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ABSTRACT

A simple two-layer variable infiltration .capacity (VIC-2L) land surface
model suitable for incorporation in general circulation models (GCMs) is
described. The model consists of a two-laver characterization o_ the soil within a
GC,_I grid cell, and uses an aerodvuam/c representation of latent and sensible
hea_ fluxes at the land surface. The effects of GC M spatial subgrid variability of
soil moisture and a hydrologically realistic runoff mechanism are represented in
the soll layers. In the upper layer, the spatial distribzttion of infiltration and soil
moisture capacities is incluaed. The lower layer is lumped spatially and uses a
nonlinear drainage representation. The model partitions the area of interest into
rnultipie land surface cover type_; for each land cover type the f_action of plant
roots in the upper and lower zone is specified. Evaporation occurs via canopy
evaporation, evaporation from bare soil, and transpiration, which is represented
using a canopy and architectural resistance formulation. The model was tested
using long-term hydrologic and climatalogical data for Kings Creek, Kansas to
estimate and validate the hydrological parameters. Surface flux data fror_ three
First International Satellite Land Surface Climatolo87 Project Field Experiment
(FIFE) intensive field campalgn_ in the summer and f_li of 1987 in central
Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study
(ABRACOS) in Brazil were used to validate the model-simulated surface energy
fluxes and surface temperature.

I_ addition, a derived distribution approach which accounts for the ,ffects of
subgrid scale spatial variabilities of precipitation on surface energy fluxes_ soil
moisture_ and runoff production was developed for __flextended version of VIC-
2L model. The derived distribution approach differs _om pixel-based approaches
which discretize p_ecipitation over a spatial domain, and from previous statistical
approaches that combine the point precipitation distribution with the point
statistical distribution of selected land surface characteristics. The results of the
derived distribution method are compared with those obtained using an
exhaustive pixel-based approach, and the results obtained by applying maiform
spatially averaged precipitation to the VJC-2L model. Under most conditions,
the derive3 distribution approach gives good approximations to the pixel-based
approach, .and is superior to the constant precipitation approach for surface
t_uxes, surface temperature, runoff, and soil n_oisture. Finally, .VIC-2L sensitivity
of predictions to model parameters were explored for two different climate
regimes using both fractional factorial and one-at-a-time sensitivity analyses.
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CHAPTER 1 INTRODUCTION

I.I. MotiVation for and dL_afion structure

The parsmeterizati_n of the hydrologic and thermal characteristics of the

land surface is important for general circulatio_ models (GCMs) used fc-r c!"mate

prediction and weather forecasting (e.g., Dickinson 1991, Dickinson and

Kennedy 1991, Wood 1991, Shuttleworth 199la, Henderson-Sellers and Pitman

1992, among others). Garratt (1993) review_ct the land surface and boundary-

layer treatments in Some 20 GCMs through sensitivity studies of climate ...........

simulations, and found that the regional and global climate are most sensitive to

albedo, surface roughness length, vegetation coverage, and soil .moisture

distribution. The. inclusion of a canopy scheme which allows more reasonable

consideration of effects of albedo, roughness, and soil moisture si_5cantly

improved the simulated climate. It. also facilitated studies of the effect of

deforestation .on climate (see, for example, studies of.the regional impact of

Amazonian deforestation by Sud et al. (1990), Pitman e_ al..(1993), Henderson-

Sellers et al. (1993), and Eltahir and Bras (1993), among others).

Although complicated, canopy, schemes such as BATS. (Biosphere°

Atmosphere Transfer Scheme, Dickin.qon et al. 1986), SiB (Simple Biosphere

model, Sellers et al. 1986), and BEST (Bare Essentials of Surface Transfer,

Pitman et al. 1991), and simpler.canopy models (e.g., Noilhan and Planton

1989) have been implementated into GCMs to give more reasonable climate

simulations, precipitation, evaporation, soil moisture, and surface temperature

are still not, in general, well simulated. Examination of systematic errors in

GCM climate simulations, particularly over la_d areas, is an active research

area. Verseghy et al. (1993)found that the a-_sumption made in many land

surface schemes that excess surface water is removed immediately from the land

surface system can result in.substantial overestimates of surface temI_eratures in

continental interiors. Garratt (1993), in his review of sensitivity studies,
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suggested that there is a need for a more realistic land surface representation in

GCMs, particularly with respect to (1) surface flUxes at the appropriate

horizontal resolution, (2) surface runoff and canopy interception processes, and

(3) the spatialdistributionofrainfallwithin a GCM grid.

in this dissertation,a two-layer variable in_Itratloncapacity (VIC-2L)

model that attempts to incorporate the above three features suggested by

Garratt (1993) isdeveloped. The model includes a canopy layer, the effectsof

spatialsubgrid variabilityof soilmoisture with a hydrologicallyreasonable runoff

mechanism, and the ir_uence of the subgrid spatialdistributionof rainfall.The

development of the VIC-2L model is described in Chapter 2, a_d is evaluated

using observed data from the FIFE (centralKansas, USA) and ABRACOS

(Amazonia) sitesin Chapter 3. These two sitesare suf_cientlysmall that the

assumption of constant precipitationwithin the measurement area is reasonable,

Chal)ter4 exploresthe sensitivitiesof the VIC-2L model parameters. In Chap.ter

5, an extensionof the VIC-2L model with none-dimensional derived distribution

representationof spatialsubgrid variabilityin precipitationis described. The

resul_sfor versions of the VIC-2L model with constant and spatiallyvarying

precipitationare compared and evaluated. Conclusions and recommendations of

future work are given in Chapter 6. In the remainder of this chapter, several

la_d surface para_eterizatiozis developed previously are reViewed. Land surface

schemes that include the spatialvariabilityof rainfallwithin a grid area are

reViewed in Chapter 5.

1.2. Background

The pro_!e_ of how to represent land sudac.e .processesin general

circulationmodels that are used for climate simulation and numerical weather

prediction has drawn the interest of climate modelers, and increasingly,

hydrologistsand system_ ecologists. Early geneaation GCMs did not include

representationsof land surfacehydrology, insteadthey used pr_cribed surface

wetness and temperature, and thus could not account for the feedbacks between

the land surface and atmosphere. In retrospect, such representationshave



proved useful only for examining the limiting cases: perpetually wet and dry

surfaces (Shukla and Mintz, 1982). These early studi_s confirmed the

imp,ortance of including the interactions between th_ land surface hydrology and

atmosphere.

Notwithstanding the desirability_ of better representing the land surface in

GCMs, the spatial Scale of the GCM "grid box" is so large (typically at least 100

kin) that only relatively simple model_ can be justified, especially considering

the other sources of uncertainty in climate and weather prediction (e.g., cloud

physics, ocean circulation). Manabe et el. (1969) followed thi_ logic in using-.

Budyko's 'bucket' model to represent the laud surface hydrology at the global

scale. The bucket model _sumes that all rainfall.is infiltrated until soil moisture

capacity is exceeded, whereafter the excess precipitation becomes runoff.

Manabe's. bucket model uses a simple relationship between actual and potential

evaporation which is"o/_ten referred to as a beta function. Milly (1992) pointed

out the conceptual inconsistency in calculating the potential evaporation and the

coefficient "beta" for this kind o£ model formulation by using the modeled

surface temperature to evaluate potenti_l evaporation. He argued that the

appropriate temperature to use for evaluating potential evaporation is that of a

freely evaporating surface, and described, two approaches to remove the.

inconsistency. The bucket model is clearly simplistic with respect to infiltration

and runoff production, in additiof_ to evaporation, and ignores vegetation effects

on evapotranspiration, exceptto the exte,_t _hat thebetafunctlon, acts as a

surrogate. Another problem with the bucket model.is that in its most common

implementation, the parameters are assumed to be constant over the globe,

although this assumption can be relaxed using suitable data_.__such _. globally

varying soil water holding capacities.

V_nile the shortcomings of the bucket model and related simple

representations of the land surface, such a_ the two-layer surface model used in

the GISS GCM (Hansen et el. 1983) are clear, the pathway toward more

realistic parameterizati0ns is less obvious. The difficulty of estimating

parameters globally, as well as the desire to .keep the complexity of the land
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Surface representation compatible with that used to represent other elements of

the atmosphere-land-ocean system, are important considerations in determining

what form the next generation of land surEace hydrology models for GCMs

should take. Mintz (1984) and Rowntree (1988) revie_vedthe impact of land

surface boundary conditions on simulated climate and pointed out that thd

atmosphere is sensitiveto land surface eval_otranspiration, which is largely

affected by changes in available soil moisture or in albedo.. Their review

stimulated the incorporation of improved of canopy and soilformulations in

land-surfaceschemes in GCMs (Gartatt 1993).

One directionthat has been pursued is to improve the representationof

soilmoisture dynamics, and especiallyto representvegetation interactionswith

the soilcolumn and the atmosphere explicitlyso that effectsof biosphere-climate

interactionscan be studied. The resultingclass of models is known as soil

vegetation atmosphere transferschemes (SVATS). Among the SVATS that

have beea developed for GCM use are BATS (Dickinson et al.1986, Dickinson

et al. 1993) and SiB (Sellerset ai.1986). A distinguishingfeatureof SVATS,

which is evident in both BATS and SiB, is that they have a high level of

verticalresolutionand structure, but a low levelof horizontalresolution(Wood

1991). For ixistance,the parameters for the soiland vegetation propertiesate

assumed constant within a GCM grid, thus ignoring spatialheterogeneity, in

addition, most SVATS use a "fiatearth" representationof the laud _ufface

which neglects,the effectsof topography on runoffproduction and sollmoisture

dynamics. Because of their.emphasison Verticalstructure, SVATS arguably do

a betterjob of partitioningincoming solarra_liationintolatentand sensibleheat

than they do in accounting forsollmoisture dynamics and runoffproduction..

An alternativeline of investigatlon is to develop simpler land surface

models that stillincorporate important features of the governing hydrological

processes. For example, Xue et al. (1991) simplifiedSiB in three aspects.

These are the parameterization of the diurnal variationof surface albedo, the

effectof root zone soilmoisture on stomatal resistance, and the suff_e stress

and fluxesof heat and moisture between the top of the vegetati.onc_anQpy and
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the atmospheric reference level..After these simplifications, the t_to Vegetation

storiesin SiB become one layer. With negligiblelossof accuracy, the number of

para'.metersof SiB model #as reduced by Xue et al.(1991)from 44 to 21.

Mahrt and Pan (1984) developed a two,layersoilhydrologicalscheme for

use iu GCMs and numerical weather predictionmodels. There are three major

featuresin their scheme. First, ithas a thin upper layer used to representthe

large ve'rticalmoisture gradient near the surfaceduring evaporation. Second, it

inciudes a strong dependence of hydraulicdiffusivityon the verticaldistribution

of soilmoisture. Finaliy, itestimatessurfaceevaporation by using near-surface

soil water flux i_ormation. They also suggests that transpiration can be

estimated by relatingit to layer-averagedmoisture and.potentialevaporation if

vegetation ispresent.

Abramopoulo._ et al.(1988) developed a simple land surface scheme that

includes multiple soillayers with specifiedhydraulicconductivity and matric

potentialfunctions rather than a constant diffusivityto describe the soilwater

dynamics by using Darcy's law. Vegetative resistance_ evap.orationfrom

interceptedprecipitatiozland dew, evaporation from bare soil,and transpiration

are all explicitlyrepresented. Abramopouios et al. (1988) compared the

evaporation predicted using an areallyweighted average of a heterogeneous land

surface with the evaporation obtained using area-weighted vegetation and soil

characteristicparameters, and found that it is better to average the subgrid

fluxesthan to average the soil_andvegetationparameters.

Noilhan and Pianton (1989) developed a simple land surface

parameterization for meteorological models. Unlike BATS and SiB where the

canopy and soiltemperatures can vary, they treated"thesystem as isothermal

with equal canopy and the upper soillayer temperatures. Also, their model

does not calculate soilfluxes beneath the vegetation. BATS and SiB both

calculate detailed fluxes from the soilbeneath the canopy, the open areas

between the canopy, and the canopy itself.

Pan (1990) used the bucket concept to estimate the actual evaporation

with _,egetationlumped with soilin the National MeteorologicalCenter medium-
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range forecast (NMC MRF) model. He overcame the inconsistency problem

noted by Milly (1992) by calculating the potential evaporation with a

hypothetical temperature from a wet surface using the Mahrt and Ek .(1984)

method, rather than with the unsaturated surface temperature when the soil. is

dry. When vegetatio,_ is present, potential evaporation is calculated using

Monteith's minimum resistance concept.

Pitman et al. (1991) and Yang and Pitman (199,,, developed a land

surface scheme "which uses simplified (as compared with BATS) albedo and

stomatal resistance formulations, and explicit repre.sentation of frozen soils. In

addition, it calculates infiltration, runoff, and soil evaporation following

Eagleson's (i970) approach. The canopy layer is formulated as a nonisothermal

system like BATS, a.lthough the algo_thm for. canopy temperature is different.

SieLert et al. (i992) developed a soil-vegetation model for use in a

mesoscale atmospheric model. The canopy model is based on the work of

I_eardorff (19.78) and Dickinson (1984). The soil model is based on S_e*eers et al.

(1983) which includes a complicated treatment of heat and moisture transport

within the soil. The soil temperature and moisture content are represented by

two coupled differential e_luations,

Pollard and Thompson (Bonan et al. i992, Bouan et al. 19§3) developed

a six-layer soil model for GCMs that explicitly represents the effects of soil

freezing and thawing on latent heat flux. The snow cover is represented by

three-layers. The canopy layer is formulated in a similar way to BATS and SiB,

but is less complex. The scheme has. been used to study the effects cf boreal ..

forests on climate in the National Center for Atmospheric Research community

climate model CCM1 (Bonan et al. 1992).

Kondo and Watanabe (1992) developed a multilayer energy budget model

fc,r a vege.tation canopy. The model represents the energy budget of leaf

surfaces, the ground surface, and turbulent and radia_,ive transfer processes

within the canopy. The vegetation is partitioned into 50 layers and the energy

budget equation for each layer is solved for steady and horizontally homogeneous
flow.
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Numerical weather, modelers have begun to include simplified

parameterizations of 1and surface processes into operational numerical weather

prediction models. Examples are. the models of the European Center for

Medium-range Weather Forecasting (ECMWF), the U.S, National

Meteorological Service (NMC), the UK Meteorological O_ce, the French

Meteorological Service (Direction de la Meteorologic), and the japazi

Meteorological Agency (Blondin 1991). These models have many features in .........

common. They all simulate the diurnal cycle, have their first atmospheric level

inside the cor_stant flux layer (CFL), use Monin-Obukhov similarity theory,

and use only one roughness length for momentum, he_t, and moisture. The

surface moisture flux, however, is treated differently in each model.

Although the models discussed above have various degrees of complexity

in their canopy and soil representations, none of them considers subgrid scale

spatial variability in either meteorological inputs to the. land surface or laud

surface characteristics. Representation of heterogeneities in terrain, soil,

vegetation, and precipitation at scales smaller than those resolved by GCMs has

been a relatively recent concern. Warrilow et al. (1986) took account of spatial

variations in rainfall 'cy assuming that only a fraction of a grid cell receives ._

rainfall, and that ivithin the. fraction covered, rainfall depth is distributed

exponentially. However, in their parameterization, the interception of rainfall

was assumed to be uniformly distributed over the entire grid cell, and thus

evaporation was overestimated (Lean and Warrilew 1989). Follo_ng .the

formulation of Dolman and Gregory. (1992), Lean and Ro_mtree (1993)

incorporated a new interception representation which assumed that interception

occurred only over a fraction of. the grid cell within which the rainfall was

governed by an exponential distribution.

Wetzel and Chang (1988) incorporated the effect of subgrid variability in

soil moisture into the evaporation process_by using a statistical distribution to

represent the soil moisture within a grid cell. The .soil column in their model

consists of three layers with a thin surface layer and two thicker sublayers. The

first sublayer is assumed to contain 50% of all plant roots and is used to



represent the diurnal variation of soil moisturei and the second sublayer

contains th_ other half of the roots and is used to represent time scales of one

day or longer. Evaporation is evaluated based on the Ohm's law analog form.

The grid-cell-average evapotrau_piration was then summed based on weighting

factors obtaine&from the statistical distribution of the soil moisture.

Avissar and Pielke (1989) investigated the subgrid scale variability

associated with land surface heterogeneities in a mesoscale model by ci_sifying

the surface into similar homogeneous patches. After regrouping into subgrid

classes, a p_ametenzation for homogeneous surfaces .was applied. The total_

fluxes of energy of each gri/d cell _vere then evaluated according to the

distribution of the different s_bgrld types within the grid cell. Their work

showed that Spatial heterogeneity in vegetation can have significant effects on

temperature and precipitation,

Entekhabi and Eaglesor_ (1989) prescribed the subgrid spatial variability

of soil moisture and storm precipitatiozi statistically and derived expressions for

hydrologic fluxes based on assumed subgrid soii _d l:_ecipitation variability.

However, their analysis is limited to specific assumed statistical distributions,

The scheme was implementated into the NASA Godd_rd Institute for Space

Studies :(GISS) GCM by Johnson et al. (1993).

Pielke et al, (1991) illustrated the range of observed spatial variabilities of

landscape characterlstic_ using observational evidence from field and satellite

data. They investigated the effects of spatial variability in land surface

characteristics on lower tropospheric fluxes of energy in the absence of clouds.

Oxi this basis, they argued that the influence of mesoscale landscape spatial

variability on the atmosphere should be explicitly paratneterized.

Avissar (1991) numerically aggregated grid scale surface fluxes for nine

classes of stomatal resistance. In the aggregation, two st_es of scaling were

used. The first was from the leaf scale to the patch scale; the second was from

the patch scale to the GCM scale.

Avissar (1992) used a statistical-dynatnical appro_h to investigate



subgrid scale heterogeneity in stomatS resistazlce, where a probability density

function rather than a single representative value was used. Each term in the

land surface energy budget was expressed, as an integral of a probability density

function of stomatal resistance. Five different i_robability density functions for

stomatal resistance were explored. Compa.dsons between the results obtained by

the statistical-dynamicS approach and by use of a single representative stomatal

resistance showed that there were large absolute and relative differences due to

the nonlinearity of _.ud-atmosphere interactions_

conductaaces in a potato field in New Jersey

supported use of a two parameter !ognormal

The observations of stomata/

during the summer of 1989

distribution to describe the

distribution of stoniatal condt_ctanc,,.s.Bonan e_ S. (1993) Sso used the

statisticS-dynamic approach to study the effectsof subgrid scaleheterogeneity in

leafarea index, minimum and maximum stomatal resistances,__d soilmoisture

on gridscaletimes.

Koster and Suarez (1992a) proposed a mosaic strategy, similar to that

used by A_dssar and Pielke (1989), to account for the effectsof different

vegetation on surface energy fluxes. In the mosaic strategy, each vegetation

type is represented by a-tiie,which iscoupled independently to the atmosphere.

The rest of the canopy and soilparameterization issimilar to SiB (Sellerset al,

1986). Koster and Suare_. (1992b) extended their earliermosaic strategy by

separating the tots turbulent flux into latent and sensibleheat components. In

addition, they compared the mosaic approach with a mixture approach in which

differentvegetation types were assumed to be hor_ogeneously mixed over a GCM

grid cell.

The land surface :Jcheme for the Canadian Climate Center GCMs was

developed by Verseghy (1991) and Verseghy et al. (1993). In this model, three

soil layers are used to represent both thermal and moisture regimes. When snow

is present, it is assumed that the entire area is covered if the Snow depth is.

greater than an assumed surface roughness height of 0.10 m; otherwise, only a

fractionof ground area iscovered by snow with a fixed depth of 0.10 m.. At the

end of each time steI_, the temperature and moisture content are averaged by"
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the relative fraction of snow covered area. In addition, the model calculates the

canopy and ground surface temperatures separately. As in the strategy adopted

by Avissar and Pielke (1989), eact_ grid cell is divided into four different

sub_eas. They are_b_e soil, snow-covered, vegetation-covered, at_d

vegetation-and-snow covered areas. Within the vegetation-covered area, average

canopy par_aneters based on the presence of four different vegetation types are

calculated.

Ducoudre etal. (1993) developed a set of parameterizations of the

hydrologic exchanges at the land/atmosphere interface within a GCM. The

model allows seven different vegetation classes to be present simultaneously

within the same grid cell. The total latent heat flux transfe_ed to the

atmosphf-_, is obtained by taking the average of evaporation f_om bare soil,

transpir_..ion and interception loss from each of t-he 7 vegetation types. In the

soil parameterization of the model, rain fills the soil col_ from top to bottom,

and water is removed £rom the closest level where it is available.

Famiglietti and Wood (1994a) developed a local water and energy balance

model which is approp_ate for a stream catchment, but could be generalized to

a region such as a GCM grid cell. The model partitions the land surface into

bare soil, wet canopy, and dry canopy using a pixel-based representation of the

land surface derived from digital elevation data. Spatial variability is explicitly

incorporated by discrete variation of the model parameters and inputs over the

spatial domain. The local fiu_es of each g_i/'d element we aggregated either

explicitly or by statistically aggregating the local fluxes through integration over

their respective spatial probability density functions (Famiglietti and Wood

1994b).

One of the r_ajot complications in developing and testing land .sudace

parameterizations for GCMs is that validation opportunities are few. A recent

exception is the work of Botts et al. (1993) who compared surface energy fluxes

and soil temperatures predicted by the ECMWF land sudace model with data

collected at the FIFE site in central Kansas during the summer of 1987. Their

work identified problems with four components of the model: the incoming
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shortwave radiation for clear sky conditions, the ground heat flux, surface

evaporation, and the _entrainment at the top of the boundary layer. They

concluded that the relatively thin (70 ram) top ground layer in the model was

the main reason for the errors in ground heat flux, and that deficiencies in the

surface evaporation algorithm were responsible for large errors in the latent heat

flUX.

1.3. P_earch obj_-tives •

The objectives of this research are: (1) to develop a simple la_d surface

scheme appropriate for GCMs that represents spatial variability in soil

characteristics, vegetation, and precipitation, and simulates explicitly direct

surface runoff and subsurface runoff; (2) to evaluate the model using observed

data; and (3) to explore the model parameters using sensitivity analysis.

The scheme to be developed is a generalization of the VIC model

described by Wood et al. (1992) and implemented in the GFDL-GCM by Stamm

et al. (1994). The new model consists of a simple two-layer characterization of

the soil column, and uses an aerodynamic representation of the latent and

sensible heat fluxes at the land surface. The soil moisture algorithm is a

generalization of the Arno model (Francini and Paccia_ 1991) in which the

infiltration, evaporation, soll moisture, az_d runoff generation vary _vit_d_ an

area (or within a grid cell in GCMs). The infiltration algorith_ in the VIC

model can be interpreted within the context of a spatial distribution of soils of

varying infiltration.capacities, it allows different types of vegetation to be

present simultaneously. In addition, it accounts for the spatial variability in

precipitation. Simplifications of the Arno model using the traditional beta

function representation of evapotranspiration, have previously been incorporated

in the Geophysical Fluid Dynamics Laboratory (GFDL) GCMs by Stannn et al.

(1994), and in the Max Pluck Institut GCM by Dumenil and Todini (1992).

There are major differences between the two-layer VIC model .to be

described here and the earlier versions inco_orated in the" GFDL and MPi

GCMs. The most important differences are the following: (1) both of the earlier
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schemes have a single soil layer, and neither expiicitly represents Vegetation in

the surface energy flux; (2) both of the earlier models distribute precipitation

unifoz_ly over the 8rid cell, $tam_.etal. (1994) concluded that _... the results

over North American and Eurasia [suggest] the need to represent the s_ace

hydrology with a two layer soil system ..._'.



CHAPTER. 2 DESCRIPTION OF TWO-LAYER VIC MODEL

In this chapter, the structure and the characteristics of the two-layer

variable infiltration capacity model (Liang et al. 1994) are described. The

definition of and dimension of each variable used in this and the following

chapters are given in the list of symbols at the start of this dissertation.

2.1. Introduction

The model developed here characterizes the subsurface as consisting of

two soil layers. The surface is described by N+I land cover types, where n"- 1,

2, - •., N.represents N different types of vegetation, and n = N+I represents

bare soil. There .is no restriction on the number of vegetation types in the

model_ but in the interest of model parsimony, N will almost always be less

than 10. The vertical and horizontal characterizations are shown schematically

in Fig. 2.1. The land cover types _e specified by their leaf area index (LAI),

canopy resistance, and relative fraction of roots in each of the two soil layers.

The evapotranspiration f_om each vegetation type is characterized by potential

evapotranspiration, together with.canopy resistance," aerodynamic resistance to

the transfer of water, and architectural resistance. Associated with each land

cover class is a single canopy layer, soil layer 1 (upper zone) and soil layer 2

(lower zone).

The upper layer (soil layer 1) is designed to represent the dynamic

behavior of the soil that responds to rainfall events, and the lower layer (soil

layer 2) is used to characterize the seasonal soil moisture behavior. The lower

layer only responds to rainfall when the upper layer is wet, and thus can

separate the subsurface flow from storm quick response. Roots. can extend to

layer 1 or layers 1 and 2, depending on the vegetation and soil type. For the

bare soil class, there is no canopy layer. In the present form of,the model, the

soil_characteristics (that is, the distribution of water holding capacities, as
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described below) are the same for all land cover classes. However, each cover

class may have different soil moisture distributions at each time step.

Infiltration, .drainage of moisture from layer 1 to layer 2, surface_runoff, and

subsurface runoff are computed for each cover type. The total latetzt heat flux

transferred to the atmosphere, total Sensible heat and ground heat fluxes, the

effective surface temperature, and the total surface r_off and subsurface runoff

a_e then obtained by summing.over all of the surface cover classes.

2.2. E_rapotranspiration

Three types of land-atmosphere vapor transport are considered in the

model. They are evararation fro/a ihe canopy layer of each vegetation class,

transpiration from each of the vegetation classes, and evaporation from .bare soil.

Total evapotranspiration over a grid cell (or an area) is.computed as the sum of

the canopy, vegetation, and bare sol! components, weighted by the respective

surface cove_ area fractions (see Section 2.6).

The maximum canopy evaporat;.on rate for the nth surface cover class,

Ec[n] , is specified as

Wi[n] 2/3 rw[n]
Ecin]= ( Wire[n]). Eptnl (2.1)•rw[n]Jrro[n]"

In Eq. (2.1), the argument n refers to the vegetation surface cover class index;

throughout the remainder of this thesis the depe.udence of many of the surface

and subsurface characteristics on surface cover class is implied by this argument

eve_ if not noted specifically. In Eq. (2.1), Wi[n ] is the amount of intercepted

water in storage in the canopy layer, Wim[n ] is the maximum amount of water

that the canopy layer ,.an intercept, Ep[n] is the potential evaporation rate from

a thin free water surface (Shuttleworth 1993), r0[n ] is the architectural

resistance that is due to the variation of the gradient of specific humidity

between the leaves and the overlying air in the canopy layer (Saugier and Katerji
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1991), and rw[n] is the aerodynamic resistance to the ttansfer of water. The

power of 2/3 in Eq. (2.1) is used according to Deardorff (1978). The form of Eq.

