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ABSTRACT

The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism
responsible fl_r producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently
global mode of the disk, thereby aw)iding the difficulties with earlier models for the precession. Here we flfllow
up on earlier work to study the linear behavior of the instability in the specific context of a binary system. We
treat the influence of the companion as an orbit-averaged quadrupole torque on the disk. The presence of this
external torque allows the existence of solutions in which the direction of precession of the warp is retrograde
with respect to disk rotation, in addition to the prograde solutions that exist in the absence of external torques.

Subject heading: accretion disks-- instabilities I stars: individual (Her X- I, SS 433) -- X-rays: stars

I. INTRODUCTION

For a quarter of a century, evidence has been accumulating
for the existence of warped, precessing disks in X-ray binary
systems. The discovery of a 35 day period in the X-ray flux
from Her X-1 (Tananbaum et al. 1972) was interpreted almost
immediately as the result of periodic obscuration by a pre-
cessing accretion disk th.ttt is tilted with respect to the binary
plane (Katz 1973). Katz proposed that the precession was
forced by the torque fl'om the companion star, but left unex-

plained the origin of the disk's misalignment. An alternative
possibility is the "slaved disk" model of Roberts (1974), in
which it is actually the companion star that is misaligned and
precessing; the accretion disk (fed by the companion) will track
the motion of the companion, provided that the residence time
in the disk is sufficiently short.

Dramatic evidence for a warped, precessing disk in an X-

ray binary was provided by the discovery of the relativistic
precessing jets in SS 433 (Margon 1984, and references
therein). The systematic velocity variations of the optical jet
emission, the radio jet morphology, and optical photometry of
the system all indicate a precession period for the disk of 164
days; this must be a global mode, as both the inner disk (to
explain the .jets) and the outer disk (to explain the photometry)
must precess at the same rate. The systematic variation of the
X-ray pulse profile of Her X-l has been interpreted as the result
of precession of the inner edge of an accretion disk, which
argues for a global mode in this object also (TriJmper et al.
1986; Petterson, Rothschild, & Gruber 1991). A crucial point
is that in both Her X- 1 and SS 433, the direction of precession

of the warp has been inferred to be retrograde with respect to
the direction of rotation of the disk (e.g., Gerend & Boynton
1976, Her X-l; Leibowitz 1984 and Brinkmann, Kawai, &
Matsuoka 1989, SS 433).

A number of other X-ray binaries, of both high and low
mass, show evidence for long period variations that may in-
dicate the presence of precessing inclined disks (Priedborsky
& Holt [987, and references therein; Cowley et al. [991; Smale
& Lochner 1992; White, Nagase, & Parmar 1995): LMC X-4
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(30.5 days), Cyg X-1 (294 days), XB 1820-303 (175 days),
LMC X-3 (198 or 99 days), and Cyg X-2 (77 days). Given the
small number of X-ray binaries for which adequate data exist
to test for the existence of such periodicities, it is evident that

precessing inclined accretion disks may be common in X-ray
binaries.

Although theoretical attempts to understand the mechanism
responsible for producing precessing, tilted, or warped accre-
tion disks date from the discovery of Her X-I, no generally

accepted model has emerged. The original models suggested
fl)r Her X-I suffer from serious flaws, although both predict

retrograde precession. The model of Katz (1973) imposes a
tilted disk as a boundary condition, but provides no mechanism

for producing this tilt. The slaved disk model (Roberts 1974)
requires that the companion star rotation axis be misaligned
with respect to the binary plane; howevel; the axial tilt is ex-

pected to decay by tidal damping on a timescale shorter than
the circularization time (Chevalier 1976). Other suggested
mechanisms suffer from the difficulty of communicating a sin-
gle precession fi'equency through a fluid, differentially rotating
disk (e.g., Maloney & Begelman 1997).

Recently, however, a natural mechanism for producing
warped accretion disks has been discovered. Motivated by work
by Petterson (1977) and lping & Petterson (1990), Priugle
(1996) showed that centrally illuminated accretion disks are
unstable to warping because of the pressure of reradiated ra-
diation, which, for a nonplanar disk, is nonaxisymmetric and
therefore exerts a torque. Further work on Pringle's instability

was done by Maloney, Begehnan, & Pringle (1996), who ob-
tained exact solutions to the linearized twist equations, by Ma-
loney, Begehnan, & Nowak (1997, hereafter MBN), who gen-
eralized the earlier work to consider nonisothermal disks (see

below), and by Pringle (1997), who examined the nonlinear
ew)lution. Radiation-driven warping is an inherently global
mechanism; the disk twists itself up in such a way that the

precession rate is the same at each radius.
Previous work on Pringle's instability assumed no external

torques. However, in X-ray binary systems, the torque exerted
on the accretion disk by the companion star must dominate at

large radii. In the present Letter we examine the behavior of
the instability when an external torque is included. In § 2 we
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derivethe modified twist equation and solve it numerically,
and in § 3 we discuss the sohltions and the implications for
X-ray binaries.

