The purpose of the present work
is to document a few refinements and extensions, to validate the

technique using Monte Carlo simulation with colored measurement

noise, and to apply the technique to real data from repeated flight test
maneuvers.

The next section contains the theoretical analysis. Following this,
the technique was applied in a controlled situation using simu-
lated data from a model of the longitudinal dynamics of a fighter
aircraft. The true parameter values were known, and the mea-

sured outputs were corrupted with colored noise, including both

narrow-band modeling error and broadband random noise. Using
200 Monte Carlo simulation runs with various colored noise char-

acteristics, it was demonstrated that the new technique produces
Cram6r-Rao bounds representative of the observed scatter in the
parameter estimates. The conventional Cram6r-Rao bounds were

found to be optimistic, in agreement with the results of previous
research.2,3,7 -1o

The technique was then applied to repeated longitudinal flight
test maneuvers at 20-deg angle of attack for the F- 18 High Alpha
Research Vehicle (HARV). The scatter in the model parameter esti-
mates from this flight test data was consistent with the Cram_r-Rao

bounds computed using the new technique, whereas the conven-
tional calculation again gave optimistic values for the Cram*r-Rao
bounds.

Theoretical Development

The aircraft dynamic model can be represented as

it(t) = f[x(t), u(t), 0] (1)

x(O) = Xo (2)

y(t) = g[x(t), u(t), o] (3)

z(i) -_y(i)+v(i) i = 1,2 ..... N (4)

For conventional maximum likelihood, the discrete measurement

noise vector v(i) is assumed to be zero mean white Gaussian and

band limited at the Nyqulst frequency,

E{v(i)} ----0 E{v(i)vr(j)} = Rdij (5)

The maximum likelihood estimate of the parameter vector max-

imizes the conditional probability density function L6

= arg _o[p(Z I 0)] (6)

where Z is the set of all measurement vectors z(i), for i =
1,2 ..... N. When R is known, maximizing the conditional
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probability in Eq. (6) is equivalent to minimizing the cost func-
tion t-3.6.11

I t¢

J(O) = _ _ [z(i) -y(i)]rR-_[z(i) -y(i)] (7)
iffil

The cost in Eq. (7) can be minimized using a modified Newton-
Raphson technique 6 to determine parameter updates, starting from
some initial guess of the parameter vector. The initial guess for the

parameter vector can be obtained from equation error methods,_ but,
typically, a much rougher initial guess can be used.

The sensitivity matrix is defined as

ay(i)
S(i) _. _ e=b i = 1,2 ..... N (8)

where the jth column of the sensitivity matrix contains the output
sensitivities for the jth parameter, computed from central finite dif-

ferences in Eqs. (I-3). The modified Newton--Raphson parameter
update is given by t._.n

a6 _o-6

= S(i)rR-tS(i) S(i)rR-t[z(i) - _(i)] (9)

ial _] iml

The parameter vector update from Eq. (9) is added to the current
estimate of the parameter vector to approach the true value of the

parameter vector. In practice, there are times when the parameter

vector update computed from Eq. (9) leads to an increase in the cost
function or a divergence. This is because the modified Newton-
Raphson step assumes that the current estimate of the parameter

vector is near the true value. Using several iterations of a simplex
algorithm n when the modified Newton-Raphson step produced an
increase in the cost was found to be very effective in avoiding diver-

gence and reaching a solution. This approach was followed in the

present study.
When repeatedapplicationofF.xl.(9)converges,an estimateof

the measurement noisecovariancematrixR can be obtainedfrom

the outputresiduals.The expressionforthe estimateof R, which
maximizes theconditionalprobabilityinEq. (6),ist-3'6"n

N

= 1 E[z(i)_y(i)][z(i)_y(i)] r (10)
iffil

The most recent estimated output j_(i) is substituted for y(i) in
Eq. (10) to compute the matrix R. Often only the diagonal elements
of the R matrix are estimated from F-z1. (10), enforcing an assump-
tion that the measurement noise sequences for the measured outputs
are uncorrelated with one another. This assumption is generally a
good one for real flight test data. All estimates of the measurement
noise covariance matrix in this work assume a diagonal R matrix.

Retaining the full R matrix could have been done with little con-
ceptual difficulty, but the expected benefits did not warrant the extra
computation involved.