(2.1)" is a :beta" representati6n, where Ep[n] can be obtained by either

Penman's formulation (1948) or Penman-Monteith's formulation for a free water

surface (Shuttleworth 1993). Penman's formulation can be expressed as,

ARn[n] + pacp(es-e)/ra[n] (2.2)
Ep[n] = Pw" Le" ( _' + 7)

where A is the rate of change of saturation vapor pressure with temperature,

Rn[n] is the net radiation, Pa is the mass density of air, Cp is the specific heat of

air at constant pressUre, es and e are the saturated vapor .pressure and vapor

pressure respectively, ra[n ] is the aerodynamic resistance to the momentum

transfer in the atmosphere (subscripts "a" could be_"w_ "h", etc.), Pw is the

density of liquid water, Le is the latent heat of vaporization, and 7-is the

psychr metric constant. The Penman-Monteith's formulation for a free water

surface is expressed similarly to Eq. (2.2), except that the available_energy is

substituted for net radiation (Monteith and Unsworth 1990).

The maximum amount of water intercepted by the canopy can be

calculated using the formulation of Dickinson (1984),

Wire[n] = K L x LAI[n,m] (2.3)

where K L is a constant, taken to be 0.2 ram following Dickinson (1984), and

LAI[n,m] is leaf area index for the nth surface cover class in month m. The leaf

area index of a canopy is the projected leaf area per unit ground surface area

(Campbell 1977).

The aerodynamic .resistance to the transfer of water twin], i_.e., subscript

"a" becomes "w') is calculated as (Monteith and Unsworth 1990):
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.

C2.4)

where un(z2) is the wind speed over the nth surface cover class at level z2[n],

and Cw[n] is the transfer coefficient for water which is estimated taking into

account atmospheric stability (Louis 1979) as follows:

where

cw[n]_ 1.351_a2[.]×Fw[n] (2.5).

a2[n] -_ K 2 "

is .the drag coefficient for the case of. near-neutral stability, K is von Karman's

constant, which we_take as 0.4; d0[n ] is the zero platte displacement height,.

and z0[n ] is the roughness length. Fw[n] is defined as

Fw[n] = 1 - 9"4roB[n]

I + c.IRiB[n ] [1/2'
robin] < 0 (2.Va)

1 0 < RiB[n ] < 0.2 (2.7b)
Fw[n] = (I +4.7RiB[n])2 ' - -

where RiB[n ]is the bulk Richardson number and isestimated _,

RiB[n]= g"zr[n]"(Ta[n]- Ts[n])
Ta[n].V2 (2.8)

I
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where g is the acceleration due to gravity, Ta[n ] is the air temperature, Ts[n ] is

the surface temperature, and Zr[n] and V 2 are the reference height and the

modified wind speed, and they are expressed follo_i'ng Dickinson et a!. (1992)

and Smith et al. (i993),

Zr[n]-- z2[n]-do[n] (2.9)

and

(.n(Z2))2 + u2

with Uc=1.0 m/s forunstable conditionsand Uc--'0.1m/s for stableconditions.

The parameter c in Eq. (2.7a)isexpressed as

c = 49.82 x a2[n] x ( z2[n]z_n_O[n] )1/2. •(2.11)

In the Louis (.1979)representation, the transfercoefficientsfor waferand heat

are taken to_be equal, but ..theycan b._ differentfrom the.coefficientfor

momentum which has been shown by experimental and theoreticalwork (e.g.

Garratt and Hicks i973j Garratt 1978, Brutsaert 1982, and Duynkerke 1992).

Based on the formulation of Blondin.(1991) and Ducoudre et al. (19.93),.__

the transpirationratewas obtained using the form

Et[n] -'-[I-{ Wi[n] _2/31 rw[n]
,-Wim[n] , j Ep[n] rw[n]+r0[n]+rc[n]

(2.12)

where rc[n]isthe canopy resistance.Itisexpressed as

rc[n ] = rmin[n] gsm [n]
LAI[n,m] . (2.13)
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In Eq. (2.13),"train[n]is the minimum c_mopy resistance, gsm[n] is a soil

moisture stressfactordepending on the water availabilityin the rootzone for the

nth surfacecover cl_s. Itisexpressedas

-I cr
In]= 1, Wj[ I ........ (2.14a)

W__ cr

-1 Wj[nl<.W (2.i4c)gsm [n] "- O,

where Wj[n] is the soilmoisture content in layerj, jffil,2. W_ r is the critical

value above which transpirationisnot alfectedby the moisture stressin the soil,

and W_ isthe soil.moisturecontent at pern-lanentwiltingpoint. Water can be

extracted from layers I and/or 2 depending on "__:eractionsof roots fl[n]and

f2[n] in each layer.

There is no soil moisture stress, i.e., gsra[n]--i in Eq. (2.14), if either
cr

(i)W2[n] is greateror equal to W2, and f2[n]> 0.5 or (ii)Wl[n ] isgreateror
•¢r

equai_to W I , and f1[n]>_0.5. In case (i),.thetranspirationissupplied by layer

2 with no soilmoisture stress,i.e.,Et[n]=E_[n ] (regazdlessof water availability

in layer i);" in c_e (ii), the transpiration takes watez from layer i, i.e.,

Et[n]=Ei[n], alsowithout any sollmoisture stress.Othei_-ise,the transpiration

rate is

EtIn ] -- f1[n].Ei[n ] + f2[n].Ei[n} (2.15)

"where El[n], E_[n] are the tr_uspiration rate from layer 1 and layer 2

respectively, computed by using Eq. (2.12). If the roots oniy extend to layer 1,

then Et[u ] - Ei[n ] with f2[n] - 0..............
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For the case of a continuous rainfall with a rate lower than the canopy

evaporation rate, it is important to con_ider evaporation from the vegetation

wher i there is insufficient intercepted water to supply the atmosi_heric demand

within one time step. Thus in general, the evaporation rate from the canopy

layer, Ec[n], can be expressed 5s

Ec[n]= f[n].E:[n] (2._6)

where fin] is the fraction of the time step required for canopy_ evaporation to

exhaust the canopy interception storage. It is given by

wi["]+P'At ) (2.1_')
f[n]= rain(l, E_[,q.,,t

where P is the precipitation rate, and At is the time step which is taken as one

hour in the model calculation. The _ranspiration during the time step is then

Et[n]= (Z.0-f[n]).Ep[n] rw[nl +
rw[n]+r0[n]+rc[n]

Wiin] 2/s ._,, rwtn1
f[n].[1-( Wire[n]_ l.J_ptnJ rw[n]+r0[xi]+rc[n]

(2.1s)

where the firstterm represents the fraction of the time step for which no

evaporation occurs from the canopy interceptionstorage, and the second term

represents the fraction of the time step for which both evaporation from the

canopy and transpirationoccur.

Evaporation from bare soilis extracted only from layer 1; bare soil

evaporation E 2 from layer2 isassumed to be zero. When layerI issaturated, it

evaporates at the potentialrateEp[N-{-I],i.e.,
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E1= Ep[N+I]. (2.19)

When it is unsaturated, it evaporates at rate E 1 which varie_ within the bare

soil area due to the inhomogeneities in infiltration, topography., and soil

characteristics. E1 is computed using the Arao evaporation formulation

(Francini. and Pacciaui 1991). The Arao model uses the structure _of the

Xinanjiang model (Zhao et el. 1980, see also Wood et el. 1992), and assumes

that the infiltration capacity varies within an area, and can be expressed as

i/bi
i -_ i m [.1- (l-A) ] (2.20)

where i and im are the infiltration capacity and maximum infiltratiozi capacity

respectively, A is the fraction of an area for which the infiltration capacity is

less than i, and b i i s the infiltration shape parameter.. Let As represent the

fraction of.the bare soil that is saturated, and i 0 represent the corresponding

point infiltration capacity. Then, as suggested by Fig. 2.2, E 1 can be expressed

As 1

E I - Ep[N4-1]{ IdA + [ i0
• i/-i_i dA}.

0 As im [1-(1-A) ]

(2.21_

In Eq. (2.21),

which evaporates at the potenti_i rate.

the second integral in Eq. (2.21:h_

expansion:

the first integral represents the contribution of the saturated area,

Since there is no anal_ical expression for

E 1 is obtained .through a power series

i0 b i • 1/bi_

El-- Zp[N+1]{As + -_--(1-As)[l+zm. i_(i- As) +

bi 2/bi 3/b i

- T(I-As) +...]}. (2.22)
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This approach accounts for the subgrid variabilityin soilmoisture within the

area covered by bare soil.

2.3. Canopy layer

The water balance in the canopy layer (interception)ca_ibe described by

d_!n?- P- Ec[n]- Pt[n], 0 _:.Wi[n] _<Wimln ] (2.23)

where Pt[n] isthe throughfallrate of precipitationwhich occurs when Wim[n ] is

exceeded for the nth surfacecover class.

2.4. Surface runofffrom bare soil

Surface runoff is computed usingthe formulation for infiltrationgiven by

Eq. (2.20). The Xinaujiang formulation, which is described in detailby Wood_

et al.(1992), isassumed to hold for the upper soillayer only. The maximum
C

soilmoisture content o£ layer I, WI, isrelated to im and bias follows,

c im (2.24)
W1 = i + bi"

The Xinanjiang model effectivelyassumes that runoff isgenerated by those areas

for which precipitation, when added to soilixioisturestorage at the end of the

previous time step, exceeds the storage capacity of the.s0il. The directrunoff

from .these_eas is Qd[N+I], where N+I iRdi_t___the bare soil class. In

integrated form, the resultis

C

Qd[N+II.At =P.At-W I + W_[N+I], i0+P. At >im (2.25a)

c c i0+PAt 1+bi

Qd[N+I].At = P.At-W 1 + W_[N+I] + W 1 [1- im ] '

i0+P. At <ira (2.25b)
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where W_[N+I] is the soil moisture content in layer 1 at the beginning of the

time step. Note that, for the bare soil class, there is no canopy storage, hence

"throughfall" is equal to precipitation P. For bare soil, the water balance in

layer 1 is

W_[N+I] = W_[N+I] + (P-Qd[N+I]-QI2[N+I]-Ei).At (2.26)

4-

where W_[N+I] is the soil moisture content in layer 1 at the end of each time

step, and Q12[N+I] is the drainage from layer 1 to layer 2. Assuming that the

drainage is driven by gravity, we use the Brooks and Corey (1964) relation to

estimate the hydraulic conductivity, and thus we can express the drainage rate

from layer i to layer 2 as

wI[N+I]-Or
QI [N+i]= Ks.(

"" W I- 0r

-_p3
) (2.27)

where Ks is the saturatedhydraulicconductivity,Or is the residualmoisture

content and can be taken as zero in generaldue to itsvery small magnitude,

and Bp isthepore sizedistributionindex.

2.5. Subsurfacex_moff fzom bare soil

The. formulationof subsurfacerunoff(baseflow)followsthe Arao model

conceptualization(Franciniand Pacciani1991), which isapplied only to the

lowe_ soillayer (drainagefrom layer l goes only to layer2, and does not

contributeto runoff).The basefl_owrateisgivenby:

DsDm W_[N-t-1]
Qb[N+I]= WsW 

for0 < W_[N+I] _<WSW_ (2.28a)
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DsDm w_ IN+l] (D m DsDm _t VC2[N+I]-WsW_ )2
Qbt_+_1= w_w_ + - w_ ,, W_-w_w_ '

WsW2_orV(2[N+I]> _ ¢ (2.28b)

where Qb[N+i] is the subsurface runoff rate, Dm is the maximum subsurface
. C

flow rate, Ds is a fraction of Din, W 2 is the maximum so_l moisture content of

layer 2, W s is a fraction of W_, with Ds _< Ws, and W_[N%I] is the soil

moisture content at the beginning of the time step in layer 2. Eqs, (2.28a) and

(2.2.8b) describe a recession that is linear below a threshold (Eq. (2,28a)), and

nonlinear at higher soilmoisture values (Eq. (2.28b))as sho_n in Fig. 2.3. The

nonlineE drainage is required to represent situations where substantial

subsurface storm flow occurs. Eqs. (2.28a) and (2.28b) have a continuous first

derivative at the transitionfrc,m the linearto nonlinear drainage as shown in Fig.

2.3.

Using Eqs. (2.28a) and (2.28b), and the notation that W_[N+I] is the

layer 2 soilmoisture content at the end of the current time, the Water balance

for layer 2 is

W+[N+I] = W_[N+I] q- (QI2[N+i]-Qb[N+I]-E2).At (2.29a)

C

when W2[N+I] + (Q12[N+I]-Qb[N+1]-E2).At < W 2 , in which case Qb is

given by Eq. (2.28a) or (2.28b).__

C

in the case W_[N+ll + (Q12[N+ll-Qb[N+ll-E2).At > W 2 (where
$

Qb[N+I] isgiven by Eq. (2.28a)or (2.285)),

and

W_tN+I]= W_ (2.29b)_

C

Qb[N+I] = V_2[N+I ] + (Q12[N+I]-Qb[N+I]-E2).'xt - W2..
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When Eq. (2.29b) applies, the total substu'face runoff from layer 2 is given by

Qb[N+I] = Q'b[N+I] + Qb[N÷I]. In practice, this condition occurs rarely.

2.6. Surface and subsurface runofffrom sollwith vegetation cover

The equations for surface and subsurface flow rate, and the water balance

in each layer are the same for cover classeswith vegetation as for the bare soil

case, except that P, El, and E 2 are changed to Pt[n], E_[n], and Et_[n]___

respectiyely in Eqs. (2.25), (2.26), and (2.29), to reflect the vegetation class.

The total evapotranspiration, rate E,_ and the total runoff rate Q can be

then expressed as

E = Cv[n].(Zc[n]+Et[n])+ Cv[N+II.EI (2.30)
n=l

N÷I

Q = _ Cv[n]'(Qd[n] + Qb[n]) (2.31)
n=1

where Cv[n] is the fraction of vegetation cover for the nth (n_-:l, 2, .... , N)

surface cov_+ciass of interest, Cv[N+I] is the&action of the bare soil covered

area, and _Cv[n]=l.
n=l

•2.7. Aerodynamic flux x_px_sentation_

The two-layer hydrological model described above is used in conjunction

with the energy balance at the land surface and the thermal propertiesof soilsto

calculate the-surface temperature, and simultaneously_ the fluxes of sensible

heat and ground heat which depend on surface temperature. The ensrgy balance

equation for an idealsurface of the nth surfacecover classcan be expressed as
I

Rn[n] = H[n] + pwLeE[n] + G[n] (2.32)
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n=1, 2, ..., N (2,__33a)

E[N+I] = E 1 (2.33b)

where H[n] is the sensible heat flux, pwLeE[n]_is the latent heat flux (e.g., with

units of Win'2), and G[n] is the ground heat flux. For a surface that is

relatively flat and homogeneous, the energy balance equation for a layer of the

air column bounded by the ground surface at the bottom and a surface of given

height in the atmosphere above, can be expressed as

Rn[n] = H[n] + pwLcE[n] + G[n] -k. AHs[n] •(2.34)

where _Hs[n] is the change in the. energy storage in the layer per unit time, per

unit area. The sensible and latent heat fluxes, as well as the xiet radiation, are

associated with. the top surface of.the air layer, and the ground heat flux with

the bottom of the layer. The rate of heat energy storage in the_layer is

AHs[n] - Pacp(Ts+[n]- T_[n] ) za[n]
2. At (2.35)

where T:[n] and T_[n] are the surface temperature of the bottom surface of the

air layer at the end and at the beginning of a time step respectively, and za[n] is

the height of the top surface of the air layer which is Used only when AHs[n] is

considered to be significant.

The net radiation Rain] is given by

Rain] = (l-sin]) Rs + ,[n].(RL--T4[n]) (2.36)

where a[n] is the albedo of the nth surface cover class, Rs is the downward
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shortwawe radiation at the surface, _[n] is theemissivity of the nth surface cover

cl_s, R L is the downward long-wave radiation at the surface, and _ is the

Stefan-Boltzma_n constant. The latent heat flux, which is the link between the

water and energy balances, is obtained from Eq. (2.33). The sensible heat flux

is given by

PaC'p (Ts[n]- Ta[n]) (2.37)
H[n]--- rh[n]

where rh[n ] is the aerodynamic resistance £or heat traus£er. We take rh[n ] to be

equal to rw[n] in Eq. (2.4). The ground heat flux Gin] is es_timated through the

two thermal soil layers (Fig. 2.4). The t_o thermal soil layers are different from

the two soil moisture layers (i.e., the upper zone and lower zone) discussed

above.. For the first soil layer, with soil depth D 1 (subsequently assumed to be

50 ram), we have,

C[n]= -_] "(Ts[n]- Tl[n])
1

(2.38)

where _[n] is the soil thermal conductivity, and Tl[n ] is the soil temperature at

depth D 1. For the second_soil layer with depth D 2, at which.the bottom

boundary condition is a constaut soil. temperature T2, the law of energy

conservation (assuming that the heal storageiu the first soll thermal layer is

negligible) gives,

a(Cs[n]T[n]) aHf[n]
at =-' az (2.39)

where Cs[n] is the soil heat capacity, T[n] is the soil temperature , Hf[n] is the

heat flux, and t and z are the time and the soil depth respect'_vely. Assuming

that Cs[n] does not change with time, from Fig. 2.4, Eq. (2.39) can be written
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8_

aT[n] G" In]-:G'[n]
Cs[n]._ -

D2 (2.40)

where AT[n] is the .temperature _adient, G"[n] is the heat flux across the

bottom boundary at depth D2, and the G'[n].is the heat flux across the soil face

at depth D 1 (see Fig. 2.4). Since it is assumed that there is no heat storage

within soil depth D1, we have

G[=]= G'[_]. (2.4_)

In addition, G"[n] can be expressed as

4hi
G"[n]= --OT.(Tl[n]- T2)" (2.42)

If we assume that

T[n] "- TI[X_!+T2 (2.43)
2

then

AT[n] Tl+[n] Ti[n ]

A_ = 2At .... (2.44)

whereT_'[n]_d Ti[n]=e thesoiltemperatureatdepth Diatth_endandthe
beginning of a time step respectiveiy.

By SubstitutingEqs. (2.41-2.44)into Eq. (2.40), we can obtain

Cs[n].(T_[n ]- T_[n] ) G[n] _[n].(Tl[n] -T2)

2.= : r_2 D_ (2.45)

At present, Cs[n] and _[n]are not considered to be functions of the soilwater
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content (although such an adjustment would be straightfo_#ard), and are taken

to be the same for both soilthermal layers. From Eqs. (2.38)and (2.45), the

grotmd heat flux G[n] can be expressed as,

_[n] Cs[n].D 2

C[n] = _ (Ts[n]-T2) + 2-.at (Ts[n]-Ti[n])

Di Cs[nj.Di.b 2 (2.46)

i+ "_2 ÷ 2.At" _[n]

For the case where AHs[n] is not significantor there are not enough data

available to evaluate the energy balance within a layer, the energy bMance -

equation for an ideal surface (Eq. (2.32)) can be used instead of Eq. (2.34).

From Eqs. (2.36), (2.37), (2.46), and Eq. (2.33)(scaled by the latent heat of

vaporization and the density of liquid water), we can obtain the sensible heat

and ground heat fluxes and the surface temperature for the nth cover class. In

the case where AHs[n] is negligible, the surface temperature Ts[n ] is solved

iteratively from Eq. (2.47) below,

_[n] Cs[n].D 2

_'_-2 +" 2.At

DI Cs[n]-Di.D2
I+ +

).Ts[n] -- (1-a[n])_Its+

_[n]RL+ PaCp
Ta[n]-PwLeE[n] +

_[n].T 2 Cs[n] • D2. Ti[n ]

+ 2.At

Cs[n].Di .D2 • i2.47)D1

I+ "_2 + 2. At. _[n]

For the case where z_Hs[n ] cannot be ignored, Eqs. (2.34) to (2.37), and (2.46)

are combined to give
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+

Cs[n].D 2
2 .at

Cs[nl. D 1 •D 2

2.At.sin]

paCp
(1 -a[n])-R s + ,[n]. RL+ _ Ta[n]- pwLeE[n] +

-htm

p CpZa[ ],r tnl
2.At

+

4hi.T2
_2 + 2.at

DI cstnj.D -D2

Cs[n]:D2.Ti[n]

(2.48)

Ts[n ] is determined in the same manner as for Eq.

effective surface temperature Ts, sensible heat flux H,

can be obtained as,

(2.47). Therefore, the

and ground heat flux G

Ts --

N+I

_Cv[nl.Ts[n],
n=l

H __

N+I

Cv[n].H[n] ,
n=l

(2.49)

N+I

G = _ Cv[n].G[n]. (2.51)
n=l

2.8. Snow

When snow is present, themodel is.coupled with a single-layer, energy-

and mass-balance snow accumulation and ablation model (Wigmosta et al. 1994).

At the snow-air interface, the.energy exchange is described by the net radiation,

sensible heat, evaporation from the water in the snowpack and sublimation or

condensation, and the heat_advected to the snowpack by rainfall. The snow-

ground interface is assumed to be a zero energy flux boundary. Snow albedo is
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determined based on snow age. The present version of the snowmelt model does

not coasider fractional snow coverage; it is assumed that the entire area is

covered, by a uniform depth of snow if a snowpack is present.

2.9. Model calculation procedure

In the formulation of the two-layer VIC model, many variables are a

function of the surface temperature. For example, the surface temperature is

needed to calculate the bulk Richardson number, vapor pressure deficit, and

net radiation. • Once the .bulk Richardson number is determined, the"

aerodynamic resistance .can be calculated, accounting for stability correction.

Given the stability-corrected aerodynamic resistance, the wapor pressure deficit,

and net radiation, the potential evaporation can then be estimated. However, .

computation of the surface .temperature. requires an iterative solution of Eq.

(2.47) or (2.48), which is implemented as follows:

(1). Set the surface temperatureto the air temperature.atthe first time step.

This allows computation, of the i_tial values of the bulk Richardson number,

vapor pressure .deficit and net radiation that are needed to estimate Ep[n]

through the Penman-Monteith formulation.

(2). Iterate Eq. (2.47) or (2.48) to solve for thesurface temperature.

(3). Use the surface temperature obtained from step (2) to calculate the bulk

Richardson number, vapor pressure deficit, and net radiation again.

(4). Recalculate the surface temperature iteratively using Eq. (2.47) or (2.48).

The surface temperature .obtained from this step is then considered to he the

surface temperature of the first time step of the model simulation.

(5).-For subsequent time steps, use the surface temperature_from the previous

time step to calculate the bulk Richardson number, vapor pressure defici.t, and

net radiation, then repeat steps 2-4.
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The procedure described above is not iterative in the same sense as the

procedure used to solve for the surface temperature from Eq. (2.47) or (2.48),

since the steps are only repeated once. The use of a single iteration is justified

by the relatively smooth variation usually observed in surface temperatures due

to the thermal inertia of the soil column. Of course, multiple iterations could be

performed if required. Such an approach in fact implies t_ro nested iterations;

one to solve Eq. (2.47) or (2.48), and the other to determine the bulk

Richardson number and related quantities needed to compute the surface energy

fluxes.

2.10. Summary .

A generalization of the VIC (Variable Infiltration Capacity) model which

incorporates a two-layer description of the soil column has been described.. In

the" soil. column, the upper layer is .characterized by the usual VIC spatial

distribution of soil moisture capacities, and the lower layer is spatially lumped

and uses the.Arno (Francinl and Pacciani 1991) drainage representation, The

model is designed for application _thin coupled land-atmosphere-ocean GCMs,

such.as are used for numericalweather, prediction and global climate simulation.

The model partitions the area of interest (e.g., grid cell) into N+I land surface

cover types; for each laud cover type the fraction of roots in the.upper and lower

zone is specified. Evaporation occurs via canopy evaporation, evaporation from

ba_e soils (land cover class-N-t-l) and transpiration, which is represented with a

canopy and architectural resistance formulation.

The two-layer VIC model described here has been tested against observed

data. The behavior of the model is described in Chapter 3 using surface flux

data from two sites: the FIFE experiment in central Kansas, and the

ABRACOS experiment in Brazil.
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Fig. 2.2 Schematic representation of the computation of evaporation from

bare soil.
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CHAPTER 3 MODEL APPLICATION

In Chapter 2, the two-layer VIC model.was described. In tl_s chapter,

the performance of the model is evaluated for two applications.

3.1. FIFE site

The first test location fo_ the model was the FIFE (Fimt ISL$CP Field

Experiment) site in central Kansas in the United States. The FIFE site is a

15x15 kin2 re,on on t-'he Konza Ptairle_ a native grassland preserve ne_c

Manhattan_ Kansas.. It has a fairIy homogeneous tall gra_s cover. The Kings

Creek catchment_ of area_ll.7 km 2, lies within the FIFE site. The FIFE site is

of interest beCauSe of the detailed, measurements of s_'L_ce _luxes that we_:e

co}.]ected in the summer of 1987. A detailed description of the site is proyided by
e

Sellers et al. (1992).

3.1.1. Datadescription

During the" perbd May-0ctober, 1987, four intensive field camp_gc_s

(IFCs) were conducted at _ the FIFE site, during which tower-based

measuxements of latent, sensible, and ground heat fluxes were made (Sellers et

al. i992). In addition, throughout the summe_ of 1987, a network of portable

automated mesouet (PAM) stations was.oper_ted_. _om which measured.values

of incoming solar and lon_-wa_'e rac_ation, and other meteorological data are

av_lable. Furthermore, long_tenu s_reamflow data exist for Kings Creek, along

with long-term c]]matalogica2 data at nearby Manhattan, KS, which a_lows, for

validation of the hydrological portion of the VIC model. The stratei_' for

validatlon of the model was to estimate the hydrological parameters using

precipitation and streamSow dzta for part of the lonE-term Eings Creek record,

and to evaluate its hyclrological performance usin S the remainhi S part of the

_ecord. The model's surface _lux a|gor_thms were then pa_ameterized and

-? ,

!
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validated using me_ured fluxes observed during the summer, 1987, IFCs. A

schematic _of the FIFE site with approximate locations of King's Creek

catchment (shaded area), flux stations, a._d meteorological stations is shown in

Fig. 3.1.

D_ily precipitation and temperature maodma/minlma have been collected

at Manhatt_u_ KS, which is about 11 km from the centrold o_ the Kings Creek

catchment, since the late 1800s. Daily average stream discharge data for Kings

Creek (U,S. Geological Survey Station No. 06879650, 11,7 km 2) have been

collected since about 1980. Surface meteorologicM and surf_e flux d_ta at the

FIFE site _e limited to Selected pe_ods during the summer of i987. Data from

the. PAM stations include sudace pressure (p)_ mixing, ratio (_) and air.

temperature (Ta) at the 2 m level and horizontal wind speed (u) measured 5.4 m

above grouted level, surface temperature (Ts), g_ound soil temperature, T10
o . •

_,nd TS0, at i0 cm a_d 50 cm below the surface, respectlvely, and. downward

short .and long-wave radiation. Radiation data were also collected from flux

stations (eddy correlation and Bowen ratio). Data from both PAM statiozis and

flux stations were averaged for .e_ch date and time among all the stations by

Betts et aL (1993). They found from consistency _ualysis of the calculated and

meas_u-ed net radiation that the flux data were more _elf-consistent than the

PAM data. Therefore, we used the radiation data from the flux stations and the

atmospheric data from PAM stations to test our model surface flux and surface

temperature predictions. Data for 35 days common.to the two data sets in the

summer of 1957 we_.e used. They _re June 30-July 11, August 9-20, and

October 6 - 16.

3.1.2. PLmmeter estimation

The model paza,,ueters can be classified into ]_yclrologicM parameters and

atmospherically related parameters. The hydrological p_ameters include the

infiltrationshape pazameter bi (Eq. (2.20)), the soilpore size distributionindex _ .

