
MULTIPLE FAULT ISOLATION IN REDUNDANT SYSTEMS

.NASA-AmesJUniversity Aerospace Institutes Agreement

NCC2-5123

Final Report

Dr. Krishna R. Pattipati
Dept. of Electrical and Systems Engineering

University of Connecticut
Storrs, CT 06269-3 157

Tel./Fax: (860) 486-28901486-5585

Dr. Ann Patterson-Hine
Dr. David Iverson

NASA-Ames Research Center
Moffett Field, CA 9403 5- 1000

Submitted to:

Ms. Amy Chu
Director
NASA-Ames University Consortium
NASA-Ames Research Center
Moffett Field, CA 9403 5

NASA Final Report May 1997

TABLE OF CONTENTS

1 . EXECUTIVE SUMMARY .. 3

... 1.1 PROBLEM DEFINITION AND SIGNIFICANCE 3
1.2 RESEARCH RESULTS .. 4

.. 1.2.1 Sequential Algorithms for Multiple Fault Diagnosis 4
.. 1.2.2 Fault Diagnosis with Imperfect Tests 4

................ .. 2 . LIST OF PUBLICATIONS AND PRESENTATIONS .. 6

3 . BIBLIOGRAPHY .. 8

NASA Fial Report May 1997

ABSTRACT

Fault diagnosis in large-scale systems that are products of modern technology present
formidable challenges to manufacturers and users. This is due to large number of failure
sources in such systems and the need to quickly isolate and rectifjr failures with minimal down
time. In addition, for fault-tolerant systems and systems with infrequent opportunity for
maintenance (e-g., Hubble telescope, space station), the assumption of at most a single fault in
the system is unrealistic. In this project, we have developed novel block and sequential
diagnostic strategies to isolate multiple faults in the shortest possible time without making the
unrealistic single fault assumption.

NASA Final Report May 1997

I .EXECUTIVE SUMMARY

I. I Problem Definition and Significance

Diagnosis is the process of identifjing the cause of a malfkction by observing its effects at
various monitoring/test points in a system. As technology advances, there is a si@cant
increase in the complexity and sophistication of systems. Moreover, integration and
miniaturization have sharply limited access to test points. Thus, the number of failure sources
have increased while reduction in monitoring points have resulted in reduced fault observability,
making it increasingly difEicult to troubleshoot these systems. Consequently, system
maintenance presents formidable challenges to manufacturers and users. In this vein, computer-
aided design techniques for system modeling and computational algorithms for test sequencing
are of paramount significance. This research has developed novel multiple fault diagnosis
algorithms to directly address this vital need.

Maintenance and designlhaue traditionally been two separate engineering disciplines with
often conflicting objectives: maximizing ease of maintenance versus optimizing performance,
size and cost. Testability analysis has been an ad hoc, manual effort, in which maintenance
engineers attempt to identi@ an eficient method of troubleshooting for the given product, with
little or no control over product design. Testability deficiencies in the design can not therefore
be rectified. This adversely impacts the life-cycle cost. It is now widely recognized that
testability must be engineered into the product at the design stage itself, so that an optimal
compromise is achieved between system maintainability and performance. This process of
refining a system design to improve testability is &ermed Design for Testability (DFT), and is
now a requirement in most complex system development projects.

Our previous research has developed multi-signal directed graph modeling techniques
that enable the representation of a system either top-down (as lower-level details become
available), bottom-up (for system integration tasks) or a combination of both. In addition, we
have devised test sequencing algorithms to analyze the testability of a system design, and to
determine a near optimal sequence of tests for diagnosing single f d s in hierarchical systems.
A solution to the test sequencing problem is a decision tree, which specifies the test to perform
next depending on the outcomes of previously applied tests. A novel feature of our approach is
the integration of concepts from information theory and AND/OR graph search techniques to
overcome the computational explosion of the optimal test sequencing problem [I].
Furthermore, the top-down nature of the search algorithms have enabled us to derive a variety
of near-optimal and practical diagnostic strategies that provide a tradeoff between the degree of
suboptimality and computational complexity [l-111. The resulting algorithms have
demonstrated their utility on large hierarchical systems: Boeing-Sikorsky has employed our
algorithms on a flight-control system model with 8 levels of hierarchy and 10,000 faults and test
points; we have generated the troubleshooting strategies of a space shuttle main propulsion
system with 7000 failure sources and a similar number of test points (using a digraph model

NASA Final Report 3 May 1997

provided by NASA-Ames) in only 1.5 hours on a Sparc station 10. In this effort, we have
extended the single-fault diagnostic strategies to situations where multiple faults may be present.

1.2Research Results

1 -2.1 Sequential Algorithms for Multiple Fault Diagnosis

As part of our effort on multiple fault diagnosis, we investigated the problem of
constructing near-optimal test sequencing algorithms for diagnosing multiple faults in complex
systems. The computational complexity of solving the optimal multiple-fault isolation problem
is super-exponential, that is, it is much more difficult than the single-fault isolation problem [I],
which, by itseE is exponential. By employing concepts from information theory and Lagrangian
relaxation, we developed several static and dynamic (on-line or interactive) test sequencing
algorithms for the multiple fault isolation problem that provide a tradeoff between the degree of
suboptimality and computational complexity. Furthermore, we derived novel diagnostic
strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic
tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall
diagnostic strategy reduces substantially. Computational results based on real-world systems
fiom Sikorsky Aircraft indicate that the size of static multiple fault strate& is strictly related to
the structure of the system, and that the use of an on-line multiple fault strategy can diagnose
faults in systems with as many as 10,000 failure sources. The details on sequential multiple fault
strategies may be found in the following references:

12. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A., and Kell, T.,"
Sequential Test Strategies for Multiple Fault Isolation", 1995 IEEE AUTOTESTCON,
Atlanta, GA, Aug. 1995.

13. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A., and Iverson,
D.L.," Multiple Fault Isolation in Redundant Systems", 1995 IEEE International
Conference on Systems, Man and Cybernetics, Van Couver, BC, October 1995.

14. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A., "Sequential
Testing Algorithms for Multiple Fault Isolation," submitted to IEEE Transactions on
Systems, Man and Cybernetics, August 1996.

1.2.2Fault Diagnosis with Imperfect Tests

We investigated two fault diagnosis problems for the case when tests are imperfect : (1)
sequential fault diagnosis under single fault assumption; and (2) fault diagnosis when all test
results are available as a block.

When tests are imperfect, the test sequencing problem corresponds to a partially observed
Markov decision problem (POMDP), a sequential multi-stage decision problem wherein the
states are the set of possible failure sources and information regarding the states is obtained via

NASA Final Report 3 May 1997

the results of impefiect tests. The optimal solution for this problem was obtained by applying a
continuous state dynamic programming (DP) recursion. However, the DP recursion is
computationally very expensive owing to the continuous nature of the state vector comprising
the probabilities of faults. In order to alleviate the computational explosion, we developed an
efficient implementation of the DP recursion. We also considered various problems with special
structure (e.g., pardel systems) and derived closed-form solution/index-rules without having to
resort to DP. Finally, we developed a vfiety of top-down graph search algorithms for
problems with no special structure, including multi-step DP, multi-step information heuristics
and certainty equivalence algorithms. We compared these near-optimal algorithms with DP for
small problems to gauge their effectiveness. The details on test sequencing with unreliable tests
may be found in the following reference:

15. Raghavan, V., Shakeri, M., and Pattipati, K., "Test Sequencing Algorithms with
Unreliable Tests," submitted to IEEE Transactions on Systems, Mm and Cybernetics,
August 1996.

Next, we considered the problem of constructing optimal and near-optimal multiple fault
diagnosis (MFD) in bipartite systems (i-e., systems with failure sources connected directly with
tests) with unreliable tests. It is known that exact computation of conditional probabilities for
multiple fault diagnosis is NP-hard. The novel features of our diagnostic algorithms was the use
of Lagrangian relaxation ahd subgradient optimization methods to provide: (1) near-optimal
solutions for the MFD problem, and (2) upper bounds for an optimal branch-and-bound
algorithm. The proposed method was illustrated using several medical diagnosis examples.
Computational results indicated that: (1) our algorithm has superior computational pentormance
to the existing algorithms (approximately three orders of magnitude improvement over the
algorithms in the artificial intelligence literature; (2) the near-optimal algorithm generates the
most likely candidates with very high accuracy; and (3) our algorithm can find the most likely
candidates in systems with as many as 1000 faults. The details of the algorithm may be found in
the folowing references:

16. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A, "Optimal and
Near-optimal Algorithms for Multiple Fault Diagnosis with Unreliable Tests," 1996
IE.EE AUTOTEST Conference, Dayton, OH, September 1996.

17. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-me, A., "Algorithms for
~ u l t i ~ l e Fault Diagnosis with Unreliable Tests," submitted to IEEE Transactions on
Systems, Man and Cybernetics, August 1996.

NASA Final Report May 1997

1995 IEEE Autotest Conference, September 1995

Sequential Test Strategies for Multiple Fault Isolation*

M. Shakeri, K.R. Pattipati and V. Raghavan d3
U-157, Department of Electrical and Systems Engineering,

University of Connecticut, Storrs, CT 06269-3157
Email: krishna@sol.uconn.edu

A. Patterson-Hine T. Kell
NASA-Ames Research Center, Mail Stop 269-4, Technical Support Services, $3 dc$ 3 z[

Moffett Field, CA 94035-1000 Sikorsky Aircraft, Bridgeport, CT 06604
Email: AnnSatterson-Hine@styx.arc.nasa.gov Email: ekell@sikorsky.com

Abstract

In this paper, we consider the problem of constructing near-
optimal test sequencing algorithms for diagnosing multiple
faults in redundant ffault-tolerant) systems. The computa-
tional complexity of solving the optimal multiple-fault isola-
tion problem is super-exponential, that is, it is much more
difficult than the single-fault isolation problem, which, by it-
self, is NP-hardl[l]. By employing concepts from information
theory and Lagrangian relaxation, we present several static
and dynamic (on-line or interactive) test sequencing algo-
rithms for the multiple fault isolation problem that provide a
trade-off between the degree of suboptimality and computa-
tional complef .y. Furthermore, we present novel diagnostic
strategies that generate a static diagnostic directed graph (di-
graph), instead of a static diagnostic tree, for multiple fault
diagnosis. Using this approach, the storage complexity of the
overall diagnostic strategy reduces substantially- Computa-
tional results based on real-world systems indicate that the
size of a static multiple fault strategy is strictly related to
the structure of the system, and that the use of an on-line
multiple fault strategy can diagnose faults in systems with as

many as 10,000 failure sources.

1 Introduction

The complexity associated with the maintenance of large
integrated systems, such as the space shuttle or a modern
aircraft consisting of mechanical, electro-mechanical and

*Research supported in part by the Department of Economic
Development of the State of Connecticut, NASA-Ames Research
Center, Sikorsky Aircraft and Qualtech Systmur, Inc.

lThis means that the computational requhments of an opti-
mal algorithm cannot be bounded by a polynomial function of the
number of failure sources and/or the number of tests.

hydraulic subsystems, presents formidable challenges to
manufacturers and end users. This is due to the large
number of failure sources and the need to quickly iso-
late and rectify such failures with minimal down time.
In addition, for-lredundant (fault-tolerant) systems and - * k. :

for systems with little or no opportunity for repair or
maintenance during their operation (e.g., Hubble tele-
scope, space station), the assumption of at most a single
failure in the system between consecutive maintenance
actions is unrealistic. Thus, the efficient maintenance of
complex redundant systems requires advanced diagnostic
algorithms for multiple fault isolation. This paper con-
siders the problem of constructing efficient algorithms for
diagnosing multiple faults in systems with and without
redundancy.

For diagnostic purposes, we only need to model how
a failure (or cause) propagates to the various monitoring
points. Consequently, it is sufficient to model the system
in its failure space. That is, the model does not describe
how the system normally performs, but how the various
failure sources manifest themselves as malfunctions. The
failure propagation is modeled in the form of first-order
cause-efFect relationships using digraph techniques. The
fundamental premise of digraph techniques is that the
cause-effect linkages must connect the fault origin to the
observed symptoms of the fault. The digraph models
encompass a variety of modeling approaches, including
dependency models [32], signed directed graphs [33], and
fault trees [34].

Once a system is described in terms of a digraph model,
the full order dependencies among failure sources and
tests can be captured by a binary test matrix B, consist-
ing of the failure sources as row indices and the tests as
column indices [12]. This binary test matrix can be used
to diagnose single faults, as well as multiple faults in sys-

tems having no redundancy. This assertion is based on
the assumption that the failure sources are independent
and, consequently, the failure signature of a multiple fail-
ure is the union of failure signatures of individual failure
sources. However, this property is not valid for systems
with redundancy, even under the assumption of failure
independence. The single faults and minimal faults, i.e.,
minimum number of faults with a failure signature dif-
ferent from the union of failure signatures of individual
faults, together with their failure signatures, constitute
the necessary information for fault diagnosis in redun-
dant systems. Thus, the problem of generating a binary
test matrix in redundant systems reduces to the prob-
lem of finding minimal faults of a digraph model. After
generating the binary test matrix, the problem is to de-
sign a sequential testing strategy for diagnosing multiple
faults. Thus, multiple fault diagnosis involves two se-
quential steps: (1) generation of a binary test matrix,
which contains all the necessary information for single
fault and multiple-fault diagnosis, and (2) design of a
multiple-fault testing strategy that unambiguously iso-
lates the failure sources with minimum expected testing
cost (or time).

The problem of finding minimal faults in digraph mod-
els is much more difficult than that in the fault tree mod-
els, which, by itself, is NP-hard [2]. This is because
a fault tree model contains no cycles (feedback loops),
and because there exists only one target event, for which
the minimal faults (cuts) should be computed. Rauzy
[2] considered the problem of computing minimal faults
(cuts) of fault tree models, and presented an efficient
method to compute them using binary decision diagrams.
Vatn [3] presented a method for the identification of min-
imal cut sets in a fault tree. The cut sets are stored in
a virtual tree structure. In this method, by traversing
the virtual tree, minimal cuts of size one are identified
first. Then, in the second iteration, all minimal cuts of
size two are identified and compared with the cut sets of
size one to exclude non-minimal cuts. This procedure is
continued until all minimal cuts are identified.

Since the number of minimal cuts can increase e x p e
nentially with the size of the tree, it is practical to trun-
cate the computation by neglecting higher order and/or
low-probability faults. Brown [4, 51 presented an algo-
rithm that uses probability-based truncation, and deter-
mines a rigorous upper bound on each event-probability
by propagating the effect of all the truncated cut sets in
the form of numeric residuals. Iverson and Patterson-
Hine [6] considered the problem of generating singletons
(single fault) and doubletons (double faults) in digraph
models. A major contribution of this paper is the de-
velopment of a topdown recursive algorithm that finds
all the minimal faults in digraph models, and an efficient

bottom-up algorithm that finds minimal faults up to a
limited size. The failure signatures of minimal faults are
generated thereafter, and the singlefault binary test ma-
trix is augmented to include this information.

Davis [7,8] described a fault diagnosis system that rea-
sons from the knowledge of structure and behavior. Fail-
ure candidate generation in this approach occurs in three
basic steps: circuit simulation and discrepancy collec-
tion, potential candidate determination, and global con-
sistency determination using constraint suspension tech-
niques. However, for multiple fault diagnosis, this ap-
proach suffers from severe computational explosion. de
Kleer and Williams [9] presented a model-based approach
to fault diagnosis. By keeping track of multiple sets of
consistent and inconsistent components, their algorithm
generates minimal sets of faulty candidates rather than
generating all possible candidates. This approach re-
quires the complete specification of system components,
the state and observed variables associated with each
component, and the functional relationships among the
state variables. However, the precise information re-
quired by these models is typically not available for com-
pldx systems and is too costly to obtain. In addition,
because of extencive use of functional simulation, this ap-
proach is extremely slow, and, thus, is not appropriate for
fault diagnosis in large scale systems with the complexi-
ties of many orders of magnitude more than the examples
presented in [9]. Sheppard and Simpson [35] provided
a formal analysis of the multiple failure problem in the
context of information flow model. They discussed the
computational complexity of several algorithms for di-
agnosing multiple failures, and developed algorithms .o
generate multiple fault diagnoses for a given ambiguity
group. However, this method does not take into account
the failure probabilities of components, test costs, or sys-
tem redundancies.

In this paper, we first extend the singlefault strategy
of our previous work [I, 10, 12, 281 to diagnose multi-
ple faults by successive replacement of single fault candi-
dates. Using this strategy, we seek to isolate the poten-
tial singlefault candidates, then double-fault candidates,
and so on. Since a component may be repaired/replaced
before confirming that it is indeed faulty, the probability
of false alarm error or RTOK (retest OK) is higher than
that with multiple fault strategies that use all informa-
tive tests before repairing a component in the system.

Next, we focus on developing a class of Sure strate-
gies [ll] for diagnosing multiple faults in digraph models
that employ all informative tests before diagnosis. The
basic idea of these strategies is to find one or more defi-
nitely failed components, while not making an error when
other co-existing faults are present. Furthermore, in or-
der to eliminate the problems associated with the stor-

age of the complete diagnostic strategy, an interactive
testing strategy has been implemented. Instead of gen-
erating the entire diagnostic tree, the interactive testing
strategy suggests the next test to be applied, given the
outcomes of previously applied tests, and generates the
path leading to the isolation of multiple failures in a sys-
tem. We employ concepts from information theory and
Lagrangian relaxation to generate several on-line diag*
nostic strategies. Using these strategies, we can diagnose
multiple faults in large systems with as many as 10,000
failure sources.

2 Problem Formulation

We assume that the system is modeled by the digraph
DG = {S, T , A, E), where E denotes the set of directed
edges specifying the functional information flow in the
system and

e S = {sl, ..., s,} is a finite set of independent failure
sources (failure aspects) associated with the system;

T = {tl,.t2, ..., tn} is a finite set of n available binary
outcome tests, where the integrity of system failure
sources/components/modules can be ascertained;

A = {al, ..., aK) is a finite set of AND nodes repre-
senting system redundancies.