2. TIlE TWIST EQUATION AND SOLUTIONS

We use Cartesian coordinates, with the Z-axis normal to the

plane of the binary system; hence, Z = 0 is the orbital plane.
As in MBN, we assume that the disk viscosity _fl =

_o (R/Ro) _, where Ro is an arbitrary fiducial radius. For a steady
state disk far from the boundaries, this implies that the disk
surface density _ oc R a. In the o<-viscosity prescription, 6 -

corresponds to an isothermal disk. We distinguish between
the usual azimuthal shear viscosity _,)and the vertical viscosity
v: that acts on out-of-plane motions (see, e.g., Papaloizou &
Pringle 1983; Pringle 1992); the ratio v2/v, -- _t is assumed to
be constant, but not necessarily unity. Assuming an accretion-
fueled radiation source, we transform to the radius variable
x = (2'J-'e/_7) (R/Rs) "z, where c - L/Mc _-is the radiative effi-

ciency, and Rs is the Schwarzschild radius. The linearized equa-
tion governing the disk tilt (including radiation torque) for a
normal mode with time dependence e" is then

O-"W 0W
x _ + (2 - ix) -- = iSx 3 e_W, ( 1)

3x- 0x

equation (10) of MBN. The tilt is described by the function
W = fie _, where [3 is the local tilt of the disk axis with respect
to the Z-axis, and 3' defines the azimuth of the line of nodes.
We have nondimensionalized the eigenfrequency o by defining

=-- 2_l_Rso/e4G; in general, 3- is complex, with a real part
8-, and an imaginary part 6,. Negative vahies of _, correspond
to growing modes. We also define Ro such that x(R_,)- I;
therefore, R_)= _ 0110"-R_.

Equation (1) assumes that the only torques are produced by
viscous forces and radiation pressure. In this case, the preces-
sion of the warping modes must be prograde, i.e., in the same
direction as disk rotation (MBN). In a binary system, however,
the companion star also exerts a force on the accretion disk.
Since the orbital period is much shorter than the viscous times-
cale, we average the resulting torque over azimuth and keep
only the leading (quadrupole) terms (e.g., Katz el al. 1982).
This orbit-averaged torque term will cause a ring of the disk
that is tihed with respect to the binary plane to precess, in a
retrograde sense, about the normal to the binary plane. (In-
cluding the time dependence of the torque would result in
nutation as well as precession, a complication that we do not
consider here.) Relative to the angular momentum density of
a ring, E;R:_, the torque term is

ZR:fl 8 \ ,.3 ] _, sin 2/3 (sin 7, - cos % 0),

(2)

where R is the distance from the compact object of mass M<,

and r is the separation between the companion star of mass M
and the compact object. Writing the R-dependent coefficient of
this term as w_)(R/Ro)v2, the quadrupole torque then contributes
a term i_ox 3W to the right-hand side of the twist equation (I),

so thai the equation becomes

3zW OW
-- + (2 - ix) -- = ix 3 2_(_ + _3t,.v_)W, (3)

x 3x 2 3x

where the quadrupole precession fl'equency K,,, has been non-
dimensionalized in the same manner as the eigenfi'equency in
equation (1).

Equation (3) must be solved numerically. However, an entire
class of solutions can be derived from the results of MBN,

which do not include an external torque. Comparison of the
twist equation with and without quadrupo[e torque shows that
equation (3) with 3- - 0 is fiwmally identical to equation (I)
(in which &,, = 0), if we replace 3 with 5' = 5 - ]. In other
words, the purely precessing (i.e., real _, since _,, is real) modes
with no external torque have the same shapes as nonprecessing
modes with quadrupole torque, with K,o = 3-,, except that the
latter correspond to a larger value of the surface density index
5. The fact that these modes are nonprecessing, i.e., the warp
shape is fixed in an arbitrary inertial frame, is rather remarkable,
as it requires that the radiation torque (which attempts to make
the warp precess in a prograde sense) and the quadrupole torque
(which attempts to nlake the disk precess in the retrograde
direction) precisely balance lit each radius.

We impose the outer boundary condition that the disk must
cross the Z = 0 plane at some radius, and we impose the usual
no-torque inner boundary condition. This choice of Z - 0 for
the outer boundary condition is not strictly correct; what we
take as the disk boundary here corresponds to the circulari-
zation radius R<.,, in a real X-ray binary, and the actual outer
boundary will typically be at R,.., _ 3R<,<. The proper boundary
condition then constrains the gradient RW 'i_W/i_R at R<.,<.(J.
Pringle 1997, private communication). We have modeled the
outer disk (R_,_ < R _<R,,,,), assuming that VR = 0 for R >_
R<,< and W' = 0 lit R ...... and have examined how these solutions
couple to the inner disk solutkms. We find that the gradient is
always sleep at R<i,_, so that the outer and inner disk solutions
match up lit radii that differ by _10eX fiom the radius of the
zero, find the lilt declines rapidly to zero for R > R<,<. Thus,
the true solutions differ little from the zero-crossing eigen-
functions calculated here, and we can ignore any minor dif-
ferences for the purposes of this Letter. A full discussion of
this important point is given in MBN.