Bp, the residual moisture content #r, the saturated hydr._ulicconductivity Ks

(Eq. (2.27)), the three _ flow-relatedparameters Ds, Din, and W s (_Eq.
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C C

(2.28)), the maximum soil moisture contents W 1 "and W 2 in layers 1 and 2,

respectively(Eqs. (2.24)and (2.28)), the wiltingpoint "vV_ and the criticalpoint

w_r'(j=1, 2) in Eq. (2.i4). Atm0si)herjcally related parameters include

architectural resistance r0[,_] (Eq. (2.1)), minimum canopy resistance rmin[n]

(Eq. (2.13)), leaf area index LAI[n,m] (n=l, 2, ..., N; re=l, 2, ..., 12) for

each surface cover class (Eq. (2.13)), the zero plane displacement height d0[n],

roughness length z0[n], and the relativefractionof roots in each of the two soil

zones fl[n] _ad f2[n] (Eq. (2.15)). We classifyf1[n]and f2[n]as atmospherically

related parameters because they determine the canopy resistance (Eqs. (2.13-

2.15)).

Among the hydrological parameters, only three"(bi, Ds, and Ws) are

best estimated using streamflow data if they are available (both.As and i0 in

Eqs. 2.22 and 2.25 are not model parameters, they are evaluated at "each.time

stel_).. The other hydrological parameters can be estimated using soil.

characteristics.Clearly, for applicationin GCMs, global,parameter estimation.

using streamflow data is infeasible;for.GCM applicationsDumenil and Todini

(1992) have suggested values for bi, Ds, and .VCs. An ongoing research topic,

which will be investigated in the GEWEX. Continental Scale International

Project (GCiP) is to develop regional relationships for GCM. hydrological

parameters. However, because streamilow data were availablefor Kings Creek,

we made use of the observed data to estimate bi, Ds, and Ws.

Since the FIFE _site has a fairly homogeneoua tallgrass cover, the

number of vegetation types n in this model application can be taken.to be l,

i.e., Cv[n]--1.0. To estimate,bi, Ds, and W s through calibration, we need to

know Ep[l] and twit], in addition to parameters W._, .W_, W_ r (j-l, 2), Ks,

Bp, Or, fl[l],f211],un(z2), d0[l], z0[1],r0[1],rmin[l], and LAI[1,m] (re=l,

2, ..., 12). At the FIFE.site, the data required to estimate Ep[I] by the

Penman-Monteith method and rw[1] by Eq. (2.4) are available only during the

IFCs. Therefore, for the purposes of estimating the hydrological parameters,

we used Hamon's method (Hamon et al.1954, Hamon 1961) which requires only

daily air temperature and latitude to estimate Ep[1]. During summer, 1987 we
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also used Hamon Ep[i] during the between-IFC periods to allow continuous

computation of soil moisture (needed as initial values during the 1FCs). The

daily Ep[1] computed using the Hamon formula was compared with the daily

Ep[1] obtained using Penman-Monteith's equation for the 35 days of the 1987

FIFE IFCs. The comparison indicated that the Hamon equation gives smaller

Ep[1] estimates, but the pattern over the 35 day period was similar for both

Ep[1] estimates. Therefore, we scaled the Hamon estimates to have the same

mean as the Penman-Monteith estimates, using an adjustment factor ke, which

w_ determined to have a mean of 1.64 with a standard deviation of 0.70. The

scaled Hamon estimates were used for the long-term hydrologic water balance

computations, except during the IFC periods, when the data needed for

computation of the Penman.-Monteith Ep[!] were available. During the IFC

periods, Ep[1] and rw[1] were estimate d by the Penman-Monteith method and

by Eq. (2.4), respectively.

For the 35 days of the IFCs, we calculated a_ average aerodynamic

resistance (equal to the inverse of the. product o£ the drag coefficient from Eq.

(2.6) and the wind speed under the assumption that the resistance to the transfer..

of momentum.and.water are equal). This average aerodynamic resistance was.

then used for the purpose of estimating the hydrological model parameters, and

for computing the soil moisture at the beginning of the first. IFC and between

IFCs (but not for validation of the energy fluxes during the IFCs reported in

Section 3.2). The average aerodyilamic resistance over the 35.days was 40.8 s/m

with a standard deviation of 29.7 s/re. This value is within the range given for

short grass and crops by Monteith and Unsworth (1990). Since the roughness

length of many crops decreases as wind speed increases, the inverse of

aerodynamic resistance is approximately a constant over a range of-iow wind

speeds. The daily average wind speed during the 35 days was 2.38 m/s, and the

_rodynamic resistance (40.8 s/m) was taken as constant for the estimation of

the three hydrological parameters. In addition, we did not correct for

atmospheric stability, primarily to assure compatibility of Ep[1] between the

IFCs and during the longer period of hydrological water balance simulation,

when the dataneeded to make the corrections were not available. However,_the___
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stability correction given by Eqs. (2.4) and (2.5) was applied to the energy flux

computations performed for the model validations reported in Section 3.2.

At the FIFE site, the depths of layer 1 (upper zone) and layer 2 (lower

zone) are about 0.5 m and 2.5 m respectively (Famlglietti and Wood 1993).

Since the soil texture at FIFE is silt loam (EPA 1991), the porosity was taken

to be 0.5, and thus W_=0.25 m and W_=1.25 m, and W_ v and W_ r are about

26% and 46%, respectively, of the total water that the soil can hold. However,

Smith et al. (1993) reported that evapotranspiration was not observed to be

limited by soil moisture in the 20%-30_ range, and they took i8_ as the

wilting point instead, which we also used as our estimate..In t_s study, we

used 70% of fieldcapacity as our criticalpoint (we found via sensitivityanalysis

that.almost the same resultswerelobtained when .thecriticalpoint was 75%..of

fieldcapacity). The Ks, Bp, Or Were.taken as 6.44 nun]h, 0.16, and 0.01 m

respectively, following Famiglietti and Woud (1993). Since the vegetation is

dominated by grass, we assumed that allthe roots are .in the upper zone (i.e.,

fi[i]=I.0and f2[I]=0.0).

Because the wind speed from the PAM stations was measured at.5.4 m

above the ground surface, and the other meteorologica/data were measured at

z211]=2 m above ground suffacel the wind speed was converted to the 2 m level

through a logarithmic velocity profile. Sugita and Brutsaert (1990) estimated

the zero plane,displacement height d011]=26.9 m, and the surface roughness

length z0[I]=1.05 m at FIFE by analyzing neutral .wind velocity profiles

measured by radiosondes. They found that a logarithmic velocity profileonly

holds over the height ranges between 50 m + 19 m and 202 m ± 101 m above the

ground surface. However, their values should be interpretedin the context of

the Flint Hills region, which is characterized by reliefof about 25m between

steep ridges and valleys. By contrast, Smith et al. (1992a) used much smaller

localvalues of d011]=0.25 m, and z011]-0.07 m. Their values fallbetween uncut

grass and long grass/cropsfor a relativelyflatarea (Arya 1988). Since the FIFE

siteis only a small part of the Flint Hillsregion which covers a 50-80 km wide

north-south stripin Kansas from Nebraska to Oklahoma, we decided to use the
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_maller values for doll] and zo[l], and assumed a logarithmlc ,velocitypro611e

locally. The 2 m wind speed can then be estimated as

h__2-[i]do[l]
' so(t1)

Un(Z2)= Un(Zl)1_z111]"d0[11
, Zo[11)

(3.1)

where z11!]=5.4 m, and Un(Zl) is the corresponding measured wind speed (m/s).

The value of r0[1 ] for grassland is taken as 2.0 s/m (Ducoudre et al. 1993).

Monteith and Unsworth (1990) suggest that for crops rmin[l]=100 s/re. Smith

et al. (1993) found, based on optimization, that the best values of rmin[1 ] are in

the range 100-125 s/re. We take rmin[1]=100 s/m to be consistent with

Monteith and Unsworth (1990)-

• The montMy average LAI[1,m] (re=l, 2, ..., 12) were derived from the.

average normalized difference vegetation index. (NDVIs) given hyEPA (1991)

with LAImax=6.0 and LAImin=0.1 which are consistent with the values used by

Smith et al. (1993), "-

LAI[1,m] = 0.1 ÷ 0.0628(NDVII1,m]-53.0). (3.2)

The average monthly NDVIs for 1986, 1987, and 1988 at FIFE are listed in

Table 3.1.

The hydrological parameter Dm can be either estimated by identifying

extended dry periods during the calibration interval 1982-85 using the

precipitation data, and recession rates inferred from the observed Kings Creek

streamflows during these periods; or by multiplying saturated hydraulic

conductivity by an average soil slope. We used the fir.qt approach, which gave

Dm = 8.2 mm/d. The hydrological parameters bi, " Ds, and Ws, were

estimated using streamflow at Kings Creek, and precipitation, and

maximum/minimum temperature data at Manhattan, KS from 1982-1985. The
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calibration gave bi-0.008 , Ds=7.Txl0 -5, and Ws=0.96. The one-layer

snowmelt, model was not used to obtain the above model parameters, sir_ce not

much snow occurs in the Kings Creek catchment. Hydrographs for two of the

calibrationyears (1983 and 1984) are shown in Figs. 3.2a and 3.2b. The model

reproduces the streamflow reasonably well; discrepancies are attributed to a)

the distance of the precipitationgage ttom the Kings Creek catchment; b) the

inabilityof a singlegage to represent spatialvariationsin precipitation;c) the

use of a daily time step for a relatively small catchment whose time of

concentration is on tha order of an hour or less; and d) small scale

heterogeneitieswhich can strongly affectrunoff production _n small catchments,__

and are not captured by a rnacroscalemodel such as VIC.

With the parameters described above, together with the parameters c_[1],

s[1], Cs[1],"D 2, and T 2, we then used the PAM and flux"data to test our

model-predicted surface fluxes and surface temperature against the measured

values. The albedo a[1]was taken as 0.2 during the IFCs following Famiglietti

and Wood (1993). The thermal conductivity _[1]and soilheat capacity Cs[I] in

Eq. (2.46) were estimated to be 0.514 Wm-IK-1 and 2.13xi06 Jm-3K'l,

respectively, following Smith et al. (1992b, 1993). The depth D 2 was taken to

be 0.45 m, and the temperature T 2 (i.e.,T50 ) in Eq. (2.46) was prescribed as

293.6 OK, which was the average of TS0 for the selected 35 days of the IFCs.

The standard deviation of T50 for the 35 days was 3.1 OK. The values of the

hydrologicallyand atmospher_.callyrelated model parameters are listedin Table

3.2. We compared the surface energy budgets computed using both Eq. (2.32)

and Eq. (2.34), and found that there was almost no differencein tha results

,,henwetook m.

3.2. Model validationat FIFE site

Figs. 3.3a and 3.3b show predicted and observed streamflow for 1986 and

1987, two years not in the calibrationperiod. Generally, the results are

consistent with those of the calibrationperiod - the dry period flows axe fairly

well represented, as is_thetiming of the major peaks, but the magnitudes of the
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peaks, especially the largest ones, are subject to major errors.. In this study,

streazaflow prediction is not of primary importance; the purpose in evaluation of

the predicted hycl_ographs is to provide evidence tl-at the model is producing a

plausiblesoilwater balance. To this extent, the hyckograph simulations were

adequate.

After estimating the hydrological model parameters, we used the FIFE

surface fluxes and meteorological measurements for. the summer of. 1987 to test

the model predictions of iateut heat, sensible bert and ground heat fluxes, and

the surface temperature. We used the Kings Creek precipitation network, as

well as the precipitation, air temperature, arid downward solar and long-wave _

radiationcomposited from the P_'VI and flux sCationsby Betts_et al. (1993) to

testthe model heat fluxesand surfacetemperature. Results are shown in Figs.

3.4, 3.5, and 3.6for partsof the June, July, August, and October IFCs.

Fig. 3.4 shows part of IFC 2 (from June 30-July 11). There were

precipitationevents on June 30 and July 7.-On the restof the days, there was

littleor no rainfall.During this period, the latentheat-fluxfor dry days was

typicallyabout 40{)Win-2. The model predicted the latentheat and sensible

heat fluxesfairlywell, except that itsomewhat underpredicted the July 9, I0,

and 11 latentheat fluxesand overpredictedthe sensibleheat fluxeson the same

days. These days were characterized by relativelyhigh winds, high potential

evaporation, and high soilmoisture. The modeled surface temperatures agree

with the observed ones quite well, but the magnitude of the diurnalcycle of the

ground heat fluxwas underpredicted on some of the days.

Fig. 3.5 sho_vspredicted and observed latent, sensible,and ground heat

fluxes, and surfacetemperature, for the August 9-20, 1987 portionof the third

IFC. Rainfalloccurred on August 12, 13 and 18. Before the August 12-13

storm, the soilwas moderately dry. During thisperiod, the observed latent

heat fluxeswere l,._ssthan 300 Wm "2. After the rainfM1, the latentheat fluxes

increased to about 400 Win-2._ During this period, the model predicted the

latent heat and sensible heat fluxes quite we.ll, except during the nights of

August 14 and 15, when the latent heat fluxeswere overpredicted and the
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sensible heat fluxes, were underpredicted. This is mainly due to the high

potential evaporation obtained during that time. From Eqs. (2.1) and (2.12), it

can be seen that large evaporation would be obtained if the potential evaporation

is large, even though rw[n] and rc[n] are reasonable. During this period,, the

ground heat fluxes were predicted reasonably well, although the magnitude of

the diurnal cycle was underestimated. The surface temperatures were well

predicted in general,

Fig. 3.6 shows theenergy, fluxes and surface temperature for October 6-16,

1987, a portion of IFG 4 which was characterized by low soil moisture. During

this period, the observed latent heat fluxes were about 100 Wm -2 or less, while

the sensible heat fluxes increased _o about 300 Win-2 (from about 200 Win-2 in.

July and August). The model predicts the latent and sensible heat fluxes, and

surface temperature re_onably well, but it overpfedicts the groand heat fluxes

on most of the days during this period.

In general, the_model performed satisfactorily,, especially, given its

simplicity. There are some caveats in interpretation of the results. First, the

FIFE site is a native grassland, which is characterized by a single vegetation

type. Therefore, the portion of the model dealing with heterogeneous vegetation

was not exercised in these tests, so-the effects of certain associated

simplifications are not reflected in the results. A second, related limitation is

that since the FIFE vegetation is all grassland, the algorithms dealing with

trees, which usually extract moisture from the lower, rather than the upper,

soil moisture zone have not been exercised. The model has, however, been

implemented for a tropical forest application in connection with the Project for

Intercomparison of Land-surface Parameterization Schemes (PILPS) (Pitman et

al. 1993, Liang etal. 1993) and the model results were comparable to those of

most of the participating models..

3.3. ABRACOS site

The second application wa_ to the field site of the Anglo-Brazilian

Amazonian Climate Observation Study (ABRACOS). The ABRACOS site is
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located in a ranch clearing surrounded by forest in the moist, tropical rain forest

climate regime typical of Amazonia. The site was selected to characterize the

localand large-scaleeffectsof the an_azonian deforestationthat ha_ taken place

over the past 20 years (Myers i991). ABRACOS is an ongoing project which

startedin 1990 and willcontinue through 1094 (Shuttleworth et al.1991). The

site is extensively instrumented for micrometeoroi6gical and climatological

measurements. During the three year period of routinemonitoring of the near-

surfaceclimate and soilmoisture, fiveintensivemicrometeOr6iogical and plant

physiologicalstudies are planned to be carried to supplemeht the long-term

routinerne_urements.

The time fra_neof the intensive.measurement campaigns is'summarized

in Fig. 3.7 (taken from Shuttleworth et M. (1991)). One of the objectivesof

ABRACOS isto collectdata from cleared Amazonian forestand thus to provide

energy and. water balance and near-surfaceclimate measurements_for GCM

studies. The clearing site selected in the ABRACOS project is at.Fazenda

Dimona, which is located about 100 km north Manaus (2°19'S, 60°19'W) in

centralAmazonia (Fig.3.8). It isa typical.largecattleranch created by felli_g

and burning the primary, forestand sowing the clay soilwith hardy pasture

grassesabout 12 years ago. The studied area consistsof about 84% gr_s, 11%

bare soil, 5% t_mks, and lessthan i% bushes. The height of the _ass cover

was about 28 cm in September 1990. This selectedsitewas well managed, and

there _va.sno over_azing. A more detaileddescriptionof the siteisgive_ by

Wright et al.(1992). The climate ismoist and hot with mean annual rainfallof

about 2400 ram. The driestrhonths are from July to October, s_d the wettest

moztths are _om M_xx.h to May.

3.3.1.Data description

During 1990 and 1991, two.intensivefieldmeasurements, Mission 1 and

Mission 2, were carriedout. Mission I startedon September 15 and ended on

November 5 in 1990, while.Mission2 was from Juue 30 to September 11 in 1991.

Four major instruments were used for micrometeorologicaldata collection
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at _the site. These are a profile tower with six logarithmically spaced

anemometers and psychrometers, a Hydra eddy-correlation device, a Bowen

ratio device (from Campbell Scientific Ltd.), and an automatic weather station.

Net all-wave radiation, specific humidity, and horizontal wind speed were

recorded at the profile tower. Soil temperatures were recorded by thermistors

located 15 m_upwind of the profile tower. Ground heat flux was measured as the

average of nine soil heat flux plates that were installed at 5 mm depth under the

grass and bare soil, located at equal clistaaces along a transect about 15 m

upwind of the profile tower. 'the Hydra device, sampled with a frequency of 10.

Hz, _ecorded air temperature, specific humidity, and wind speed. A net all-

wave radiometer wa_ connected to the Hydra. The Bowen ratio device measured

the temperature and humidity gradients between levels of 0.9. m and 3.2.m. In

addition, it had its .own net all-wave radiometer. The automatic weather station

recorded the wet bulb. temperature, dry bulb temperature, net all-wave

radiation, wind speed, total incoming shortwave radiation, reflected shortwave

radiation, soil heat flux, and rainfall. Hourly rai_ffall was measured by a 0.2

nun tipping-bucket rain-gauge attached to the automatic weather station

(Wright et el..1992). All of the four. instruments were located within a few

meters of each other (Shuttlewo_h 1993, personal conifnunication).

The hourly summary data for _the first ..two ABRACOS missions were

provide&by INPE (Instituto Naeional de Pesquisas), Sao Paulo, Brazil. These

data were aggregated from ten minute measurements and were subjected to a

data quality control process by staff at iNPE. For purl_oses of determining

consistency between measurements, the following p_ivrities were. assigned: '1)

profile tower, 2) Hydra eddy-correlation device, 3) Bowen ratio device, and 4)

automatic weather station. Missing and unreliable data were indicated by

"-99" in the data base. The two-layer ViC model validation was conducted

using 17 days from Mission 1 and 42 days from Mission 2 that had..continuous

dat_.

Mission 1 started on September 15 and-ended on November 5, but there

were only 18 days (from October 15 to November 1) that have almost continuous
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measurements of net radiation, precipitation, specific humidity, air

temperature, _md wind speed that are needed to drive the two-layer ViC model,

and intent heat flux, sensible heat fluX, and the ground heat flux that ar_

needed to validate the model predictions. Soll temperatures _ere measured, at

depths of 0.05 m, 0.1 m, 0.2 m, and 0.4 m. Soil moisture w_s measured weekly

in general, and twice each week during the two missions using neutron probes.

A schemati'c outlining the profile of the soll water measurements is shown in Fig.

3.9. The soil moisture in the soil surrounding the eight neutron probe tubes was

measured at the depths of 0.1 m, 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.2 m,

1.4 m, 1.5 m, 1.8 m, and 2.0 m below the ground surface. Since soil moisture

was not measured on October 15, but on October 16, only 17 days (from

October 16 to November 1) Were finally selected. Among the selected 17 days,

the wind speed at 0200 LMT on October 16.(julian day 289) was missing, and

wasestimatedby interpolation. In addition, a few-wind speed measurements on

October 16 were taken _om the automatic weather station at the elevation of 2.0

m above the ground. These wind speeds were corrected to the 3.6 m leve!, so

that they were consistent with the wind speed in. the rest of the data c_ the

selected 17 days. The individual flux data were checked for errors to make sure

they fell within the ranges given by Betts etal. (1993) as _ollows:

Solar radiation

Solar reflected

Net radiation

Latent heat

Sensible heat

Ground heat

-5 to 1200 (win "2)

-5 to 250 (Win:2)

- 98, to 1000 (Win "2)

- 100 to 500 (W_n"2)

- 2ooto5oo(win-2)
-15o to 300(win-2).

The check against the above criteria indicated no gross discrepancies in the flux

data..However, when the measured net radiation was compared with the sum of

the derived latent and sensible heat fluxes, and the me_ured ground heat flux,

three hourly values were found to have large relative errors. These are LMT

2100 on Julian day 293, 1900 on Julian day 301, and 0700 on Julia_u day 303
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with relative errors of 176%, 198%, and 41% respectively. These data were

replaced by interpolated values. The corrected data agreed well with the

consistency check. The average wind speed for the 17.days was 1.67 m/s with a

standard deviation of 1.10 m/s; the average of the specific humidity was 17.5

g/kg with a standard deviation of 1.0 g/kg; the average of air temperature was

26.6°C with a standard deviation of 3.7°C. The total precipitation of the i7

days was 6.6 ram, indicating that the period was generally dry.

The surface air pressure was not measured during either Mission i or

Mission 2. However, there were 26 days (from April 18 to May 13) in i987 that

had surface pressure measurements at GMT 0000 on each day, and 5 days (from

May I to May 5) in 1987 that had six pressure measurements on each day at

0000, 0600, 1200,. 1500, 1800, and 2100.GMT. The firstset of pressure

measurements (26 days) had an average of 1004.i mb with a standard deviation

of i.1 rob. The second set of measurements (from May1 to May 5) had an

average of 1003.5 mh with a standard deviation of 1.6 rob. Based on these

limited available pressure measurements and discussionswith INPE scientists,

for the model.runs, the surface pressure was taken to be constant 1003.8 mb,

which isan average of allthe meaS,_e_ents.

Mission 2 started on June 30 and ended on September II, 1991, and

there were some missing observatiof_s.Among the 74 days, 72 days (from June

30 to September 9) have almost continuous measurements of the qUa4ttitiesthat

a_e requited to drive the two-layer VIC model and _to compare the model

predictions.with the observations. The Betts et al.validation criteriafor.solar

radiation, solar reflectedradiation, net radiation, late_t heat, sensibleheat,

and ground heat fluxeswere applied as they Were for the Mission 1 data set. The

resultsindicated that all the data were within the specifiedranges. However,

the data passed the consistency check for net radiation on only 42 days (from

July 5 to August 15). Large errorsoccurred on other days as shown in Fig. 3.10.

These large inconsistenciesbetween the observed net radiationand the calculated

net radiationfrom the derived latentand sensibleheat fluxes, and the measured

ground heat flux at the end of Mission 2 (i.e.,after August 15) were probably
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due to drift in the hygrometer (Wright 1993i personal communication).

Therefore, only the 42 days (from July 5 to August 15) in Mission 2 we_ used.

for model testing.

Among the 42 selected days, there were six measurements of speci_c

humidities at 1.2 m height, while the rest were measured at 3.6 m. Since the

specific humidities do not change much between the heights of 1.2 m and_ 3.6 m

above the surface, the 1.2 m measurements were not corrected for height. The

average wind speed for the 42 days was 1.43 m/s with a standard deviation of

0.98 m/s; the average specific humidity was 16.5 g/kg with a standard deviation

of 1.1 g/kg; the average air temperature was 24.8°C with a standard deviation of

3.3°C; and the total precipitation of the 42 days was 105 ram. Although still

relatively dry in a climatalogical sense, the Mission 2 data include several storm

periods. From Fig. 3.14 it can be seen that there were major storms before July

5.

3.3.2. Parameter estimation

The ABRACOS site consists of about 84% short grass with average height

0.28 m, 11% bare soil, 5% tree trunks, and less than 1% bushes (Wright et al.

1992). Since measurements were not condtmted under the surface covers of the

trunks_and bushes, these trunks and bushes are _sumed to be bare soil which

then covers 16% of the _area. This co_nsideration is consistent with the

measurements of the soilheat flux described by Wright et al.(1992). Thus, "the

number of surface covers at the clearing siteis two, with Cv[I]-_0.84 (n=l for

grass)and Cv[2]=0.16 (N+1=2 for bare soil).

As described in Chapter 2, the two-layer VIC model has two soillayers,

an upper zone and lower zone. The upper zone in the model was designed to

represent the dynamic behaviour of the soilresponding to rainfallevents, in

other words, the soilmoisture in the upper zone variesdynamically with rainfall

events and atmospheric moisture transport conditions, while the soilmoisture in

the lower zone tends to characterizethe seasonal soilmoisture variations. The

lower zone only responds to rainfallwhen the upper zone is relativelywet and



5O

thus it can separate the subsurface flow fron_the ra_mfallquick response. At the

clearing site, the soil moisture measurements at the eleven different soil depths

described above showed that the soil moisture storage in the first 1 m depth

v_ried between O.3 m and 0.45 m from mid-September 1990 to December 1991,

while th. moisture storage between 1 m and 2 m depth varied only from about

0.45 m to about 0.5 m for the same period (Hodnett et al. 1993). Therefore, the

upper layer was taken to be from the surface to a depth of 1 m, Following

Hodnett et al. (1993), the depth of the lower layer was taken to be 9 m.

The soil at the clearing site consists of clayey oxisols from the Tertiary

Barreiras sediments. According.to the Braz__lian classification, oxisols are

generally classified as latossolos amarelos, alicos_ and textura argilosa. In the

USDA Soil Taxonomy, oxisols correspond to the aplic acrorthox. From soil

moisture measurements, the porosity was estimated as e-0.64, the wilting point.

as ew=0.34 , and the field capacity as 0f=0.51 (Hodnett et. al. 1993). As before,

the critical point was taken as 70% of the field capacity (ecr=0.36). Based on

field work by the Institute of Hydrology (U.K.) and INPE (Rocha 1993, personal.

communication), the saturated hydraulic conductivity is Ks=79.2 ram/h, the

pore size distribution index is Bp=0.053, the root depths of.upper and louver

layers are fl[l]=l'0 and f2[l]=0.0, and the soilthermal conductivity and soil

heat capacity are 0.69 Wm'lK'!.-and 7.74x 105 jm'3K'l respectiveiy. According

to Wright et al. (1992), the displacement height for the entire area is 0.17 m

and the roughness length is 0.026 m, and thus d011]-d012]-0.17 m and

z011]=z012]--0.026m .......

Since hourly net radiation was measured at the site, but not long-wave

radiation, albedo and solar radiation were not used in this model applicatiozi.

The study by McWiUiam et al.(1993) indicated that the leafarea index (LAI) at_

the clearing site is about 1.5. In addition, due to the climatic conditions in

central Amazonia, the LAI isrelativelyconstant throughout the year. Monteith

and Unsworth (1990.)suggest that for crops during the growing season, the

minimum stomatal resistance varies from _0 s/m to 100 s/re. The _owing

season minimum stomatal resistance was measured to be 50 s/m (Bougeault
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i_(_1). Sellers and Dorman (1987) repcrted that the minimum stomata/

resistance is about 50 s/m for short vegetatlon. Following the approach used by

Smith eta/. (1993) to determine the minimum ston._ata/resistance at FIFEsite,

an optiniization on the stomata/ resistance within the range (50, 100) was

carried out usi,_g the data of the selected 17 days in Mission 1. The optimization

indicated that rmin[i]=50 s/m gave the best results, although the difference in

the latent heat flux due to rmizi[1]=50 s/m and rmin[1]=100 s/m, for example,

is small. The absolute relative changes of the mean latent heat and sensible heat

fluxes during this period in Mission 1 were 8.0_ and ]2.1% respectively, while

ti_e relative change in minimum stomata/ resistance was. 100_. Thus, the

stomata/ resistance was taken as 50 s/re. The optimization on minimum

stomata/resistance rmin[l ] was not carried out for the 42 days in Mission 2. As

for the application at FIFE site, the architectural resistance of grass was taken

as r0[1]=2.0 s/m (Ducoudre et a/. 1993).