3 Single Fault Testing Strategies

Once a system is described in terms of a digraph model,
all the necessary information for fault diagnosis can be
captured by a binary test matrix (fault dictionary), B =
[bijJ of dimension rn x n. In a single fault strategy, it is
assumed that the system is tested frequently enough that
a t most one component has failed. Thus, the test matrix
denotes the full-order dependency among single failures
and the tests in the system, i.e., the rows and columns of
the test matrix correspond to failure sources and tests,
respectively. The test matrix can be computed by the
reachability analysis algorithms [12].

The single fault diagnosis problem, in its simplest
form, is the five-tuple (S, P, T, C, D), where

S =S V {so)={so, s1, ..., s,) is a set of failure
sources, where so is a dummy failure source denot-
ing fault-free condition and V denotes the union of
two sets;

P = ~ o , p l , ..., pm] is the conditional probability vec-
tor associated with the set of failure sources S.based-
on a single fault assumption [ll], where po is the
probability of fault-free condition, so. These are re-
lated to unconditional prior probabilities {p(si)) via:

1
The input requirements of the various nodes of the Po = P(s&) ' CT=l 1-p(sk)

(1)
directed graph are as follows:

~ (s i)

1. Failure node: Unconditional a priori probability vec- 1-~(s;) Pi = m ~ (s k)
for i = 1, ..., rn

tor of failure nodes P = [p(sl), ..., p(s,)], where I + Ck=l l-p(dk)
p(si) is the a priori probability of failure source si.

2. Test node: A set of test costs C = {cl, ~ 2 , ..., cn},
where cj is the cost of applying test t j , measured
in terms of time, manpower requirements, or other
economic factors.

3. AND node: TWO-sets U = {ul, ..., uK) and V =
{vl , ..., vK), where uk and vk denote uk-out-of-vk
logic for AND node ak, i-e., AND node ak has vk
inputs and a failure must occur in at least uk inputs
of this AND node for the faults to propagate to the
output.

The problem is to design a testing strategy that unarn-
biguously isolates the failure sources with minimum ex-
pected testing cost. The AND/OR sequential test strat-
egy is represented in the form of a tree or a graph, where
the OR nodes represent the suspect sets of failure sources,
AND nodes are tests applied a t various OR nodes, and
the leaves are the isolated failure sources.

T and C are as defined in Section 2;

D = [dij] is a binary test matrix of dimension (m +
1) x n, where doj = 0 for 1 < j 5 n, and dij = bij
f o r l < i < m a n d l l j < n .

The algorithms for designing optimal single-fault di-
agnostic strategies are based on dynamic programming
(DP) [13], and AND/OR graph search procedures. The
DP technique is based on a bottom-up procedure, and
has storage and computational requirements of O(3")
for even the simplest test sequencing problem. The
AND/OR2 graph search algorithms are topdown heuris-
tic graph search procedures that employ a cost-bgo es-
timate to speed up the solution search process [I].

2These AND/OR nodes of the search graph should not be con-
fused with the AND nodes of a digraph model. AND/OR graph
search formalizes the strategy generation process, where as AND
node of the digraph model denotes Fedundancy.

A novel feature of this approach is that the cost-to-
go estimate (termed the Heuristic Evaluation Function
(HEF)) is derived from Huffman coding and entropy.
These information theoretic lower bounds ensure that
an optimal solution is found using the AO*, HS, and
CF search algorithms [12]. In addition, because of the
topdown nature of the AND/OR graph search algo-
rithms, several near-optimal search algorithms have been
derived: (1) AO: algorithm, (2) limited search AO*, and
(3) Multi-step information heuristics. Furthermore, b e
cause of their topdown nature, these algorithms extend.
naturally to: (1) modular diagnosis, (2) precedence con-
straints, setup operations, and resources and (3) recti-
fication. The algorithms have been implemented in a
software package, termed TEAMS (Testability Engineer-
ing and Maintenance System[12]). For convenience, these
algorithms are referred to as the TEAMS-S algorithms.

Example 1.a: Consider <he digraph m d e l in Figure 1.
In this system, there are five failure sources sl, ..., s5.

The set of five tests, labeled t l , ..., t5, may be used to
identify the unknown failure sources. The test matrix,
along with the a priori probabilities of failure sources
and test costs; is shown in Table 1. Based on a single
or no fault assumption, the set rf-failure aspects S =
{so, s l , ..., s5), with the concomitant conditional proba-
bility vector P =[0.700, 0.01, 0.020,0.100, 0.050, 0.1201.
An optimal test strategy for this example is shown in
Figure 2. For this test strategy, the average test cost is
J = CEO CtjETAi cj.pi=2.18, where TAi is the set of
applied tests in the path leading to the isolation of failure
source si E S.

Figure 1: Digraph model for Example 1.a

The single fault assumption may not be valid in sit-
uations where the opportunity for frequent maintenance
does not exist. In such cases, the single fault strategies
can give wrong diagnosis when multiple failures occur. In
(111, we showed that the set of hidden faults and mask-

Table 1: Test Matrix, Apriori Fault Probabilities and
Test Costs for Example 1.a

p => TEST PASSES
f => TEST FAILS

Figure 2: Single-fault Test Strategy for the System of
Example 1.a

ing false failures are potential multiple fault candidates
at each leaf node of the single fault diagnostic tree. The
set of hidden faults for failure source si consists of those
failure sources whose failure signatures corresponding to
TAi are subsets of the failure signature of si, while the
set of masking false failures for failure source si consists
of those sets of failure sources whose failure signatures
corresponding to tests TAi add up to mask the failure
signature of si. Hidden faults can be diagnosed by ap-
plying a single fault strategy repeatedly [Ill. However,
if the set of masking false failures at the leaf nodes is not
empty, the single fault strategy will give wrong diagnosis,
and repairing the implicated fault is obviously of no use
in this case. In the next section, we present an extended
single fault strategy to diagnose masking false failures,
as well as hidden faults in a system.

4 Multiple Fault Diagnosis Using an Ex-
tended Single Fault Testing Strategy

In order to formalize this approach, let

TSj = test signature associated with test ti. It in-
dicates all the failure sources detectable b; test t j ,
i.e., TSj = {silbij = 1 for 1 5 i 5 m),

G = union of test signatures of previously passed
tests.

In this approach, we invoke a single fault strategy, and
repairlreplace the identified component at each leaf node,
if any. Then, we check whether the repairedlreplaced
component at each leaf node is definitely faulty or not.
If for any test t j that failed previously, the cardinality of
TS, - G is one, i.e., TSj - G contains only one failure
source, then the corresponding failure source is definitely
faulty. If the repairedlreplaced component is definitely
faulty, we apply additional tests, if necessary, to isolate
the remaining faults. Additional tests can be applied
from either the root OR,node, or from the first failed
test in the path leading to the identification of previous
faults. This process ensures that we do not come back to
the same leaf node twice.

Alternatively, if the replaced module is not definitely
faulty, there exist other sets of components which have
the ka$e failure signature as the failure signature of re-
placed moaule, i.e., masking false failures [ll]. In this
case, if we start from the root OR node or the first failed
test in the path, we may reach the same leaf node. In
order to solve this problem, we remove the replaced mod-
ules from the ambiguity group at the current stage of di-
agnosis, and invoke the single fault strategy TEAMS-S
to isolate the remaining suspected components. Then, we
repair/replace the identified modules at each leaf node. If
the repaired/replaced module at a leaf node of this tree is
definitely faulty, we apply additional tests from the root
OR node or from the first failed test after last repair. On
the other hand, if the identified module at a leaf node is
not definitely faulty, we update the ambiguity group and
invoke single fault strategy as before. This procedure is
continued until no test gives further information or the
system is fault-free.

One drawback of the extended single-fault strategy is
that the probability of repairinglreplacing a good com-
ponent, i.e., false alarm error or RTOK (retest OK), is
higher than that with multiple fault strategies that em-
ploy all informative tests before repairing a component
in the system (see section 5.2). Furthermore, in the
case of very large systems, it is practical to solve mul-
tiple fault isolation problems up to a certain cardinality
J? 2 1, e-g., single or double failures. This is based on
the premise that multiple faults of large cardinality are
much less likely to occur. However, in an extended sin-
gle fault strategy, if we stop expanding the diagnostic
tree dter limited repair actions, say e, it does not mean
that we can diagnose multiple faults up to size using

the same tree. This is because a component may be re-
pairedlreplaced before confirming that it is indeed faulty.

Example 1.b: In this example, we consider the same
system as in Example 1.a. The extended single fault -
diagnostic strategy for this example is shown in Figure
3, where the ACTION nodes represent the actions to
be performed at each stage of diagnosis. Note that the
shaded parts of the tree are the same as those in a single
fault diagnostic tree of Figure 2. The average testing cost
for this case is J =2.780. The joint probability that s5 is
good, and is repairedlreplaced is 0.0103.

Figure 3: Extended Single Fault Strategy to diagnose
multiple faults in Example 1.a

5 Multiple Fault Testing Strategy in
Systems without Redundancy (AND
nodes)

In digraph models without AND nodes, i.e., without re-
dundancy, a test-matrix containing the full-order depen-
dency among single failures and the tests can be used to
diagnose multiple faults. This is because in these models
the failure signature of a multiple-failure is assumed to
be the union of failure signatures of individual failures
(failure independence assumption).

One approach that employs a3l informative tests before
repairing/replacing a component is to consider all possi-
ble combinations of failure sources, i.e., 2S, and generate
an optimal multiple fault diagnostic strategy using the
single-fault test sequencing algorithm TEAMS-S. How-

ever, the storage and computational complexity of opti-
mal multiplefault isolation problem is super-exponential
in m. In order to reduce storage complexity, we use a
compact set notation [14], and in order to reduce the
computational complexity, we present a class of Sure di-
agnosis strategies for multiple fault isolation.

5.1 Compact Set Notation

Following Grunberg et al. [14], we use the compact nota-
tion A= 8(L; Fl, ..., FL; G) to denote the multiple fault
ambiguity group at each OR node. The Fi for i = 1, ..., L
and G are subsets of S = {so, sl, ..., s,); G is the set of
known good failure sources (failure free sources), and Fi
for i = 1, ..., L are sets that are known to contain a t least
one definitely failed failure source each, i.e.,

O(L; Fl, Fz, ..., FL; G) = {X SI
X Fi # 0 for i = 1, ..., L, and X A G = 0)

. where A denotes the intersection of two sets. In the fol-
l~wing,,~we summarize some of the properties of compact
set notation [l l , 301:

1. Multiple fault logic using the compact set notation
is as follows: the initial hypothesis set is the set of
all subsets of S, i.e., A= 0(1; Fl = S ; G = 0).
After performing a test, say t j , the hypothesis set A
= O(L; Fl ,..., FL; G) is decomposed as follows:

O(L; (FI A TSj'), ..., (FL A TSj');
(G v TSj)) if t j passes
O(L + 1; FI, ..., FL,TSj A Gc; G) if t j fails

where TSj and Gc are complements of the sets TSj
and G, respectively.

2. If E 2 Fi for some i (that is, E is a superset of Fi),
then 8 (L + 1; Fl, ..., FL, E; G)=8(L; Fl, ..., FL;
G) [14]. Thus, we should not apply any test whose
signature is a superset of one of the Fi's, since the
test does not give any new information.

3. A = Q(L; Fl, ..., FL; G) = Q(L; Fl AGC, ..., FLAG';
G), where superscript c denotes the set complement,
i.e., GC = S - G [14].

4. Given a set of previously applied passed tests Tp C T
and failed tests Tj C T, the multiple fault ambigu-
ity group at the current stage of diagnosis can be
generated directly as follows: 8(L; Fl, ..., FL; G),
where G = VtiET,TSi, L=ITjl+l, Fr=S (see the
first property), and Fi+l=TSj AGC for i = 1, ..., ITjI
and t j E Tj; and then, employ property 2 to remove
super sets from the set F = {Fl, ..., FL).

5. If ITf 1 = 0, then L = 1 and s o E Fl. If ITf 1 > 0,
none of the Fi's contains so .

6. The worst case storage complexity of compact set
notation for an OR node is O(mn) [ll].

7. The failure sources belonging to Fi with cardinality
lFil = 1 are definitely faulty (one-for-sure condi-
tion).

5.2 S a r e Strategies for Multiple Fault Diagnosis

In this section, we present three diagnostic strategies,
Sure 1-3, that seek to find definitely failed components,
even though there may be others still undiagnosed. Thus,
these strategies isolate failures one (or more) at a time,
while not making an error when multiple faults are
present. The framework for Sure strategies is sketched
in Figure 4.

Yes

Figure 4: Framework of Sure Strategies in a Test-and-
repair Cycle

The three basic ingredients of Sure 1-3 are: (i) min-
imal candidate generation, (ii) minimal candidate isola-
tion, and(ii) multiple fault propagation. The minimality
property implies that a particular candidate includes the
minimum number of failure sources that explains all test
results observed so far (if any). Consequently, the inher-
ent combinatorial explosion that occurs in generating an
optimal multiple fault strategy is reduced substantially.
Before describing the algorithms, we define minimal (ir-
reducible) set and hitting set of a set of subsets:

Definition 1: A minimal or irreducible set for a collec-
tion of subsets Q = {Q1 , ..., Qk) is a set I(&) E: Q such
that I(Q) = Q - {Qi13Qj E Q and Qj C Qi), i.e., I(Q)
is equal to set Q without any super set.

Definition 2: A hitting set for a collection of sets Q =
{Ql, ..., Qk} is a set H(Q) ={HI, ..., Hp} such that Hi C
VlljlkQi for j = 1, ..., q , and HjAQi # 0 for i = 1, ..., k.

Based on these definitions, it can be shown that 1301:

Lemma 1: The minimal set of a multiple fault am-
biguity group A = 0(L; Fl, ..., FL;G) is the minimal
hitting set for the collection of sets F = {Fl, ..., FL), i-e.,
I(A) = I(H(F)).

In Sure 1-3 strategies, at each stage of diagnosis, we
consider the minimal candidate set of the multiple fault
suspect set corresponding to the OR node at that stage.
b i t e r [15] has derived an algorithm to determine the
minimal hitting set of a collection of sets, and Greiner et
al. [16] have presented a correction to the biter's algo-
rithm. We use this technique to determine the minimal
hitting set of F = {Fl, ..., FL) at an OR node. After
determining the minimal candidates of a multiple fault
suspect set at the current stage, we evaluate the con-
ditional probabilities of minimal candidates using Bayes'
rule. Then, we invoke the single fault strategy TEAMS-
S to isolate these candid$.es, and propagate multiple
fault suspect set through the resulting diagnostic tree.
Note that, using the fourth property of compact set no-
tation, it is sufficient to generate and store multiple fault
ambiguity group at the leaf nodes of this tree only. We
r$peat these procedures for each leaf node of the tree
until: (1) the intersection of minimal candidates is not"
empty, i.e., the corresponding failure sources =r-e. defi-
nitely faulty, or (2) no test provides further information.
The former corresponds to the case when the cardinality
of one or more Fi in the ambiguity group is one.

After repairing/replacing the components isolated by
Sure strategies, we apply additional tests, if necessary,
to isolate the remaining failure sources. We explore
three different approaches for the application of addi-
tional tests: (1) start from the root OR node of the diag-
nostic tree; (2) start from the first failed test in the path
leading to the isolation of previous faults; (3) update the
multiple fault suspect set at the leaf node by integrat-
ing previous test results using the fourth property of the
compact set notation, removing repairedlreplaced fail-
ure sources from the ambiguity group at the leaf node,
and invoking Sure strategies for the updated ambiguity
group. Sure 1-3 algorithms correspond to the first, sec-
ond and thiid approaches for applying additional tests,
respectively. These are presented in detail in [17].

The Surel diagnostic strategy is simple and the result-
ing diagnostic tree is very similar to the single fault diag-
nostic tree. However, the expected testing cost using this
strategy is usually high. The expected testing cost using
Sure2 diagnostic strategy is less than the first one, but
the next test to be performed after repairing/replacing
each failure source will be different. Furthermore, the di-
agnostic tree will change to a digraph (directed graph).
The expected testing cost for the third approach is the
smallest, but the size of the diagnostic tree will be con-
siderably larger than the others. This is because the

number of leaves of the diagnostic tree is the same as
the number of distinguishable multiple-fault failure sig-
natures. For example, in the worst case, i-e., when the
test matrix B is diagonal, the number of leaves is 2".
This is because there are 2* possible multiple-fault fail-
ure signatures. But, the number of leaf nodes in Surel
and Sure2 diagnostic strategies in this case are the same
as in a single-fault strategy, i.e., m + 1.

One of the interesting features of Sure strategies is that
the starting point for all three algorithms is the same
tree as in a single fault strategy for the system under
consideration. This is because the minimal candidate
set for 2S is {so, sl, ..., s,). Therefore, these strategies
isolate a single fault with the smallest average cost, while
not making an error when multiple faults are present.
Furthermore, in the case of very large systems, instead
of generating all minimal candidates, we can generate
minimal candidates of size less than a certain threshold,
El and diagnose multiple faults up to that size.

Example 1.c: Figure 5, without (with) the dashed
lines, shows the multiple fault strategy for the system
in Example l.a, based on Surel(Sure2) algorithm, where
Ai denotes the ambiguity group corresponding to the
OR node i, and A1= Q(1; {so, sl, s2, s3, s4, s5) ;0); Aa=
@(I; (s 0 ~ s 2 ~ ~ 3) ; (-51, ~ 4 ~ ~ 5)) ; A3 = @(I; { ~ 1 , ~ 4 , ~ 5) ; 0) ;
A4= Q(1; {SO); {sir ~ 2 , ~ 3 , ~ 4 ~ ~ 5)) ; A5 = @(I; (~ 2 ~ ~ 3) ;
{slss4,~5)); A6 = @(I; (~ 1 1 ~ 4) ; (s21~31~5)) ; A7
= Q(2; (sIrs4rs5)r { sz , s~ , s~) ;@) ; A8 = Q(1; (~ 2) ;
{ ~ 1 , ~ 3 , ~ 4 , ~ 5)) ; A9 = Q(1; (~ 3) ; (~ 1 ~ ~ 4 , $5)); A10
= Q(1; (~1) ; { ~ 2 , ~ 3 , ~ 4 , ~ 5)) ; All = Q(1; (~ 4) ;
(~ 2 , ~ 3 , ~5)) ; A12= Q(2; ($4, ~ 5) ~ (~ 2 , -95); {SII ~ 3)) ; A13
= Q(3; {sl1s4,s5), { s z , s ~ , s ~) , { ~ 1 , ~ 3) ; 0); A14 =
Q(2; {s3)1 {SI, ~ 4) ; (~ 2 , ~5)) ; A15 = Q(3; {sir S S) ~

{si, ~ 3 1 , (32, -95); 0); A16 = Q(2; (~ 1) ~ (~2) ; {SS, ~ 4 , ~ 5)) ;
A17 = Q(4; {sI,s~), (~ 2 ~ ~ 5) ~ { ~ 3 , ~ 4 , ~ 5) , { ~ 1 , ~ 4 , ~ 5) ; 0)

Note that the shaded parts of the tree are the same
as those in the single fault diagnostic tree of Figure 2.
The average testing cost for the optimal multiple fault
strategy is J = 2.411, and the average testing cost for
the first (Surel) and second (Sure2) approaches using
the diagnostic strategy of Figure 5 are J = 2.715 and
J = 2.616, respectively.