The noise covariance matrix estimate R was used in the cost func-

tion of Eq. (7), and the minimization process described earlier for
known R was repeated. Thus, the maximum likelihood estimation

proceeds by alternately estimating the noise cowariance matrix from
Eq. (10), and minimizing the cost function using Eq. (9) with the

latest value of the estimated noise covariance matrix. Convergence

is reached when the estimated parameter vector 0, the estimated
noise covariance matrix R, and the cost J(O) reach nearly constant
values.

Since maximum likefihood estimation is asymptotically un-

biased, 1-3 the estimated parameter vector 0, should be close to the

true value 0, and the gradient of the cost function with respect to the
parameter vector should be close to zero. From Eq. (7), assuming R
is held fixed,

N

-ES(i)rR-_[z(i)-y(i)] (11)voJ(O)lofs
i=I

For practical computation, simultaneous satisfaction of the fol-

lowing numerical criteria was used to define convergence of the
maximum likeJihood estimation:

I[0i]t -- [Oj]t- 11 < 1.0 x 10 -s Yj, j = 1, 2 ..... np

1"':2["1''1[_ii]k- i < 0.05 ¥i, i = 1, 2 ..... no

(12)

.I(6k)- s(6k_ 1)

0 J (O) < 0.05 ¥j, j = 1, 2..... np

00_ otis

where k denotes the current estimate iteration number and fu de-
notes the estimate of the ith diagonal element of R. The approxi-

mate expression for the cost gradient with respect to the parameters
[Eq. (11)] was used for the last criterion in Eq. (12).

The minimum achievable parameter variances, called the Cram-
6r-Rao lower bounds, are the diagonal elements of the dispersion

matrix D (Refs. 1-3 and 6). The dispersion matrix is defined as
the inverse of the information matrix M, the latter being a measure

of the information contained in the data from an experiment. The
expressions for these matrices are I-3,_

8/

M = _S(i)rR-l$(i) (13)
i=1

]D = M -l = S(i)rR-tS(i) (14)

The square root of the jth diagonal element of D gives the

Cramer-Rao lower bound for the standard error of the j th parameter
estimate,

aj = _ j = 1, 2 ..... np (15)

It can be seen from Eqs. (9) and (14) that the dispersion ma-
trix is computed when determining the modified Newton-Raphson

step as part of the conventional maximum likelihood estimation.
The assumption that the output residuals are white and, therefore,

uncorrelated in time is implicit in the algorithm and indicated in

Eq. (5). The next section details the theory involved in accounting

for arbitrary colored output residuals, which are correlated in time.
When the maximum likelihood estimation has converged, the

estimated parameter vector witl be close to the true value and Eq. (9)
holds. Define the residual vector

v(i) .._ z(i) --_(i) i = 1, 2 ..... N (16)

The estimated parameter covariance matrix can be expressed using

Eq. (9) with substitutions from the definitions in Eqs. (14) and (16),

coy(6) _--E{(6 - 0)(6 - O)r }

= E DS(i)rR-lv(i)v(j)rR-IS(j)D (17)

jffil J

If it is assumed that the discrete noise covariance matrix and the

output sensitivities do not depend on the parameter vector estimate

at the maximum likelihood solution, then the estimated parameter
covariance matrix can be written as

cov(0)=D ES(i)rR-tE{v(i)v(j)rlR-tS(j) D (18)

j=1 ..J

When the output residuals are assumed to be zero mean white [cf.

F_Xl.(5)], then

E{v(i)v(j) r} = RS_j (19)
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From Eqs. (14), (18), and (19), it is easy to see that the parame-
ter covariance matrix reduces to the dispersion matrix D when the
output residuals are white.

By definition, when v is a zero mean weakly stationary random
process, 13

E{v(i)v(j) r} = m,,(i - j) = 9_,(j - i) (20)

where ff{_,(i - j) is the autocorrelation matrix for the output residual
vector. The estimated parameter covariance matrix can be computed

by substituting for E{v(i)v(j) r } from Eq. (20) into Eq. (18) and
using an estimated value for _t_, (i-j). An estimate for _t,, (i-j ) can
be obtained using the colored residuals from conventional maximum
likelihood estimation. The autocorrelation estimate accounts for the

frequency content of the colored residuals in the expression for the
parameter covariance [Eq. (18)]. Substituting Eq. (20) into Eq. (18)
results in

cov(O) =D S(i)rR -] _,,(i- j)R-tS(j) D (21)
•= j=l

where _,,,(i - j) is computed using the discrete unbiased estimate
of the output residual antocorrelationn3:

1 Jr-,

_,,(k ) = _ E v(i)v(i + k) r = _r,(-k) (22)N-k
ill

Equation (2 I) is the expression for the parameter covarianee ma-

ta-ixfor colored residuals, which are correlated in time. Equation (22)
was used to estimate JR,,,(i - j) in Eq. (21). The values forD, R -t,
and S are from the conventional maximum likelihood estimation.