The soil temperatures were measured at four different depths as described

in Section 3.3.1, and are shown in Figs. 3.11 (from September 25 to October 5.in

1990), 3.12 (from October 15 to November 1 in 1990), and 3.13 (from June 30

to September i0_ in 1991). Fi'ofn Fig. 3.11, it can be seen that the soil

temperature, at 0.05 m depth dropped below 0°C around September 30. This

was. due to a measurement problem (Wright 1993, persona/ communication).

Fig. 3.12 shows the fluctuation of the soil temperatures at 0.05 m and 0.4 m

depths is suspiciously large from _October 17 -to 28. _During Mission i, the

variation of the soil temperature from its mean at 0.4 m depth is about 14 times

larger than.the variation of the temperature at depth 0.2 m, and about .4times

larger than the variation at depth 0.1 m. Therefore, the temperature

measurements at the 0.4 m depth in Mission 1 appear inconsistent, so are the

measurements at 0.05 m depth. The soil temperature measurements at depths

0.05 m and 0.4 m in Mission 2 indicated alarming drifts. Thus, the Mission 2

soil temperature at depth 0.4 m could not be used. Since the fluctuation of the

soil temperature at 0.2 m depth is small (mean 26.8°C and standard deviation of

0.6°C-in Mission 1; 27.1°C mean and 0.6°C standard deviation in Mission 2),

the mean of the soil temperature at the depth 0.2 m was assumed to be a



52

constant and T2=300°K was used in the model. Thus, depth D 2 that

corresponds to the constant temperature T 2 is 0.i5 m.

Since there were no streamfiow data available in the studied area, the

hydrological parameters hi, Ds, Ws could not be estimated through the

standard hydrological calibration method, nor could the maximum subsurface

flow Dm be estimated by analyzing the dryperiod stre_anflow as was done in the

FIFE application. Instead, Dm was estiroat_d by multiplying the saturated

hydraulic conductivity by the average soil slope, At the clearing site, the slope

is about 3°. As for the three hydrological.parameters hi, Ds, and Ws, they

were assigned values based on the ranges suggested .by Dumenil and Todini

(1992). The .effect of specifying the three parameters in this.way is insignificant

to the model predicted latent het_t and sensible heat fluxes (see Chapter 4). The

value of_each p_amete.r used at the clearing site is given in Table 3.3.

As noted in Section 3.3.1, soil moisture was measured at 11 depths, and

thus the average soil water content could be derived for.both theupper layer and

the lower layer. Since the soil moisture was measured on October 16 of 1990 and

on July 5 of 1991, the average water contents on each day were derived as

0=0.368 (0.368 m) and "e=0.436 (3.924 m) for the upper and lower layers on

October 16, respectively, and_ 0=0.420 (0.420m) and e=0.466 (4.19i m) for

layers 1 and 2, on July 5, respectively. These values were used as the initial

soil moisture contents of the.two test runs for Missions i.and 2 respectively. The

initial value of the intercepted water by the canopy was estimated based on

precipitation izdormation.for the days prior to October 16 and July 5. On

October 14 and 15, the two days before the beginning of the Mission 1

calculations, there was no rainfall. Therefore, the initial intercepted water for

Mission 1 was set to zero. For the Mission 2 application, there was some rainfall

on July 3 and 4, but there was no rainfall for the four hours before the beginning

calculation time at 0000 LMT on July 5. Since the maximum intercepted water

by the given LAI was 0.17 mm and the average evaporation rate at that time

was 0.18 mm/hr (Hodnett et al. 1993), the small intermittent rainfall with rates

less than 0.2 mm/hr before 2000 LMT on July 4 should have evaporated within

I II
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the four hours before 0000 LMT on July 185, and th,." initial intercepted water

for Mission 2 was also set to zero.

3.4. Modal validation at ABRACOS site

With the model parameters determined above, the two-layer VIC model

was applied to the hourly data of the 17 days in Mission i and the 42 days in

Mission 2. The model predictions of the hourly latent heat, sensible heat, and

ground heat fluxes were tested against the hourly observations. Since surface

temperature was not measured, the model-predicted effective surface

temperature was not tested.

Fig. 3.15 shows the model predicted (dotted) latent, sensible, and

ground heat .fluxes .and the corresponding observed quantities (solid line) for

Mission 1. During the 17 days o£ Mission 1, there was little rainfall, except for

the one on October 24 which reached about 3.6 mm for one hour (see Fig. 3.14).

During the first 6 days, the observed latent heat fluxes Were about 300 Wm "2,

and .the sensible, seat fluxes .were about 200 Wm "2, while the latent heat and ..........

sensible heat fluxes both had smaller values on the last 6 days. The model.

predicts, latent heat and sensible heat fluxes well for the first 12 days. For .the.

remaining 5 days of Mission 1, the model underpredicts .the latent heat fluxes

and overpredicts the sensible heat fluxes on .the same days.

• The reason for the underpredictions of latent, heat fluxes at the end .of

Mission 1 might be due to underestimation bythe model of the soil moisture

during that time (Fig. 3.19). in fact, for the 17 days of Mission !, the model

indicates that-reduction of upper• zone soil moisture (first 1 m depth) is

accomp_ed by a reduction of latent heat and an increase in sensible heat, but

the observed data do not support this. From Fig. 3.19, it can be seen that the

observed upper zone soil moisture increased during October 25 to 27 with no

rainf_l events observed during that period. This increase of soil moisture makes

it possible to evaporate more during the next few days as is shown in the

observed latent heat fluxes. In contrast, the model shows a decrease in upper

zone soil moisture that is consistent with the no rainfall period. This decrease of
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soil moisture reduces the latent heat flux and increases the sensible heat fluX as _

shown in Fig. 3,15, The increase of observed soil moisture during the no rainfall

period might be due to moisture movement f_om the louver zone. Such capillary

movement is not represented in the current two-layer ViC model. The larges_

difference between model-simulated and observed soil moisture in Mission 1 was

about 20 mm .......

For the ground heat fluxes, the model predicts the peaks fairly well for

the £rst 7 days, and overpredicts the peaks for the remainder of Mission 1. The

model-simulated ground heat fluxes tend to give larger negative values on the

days where small.spikes occurred on either observed latent heat flux or sensible

heat flux such.as on October. 17,. 18, 19, 20, 21, etc., while reasonable

negative ground heat fluxes were predicted on October 22, 23, and 24,. for

example, where such small spikes were not present in the measurements. The__

means and their standard deviations of the model p_edicted fluxes and the ones

of the corresponding observedquantities for Mission 1 are listed in.Table 3.4a.

From Table 3.4a, it can be seen that the differences between model predicted

statistics (m__eanand standard deviation) and the observed statistics are small..

The comparison between model predicted and.the observed fluxes for the .

42 days 9f Mission 2 is shown in Figs. 3.16 (from July 5 to 18), 3.17 (from July

19 to August i), and 3.18 (from August 2 to 15). The soil was moister during

Mission 2 than it. was during .Mission 1. The upper zone soil moisture was .above

the critical point .for the duration of Mission 2, while it was only slightly above

the wilting point at the end of Mission 1. The observed latent heat fluxes were

about 400 Wm "2 on the days with no rainfall. From Fig. 3.16, it can be.seen

that the model predicts the latent heat fluxes very well on both raining days and

non-raining days. In general, the model overpredicts the sensible heat fluxes

slightly and underpredicts the ground heat fluxes slightly.as well, but the overall

prediction is quite good during these days. The model predicts the la_ent hea'_,

sensible heat, and g_ound heat fluxes quite well from J,fly I9 to August 1 (Fig.

3.17), and from August 2 to. 15 (Fig. 3.18), The s_me s'.atistics used to

summarize the model performance for Mission i were com::uted ,for _'ne 42 da'its
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in Mission 2 and are listedin Table 3.4b. The large negative simulated ground

heat fluxes predicted in Mission I did not occur in Mission 2 (see Figs. 3.i6,

3.17, and 3.18). A closerlook at the observed fluxesduring Mission 2 indicates

that the small spikes in the observed latent heat and sensibleheat fluxes _e-re

not present in Mission 2, suggestittgthat some of the apparent Mission I model

errormay in fact have been attributableto measurement errors.

During Mission 2, the model simulated moistures were larger than the

observed ones before August 7, and smaller than the observed ones afterAugust

7. Nevertheless, the largest differencewas lessthan 30 ram'(Fig. 3.19). The-

statisticsof the.soilmoisture predictionsand observations for Missions I and 2

are given in Table 3.5.

3.5. Summary of the model application

The two-layer VIC model performed well for a hot and.moist condition

which is much differentfrom the FIFE site."The applicationsto the.ABRACOS

and FIFE sites suggest that the two-layer VIC approach, coupled with a

simpiifiedvegetation model, may be sufficientto represent land surface fluxes.

Nonetheless, it must be emphasized that the model testing to date is for two

small areas with the specificland covers,and climates; -more testing will be

required at other siteswhere detailed surface flux data are availablebefore the

_.ode! can be consideredto be globallyvalidated. This latterconcern, however,

'._not limited to this.model alone; a major thrust of such projects as GCIP

(GEWEX (global energy and water cycle experiment) continental-scale

international project), and large scale field experiments such as BOREAS

(boreal ecosystem-atmosphere study), is to provide better large area surface

moisture and energy flux data for validation of GCM land surface algorithms.

The approach described in Chapter 2 may be considered as a candidate prot_oco_ol

_or future validationsof GCM land surfaceparameterizations.
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Table 3.1, Average monthly NDVIs at the FIFE site

Mo J F M A M J J A S O N D

r -

NDVI 53 58 66 89 132 147 145 136, 122 84 66 62

Table 3.2. Model parameters at the FIFE site

Paxameter Value Parameter Value

bi 0.008 ro[1] (s/m) 2.0

Dm (n/h) 0.3__ ._._[1] (s/m) 100.0

Ds .... _.Tx10-5 do[l] (m) 0.25

Ws 0.96 _o[1] (m)_ _ o.o_

Bp o.I6 Cv[1] 1.o

Ks Cram/h) 6.44 fl[l] 1.0

w_ (_=) 250.0 %[11 o.o

W_ (ram) 1250.0 T 2 (OK) 293.6

wT o.ls  j 0.2

W_ r (ram) 0.46W_ _[1] (Wm'lz'l) 0.514

0 0.5 Cs[l ] (Jm-3K "I) 2.13 x 106
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Table 3.3. Model parameters at the ABRACOS dte

Parameter Value Parameter Value

bi o.1 _o[11Cs/m) 2.0

D m (mm/_h) 4.15 train[1](s/m) 50.0

D_ o.oos 6o[1](m) o.n

VV's 0.9 Zo[1] (m) 0.026

Bp 0.053 Cv[l] 0.84

8 0.64 LAI[I, m] 1.50.

Iq (m=/h) 79.2 _[1] 1.o

w_ (==) 640.0 _211] o.o

'vV_ (rnm) 5760.0 ....... T 2 (OK) 300.0

_.w (r_=) 0.53w_ _[i](wm'_K"_) 0.69

VCjcr (ram) 0.56Wj ¢ C,[1] (Jm'3K "1) 7.44xi05
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Table 3.4c. Comparison of statistics for ABRACOS Mission 1

Names .Mean(cal) Std(c_d) Mea_(obs) Std(obs)

- (win-2) (win2) (win2) (w_-2)

Latent 67.63 98.88 64.46 _. 102./6

Sensible 40.38 69.91 41.19 67.99

Ground -0.33 27.30 2.07 18.52

Table 3.4b.Comparison of statisticsfor ABRACOS Mission 2

Na._les Mean(cai) Std(cal) Mean(obs) Std(obs)

(Win "2) (Wm -2) (Win -2) (Win -2)

I

Latent 93.73 128.86 - 95.86 134.69

Sensible 30.98 44.37 24.35 38.31

Ground -4.05 21.63 U.43 22.41
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Table 15. Comparison of upper zone soil moisture for

ABRACOS Missions I and 2

Na_es

....... 1

(m=l) (_-,,,.,)
Std(obs)
(mm)

Mission i 348.34 9.17 354.61 8.78

._hssion 2 402.64 19.10 395.06 14.49
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Fig. 3.7 Schematic representatioz: of the time frame for the Anglo-Brazilian

Amazonian Climate Observation St'.,dy (ABP,.ACOS) (After

Shuttleworth et al. 1991).
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Fig. 3.8 Location of the ABP_COS site (After McWilliam et al. 1993).
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CHAPTER 4. SENSITIVITY ANALYSIS

In Chapter 3, the two-layer version of tLe variable h'._itratiozlcapacity

(VIC) model (described in Chapter 2) was evaluated by co_',r_._dngmodel-

sirnuiatedsurfaceheat fluxeswith those observed at two sites:a native tallgrass

prairieof the FIFE sitein the United States.and a deforested tropicalforestof

the ABRACOS site in Brazil. However, further validation opportunities are

limited due to the small number of locationsglobally where surface fluxes of

moisture and energy have been measured.

An alternative approach to model testing is sensitivity analysis. Although

lacking the benefit of comparison with observations, a systematic analysis of the

mode 1_sensitivity can at least help us understand holy the para'_neters affect the

model results. The most commonly used sensitivity analysis method is the one-

factor-at-a-time approach. The other, recently suggested for climate model

assessments by Henderson-SeUers (1992, 1993), is the so calledfactorialdesign

method (Box et al. 1978) which has the advantage of investigatin_ md

identifyingmultiple factor interactionsamong the parameters. In this chapter,

the two methods are corhbined to investigate_d identifythe model" parameters

that most strongly affectthe two-layer VIC model.

4.1. Factorial designs

Unlike the "change one-factor-at-a-time"approach, the factorialdesign

method 'tests both the sensitivityto changes in individual parameters, and to.

interactionsbetween groups of parameters.. A general factorialdesign tests a

fixed number of possible values for each of the model parameters, and then

investigatesand identifiesthe tanks of effectsof each parasneter by nmning the

model through allthe possible combinations of the parameters. For example, if

there are k parameters (Pl' P2' "" Pk ) in the model, and there are ILpossible

options (calledlevels)for the firstvariable (Pl)' 12 cptionsfor P2' '"' and Ik

options for Pk' then, a complete factorialdesign would include 11x12x •.. xIk

combinatious. In this analysis, however, a factorialdesign at only two levels
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was considered. Thus, there will be only 2k combinations "of the model

pa.ram_ters iri the above eX_-nple.

Consider a k=3 parameter (2 3 factorial) design as an example to illustrate

the method. Assume that the three parameters are roughness length z0, leaf

area index LAI, and the minimum stomatai resistance rmi n. If the pr_.diction

variable of interest is annual latent heat flux, the design matrix is:

Run z0 LAi. rntin pwLeE

1 - - - Yl

2 + - - Y2

3 - + - Y3

4 + + - Y4

5 - - + Y5

6 + - ÷ Y8
7 - + + Y7

8 ÷ + + Y8

where "+" and "-" signs represent the two possible values of each parameter,

with "+"-for high values and "-" for low values. With this design matrix, the

effects due to each parameter alone can be estimated as,

n

Ej = Nj (4.i)

where Ej represents the effect of jth factor (i.e., in jth column), n is the total

number of experimental runs (i.e., n-S), $ij represents the sign in. row i and

column j, Yi represents the value (e.g., annual latent heat flux) obtained from

the ith exp.erimental run, a_id Nj is the number of "+" signs in col_ j. Using

Eq. (4.1) and the above design matrix, the effects of parameter interactions on

;he model results can also be estimated based on the signs for the parameter

I | I!
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interactionsas shown belo#. The signs are obtained by using the rule that plus

("+") times minus ("-_) gives a minus ("-'), and that minus ("-') times

minus ("- ") or plus ("+') times plus ("+") gives a plus ("+').

Run z0 •LAI z0. rmi n LAI. rmi n z 0. LAi _rmi n

1 + + + -

2 - - + +

3 - + - +

5 + - - +

6 - -+ - -

7 .... -'1-

8 + + + +

With all the Ejs estimated from Eq. (4.1), the degree of importance of the

parameters and their interactions can be determizted. One way of doing if, is is to

plot the Ejs on a normM probability scale (Box et al. 1978). Any points tl_at ate

outliers from the straight line on normal probability paper could be cousidered to

afffect the model results significantly, since it is assumed that changes in levels

of the variables have no "real effect on the model results, and thus the model

results (i.e., Ejs) would occur simply as a result of random variation, about a

fixed mean. The others are noise, assuming that all the higher interactions are

negligible. Neglecting higher order parameter interactions is conceptually similar

to neglecting higher order terms in a Taylor expansion (Box et al. 1978)

Another way of identifying the paraffxetefs which have major effects on the

model results was suggested by Henderson-Sellers (1992; 1993). She used an

iterative method to find thresholds that were two, three, or four standard

deviations "from zero. Any Ejs greater than the estimated thresholds were

considered to have significant effects on the model results.

4.2. Fractional factorials

From the experimental design described above, it can be seen that the
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number of experimental rims increases geometrically with the number of model

parameters. A laud-surface pararneterization scheme with 10 parameters, for

exan_ple, would need[ 210=1024 experimental rims to investigate all the single

and interacting parameter effects. This number of runs is computer intensive, if

not totally impossible. +However, from a mathematical poir.t of view, it is not

necessary to conduct all of the experimental runs, since not all of the parameter

interactions would have appreciable effects on the model results. In .fact, there

tends to be a hierarchy in terms of the magnitude of the parameter effects. The

single parameter effects (called main effects) tend to l_ave _eater absolute

magnitudes than the two-parameter interactions, and the two-parameter+

interactions tend to have greater effects than the three-parameter effects, and so

of_. The terms of a Taylor. series exp_usion of a response function can be

associated with the main effects and the interactions (Box et al. 1978).

Therefore_ the higher orders (or h_gher interactions) in the Taylor expansion

series have larger opportunities to be ignored. In addition, when a large number

of experimental, runs is introduced, some of the runs are redundant (Box et al.

19 Y?_ Therefore, only a fraction of the experimental runs of the factorial design

is needed.

Whe,_ a fractional factorial design is used, it implies a tradeoff between.

the loss of information about higher order interactions and the number of

experimental runs. In addition, it will introduce confounding patterns where

certain combinations of the parameters are indistinguishable from others. These

confounding patterns cau be between singte parameter and .two parameter

interactions, two parameter interactions and other two parameter interactions,

two- and three-parameter interactions, and. so on,. depending on the

"resolution" at which the fractionalfactorialexperiment is designed. A design

with resolution R is defined as the one in which no k-parameter effect is

confounded with any other effec_containing fewer than R-k parameters (Box et

al. 1978). For example, a design with resolution4 won't have any main effects

confounded with any two parameter interactions.However, the main effectscan

be confounded with three parameter interactions, the two parameter

interactions with other two parameter interactions, and so on. When
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confounding patterns occur, it is usually considered that lower order effects are

more likely th_ higher order effects. However, to be sure that this is the case,

either further experiments need to be conducted, or physical reasoning is used to

elimi,_ate certain parameter(s) within the confounding sets.

The procedure for cond_ctin_ a fractional factorial design is:

(1). Determine the nu_nber of model p_r.aa:aeters that need to be investigated

and the number of experimental runs to be conducted;

(2). Determine the design resolution;

(3). Selezt the parameters to which signs _ill be assigned ("primary

parameters"), and specify, their plus and minus signs;..

(4). Deterniine the signs of the remaini,_g parameters that areselected_ in (1)

based on defining relations (defining relations are the equations through, which

the plus and/or minus signs of" the rest of the p_ameters are determizied based

on the signs assigned to the primary p_ameters);

(3).Write out the design matrix, with "+" and "-" signsrepresentingthe two

possiblelevelsof each parameter;

(6). Calculatethe effects(,slso calledcontrasts)by using Eq. 4.1;

(7). Find the confounding patterns, and check if further experiments are

needed;

(8). Rank the degree of importance of these investigated parameters based on

their absolute magnitudes of effects.

4.3. Fractionalfactorial_ents with the two-layerVIC model
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The two level fractional factorial experiment method is used in this

section to investigatethe sensitivitiesof the parameters in the t_o-layer VIC

model. An off-linemode (i.e.,prescribethe input forcingdata such as solarand

long-wave radiation, precipitation, _nd, air temperature, and specific

humidity) sensitiVitytestingwas used. Off-linetestinghas been rep¢:rtedto be

an efficientway- of exploring the ef_ect_of model parameters for GCM land-

surface paratnctcrizations(Dickinson and Henderson-Sellers1988). Henderson-

Sellers(1992, 1993) used the secozidyear resultsfrom a two year simulation

period to analyze the parameter sensitivityof BATS. Use of a second year

simulation follo_vinga "warm up" year ispreferableto the shorterperiodused in

some previous studies, e.g., 10 days (Wilsor et al.i987) or 150 days (Dicldn_on

and Henderson-Sellers1988) since initializationeffectsare removed (Headerson-

Sellersi992, 1993).

In this analysis, the one.year of PILPS (Projectfor I_tercomparison of

Land-surface Paran_eterization Schemes) prescribed atmospheric forcing

representlngtwo climaticregimes was used: (I) moist, tropicalforest; and (2)

a midlatitude grassland. The PILPS atmo_pheri'cforcing data were obtained

from the NCAR CCMI-Oz (Hendei:son-SeUerset al.1993) for a forestedgrid cell

centered r.t3°S, 60°W, and a grassland grid cellcentered at 52°N, 0°E

respectively. The atmospheric forcing data include (1) downward shortwave

radiatiozL (2) dovcnward lozig-wave radiation, (3) precipitation, (4) air

temperature, (5) wind speed, (6) surfacepressure, aad (7) specifichu_nidity.

Pitman et al. (1993) provide detailsof the PILPS experiments.where the above

two setsofforci_tgdata (i.e.,at the tropicalforestand midlatitude gr_siand)

were used by twenty differentland-surface.schemes ruxito equilibrium. The

simulated latent,and sensibleheat fluxes, surface temperature, runoH, and

other surfacefluxesand state variablespredicted by the twenty schemes are to

be compared. The two-layer VIC model is among the twenty participants.

From the monthly precipitationforcingdata shown in Fig. 4.1, it can be seen

that there is considerable seasonalityin the precipitationat both sites. The

monthly precipitatio,_is highest in February, October and December, and

lowest in May-August at the forest site. For the grassland site, monthly
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precipitation is highest in July-September, and uniformly lower in the rest

months.

There are 23 parameters associated *¢ith the canopy/land-cover types in

the two-layer VIC model (Table. 4,1.). In the PILPS study, parameters for

Manabe bucket, SiB-, and BATS-type models were suggested for both

grassland and forest site._. Although the two, iayer ViC model is not strictly

similar to any of these types, there _re some comnion, parameters. Therefore,

the VIC model parameters were determined as was most appropriate based, on

the given information. For example, the model pore size distribution index Bp,

and the model maximum subsurface flow Dma x can be expressed in terms of the

PiLPS parameters as,

Dma x = K s •tanx

where B_is the soil wetness exponent, e.nd tanx is the surface slope. In addition,

the soil moistttre critical point was taken as 70% of field capacity, and the

surface albedo (snow-free) was obtained by weigl_.ting the "Abedo_ with the

corresponding fractional coverages of vegetation.and bare soil. There.remained

fou_ parameters that could not be deternxined based on the PiLPS informatlon.

They are the architectural resistance fo, the infiltration shape parameter bi, the

fractioxX of the maximum subsurface flow Ds, and the fraction of the maximum

soil moisture content in the lower layer Ws. The values of the architectural

resistance can be obtained fron_ the literature. They a*e-25 s/re. and 2 s/m for

the rain forest and grassland respectively (Ducouclre_et al. 1993). The value_ for

the other three parameters, however, cannot be estimated well unless

streamflow data are available ancl are via a hydrog*aph fitting procedure. Since

no streamflow data were available, their vaJues were specified according to

Dumenil and Todini (1992). The values of the twenty-three VIC model

parameters are listed in Table 4.1.
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Of the 23 parameters, 12 are either relatively easily estimated from field

data or have relatively narrow feasible ranges compared with the remaining

parameters. Therefore, these 12 parameters were fixed at the nominal values

given in Table 4.1. The two level fractional factorial sensitivity analysis was

only applied to the remaining 11 parameters, where their two levels (high and

low) were determined based on 50% perturbation about the values given in Table

4.i. Therefore, the high level "+" is related to the value given in Table 4.1 foe

the parameter plus 50%, and the low level "-" corresponds to the value given

itiTable 4.1 minus 50%. If the values (high and low) determined in this way

exceeded either the range of that parameter reported in the hterature or its

physical range, then the high and/or low values were adjusted to the literature

or physical bound. For. the three parameters (hi, Ds, and Ws), the tw6 levels

were obtained based on the ranges suggested by Dumenll and Todini (1992).

Adding or subtracting 50% error to the par_neters may be an exaggeration of

the parameter estimation errors in some cases, but their ranges shoed be

helpful in expioring the parameters sensitivity of the two-layer VIC model. The

eleven parameters with their high "+" and low "-" values are given in Table

4.2.

Four metrics were selectedfor investigr.tingthe sensitivityof the two-.

layerViC model. They are the annual total evaporation (mm/yr), annilally

averaged sensibleheat flux (Win'2), annual totalrunoff (mm/yr), and hourly

minimum surface temperature (K). To eliminate initializationeffects, the

PILPS procedure of running the simulationsfor n-yearrepetitionsofthe one year

forcingwas followed untiiconvergence #as reached. In thiscase, convergence is

taken to occur whezt the monthly maximum, minimum, and mean of the land

surfacefluxes, surfacetemperature, and nmoff _ere essezttiallyidenticalforthe

subsequent simulation years. The totalevap.orationand runoff are the hourly

accumulated quantitiesfor the equilibrium,year; the sensibleheat flux is an

hourly average of the equilibriumyea_; _.ndthe rainimum surfacetemperature is

the singlelowest hourly temperature simulated for any hour in the equilibrium

yea_. These four measures were selected to represent the radiative a_d

hydrologicalcharacteristicsofthe two-layerVIC model.
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Since there are 11 model p_rameters in the sensitivity analysis, there

would be 21i=2048 experimen_ runs if a full factorial experiment were used.