As in MBN, we separate equation (3) into real and imaginary
parts find solve as an initial-value probleln, iterating to lind the
zero-crossing eigenfunctions. In the absence of an).' external
torque, there is a marked change in the behavior of the eigen-
functions across 5 = I (see MBN), so we consider here the
two cases 5 = 0.75 (corresponding to the usual gas pres-
sure-supported Shakura-Sunyaev disk) find 6 = 1.25.

in Figure 1 we plot the location x,, at which the eigenfunction
returns to the Z = 0 plane (in the terminology of MBN, these
are the first-order zeros, closest to the origin) and the normal-

ized precession rate 3-,, as a function of the dimensionless quad-
rupole fiequency _o, for 5 = 0.75. In Figure 2 the same quan-
tities are plotted for 5 = 1.25. The series of curves are for
different growth rates, fl'om a value of _-,close to the maximum
growth rate, down to small growth rates for which the curves
essentially coincide with the steady state 3- = 0 curve, which
is not shown. The dolled portions of the curves mark the pro-
grade modes, the solid portions show the retrograde modes.
Although there are significant differences in behavior for the
two values of 5, there are the following similarities overall:
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FI(;. l.--(a) Top: Location of the disk ouler boundary % as a flmction of

the dimensionless quadrupole precession frequency &_, For surrace-densily in-
dex _ - 0.75. Curves are for increasing values of the gro'aqh rale o-, from

right to left; the plotted curves arc fl)r -_, 0.001, 0.01, 0.02, 0.03, 0.04,
and 0.05. The solutions with retrograde precession are marked with solid lines,

the prograde solutions with dotted lines. The maximum growlh rate plolted

(0.05) is very close to the maximum allowed growlh rate. (h) Br,qt,.._nl: Di-

mensionless precession rate _, I\_r the same models as in Ca).

1. There is a maximum value of _,, above which the torque

from the companion is too large to allow warped modes to
exist.

2. For a given value of&o, the solutions are generally double-
valued, with one prograde and one retrograde mode or two
prograde modes; the retrograde modes return to the plane all
larger radius than the prograde modes.

3. The precession rates of the modes _, are much larger than
the associated values of &0; this is unsurprising, since the quad-
rupole torque fixes the boundary condition at the disk's outer
edge, which is always at R >> R o (recall x(R o) -= 1).

For any single value of the growth rate 8-,, the disk boundary
xu is at a fixed radius fi)r a given value of _> (and choice of
solution in the double-valued regime). The value of 6%, in turn,
is set by the masses and separation of the components of the
binary• In general this vah, e of xo will not match the actual
outer boundary of the disk. This implies that in real disks, the
location of the outer boundary will determine the growth rate,
provided that the outer boundary falls within the range of radii
occupied by the warp modes, either prograde or retrograde. As
can be seen from Figures l a and 2a, the fraction of the (&u,
xo)-plane occupied by retrograde modes is nonnegligible, al-
though it is smaller than for prograde modes. The retrograde
modes essentially always have their outer boundaries at larger
radius than the prograde modes. The precession rates b, are
usually comparable for the prograde and retrograde solutions,
although for 6 = 1.25, [3,I for the retrograde modes may be
several times larger than for the prograde modes. (The abrupt
termination of the curves for these first-order eigenfunctions

Fro. 2. Ca) Top: As in Fig. ]a, for _ = 1.25. From right to left, the ploued

curves are for b, - 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

The maximun] growth rate plotted (I.0) is very close to the maximum allowed

growth ralc. (h) [Iollom: Dimensionless precession rate _, R)r the same models
as in (a).

is genuine; the higher order eigenfunctions extend to larger x,
generally with different values of a, and a, for a given value
of &,.)