Equations (21) and (22) embody the postprocessing applied to a
conventional maximum likelihood solution to account for colored
residuals.

Because this technique postprocesses the output residuals from
conventional maximum likelihood estimation to correct the Cram&-
Rao bounds, all of the properties of conventional maximum likeli-

hood parameter estimation in a practical flight test data analysis
application remain unchanged. These properties are discussed in
Refs. 2 and 3.

For equation error parameter estimation, the model has a single
output

z(i) = x(i)rO + e(i) i = I, 2 ..... N (23)

where x(/) is an n v x 1 vector of regressors at the ith data point
and _(i) is the equation error. The preceding analysis applies to this
case as well, and the equivalents of Eqs. (21) and (22) are

coy (0) = D x(i) _ec(i - j)x(j) r D (24)

[_i=n j=n

and

N-k

1 E e(i)e(i + k) = _ee(-k) (25)_.(k) = N---'---_
i=n

where

D = x(i)x(i) r (26)

and

e(i) = z(i) - x(/)r0 (27)

Results

The longitudinal short peried dynamics of the F- 18 HARV fighter
aircraft at approximately 20-deg angle of attack were studied. The

model state equations in wind axes are given by

°'[ 1&=-m-v Cz'°_+C_v +Czs, Ss+C_o +q

+ g[cos(q_m) cos(O,,,) cos(u) + sin(®,_) sin(a)] (28)

0 = (0se/1,) [c.. _ + cM, (qel2 v) + c.,, _. ÷ C'Mo]

77

with measurement equations

ot,,(i) -----ct(i) + on(i)

qm(i) = q(i) + ½(i)

a_(i)= qS[cz.ot(i) _ q(i)g ]mgk +czq-_--+Cz,_s(i)+a_ +v_(i)

i = 1,2 ..... N (29)

assuming that Cz _ --CL and az _ a,,. Initial conditions for the

states were computed from the measured time histories ofo_ and q

using a time domain smoother) 4 The parameters C_o, C_¢o, and a_o
include both aerodynamic and measurement biases.

To validate the new technique for computing Cram6r-Rao
bounds, 200 Monte Carlo simulation runs were made using various
colored measurement noise processes. Each noise sequence had part
of its power in the frequencies between 0 and 1 Hz inclusive (roughly
the frequency band of the uncorrupted simulation outputs), with the

remaining power taken up by white Gaussian noise out to the Nyquist
frequency. The narrow-band portion of the colored noise sequence
was generated by passing zero mean white Gaussian noise through

a fifth-order Chebyshev low-pass filter with frequency cutoff set at 1
Hz. The resulting narrow-band noise was combined with wideband
noise from a separate realization of the zero mean white Gaussian

noise process. The percentage of the total noise power from the
narrow-band noise was determined by a random number with uni-

form distribution on the interval [0, 100]. The resulting colored noise

sequence was then scaled to achieve approximately a 5/I signal to

noise ratio for the simulated noisy output. This procedure was car-
ried out for each individual simulated output on each Monte Carlo

run. Figure I shows the power spectral density for the colored noise

added to a for run 200, where 19% of the noise power was in the

frequency range of 0-1 Hz, inclusive. Colored noise sequences gen-
erated in this way are representative of residual sequences observed
when analyzing real flight test data and were used for that reason.

To make the Monte Carlo simulation runs realistic, the stabilator

input was taken from measured data for the F-18 HARV flying a
maneuver designed specifically for accurate parameter estimation.n5

The stabilator input is shown as the solid line in Fig. 2. The param-

eter values used in the simulations (given in column 2 of Table I)

Table 1 Parameter estimation results for typical Monte Carlo runs

Run 47 Run 185

Cz_ -2.00 - 1.30 4.24 0.94 -3.78 9.33 2.26
Czq -65.0 -13.8 4.10 0.99 -81.8 1.37 0.33
Czs_ -0.90 - 1.48 4.20 0.95 0.04 6.46 1.59
C* -0.80 - 1.08 4.73 1.04 0.01 10.46 2.33z_,
C_,, -0.30 -0.35 7.00 1.67 -0.32 3.09 0.48
CM¢ --16.0 --17.3 3.55 0.86 -13.2 7.04 1.13

C_'_s --0.70 -0.67 5.42 1.03 -0.72 3.86 0.57
C_o 0.08 0.09 5.77 1.20 0.09 5.01 0.73

a_o -0.70 -1.07 6.11 1.36 0.04 9.48 2.14

0.07

pv1 vl 0.06 .............................................................
0.05

0,04 ................................................................................