Example 1.d: The Sure3 strategy for Example 1.a is
shown in Figure 6, where Als = A20 = A24 = Q(1; {SO);
(~ 1 1 S21 S31 S41 ~ 5)) ; A19 = Q(1;{~2);(sl,s3ts4,s5))
; A23 = @(I; (~ 4) ; (~ 2 , ~ 3 , $5)) ; A21 = A22 = A25 =
@(I; {sl); {s21s31s41s5));

Note that the shaded and dashed parts of the tree in
Figure 6 are the same as those in Figure 5. For this test
strategy, the average test cost J = 2.535. In this exam-
ple, we considered a block replacement strategy when no
test gives further information, for example, see ambiguity
groups A12 and A17.

Figure 5: Sure1 and Sure2 Test Strategies for Example
1.a

6 Multiple Fault Testing Strategy in Sys-
tems with Redundancy (AND nodes)

In digraph models with AND nodes, the assumption that
the failure signature of a multiple failure is the union
of failure signatures of the corresponding individual fail-
ures is not valid. This is because the failures of multi-
ple modules can propagate to the output of AND nodes,
and therefore, generate a different failure signature. In
these models, minimal faults and their failure signatures
contain all the necessary information for multiple fault
diagnosis [30].

In this section, we first present a top-down recursive
algorithm to find all the minimal faults and their failure
signatures; the minimal fault algorithm is presented in
detail in [la]. Even though this algorithm can easily be
extended to generate minimal faults with a limited size i,
we present an efficient bottom-up procedure to generate
minimal faults up to a limited size e. This is because, in
very large systems, i t is efficient and practical to generate
minimal faults up to a specified size using the bottom-
up procedure.

Then, after generating minimal faults, we augment the
binary test matrix B to include minimal faults, and ex-
tend Sure diagnostic strategies of the previous section to
systems with redundancy.

6.1 Minimal Fault Algorithm

In order to generate the minimal faults and their fail-
ure signatures, we use the reachability analysis algorithm
of [12] to build: (1) failure sourcetest dependency ma-
trix B of dimension m x n, which denotes the full-order

Figure 6: Sure3 Test Strategy for Example 1.a

dependency among single failure sources and tests, (2)
failure source-AND node dependency matrix H of di-
mension m x z, which denotes the full-order dependency
among failure sources and AND node inputs and out-
puts, where z = ~ ~ , (v j + 1)) (3) AND node-test de-
pendency matrix E of dimension IC x n, which denotes
the full-order dependency among AND nodes and tests,
(4) AND node-AND node dependency matrix R of di-
mension IC x z, which denotes the full-order dependency
among AND node outputs and AND node inputs and
outputs, and (5) AND node-AND node reachability ma-
trix Q of dimension I< x I<, which denotes the full-order
dependency between AND nodes and AND nodes by set-
ting AND nodes' logic of uk-out-of-vk to l-out-of-vk in
the reachability analysis algorithm, i.e., AND nodes de-
volve into OR nodes.

For notational convenience, given a binary matrix X =
[xij] of dimension kl x k2, we define X T ~ for i = 1, ..., kl
a s its ith row, and Xcj for j = 1, ..., k2 as its j th column.

6.1.1 Top-down approach

Using the binary matrices, the top-down minimal fault
algorithm finds the minimal faults of the digraph model
via the following steps (see [18] for details):

Step 1:
Because of the definition of minimal faults, the algorithm
needs to process only those AND nodes As C A for which
there exists at least a path from the AND node to a test.

The algorithm sorts the AND nodes in As such that each
AND node will be processed before any other AND node
reachable from it. This step prevents the algorithm from
performing the same operations twice.

The procedure for finding and sorting As is as fol-
lows: (1) the algorithm finds a subset of AND nodes
Ae C A such that each AND node ak E Ae can be de-
tected by at least a test, i.e., Ae = VEcj for j = 1, ..., n;
(2) using AND node-AND node reachability matrix Q,
it finds the subset of AND nodes As that reach Ae, i.e.,
AS = VakEAe&ck; and (3) the algorithm sorts the AND
nodes in As based on the number of AND nodes reaching
them in ascending order. Note that the number of AND
nodes reaching an AND node a j is ~ f = ~ qkj .

S tep 2:
For each AND node ak E As, the algorithm finds the
set of failure sources and AND nodes that can reach the
AND node inputs and output. Then, it removes single
failures affecting the AND node from its input signatures,
and generates the minimal combinations of AND nodes
and failure nodes for each AND node ak E As usi,ng one
of the following three approaches: (1) minimal hitting set
methc5using a breadth-first search [15, 16],(2) minimal
hitting set method using a depth-first search, and (3) bi-
nary decision diagrams [2]. However, because of the small
number of AND node inputs, i.e., vk for k = 1, ..., I(, usu-
ally 2 or 3, there is no significant difference in using any
of these three approaches.

Note that we can consider a limit J? for the number
of failure sources in the minimal combinations of AND
nodes. In the first and second approaches, those com-
binations with more than e failure sources are not ex-
panded. In the third approach, at first the decision dia-
gram is generated, and then, the combinations with more
than faults are eliminated. Furthermore, when Vk=2
for k = 1, ..., K, the problem of finding minimal combi-
nations for each AND node reduces to the problem of
finding the cross-products of failure signatures of AND
node inputs [6].

Step 3:
After generating the minimal combinations for each AND
node in As, the algorithm processes one AND node at a
time. The subroutine for this part is a recursive function
and, for simplicity, we call it MFG (Minimal Fault Gen-
erator). In order to find minimal faults for an AND node,
say ail we call MFG for ai. MFG replaces ai with one of
its minimal combinations. If this combination contains
no AND nodes, MFG adds this combination to the set of
minimal faults of AND node ai only if it is not a superset
of one of them. On the other hand, if the combination
contains AND nodes, it selects one of the AND nodes

from this combination, say a j , and calls MFG again for
aj. This procedure continues until no AND node remains
in that combination, or a previously processed AND node
is selected, i.e., there exists a feedback loop containing
the AND node. In the former case, MFG adds this com-
bination to the set of minimal faults of the AND node,
only if it is not a superset of one of them. In the latter
case, if the failure of the combination can propagate to
the output of the AND node, MFG ignores that AND
node, and continues. Otherwise, it returns without do-
ing any thing. This step prevents the algorithm from
entering an infinite loop, when a cycle is encountered.

Note that we can consider a limit k for the number of
faults in the minimal faults of AND nodes. In this case,
at each iteration, MFG checks whether the number of
faults in the AND nodes and failure nodes combination
is greater than the limit k or not. If the number of failure .
nodes in this combination is greater than J?, it returns;
otherwise, it expands the selected AND node as before.

In order to make the algorithm efficient, we employ the
following Lemma:

Lemma 2: Let us assume that X s is a vector of dimen-
sion z , and if ak E As, X, [k(l)]=l for I = 0, ..., vk, other-
wise X,[k(l)]=O for I = 0, ..., vk. If Hri A X r is equal to
Hr j A X r and there exists a minimal combination mc E
MC(ak) and si E mc, then (~ c - { s ~)) V { S ~) E MC(ak).
Further, if there exists a minimal fault mf E Mf'(ak)
and si E mf, then (mf - {si)) V {sj) E MF(ak).

Using this Lemma, before generating minimal combi-
nations of each AND node, we find all the failure sources
with the same failure signature in the H matrix. That
is, we generate the set M={Ml, M2, ..., Ma) such that
Ml 2 S for I = 1, . .., a and Vsi E MI have the same
failure signatures in the binary matrix H. Using this ap-
proach, the failure sources that have the same effect on
the AND ncdes, i.e., the failure sources in series 161, or
those in Gross feedback loops 1121, are considered as a
group of failures. Thus, instead of generating the mini-
mal combinations and minimal faults for each AND node
based on S, we generate them based on M only, i-e., rnin-
imal faults are subsets of M. After generating these sets,
we expand the minimal faults of AND nodes based on M
to generate the minimal faults based on S.

S t e p 4:
After generating the minimal faults of the AND nodes,
the algorithm generates the minimal faults of the di-
graph model (MFd). Firstly, using the AND node-test
dependency matrix E, the algorithm removes the mini-
mal faults of those AND nodes that cannot be detected
by any test. Secondly, if a set of faults belongs to the set
of minimal faults of two or more AND nodes, the algo-
rithm considers only one of them. Then, using the binary

matrices, the algorithm generates the failure signatures
of remaining faults. Note that the remaining faults may
contain supersets, and because of the test points in the
digraph model, a superset may/may not be a minimal
fault of the digraph model. Thus, those supersets, which
have the same failure signatures a s the union of the fail-
ure signatures of their subsets, are removed.
6.1.2 Bottom-up Approach

The bottom-up approach can be used to generate mini-
mal faults up to a limited size, say 2 or 3, in systems with
as many as 10,000 failure sources and 1000 AND nodes.
For clarity, let us assume that vk'2 for k = 1, ..., I<. In
this algorithm, using the first step of the topdown proce-
dure, we find a subset of AND nodes As C A that should
be processed. Then, using the failure source-AND node
dependency matrix H, for each AND node ak E As, the
algorithm finds the failure sources that can reach one of
the AND node inputs, but cannot reach their outputs,
i.e., Sck(l), S~k(2) for ak E As. By finding the cross-
products [6] between two sets Sck(l) and Sck(2), the al-
gorithm generates minimal combinations of size 2. Then,
using the failure source-AND node dependency matrix
H and AND node-AND node binary matrix R, the fail-
ure signatures of these faults can be found and stored
in a binary matrix B'. Using binary matrix B', the al-
gorithm finds the failure sources that can reach one of
the AND node inputs, but cannot reach their outputs,
i.e., Sci(l),Sci(2) for a k E As. By finding the cross-
products between two sets Sci (1) and Sck (2), Sck (1) and
Sdk(2), and Sci (1) and Sci(2), the algorithm generates
all minimal combinations of size 3, as well as some mini-
mal combinations of size 4. This procedure is continued
until either no failure can reach any of the AND node
inputs, or all the minimal faults of the desired size are
generated. After generating minimal combinations of size
2, using the fourth step of the topdown algorithm, min-
imal faults of size 2 of the digraph model are generated.
Note that, because of the presence of feedback loops and
common elements in some paths in the digraph models,
it is not efficient to use a bottom-up approach to find ad1
the minimal faults of a digraph.

6.2 Extended Compact se t Notation

After generating minimal faults and their failure signa-
tures, we expand the binary matrix B with the mini-
mal fault failure signatures. Thus, in systems with AND
nodes, each row of the test matrix corresponds to a sub-
set of S= {sl , ..., s,) . For notational simplicity, let us
assume that the new test matrix contains m, = m + mf
rows, where mf is the number of minimal faults. We de-
fine W={wl, ..., w,,), where wj = {si) for i = 1, ..., m,
a n d w i ~ S f o r r n + l < i < m , , .

After generating the binary test matrix, we extend the
compact set notation of the previous section to systems
with redundancy. In this case, the ambiguity group a t
each OR node of the AND/OR graph is based on W, i-e.,
the Fi for i = 1, ..., L and G are subsets of W=WV {wo)
= {wO, wl, ..., w,,,,), where {wo) = {so) and

@(L; Fl, F2 , ..., FL; G) = {X 2 WI
X Fj # 0 for i = 1, ..., L, and 3 (X) A G = 0)

where 3 (X) =Vwics (x)~ j l and S(X) 2 S is the set of
all failure sources in W j E X , i.e., S(X) = {silVwj E
X and si E wj}.

6.3 Extended Sure Strategies

In order to derive the Sure diagnostic strategy, we need to
generate the minimal candidates a t each iteration. Note
that, Lemma 1 is not valid for minimal faults in a system
with redundancy. This is because wj for j = 1, ..., rn, are
not independent, and because of the AND nodes, the fail-
ure signature of a set of components that has some thing
in common with the Fils is consistent with the failed
tests, but it may be inconsistent with the passed tests.
In this case, the set of minimal candidates of a multiple
fault ambiguity group is generated using the following
Lemma [30].

Lemma 3: The minimal set of a multiple fault ambigu-
ity group A = O(L; Fl, ..., FL; G) for a system with re-
dundancy is I(A)={XIX E I(H(F)) and ~ (X) A G = @),
where F = {Fl, ... , FL). That is, the minimal set of a
multiple fault ambiguity group contains only those ele-
ments of the minimal hitting set F that are consistent
with the set of good components, G.

In addition, the one-for-sure condition of previous sec-
tion should be generalized as follows:

Lemma 4: If the cardinality of any Fi is one, all the
failure sources in wj E Fi are faulty, and if the cardi-
nality of Fi is greater than one, all the failure sources in
A,. F~ w j , are definitely faulty. Evidently, these two con-

?€
ditions can be combined as follows: all the failure sources
in A,. J F ~ W ~ , for i = 1, ..., L, are definitely faulty.

Further, we can use the following two Lemmas to up-
date the ambiguity groups at each OR node.

Lemma 5: Let us assume that we repaired definitely
failed components X 2 S, and that there exists a wj E G
such that Iwj - XI = 1 and sk = Iwj - XI. Then, s k is
good and should be added to the good component subset
G.

Lemma 6: If we repair definitely failed components
wi = {si), and there exist a wj such that si E wjl then
wj should be added to the good component subset G.

In summary, the Sure diagnostic strategies for systems
with redundancy is as follows:

* the ambiguity group at each OR node of €he
AND/OR graph is represented based on W (rather
than S),

minimal candidates are generated based on Lemma
3,

e definitely failed components at the leaf nodes are
found using Lemma 4, and

the ambiguity groups at the leaf nodes are updated
based on Lemmas 5 and 6.

Example 1.e: Consider the digraph model in Figure 7.
This digraph model differs from the one in Figure 1 in
that we have added an AND node al. The minimal fault
for this digraph model is w6={s1, s3) (see Table 2). Fig-
ure 8 without (with) the dashed lines, shows the multiple
fault strategy for this system,h~ed on Surel (Sure2) di-
agnostic strategy, and Ai denotes the ambiguity group
corresponding to the OR node i, and A1 = @(I; {wo, wl,
~ 2 , ~ 3 , w4, W51 206); 0); A2 = @(I; {WO, w2, ws); (7.4 , w4
1W51~6)); A3 = @(I; (wlrW4, Wfir ~ 6) ; 0); A4 = @(I;
(~ 0) ; (~ 1 , W21 W31 W4, W5, ~ 6)) ; A5 = @(I; (~ 2 1 ~ 3) ;
{wl, W41 '3.51 ~ 6)) ; A6 = @(I; (wit ~ 4) ; (~ 2 , w3r w5,
~ 6)) ; A7 = @(I; (~ 1 1 W4, W51 w6), (~ 2 , w3, ~ 5 ~ ~ 6) ;
0); 448 = @(I; (~ 2) ; (~ 1 , W31 W4, W5, ~ 6)) ; A9 = @(I;
(~ 3) ; {wlr W4, W5l ~ 6)) ; A10 = @(I; (~ 4) ; {wl> W21 W31

~ 5 1 ~ 6)) ; All = @(I; (~ 1) ; (~ 2 , w31 ~ 5 1 ~ 6)) ; A12 =
@(I; (~ 2 , ~ 5) ~ (~ 4 1 ~ 5) ; (~ 1 , ~ 3 , ~ 6)) ; A13 = @(I; (~ 1 1
W31 w6)1 (~ 2 1 W31 ~ 5 , ~ 6) , (~ 1 , W41W51 ~ 6) ; 0); A14 =
~ (1 ; {w,), { w ~ , w ~) ; {WZ, W5, ~ ~ 1) ; = {wl, W31

~ 6) 1 (~ 2 , w5, ~ 6) ~ {wl, w41~51~6)); A16 = @(I; {wl),
(~ 2) ; (~ 3 1 W41 W5, ~ 6)) ; A17 = @(I; (~ 1 1 W 3 1 ~ 6) 1 (~ 2 ,
W51 w6)1 { ~ 1 , ~ 4 , ~ 5 , ~ 6) , (~ 3 1 W41 W 5 r ~ 6)) .

s2

Figure 7: Digraph model

Note that A14 = e(1; { ~ 3) , { ~ 1 , ~ 4) ; {wz,w~,w~)) ;
i.e., Fl = (w3), Fa = {wl, w4), and G = (wz, w51 we))-

Therefore, w3 = {s3) is definitely faulty. After repairing
s3, using Lemma 5; i.e., w6 E G, w1 = {sl) is good and
should be added to the list of good components G. Thus,
by eliminating wl from F2, we conclude that w4 is defi-
nitely faulty; the cardinality of F2 is one. After repairing
w4, G = S, and there is no need to apply additional tests.
The average testing cost for Surel and Sure2 diagnostic
strategy using the diagnostic strategy of Figure 7, are
J = 2.603 and J = 2.505, respectively.