3. I)ISCUSSION

Where do real X-ray binary systems lie in this parameter
space? In order to quantify our results, we musl make a

specific assumption about the viscosity,; we also evaluate the
results for _ = 0.75, but il_ere is in fact very liule depen-
dence on a. The precession rales can be expressed in terms
of the viscous timescale r .... _ R/F_ ~ 2R"/3v_ at tlae critical

radius R, [the minimum radius for instability: typically
Rcr_ lO<'rle(O.1/e)'-M/M,__ cm; see MBN], with _v., - x(R<,):

rJ,.r2,7:_
a,. (4)

°'- 12r,,,_(R{,,)

Using the ce-prescripiion fl_r viscosity, defining the precession

timescale to be r_..... - 2_r/o,, and normalizing to typical values,
we lind that

-r,,,_~ 25 (d_..l)_ odO. 1 \0_0]-/,<<, _ clays. (5)

Thus, the expected precession tinlescales for the disks are from
weeks to months.
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Thequadrupoleprecessionfrequencycooisgivenby

coo =_,.3/ ,7-', M/

-_ 4.9 x 10 i, r,] \MT,]
s-', (6)

where r_ = r/10" cm. Since _,. is normalized in the same
manner as 8, we find thai

&0~2x 10 _ 4, Co,/0.1>?,  0.Tie, "
(7)

From Figure I it is evident that the relevant values of wo fall
in the range in which warped disk solutions exist, with either
prograde or retrograde precession. Furthermore, the outer
boundary radius.vo that characterizes these solutions is typically
R,,,, _ 10_Rs, which is also the expected value for real X-ray
binary sytems.

The estimates of r,,,_._and &o are sensitive to the wflue of the
radiative efficiency e--extremely so, in the latter case. How-
ever, we do not expcct this to be tree in real X-ray binary
systems. The steep dependence on c in the linear theory esti-
mate comes from the scaling of the fiducial radius Ro. Physi-
cally, howevel, the important quantity will be the value of co
at the disk boundary, and not its value at R o, since it is the
outer boundary condition that determines the importance of the
torque from the companion. Thus, we expect that in reality the
timescales and frequencies will be less sensitive to e than in
the above estimates.

The linear theory of disk warping leaves a number of ques-
tions unanswered. Although we have demonstrated that ret-
rograde as well as prograde solutions exist when a quadrupole
torque is included, there does not appear to be any reason for
choosing one mode over another. For a fixed value of coo, the
retrograde solutions (when both exist) occur for larger values
of the boundary radius, but this difference is not large, being
only a factor of _5-10 at most (see Figs. I and 2). In Figure
3 (Plate LI) we show the shapes of the most rapidly rotating
prograde and retrograde ,nodes for _5= 1.25, for both the steady
state and fastest-growing modesl (The _i = 0.75 modes are very
similar; this difference from the solutions with no external

torque [MBN], in which the shapes of the growing modes are

very different for 6 > 1 and 6 < 1, is a reflection of the im-
portance of the quadrupole torque, which always dominates at
large radius.) The fast-growing prograde modes are more
"wound up" (i.e., the azimuth of the line of nodes rotates
through a larger angle between the origin and the disk bound-
ary) than the fast-growing retrograde modes, which may result
in differences in the effects of self-shadowing on the disk. An
important observational task, given our earlier argument that
warped precessing disks are probably common in X-ray bi-
naries, will be to determine if retrograde precession is the norm
in such systems or only occurs in some fraction of them. As
we noted earlier, both of the original suggestions for producing

precessing disks in X-ray binaries require thal the sense of
precession be retrograde.

We also cannot establish fl'om linear theory that steady long-
lived solutions actually exist. Work on the nonlinear evolution
of radiation-warped disks (with no external torques) by Pringle
(1997) suggests that chaotic behavior can result as a conse-
quence of the feedback between disk shadowing and the growth
of the warp. Calculation of the nonlinear evolution of disks in
X-ray binaries will be necessary to determine whether steady
solutions do exist in this case, and if so, under what conditions.
We have also ignored the effects of winds, which could also
drive warping (Schandl & Meyer 1994; Pringle 1996). How-
ever, in the case of X-ray-heated winds, this seems unlikely
to be important, since at the base of the wind, the gas pressure
is much less than the radiation pressure (e.g., Begehnan et al.
1983).

Pringle's instability appears to be very promising as a so-
lution to this hmg-standing problem. It is expected to be ge-
nerically important in accretion disks around compact objects
and is inherently a glc, b,:,'l mode of the disk, so that the warp
shape precesses with a single pattern speed. In addition, it
provides a natural mechanism for producing nonplanar disks
in X-ray binary systems, so that the torque fronl the companion
star (which affects only the out-of-plane portion of the disk)
is able to influence the disk shape, allowing retrograde as well

as prograde modes to exist.
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FIG.3.--Surfaceplotsshowingtheshapesofseveralofthewarpeddiskmodesfor6 = 1.25. In all cases the amplitude of the warp has been fixed at 20_,
and the solutions have been plotted to the disk boundary. Top left: The most rapidly rotating (largest o,) steady state (a, = 0) prograde mode. Top right; The most

rapidly rotating steady state retrograde mode. Bottom left: The fastest-growing (maximum -a,), most rapidly rotating prograde mode. Bottom right." Thc fastest-

growing, most rapidly rotating retrograde mode.
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