However, this number of runs is not necessary as discussed earlier. A fractional
_11-6

_actorial experime_nt of 32 runs with resolution 4 (i.e,, 2iV - 32) v,.as designed
5

in this analysis. Using the notation of Box et al. (1978), in the 2iV de-_ign,

there are 5 primary parameters, and the remahiing 6 parameters are associated

with them. The five pz._mary parameters were selected arbitrarily as roughness

length z0, soil moisture content at critical l_oi.,t 0cr, minimum stomatal

resistance train, soil thermal conductivity _, and LAI. Let us represent the 11

parameters by _arameter index n,.unbers where the symbol 1"0, for example,

represents the tenth parameter, then we can specify them as (see Table 4.2),

z0 - 1 0cr- 2 rmi n- 3 _- 4. LAi- 5

Cs- 6 0 - 7 ew - 8 b i- 9 Ds- 1-0 Ws- ]r

The last 6 p.arameters are related to the first 5 primary parameters through the

defining relations given by Box et al. (1978). Th_ defining relations are:

I = 1236, I = 2347, I -_ 3458, (4.2a)

i _- 1349, i = 145i-_, ! = 245_.. (4.2b)

where 'I' represents a column of all plus signs, and 1236 rel_resents the resultant

sign from the signs of parameters i, 2, 3, and 6 based on the plus times minus

rule discussed earlier. In other words, the above equalities mean that the signs

on both -_ides are the same. For example, if the signs for 1, 2, 3, and 6 are

"+', "+:, "-" and "-" respectively for run.l, the sign of 1236 is then."+"

according to the plus times minus rule, and it.has the same sign as 'I'.. I._ the

sign of 1236 is "-'7, then it won't be equal to 'i', i.e., I_ 1236. From-the

above six defining relations, the sign of a parameter index number can be

determined if the signs of the remaining variables are known. This can be done

by multiplying the number (i.e., parameter) on both sides of an equation. For

instance,the sign of number 6 can be determined by 6=I. 6=1236.6=123. I=123.

I II •
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Since the first five numbers have been chosen as the primary parameters, their

signs can be specified, and the signs for the remaining numbers can be then

obtained by multiplying its number on both sides of the equation. The _x

relations from the above defining relations are,

6 = i23, 7 = 234, 8 = 345, (4.3a)

9 = i34, _= 145, 1-_= 245. (4.3b)

The above six relations are called generators. Thus, by specifying the plus and

minus signs to the five primary parameters for the 32 experlmental runs, the

signs of the remaining six parameters in the 32 runs can be obtained through the

above six generators. The relations izi the above six generators are not unique.

There are other ways to define the six generators for the il parameters.

However, the design shown here is preferred because it ensures that all the main

effects are not confo,_uded with the effects of any of the two parameter

interactiozis. Only two parameter interactions are confounded with each other if

higher order effects are not considered (Box et al. 1978). In other words, the

design shown here guarantees a design with resolution iV in 32 experimental

runs. The des!gn matrix with all the plus "+" and minus "-" signs fo__each of

the 1i p_ameters in the 32 runs is sh6wn in Table 4.3.

From the above six defining relatioz_.s, all the confounding patterns of this

resolution IV design with 32 experimental runs for 11 parameters can be found

based .on the procedures described by Box et ai. (1978). In the following,

however, only the confounding patterns for the two parameter interaction_ are

discussed; highe_ order interactions are assumed to be negligible. Multiplying

two of the six defifiing relations, at a tithe (e.g., I -- I.I --- 1236.2347 =

1.2.2.3.3,467 = 1. I.i.467 = 1467) gives the I's with only four parameter

combinations as follows,

I = 1467 = 2469 = 2578 =-1279 = 357n"

= 1589 = 1381-0 = 238i"1 = 359"f'0 = 12"1"_i"r (4.4)
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Multiplying three at a time gives the I's with only four parameter combinations

follows,

I -- 3679 - 5671-0 --' 478i'_ - 489_ .-" 3610 11

= 2681"0 = i68"n = 569i"i" (4.5)

Multiplying four at a times gives the i'swith only four parameter combinations

as follows,

I = 7910 11 (4.6)

Multiplying five and six at a time won'i; end up. with any l's that can be

exi_ressedby only four parameter combinations. Therefore, they canztotresult

in any confoutiding pa_terns among two parauieter interactions. By multiplying

12 through Eqs. 4.2,4:4-4.6 and omitting words _ththrec or more numbers,

for exampie, we obtain

i.e.,

i.12 = 1236.12 = 1279.12 = 121"0I-_.i2

12 = 36 = 79 = 1"0l'q

Thus, the two parameter interaction12 is confounded with interactionsof 36,

79, and i'_1"1. Following thisprocedure, the confounding patterns for the two

parameter, interactions _or the entire design can be obtained based on the

relationshipsdefined in Eqs. 4.2, 4.4-4.6. The confounding patterns for two

paramete_ interactionsare:

12 = 36 = 79 = Y.O11

14 = 39 = 5i-_ = 67

16 = 23 = 47 = 8_"

18 ----3i"0 = 59 = 6_"

1_ = 2i_.= 3s= 45

24= 37= 513= 69

13 - 26 = 49 --81-'0

15 - 4i-_= 89

17 = 29 = 46

19 - 27--34- 58

H£ = 2__.=6s
25 = 411 = 78
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28 = 31-i"= 57 _ 6_ 35 - 48 ---7i"1= 91"6

5s= 71- = 91- __ (4.7)

The matrix having all the plus and minus signs for the two parameter

interactionsare shown in Table 4.4.

•4.4. Results of fractionalfactorialexpert" ents

._11-6.

With the 2rv design discussed above, the thirty-two experimentM runs

were conducted for the grassland siteand the forestsiterespectively.The results•

for the four metrics of the 32 two-layer ViC model runs are listedin Tables 4.5a

and 4.5b for grassland and forestrespectively. The eleven main effectsand the

two parameter interactioneffects(specifiedin Eq. 4.7) are listediitTables 4.6a

and 4.6b for grassland and forestrespectively. The iterativemethod (Henderson- -

Sellers1992, 1993) discussed in Section 4.1 was used to find the two-_ aud/or.

three-standard deviations (2# and 3_). All the main effects and the two

parameter interactio_teffectsthat are greater than 3# in any of the four measures .....

at both Sitesare shown in Tables 4.?a and 4.8a respectively.

From Table 4.7a, it c_n be seen that only LAI was significantfor three

metrics (the totalevaporation and runoff, and the houriy average.sensibleheat

flux). For the minimum hourly surface temperature metric, two single

parameter effects(_ and Cs) and a two-parameter interactioneffect(_'ss)_vere

detected to be important, in the forestcase (Table 4.8a), on the baals of the 3#

criterionall the effectswere insign_cant on allmetrics except for the metric of

minimum hot_rly.s_ace temperature where _, Ca, and _'-_swere found to be

significant.The effectof _"_sare confounded by the effectsof z_ and 0crbi as

shown in l_q.4.7. In general, additional small fullfactorial_riment runs can

be .conducted to resolve these aliasesifthe physical reasoning isnot obvious. In

this case, however, since.z0 and e, and ecr and bi are much lesscorrelatedthan

and Ca, and alsoz0, 0, ecr, and bihave insignificantmain effectscompared

with that of _ a_d Cs, it is likelythat the greatest effectin the confounding

patterns is from _"_s rather than from z-_ or 0crbi. Thus, the interaction
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between s and Cs was considered to have the greatest effect on the minim .urn

surface temperature metric.

At the 2_ threshold, more parameters were shown to have large effects on

the four selected metrics (Tables 4.7b and 4.8b). Prom Tables 4.7b and 4.8b,

the importance of the single parameters and the two-parameter interactions caa

be ranked based on absolute vahies of their effects. These identified parameters

were classified into t_vo categories, primary importance and secondary

importance as shown in Tables 4.9 and 4.10. The effects of the parameters were

also identified by plotting the values in Tables 4.6a fi_d 4.6b on a normal

probability scale. The outliers shown on the plots (Figs. 4.2 and 4.3) are the

parameters that have significant effects. From Fig. 4_2, it can be seen that for

all the metrics except for the minimum hourly.£emperature metric, the outliers

that are identified by the. probability scale approach are the primary ones

detected by the threshold method for the grassland site. For the forest site, all

the primaqr and secondary outlie_rs from the threshold method are identified by.

the probability scale approach.

Although the model parameters and their ranks that were identified .are

not exactly the same for the grassland and forest sites (Tables 4.9 and 4.10),

there is some consistency in the results. The leaf area index LAI, porosity 0,

the minimum stomatal resistance rmi_, critical point and wilting poicit of soil.

moisture have important effects on the first three metrics of the two-layer VIC

model at both sites. For the grassland site, the roughness length z0 and the

interaction between porosity 0 and the minimum stomatal resistance rmi n ate of

secondary importance for the same three metrics. For the minimum hourly

surface temperature, the sol1 thermal conductivity and soil heat capacity were of_

primary_importance at both sites, and the interaction between the two is

secondarily important.

Henderson-Sellers (19921 1993) used. the fractionaJ factorial method to

a_aalyze the parameter sensitivities of BATS. BATS has 23 model parameters

that are related to the canopy/land-cover types. In the interquartile-range

ecotype parameter experiment, ten parameters were kept constant, and thus,
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the experiments had 13parameterswith two different levels each. The metrics

used were the ma_mun_ canopy temperature, . evapotranspiration, annual

runoff, the minimum daily upper-layer soil temperature, and the net carbon

ga.in. Based on the thresholds 4_ and 3_, the vegetation roughness length, soil

porosity, and stomatal resistance to vegetation light sensitivity were found to be

primarily important, while vegetation albedo, soil color, wilting point,

minimum leaf area index, soil moisture diftasivity, and the soil thermal

conductivity were found to be of secondary importance (Henderson-Sellers 1992,

1993). In the full-range ecotype par.ameter experiment tuns with the same

threshold crit_.rion (Henderson-Sellers 1992), the maximum leaf area index,

roughness lens, th, shortwave vegetation albedo, the interaction of roughness

length and albedo, the stem-area index, and the near-infrared vegetation albedo

were found to be important. Comparing the results described in this analysis

with the ones obtained by Henderson-Sellers (1992, 1993), it can be seen that

among the p_ameters common to both models, the.leaf area i_dex, porosity,.

roughness length, soil thermal conductivity, and the parameter related to the

stomatal resistance are important, despite the significant differences in the

structure of BATS and two-layer ViC.

From the study results, it can be seen that the experiments are highly

fractional. That is, there are many higher orde_ interactions that were got -

studied. There may exist three or higher order parameter, interactions that

require examination. Even though this analysis is prelimina.,7, it reveals some

common parameter effects that are important to the two-layer VIC model, and

pefhnps, to other laud-surface schemes as well.

4.5. One-at-a-time analysis

From the fractional factorial analysis, it is seen that the infiltration shape

parameter bi, the fraction p_ameter of maximum subsurface flow Ds, the

fraction parameter of the lower layer maximum soil moisture Ws, and their

interactions do not significantly affect the four model metrics (Tables 4.6a and

4.6b). Among the parameters that show important effects, the above analysis

I II
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indicates that the ranks of some parameters at the grassland site are different

from those at the lorest site. For example, at the forest site, the critical soil

moisture had the least influence on the annual total evaporation, and the

minimum stomata/ resistance parameter had the greatest influence of all the

parameters tested. At the grassland site_ the critical soil moisture affected

evaporation more than the minimum stomatal resistance. To explore the

characteristics of these parameters further, the one-at-a-tizhe method was used

to allow investigation of more _han two levels.

First, the three parameters bi, Ds, a_d W s were investigated at four

levels each. The four different values for each of the three parameters (Table

4.11) were specified based on the ranges suggested by Dumenii" and Todini

(1992). The annually averaged latent heat flux (Win'2), sensible heat flux

(Win'2), annually averaged surface temperature (K), annually total evaporation

(mm/yr), and the total runoff (mui/yr) from the equilibrium year are shown in

Tables 4.11 and 4.12 for both grassland and forest sites respectively. Fig. 4.4

shows the monthly means of the control and the sensitivity runs for latent and

sensible heat fluxes, the surface temperature_ and the monthly total Iunoff at

both sites. The control runs shown in Fig. 4.4 .were obtained by running the

model to the equi_brium year with the parameter values givenin Table 4.1.

From Fig. 4.4, and Tables 4.11 and 4.12, it is clear that the infiltration

shape parameter b i does not significantly affect latent a_id sensible heat fluxes,

and the surface temperature, especially at the grassland site. At the forest site,

changing b i did not change the monthly latent heat a_d sensible heat fluxes

much, except hi August, where increased b i values reduced the amouzit of

water infiltrated into the soil, and thus decreased the lateflt heat flux and

increased the sensible heat flux. The apparent change in latent heat flux in

August was because it was very dry in that month (see Fig. 4.1), so any change

in the infiltration amount would strongly affect the water available for

evaporation. In comparison, b i has stronger effect on runoff. Figures 4.5 and

4.6 partition the runoff into surface and subsurface flo_ for the range of b i values

for the grassland and forest sites respectively. The total monthly runoff (Figs.

I
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4.5 and 4.6), especially the totally _ual runoff (Tables 4.il and 4.12), were

much less _ensitive to bi. This was due to the partitioning into surface and

subsurface flow. Ds and Ws had minimal effect on the monthly and annual

latent and sensible heat fluxes, and the surface temperature (Tables 4.11 and

4.12). Only the monthly runoff distributions vary with different parameter

values_ (Fig. 4.7). Tables 4.11 and 4.12 show that, although the total annual

runoff is insensitive to Ds _d Ws, the monthly runoff distribution varies

significantly (Fig. 4.7).

The results from the one-at-a-tim_ _nethod confirmed the findings from

the fractional factorial experiment, and _so showed the effect of the three

hydrologic parameters hi, Ds, and V_s on the redistribution of runoff (both

surface and subsurface). The wetness indices (the.ratios of annual latent heat

plus sensible heat to annual precipitation), equal to 0.44 at grassland and 0.5 at

forest, indicated that both sites studied here w_re climatologically moist. The

results obtained here might be different from the ones under a dry climate

condition, especially for parameter bi.

The one-at-a-time method was also used to study the sensitivities of the

critical point _,_d the minimum stomatal resistance, both of which were found to

be important i_ the fraction_ factorial studies. The results are given in Tables

4.13 and 4.14, for grassland and the forest, respectively. Table 4.13 indicates

that f_r the gr_sland site, a change of 7% to 14% in the critical point results in

almost the same sensitivities as a change of 15% in the minimum stomatal-

resistance for all the measures. Table 4.14, however, indicates that at the

forest site, a smaller change in.the minimum stomatal resistance than in the

critical t_oint caused larger changes in the latent and sensible heat fluxe,, and

total runoff. Therefore, the sensitivities of the same parameters under different

climatic conditions can be different. The relative order o£ iml_ortance of the two

parameters at different sites was the same as indicated by the fractional factorial

method.

4.6. Supplementary fractional factorial _ents
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From Sections 4.4 and 4.5,. it can be seen that the .annual total

evaporation .(mm/yr),. annually averaged sensible .heat flux (Win'2), annual

total runoff (mm/yr), and the hourly minimumsurface temperature (K) are not

sensitiveto bi, Ds, and Ws, but the monthly runoff distributionsare sensitive

to these parameters. To examine the sensitivitiesof the three hydrologically

related parameters further, three differehtmetrics were used. They are the sum

of the absolute differenceof monthly evaporatioxi(ram/too), runoff (both surface

and subsurface) (mm/fno), and the sensible heat flux (Win "2) between the

control _.xperiment and the 32 experiments described in Section 4.4.

The results of the 32 experiment runs with the three new metrics are

shown in Tables 4,15a and 4.15b, for the grassland and forestsites,respectively.

The parameter effectswith the .new metrics are shown inTables 4.16a and 4,16b,

for the grassland and the forestcaSes, respectively. By combining the 3_ and 2_

threshold approach and the probability scale approach (Section 4.4), the

paxametezs that are sensitiveare identified._From Figs. 4.8 and 4.9 (or Tables

4.17 and 4.18), it isclear that the effectsof parameter interactionsare more

important than the effectfrom the singleparameters under the new metrics for

evaporation and sensibleheat flux for both the grassland and forestsites. Since

the two parameter interactionsare confounded with each other in thisresolution

IV experimental design, further experiment runs would be needed to identify

the confounding patterns. Rather than performing such runs, the confounding

patterns that cannot be excluded based on physical grounds are retained as

possibly important two parameter interactions(seeTables 4.17 and 4.18).

For the sum of the absolute difference of .monthly runoff (combined

surface and substu'face)betweeR the control experiment and the 32 experiments,

the fractional factorial experiment analysis identified the t_'o parameter

interactions of bid s (confounded by SWs, rminLAI), _wbi , and biW s

(confounded by 0Ds), and the parameter W s as sensitiveat the grassland site.

For the forestsite, the singleparameters bi, Ds, and W s are sensitive. Like

the grassland case, the two parameter interactionsbiD s (confounded by _Ws,

rminLAI ), and biW s (confounded by oDs) are important. These findings are
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consistent with those obtained from the one-at-a-time aualysis discussed in

Section 4.5. The analysis conducted here indicates that different metrics used in

the fractional factorial analysis could result in the identiflcation of different

parameters and parameter interactions.

4.7. Additional analysis of model sensitivity experiments

In Sections 4.3- 4.6_ the sensitivity of the two-layer VIC model to the

model parameters were studied ofi tl_e basis of several metrics. In this section,

the model structure is explored for a few sFecial cases, with the_model

parameters _xed at the values given in Table 4.1. The four cases are:

(1). Vegetation (grass in grassland, and tree in the forest) covers 100% of the

_.and surface, instead of 80% in grassland and 00% in the forest as used

previously;

(2). As case (1), but without .atmospheric stability correction, and with

architectural resistance set to zero (see Chapter.2);

(3). As case (1), but the surface was kept wet so that the actual evaporation

equals the potential evaporation;

(4). As case (1) and (2), but with wet surface.

The results for the above four ca_es.and for the standard case are_given, in

Tables 4.19 and 4.20 for the grassla_id and forest sites respectively. At the

grassland site in _:ase (1)_ the change of the 20% vegetation cover from the bare

soil to grass reduced the evaporation from 617.21 mm/yr__ 565.51 mm/yr, and

increased the annually averaged sensible heat flux-from -5.10 Wm "2 to 0.02

Wm "2, and the total annual runoff from 648.83 mm/yr to 700.54 ram/yr.

Changes in the annually averaged surface temperature were negligible. At the

forest site, the change of the 10_ vegetation cover from bare soil to trees

resulted in similaxmodel effects.The annual evaporation decreased frorn.1357.59

mm/yr to 1176.49 mm/yr, the sensibleheat increasedfrom 25.93 Wm "2to 41.84

Wm "2, and the runoff changed from 1009.50 mm/yr to 2090,55 ram/yr. Again,
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the surface temperatv.re changes _vere negligible. Eliraination of the stability

correction resulted in only a small increase in evaporation at the g_assland site,

but the effect at the forest site was large. The relative increase of evaporation at

the forest ,site was 49.8_, while it was only 1% at the grassland. Such a big

difference was partially due to setting the architectural resistance to zero under

the no stability correction case a.t both _ites. The architectural resistance (see

Table 4.1) in the forest site (25,0 s/m) was much greater than that at the

grassland site (2.0 s/m), thus by setting it to zero, it had a greater {_fect on

evaporation at the forested site than at the .grassland site. In spite of the effects

of different values of architectural resistance, the influence of the stability

correction on the latent heat flux was .appaz_nt, as ,,vas the different effects

according to climatic conditions. Although the annual total evaporation

increased at both sites under case (2), the surface temperature at both sites

increased_slightly instead of decreasing.

By keeping the surface wet in cases (3) and (4), only five of twenty-three

(see .Table 4.1) parameters remained that would affect the model results. These

are aerodynamic rouglmess length, displacement height, surface albedo (snow

free), soil thermal conductivity, aad soil heat capacity.

By comparing the results (Tables 4.19 and 4.20) of cases (3) and (4), it

was found again that the effect of the-atmospheric stability correction varies

significantly with the climatic collditions. For example, the annual total_

eval_oration obtained in case (4) at the forest site _'_ more than three times as

large a_ that obtained fi_om case (3). However at the grasslaxld site, the .annual

total evaporation in case (4) Was only 1,2 times as large as that in case (3). This

result ifnplies that under some cases, the atmosphere is closer to the neutral

condition than the others, and thus, the stability correction is not as important

for these cases as for the others.

4,8. Summary of sensitivity a.aaly_is

The studies conducted here show that the combined use of the fractional

factorial method and the one-at-a-time method is an e_cient way of examining
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the relative importance of model parameters. From the analysis discussed in this

chapter, it was found that the led area index LAI, porosity 0, and the

minim_im stomatal resistance rmi n _vere the most important p_ameters of the

two-layer VIC model in terms of the three metrics associated with annual total

or average surface fluxes, while the rouglmess length z0, critical point and

wiltin 8 point of soll moisture: and the interaction between porosity 0 .and the

minimum stomatal resistance rmi n _vere of secondary importance _or the same

metricS. For the minimum hourly surface temperature, the soil thermal

conductivity and soll heat capacity _vere primarily important, and the

interaction between the two was secondarily important.

The studies indicated that the surface fluxes and sue'face temperature

were not sensitive to the fraction of the maximum subsurface flow ant, the

fraction of lower, layer maximum soil moisture for the four metrics. Both

parameters resulted in redistribution of t_e monthly runoff within _a year, but

they did not change the total amount of the annual runoff..Under relatively wet

climatic conditions, it was found that the surface fluxes and the surface

temperature are .not senSitive to the infiltration _hape parameter. This

parameter partitioned the streaz_aQow into surface, and subsurface flows

differemtly5_sed on itsdifferentvalues, but it did not affectsignificantlythe

totalamount_of annual runoff.

When the sum of_the absolute differenceof monthly runoff (both surface

and subsztffacerunoff).(ram/too)from the controlexperiment was used as the

metric, the parameters hi, Ds, and Ws, and their interactionsamong

themselves and with parameters 0 or 0w are found to be important and sensitive.

In addition, when the metrics were the sum of the absolute differenceof

monthly evaporation and sensibleheat flux between the controlexperiment and

the 32 experiments, similarparameters as those indicatedby the metrics of the

annual total evaporation and annually averaged sensible heat flux were

identified. However, it was the. two parameter interactions of those parameters

rather than the single parameter effect that were found to be more important

this time.
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Finally, the analysis coziducted in Section 4,7 showed that the model

results were sensitive to the inclusion of the stability correction. Thi_ w=

especially the ca_e for the forested site where evaporation was primarily

atmospherically controlled, and less so for the grassland site where evaporation

was.mostly soll controlled.



Table 4.1. T_ "o-layer VIC model parameters for PILPS gr_sland and forint sites

0.9

1.0

9.0

90%

i0%

0.16 x 10.2

9.2

0.17

18.0

0.131 _

299.6

2S.O

.0.6

0.487

0.6

0.03

0.008

0.9

2.0

5.0

150.0

0.866

i.7_6 x 106
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T_ble 4.2a. Range of the eleven parameters at PILP5 grassland site

.N'o.

I

2

4

5

6

7

8

9

10

11

Aerodxn_:.ic toughn_.s lea_h z 0 (m) 0.15

Crlti¢_ poing oi soil moisture ect 0.536

Miuimum stomata/reSis_aacetin=(s/m) 200.0

Soilthei-'malcondu_ivhy _ (Wm'IK "I) 1.545

LeafareaindexLAI 1.5-LAI .

Soil hea_c_pacityCs (Jm'3K"l) 3_128x10_6

Soil porosity e 0.66

Permanent wilting point of soil moi1_ure _w 0,29

Lufihratioa shape parameter bi 0.50

Fraction of maximum sub_=hc:e [low Ds O.SO

Frac¢ion oi lower layer max. soil moist. W= 0.80

Lo*(.)
• 0=05

0,179

100.0

0.515

0.5. LAI

1.043 x 10.6

0.33

0,097

0.10

0.004

0.10
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Table 4_2b. Range of the eleven parameters at PILPS forest site

No.

1

3

4

5

6

7"--

8

9

10

11

Parameter names m_h(+) . Low(-) ....
Aerod_cmic roughness len_h z 0 (m) .... 3.00 !.00

Critical point of soil moisture _cr 0.54 0.18

_um sroma_al resis_cuce r_i. (s/m) 200.0 7,5.0

Soil thermal conductivity _ (Wm'IK "1) 1.299 0.4'33

Leaf area"inde.x LAI 7.5 5.0

Soil heat capacity Cs (jm'3K "1) 2.634 x 10`6 0.878 x 10.6

Soil porosity e 0.66 0.33

Permanent wilting point of soil moisture ew 0.438 0.146

i_Itradon shape pazame_er bi 0.50 0.001

]_'raction of maximum subsurface flow D s 0.50 0.004

Fractionof lower l_.vermax. soilmoist.Ws 0.90 0.10
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Table 4,3. Design matrix Of the eleven parameters

Runs i 2 3 4 5 6 7 8 91"5f£

1
2

3
4

5
6
7
8

9
I0

Ii
12-

13
14
15
16

17
18

19
20
21

÷ .... + -- -- ._ .÷ --

-- ÷ .... + + -- -- - +

÷ ÷ ..... ÷ _- + ÷ ÷

- - + - -- ÷ ÷ ÷ ÷ . -- --

÷ -- ÷ - - - ÷ _ - ÷ __-

-- + .÷ .... ÷ ÷ - 4-

÷ ÷ ÷ - - + - ÷ - ÷ +

..... ÷ -- - '4- • ÷ ÷ ÷

÷ - -- • -- ÷ + • -- - 4-

- • - _ •. - + - + • • -.
• • - • .... • ........

4- - "÷ • .... • - •

+ +- • • -. • • - • - -

..... + - - • - ÷--

÷ .... ÷ ÷ - ÷ • - ÷

" • - - ÷ ÷ ÷ 4- - + -

÷ ÷ - - ÷ - ÷ ÷ ÷ - -

" -" • - ÷ + + - • 4' ÷

- , - • • - • - • - ,

• . - . __ ÷ ÷ • ÷ -- - • --

-- • -- + ÷ ÷ " -- 4- --' ÷

÷ ÷ - ÷ ÷ .... ÷ .•

-- . ÷ ÷ ÷ • -- ÷ ......

-- ,_ ÷ _- ÷ -- ÷ ÷ -- . ÷

÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

22 .... •' - •. - + - • - - - •

23 -" + • - • .... • • -
24
25
26
27
28-
29
3O
31
32
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Table 4.4. Computation matrix for two parameter interactions

,-r .......... &. ,.

Runs 12 13 14 15 16 17 18 19 110 111 24 25 28 35 56

1

2
3

4
5
6
7

8
9

I0
ii
!2

13

14

15
16

17

18
19
20

21
22

23

24

25

26

27

28

29

30
3.1.

32

- _ ÷ ÷ _. -

11. -- . -- + ÷

÷ + ÷ -- -- .

+ ÷ -- -- ÷

•_- ÷ -- .4- ÷ -

-- ÷ -- + _- _-

----- ÷ -- + ÷ 4.

÷ -- . + ....

_ . _ -- ÷ -- ÷

÷ ÷ _- -- -- .