Table 2: Test Matrix and Test Costs for Example 1.e

FAILURE
SOURCES

w1 = (s1)
w2 = (82)

w3 = (~ 3)

w4 = (~ 4)

w5 = (~ 5)

w6 = (~ 1 1 s3)

Figure 8: Multiple Fault Diagnostic Strategy for Exam-

TESTS
t l t2 t3 t4 t5

TEST COSTS cj
11111
0 1 0 0 1
0 0 1 1 0
1 0 0 1 1
1 1 0 0 0
1 1 1 1 0
11111

ple 1.e
Example 1.E The Sure3 strategy for Example 1.e is

shown in Figure 9, where AIS = AZ0 = 0(1; {wo}; {WI, - . - -

w2, W3, W4, W51 ~ 6)) ; A19 = @(I; (~ 2) ; (~ 1 , W3, W4,
w5, ~ 6)) ; A21 = @(I; (~ 4) ; {wl , W2, W3, w5 1 ~ 6)) -

Note that the dashed parts of the tree in Figure 9 are
the same as those in Figure 8. For this test strategy, the
average test cost J = 2.492. In this exampIe, we con-
sidered a block replacement strategy when no test gives
further information, for example, see ambiguity groups

Figure 9: Sure3 Test Strategy for Example 1.e

A12 and A17

7 On-line Multiple Fault Diagnosis
Strategies . z

In this section, we consider the problem of designing an
on-line (interactive or dynamic) diagnostic strategy to
isolate multiple failures in a physical system. That is, in-
stead of generating the entire diagnostic tree, the on-line
strategy only suggests the next test to be applied given
the outcomes of previously applied tests. Our approach
is to employ concepts from information theory and La-
grangian relaxation to solve this problem.

At each stage of diagnosis, we consider a set of avail-
able tests TA which can provide some information about
the system. Initially, TA contains all tests except those
that can detect all or no faults. Then, we recommend
a test using a local, step-by-step optimization algorithm
developed by Johnson [19]. In this approach, a test tk
from the set of available tests TA is selected, if it maxi-
mizes the information gain per unit cost of the test:

where A is the ambiguity group at the current stage of
diagnosis, and IG(A, ti) is the information gain given by:

In (3), (Ajp, Ajf) are the subsets of the ambiguity group
A corresponding to pass and fail outcomes of test t j
such that Ajp V Ajf = A, and P1(Ajp) =P(Ajp)/P(A),

PJ(Ajf) = P(Ajf)/P(A) are the conditional probabili-
ties of the pass and fail outcomes of test ti, and P(Ajp)
and P(Ajf) are the probabilities of ambiguity groups Ajp
and Ajf, respectively.

In general, P(A = Q(L; FI , F2, ... , FL; G)), needed in
the evaluation of information gain, can be computed as
follows:

P(A) = P((uE,@~) n G) (4)
where m is the number of minimal candidates, and \Iri for
i = 1, ..., m are the minimal candidates of the ambiguity
group A and - denotes the logical NOT operator[20][23].
In addition, for notational clarity, we use the same nc-
tation for expressing a set and its Boolean expression.
Furthermore, we use n and U as Boolean product and
sum, i.e., conjunction (AND) and disjunction (OR) of at
least two Boolean expressions, respectively [2013. We de-
fine G, C G as a set containing single failures of G, and
G, as its complement within G, i.e., Gw = Gg = G-G,.
Thus, by expanding (4) and using the associative law of
Boolean algebra [21], we have:

where - denotes the logical NOT operator[20][23].
By defining @i = qi n G, for i = 1, ..., m, (5) reduces to:

P(A) = P((u$,@~) n G,) (6)
This further reduces to:

Since Oi = \Ei n G,, the second term of (7) should be
considered only for those wj that do not have any thing
in common with G,. Further, it is sufficient to evaluate
the second term of (7) for wj E I(Gw), i.e., irreducible
set of Gw . This is because, if wk c wj , any set satisfying
the Boolean expression (Qi fl wj) will satisfy (Qi n wk).

The problem in (7) is equivalent to the problem of
finding the probability of a sum of non-disjoint sets.
This problem is known as the sums of products prob-
lem, and its computational complexity is NP-hard [22].
Veeraraghavan et al [23] considered the sum (product)
of products (sums) problem and proposed an efficient
Boolean algebraic algorithm, the so-called GKG-VT al-
gorithm, for its solution. In this algorithm, the probabil-
ity of the union of a set of events can be evaluated using
the following equation [23]:

3This is in contrast to V and A, which are used to denote
Boolean conjunction and disjunction of two sets.

Note that when so E Fl (see the fifth property of compact
set notation), we should split Fl into two disjoint sets

P{upIPi) = P{(IPl) U (IPlIP2) U . . . (-1 . . . IP,-~IP,))
{SO) and FI - {so)-

One of the advantages of this approach, compand to
Since these resulting sets are disjoint, their probabilities the one in [24], [25], is that the probability of an ambi-
are added to obtain the probability of the desired event. guity group at the current stage of diaposis is evaluated
Thus, the first term in (7) can be evaluated as follows: using the probability of ambiguity group a t the previous -

stage. Furthermore, using this recursive approach, the

p(((uE1@i)) = P(uE~Q~~G,)P(G,) (9) probability of any hypothesis at the current stage of di-
agnosis can be evaluated. The computational complexity

= ~ (u E 1 4 1 G r) II - dsr)) of this approach is strongly related to the structure of the
s k ~ G . B matrix.

where P(U$L~Q~IG,) is the probability of sum of disjoint
products Qi in S - G, domain, i-e., the number of total
variables reduces from m to m - IG,I. In addition, in
digraph models without AND nodes, Gw = 0. Thus,
the second term in (7) is zero, and P(A) reduces to (9).
Furthermore, in these systems, since the set of minimal
candidates is the minimal hitting set for the set F =
{Fl, F 2 , ..., FL) (see Lemma I), (9) can be written as:

Thus, in systems having no redundancy, instead of
evaluating the probability of ambiguity group A using
minimal candidates at each stage of diagnosis, we can di-
rectly evaluate this probability using F = {Fl, ..., FL).
Furthermore, since the GKG-VT algorithm evaluates
the probability of { u P + ~ I P ~) (sum of products) and
{ @ + l ~ ~ i) (product of sums) sequentially, i.e.,:

In summary, at each stage of diagnosis, for a given
set G,, we generate the set of disjoint events for
Fl F2 . . . FL TSj A Gc, evaluate P(Ajj) and .?'(Ajp),
and recommend a test with the highest information gain. - -
Based on the test outcome, we update the set of avail-
able tests TA, i.e., we remove the recommended tests
and those tests that do not give any information. This
procedure is continued until: (1) a t least a failure source
is isolated, or (2) no test gives further information.

The former corryponds to the case when the cardi-
nality of one or *more Fi in the ambiguity group A is
one. After repairinglreplacing the failure sources in Fi's
with cardinality one, we update the current ambiguity
group and the set of available tests as follows: (i) add
repairedlreplaced components to the set of good com-
ponents GI (ii) remove Fi's containing at least a re-
pairedlreplaced component from ambiguity group A. If
all the Fi's are removed, we set the current ambiguity
to A=0(1; Fl = S - G; G), and (iii) update the set of
available tests TA to all tests except previously applied
passed tests and those tests that do not give any new in-
formation, i.e., those tests t j such that TSj A G ~ is either
an empty set, or a superset of one of Fi (see the sec-
ond property of compact set notation). This procedure
is continued until the set of good components G contains
all the elements.

In the second case, we can select either block or s e
the ~ robab i l i~y ~ f A i l = Q(L Fl, * * - 1 F ~ , TSj Gc; quential replacement. In block replacement, we repair d l

and = O(L; (FlhTS;), -. -. (GVTSj)) the suspected faults, i.e., S-G, and stop testing. In se-
are: quential replacement, we repairlreplace most likely can-

didates and continue testing. The problem of finding the
P(Aj f) = (p(nfhl F ~ ~ G ~) - P(Fl . . . FL TSj A GclG,)) most likely candidates is as follows:

II (1 - ~ (s k))
~ ~ E G S maximize Hzl ~(s i)" ' (1 - p(~i))('-~') (13)

= P(A) - P(F1 . . . FL TSj A GcICS) (1 - P (s ~)) subject to E l x i 1 ; 1 = 1 , - L (14)
*k€G. xzl r k i ~ i < lwkl- 1 ; wk E Gw (15)

P(Aip) = P(A) - P(Aj f) xi E (0, l) ; i = 1, ..., m (16)
= P(& . . . FL TSj A GclCe) (1 - p(r.))

S ~ E G . where Fri = 1 if si E Fr; otherwise Fri = 0; r k i = 1
if sj E wk; otherwise r k i = 0. Constraints (14) and

(15) ensure that the most likely candidates are consis-
tent with the failed and passed tests. Furthermore, u s
ing Lemmas 1 and 6, i t is sufficient to consider (15) for
~ ~ = { w a l w k E I(G,) and wk A G, = 01, where I(Gw)
is the irreducible set of G,. By taking the logarithm
of the objective function in (13), an equivalent objective
function is:

maximize cz, xi log &&jj

subject to (14), (15) and (16). Thus, the problem of
finding the most likely candidates for redundant systems
reduces to 3 generalized set-covering problem [26], [27].
Furthermore, in systems having no redundancy, G, =
0. Consequently, (15) is eliminated, and the problem
reduces to a traditional seJ-covering problem [31].

The generalized set covering problem is solved via a
Lagrangian relaxation technique. In this technique, the
constraints (14) and (15) are relaxed via Lagrange mul-
tipliers. The solution of the relaxed problem is an up-
per bound for the covering problem. The multipliers are
updated iteratively via subgradient optimization to min-
imize this upper bound. In addition, the u p e r bound
and the relaxed solution can be used to develop the best
feasible solution for the generalized set covering problem.
A nice feature of the relaxation approach is that the dif-
ference between the upper bound and the best feasible
solution, termed the approximate duality gap, provides
a measure of suboptimality of the feasible solution. The
details may be found in [30, 26, 271.

Using the solution of the generalized set-covering prob-
lem, the most likely candidate is S, = {silxi = 1). Note
that, usually p(si) < 0.5 for i = 1, ..,m. In this spe-
cial case, the most likely candidate is one of the minimal
candidates of the current ambiguity group. After repair-
ing the most likely candidates, we update the ambiguity
group and continue testing.

In order to solve multiple fault isolation problems in
larger systems with as many as 10,000 failure sources,
we employ the following simplified approach to compute
information gain in (3). If the ambiguity group A at the
current stage of diagnosis contains more than one single
failure source; i.e., intersection of Fi's contains more than
one fault, we select a test tk that maximizes the informa-
tion gain per unit cost of the test based on a single fault
ambiguity group. That is, in this case, IG(A,tj) in (2)
is the information gain based on single fault assumption,
#(Ajp) and #(Ajl) in (3) are the conditional probabili-
ties of the pass and fail outcomes of test t j based on the
single fault assumption in ambiguity group A. However,
based on the test outcome, we update the multiple fault
ambiguity group (see properties 1 and 2 of the compact

set notation). This procedure is continued until: (1) at
least a failure source is isolated, i.e., the cardinality of
one or more of Fi's is one, (2) no test gives further infor-
mation, (3) the cardinality of intersection of Fi's is one,
i.e., there exists a set of masking sets for the single fault
in that intersection, or (4) the set of good components G
contains ali the components, G = S.

The first and second cases are the same as those in the
previous approach. In the third case, we recommend a
test based on a measure of information content in [28],
and continue testing until the first or second condition is
reached. In the fourth case, since all the components are
good, no further action is needed. This approach has less
computational complexity, but higher testing cost com-
pared to the previous approach, based on sum (product)

. of disjoint products (sums).
In addition to a set of comprehensive synthetic prob-

lems, we have applied the algorithms presented in this
paper to several real-world systems. These include: (1)
the Space ShuttIe Main Propulsion System with 7271
failure sources and 1292 AND nodes [6], (2) the F18-
Flight control system yvith 148 failure sources and 78
AND nodes [29] with failure sources limited to singletins
and doubletons, (3) the anticollision light control system
of the Sea Hawk helicopter with 51 failure sources and 55
tests, (4) the stabilator system of the Black Hawk heli-
copter with 238 failure sources and 834 tests, and (5) the
engine torque monitoring system used in CH-53E heli-
copter with 116 failure sources and 75 tests. In the latter
three cases, static and dynamic multiple fault diagnos-
tic strategies subject to various constraints on available
resources, setup operations, and initial failure symptoms
have been implemented, along with interfaces to interac-
tive electronic technical manuals and multi-media docu-
mentation.

8 Conclusion

In this paper, we considered the problem of constructing
near-optimal test sequencing algorithms for diagnosing
multiple faults in systems modeled as digraphs. This
problem involves two sequential steps: (1) generation of
a binary test matrix, and (2) design of a multiple-fault
testing strategy that unambiguously isolates the multiple
failures with minimum expected testing cost (time).

In systems without redundancy, a binary test matrix
denoting the full-order dependency among single failures
and the tests forms the basis for diagnosing single, as well
as multiple faults in the system. In order to diagnose
multiple faults in systems with redundancy, this binary
test matrixis augmented to capture the failure signatures
of minimal-faults. Using a top-down recursive procedure,

we developed an algorithm to find all the minimal faults
and their failure signatures in redundant systems, and
using a bottom-up procedure, we presented an efficient
algorithm to find minimal faults up to a limited size.

After generating the binary test matrix, the problem is
to design a practical multiple fault test sequencing algo-
rithm. The computational and storage complexity of an
optimal multiple fault strategy are super-exponential in,
the number of failure sources, m. We presented several
near-optimal algorithms that provide a trade-off between
optimality and computational complexity. Firstly, we
extended the singlefault strategy of our previo~ls work
[I, 101 to diagnose multiple faults by successively isolating
the potential singlefault candidates, then doublefault
candidates, and so on. This is one of the simplest mul-
tiple fault strategies that one can use. In this approach,
the storage complexity at each OR node of the AND/OR
graph is the same as that in a single fault strategy.

We then extended the single fault sequential testing
strategies to a class of Sure strategies. The basic idea
of these strategies is to find one or more definitely failed
components, while not making t n error when other co-
existing faults are present. We explored three different
approaches for the application of additional tests, result-
ing in Surel-3 strategies.

Some of the advantages of using Sure strategies are:
(1) the inherent combinatorial explosion that occurs in
generating an optimal multiple fault strategy is reduced
substantially, (2) the first iteration of the Sure strategies
results in the same tree as in the single fault (minimal
fault) strategy for the system without (with) redundancy,
and therefore, these strategies isolate a single fault (mini-
mal fault) with the smallest average cost, while not mak-
ing an error when multiple faults are present. Computa-
tional complexity of this approach is strictly related to
the structure of the system, i.e., the test matrix B.

In order to eliminate the problems associated with the
size of the complete diagnostic strategy, the test strategy
can be generated "on-line". That is, instead of gener-
ating the entire diagnostic tree, the interactive strategy
only suggests the next test to be applied given the out-
comes of previously applied tests. We employed concepts
from information theory and Lagtangian relaxation to
generate several on-line diagnostic strategies. In these
strategies, at each stage of diagnosis, a test with the
highest information gain is recommended. The compu-
tation of information gain associated with a test requires
the probabilities of ambiguity groups corresponding to
pass and fail outcomes of the test. An efficient computa-
tional approach based on sum (product) of disjoint prod-
ucts (sums) is used to evaluate these probabilities. How-
ever, the computational complexity of this approach is
strongly related to the structure of the binary test matrix

B and previously applied tests. In order to derive a prac-
tical (albeit suboptimal) on-line diagnostic strategy ca-
pable of diagnosing multiple faults in large scale systems,
we estimated these probabilities via: (1) the probabilities
of single failures at the ambiguity group, i.e., Ar<i<LFiy
and (2) the probability of ambiguity group basea on all
the suspected faults, i.e., 0(1; FI = (S - G);G) [28].
Note that, these estimates constitute the lower and u p
per bounds for the probability of ambiguity group. We
expect to investigate tighter bounds, as well as other
measures for recommending a test, and compare their
efficiencies in our future efforts.

References

[I] K.R. Pattipati and M.G. Alexandridis, "Application
of heuristic search and information theory to sequen-
tial fault diagnosis," IEEE Tkansactions on Sys-
tems, Man, and Cybernetics, 20(4):872-887, July/
August 1990.

[2] A. Rauzy, "New algorithm for fault trees analysis,"
Reliability Engineering and System Safety, 40:203-
211, 1993. --

[3] J. Vatn, "Finding minimal cut sets in a fault tree,"
Reliability Engineering and System Safety, 36:59-62,
1992.

[4] K. S. Brown, "Evaluating fault trees (and and or
gates only) with repeated events," IEEE Transac-
tions on Reliability, 39:226-235, June 1990.

[5] W. G. Schneeweiss and K. S. Brown, "Comments on:
Evaluating fault trees (and and or gates only) with

- - repeated events," IEEE T'kansactions on Reliability,
40%-10, April 1991.

[6] D.L. Iverson and F. A. Patterson-Hine, "Digraph
reliability model processing advances and applica-
tions," Proceedings of the AIAA Computing in
Aerospace Conference, 1993.

[7] R. Davis, "Diagnostic reasoning based on structure
and behavior," Artificial Intelligence, 24:347-410,
1984.

[8] R. Davis, "Retrospective on diagnostic reasoning
based on structure and behavior," Artificial htelli-
gence, 59:149-157,1993.

[9] J . de Kleer and B.C. Williams, "Diagnosing multiple
faults," Artificial Intelligence, 32:97-130,1987.

[lo] K.R. Pattipati, S. Deb, M. Dontamsetty, and
A. Maitra, "START: System Testability Analysis
and Research Tool," IEEE Aerospace and Electronic
Systems Magazine, pp.13-20, January 1991.

[ll] M. Shakeri, K.R. Pattipati, V. Raghavan, , and
S. Deb, "Near-optimal sequential testing algo-
rithms for multiple fault isolation," IEEE Interna-
tional Conference on Systems, Man and Cybernet-
ics, pp.1908-1914, 1994.

El23 K.R. Pattipati, V. Raghavan, M. Shakeri, S. Deb,
and R. Shrestha, "TEAMS: Testability Engineer-
ing And Maintenance System," American Control
Conference, pp.1989-1996, June 1994.

[13] D. P. Bertsekas, Dynamic Programming: Determin-
istic and Stochastic Models, Prentice-Hall, Engle-
wood Cliffs, NJ, 198f.