0.03......................................................................_...............

0,01 Li__i_'_0.02 ...........................................................

0 Fr_au_J _,_T V'nLOCI_kqYLI_._.V.b_l/_ I_ _,_1
o 5 10 15 20 2.5

frequency (hz)

Fig. 1 Example simulated colored noise power spectrum, run 200.
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Fig. 2 Stahilator inlmt time histories from five repeated flight test ma-
nenvcJ'$.

25

20

15
Count

10

5

Fig. 3

0
-o.45 -0.4 -035 -0.3 -0.25 -0.2

Range

Cuo estimates from Monte Carlo simnlatien.

approximately reflect the short period dynamics of the F-IS HARV
at 20-deg angle of attack. The stabilator input and parameter values
were the same for each simulated data run, so that the information

in the data was constant from run to run. The sampling rate was
50 Hz, and the data record length was 14 s. Maximum likelihood
estimation as described in the previous section was used to estimate
the parameters.

Since the true parameter values were known for the simulated
data, the true accuracy of the maximum likelihood estimates could

be compared to the accuracy indicated by the Cram_r-Rao bound
calculations. The conventional Cram_r-Rao bounds for the param-
eter standard errors were denoted by _ and were computed from
Eqs. (14) and (15). The Cram_r-Rao bounds for the parameter stan-
dard errors corrected for colored residuals were denoted by crc and

were computed as the square root of the diagonal elements of the co-
variance matrix from Eq. (21), using Eq. (22) to estimate the output
residual autocorrelation. Results from both the conventional com-

putation and the corrected calculation were expressed in terms of
the ratio of the absolute deviation of each parameter estimate from
its true value to the computed Cram_r-Rao bound for the parameter
standard error. This accuracy measure was assigned the symbol 1/:

= IO - Oll_, _c - IO - Ollcrc (30)

For a maximum likelihood estimator, the probability distribution
of the parameter estimates approaches a Gaussian distribution cen-
tered on the true value as the number of data points gets large.
Evidence of this can be found in Fig. 3, which is a histogram of
the parameter estimates from all 200 Monte Carlo runs for the Cu=
parameter. Corresponding histograms for the other estimated pa-
raraeters were similar. When o equals the standard deviation of the

population of parameter estimates, the quantity (0 - 0)/t_ is a stan-
dardized normal deviate. It follows that I? < 3 nearly all of the time

when cr is representative of the scatter in the parameter estimates,
because a standardized normal deviate lies within 4-3 standard devi-
ations of the mean 99.7% of the time. Analogous statements apply

for rioand o%

Table 1 shows results for two representative Monte Carlo runs.
Columns 4 and 5 for run 47 and columns 7 and 8 for run 185 show
that the corrected Cram_r-Rao bounds accurately reflected the true

parameter accuracy, whereas the conventional Cram6r-Rao bounds
were optimistic (i.e., too small) and produced i? ratios that exceeded
3 for almost every estimated parameter. Considering the full set of
200 Monte Carlo tuns, Table 2 gives the mean values and standard
errors of 17and _c for each estimated parameter. These data show
that the conventional Cran_r-Rao bounds were inaccurate on the

average and exhibited a large variability, whereas the converse was
true for the corrected Cram6r-Rao bounds.

Table 3 gives another summary of the parameter estimation results
for the 200 Monte Carlo simulation runs. The second column of the

table gives the mean values of the parameter estimates, and the third
column gives the sample standard errors for the parameter estimates,
computed from the scatter of the parameter estimates and denoted
by s. Columns 4 and 6 give the mean values of the Cram_r-Rao
bounds for the patmneter standard errors computed using the con-
ventionaland corrected techniques, 5 and 5c, respectively. Columns
5 and 7 show the ratio of the sample standard errors for the param-
eter estimates to 6 and 6c, respectively. These values are far less
than 3 for the corrected calculation of the Cram6r-Rao bounds, in-

dicating a proper accounting for the changes in the residual spectra,
whereas the conventional calculation of the Cram_r-Rao bound was