÷ .... ÷ ._-
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Table 4.5a. Ke-_ultsof32 runs at PILPS grasslandsite

Runs ET(mm/yr) SH(Wm-2) R(mm/yr) Train(K)

1 604.56 -i.56

2 622.51 -2.59

3 $98.10 -0,67

4 620.12 -2.80

5 544..37 2.85

6 566.99 0.82

7 396.12 12.10

8 423.29 10.95

9 649.82 -10.38

I0 677.21 -!I.Ii

II 408.62 6.12

12 435.49 2.89

13 -. 531.16. -1.63

14. 555.19 -4.62

15 529.11 -2.84

16 541.39 -2.31

17 664.66 -5.54

18 673.62 -6.00

19 700.76 -7.33

20 712.10 -9.16

21 723.20 -8.74

22 762.23 -12.49

23 585.47 -0.41

24 620.15 -2.49

25 852-.36 -22.79

26 911.43 -26.03

27 659.25 -9.39

28-- 698.85 -14.21

29 601.86 -5.72

30 616.57 -8.79

31 626.29 -9.01

32 635.52 _8.55

661.47 254.03

643.52 256.32

667.92 256.13

645.91 253.97

721.,66 256.15

699.24 254.01

869.91 254.37

842.74 256.37

616.21 256.32

588.82 257.22

857.41 257.36

830.54 256.47

734.87 257.33

710.84 256.45

736.92 256.35

724.85 257.24

601.37 253.88

592.41 256.24

565.27 256.09

553.93 253.90

542.83 256.10

503.80 253.93

680,56 254.03

645.88 256.32

413.87 256.26

354.60 257.14

606.78 257.26

567.18 256.34

664.16 257.27

649.46 "256.39

639.74 256.33

630.50 257.22
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Table 4.55. Results of 32 runs at PILPS forestSite

..... , • r

Runs ETCm_/yr) SH(Wm-2) R(mmlyr) Train(K)

1 1358.52 27.73 1908.55

2 1333.75 28.96 1933.32

3 1506.33 17.38 1760.74

4 1473.13 18.78 1793.94

5 - 1149.47 42.40 2117.40

6 1227.99 36,38 2039.28

7 953,33 56.26 2313.74

8 997.80 53.30 2269.27

9 1351.37 24.90 1915.51

I0 1437.59 19.64 1829.48

II 1057.90 46.42 2209.17

12 1201.96 36.08 2065.10

13 1218.36 35.06 2048.70

14 1190.92 36.95. 2076.14

15 1261.56 31.13 2005.51

16 1248.03 33.46 2020.52

17 1381.12 26.10 1885.94

18 .1398.5! 25.86 i888.56

19 1401.40 24.94 1865.67

20 1383,33 25,12 1883.54

21 1399.09 25.03 1867.97

22 1475.02 18.64 1792.05

23 1123.91 4-4.18 2143.16

24 1232.39 36.40 2034.68

25 1658.31 3.27 1610.24

26 1741.38- -2.41 1525.69

27 1363.92 25.03 1903.15

28 1430.62 19.45 1836.44

29 1276.0-5 31.08 1991.02

30 1250.32 32.69 2016.74

31 1310.30 27.63 1956.77

32 1215.74 35.76 2051.13

298.82

281.91

281.72

278.85

281.90

278.91

279.10

282.00

284.79

285.61

286.17

285.60

285.88
285.52
285.22

286.00

278.76

281.84

281.77

278,93

281.80

278..86

279.02

281.93

284.56

285.51

285-.82

284.87

285.68

284..84

285.14

286.09
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Table4. a. Parameter atPiLPS.grass!a dsite

Par Index NO _ ET R SH Tmin

(mm/yr) (mm/yr) (wm-2) (K)

i 24.80 -24.80 -1,97 0.019

2 -85.43 85.43 5,45 0.044

3 -76.92 76.92 4,98 0.058

4 7.00 -6.98 -5.96 1.694

5 146.28 -146.28 -9.49 -0.087

6 -0.21 0.20 1,01 1,546

7 97.09 -97.06 -6.23 -0.129

8 -67.62 67.60 4.36 0.024

9 -9_.73 9._6 0.66 0.023

l0 1.73 -1.75 -0.15 -0.02_

1-_ 2.57 -2.59 -0.17 0.008

12 -!.90 1.92 0.19 -0.028

13 -1.85 1.88 0.21 -0.017

14 1.85 -1.85 -0.16 -0.018
15 2.28 -2.31 -0.38 0.016

16 17.43 -17.40 -0.98 0.031

17 0.55 -0.55 0.38 -0.654

15 -6.28 6.28 0.47 -0.011

19 -5.07 5,07 0,20 -0. 032
ll-O 12.99 -12,99 -0.58 0.021

Ill -0.12 0.12 0.03 -0. 014

24 .... -22.20 22.20 1.27 -0.021

25 14..49 -14.51 -I,01 -0.009

28 3.34 -3.34 -0.22. 0.034

35 -10.79 10.77 0.55 0.002

56 T,.ll -I,14 0.01 0.027
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Table 4.6b. .Paz_eter effec-ts at PILP$ forest site

par I_dex No. ET R SH Tmin

(mm/yr) (mm/yr) (Wm_2) (K)

I
2
3
4

5
6

I

S

ii
12
13

14
15
16
17

18
19

ill
24
25
2S
35
56

27.96 -27.96 "2.08 0.070
"-I04.12 I04.1_ 7.43 0.190
-183.07 183.06 13.08 0.147

27._6 -27.28 -4.45 5.074

12_.35 -12S.35 -9.14 -0.161

-4.61 4.61 0.80 1.865
I_,_.65. -155.51 -I1.23 -0.131

-127.'_ !27,34 .9,08 0,052
-57.95 58.08 4.17 0.054
-16. "_ " 15.99 1.10 -0.040

11.07 -!1.25 -0.74 -0.008
-2.42 2.55 0,28 -0.031

.a,.,,-_ 9.90 0.93 -0. 019
-0.61 0.61 0.47 0,027
-3.81 3.57 0.14 -0.030
-!._7 1.56 0.06 -0,051
-_ .44 7.44 0.70 -1.087

-1.45 1.44 0.24 -0.006
24.09 -24.10 -1.66 0.033
_!.52 -31.52 -2.25 -0.124

-13.52 13.52 0.95 0.009
-25,!6 25.16 l.SO 0.125

-33.15 32,92 2.33 0.025
-12.19 12.19 0.86 0.119

I.!0 -1.28 -0.05 0.015
4.06 -4.24 -0.25 0.068
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Table 4.7a. Pazameters selected at the PILPS grassland site

based on a threshold of 13_1

Outiiers

Evaporation (mm/yr) LAI

Runoff (mm/vr). LAI

Sensible heat (Win "2) LAI

Min. surface temperature (K) _:, Cs, _-_s"

Table 4.7b. Pazameters selected at the PILPS grassland site

based on a threshold of [2_[

Outliers

Evaporat_ion (x_m/yr) LAI, 0,

Runoff (mm/yr) LAI, 0,

Sensible heat (Wm "2) LAI, 0,

Min. _ufface temperature (K) _,

i

$¢r, rmi n, Ow, z O,

_,. 0¢r, rmi n, 8w, zO,

Cs, _"_s
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Table 4.8a. Parameters selected at the PIIPS forest site

based on a threshold of ]3¢]

"' f' ,, , " " T

Evaporation (mm/y_) None

Runoff (mm/yr) None

Sensible heat (Wm "2) None

._,Iin. surface temperature (K)

OutL{ers

Table 4.8b. Parameters selected at the PILPS forest site

based on a threshold of [2¢[

.... f- m

Outliers

Evaporation (mm/yr) rmi n, O, LAI,

Runoff (mm/yr) rmin, 0, LAI.

Sensible heat (Win "2) rrnin , 0, LAI,

Min. surface temperature (K) _, Cs, _'-_s

OW_ OCX

Ow, Ocr

9w, Ocz
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Table 4.9. Identified importmt para_neters (ranked from left to right) at

the PILPS grassland site for the annual quantity metrics

Evaporation (mm/yr). L.AI,

Runoff (mm/yr) LAI,

Sensible heat- (Win "2) LAi, 0,

Mia. surface temperature (K) ,¢, Cs

Primary. ............... Secondary.

9, 0cr , rmin, ew z0, _0

0, Ocr , rmia, 0w z0, rmin.0

_, 0cr, rmi n, 0w z 0, rmin d

_Cs

Table 4.!0. identified important parameters (ranked from left to right) at

the PILPS forest site for the annUal quantity met.ri..cs

Primary . S_onda_,

Evaporation (mm/yr)

Runo (mm/rr)

Sensible heat (Win "2)

Min. sL_rface temperature (K)

rmin, 0 LAI, ew, 0cr

rmi n, 0 LAI, ew, 0cr

rmin, 0 LAI, Ow, Oct

,, Cs
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Table 4.il. Results for b i, Ds+ and Ws from one-at-a-time

sensitivity analysis at the PILPS grassland site

| -

T(K) pwL_:E(Wm'2j sH(wm.: 2) .ZT(_m/_)

Control run 282.12 47.87 - 5.i0 617.21

b i = 0.01 232.1I 48.04 -5.24 619.44

bi - 0.03 232.11 48.00 -5,20 618.84

bi -_ 0.3 282,12 47.49 ......... 4.77 612.20

bi= 0.5 282.13 47.20 -4.53 608.47

Ds = 0.01 282.12 47.87 -5.10.. 617.21

Ds -_ 0.05 282.12 47.87 -5.10 617.2i

D s = 0.i 282.12 47.$7 -5.10 617.21

D. = 0.3_ 282.12 47.87 -5.10 617.21

W s = 0.1 282.12 47.87 -&10 617.21

W s = 0.3 282.12 47.87 - -5.10 6i7.21

W_ = 0.5 282.12 47.87 -5.10 617.21

W s = 0.7 282.12 47.$7 -5.10 61'}'.21

f

648.83

646.59

647.19

645.42

652.S4

648.84

648_73

648.83

648.84

648.83

648.83

648,84

648.84

II i
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Table 4.12. Results for bi, Ds, and Ws from one-at-a-time

sensitivityanalysisat the PILPS forestsite

T(K_

Con_r_lrun 300.29

bi= 0.01 300.29

bi= 0.I 300.29

bi= 0.3 300.31

bi = 0.5 300.32

Ds = 0.01 300.29

Ds = 0.05• 300.29

D s = 0.1 300.29

Ds = 0.3 300.29

W s = 0.1 300.29

W s = 0.3 300.29

Ws = 0.5 300.29

W s -- 0.7 300.29

p_LwE(Wm "2)SH(Wm "2)

104.55 25.93

104.88 25.62

103.81 26.64

102.17 28,17

101.00. 29,28

104.55. 25.93

i04._5 25.93

104.55 25.93

i04.55 25.93

104.55 25,93

104.55 25.93

104.55 25.93

_04.55 25_93

1357,56

1361.88

i347.72

i326,32

13i0.96

1357.57

1357.59

I_7.59

1357.59

i35_59.

1357.59

1357.59

i357.59

R("'_./Tr)

1909.50

1905,20

1912.17

1"939.46

1955_85

1909.52

1908.76

1909.49

1909.52

1909.50

1909;52

i909.52

1909.51
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Table 4.13. Results for rmi n and ecr from one-at-a-time sensitivity

analysis at the PILPS grassland site

T(K t

r=_- 170 (s/m) 282.08

rmm = 230 (s/m) 282.I4

0orP-0.306 282.07

0cr = 0.383 282.14

pwLcEtWm "2) SH(Wm "2) ET(m,_/Tr ) R(m-,/Tr )

49.33 -6.33 635,94 630.08

46.6I -4.0i 600.93 665_11

49.40 -6.33 636.94 629.09

46.77 -4.15 602.94 663.06

Table 4.14. Results for rmi n and Oct from one-at-a-time sensitivity

analysis at thei_J,...-: .'..:__t site

_ T(K)

r,_ = 140 (s/m) 3(]0.28 105_72

r_-- 160 (s/m) 300.30 103.78

_cr --0.33 300.29 104.69

0cr - 0.39 300.29 104.22

awL_E(Wm "2)SH(Wm "2)

24.83

27.02

25.79

26.24

i372.65 1894.¢5

i342.42 1924.62

1359.42 1907.67

1353.36 1913.73
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Table 4.15a. Resets of 32 ru_ for the sum of the monthly absolute

difference metrics at PiLPS grassland site

P.uns DET(mm/mo) DSH(Wm-2) DK(mm/mo)

!
2

3

4

5

6

7

.D

9
i0

II
12

13
14

15
16
17

18

19

20
21

2.4

25
26

27
28
29
30
31
12

16.63

20,61

37.08

25.40

72.84

51.94

221.08

193 93

45 94

60 06
2O8 59
181 72

86 06
62 01
88 08
75 86

159 53
196 28

83 58

94 90

• 105 99

145.01

32.23
25.34

235.15
294.23

74.25

93.83

97".34
117.00

16.75

20.69"

64.24 305.98

43.76 150.76

63.64 85.12

56.90 241.58

103.72 304.67

89.62 255.21

216.26 370.96

198,58 203.31

63.29 222,62

97.01 - 86.56

134.95 281.13

108.56 181.71

42.06 228.90

27.95 193.04

32.85 339.31
44.12 316.58

133.31 164.16

151.11 244.78

48.43 272.18
57.14 231.74

64.09 224.48
90.45 __202.57

79,87 172,13

46.68 299.28

212.29 265.03

256.96 337.92

77.93 174.52

109.25 248.26
99.12 "200.27

•118.92 180.77

46.84 46.39
64.19 219.76
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Table 4.15b. Resultsof32 runs forthe sum of themonthly absolute

di_e_encemetricsat PILPS forestsite

Runs DET(mm/mo) DSH(Wm-2} DR(ram/toO}

1 123.55 98.86 -799.03

2 196.60 150.74 361.78

3 148.74 102,65 429.95

4. I15.90 88.49 545.SI

5 208.12 197.59 544.46

6 129.Si !25_41 1049.7i

7 404.26 363.98 72_,21

8 359.80 328.41 836.55

9 254.42 235.86 496.20

10 244.72 218.28 294_07

Ii 309.24 259.61 488.83

12 184.78 157.56 477.93

13- 139.22 111.73 1023.77

14 - _. 171.24 139.39 432.10

15 124.53 95.31 1269.52

16 133.40 113.36 559,87

i_ 194.30 152.18 920.04

18 252.99 200.29 432.92

19 189.14 143.04 1006.10

20 243.64 199.74 465.76

21 86.25 78.25 568.41

22 117.43 92.22 463,68

23 235.04 220.5i 479,92

24 125.21 125.69 794.89

25 300.71 271.90 620.20

26 383.78 340.14 1276.18

27 148.39 131.39 365.4"4

28 13-4.13 173.34 955.33

29 113.06 106.89 706.26

30 153.94 143.47 381.22

31 91.77 95.93 295.19
32 155.27 135.91 524.92
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Table 4.16a. P_rameter effec_ for the sum of the monthly absolute

di_ere,_ce metrics at PILPS grassland site

Par index No. DET DR DSH

(mm/mo) (ram/too) (Win-2)

1 4.86 -4.00 4.90

2 -18.33 7.26 -i6.98

3- -25.98 16.47 -19.59

4 17.20 -i2,.88 1.78

5 21.52 -17.70 16.82

6 4.10 0.55 1.79

7 -20.81 ___ 3,24 -16.31

8 25.28 -19.95 26.13

9 -1.39 2"1.09 -0.69__
I0 0.96 14,58 1.88

Ii -9.51 -58.60 -2.40

12 -ii.i0 29.06 -6.81

13 -8.43 1 93 -5.43

14 1.80 4.80 9.81

15 17.95 59.74 11.71

16 10.30 14.96 28.66

17 5.48 20.52 10.26

18 -3.50 -28.32 0.01

19 -52.77 -25.56 -53.43
II0 -3._0 -4.42 37.52
11-[ 1.46 19.34 6,11

24 -11.42 4.30 -20.38

25 -95.29 -26.73 -5_.5i

28.* 45.87 11.25 19.34

35 -57.95 -65.59 -34.94

56 -3.68 57.22 -6,73
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Table 4,i65. Paz_uneter effects for the sum of the montH)" absolute

difference metrics at PILPS forest site

f

Par Index No. DET DR

(ram/too) (ram/mo )

1 4.81
2 4.88

3 -45.10

4 -2.07

5 -16.77

6 i0.59

7 -23.32

8 4¢.51

9 31.90

13 1_..iS
Ii - -5.61
12 _23.43

13 -12.45

14 I0.81

15 26.79

16 58.27

17 i0.23

18 -10.35

19 -70.24

I__0 13.58
111 11.96

24 -59 ,'20

25 -34.24

28 42.81

35 - 56.66

56 -18.33

-55,11

-9.55

45.01

-15,82

-4.65

-10.15

!4.30

-81.28

-287.82

236.33

-123.50

68.23

-15.86

9.64

96.78

48.86

49,11

-34.54
-17.67

14.95
13.26

-27.07

-50.62

8.75

-273.44

146.88

DSH

(W_-2)

4.17

4.49

-28.13

3.88
-11.02

5.61

-20.62

45.64 -
28,92

10,42

"6.35

-15.41

-12.46

9.93

22.17

56.04

9.46

-9,92

-77.64

19,51

8.87

-55.14

-24.46

33.54

-48.52

-16.5S
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Table 4.17, Identified important parameters (ranked from left to fight)

at the PILPS grassland site for the sum of the

monthly absolute difference metrics

Evaporation (ram/too)

Sensible hear (Win'2) '

Importance

Table 4.18. Identified important parameters (ranked from left. to right)

a_ the PILPS forest site for the sum of the

monthly absolute difference metrics

Evaporation (z_.m/.no)

Runoff (n_/mo)

Sensible heat (Win "2)

Im,oo_a_ce
.... ,s r ........ t

b_,_ c_, _L_), D,, _ ce-_, w_
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Table 4.19. Results of model effects at the PILPS-grassl_ud site

, ~_

. T(K) pwL_(Wm'2) SH(Wm "2) ET(,,,,/Tr)..pj,,,,/_)

Std. Case 282.I2 47.87 - 5.10 6i7.21 648.83

Cue (1) 282.i3 43.80 0102 565.51 700.,54

Cue (2) 282.64 48.30 - 7.90 623.72 642.32

Case (3) 280.35 113.64 -57.11 1459.56 - - -

•Case ('4) 280.5I 137.02 - 83.00 1_'61.69 - - -

Table 4.20. R.esuhs of model effects at the PILPS forest site

T(K) p_vL_(Vqm'2).._SH(Wm "2) ET(m-,/_) .R(r--,!_')

Std. Case 300.29 104.55 25_93 1357.59 • 1909.50

Case (1) 300.34 90.60 41.84 1176.49 2090.,_

Case (2) 300._50 157.04 - 25.31 2034.11 1232.97

Case (3) 299.78 ___146.09 - 9.65 1900.05 - - -

Case ('4) 29.7.11 484.3,5 -332.33 6293.91 - - -
Nil i II IIII



121'

._=

o.

Q

J F M A M J J A S O N D

E " I" o'J'i
J F M A M J J A S O N D

Fig. 4.1 Monchly precipitation at PILPS gr_slaud (upper) and forest (lower)

sites.
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Fig.4:5 Effectsofparameterbion runoffat thePILPS grassla.udsite.
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CHAPTER 5 A PAPJIMETERIZATION OF SPATIAL VARIABILITY OF

PRECIPITATION IN THE TWO-LAYE_ MODEL

In Chapters 2-4, the structure of a two-layer VIC model was developed,

and its performance and parameter sensitivities were eve.luated. In the two

applications, the model was driven with spatially-averageprecipitationwhich

was justifiable, since both siteswere small. The FIFE siteis a 15x 15 km 2"

region and the ABRACOS siteis essentiallya point. For a large area (e.g., a

GCM grid cell), however, the effectsof subgrid scale spatial variations of

precipitationon surface energy fluxes, soilmoisture, and runoffproduction may

be significant.In practice, the subgrid land surface variationshave been largely

ignored in GCM land surface schemes. Most GCMs, for instance, assume

uniform soilcharacteristicswithin a grid cell, and ignore spatialvariabilityin

precipitation. The two-layer VIC model described in Chapter 2 isa simple

approach for representing subgrid variabilityin soilproperties. In this chapter,

an extension of the model to incorporate a representationof subgrid variabilityin

precipitationis described. With this new representation, the effectsof subgrid

scale spatial variabilityof precipitationon surface _uxes, soilmoisture, and

runoff can be examined. The resultsof this.method are compared with those

obtained using an exhaustive pixel-basedapplicationof the two.lay.orVIC model,

and those obtained by applying uniform spatialaverage precipitationto _hLetwo-

layer VIC model.

5.1. introduction

The feedbacks from land surfaces to atmospheric general circulation

models (GCMs) are important determinants of regional and global climate.

Land surface schemes used in the GCl_Is have to deal with spatialvariationsthat

occur at scales smaller than a GCM grid cell, in the same way that the

atmospheric part of the GCM must parameterize subgrid scale atmospheric
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variability. Natural land surfaces are heterogeneous within the scales resolvable

by GCMs. There are two ma_or types of hete_ogeneities. One is related to the

subgrid scale hydrologic and topographic heterogeneity of the laud sudaee itself;

the other is related to the subgrid scale variability of meteorological inputs, such

as precipitation, downward shortwave and long-wave radiation_ wind speed,

temperature and humidity. Among the meteorological inputs, the subgrid scale

variability in precipitation is particularly important (ltaupach 1993). Blyth et

al. (i993) showed that correct prediction of the total evaporation can be obtained

by using simple averages of surface parameters when comt_arin 8 the results from

a one-dimensional model with those from a three-dimensional mesoscale model.

However, their results indicated that a reasonable partitioning of the total

evaporation into. transpiration, evaporation from intercepted water, and

evaporation of the bare soil cannot be obtained unless the spatial distz_bution of

rainfall is considered at'least.

The spatial variability in precipitation has been widely recognized to have

a major effect on evaporation, soil moisture variability_ and runoff production

(for example, Warrilow et al. 1986, Shuttleworth 1988, Entekhabi and

Eagleson 1989, Famiglietti and Wood i990, Pitman et al. 1990, Henderson-

Sellers and Pitman.1992). Two approaches could be taken to incorporate spatial

variability in precipitation _n a model. One is the pixcLbased approach which

discretizes precipitation over a spatial domain. The. work of Famiglietti et al.

(1992), and Wigmosta et al. (1994), among others, for example, _alls into the

•- pixei-based category. Although such a pixel-based representation is able to

account for the spatial variability in precipitation throughout a grid cell (or a

catchment) in a straightforward manner, the associated computation time and

data demands using this method make it untouchable_for implementations

within,.GCMs.

Another option is the statistical-dynamic approach to representing the

spatial variability in precipitation. The advantage of this approach is that, if an

appropriate statistical distribution is assumed, it can result in a closed form

solution which would be computationally much less demanding than pixel-based
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approaches. Also, this approach requ/res less data, since only the statistical

distribution of precipitation needs to be specified, and not the values associated

with" specific spatial locations. Previous applications of the statistical-dynamical

approach are briefly reviewed below.

Warrilow et al. (i986) combined a subgrid precipitation distribution with

a constant maximum surface infiltration rate -to estimate runoff from a grid cell,

They assumed that over a fraction, _ of a grid cell (or an area), the poir_t

precipitation intensity, Pi, is exponentially distributed and can be expressed as,

f(pi) = _ _Pi 0 < < I (5.1)

where Pm is the grid .cellaverage precipitationgenerated in the GCM. The

runoff from the grid cellisthen given by

cO

q --/_"I (Pi-F*) f(Pi)dPi =Pm exp(--P'_m.

F*

(5.2)

where F* is the maximum surface infiltration rate.

Shuttieworth (1988) derived an expression for canopy, throughfall based on

the assumption that the precipitation rate over a fraction _ of a grid ceil was

expressed by Eq. (5.1). Assuming that Cm is the difference between the canopy.

storage capacity-and_the water stored on the .canopy divided by the model time

step, the througlz£allover the grj'dcellisthen given.by

oo

/JCm
Pt = #" I (Pi-Cm) f(Pi)dPi =Pm exp(-_j

Cm,
-AAA

(5.3)

and the runoff over the grid cell becomes
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, # (F*+Cm) I
q =Pm exp[--.---_-._-j (5.4)

Entekhabi and Eagleson (1989) represented the subgrid hydrologic

piocesses in a GCM land surface scheme by assuming the same precipitation

distribution (Eq. (5,1)) and combined it with a two-parameter gamma

probability density function (p_) of the surfaceiayer point effectiverelativesoil

saturation to describe the spatial heterogeneity in surface soilmoisture. By

assuming independence of'the point precipitationintensity, Pi, and the surface

layer point effectiver.eiativesoilsaturation,s,they derived a general relationship

for runoff rate (q) for the entireGCM grid during a time step as,

I OO OO00"

_-lq I * ""- I (Pi- f )f(Pi)dPifs(s)ds+ I IPif(Pi)dPi fs(s)ds

Of* I0

(5.5)__

where £* is the infiltrability(infiltrationrate) o£ the firstsoillayer,£(Pi) is

defined in Eq. (5.1),and fs(s)isa two-parameter.gamma p.dfof s.

Famiglietti and Wood (1991) _onsidered the subgri'd.scalevariabilityin

topography, soils_soil.moisture and precipitationby combining the same i_oint

precipitationdistribution(Eq. (5.1))with the distributionof the topography-soils

indicesfrom Topmodel (Beven and Kirkby- i979). They obtained an expression

of the expected value of the depth of infiltrationexcess t'unofffor a large area,

Z[Qiaf], as,

Z $ oo

E[Qiaf] = I I (Pi-f_)f(Pi)dPi fz(z)dz

r
(5.6a)

where z*=In*(bTE/T 0 tan3), f_ is the infiltrationrate, z=In(bTE/T0tan3 ) is

the local value of the topography-soils index of Topmodel, z* represents the

criticalvalue of the Toprnodel index at which saturationoccurs, and fz(z)isthe
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pdf of z, which is assumed to follow a three-par_neter gamma distribution

according to Sivapalan et al. (1987) and Wolock et al. (1989). The expected

value of the depth of saturation excess runoffs E[Qsat] , is expressed as,

E[Qsa t]

Oo oo Z:_OO

I I Pif(Pi)dPi fz(z)dz + I I (Pi-Si)f(Pi)dPi fz(z)dz (5.6b)

z* 0 0 Si .....

where Si is the storage deficit. The first integral in Eq. (5.6b) represents runoff

generated on those areas that are saturated at the st_t of a time step_ the

second integral _ represents the runoff, generated on those areas that become.

saturated during a time step.

Pitman et al. (1990) incorporated the parameterization suggested by .

Warriiow et al. (1986) and Shuttleworth (1988) into the Biosphere;Atmosphere

Transfer Scheme (BATS)of .Dickinson et al. (1986) to study the sensitivity of

evaporation and runoff due to Eq. (5.1) within a grid cell. When incorporating

Eq. (5.1) in BATS, they assumed that the soil moisture and intercepted water

were distributed uniformly within a grid cell at.the _nd of a time. step. They

found out, on .the basis of results from a sensitivity study, that the monthly

distributions of evaporation .and runoff were quite sensitive to the spatial

precipitation distribution and the fractional coverage z of precipitation.

Among the parameterizations discussed .above, only the ones "by

Entekhabi and Eagieson (1989), and by Famigh'etti and Wood (1991) considered

the effects of interactions of subgrid spatial variabilities in precipitation and

subgrid variabilities in land surface characteristics. However, the runoff

computed by both of their models (Eq. (5.5) or Eq. (5.6)) is a point average over

the fraction _, of the grid cell on which precipitation falls, in other words, the

runoff given by these models is equivalent to the runoff that would be generated

by assuming that each point within the fraction z is independent from each other

and has the same statistical distribution of precipitation, soil moisture, and/or

topography-soil index. Thomas and Henderson-Sellers (1991) pointed out that
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these treatments ignore the absolute spatial location within the grid cell of the

precipitation.

in this chapter, a derived distribution approach which combines the

spatial subgrid variability in precipitation _ith subgrid variability in other land

surface features, including soil moisture capacity, is described, To distinguish

the statistical-dynamlc approach used by Entekhabi and Eagleson (1989), and

by Famiglietti and Wood (1991) from the one described here, we will refer their

methods as point statistical-dynamic approach. The model developed here is

described as a one-dimensional statistical-dy_amlc model by using a derived

dist_'ibution approach.