[14] D.B. Grunberg, J.L. Weiss, and J.C. Deckert, "Gen-
eration of optimal and suboptimal strategies for
multiple fault isolation," Technical report TM-248,
1987. 4 - r.:

[15: 3. Reiter, "A theory of diagnosis from first princi-
ples," Artificial Intelligence, 32(1):57-95, Apr. 1987.

[16] R. Greiner, B.A. Smith, and R. W. Wilkerson, "A
correction to the algorithm in Reiter's theory of di-
agnosis," Artificial Intelligence, 41:79-88, 1989/90.

[17] M. Shakeri, K.R. Pattipati, V. Raghavan, and
S. Deb, "Sure strategies for multiple fault isolation,"
Technical Report TR-94-3, June 1994.

[18] M. Shakeri, K.R. Pattipati, V. Raghavan, and
A. Patterson-Hine, "Multiple fault isolation in re-
dundant systems," to be presented at IEEE .Inter-
national Conference on Systems, Man and Cyber-
netics, Vancouver, British Columbia, Canada, Oct
1995.

[23] M. Veeraraghavan and K.S. Trivedi, "An improved
algorithm for symbolic reliability analysis," IEEE
Transactions on Reliability, 40(3):347-358, August
1991.

[24] I?. Pipitone, "The FIS electronics troubleshooting
system," IEEE expert, pp.68-76, 1986.

[25] R. Liu, Testing and Diagnosis of Analog Circuits
and Systems, Van Nostrand Reinhold, 1991.

[26] J.E. Beasley, "A Lagrangian heuristic for set-
covering problems," Naval Research Logistics,
37:151-163, 1990.

[27] J.E. Beasley, "A Lagrangian heuristic for set-
covering problems," European Journal of Opera-
tional Research, 58:293-300, 1992.

[28] S. Deb, K.R. Pattipati, V. Raghavan, M. Shakeri,
and R. Shrestha, "Multi-signal flow graphs: A novel
approach for system testability analysis and fault
diagnosis," IEEE Aerospace and Electronic Systems
Magazine, 10(5.J:14-25, May 1995.

[29] S.A Doyle, J. B. Dugan, and A. Patterson-Hine,
"A quantitative analysis of the F18 flight control
system," Proceedings of the AIAA Computing in
Aerospace 9, pp. 668-675, October 1993.

1301 M. Shakeri, "Advances in Fault Diagnosis, Testabil-
ity and Reliability Analysis of Large-Scale Systems,"
Ph.D. Thesis, Dept. of Electrical and Systems Engi-
neering, University of Connecticut, in preparation.

[31] M. M. Syslo, N. Deo, and J . S. Icowalik, Dis-
crete optimization algorithms with PASCAL pro-
grams, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1983.

[32] H.H. Din, "Test program sets - A new approach,"
IEEE Autotestcon, Sun Antonio, Texas, pp. 63-69,
1990.

[19] R. A. Johnson, "An information theory approach
to diagnosis," PTOC. 6th Symp. Rel. Quality Contr., [33] C.C. Chang, and C.C. Yu, "On-line fault diagnosis

pp.102-109,1960. using the signed directed graph," Ind. Eng. Chem.
Res., 29:1290-1299,1990.

1201 K. D. Heidtmann, "Smaller sums of disjoint prod-
ucts by subproduct inversion," IEEE Trans. Relia- [34] W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie,

bility, 38:305-311, Aug. 1989. "Fault Tree Analysis, Methods, and Applications-
a Review," IEEE Transactions on Reliability,

1211 S. Koppelberg, Hand Book of Boolean Algebra, El- 34(3):194-203,1985.
sevier Science, B.V., 1989.

[35] J.H. Sheppard, and W.R. Simpson, "Multiple fail-
- [22] M. 0. Ball and J. S. Provan, "Disjoint products ure diagnosis," IEEE Autotestcon,Anaheim, CA,

and efEcient computation of reliability," Operations pp.381-389, 1994.
Research, 36:703-715, Oct 1988.

(3 @ B Q T A
Multiple Fault Isolation in Redundant Systems*

g/B Q

M. Shakeri, K.R. Pat t ipat i and V. Raghavan F.A. Patterson-Hine and D.L. Iverson
U-157, Department of Electrical and Systems Engineering, NASA-Ames Research Center, Mail Stop 269-4,

University of Connecticut, Stons, CT 06269-3157 Moffett Field, CA 94035-1000
E-mail: krishna@sol.uconn.edu Email: AnnSatterson-HineQstyx.arc.nasagov

Abstract

We consider the problem of sequencing tests to isolate mul-
tiple faults in redundant (fault-tolerant) systems with mini-
mum expected testing cost (time). It can be shown that single
faults and minimal faults, i.e., minimum number of failures
with a failure signature different from the union of failure
signatures of individual failures, together with their failure
signatures, constitute the necessary information for fault di-
agnosis in redundant systems. In this paper, we develop an
algorithm to find all the minimal faults and their failure sig-
natures. Then, we extend the Sure diagnostic strategies [I]
of our previous work to diagnose multiple faults in redundant
systems. The proposed algorithms and strategies are illus-
trated using several examples.

.-*

1 Introduction

Diagnosis is fundamentally a process of identifying the
cause of a malfunction by observing its effects at vari-
ous monitoring points in a system. Fault diagnosis in
large-scale systems that are products of modern technol-
ogy present formidable challenges to manufacturers and
users. This is due to the large number of failure sources
and the need to quickly isolate and rectify such failures
with minimal down time. In addition, for redundant sys-
tems and systems with little or no opportunity for repair
or maintenance during the operation (e.g., Hubble tele-
scope, space station), the assumption of a t most a single
failure in the system between consecutive maintenance
actions is unrealistic. -

In this paper, we consider the problem of construct-
ing test sequencing algorithms for diagnosing multiple
faults in redundant systems. Our approach is to. (1)
generate all minimal faults and their failure signatures
in the system, and (2) extend the multiple fault sequen-
tial testing strategies of our previous work [I] to fault-
tolerant systems. In addition, the minimal fault andy-

2 Problem Formulation SF?
We assume that the system is modeled by a directed
graph (digraph) DG = {S, T, A, E), where E denotes
the set of directed edges specifying the functional infor-
mation flow in the system, and

S = {sl, ..., s,) is a finite set of independent failure
sources associated with the system;

T = {tl,tz, ..., t,) is a finite set of n available binary
outcome tests, where the integrity of system failure
sources/components/modules can be ascertained;

A = {al, ..., aK) is a finite set of AND nodes repre-
senting system redundancies.

The input requirements of the various nodes of the
digraph model are as follows:

1. Failure node: A priori probability vector of failure
nodes P = [p(sl), ...,p(s,)], where p(si) is the a
priori probability of failure source si.

2. Test node: A set of test costs C = (c I , c~ , ..., c,,),
where cj is the cost of applying test t j .

3. AND node: Two sets F = {fi, ..., fK) and G =
{ g ~ , ..., g ~) , where fk and gk denote fk-out-of-gk
logic for AND node ak, i.e., AND nocle ak has gk

inputs and a failure must occur in at least fk inputs
of this AND node for the faults to propagate to the
output.

The problem is to design a testing strategy that un-
ambiguously isolates the failure sources with minimum
expected testing cost. The sequential test strategy is
represented in the form of an AND/OR decision tree,
where the OR nodes repreient the suspect sets of fail-
ure sources, AND nodes are tests applied at various OR
nodes, and the leaves are the isolated failure sources.

sis can be used for a quantitative evaluation of system
dependability[3, 41. 3 Minimal Fault Algorithm

*RuKarch supported in part by the Department of Economic In digraph models without AND nodes, i.e., having no re-
Developmart of the State of Comecticut, N A S A - A ~ ~ * dundmc~, the test matrix (fault dictionary) denotes the
Center, Sikoraky Ahraft and Qualtech Systems, Inc. full-order dependency among single failures and tests in

the system. Assuming that the failure signature of a mul-
tiple failure is the union of failure signatures of individual
failures, the binary test matrix forms the knowledge base
for diagnosing single faults, as well as multiple faults, in
a system having no redundancy. However, this property
is not valid for a digraph model with AND nodes. It
can be shown that single faults and minimal faults, i.e.,
minimum number of failures with a failure signature dif-
ferent from the union of failure signatures of individual
failures, together with their failure signatures, contain all
the necessary information for fault diagnosis in digraph
models with AND nodes [lo].

In order to generate minimal faults and their failure
signatures, we compute the following dependency matri-
ces using the reachability analysis algorithm [2, 61:

Failure source-test dependency matrix D = [dij] is
a binary matrix of dimension m x n , where dij = 1
if t j monitors failure source si; otherwise, dij = 0;

Failure source-AND node dependency matrix B =
[bij(l)] is a binary matrix of dimension m x z , where

K z = (gj + 1); bij(0) = 1 if a failure of si can

/. - ..
reach the output of AND node aj; otherwise, bjj(o) =
0; and bij(,) = 1 if a failure of si can reach the Ith
input of AND node aj; otherwise, bij(,) = 0;

AND node-test dependency matrix E = [eij] is a
binary matrix of dimension K x n , where eij = 1 if
t j monitors AND node ai; otherwise, eij = 0;

AND node-AND node dependency matrix R =
[rij(l)] is a binary matrix of dimension K x z , where
rjj(o) = 1 if a failure at the output of AND node
ai can reach the output of AND node aj; otherwise,
rij(,) = 0; and rij(r) = 1 if a failure at the output of
AND node ai can reach the Ith input of AND node
aj; otherwise, rij(1) = 0;

AND node-AND node reachability matrix Q = [gijJ
is a binary matfix of dimension K x K, where qij = 1
if there is at least a path between ai and aj; other-
wise, qij = 0.

Note that we can generate AND node-AND node
reachability matrix Q by setting AND node's logic of
fk-out-of-gk to 1-out-of-gk in the reachabiity analysis al-
gorithm, i.e., AND nodes devolve into OR nodes.

For. convenience, given a binary matrix X = [xijJ of
dimension k1 x kz, we define Xrj for i = 1, ..., kl as its
ith row, and Xcj for j = 1, ..., kz as its jth column. For
example, Drj for i = 1, ..., m lists 4 the tests that can
detect failure source ss, and Dcj for j = 1, ..., n indicates
all failure sources detectable by test tj.

Using these matrices, the minimal fault algorithm finds
the minimal faults of the digraph model via the following
steps:

1. Sort a subset of AND nodes As C A to be processed.

2. Generate minimal combinations of AND nodes and
failure nodes that propagate to the output of every
AND node ak E As, i.e., MC(ak) for ak E As.

3. Generate minimal faults of each AND node in As,
i.e., MF(ak) for ak E As.

4. Generate the minimal faults of the digraph model
(MFd) using the minimal faults of AND nodes.

3.1 Step 1 - Sorting the AND nodes

Since we need to process only those AND nodes As E A
for which there exists at least a path to a test, the algo-
rithm sorts the AND nodes in As such that an AND node
will be processed before any other AND nodes reachable
from it. This step prevents the algorithm from perform-
ing similar operations repeatedly.

The procedure for finding and sorting As is as follows:
(1) Find a subset of AND nodes Ae C A such that an
AND node ak E Ae can be detected by at least a test, i-e.,
Ae = UEcj for j = 1, ..., n, (2) Using AND node-AND
node reachability matrix Q, find the subset of AND nodes
As that reach Ae, i.e., As = UorEAe&ck, and (3) Sort the
AND nodes in As in the ascending order of the number
of AND noues reaching them. Note that the number of
AND nodes reaching AND node a j is ~ f = ~ qkj .

3.2 Step 2 - Generation of minimal combina-
tians for each AND node

Using the binary matrices, the minimal fault algorithm
generates minimal coxnbinations of AND nodes and fail-
ure nodes for each AND node in As , i.e., MC(ak) for
ak E As. The procedure is as follows: (1) For each AND
node ak, determine the failure sources and AND nodes
that can reach the inputs and output of ak, i.e., Sck (I) for
1 = 0,1, , ..., gk, where Sck (1) = Bck (I) U Rck (I), (2) Re-
move Sck(0) from Sck(l) for 1 = 1, ..., g ~ , that is, remove
single failures affecting the AND node output from its in-
put signatures. (3) Because of the fk-out-of-gk logic, all
combinations of Sck(1) for I = 1, ..., gk containing sets of
cardinality fk are considered. For example, for an AND
node, say a,, with 2sutsf-3 logic, we consider the fol-
lowing combinations: (Sck(l), Sck (2)), (Sck (l), Sck (3))
and (Sck (2), Sck (3)). Then, using Sck (1)'s combinations,
generate the minimal combinations of AND nodes and

failure nodes for each AND node by one of the follow-
ing three approaches: (a) Minimal hitting set1 method
using a breadth first search [7], (b) Minimal hitting set
method using a depth first search, and (c) Binary de-
cision diagrams [8]. When gk=2 for k = 1, ..., K, the
minimal combinations for each AND node can be found
using the cross-product of two sets Sck (1) and Sck (2) for
k = 1, ..., K [9].

Note that we can consider a l i t L for the number
of failure sources in the minimal combinations of AND
nodes. In the first and second approaches (i.e., (a) and
(b)), those combinations with more than L failure sources
are not expanded. In the third approach (i.e., (c)), at
first the decision diagram is generated, and then, the
combinations with more than L faults are eliminated.
However, because of the small number of sets, i.e., gk for
k = 1, ..., K, usually 2 or 3, there is almost no difference
in using any of these three approaches.

3.3 Step 3 - Minimal faults for each AND node

After generating minimal combinations for each AND
node in As, we process one AND node at a time. The
subroutine for this part is a recursive function, and for
simplicity, we call it MFG (Minimal Fault Generator):
MFG (AND-node, fault-list, AND-list, level, solved-
AND-nodes). In order to find minimal faults for an AND
node, say ai, we call MFG as follows: MFG(ai, 8, 8, 0,
8). MFG adds ai to AND-list, and considers it as a level-
zero AND node. Then, if the minimal faults of this AND
liode have already been found, MFG adds one of the ai's
minimal faults to the fault-list. Otherwise, it adds one of
the ai's minimal combinations to the fault-list, removes
solved-AND-nodes from that list, and sets the level of the
new AND nodes in the fault-list to level+l. Then, it re-
moves the AND node with the highest fevel, say aj, from
the fault-list, and calls MFG as follows: MFG(aj, fault-
list, AND-list, level+1, solved-AND-nodes). This proce-
dure is continued until: (a) no AND node remains in the
fault-list, or (b) the level of the selected AND node is less
than or equal to the level of one or more AND nodes in
the AND-list, or (c) the algorithm picks an AND node
that has already been processed, i.e., the AND node is
in the AND-list.

In the first case, this combination is compared with
other combinations created for AND node e. If it is a
super set of one of them, MFG does not do any thing,
and returns. If it is a subset of one or more of them,
the algorithm removes the super sets, and it stores this
combination, as well as the set of AND nodes affected

'A hitting eet for a collection of sets C is a net H E U x E c X
~ c h t h s t H n X # I f o r e s c h X f C

by this combination, i.e., AND-list without considering
levels, and returns.

In the second case, the algorithm adds the AND nodes
with levels greater than or equal to the level of the se-
lected AND node in the AND-list to the solved-AND-
nodes, resets their levels to zero, and removes these AND
nodes from the fault-list, if any. Then, it processes the
selected AND node.

In the third case, if the AND node has already been
solved, i.e., it belongs to the solved-AND-nodes, it re-
moves the AND node from the fault-list, if any, and picks
another AND node and processes it. Otherwise, the algo-
rithm returns without doing any thing. This latter step
prevents the algorithm from entering an infinite loop,
when a cycle is encountered.

- Note that we can consider a limit L for the number of
faults in the minimal faults of AND nodes. In this case,
MFG checks whether the number of faults in the fault-list
is greater than the limit L or not. If the number of faults
in the fault-list is greater than L, it returns; otherwise,
it expands the AND node as before.

3.4 Step 4 - Minimal faults of digraph models

After generating the minimal faults of the AND nodes,
the algorithm generates the minimal faults of the di-
graph model (MFd). Firstly, using the AND node-test
dependency matrix E, the algorithm removes the mini-
mal faults of those AND nodes that cannot be detected
by any test. Secondly, if a set of faults belongs to more
than one minimal combination of AND nodes, the algo-
rithm considers only one of them, and stores the union of
corresponding AND-list as the set of AND nodes affected
by the set of faults. Then, using matrices D, E and AND-
list, the algorithm generates the failure signatures of re-
maining faults, i.e., UsiEwjDri Uor E ~ ~ ~ - l i s f Erk, where
wj is a minimal fault, and AND-list is the list of AND
nodes affected by wj. Note that the remaining faults may
contain super sets, and because of the test points in the
digraph model, a super set maylmay not be a minimal
fault of the digraph model. Those super sets which have
the same failure signatures as the union of the failure
signatures of their subsets are removed. For example, let
us consider a digraph model .with failure sources S={sl,
s2, s3), AND nodes A={al, a2) and tests T={tl, t2).
A failure of sl and sz can be propagated to the output
of the first AND node, i.e., al, and can be detected by
test tl. A failure of sl, s 2 and s3 propagates to the out-
put of second AND node, i.e., a2, and is detected by test
t2. Therefore, { sl, s 2) and { sl, sa, s3) are mini-
mal faults of AND nodes a1 and a2, respectively, and the
minimal fault of a2 is a super set of the minimal fault of
al. However, because of the different failure signatures,

i.e., {sl , s2) is detected by t l and {sl , s a , s3) is detected
by tl and t2, these two sets are the minimal faults of the
digraph model.

In order to illustrate the minimal fault algorithm, we
prwnt the following examples.

Example 1: Consider the digraph model in Figure 1. It
consists of four failure sources S = isl, s2,s3, s4), three
AND nodes A = {al, aa, as) and one test point T = {tl).
Isl, s p , s3, s4) is the minimal fault for this digraph model.

Figure 1: Digraph model of Example 1

The minimal fault algorithm works as follows:

Step ,l: The AND nodes are sorted as follows: al,
a2 and as.

Step 2: The minimal combinations of failure sources
and AND nodes for each AND node are as fol-
lows: MC(a1) = ((~ 3 , ~4)); MC(a2) = {{ai, s2) ,
{al, as)); MC(a3) = {{si, a1, at)).