optimistic,producingvaluesof thes/5 ratio greaterthan 3.
The datain Tables I-3 demonstratethatthe extentto which

the conventionalCrarn6r-Rao bounds misrepresentedthe uue

Table 2 Parameter accuracy statistics
fer 200 Monte Earle runs

Conventional Con'eamd

CZ, 3.84 2.85 1.37 1.10
Cz¢ 3.43 2.72 1.10 0.83
Cza: 3.30 2.51 1.10 0.91
C_o 3.88 2.89 1.36 1.05
C_ 4.03 3.42 1.44. 1.38
CACq 3.62 2.66 1.26 1.08
Cu_s 3.63 2.72 1.23 0.88
C_o 3.97 3.19 1.37 1.15
a_o 3.88 2.80 1.39 1.06

Table 3 Parameter estimation results for 200 Monte Carlo runs

Sim_on Co_e_onal Corrected

s _ s/6 6_ s/6_

Cz_ -1.94 0.819 0.179 4.56 0.521 1.57

CZq -62.1 51.1 12.3 4.17 38.7 1.32
C74, -0.92 0.550 0.139 3.96 0.441 1.25
C__° -0.82 0.312 0.068 4.56 0.199 1.57
CM= --0.30 0.037 0.008 4.80 0.022 1.67
CM¢ -16.1 1.822 0.448 4.07 1.278 1.43
Cj¢_ -0.70 0.030 0.007 4.11 0.021 1.43

C_¢° 0.08 0.013 0.003 4.67 0.008 1.64
a_ -0.72 0.313 0.069 4.54 0.198 1.58
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parameter accuracy was neither consistent nor predictable from pa-
rameter to parameter or from run to run. This phenomenon has been
observed previously when analyzing flight test data from repeated
maneuvers. _ It follows that the common practice of applying a fixed

correction factor to the conventional calculation of the Cram&'-Rao
bounds is incorrect to a varying and unpredictable degree in cases
where coloring of the residual spectra varies, as in this simulation
study. Changes in the coloring of the residuals similar to those stud-

ied here can easily be brought about in practice by changes in the
model structure, the maneuver, the flight condition, or the instru-
mentation.

Next, flight test data were analyzed from five repeats of the same
longitudinal maneuver, flown on the F-18 HARV at approximately

20_eg angle of attack and 25,000 ft. The input was applied to the
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symmetric stabilator by a computerized onboard excitation system
(OBES), so that the runs were very nearly repeats of one another.

Figure 2 shows the excellent repeatability using the OBES system
for five repeated runs of the stabilator input maneuver. All of the
data used for analysis were sampled at 50 Hz. Corrections were
applied to the angle-of-attack and accelerometer measurements to

aa:ount for sensor offsets from the center of gravity, and the angie-
of-attack measurement was corrected for upwash. Data compatibil-
ity analysis t6 revealed thatthe data from the sensors were consistent
to a degree that warranted no f_her corrections. The same model

given in Eqs. (28) and (29) was used for the flight test data analysis,
with measured time histories used for V and _. Maximum likelihood
parameter estimation was carried out using the procedure described
in the preceding section.

Table 4 gives flight test results in a format similar to Table

3. Column 7 shows that the corrected Cram_-Rao bounds were

an accurate measure of the scatter in the parameter estimates. In

column 5, the conventional Cram_r-Rao bounds were again opti-
mistic forthe pitchingmoment (Cu) parametersbutwere close to
correct for the vertical force (Cz) parameters. The reason is that the

a and az measurements are the main influences on the Cz parame-
ters, and the residuals for both these outputs exhibited considerable
power at high frequencies, due to unmodeled structural modes. The
power spectrum for a typical az residual (from run I) is shown in

Fig. 4. These colored residual spectra roughly resembled constant
power out to the Nyquist frequency, which is the assumption made
in the theory underlying the conventional Cram_r-Rao bound cal-
culation. The q measurement did not have these bigh-frequency
components, and so the conventional Cram&-Rao bound calcula-

tion gave very optimistic values for the Cu parameters. The power
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Table 4 Parameter estimation results from flight test data