5.2. One-dimensionalstatistical-d.y;namicmodel .....

Assume. that within a grid cell(or an area), precipitation,infiltration

capacity, and/or other features(or attributes),only vary along one direction,

which isarbitrarilytaken as the x axis, and they are kept constantsalong its

orthogonal(y)axis(one-dimensionalconcept),where x and y are scaledto give

x.y -- unit area. Ideallythen, the generalrelationshipfor.runoffrate Q_d of

the areawith a precipitationcoverage_ duringa time stepwould be,

Q_d = _' I I [P(x)-f*(x)].f(Px)dPxf(zx)dzx+

0 Px,l Zx,1

Px,4 Zx,4 1

Px,3 Zx,3 0

0 < x< t (5.7)

where P(x) and f*(x) are precipitation and infiltration capacity within the

fraction of area _in which r_in occurs, f(Px) and f(Zx), both of which vary with

x, are pdfs or Px--P(x)'and Zx respectively, and z x is a variable which varies

along x axis. This variable could be an effective relative soil saturation lil{e that
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in Eq. (5.5), or a topography-soils indices llke that in Eq. (5.6), or some other

variable, depending on the specific formulation. Px,2, zx,2, Px,4, and _x,4 are

the upper limits of the integrals in Eq. (5.7), while Px, i, Zx,1, Px_3, and Zx,3
are the lower limits of the integrals in the same equation. It cm be seen that

Eq. (5.7) reduces to a point statistical-dy_nic approach (i.e._ Eqs. (5.5) and/or

(5.6)) if the integrands in the bracket {} do not vary alongthe x axis. Since it is

dif_cult to determine f(Px) and f(Zx), and also to evaluate the triple integrals,

we will simpli_ Eq. (5.7) without loss of the o_e-dimenstonal treatment of

subgrid spatial variabilities, In the derivations below, four assumptions are

made:

(1). The precipitation P is a one-dimensional function varying along the x axis

(i.e., P(x)) within the.fractional coverage _, This assumption is, in a sense,

equivalent to assuming that storms are distributed as circles around the storm

centers..

(2). A_; the end of each time step t (i.e., at the beginning of the next time step

t-{-1),, the soil, moisture content of each strip "ydx" (defined in Section 5.2.1)

within the fractional coverage _ of the same.vegetation cover becomes the same.

This assumption avoids the necessity for tracking the storm center movement.

(3). Prior to the beginning d .the next storm, the soil moistures .over the

fractional coverage _ are assumed to be the same as the moistures over the non-

rainfall fractional coverage of 1- _, which is accomplished by spatial averaging.

This assumption becomes reasonable in practice if the inter-arrival time between

two storms is long enough so that the recently wetted soil drains to a comparable

moisture level to that which was not covered by the storm. Here we define the

inter-arrival time as _the time between two storms whose magnitudes are above a

specified threshold (taken to be 1 mm/hr in this study). If a storm with

magnitude below a specified threshold occurs, the soil moistures over _ and 1 -

are not averaged. It should be noted that ifstorms smallerthan the specified

thresholdoccur, they are not ignored, but from the standpointof the soil
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moisture distribution, they are treated as a continuation of the previous storm.

The effectof this assumption isthat the track of previous storm centers relative

to the present storm need not be specified.

(4).Each strip of area ydx is assumed to have an identicalinfiltrationcapacity

distribution, which isdefined hy Eq. (2.20).

5.2.1. One-fllm_v,_onal ,_resentation for bare soll

As discussed previously, Eq. (5.7)has to be simplifiedto obtain a one-

dimensional runoff representationthat could be implemented into GCMs. In the

following, we use the direct runoff concept of the VIC model to obtain an

expression for dQ_d of Eq. (5.7). Let us begin with the simplest, case by

assuming that only bare soilis.present in a grid ceU (or an area.)with a fraction

coverage of precipitation_ at a time step t. Ifwe discretize.thearea within the

fractionalcoverage ;,into infinitesimalstrips,of areaydx (see Fig. 5.1), the,_.the

precipitation rate. within each such strip is a constant. From .the fourth

assumption and Eqs. (2.25a) and (2.25b), the .direct nmoff dQ_d[N+1 ]

(followingthe notation in Chapter 2, the land cover cia,s N+I isdefined as bare

soil)from stripydx due to precipitationP(x) can be expressed as

W c W._I[N+I]
dQ_d[N+1] "--(P(x)--_t I + _- ) <ix, i0+P(x )•At >im (5.8a)

W c

dQ_d[N+ll=(P(x)--_tl + W/_I[N+I]At+ -_-.[1 i0+P(x)'Atim If+hi) dx,

i0+P(x)-At <im (5.8b)

where, as defined in Chapter 2, W_ is the maximum soilmoisture content of

layer 1, i0 and im are the infiltrationcapacity and maximum infiltration

capacity respectively, bi isthe infiltrationshape parameter, and At isthe time

step; and W I[N+I ] isthe soilmoisture content in layer I within _. Therefore,
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the total direct rutloff at time step t from _ is,

i w c w I[N+I]Qvd[N+i]=," {P(x)- 1 +_ _a---V At } dx +

0

1 Wvl[N+I] ___ [* io+P(x).at ]l+b i
a At At ira

(_.9)

where the first term represents the direct runoffgenerated when i0 + P(x). At'>

im is satisfied, and the second term represents the runoff when i0 + P(x). At <

im is satisfied. The integral limit, a, represents the location, x, where i0 +

P(x) .at =ira if i 0 + P(1).At _ im. If i0 + P(1).At > im, then a = 1 in Eq.

(5.9).

C

In Eq. (5.9), Wl, bi, im and At axe constant. Based on assumption 2,

the soil moisture Wt_l[N+l ] in Eq. (5.9) does not vary along the x .axis. In

addition, from Eq. (2.20) we can obtain the following relationshi p between i 0

and Wt, l[N+l],

i0= imtl-(lWvl[N+l] _
W[ ) ]' (_.I0)

Thus, i0 is independent of x. Therefore, only P(x) varies with x in Eq. (5,9).

If the expression of P(x) is known, then the direct runoff Qvd[N+l] with the

effectsof spatialprecipitationand infiltrationcan be calculated. For a constant

precipitationrate within t_,Eq. (5.9)reduces to Eq. (2.25).

For evaporation, itisreasonable to ignore the effectsof spatialvariations

in precipitation within the fractional coverage t_ for big storms, which is

equivalent to assuming that evaporation issmall during storm periods compared
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with dry periods. For small storms, the effects of spatial variations i,_

precipitation _e small, and so can be ignored also. Therefore, the evaporation.

from bare soll (E_I) can be determined by Eq. (2.22) multiplied by _, as if the

precipitation were uniformly distributed over _. T,_at is

Ej,1 = _,:E i. (5.11)

The drainage term Q_,12[N+I] is determined by Eq. (2.27) multiplied by _:

+3
Qt_I2[N+I]." tJ'Ks.( Wi_0 r • (5.12)

The water balance in layer 1 over the fraction _ where precipitation occurs is

then,

1

W+I[N+XI=VC_I[N+ll+(.I P(x)dx-_Q.d[N+ll- Q.12[N+11 - Z_l). _t (5.13)
0

+
•where Wt_l[N+l ].and VW_I[N+I ] are the soilmoisture content-atthe end and the

beginning of each time step in layer i within _ xespectively. Similarly, the

subsurface runoffQ_b[N+I] and the water balance for the lower layer within t4

can be expressed as,

Dsl)mW;2[_+11' 0< WsWl (5.14a)Q_b[N+ll= _-WsW_ -W_2[N+II <

• DsDm W;2IN+II+(Dm DsDm_,W;2[N+II-WsW_
q_b[N+l] = t_'IWsW_ -"W_-_J_s ,,,c,,2- "s"2'",,,c )2},

w;2[X+_l>_WsW_ (5._4b)
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and

W_2[N+ 1]=W_2[N+ 1]+(Q_12[N+ II " Q_b[N+ 1]- E_2) •at (5.15)

+
where W/,2[N+I ] a_d W_2[N+I ] are the soil moisture content at the end a.ud the

begiz_ing of each time step in layer 2 within/_, respedtively. Other terms have

the same definitions as used in Chapter 2.

For the area within the dry (no rain) fraction 1- _, the evaporation from

the bare soil El( -/_)1' drainage from layer 1 to layer 2, Q(1.,,j,_12 IN+l]' "

subsurface runoff Q(1 t_)b IN+l]' and soil moistures in layer 1 and layer 2,

W(1.u)I[N+i ], W(i.:)2[N+i ], are calculated in the sa_e way "as described

above, except using W(1 _)I[N+I], W(1._)2[N+I], and (l-k0 instead of

Wj, I[N+I], W.p2[N+I], _d _,:j._._Eqs. (5.1i)-(5.15). The direct runoff in this

case, Q(I__)d[N+I], is zero.

According to assumption 3, the soil moisture within area _ and 1-_, is

averaged immediately prior to the beginning of next stor_a that is lazger than the

specified threshold so {:hat the entire area has the same: soil moisture content

when next. storm an'ires.. Thus, the soil moistttre in layer j (j=l, 2)

i_amediately prior to the above threshold follow-up storm is,

Wi,j[N+I] = (5.16a)

-b _ "{" r
wil_.)j[N+l] = (S. eb)

5.2.2. One-dimensional representation for vegetation covez

For the area with different vegetation covers, the approach described

above appF, es except that the rainfall rate-P(x) is replaced by the throughfall

rate. It is assumed that the throughfall rate Pt(x) is equal to P(x) minus
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interception vthere interception is calculated by Eq. (2.3). The approach for

incorporating different vegetation covers and bare soil within _ is the same as

described in Chapter 2.

Like the bate soil case, the soil moisture_ for different cover classes over

the vcet and dry fractions /_ and 1-_ are averaged (or "staeared') prior to the

beginning of the next storm that is larger than the specified threshold. That is,

the soil moistures of bare soil (W_j[N+I], j=l, 2) and each vegetatio,_ type n

(W_j[n], n=i, 2, ..., N) over the fractional coverage of precipitation _, and

the soll moist_es of each such cover type over the dry fractional coverage 1-_

are averaged, so that the entire area (or grid cell) has the same soil moisture

content at the o_set of the neXt ston=. For the fractional area _ covered by

precipitation, the avetage soil moisture W_j (j=l, 2) can be expressed as,

N+I +

W_, i -- _ Cv[nl.W_j[n]. (5.17a1
n--1

Similarly, the average so_'fl moisture W(1._)j over the dry fractional area 1-

ca.u be expressed as,

N+I +

"_V(I-/J)j _" Z Cv[n]'W(l-.)j[xl]. (5.17b)
an1

The average soil moisture of layer j (j=l, 2) for the entire area, at the beginning

of the next storm is,

v( j[n] = n = I, 2, ..., N+I (5.1Sa)

W(1._)j[n]-- (1-_).(W j+W(1._)j), n- 1,2, ..., N+I. (5.18b)

There are two places in which the soil moisture is averaged. The first is over

strips of area ydx within _ at each time step for each cover cla_s using Eq. (5.13).

[ -- I
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This avoids tracking the movement of a storm center during a storm. This

averaging results in equal soil moisture within the same surface cover type within

p. It is different among the different surface cover closes, and it is different

from the soil moisture for the dry fraction 1- _ for the same surface cover class.

The secozid &re, aging, described by Eq. (5.16) or Eqs. (5.17) and (5.i8), is "

carried out only at _he beginnklg of the next above-threshold storm.

The two advantages of this derived distribution approach axe that it

avoids the need to identify the specific area that receives a given precipitation

rate within the fraction v of an area (or a grid cell), a_d it consider_ the spatial

variab;.lity of precipitation within the fractional area covered by the storm. This

is-because for P(x) (or Pt(x)) within a strip ydx, P(x) (or Pt(x)) is considered to

be a constant, and the spatial variability of the infiltration function (Eq. (2.20))

is considered over a strip area ydx with the same imtial soil moisture. The _y

fraction 1-/_. of the area (or grid. cell) is taken to .have no precipitation

throughout, the storm. The fraction p is assumed to be a con._t.aut within each

storm, but it can vary from storm to storm.

5.2.3. Derivation of precipitation function along x axis

The one-dimensional statistical-dynamic .model requires that the

precipitatloti function P(x) be known. In this section, an appropriate form of

P(x) is derived.

Eagleson (1984), Eagleson and Wang (i985), and Eagle_on et al. (1087)

have reported studies on the fraction /_ of a grid area that is afffected by

precipitation leaching the ,_ufface.._ Warrilow et al. (1986) assumed that over a

fraction of a grid cell (or an. area), the point precipitation if_tensity is

exponentiallydistributed(Eq. (5.1)). This exponential distributionassumption

for precipitationseems appropriate in some cases as shown by an analysisof

hourly observed precipitation data by Abdulla (1987). Abdulla (personal

communication 1993) alsofound that precipitationover a laxgearea in Oklahoma

appears to followthe exponential distribution.Usi,_gthe continental-scaleradar

data over northwestern Europe, Collier (1993) found thkt for frontal"
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precipitation, the exponential relationship (Eq. (5.1)) may not be appropriate.

Instead, the log-normal relationship used by Foufoula-Georgiou and Wilson

(1990) might be more appropriate. Gao and Sorooshian (1994) investigated ten

years of hourly precipitation data over three GCM grid squares covering the

southeast, southwest, and north central U.S. each having a size of 8 degrees of .

latitude by 10 degrees of longitude. They found that the exponential distribution

assumption may be questionable and that the statisticM patter_ of precipitation

depend on the locations and the interactions between atmospheric conditions and

various land surface characteristics. On the basis of the previous work, two

possible forms of the precipitation function P(x) (based on exponential and log-

normal distribution) will be considered.

First, following Warrilow et al. (1986), the precipitation intensity is

assumed to be described by Eq. (5.1) within _. The percentage (x) that receives

a precipitation rate larger than or equal to precipitation rate P over the.fraction

of a grid cell (or an area) can then be expressed as (see Fig. 5.1a),

_ea that receives precipitation rate > P
............... = I-F(P)

x -- total area of

P P

= _. )dPi
- 0 0

_ _P
= e_p(_). (5.19)

The inverse of Eq. (5.19.)isthen,

P(x) = - Pm In(x)

In Eq. (5.20),

receive precipitation greater than ot equal to zero is one.

0 < x <_ I. (5.20)

P(1) = 0, that is, the probabilityof the area fractiont_that can

This resultis due to
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th_orm of Eq. (5.1).

For the second case where the log-normal distribution is assumed (which

is arguably more appropriate for frontal precipitation), the precipitation

intensity function, is expressed as (Collier 1993),

f(Pi) = _• _" exp{-'_m [In(1 ÷ Pi)] 2 } (5.2i)

where all the symbols have the same meaning as before, By approximating the

integral of the probability distribution_ Collier (1993) ob.tained,

P

F(P) = _f(Pi)dPi

0

= 1-exp{--iri-["t_(l+ P)l2}. (5.22)

Thus similarly to Eq. (5.19), the percentage (x) that receives,a precipitatio_

rate largerthan or equal.to__predpitationrate P over the fraction;_ can then be

expressed as,

area that receivesprecipitationrate > P

x = totalarea of

= exp{ /_ p)]2 }
--.p-m-m [ ln(1 + .

= I - F(P)

(5.23)

The inverse of Eq. (5.23)is then,

P(x)= exp{-[__!___(x)lr} _i, 0 < x < 1. (5.24)

Here again Eq. (5.24)yieldsP(1) = 0.

For the exponential distributioncase, by substitutingEq. (5.20)into Eq.
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(5.9), we obtaln,

a
w_ w.I[N+I1

Q_d[N+il - _'! {e(x)-=_'t + - ,,t } 'ix +

1

#. f{P(x) Wc W_I[N+IJ We ll+bi--_c_ +- ,,_ -+ _ v-_o÷P.(x)"_ 1,.1
1In j _

&

-..f (_e_z_
0

w= w.i(N+_]

1

--'%1iN÷11 we

(5.25)

The integral in Eq. (5.25), when 0 _<a < 1,
can be computed as,

1

f [1-, io-P_'-_ " la(x).At
a im ]l+bidx =

&

(im)'(l+bi) i_ "iO= . . ." _t.tl+bi e _ (t-im+io)
tl " dt

(im)'(l+hi) tJ' (im'io) .ir_io t l+bi.e_-_. .e
'dr

0

j, l=(x).at
[_m- io + im ]l+hi_

(5.26)
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_ Pm tl = im-i0 + P-'^t_ In(a). In fact_where t --: ira- i_+ _.In(x).At, and
F m • At

tl = im-i0 + _ In(a) is equal to. zero, since a is determined by

i0+P(x ) • At =im if i0+P(1).At <_i m (see Section 5.2.1).

An analytical expression can be obtained for the case where b i is an

integer in Eq. i5.26). Otherwise, numerical integration can be used to calculate

the integral in Eq. (5.26)_ or to expand the term exp(_ t) into a power

series which converges within Itl < oo:

Itl < oo. (5.27)

For .the log-normal distribution case, by substituting Eq. (5.24) into Eq.

(5.9), Q/_d[N+I] can be obtained through numerical integration.

5.2.4. Estimation of. fractional coverage of precipitation

As for the fraction t_, Warrilow et al. (1986) noted that t_ may be on the

order of 0.95 and 0.60 for large-scale and convective rainfall, respectively.

Currently the U.K..Meteorological Office (UKMO) sets t_ to be 1.0 for large-scale

rainfall, and. 0.3 for convective rainfall in their GCM. The observed spatial

variability of total storm depth for air. mass thunderstorm rainfall in Arizona

(Eagleson et al. 1987) supports .a wetted fraction of 0.5 to 0.66..While Warrilow

et al. (1986), Entekhabi. and. Eagleson .(1989), Pitman et al. (1990), and

Famiglietti and Wood (1991) all used a prescribed fraction # of a grid cell area,

Eltahir and Bras (1993) found significant temporal variability in the fractional

coverage of rainfall. They presented.a procedure for estimating the fraction t_ as,

Pm

"= z(P ) (5.28)

where E(P#) is the areal mean precipitationover the rain-covered fraction_f

the grid cell.They suggested that Pm can be estimated by
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pm = _._.V
aX. aX. aT _ (5.29)

where V is the volume of rainfall simulated by the climate model within a grid

cell area, AX, and AT are the spatial and temporal resolutions of the model

respectively. By invoking the ergodicity _sumption, they estimated E(P_) by

the mean of the rainfall rate at a point using rainfall records from a single

location. Although the volume of rainfall, V, could be taken from a numerical

weather prediction model, this can result_in large biases; it is probably more

realistic to use an average of observed station data instead of E_I. (5.29) to

estimate Pro. Based on the observed hourly rainfall data in the southeast_of

France, Braud et al. (1993) found that the fractional area covered by rainfall

exceeding a fixed threshold is hig_y correlated with the mean areal rainfall rate..

Thus, this suggested that l, may also be estimated from the radar rainfall data.

5.3. Testing of the derived distribution approach

As described previously, there are four major assumptions involved in

delving the one-dimensional statistical-dynamical model. In this section, two

computer experiments .are designed to te_t these_ assumptions by applying Eq.

(5.20) (i.e., the exponential .distribution) to simulate spatially varying

precipitation. The first is a "brute force" experiment (Figs. 5.2a and 5.2b) where

a grid cell (or an area) is divided into L xM pixels. In the tests that were

performed, the_e were L x M-_2500 pixels (subgrld eleme_ats). At each specific

time, the average precipitation depth o£ an area (or grid cell) defined the mean

of the exponential precipitat_oadistribation. Thus, the exponential precipitation

distribution over the area at each time w_ det_rmlned. The precipitation _ates

for "he 2500 pixels were taken randomly from the exponential distribution (Eq.

(5.20)) and were then assigned to each pixel. In generating the rainfall field, the

variable x in Eq. (5.20) was obtained from a uniform random generator. Within

each pixel, the precipitation rate was assumed to be the same. The procedure of

assigning the precipitation rate to each pixel was repeated at each time when

there was rainfall. Using this random method, it is possible for a pixel to have

! [[
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large value-of precipitation in one time period and be followed by a random

quantity drawn from the exponential distribution in the next time period. No

attempt .was made to. incorporate the spatiai correlation .in precipitation

amounts. It was assumed that one infiltration capacity distribution characterized

the entire area. The infiltration capacity distribution for each pixel was obtained

by randomly sampling from the infiltration capacity distribution for the entire

area (Fig. 5.2b). These pixel hydrologic properties were kept u_changed during

the simulations for a fixed spatial precipitation coverage _. Since the

precipitation rate was assumed to be the same within each pixel, the two-layer

vic model described in Chapter 2 can be applied. By applying the model

described in Chapter 2 on a pixel by pixd basis, the direct rtmoff, evaporation,

sensible heat .flux, surface temperature and soil .moisture were calculated for

each pixel and then were aggregated to obtain results for the entire area.

In the second experiment (Fig. 5.2c), the derived distribution approach

described in. Section 5.2. was conducted to compute the direct runoff,

evaporation, sensible heat flux, surface temperature, and soil moisture for the

san__e,area .as in Experiment 1. In this experiment, the precipitation over the

area _ followed an exponential distribution with

parameters used in Experiment 1.

Finally, the results of

evaporation, sensible heat flux,

the same distribution

the direct runoff, soil moisture content,

and surface temperature from Experiments 1

and 2 were comp_ed with the results obtained by assuming P(x) = constant

over the area.

The same forcing data and model parameters as were used in the Chapter

4 sensitivity analysis are used here, except for the vegetation cover parameter

(Cv) which is taken as 1.0 for both the grassland and forest sites. Other

parameter values are as listed in Table 4.1. Since the model does not represent

variations in spatial snow properties, only summer month simulations for the

grassland were conducted. At the forest site, snow does not occur, so the

simulations were conducted for an entire year. For simplicity, the precipitation

fractional coverage parameter _ was constant in each simulation, but three
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different values of _ (0.3, 0.6,

discussion of these experiments,

and "average" to represeni Experiment 1 (the "brute force"

experiment 2, and the one with P(x) = constant within the area,

All simulations were conducted at an hourly time step.

and 1.0) were investigated. In the following

we use "pixel-based':, "derived distribution",

experiment),

respectively.

At the forest site, the 12:month hourly results for the latent and sensible

heat fluxes, surface temperature, soil moisture of the upper zone, and soil

moisture for both zones of the three experiments are shown in Figs. 5.3-5.i4 for

- 0.3. All experiments started with the same initial soil moisture which was

taken as 50% of the maximum soil water content. On the same figure, the

hourly, area a,serage precipitation time series is also plotted for comparison. Six-

month (Feb., Mar., April, Oct., Nov., and Dec.) hourly runoff .time series for

months with maximum runoff peaks higher than 0.6 mm/hr are sho_m in Fig.

5.15 for _,=0.3.

in January (Fig. 5.3), many. small storms with intensities less than 3.0.

mm/hr were pre'_nt. The evaporation simulated by the. derived distribution

approach is very close to that simulated by the pixel-based approach, while the

average method predicts much larger evaporation. The reason is that the

average approach assumes that precipitation is intercepted within the entire area

while only 30% of the area has intercepted precipitation in the p ixel-based and

derived distribution approaches.. Therefore, the average approach results in

much more interception evaporation than the other two approaches, especially

when the precipitation rate is small. Likewise, for the sensible heat flux and

surface temperature, the derived distribution approach gives results that are

much closer to the pixel-based approach than the average approach. The ratio of

the monthly sum of the absolute difference between the average and pixel-based

approaches tO the monthly sum of the absolute difference between the derived

distribution and pixel-based approaches is shown in Table 5.1a for the latent and

sensible heat fluxes1 and surface temperature. From this summary, table_ it can

be seen that all the ratios are greater, than 8, indicating that the difference

between the derived distribution approach and the pixel-based approach is much
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smaller than that between the average and pixel-based approaches.

From Fig, 5.3, it is also seen that the derived distribution approach

better approximates the soil moisture content of the upper zone and also the

moisture of the upper and lower zones combined than the average approach.

The monthly maximum relative errors of the upper zone moisture content are

6.8% and 7.7% for the derived distribution and average approaches respectively,

and 0.4% and 1.3% for the combined upper and lower zone moisture content for

the derived distribution and average approaches respectively (Table 5.3a).

In January, the largest runoff peak is small (0.04 mm/hr) due to .the"

small, precipitation rate and the.low soil moisture content. In Table 5.2a, a

summary ratio for runoff is calculated in the same way as for the latent and

sensible heat fluxes, and surface temperature shown, in Table. 5.1. For months

with the maximum daily runoff rate less than 1.0 nun/day, the. ratio is

uninformative and is not calculated. In Table 5.2a, the monthly maximum

hourly peak runoff is shown for the pixel-based, derived distribution, and

average approaches as well.

In February (Fig. 5.4), there .were not as many storms as in January,

but their magnitudes were larger. Even though the ,_vaporation from the average

approach is still larger than .the pixel-based aud derived distribution approaches,

the difference is not as large as in January due to smaller interception. The

sensible heat flux and surface temperature also varied less among the three

approaches than in January. However, the total runoff from the average

approach was si_mificantly undersimulated compared with the pixel-based one

(Fig. 5.15). During the two big storms at the end of the month, the average soil

moisture over the grid area is higher in the average approach, but the overall

saturated area is smaller than in the pixel-based and derived distribution

approaches, and thus the average approach generates much less direct r_moff.

The derived distribution approach produced simulations of runoff (Fig. 5.15),

evaporation, sensible heat, surfacetemperature, and soil ntoisture (Fig. 5.4)

that matched the pixel-based results quite closely. The n_.tios br _,loff, _atent

and sensible heat fluxes, and surface temperature ark 7.3,_ (Table 5._'1_)_ 1.59,.

i



151

1.88, and 1.56 respectively (Table 5.1a). The monthly maximum relative errors

of the upper zone moisture content are 7.3% and 19.1% for the derived

distribution and average approaches respectively, and 0.8% and 4.5% for the

combined upper azid lower zone moisture content for the derived distribution and

average approaches respectively (Table 5.3a).

The simulated results for March (Fig. 5.5) are quite similar to _he results

for February. At the beginning of the month, both the pixel-based and derived

distribution approaches predict much larger runoff (Fi_. 5.15) than in January

even though the storm magnitudes were similar to those for January. This is

because of the _et soil from the large storms at the end of February. The

average approach again gives much smaller runoff in this case. In comparison,

the storm with.peak rate more than 3 mm/hr occurring on the 19th of the month •

results in very small runoff in all the three approaches (only about one fifth of.

the runoff that occurred at the beginning of the month) due to the loss of soil

moisture by evaporation during the period. The ratios for runoff, latent and

sensible heat fluxes, and surface temperature are 2.41 (Table 5.2a), 1.72, 1.69,

and 1.47 respectively (Table 5.1a). The monthly maximum relative errors of the

upper zone moisture content are 8.0% and 14.0% for the derived distribution and

average approaches respectively, and 0.7% and 4.9% for the combined upper and

lo_er zone moisture content for the derived distribution and average _pproaches

•_s_,ectively (Table 5.3a).

In April, storms .were smaller than in February, but larger than in

J_. uary and March. Again, the derived distribution approach approximates the

runoff (Fig. 5.15)_ surface fluxes, and soil moisture (Fig. 5.6) much better than

the average approach. The ratios for the latent and sensible heat fluxes, and

suff_ce temperature are all greater than 2.0 (Table 5.1a), and greater than 4.0

for runoff (Table 5.2a). Although the evaporation simulated by the average

approach is always larger than those, from the pixel-based and derived

di_ribution approaches, the much smaller runoff from the average approach

result_ in higher soil moisture than for the other two approaches. The monthly

m_dmum relative error of the upper zone moisture-content is greater than 20%
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for the average approach, but less than 10% for the derived dist,ibution

approach (Table 5.3a). For the combined moisture content, the monthly

maximum relative errors are 0.7% and 6.2% for the derived distribution and

average approaches respectively (Table 5.3a).