Step 3: {~3 ,~4) , { ~ 2 , ~ 3 , ~ 4) and {sl,sz1s3,sr) are the
minimal faults of AND nodes all a2 and as, respec-
tively.

Step 4: No test can detect {al, a2). Therefore, the
minimal faults of these AND nodes should be elimi-
nated. Thus, {sl , s2, s3, s4) is the only minimal fault
of the digraph modelh Figure 1.

Example 2: Consider the digraph model of the F18
Flight Control System (FCS) for the left Leading Edge
Flap (LEF) in Figure 2, which was used as an example
in 131. The minimal faults for this digraph model are
{FCCA, FCCB) , {FCCA, CHNL3), {FCCB, CHNL2),
and (CHNL2, CHNL3).

Example 3: Consider the digraph model in Figure 3,
which was used as an example in [9]. The minimal faults
for this digraph model are {sa , s3), (273, s4), {ss , ss), and
{ss, 810).

3.5 Multiple Fault Strategy

It can be shown that the computational and storage com-
plexity of designing an optimal multiplefault diagnostic
strategy are exponential in m [lo]. In order to reduce the

Figure 2: Digraph Model of F18 FCS LEF of Example 2

Figure 3: Digraph Model of Example 3
" b ,.

storage complexity, we use the compact multiple fault no-
tation for the multiple fault ambiguity group at each OR
node [I], [5]. Furthermore, in order to reduce computa-
tional complexity, we extend the Sure diagnostic strate-
gies of our previous work [l] to redundant systems.

3.5.1 Compact Notation

We use the compact multiple fault notation A =
O(L; Fl, ..., FL; G) for the multiple fault ambiguity group
at each OR node in systems without AND nodes [I], [5].
The Fi for i = 1, ..., L and G are subsets of S =S U {so)
= {so,sl, ..., s,), where so is the fault-free condition;
G is the set of known good failure sources (failure free
sources), and Fi for i = 1, ..., L are sets known to contain
at least one definitely failed component each, i.e.,

In the following, we summarize some of the properties of
compact set notation:

If E 2 Fi for some i, then O(L + 1; Fl, F2, ..., FL,
E; G)=0(L; FI, F2, ..., FL; G).

Q(L; Fl, F2, ..., FL; G) = Q(L; Fl nGe, Fz n GC,
..., FL n Ge; G), where superscript c denotes com-
plement, i.e., Ge = S - G.

e the worst case storage complexity of compact set
notation for an OR node is O(mn).

Multiple fault logic using the compact set notation failure sources are definitely faulty, or (2) no test gives
is as follows: the initial hypothesis set is the set of further information. The former corresponds to the case
all subsets of S, i.e., A= Q(1; Fl = S ; G = 0). when the cardinality of one or more f i in the ambiguity
After performing a test, say tj , the hypothesis set A group is one. Note that in these strategies, we only repair
= Q(L; Fl ,..., FL; G) is pruned as follows: definitely failed components.

Example4: Consider the digraph model in Figure
@(L;(Fl nTS;),--.,(FLnTS;); i f t i Passes 4. The digraph model consists of failure source
(G UTSj)) , S = {s1, s2, s3), AND nodes A = {al, a2, as) and
O(L + 1; Fl, ..., FL,TSj n G"; G) if t j fails tests T = {tl,t2,ts). w4={sl, it2), ws={s2, s3} and

w6={sl, s2, s3) are the minimal faults for this digraph
the failure sources belong to Fi with cardinality one model. The binary tesf matrix of the digraph model
are definitely faulty (one-for-sure). is shown in Figure 5. Figure 6 shows the multiple fault

strategy for this system, where ACTION nodes represent
In system with AND nodes, each row of the test matrix the to be at that stage of diagnosis and
corrspondr to a of S= (~1, sm) . For sim- Aj denotes the group corresponding to the ith
plicity, let us assume that the new test matrix contains . OR node, and = ~ (1 ; {Wo, W1, w2, W3, W4, w5r w6};
m. = m + mj rows, where mj is the number of minim$

0); = @(I; iWo, tola w2, w3, ws}; iw4, w6}); =
faults- We define W={wl .-., w~.], where Wi = {siI for e(1; iW4, w6}; 0); = ~ (1 ; {WO, wl, w2, w3}; {w4,
i = 1, ..-,m, and wi S for m+ 1 5 i 5 mn- Therefore, As = @(I; Iw4, w ~)) ; A6 = o(1; {w4};
the Fi for i = 1, ..., L and G are subsets of W=WU {wo} jW6]); and A, = Q (~ ; 0).
= {WO, w2, ..., wm,}, where (wo} = {so} and Note that we applied Lemma 2 to As and A6. For ex-

O(L; Fl, Fz, ..., FL; G) = {X C WI ample, As = @(I; {w5); {w4, ~ 6)) . Thus, wg is definitely
faulty, i.e., s2 and s3 are faulty. After repairing these fail- ' Fi # ' for = '1 ...I L~ and = '1 ures, there is no need to apply additional tests. This is

Based on these definitions, it can easily be shown that:
Lemma 1: Using one-for-sure condition, if the cardi-

nality of any Fi is one, all the failure sources in wj E Fi
are faulty, and if the cardinality of Fi is greater than
one, all the failure sources in nWjEFi~j , are definitely
faulty. It is obvious that these two conditions can be
combined as follows: all the failure sources in f'lWjeFiwj,
for i = 1, ..., L, &e definitely faulty.

because w6 belongs to G, &d therefore, sl is good; G=S.
One interesting point to note here is that we should not
repair definitely failed components at intermediate nodes
of the diagnostic strategy, because it may mask the fail-
ure of other faults. For example, A3 = Q(1; {w4, ~ 6) ; 0).
Using Lemma 1, w4 n t06 = {sl, s2) are definitely faulty.
If we repair sl and sz at this stage of diagnosis, a failure
of s3 will go undetected.

Lemma 2: Let us assume that we repaired definitely
failed components X E S, and there exist a wj E G such
that Iwj -XI = 1 and sk = Iwj -XI. Therefore, sk is
good and should be added to the good component G.

Lemma 3: If we repair definitely failed components
wi = {si), and there exists a wj such that si E wj,
then wj should be added to the good subset G.

3.5.2 Sure Strategies

The basic idea of Sure strategies is to find one or more
definitely failed components, while not making an error
when other co-existing faults are present [I]. In these
strategies, at each stage of diagnosis, we consider the
minimal candidate set of the multiple fault suspect set
corresponding to the OR node at that stage, and in-
voke the single fault strategy to isolate these candidates.
Then, we propagate multiple fault suspect set through
the resulting diagnostic tree. We repeat these procedures
for each leaf node of the tree until: (1) the intersection of
minimal candidates is not empty, i.e., the corresponding

Figure 4: Digraph model with AND node

In addition to a set of comprehensive synthetic prob-
lems, we have applied the algorithms presented in this
paper and those of [lo] to several real-world systems.
These include: (1) the Space Shuttle Main Propulsion
System with 7271 failure sources and 1292 AND nodes
[9], (2) the F18-Flight control system with 148 failure
source and 78 AND nodes [3] with failure sources lim-
ited to singletons and doubletons, (3) the anticollision
light control system of the Sea Hawk helicopter with 51

Figure 5: Test matrix

ACIION NODE

Figure 6: Diagnostic strategy

failure sources and 55 tests, (4) the stabilator system of
the Black Hawk helicopter with 238 failure sources and
834 tests, and (5) the engine torque monitoitiig-system
used in CH-53E helicopter with 116 failure sources and 75
tests. In the latter three cases, static and dynamic mul-
tiple fault diagnostic strategies subject to various con-
straints on available resources, setup operations, and ini-
tial failure symptoms have been implemented, along with
interfaces to interactive electronic technical manuals and
multi-media documentation.

4 Conclusion

as 600 failure sources and 600 tests. Furthermore, using
Sure strategies, a test strategy can be generated "on-line"
to diagnose multiple faults in larger systems. That is, in-
stead of generating the entire diagnostic tree, the interac-
tive test generation program only suggests the next test
to be applied given the outcomes of previously applied
tests, and generates-the path leading to the isolation of
multiple failures in a system.

References

[I] M. Shakeri, K.R. Pattipati, V. Raghavan, , and
S. Deb. Near-optimal sequential testing algorithms
for multiple fault isolation. IEEE International Con-
ference on Systems, Man and Cybernetics, pages
1908-1914,1994.

[2] S. Deb, K.R. Pattipati, V. Raghavan, M. Shakeri,
and R. Shrestha. Multi-signal flow graphs: A novel
approach for system testability analysis and fault
diagnosis. IEEE Autotestcon, 1994.

[3] S.A Doyle, J. B. Dugan, and A. Patterson-Hine. A
yuantitative analysis of the F18 fight control sys-
tem. American Institute of Aeronautics and Astro-
nautics Computing in Aerospace 9 Conference Pro-
ceedings, pages 668-675, October 1993.

[4] M. Veeraraghavan and K. S. Trivedi. An improved
algorithm for symbolic reliability analysis. IEEE
'If.ansactions on Reliability, 40(3):347-358, August
1991.

[5] D.B. Grunberg, J.L. Weiss, and J.C. Deckert. Gen-
eration of optimal and suboptimal strategies for
multiple fault isolation. Technical report TM-248,
1987.

[6] K.R. Pattipati, V. Raghavan, M. Shakeri, S. Deb,
and R. Shrestha. TEAMS: Testability engineering
and maintenance system. American Control Con-
ference, pages 1989-1996, June 1994.

[7] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57-95, Apr. 1987.

181 A. Rauzy. New algorithm for fault trees analysis.
Reliability Engineering and System Safety, 40:203-
211, 1993.

[9] D.L. Iverson and F. A. Patterson-Hine. Digraph reli-
ability model processing advances and applications.
Proceedings of the AIAA Computing in Aerospace
Conference, 1993.

this paper, we presented an to find all min- [lo] M. Shakeri, UAdvances in Fault Diagnosis, Testabil-
imal faults in a digraph model and to generate their fail- ity and Reliability Analysis of Large-Scale Systems",
ure signatures. Further, we extended the multiple fault Ph.D Dissertation, August, 1995.

sequential testing strategies of our previous work [I] to
-redundant systems. Computational results indicate that
these strategies can be used on systems with as many

Submitted to IEEE lkansactions on Systems, MA, and Cybernetics

Sequential Testing Algorithms for Multiple Fault Diagnosis 3 oC{ 38 7
p 3,a

Mo jdeh shakerit, Vijaya R,aghavanf , Krishna pattipatitt, and Ann p a t t e r s o n - ~ i n e ~ ~ ~

Qualtech Systems ~ n c . ~

Box-407, Mansfield Center, CT 06250

e-mail: mojdeh@sol.uconn.edu

Department of Electrical and Systems , ~ n ~ i n e e r i n ~ ~ ~

University of Connecticut, Storrs, CT 06269-3157

e-mail: krishna@sol.uconn.edu

NASA-Ames Research Center, Mail Stop 269-4ttt

MofFett Field, CA 94035-1000

e-mail: Ann-Patterson-Hine@styx.arc.nasa.gov

Abstract

In this paper, we consider the problem of constructing optimal and near-optimal test se-

quencing algorithms for multiple fault diagnosis. The computational complexity of solving the

optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult

than the single-fault isolation problem, which, by itself, is NP-hard1 [7]. By employing concepts
-- - .

from information theory and AND/OR graph search, we present several test sequencing algo-

rithms for the multiple fault isolation problem. These algorithms provide a trade-off between

the degree of suboptimality and computational complexity. Furthermore, we present novel di-

agnostic strategies that generate a diagnostic directed graph (digraph), instead of a diagnostic

tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall di-

agnostic strategy reduces substantially. The algorithms developed herein have been successfully

applied to several real-world systems. Computational results indicate that the size of a multiple

fault strategy is strictly related to the structure of the system.

'This means that the computational requirements of an optimal algorithm cannot be bounded by a polynomid

function of the number of failure sources and/or the number of tests.

1 Introduction

The complexity associated with the maintenance of large integrated systems, such as the space

shuttle or a modern aircraft consisting of mechanical, electro-mechanical and hydraulic subsys tems,

presents formidable challenges to manufacturers and end users. This is due to the large number of

failure sources and the need to quickly isolate and rectify such failures with minimal down time. In

addition, for redundant (fault-tolerant) systems and for systems with little or no opportunity for

repair or maintenance during their operation (e-g., Hubble telescope, space station), the assumption

of at most a single failure in the system between consecutive maintenance actions is unrealistic.

Thus, the efficient maintenance of complex systems requires advanced diagnostic algorithms for

multiple fault isolation.

A review of existing literature [13] showed that multiple-fault diagnosis using artificial intelli-

gence techniques is too expensive and slow for large systems. Davis [2,3] described a fault diagnosis

system that reasons from the knowledge of structure and behavior. Failure candidate generation in

this approach occurs in three basic steps: circuit simulation and discrepancy collection, potential

candidate determination, and global consistency determination using constraint suspension tech-

niques. The approach of Davis [2, 31 can be extended to diagnose multiple faults. However, this

approach would require the application of constraint suspension to all possible combinations of

components, and consequently, suffers from computational explosion. De Kleer and Williams [4]

presented a model-based approach to fault diagnosis. By keeping track of multiple sets of con-

sistent and inconsistent components, their algorithm generates minimal sets of faulty candidates,

rather than generating all possible candidates. This approach requires the complete specification

of system components, the state and observed variables associated with each component, and the

functional relationships among the state variables. However, the precise information required by

these models is typically not available for complex systems and is too costly to obtain. In addition,

because of extensive use of functional simulation, this approach is extremely slow, and, thus, is

not appropriate for fault diagnosis in large scale systems with the complexities of many orders of

magnitude more than the examples presented in [4]. Sheppard and Simpson [19] provided a formal

analysis of the multiple failure problem in the context of information flow model. They discussed

the computational complexity of several algorithms for diagnosing multiple failures, and developed

algorithms to generate multiple fault diagnoses for a given ambiguity group. However, this method

does not take into account the failure probabilities of components or test costs.

In this paper, we present several multiple fault test sequencing algorithms. First, we extend

the single-fault strategy of our previous work [7, 8, 9, 111 to diagnose multiple faults by succes-

sive replacement of single fault candidates. Using this strategy, we seek to isolate the potential

single-fault candidates, then double-fault candidates, and so on. Since a component may be re-

paired/replaced before confirming that it is indeed faulty, the probability of false alarm error or

RTOK (retest OK) is higher than that with multiple fault strategies that use all informative tests

before repairing a component in the system. Then, we focus on developing a class of Sure strategies

[14] for diagnosing multiple faults that employ all informative tests before diagnosis. The basic idea

of these strategies is to find one or more definitely failed components, while not making an error

when other co-existing faults are present. Using these algorithms, the storage and computational

complexity of the multiple fault diagnostic strategy are reduced substantially.

The paper is organized as follows. In section 2, we formulate the test sequencing problem.

Because of extensive use of single fault test sequencing algorithms in solving the multiple fault

diagnosis problem, we describe single fault test sequencing algorithms in section 3. In section 4,

we present the problem of diagnosing multiple failures using a single fault diagnostic strategy. In

section 5, we present an extended single fault strategy to diagnose multiple failures. Near-optimal

multiple fault strategies are discussed in section 6. In section 7, we summarize the results and

discuss future research issues. Throughout, an example from [7] will be used to illustrate the

concepts and the proposed diagnostic strategies. In addition, we apply our algorithms to several

real-world examples.

2 Problem Formulatio~l

The multiple fault test sequencing problem, in its simplest form, is defined by the five-tuple (

S, P, T, C, B), where

1. S = {sl, ... , s,) is a set of independent failure sources associated with the system;

2. P = [p(sl), ...,p(s,)] is the a priori probability vector associated with the set of failure sources

s;

3. T = i t l , t2, ..., t,) is a finite set of n available binary outcome tests, where each test t j checks

a subset of S;

4. C = {el, c2, ..., c,) is a set of test costs measured in terms of time, manpower requirements,

or other economic factors, where cj is the cost of applying test tj;

5. B = [bijJ is a binary matrix of dimension m x n which represents the relationship between

the set of failure sources S and the set of tests T, where bij = 1 if test tj monitors failure

source si; otherwise, bij = 0.

The problem is to design a testing strategy that unambiguously isolates the failure sources with

minimum expected testing cost f = '&Gs CtjEPTI p(SI)cj7 where PTI is the set of applied tests

(performed tests) in the path leading to the isolation of the set of failure sources SI, and p(SI)

is the probability of the set of failure sources SI (see Appendix A). The AND/OR sequential test

strategy is represented in the form of a tree or a graph, where the OR nodes represent the suspect

sets of failure sources, AND nodes are tests applied at various OR nodes, and the leaves are the

isolated failure sources.

For notational convenience, we define failure signature FSi to denote a set associated with

failure source si that indicates all the tests that monitors failure source s;, i.e., FSi = {t 3 .Ib.. '3 =

1 for 1 5 j 5 n). Furthermore, we assume that the failure signature of a multiple-failure is the

union of failure signatures of individual failures.

3 Single Fault Testing Strategies

In a single fault strategy, it is assumed that the system is tested frequently enough that at most

one component has failed. The single fault diagnosis problem, in its simplest ~o rm, is the five-tuple

(S, P, T, C, D), where

S =S V {sO}={sO, s1, ..., sm} is a set of failure sources, where s o is a dummy failure source

denoting fault-free condition and V denotes the union of two sets;

P =[l)o,pl, ..., pm] is the conditional probability vector associated with the set of failure sources

S based on a single fault assumption, where po is the probability of fault-free condition, so.
-

In Appendix A, we show that the conditional probability p; is related to the unconditional

prior probabilities (p (s i)) via:

l - ~ (s i)
Pi = for i = 1, ..., m

1+~"1&

T and C are as defined in Section 2;

D = [di j] is a binary test matrix of dimension (m + 1) x n, where doj = 0 for 1 < j < n, and

dij = bij for I < i < m and 15 j 5 st.