Hight Conventional Corrected

s 6 s/fr 6c s/6c

Cza -2.04 0.161 0.083 1.95 0.192 0.84
Czq -61.0 4.86 3.48 1.40 7.67 0.63
Czas -0.92 0.081 0.044 1.82 0.081 1.00
C[o -0.72 0.068 0.031 2.21 0.068 1.00
Cua -0.30 0.065 0.006 10.80 0.052 1.26
C_¢ -19.1 2.55 0.372 6.86 2.84 0.90
C_ s -0.74 0.048 0.007 6.90 0.051 0.94
C_o 0.08 0.025 0.002 10.62 0.020 1.24
a_o -0.66 0.067 0.031 2.17 0.070 0.95

spectrum for a typical q residual (from run 1) is shown in Fig. 5. The
corrected calculation of the Cram6r-Rao bound worked equally well
for the Cz and Ct_ parameters because information about the partic-

ular coloringof the residuals was incorporated automatically via the
autocorrelation estimate from Eq. (22) used in Eq. (21). For the Cu_

parameter, the ratio of parameter estimate scatter to the corrected

standard error was slightly higher than for the other estimated pa-
rameters (s/_c = 1.26 from Table 4, column 7). This anomaly was
traced to the fact that the control law for the F-18 HARV scheduled

leading- and trailing-edge flap deflection in proportion to the angle

of attack. The estimated Cu_ and Cz, parameters, therefore, in-
cluded the effects of the flap deflections, which essentially changed

the wing camber. Run 5 began from a slightly different initial trim

condition, which caused both leading- and trailing-edge flap deflec-
tions to differ from the other runs by 1-2 degrees throughout the

maneuver. The change in the effective wing camber was manifested

in the CM¢ parameter estimate, but not the Cz_ estimate, in agree-
ment with slender wing theory and wind-tunnel data. '_ The true CM_

parameter, therefore, contained variation due to the changes in the
effective wing camber, violating the assumption that the parameters
should be constant for repeated maneuvers. The result was a larger
scatter in the estimates of Cur, which increased the value of s/_c.

A similar effect was seen for C_o, whose estimated value reflects
the trim condition to some extent.

Figure 6 depicts the parameter estimation results for the aerody-
namic parameters. The error bars to the left of the round symbols
marking the individual parameter estimates represent the Cram6r-
Rao bounds for the standard errors computed using the conventional

calculation (4-h7). The error bars to the right of the parameter es-
timate symbols represent the Cram6r-Rao bounds for the standard
errors from the corrected calculation (4-1t7_). These plots and the
accompanying data in Table 4 show that the standard calculation
for the Cram6r-Rao bounds gave optimistic values compared to the
scatter in the estimates from repeated maneuvers, whereas the cor-
rected calculation for the Cram_r-Rao bounds produced Cram6r-
Rao bounds that accurately reflected the scatter of the estimates.

Concluding Remarks

Algorithms for aircraft parameter estimation using the output er-
ror formulation of maximum likelihood are in widespread use. The
Cram6r-Rao bounds characterizing parameter accuracy that are ob-
tained from conventional calculations are known to be generally op-
timistic (i.e., too small) in practice, compared to the scatter in param-
eter estimates from repeated maneuvers. Estimated parameters have
limited utility when there is no firm idea of their accuracy. In this

work, an expression for correcting Cram6r-Rao bounds from max-
imum likelihood estimation with colored residuals was developed
and validated. This result is important because the residuals from
maximum likelihood estimation are almost always colored in prac-
rice, due to deterministic modeling error. The technique was shown
to be applicable to equation error parameter estimation as well.

The calculations involved in the algorithm for computing
Cram6r-Rao bounds that account for colored residuals can be
carded out in a short subroutine called at the conclusion of a

conventional maximum likelihood estimation algorithm. Bandwidth
of the dominant power in the residuals need not be known or es-
timated because it is accounted for automatically in the algorithm

by an unbiased estimate of the residual autocorrelation. There is no
need for correction factors. The algorithm was shown to work for
a wide range of colored residual spectra similar to what might be
encountered in real Right test data analysis. All calculations are per-
formed in the time domain, obviating the need for frequency domain
analysis of the residuals.

The corrected calculation for the Cram6r-Rao bounds presented
here produced consistently accurate measures of the scatterin the pa-
rameter estimates, using an algorithm with moderate computational
cost that was applied as a postprocessing of the output residuals
from a conventionalmaximum likelihoodsolution.

Monte Carlo simulation runs using various colored noise se-

quences were carried out to validate the algorithm. Analysis of flight

data from repeated maneuvers flown on the F-18 HARV demon-
strated the validity of the technique for computing appropriate pa-
rameter accuracy measures using real flight test data. The algorithm
described in this work was shown to be an effective means of ac-

curately determining the quality of parameter estimates from the

output error formulation of maximum likelihood estimation.
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