May, June, July, and August (Figs. 5.7-5.10) is the dry period. There

is little runoff during these months, and the largest monthly runoff peak is less

than 0.5 ram/day, except in June where it is 4.32 ram/day. During this period,

the average approach continues to simulate larger evaporation due to more

moisture, except for August. The soil moisture content for the average

approach decreases and approaches the soil moisture f_om the pixel-based

approach. During this time, the derived distribution approach still gives better

approximations than the average approach with all the ratios for the latent and

sensible he_.t fluxes, and surface temperature greater than 1.0 (Tabl e 5.1a),

except for August. For soil moisture, the comparison (Table 5.3a) shows that

the derived distribution approach results in smaller monthly maximum relative

errors than the average approach for both the upper layer and combined layers,

except for the upper layer soil moisture in June and July, and the combined soil

moisture in August, where the average approach gives slightly smaller relative

errors ....

In August (Fig. 5.10), there is almost no precipitation and the soil is

quite dry. The soil moisture from the derived distribution.approack.is closer to

the pixel-b=ed approach than the average approach. The evaporation from the

average approach is overestimated during the first half of the month, and also

during the three very small precipitation events due to larger interception. The

evaporation from the derived distribution approach is also overestimated in this

month.

The reason that the derived distribution approach overpredicts the latent

heat flux might be attributable to the w_.y of calculating the soil moisture stress

factor gsm[n] (Eq. 2.14). In the pixel-based approach, the subgrid spatial

variability of soil moisture is included in the calculation of the soil moisture

stress factor gsm[n], but it is not in the derived distribution and average
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approaches. When the soil is dry, the pixel-based approach may result inn

number, of large gsm[n]'s over a large portion of the a_ea due to, for example,

less soil moisture than the wilting point or critical point, while the derived.

distribution and average approaches give otlly one smaller lumped gsm[n] value.

Therefore, both the derived distribution and average approaches predict larger

evaporation than the pixel-based approach. This subgrid spatial effect would be

more significant when the soil is drier since for example, the gsm[n] would.be

the same (i.e., 1.0) for the pixel-based, derived distribution, and average

approaches if the entire area is saturated.

Although both the derived distribution _d average approaches use the

same lumped expression for gsm[n.], the average approach simulates smaller

evaporation than the derived distribution approach during this month (Fig.

5.10). This is because the upper zone soil moisture is drier in the average

approach than in the derived distribution approach. Thus, the average

approach can result in a larger soil moisture stress factor gsm[n] than the derived

distribution_approach and so simulates smaller evaporation. Therefore, the

average approach simulates evaporation better than the derived distribution

approach but for the wrong reasons.

From September *,o December (Figs. 5.11-5.14), the soil becomes wet

again as a result of more storms, some of which are large. Therefore_ the effect

of subgrid spatial variability on gsm[n] iz reduced among the three approaches.

The evaporation from the average apprr,ach is oversimulated during most of

these months and the runoff (Fig. 5.15) _s significantly undersimulated for the-

large precipitation events compared with the pixel-based results. The derived

distribution approach, however, gives much better approximations. All the

ratios for the latent and sensible heat fluxes, and surface temperature are

greater than 1.0 (Table 5.1a) during these months, and the ratio for runoff is as

high as 5.68 in October (Table 5.2a). The monthly maximum relative error for

the upper zone soil moisture is about. 10% or less for the derived distribution

approach, but about 20% in some months for the _verage approach (Table 5.3a).

Similarly, the derived distribution approach' results in monthly maz_ir.,um
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relative errors for combined soil moisture smaller than the average approach,

except for September.

For the case _-"0.6, similar results are obtained as for _=0.3, except tha_

the underestimation of runoff and overestimation oi_ evaporation by the average

approach deczeases for the larger/_ value. The ratios fox the latent and sensible

heat fluxes, and surface temperature ate greater than 1.0 for 9 out of 12 months,

and are all above 0.9 for March (Table 5.1b). The ratios for runoff are greater

than 1.0 except for March an-] November (Table 5.2b). The monthly maximum

relative errors for the upper zone soil moisture are about 10% or less for the

derived distribution approach, while they are as high as 21.3% for the average

approach (Table 5.3b). The monthly maximum relative errors for the combined

soil moisture are small for both approaches; the largest relative errors over the

year are 2.5% and 3.2% for the derived distribution and average approaches

respectively.

At the grassland site, which has a drier, climate than the forest site,

simulations for _=0.3, 0.6, and 1.0 were conducted for the summer months

(May-September), with the initial soil .moisture equal t_, the maximum soil

moisture content for _=0.6, md half of the maximum soil moisture content in

the other two cases.

For :.=0.3, Figs. 5.16 and 5.17 show that May and June receive less

precipitation than the remaining three months, and the maximum hourly runoff

is 0.01 mm/hr and 0.03 mm/hr for May and J_ne, respectively (Table 5.5a).

The average approach .ovexsimulates evaporation during the precipitation event

due to large interception. The derived distribution approach produces much

better approximations for evaporation, sensible heat flux and surface

temperature. The ratios _r the latent and sensible heat fluxes, and surface

temperature are all greater than 3.0, and are as high as 10.53 (Table 5.4a). The

derived distribution approach also results _n smaller monthly maximum relative

errors for the upper zone and combined soil moisture (Table 5.6a).

Evaporation is significant!y overestimated by the average approach in

July and August (Figs. 5.18 and 5.19) during the storm period, and thus the

0
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sensible heat fluXand surface temperature are underestimated; while the derived

dis_ributioti approach yields the evaporation, sensible heat, and surface

temperature similar to the pixel-based approach, with ratios grea_er tha_ 5.0

(Table 5.4a). Although the simulated runoff is small duriflg this period with a

maximum rate of 0.09 mrti/hr and 0.22 mm/hr for July a_d August respectively

(Table 5.5a), both the derived distribution and average approaches give larger

runoff than the estimates from the pixel-based approach. This is because both

the derived distribution end average approaches always have some saturated area

when the soil moisture in the upper zone is greater than zero according to the .

variable infiltration capacity formulation for the upper layer. Therefore, when

there is some small rainfall, the precipitation that falls onto the saturated area

will generate runoff in both cases. For the pixel-based approach, however, it is

not necessary that such a saturated area always exists, and thus there is no

runoff from light precipitation unless the antecedent soil moisture is saturated.

When the precipitation rate is moderate or large, the effect of the. perpetually

saturated area in the derived distribution and average approaches becomes

negligible. The derived distribut;.on approach again results in smaller monthly

maximum relative er,'ors for the upper zone and combined soil moisture (Table

5.6a). Figure 5.20 shows the results for Se'ptember .in which the derived

distribution approach again produces better simulations than the average

approach (Tables_SAa-5.6a).

For the _:ase _=1.0, similar comparison results axe obtained for the three

approaches as for the _=0.3 case, except that underestimation of runoff and

overestimation of evaporation by the average approach decreases as _ increases,

as was the ca_e for the forest site. The ratios for the latent and sensible heat

fluxes, surfr.ce temperatmre, a_d runoff of the five n= _ths (May-September)

are all greater_ than 1.0, except for June where the ratio of latent heat flux is

0.97 (Tables 5.4b and 5.5b). Although for most months, the m,)nthly maximum

relative errors for the upper zone and combined soil moisture are slightly greate':

for the derived distribution approach than for the average approach, all the

values of the relative errors axe small, with the largest less than 3% (-Table

5.65).
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To investigate the effect of initial soil moisture on the surface fluxes and

runoff for the drier climate, a comparison of the three approaches with initial

soil moisture set to the maximum for _=0.6 _vas made. Comparisons (Tables

5.4 - 5.6) show that the results are similar except th_,t the runoff from the pixel-

based approach is smoother than from the other two approaches ir_ the _=0.6

case (plots not included). This is because mote water goes into lower zone and

comes out as subsurfac,; runoff in the pixel-based approach. Tables 5.4c and 5.5c

show .that all the ratios for the latent and sensible heat fluxes, su:_ace

temperature, and runoff are greater than 1.0, except for the ratio of runoff in

June which is 0.95. Also, the average approach shows_larger relative errors for

the soil moisture in general {Table 5.6c).

Tables 5.7_md 5.8 show the annual average latent and sensible.heat fluxes

at the forest site and the fi.ve-month average latent and sensible heat fluxes at

the grassland site, respectively, for. the three approaches. For all of the cases

with _=0.3 and 0.6 at the forest site, and _=0.3, 0.6, and 1.0 at the grassland

site, the derived distribution approach gives better apprqximations to the pixel-

based approach than the average approach. At the forest site, the average

approach gives about 20 Wm "2 bias for the latent and sensible heat fluxes, and

the derived distribution approach gives about 5 Wm "2 bias. At the grassland

site, the average approach gives about 20 Wm "2 bias for the latent heat flux and

over 35.Win "2 bias for the sensible he_t flux fo" _=0.3. The derived distribution

approach, however, gives less than 5 Wm "2 difference for both latent and

sensible heat fluxes for v-0.3.

Although the experiments conducted here use hypothetical forcing data

with specified initial soil moisture, the differences for the surface fluxes, surface

temperature, runoff, and soil moisture between the average and plxel-based

approaches indicate that the effect of spatial subgrid scale variability in

precipitation can be significant. Comparison of the three approaches shows that

the derived_distr.ibution approach approximates the pixe!-based method

reasonably well in te,-ms of surface fluxes, surface temperature, runoff, and soil

moisture.
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5.4.._Summaryof the _erived distribution approach

This chapter has described a one, dimensional statistical-dynamic model

with a derived distribution approach that accounts for the effect of sttbgrid

spatial variability of rainfall. The approach was tested against a pixel-based

approach, and an approach which applied spatial average precipitation

uniformly over the area. The comparison of the three approaches for .the P.iLPS

forest end grassland sites shows that:

(1). The defived distribution approach approximates the pixel-based approach

much better than the average approach in the. simulations o/_ surface fluxes,

surface temperature, runoff,_ud soil moisture;

(2).'2'he effect of the spatial subgrid scale variability ia precipitation is

significant. The inclusion of the spatial variation of precipitation results in less

evaporation, especially for small storms, due to less interception of rainfall,

and .more runoff, especially for moderate and large storr_s, due to a larger

portion of saturated area. The soil mGisture is lower in general when the spatial

variation in precipitation is considered for moderate or large storms because

more runoff occurs, while the so_? moisture is higher for small storms due to less

evaporatio:l.

(3). The ratios of the monthly sum of the absolute difference between the

average and pixel-based approaches to the monthly sum of the. absolute

difference between the derived distribution and pixel-based approaches for the

latent and sensible heat fluxes, surface temperature, and runoff are greater than

1.0 for most cases. The monthly maximum relative exrors for the upper zone soil

moisture.and for the combined soil moisture axe smaller for the derived

distribution approach than for the average approach for most cases.

(4). Comparisons with the pixel-based approach show that the annual average

and five-month average latent and sensible heat fluxes at the forest and grassland
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sites for the average approach have biases of about 20 Wm "2, while the derived

distribution approach has biases of about 5 Win'2.. The average approach

resulted in over 35 Win. "2 bias in the sensible heat flux for _=0.3 at the grassland

site.

(5). The four assumptions described in Section 5.2 incorporated in the derived

distribution approach seem justifiable based on the test results. Although the

third assumption, which averages the soil moisture over the fractional coverage

_, and the non-rainfall fractional coverage 1-_, may seem. questionable, the

resultssuggest that it.isdefensible.Under a number of common situations,this

assumption may not be critical.One isfor the case of many small storms. In

thiscase most of.the rainfallisintercepted by the vegetation canopy. Thus, the

soilmoisture over the fractionalcoverage _ would re_air_ close to that over the

non-rainfall fractional coverage 1 .---_. The second case is when several large

storms occur, with most of the area covered by at least one storm. In this case,

the soil moisture will be close to saturation everywhere. The third case is where

the soils are relatively well drained, which will tend to minimize spatial

differences in soil moisture.

Since the derived distribution approach is conceptually simple and has a

closed form, it is computationally tractable. It appears to be a practical way of

representing subgrid scale precipitation variation in a GCM land surface

parameterization.
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Table 5X.__Comparisonofannual averagelatentand sez_sible

heatfluxesat thePILPS forestsite

pixel-based

derived dist.

average

latent sensible

(Wm "2) (Win"2)

66.5 64.5

72.0 59.3

87.7 44.5

latent sensible

(Win "2) (Win -2)

73.7 57.8

76.9 54.7

87.7 44.5

Table 5.8. Comparison of five-month averagelatentand Sensible

heatfluxesat the PTLPS grasslandsite

_=0.3

latent sensible

(win "2) (win "2)

pixel-based 50.8 40.2

derived dist. 53.4 39.7-

average 71.5 2.0

_=0.6

latent sensible

(Wr_ "2) (Win "2)

73.3 20.5

77.7 18.5

83.9 -8.6

/_=1.0

latent sensible

(Win "2) (Win"2)

72.6 21.2

73.9 21.8

71.5 2.0
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Fig. 5.1 Schematic representation of the. derived distribution approach to
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CHAPTER 6 CONCLUSIONS AB'D RECOMMENDATIONS

FOB. FUTUR_ WORK

A simple two-layer variable infiltration capacity (VIC-2L) model has been

developed to model land-atmosphete..interactions at the scale of general

circulation models used _.or numerical weather prediction and climate change

studies. The model includes a canopy layer, which partitions the area of

interest into N land surface cover types. For each land cover type, the fraction

of roots in the upper and lower layer is specified. Evaporation occurs via ca_lopy

evaporation, evaporation from bare soil (land cover class N+I), and

transpiration, which is represented via a canopy and architectural resistance

formulation. In the soil, the effects of spatial subgrid vari:Lbility of soil moisture

with hydrologically plausible runoff mechanism are represented through the

upper layer and lower layer. The upper layer, which is designed to represent

the dynamic behavior of the soilas itresponds to _ainfMl, is characterizedby

spatialdistributionsof iRfiltrationand soilmoisture capacities.The lower layer,

which is used to characterizethe seasonal soilmoisture behavior, is spatially _

lumped and uses the Amo drainage representation. Drainage from the upper

layer to the lower layer is assumed to be driven by gravity. The effectof the

subg_id spatiM distributionof rainfallis accotmted using a derived distribution

approach. This approach resultsin a one-dinlcnsiolialstatistical-dynangicclosure

form ba_ed ozt fou_ assumptions. The four assumptions are: (1) precipitation

varies along xaxis #ithin a fractional coverage _; (2) the soil moisture content

of each strip within the fractional coverage _ of the sa_e vegetation cover is

averaged at the end ,ofeach time step; (3) the soilmoisture isaveraged over the

fractionalcoverage _ and the non-rainfallfractionalcoverage I-_ prior to the

beginning of next storm; and (4)each striphas a_ identicali/ffiltrationcapacity

distributionfunction. The VIC-2L model includes both atmospheric and

hydrologicmodel parafneters.
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6.1. Conclusions

The VIC-2L model performed well for two applications where the climate

regimes are quite different. The first application was to the FIFE site in centrM

Kansas, where the climate w_ relatively dry, and the land Cover was tail grass.

The second site was in north central Brazil, which has a moist, tropical

rai_orest climate, and Where the land cover is a ranch clearing surrounded by

forest.

At both the FiFE (35 days of data) and ABRACOS (59 days of data)

sites, the VIC-2L model reproduced the latentheat flux well, with 80% and

90%, respectively,Of the daytime hourlypeaks having relativeerrorslessthan

15%. Althoiigh more than 80% of the days (FIFE and ABRA_OS) had sensible

heat flux daytime hourly peaks lessthan 200Win "2, there were stillabout 60%

and 55%, respectiveiy, o£ the daytime hourly peaks with r_elatlveerror_less

than 15%. For the ground heat flux, the majority of days hazldaytime hourly

peaks on the order of 50Win "2, and there were about 40% and 55% of the

daytime peaks_ respectively,with relativeerrorslessthan 15%. For the upper

layer soilmoisture, the comparison at the ABRACO$ site(no observed soil

moisture data were availableat the FIFE site)showed that the largestrelative

differencebetween the model simulated and the observed,soilmoisture was less

than 8%. There were 70% of the days with sudace temperattrtedifferenceless

than 2 °C at the FIFE site. For the streamflow at the FIFE site(not available

at the ABRACOS site),the reproduction of dry period flows and the-timing of

the r_ajor peaks of the observed streamflow waS satisfactory, although the

ma_iitudes of the largepeaks were subjecttO substantialerrors.

Since most rain over land is convective, the inclusionof spatialsubgrid

scale variabilityin precipitationshould provide a better representationof land

surface dyn_,w;cs than the average precipitationrepresentationfor those areas.

The effectsof subgrid spatialw_iabilityof precipitationon surfacefluxes, soil

moisture, and runoff were incorporated.into.the VIC-2L model. The model

performance was .evaluated by comparing hourly siniulationsof latent and

sensibleheat fluxes, surface temperature, runoff, and soilmoistures with the
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pixel-based approach simulations for two different (hypothetical) d_mate

regimes. In addition, the simulated latent and sensible heat fluxes, _ufface

temperature, runoff, and soil moisture were compared with the results obtained

by _umin_ constant precipitation over the area_ The comparison showed that"

the derived distribution approach approximated the pixel-b_ed approach quite

well, and it was superior to constant precipitation approach ir_ terms of

predicted surface fluxes, surface temperature, runoff_ and s_il moistures almost

all the time. The simulations _vith constant precipitation over the area

overestimated latent heat flux and underestimated sensible heat flux compared

with the pixel-_ed simulations due to much more interception evaporation,

especially when the precipitation rate is small. Also, the constant precipitation

eXperiment sifnulated much smaller runoff, particularly for median and large

precipitation, as compared with the pix_l-based results. In addition, the bias of

the annual avera_;e and five-month average latent and sensible heat fluxes at the

forest and gra_sla.ud sites was about 20 Wm "2 from the average precipitation

approach, while it was only about 5 Wm "2 from the derived distribution

approach.

Finally, the VIC-2L model parameters were.explored for t_vo different

climate regimes through both fractionalfactorialand one-at-a-time sensitivity

analyses. Three metrics .were chosen: atmual totalevaporation, annum total

runoff, and annually averased sensibleheat flux. For these metrics, the leaf

area"index, porosity, and the minlxnum stomatai resistancewere found to be

important, while the soilthermal conductivityand soilheat capacity were found

to be most sensitivefor the minin_um hourly surfacetemperature metric. These

resultsare similarto those obtained by Henderson-Sellers(1992, 1993) using the

BATS model. When the sufn of the absolute differenceof monthly evaporation

and sensibleheat flux between the controlexperintentand the 32 experiments-

were .usedas metrics, the model was found to be most sensitiveto a similarset

of parameters as those it_dicatedby. using the annual total,evaporation and

annually averaged senslbleheat flux as metrics. However, for the absolute

differencemetrics, it.was the interactionsof these parameters rather than the

singleparameter effectsthat were found to be most important.
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The infiltratlon shape parameter, .the fraction of. maximum subsurface

flow, and the fraction of the lower laye r maximum soil moisture were found to

have mhilmal influence ozi the annual total runoff metric. Although the two

Fraction parameters redistribute the monthly runoff within a year, they did not

change t.he total amount of the annual runoff. However, these tl_ee parameters

and their interactions aniong themselves and with the parameters of porosity and

wiltlftg point were found to be sensitive when the sum of the absolute difference

of fxlonth/y runoff from the cozitrol e_eriment was used as the metric.

6.2. R_-_mmendations for future work

There are a number of research _opics related to the current work that are

suggested by this work, arid are worthy of future exploration_ Three suggestions

for immediate follow up work related to representation of subgrid scale

variability of the soil moisture stress factor'associated with transpiration,

subgrid scale variability in snow properties, a_d model validation and

implementation into GCMs ace described briefly.

6.2.1. $ubgrid scale spatial v_rlab'dity in gem

From Chapter 2, it is seen that the zepresentation of e'vap_ration fron_

bare soil (Eq. 2_22) accounts for subgrid spatiLl variability in soil moisture, but

the effect of stlbgtid spatial variability of soil moisture on transpiration from

vegetation (Eqs. 2.12-2.14) is only partially accounted for. The weakness of Eq.

2.14 is shown in Chapter 5 when compm'izig with the exhaustive experiment

results for the forest site in August. Therefore, it is necessary to account For the

subgrid spatial va_ability d soil moisture on ttanspiratiofl in a manner similar to

that used for.bare soil evaporation. This can b_ done through the soil moisture

stress factor gamin] (Eqs. 2.13 and 2.14) which depends on the water available in

the root zone. Due to the .definition of the upper laye_ and lower layer, the soil

moisture in the uppe_ layer is more spatia/ly variable than that in the lower

layer.. Thus, the soil moisture stress factor gamin] of layer 1 should have larger

vaziations within a grid cell (or an area) th_ that of layer 2. We'can, therefore,

[ I
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only consider the influence of subgrid variability of soil moisture in layer 1 on

gsm[n]. A lumped soil moisture content ex-_ression of gsm[n] can be used for

layer2 as before. From the definitionofgsm[n] (Eqs. 2.14a_2.i4c),we obtain,

Aw[n]

Acr[a].

dWz[n]-dw . z÷f o.dA
dW_r-dW_ v

Aw[n]

(6.1)

W • cr

where Wl[n], Wl, and W 1 have the ._ame meaziings as in Ch_pte: 2, and

Acr[n] and Aw[n] representthe fractionof the soilwhose soilmoisture isgreater

thaa or equal to the criticalvalue above which the transpirationisnot affected

by the moisture stressin the soil,and the value associatedwith the permaueat

wiltingpoint respectively,and (seeFig.2.2),

dW z[n]= i0.dA

dW_ = 0w.i. dA

dW_ r = 0cr.i.dA

where 0w isthe pe_naaent _iltingpoint (dimensionless),ecr isthe criticalValue

(dimensionless),i0 representsthe point infiltrationcapacity corresponding to the

soilmoisture Wl[_], and A isthe fractionof the area for _vhichthe infiltration

capacity islessthan i (seeEq. 2.20).Let

iw -- Ow'i ,

icr = 0cr.i,

then combining with Eq. 2.20, we have

iw = ew.im [i- (l-A) I/-bi-] (6.2)
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1/bi

icr± 0cr.Im [!- (I--A)

the second term can be expressed as_

(6.3)

Aw[nl

Act[ni

dWi[n] _dW_V Aw[n]

• cr w'dA" I

dW i - dW 1 , Acr [_]

i0 •dA - iw. dA

icr.dA--iw.dA

Aw[n]. .
dAn [ .x0,a,w dA

J ;.cr - IW
Acr [__]............................

Aw[n]
" io.,. 1 .

- dA °w(Aw[n]- Act[n]) (6.4)
-. 0c r - 0w •

The integrand o_ Eq. (6.4) car be either numerically integrated or expanded into

a power series. The terms Aw[n] and Acr[n ] a_e determined as follows. From

Eq. 2.20, we can obtain the relationship between i 0 and Wl[n],

,

i0 = im[l-(l- Wl[n] )1+-+--_ii] (6.5)

Equating Eq. (6.2) with Eq. (6.5),

then,

and Eq. (6.3) with Eq. (6.5) respectiveiy,

• 1 ._

1/bi 1 Wl[n_-] _l+bii 0 - ew.im [1-(1-Aw[n]) ] = im[1-( -____c, ]

W i
(6.6)

l/hi Wl[n ]

i0 - ecr.im [I-(I-Acr[n]) ]= ira[l-(I---_-_-11) ].
(6.7)

Therefore, if im.0 w > i0, we have for Aw[n], _
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. l,.

i-(i- Wl[-n] )1+bi
c biWl

Aw[n]-I-[I 0w ] (6.8)

and if ira. Ocr > io_ we have for Acr[n],

. _

I-(1 Wi[n] .)1+bi
c bi

Acr[n] = I-[i Wl ] .
0cr (6.9)

If in_.O w < io, then Aw[n]=l; while if ira.Oct < io, Ac_n]=l.

6.2.2. Subgrid scalespatialvariabilityin a snowp_.ck

In the midcontinents of North American and Eurasia, winter snow and

spring__melt are important components of the hydrologic cycle. Sno_'melt in

spring generally produces spring peaks in streamflow. Numerous snowmelt

models are described in the literature.These models can be grouped into three

classes (Morris 1985): regression models, lumped conceptual models, and.

distributedmodels. Each classof these n_odelsha_ itsstrensthsand weaknesses.

The subgrid spatialvariabilityin snowpack:propezties has not been included into

the present form of the VIC-2L model. However, in a context consistetltwith

the approach described in. Chapter 5 for the subgrid spatial variabilityof

precipitation, the subgrid spatial variabilityrelated to snowpack propertie_

could be accounted for witk.a.similardegree of complexity.

One way to include the subgrid spatial variability of snow is to

incorporate Donald's (1992) findingsof a log-normal spatialdistributionfor snow

depth and linearrelationshipof snow depletion curve into the snowmelt module

(Wigmosta et al. 1994) of the VIC-2L model by using the derived distribution
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approach described in Chapter 5. Based on snow surveys conducted in southern

Ontario, Canada, Donald found that snowy depth ca_u be described by a log-

no_-mal &_stribution within a shallow and often discontinuous snow Covered area.

In addition, he showed _vhen snowrnelt is assumed to occur uniformly over the

snowcovered area, the redistribution and accumulation of snowy within an area

classified by vegetation cover types can be summarized Dy linear snow depletion

curves (SDC) for different cover types. The snow depletion curve, which can be

characterized by two classes, forest andnon-forest, describes the relationship

between average sno,_cover depth and s_owcovered area-for a given vegetation

cover type (Doliald 1992).

Two assumptions are needed to incorporate Donald's findings. The first is

that the area (or a grid cell) is relatively fiat so that topographic effects such as

slopes, aspects, and shading are insignificant over the sno_covered area (i.e.,

the net. radiation received over the snowcovered =eais relatively uniform). The

second is-that the rain failing on the snowcovered are_ wit! be redistributed in

such a way that the heat advected to the snowpack by the rainfall will be the

same within the snowcovered area. Wi_h these two assumptions, it can be

assumed that the snowmelt wiU occur u_if0_aly over the snowcovered area, and

Donald's linear relationship of SDC can then be applied.

6.2.3. Validation aud implementation into .GCMs

As seen in Chapters 3 and 5, the VIC-2L model was o_y applied to two

specific sites, both of which were small. Therefore, the model should be applied

to more sites wi_h different soil type properties and climate conditions. In

addition, observed data when available over a large area should be used to test

the one-dimensional statistical-dynamic model described in Chapter 5, since the

approach of including the subgrid spatial variability of precipitation (see Chapter

5) was not tested using observed data. One possibility is to use the data from

HAPEX-MOBILHY (Hydrological Atmospheric Pilot Experiment) which were

collected over an area on the order of 100x 100 kin. The observations were

conducted in 1986 with one Intensive Field Campaign (IFC) of duration several
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months in southwestern France (Shuttleworth 1991b). The study area v_ith

multisite measurements consists of forest, agricultural land, and some wood

cover area. The observed data include surface pressure, air temperature,

dewpoint teml:erature, wind, vegetation information, radiation information,

and streamflow (Goutorbe and Tarrieu 1991).

To test the global performance of the VIC-2L model, the effects of

feedbacks from GCMs should be investigated. Therefore, implementation of the

VIC-2L model into a GCM is a logical next step in evaluation of the model.
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