5

The algorithms for designing optimal single-fault diagnostic strategies are based on dynamic

programming (DP) €11, and AND/OR graph search procedures. The DP technique is based on

a bottom-up procedure, and has storage and computational requirements of 0(3n) for even the

simplest test sequencing problem. The AND/OR graph search algorithms are top-down heuristic

graph search procedures that employ a cost-to-go estimate to speed up the solution search process

[7]. A novel feature of this approach is that the cost-to-go estimate (termed the Heuristic Evaluation

Function (REF)) is derived from Huffman coding and entropy. These information theoretic lower

bounds ensure that an optimal solution is found using the AO*, HS, and CF search algorithms

[9]. In addition, because of the top-down nature of the AND/OR graph search algorithms, several

near-optimal search algorithms have been deilved: (1) AOT algorithm, (2) limited search AO*,

and (3) Multi-step information heuristics. Furthermore, because of-their top-down nature, these

dgorithms extend naturally to: (1) modular diagnosis, (2) precedence constraints, setup operations,

and resources and (3) rectification. The algorithms have been implemented in a software package,

termed TEAMS (Testability Engineering And Maintenance System[9]). For convenience, these

algorithms are referred to as the TEAMS-S algorithms [ll].

Example 1.a: In this example, - - we consider the same system as in [7]. In this system, there

are five failure sources sl, ..., s5. The set of five tests, labeled tl, ..., t5, may be used t o identify the

unknown failure sources. The test matrix, along with the a priori probabilities of failure sources

and test costs, is shown in Table 1. Based on the assumption of at most a single fault in the system,

the set of failure aspects S = {so, sl, ..., s5), with the concomitant conditiond probability vector

P =[0.700,0.01, 0.020, 0.100, 0.050, 0.1201. An optimal single fault test strategy for this example

is shown in Figure 1. For this test strategy, the average test cost is J = Ego CtiEPTi pi.cj=2.18,

where PT; is the set of applied tests (performed tests) in the path leading to the isolation of failure

source s; E S.

Table 1: Test Matrix, a Priori Probabilities and Test Costs for Example 1.a

FAILURE

SOURCES

SI

s2

33

S4

Ss

OR NODE

PASSES
FAILS

TESTS

TEST COSTS cj

1 1 1 I 1

tl t2 t3 t 4 t5

0 1 0 0 1

0 0 1 1 0

1 0 0 1 1

1 1 0 0 0

1 1 1 1 0

Figure 1: Single-fault Test Strategy for the System of Example 1.a

FAULT

PROBABILITIES

P(s~)

0.014

0.027

0.125

0.068

0.146

The single fault assumption may not be valid in situations where the opportunity for frequent

maintenance does not exist. In such cases, the single fault strategies can give wrong diagnosis when

multiple faults occur. For example, consider a system with S = (sl, s g , s3}, T = (tl, t2), TSl =

(sl, s3) and TS2 = (s2, s3), where test signature T S j is a set associated with test t j that indicates

7

all the failure sources detectable by test tj7 i.e., TSj = {silbij = 1 for 1 5 i 5 m). Suppose that

we perform both tests and that they both fail. Under the single-fault logic, we would conclude

that s3 is faulty. However, if sl and s 2 were both faulty, we would observe the same test results.

Consequently, the single-fault strategy would make an incorrect diagnosis, when sl and sz are both

faulty.

In the following, we define hidden and masking false failures, which are possible multiple fault

candidates at each leaf node of the single fault diagnostic tree. The set of hidden failures HF; for

failure source si is given by:

HF; = (sj(j # i and (FS; n PT;) U (FSj n PT;) = (FS; n PT;))

In words, HF; consists of iKose failure sources whose failure signatures corresponding to the

set of applied tests PT; in the path leading to the isolation of failure source s; are masked by the

failure of sj, i.e., subset of the failure signature of si restricted to PT;. The set of masking false

failures MSi for failure source s; consists of those sets whose failure signatures corresponding to

PTi add up to mask the failure of s;, i.e.,

-.

MSi = {XIX C (S - s ;) , u v , , ~ ~ (F S ~ n PT;) = (FSi n PT~))

The multiple fault ambiguity group at a leaf node of the single-fault diagnostic strategy where

failure source s; is isolated consists of masking faults MS; and any combination of masking faults

MSi and hidden faults 3Fi with s;, i.e., MS; U (MS; x (s;)) U (2HFi x {s;)), where x denotes

cross product function and 2HFi is the power set of H e . The problem of identifying the set of

hidden failures is relatively easy to solve. In contrast, the problem of enumerating the masking false

failures for each failure source s; is computationally expensive. Typically, it requires 0(IPT;12m)

or O(2") operations [lo].

4 Multiple-Fault Isolation Using Single-Fault Strategy

One often stated premise is that one can apply single fault strategy repeatedly, until all the

faults are isolated. This strategy works well when there are no masking false failures a t the leaf

nodes of the single-fault diagnostic tree. However, if the set of masking false failures at the leaf

nodes are not empty, the single fault strategy will give wrong diagnosis. In order to iuustraie this

case, let us assume that sl and $3, in Example l.a, are faulty. Based on single fault diagnostic

tree, t2 = f and t4 = f ; and we would assume that s 5 is faulty. After repairinglreplacing ss, we

would perform more tests from the root OR node, t2 = f and t4 = f , i.e., the same test results

as before. This is because {s17 s3) E MS5 = ((~1 , SZ), {SI, SS), (~ 2 , s4), (~ 3 , s4), (~ 1 , s2, SQ),

(32, s3, s4), {sl, s2, s4), {sl, s3, s4), {sl, s2, s3, ~ 4)) . In this example, 18 failures out of 32(= 2')

multiple failures can not be isolated by repeatedly using the single fault diagnostic tree. This is

because IMS51 + lMS5 x {s5)l = 18. The occurrence of masking false failure sets is fairly common.

In order to illustrate this, we generated 10 random systems with five components, five tests, P =[

0.5, 0.5, 0.5, 0.5, 0.51, and C = {1,1,1,1,1). Only 2 systems did not have masking sets, and the

average size of masking sets based on all systems was 6. Therefore, on the average, 12 niultiple

failures out of 32 failures can not be isolated in these systems via repetitive application of single

fault logic.

In addition t o this set of synthetic problems, we have considered several real-world systems.

These include:

1. Anticollision Light Control System of the Sea Hawk helicopter with 43 failure sources and 53

tests,

2. An amplifier-filter with 80 failure sources and 25 tests,

3. 1553 Data Bus with 176 faults and 53 test points,

Table 2: Percentage of Leaf Nodes with Masking False Failures

4. A circuit board model (courtesy of Goodrich Aerospace) generated from an EDIF (Electronic

Design Interchange F ~ r m a t) ~ netlist containing 898 faults and 250 tests,

System

Anticollision system

Amplifier Filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

5. Phase Decoder model (public domain test circuit for EDIF parsers) with 1644 faults and 2147

tests.

m

43

80

176

898

1644

n

53

25

53

250

2147

Table 2 shows the percentage of leaf nodes which contain at least one masking false failure. In

% Leaves with Masking False Failures

' 47.50%

17.86%

20.59%

0%

3.02%

conclusion, single fault diagnostic tree can be used to isolate multiple failures in systems with no

masking sets. However, as the above results show, the masking sets in most systems are notLempty.

Consequently, practical multiple fault diagnosis algorithms are needed.

5 Multiple Fault Diagnosis Using an Extended Single Fault Testing Strategy

In this approach, we invoke a single fault strategy, and repair/replace the identified component

at each leaf node, if my. Then, we check whether the repaired/replaced component at each leaf

node is definitely faulty or not. If for any test t j that failed previously, the cardinality of T S j - G is

one, i.e., TSj - G contains only one failure source, then the corresponding failure source is definitely

faulty, where G is the union of test signatures of previously passed tests. If the repaired/replaced

component is definitely faulty, we apply additional tests, if necessary, to isolate the remaining faults.

Additional tests can be applied from either the root OR node, or from the first failed test in the

path leading to the identification of previous faults. This process ensures that we do not come back

to the same leaf node twice.

Alternatively, if the replaced module is not definitely faulty, there exist other sets of components

which have the same failure signature as the failure signature of replaced module, i.e., masking false

failures. In this case, if we start from the root OR node or the first failed test in the path, we may

reach the same leaf node. In order to solve this problem, we remove the replaced modules from the

ambiguity group at the current stage of diagnosis, and invoke the single fault strategy TEAMS-S

to isolate the remaining suspected components. Then, we repair/replace the identified modules at

each leaf node. If the repaired/replaced module at a leaf node of this tree is definitely faulty, we

apply additional tests from the root OR node or from the first failed test after last repair. On the

other hand, if the identified module at a leaf node is not definitely faulty, we update the ambiguity

group and invoke single fault strategy as before. This procedure is continued until no test gives

further information or the system is fault-free. The extended single fault algorithm is formalized

in the next subsection.

Example 1.b: In this example, we consider the same system as in Example 1.a. The extended

single fault diagnostic strategy for this example is shown in Figure 2, where the ACTION nodes

represent the actions to be performed at the corresponding OR node. Note that the shaded parts

of the tree are the same as those in a single fault diagnostic tree of Figure 1. The average testing

cost for this case is J =2.780. The joint probability that ss is good, and is repairedlreplaced is

0.0103.

We applied the extended single fault strategy to several real-world systems. Table 3 shows the

times taken to construct an extended single fault diagnostic strategy for several real-world systems.

Figure 2: Extended Single-fault Strategy to Diagnose Multi-faults in Example 1.a

Table 3: Solution Times in Seconds Based on Extended Single Fault Strategy for Various Real-world

System

Anticollision system

krnplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

Systems on a SPARC-10

Table 4 shows the number of nodes in the extended single fault diagnostic strategies for these

(m, n)

(43, 53)

(80,25)

(176,53)

(898, 250)

(1644, 2147)

real-world systems.

One drawback of the extended single-fault strategy is that the probability of repairing/replacing

Time (sec)

Repair Limits

a good component, i.e., false alarm error or RTOK (retest OK), is higher than that with multiple

1

0.27

0.18

0.27

0.88

41.59

fault strategies that employ all informative tests before repairing a component in the system (see
-- -

section 6.2). Furthermore, in the case of very large systems, it is practical to solve multiple fault

isolation problems up to a certain cardinality > 1, e.g., single or double failures. This is based on

the premise that multiple faults of large cardinality are much less likely to occur. However, in an

All

6.93

0.90

1.81

0.88

1132.55

2

2.41

0.63

1.81

0.88

370.00

extended single fault strategy, if we stop expanding the diagnostic tree after limited repair actions,

3

2.93

0.88

1.81

0.88

691.94

say i, it does not mean that we can diagnose multiple faults up to size 2 using the same tree. This

is because a component may be repaired/replaced before confirming that it is indeed faulty.

31n order to reduce the search space, the TEAMS-S algorithms preprocess the binary D-matrix as follows: (1)

they collapse all the failure sources with the same failure signature to create a new representative failure source, and

(2) they eliminate the redundant tests [lo] (see section 6.3).

Table 4: Number of Nodes in Extended Single Fault Strategy for Various Real-world Systems

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

5.1 Extended Single-fault Algorithm

Extended single fault algorithm is a recursive function, and must be invoked as Extended-

Single-Fault(OR node, SS), where

OR node is the current OR node,

SS denotes the suspected faults at the current OR node.

Global variables:

the root OR node of the diagnostic tree,

the set of failure sources S = {sl, ..., s,),
the a prior probability vector P = Ip(sl), ..., p(s,)],

the set of available tests T = Itl, t2, ..., t,),
the set of test costs C = {c1,c2 ,..., cn),

the binary test matrix B = [bij] .

Initialmat ion:

OR node=root OR node,

SS= S = Su{so).

Algorithm: Extended-Single-Fault(OR node, SS)

@I n)

(43, 53)

(80, 25)

(176,53)

(898, 250)

(1644, 2147)

Nodes

Repair Limits

79

55

67

37

993

All

2371

347

417

37

25663

1 2

897

231

417

37

8919

3

1065

347

417

37

16389

s tep 1: Evaluate the conditional probability of the faults in SS using P, P,.
s tep 2: Expand the diagnostic tree from the OR node by invoking

TEAMS-S (SS, P,, T, C, D,), where Ds contains the failure
signatures of the failures in SS.

s tep 3: DO for each UNSOLVED leaf node,
s tep 3.1: Action: repair/replace the identified component, if any.
s tep 3.2: G t (repaired/replaced failure sources) UtiZpTSi

for t; in the path from OR node to the leaf node.
s tep 3.3: SS + SS - G .
s tep 3.4: IF for any failed test t j in the path from OR node to

the leaf node, ITSj - GI = 1 THEN
- IF SS = {so),

Action: stop.
ELSE

Action: Apply additional tests from the
root OR node or the first failed test
after the OR node.

END
ELSE

- SS + SS u {so).
- Extended-Single-Fault(leaf node, SS).

END
END

6 Multiple Fault Testing Strategies

One approach that employs all informative tests before repairing/replacing a component is to

consider all possible combinations of failure sources, i.e., 2', and generate an optimal . - multiple -

fault diagnostic strategy using the single-fault test sequencing algorithm TEAMS-S. However,

the storage and computational complexity of optimal multiple-fault isolation problem is super-

exponential in rn. In order to reduce storage complexity, we use a compact set notation [6], and

in order to reduce the computational complexity, we present a class of Sure diagnosis strategies for

multiple fault isolation.

6.1 Compact Set Notation

Following Grunberg et al. [6], we use the compact notation A= O(L; Fl, ..., FL; 6) to denote

the multiple fault ambiguity group at each OR node. The Fr for i = 1, ..., L and G are subsets

15

of S = {so, sl, ..., s,); G is the set of known good failure sources (failure free sources), and F; for

i = 1, ..., L are sets that are known to contain at least one definitely failed failure source each, i.e.,

where A denotes the intersection of two sets. In the following, we summarize some of the properties

of compact set notation [14, 15, 161:

1. Multiple fault logic using the compact set notation is as follows: the initial hypothesis set is

the set of all subsets of S, i.e., A= 0(1; Fl = S ; G = 0). After performing a test, say t j , the

hypothesis set A = O(L; F', ..., FL; G) is decomposed as follows:
. ...

O(L; (Fl A TSj) , ..., (FL A TSj); (G V TSj)) if t j passes

Q (L + 1; Fl, ..., FL, TSj A GC; G) if t j fails

where superscript c denotes the set complement, i.e., GC = S - G.

2. If E _> Fi for some i (that is, E is a superset of F ;) , then O(L + 1; Fl , ..., FL, E; G)=Q(L;

F ~ , ...,FL; G) [GI.

4. Given a set of previously applied passed tests T, E T and failed tests Tf T, the multiple

fault ambiguity group at the current stage of diagnosis can be generated directly as follows:

O(L; Fl, ..., FL; G), where G = VtiETpTSi, L=ITfl+l, Fl=S (see the first property), and

I$+, =TSj A GC for i = 1, ..., lTfl and t j E Tf ; and then, employ property 2 to remove super

sets from the set F = (Fl, ..., FL).

5. If lTfl = 0, then L = 1 and so E Fl. If lTfl > 0, none of the Fi7s contains (see the first

property).

6. The worst case storage complexity of compact set notation for an OR node is O(mn). This

is because the ambiguity group O(L; Fl, F2, ..., FL; G) contains all solutions of the following

constraint equations:

W Y > ~

y; = 0 if gj = 1, for i = 0, ..., m

where - y = [yo, y1, ..., ym]' is a binary vector; g is the L-dimensional vector of 1's; W = [wij]

is a binary matrix of dimension L x (m + I), and wjj = 1 if sj E Fj7 other\vise wjj = 0; and

g = [go, 91, ..., gm]' is a binary vector such that gj = 1 if sj E G, otherwise g j = 0. Using

this notation, we need to store the binary matrix W and binary vector g a t each stage of

diagnosis. Therefore, the storage complexity of this approach is O(mn) at each OR node,

since L 5 n and each test is applied at most once in each path of the diagnostic tree.

7. The failure sources belonging to Fi with cardinality IF;I = 1 are definitely faulty (one-for-sure

condition). This can easily be shown using equation (2).

6.2 Sure Strategies for Multiple Fault Diagnosis

In this section, we present three diagnostic strategies, Sure 1-3, that seek t o find definitely

failed components, even though there may be others still undiagnosed. Thus, these strategies

isolate failures one (or more) at a time, while not mak5ng an error when multiple faults are present.

The framework for Sure strategies is sketched in Figure 3.

The three basic ingredients of Sure 1-3 are: (i) minimal candidate generation, (ii) minimal

candidate isolation, and@) multiple fault propagation. The minimality property implies that a

particular candidate includes the minimum number of failure sources that explains all test results

observed so far (if any). Consequently, the inherent combinatorial explosion that occurs in gener-

ating an optimal multiple fault strategy is reduced substantially. Before describing the algorithms,

we define minimal (irreducible) set and hitting set of a set of subsets:

17

Figure 3: Framework of Sure Strategies in a Test-and-repair Cycle

Definition 1: A minimal or irreducible set for a collection of subsets Q = {Q1 , ..., Q k } is a set

I(Q) Q such that I(Q) = Q - {Q;[~Q;E Q and Qj Q;}, i.e., I(Q) is equal to set Q without

any super set.

Definition 2: A hitting set for a collection of sets Q = {Q1, ..., Qk) is a set H(Q) ={HI, ..., H,}

such that Hj Vl<i<kQi - - for j = 1, ..., Q , and Hj A Qi f 0 for i = 1, ..., k.

Based on these definitions, it can be shown that [12]:

Lemma 1: The minimal set of a multiple fault ambiguity group A = O(l;:__FI, ... , FL; G) is the

minimal hitting set for the collection of sets F = (Fl, ..., FL), i.e., I(A) = I(H(F)).

Surel-Sure3 algorithms are recursive procedures. At each iteration, we consider the minimal

candidate set of the multiple fault suspect set corresponding to the OR node at that stage. Re-

iter [12] has derived an algorithm to determine the minimal hitting set of a collection of sets, and

Greiner et al. [5] have presented a correction to the Reiter's algorithm. We use this technique

to determine the minimal hitting set of F = {Fl, ..., FL} at an OR node. After determining the

minimal candidates of a multiple fault suspect set at the current stage, we evaluate the conditional

probabilities of minimal candidates using Bayes' rule. Then, we invoke the single fault strategy

18

TEAMS-S to isolate these candidates, and propagate multiple fault suspect set through the re-

sulting diagnostic tree. Note that using the fourth property of compact set notation, it is sufficient

to generate and store multiple fault ambiguity group at the leaf nodes of this tree only. We repeat

these procedures for each leaf node of the tree until: (1) the intersection of minimal candidates

is not empty, i.e., the corresponding failure sources are definitely faulty, or (2) no test provides

further information. The former corresponds to the case when the cardinality of one or more Fi in

the ambiguity group is one.

After repairinglreplacing the components isolated by Sure strategies, we apply additional tests,

if necessary, to isolate the remaining failure sources. We explore three different approaches for the

application of additional tests: (1) start from the root OR node of the diagnostic tree; (2) start from

the first failed test in the path leading to the isolation of previous faults; (3) update the multiple

fault suspect set at the leaf node by integrating previous test results using the fourth property of

the compact set notation, removing repairedlreplaced failure sources from the ambiguity group at

the leaf node, and invoking Sure strategies for the updated ambiguity group. Sure 1-3 algorithms

correspond to the first, second and third approaches for applying additional tests, respectively.

These are presented in detail in the next subsertim.

The Sure1 diagnostic strategy is simple and the resulting diagnostic tree is very similar to the

single fault diagnostic tree. However, the expected testing cost using this strategy is usually high.

The expected testing cost using Sure2 diagnostic strategy is less than the first one, but the next

test to be performed after repairing/replacing each failure source will be different. Furthermore,

the diagnostic tree will change to a digraph (directed graph). The expected testing cost for the

third approach is the smallest, but the size of the diagnostic tree will be considerably larger than

the others. This is because the number of leaves of the diagnostic tree is the same as the number of

distinguishable multiple-fault failure signatures. For example, in the worst case, i.e., when the test

matrix B is diagonal, the number of leaves is 2,. This is because there are 2, possible multiple-

fault failure signatures. But, the number of leaf nodes in Surel and Sure2 diagnostic strategies in

this case are the same as in a single-fault strategy, i.e., rn + 1.

One of the interesting features of Sure strategies is that the starting point for aJ1 three algorithms

is the same tree as in a single fault strategy for the system under consideration. This is because the

minimal candidate set for 2' is {so, sl , ..., s,). Therefore, these strategies isolate a single fault with

the smallest average cost, while not making an error when multiple faults are present. Furthermore,

in the case of very large systems, instead of generating all minimal candidates, we can generate

minimal candidates of size less than a certain threshold, i, and diagnose multiple faults up to that

size.

Example 1.c: Figure 4, without (with) the dashed lines, shows the multiple fault strat-

egy for the system in Example l.a, based on Surel(Sure2) algorithm, where A; denotes the

ambiguity group corresponding to the OR node i, and Al= 0(1; {so, sl, s2 , s3, s4, s5) ;0); A2=

@(I; {SO,%?, ~ 3) ; { ~ 1 , ~ 4 , ~ 5)) ; A3 = @(1;{~1,~4, ~5);fl); A4= 0 (1 ; { ~ 0) ; { ~ 1 , ~ 2 , ~ 3 , ~ 4 : ~ 5)) ; A5 = @(I;

(~29~3) ; { ~ 1 , ~ 4 , ~ 5)) ; A6 = @(I; { ~ 1 , ~ 4) ; { ~ 2 , ~ 3 , ~ 5)) ; A7 = 0(2; { ~ 1 , ~ 4 , ~ 5) , { ~ 2 : ~ 3 , ~ 5) ; 0) ; A8 =

@(I; {s2); { S I , S ~ ? S ~ , S ~)) ~ = { s ~) ; I S ~ , S ~ , S ~)) ~ AIO = isl); {SZ, s3, s4,s5 j);

= @(I; (~4) ; (~ 2 , S3, ~5)) ; A12= @(2;{~4, ~5),{~2,~5);{~17~3)); A13 = @(3; (~ 1 7 S4, s5)7 (~ 2 , S3, ~ 5 1 ,

{ ~ 1 7 ~ 3) ; 0); A14 = @(2; {~3},{~1,~4}; { ~ 2 , ~ 5)) ; A15 = @(3; { ~ 1 , ~ 4 , ~ 5) , { ~ 1 , ~ 3) , { ~ 2 , ~ 5) ; 0); A16

= @(2; {Sl), (~ 2) ; (~ 3 , ~ 4 , ~ 5)) ; A17 = @(4; ($1, ~ 3 1 7 { ~ 2 , ~ 5) , (~ 3 , ~4 ,851 , ($1, ~ 4 , s5); 0)

Note that the shaded parts of the tree are the same as those in the single fault diagnostic tree

of Figure 1. The average testing cost for the optimal multiple fault strategy is J = 2.411, and

the average testing cost for the first (Surel) and second (Sure2) approaches using the diagnostic

strategy of Figure 4 are J = 2.715 and J = 2.616, respectively.

Example 1 .d: The Sure3 strategy for Example 1.a is shown in Figure 5, where A18 = A20 =

Figure 4: Surel and Sure2 Test Strategies for Example 1.a

A24 = @(I; {SO); {sl, S2, S37 S4, ~5)) ; A19 = @(1;{~2);{~1,~3,~4,~5)); A23 = @(1;{~4); { ~ 2 , ~ 3 , ~ 5)) ;

A21 = A22 = A25 = @(1;{~1);{~2, ~ 3 , s4,~5));

Note that the shaded and dashed parts of the tree in Figure 5 are the same as those in Figure

4. For this test strategy, the average test cost J = 2.535. In this example, we considered a block

replacement strategy when no test gives further. information, for example, see ambiguity groups

We applied Sure algorithms to several real-world systems. Table 5 shows the times taken to

construct diagnostic strategies based on Surel and Sure2 diagnostic strategies for several real-world

systems. Table 6 shows the number of nodes in the Surel and Sure2 diagnostic strategies for these

real-world systems.

We applied Sure3 diagnostic algorithm to several real-world systems. Table 7 shows the times

taken to construct a diagnostic strategy based on Sure3 strategy for several real-world systems.

Table 5: Solution Times in Seconds Based on Surel and Sure2 Strategies for Various Real-world

Systems on a SPARC-10

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

Table 6: Number of Nodes in Surel and Sure2 Strategies for Various Real-world Systems

(m, n)

(43, 53)

(80, 25)

(176,531

(898, 250)

(1644, 2147)

System

Anticollision system

Ampliier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

Time (sec)

Fault Limits

(m, n>
-- -

(43, 53)

(80,25)

(176,53)

(898,250)

(1644,2147)

1

0.27

0.18

0.27

0.88

41.59

Nodes

Fault Limits

2

1.71

0.23

0.50

0.88

461.24

1

79

55

67

37

993

3

5.98

0.26

0.82

0.88

1194.16

2

521

75

123

37

8843

All

26.28

0.27

1.05

0.88

(>2400)

3

1889

83

225

37

21347

All

7257

89

289

37

out of memory(> 79000)

Figure 5: Sure3 Test Strategy for Example 1.a

Table 8 shows the number of nodes in the Sure3 diagnostic strategy of these real-world systems.

The computational results indicate that the size of the diagnostic strategy based on Sure3 is

considerably larger than the others, and consequently, Sure3 diagnostic strategy cannot be applied

to large-scale systems.

6.2.1 Sure Algorithms

Sure algorithms are recursive functions, and must be invoked as Sure(OR node, A,, surei), where

OR node is the current OR node,

A, = O(L; Fl, Fz, ..., Fl; G) is the multiple fault ambiguity group at the OR node,

surei denotes the Surel-Sure3 diagnostic strategies.

Global variables:

Table 7: Solution Times in Seconds Based on Sure3 Strategy for Various Red-world Systems

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

Table 8: Number of Nodes in Sure3 Strategy for Various Real-world Systems

(ml n)'

(43, 53)

(80,25)

(176,53)

(898, 250)

(1644, 2147)

System

Anticollision system

Amplifier-filter

1553 Bus

Goodrich (EDIF)

Phase Decoder (EDIF)

Time (sec)

Fault Limits

(m, n>

(43,53)

(80, 25)

(176,53)

(898,250)

(1644,2147)

1

0.27

0.18

0.27

0.88

41.59

Nodes

Fault Limits '

2

6.09

2.16

3.76

4.92

> 3600

1

79

55

67

37

993

3

89.74

6.05

16.72

7.72

-

2

1195

601

773

343

>lOOOOO

All

>7200

803.27

>5000

19.69

-

3

13275

1619

3433

553

-

All

>100000

24204

>100000

1463

-

the set of failure sources S = {sl , ..., s,},
the a prior probability vector P = [p(sl), ..., p(s,)],

the set of available tests T = (tl, t2, ..., t,},
the set of test costs C = {cl, c2, ..., G},

the binary test matrix B = [bij] .

Initialinat ion:

OR node=root OR node,

Algorithm: Sure(OR node, A,, surei)

step 1: Generate the minimal (or irreducible) set of the multiple fault
ambiguity group A,, A, = I(A,).

step 2: Evaluate the conditional probability of faults in A, using P, P,.

step 3: Generate the binary test m&ix D, using B for the faults in A,;
failure signature of each fault in A, is the union of failure
signatures of individual failures.

step 4: IF no test gives any information, THEN
step 4.1: Action: repairlreplace all faults in Ul<i<L& - {so)-
step 4.2: G c GU {repaired/replaced failure so~~ces}.
step 4.3: SS t S - G.
step 4.4: IF SS = {so), THEN

- Action: stop.
- label the OR node SOLVED, and RETURN.

END
step 4.5: IF surei is Surel, THEN

- Action: apply more tests from root OR node.
- label the OR node SOLVED, and RETURN.

ELSE IF surei is Sure2, THEN
- Action: apply more tests from the first failed

test on the path from root OR node to the
OR node.

- label the OR node SOLVED, and RETURN.
ELSE IF surei is Sure3, THEN

- A,= @(I; Fl = SS; G).
- Invoke Sure(OR node, A,, surei).

END
END

step 5: Expand the diagnostic tree from the OR node by invoking
TEAMS-S (A,, P,, T, C, D,).

s t e p 6: Propagate the multiple fault ambiguity group A, of
the OR node along the tree.

s t e p 7: DO for each UNSOLVED leaf node,
s t e p 7.1: IF the multiple fault ambigqity group of the leaf

node has guaranteed failures identified (i.e., Fi (s)
with one member),
THEN
step 7.1.1: IF any Fi = (so), THEN

- Action: stop.
- label the OR node SOLVED,

and CONTINUE.
END

s t e p 7.1.2: Action: repair/replace the faults
in Fi(s) with one member.

s t e p 7.1.3: G c GU (repaired failure sources).
step 7.1.4: SS t S - G.
s t e p 7.1.5: IF SS = {so), THEN

- Action: stop.
- label the OR node SOLVED,

and CONTINUE.
- END

s t e p 7.1.6: IF surei is Surel, THEN
- Action: apply more tests from

root OR node.
- label the OR node SOLVED,

and CONTINUE.
ELSE IF surei is Sure2, THEN

- Action: apply more tests from the
first failed test on the path from the
root OR node to the OR node.

- label the OR node SOLVED,
and CONTINUE.

ELSE IF surei is Sure3, THEN
- Am= @(I; Fl = SS; G).
- Invoke Sure(leaf OR node, A,, surei).

END
ELSE
s t e p 7.1.7: Am c Multiple fault ambiguity groups

of the leaf node.
step 7.1.8: Invoke Surei(leaf OR node, A,, surei).
END

END

6.3 Computational Issues

In order to make the algorithm efficient, we find all the failure sources with the same failure

signature in the test matrix. That is, we the set N={Nl, N2, ..., NP} such that N1 E S

for I = 1, ..., /3 and Vsi E Nl have the same failure signatures in the binary test matrix. Thus,

instead of invoking Sure strategies for the set S, we can invoke them for the set N. In this case, the

probability that none of s; E Nl is faulty, i.e., @(Nl), and only one of s; E Nl is faulty, i.e., p(Nl),

can be evaluated as follows:

Thus, using p(N0 and $(Nl), the conditional probabilities of minimal candidates can be eval-

uated. For example, the conditional probabilities associated with the set N at the starting point,

i.e., based on a single fault assumption, can be evaluated as follows:

PNl = for ' I = 1, ...,p

In the case, when I Nl I = 1 for I = 1, ..., /3 and ,f3 = m, (4) reduces to (1).

7 Summary

The computational and storage complexity of an optimal multiple fault strategy are super-

exponential in the number of failure sources, m. We presented several near-optimal algorithms

that provide a trade-off between optimality and computational complexity. Firstly, we extended

the single-fault strategy of our previous work [7, 8, 111 to diagnose multiple faults by successively

isolating the potential single-fault candidates, then double-fault candidates, and so on. This is one

of the simplest multiple fault strategies that one can use. In this approach, the storage complexity

at each OR node of the AND/OR graph is the same as that in a single fault strategy. However,

using this approach, the probability of false alarm error or RTOK is very high.

We then extended the single fault sequential testing strategies to a class of Sure strategies. The

basic idea of these strategies is to find one or more definitely failed components, while not making

an error when other co-existing faults are present. We explored three different approaches for the

application of additional tests, resulting in Surel-3 strategies.

Some of the advantages of using Sure strategies are: (1) the inherent combinatorial explosion

that occurs in generating an optimal multiple fault strategy is reduced substantially, (2) the first

iteration of the Sure strategies results in the same tree as in the single fault strategy, and therefore,

these strategies isolate a single fault with the smdest average cost, while not making an error when

multiple faults are present. Computational complexity of this approach is strictly related to the

structure of the system, i.e., the structure of test matrix B.

In order to overcome the problems associated with the size of the complete diagnostic strategy,

the test strategy should be generated "on-line". That is, instead of generating the entire diagnostic

tree, the interactive strategy only suggests the next test to be applied given the outcomes of

previously applied tests. In addition, we assumed that the failure signature of each multiple failure

is the union of the failure signatures of individual failures. However, this assumption does not hold

for fault-tolerant (redundant) systems. In order to solve this problem, a binary test matrix based

on minimal candidates, i.e., minimum number of failures with a failure signature different from the

union of failure signatures of individual failures, should be generated. We expect t o investigate

these challenging issues in our future efforts [17, 181.

Appendix A: Conditional Probabilities of Failure Sources

Let us assume that hypothesis SI C S = {sl, ..., s,) denotes a set of failure sources such that

{s; E SI) are faulty and {sj E SI) are fault-frd. Thus, SI can be represented as an m-dimensional

hypothesis vector x = [xl, ..., xm]' where xi = 1 if s; E SI ; otherwise, xi = 0. From the failure

independence assumption, the probability of hypothesis vector x is;

where Q is a zero vector of dimension m, and p(g = Q) is the probability of fault-free state of the

system. Using Bayes7 rule, the conditional probability of failure hypothesis a: based on a single-fault

assumption, i-e., P = {po, PI, ..., pm), is as follows:

I d ~ i)
(I-dq))
m , , if x; = 1 and x j = 0 'd j # i

l + L I $"As,,))

1 o otherwise

Thus, the conditional probability of failure source s; given the single fault assumption, pi, is

the conditional probability of hypothesis vector : = s, where gi is the i-th unit vector, i-e., x; = 1

and x j = 0 V j # i, andpo =p(a:= OISF).

Note that a priori probability of failure source s;, i.e., p(si) , can be derived from the distribution

function Fi(t) as p(si) = Fi(to), where F;(t) is the probability that failure source si has failed at

or before time t, and to is the UPTIME. In the following, we consider two special cases: (1)

Exponential distribution, and (2) Weibull distribution.

A.l: Exponential Distribution

In this case, &(t) = (1 - e-xit) for i = 1, ..., m, where Xi = l/MTTF; is the failure rate and

MTTFi is the mean time between failures. Thus,

p(si) = (1 - e-xih) for i = 1, ..., m

where AT = Czl Xi. The conditional probability of each failure source s;, using equation (6), is as

follows:

- 1 e A i t ~ - 1
Pi = - - for i = 1, ..., m

-.. . 1 + ~ j m _ ~ (e ~ j ~ o - 1) 1 - m + CEl eAjto

if Xito << 1 for i = 1, ..., m, then exito x 1 + Xito. Thus, equation (8) reduces to:

Xito -
Pi " - X i -- Xi

- -(I - po) for i = 1, ..., m
1 + X T ~ O & + AT AT

A.2: Weibull Distribution

In this case, &(t) = (1 - e-@it)") where is the characteristic life and u is a shape parameter

that changes the shape of the distribution compared with the exponential. Thus,

p(s;) = 1 - e-('it)" for i = 1, ..., rn

where A, = (E L , A?)$. Therefore, the conditional probability of each failure source si is as

follows:

e (A i t ~) Q - 1 e (A i t ~) " - 1
Pi = - - for i = 1, ..., m

1 + Cjm=,(e(Aif~)~ - 1) 1 - rn + E', e(AitoIP (10)

1
Po = 1 - m + Cj"=, e(Aifola

If A;to << 1 for i = 1, ..., m, then e(Aito)a z 1 + (Xito)". Thus, equation (10) reduces to:

(xito)" - A;" A;" - Pi = 1 = y(l - po) for i = 1, ...: m
1 + Cy=l(Ajt~)" + La Aw

References

[I] D.P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall,

Englewood Cliffs, NJ, 1987.

[2] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelligence, 24:347-

410, 1984.

[3] R. Davis. Retrospective on diagnostic reasoning based on structure and behavior. Artificial

Intelligence, 59:149-157, 1993.

[4] J. de Kleer and B .C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32:97-130,

1987.

[5] R. Greiner, B.A. Smith, and R.W. Wilkerson. A correction to the algorithm in Reiter's theory

of diagnosis. Artificial Intelligence, 41:79-88, 1989/90.

[6] D.B. Grunberg, J.L. Weiss, and J.C. Deckert. Generation of optimal and suboptimal strategies

for multiple fault isolation. Technical report TM-248, 1987.

[7] K.R. Pattipati and M.G. Alexandridis. ~ ~ ~ l i c a t i o n of heuristic search and information theory

to sequential fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, 20(4):872-

887, July/ August 1990.

[8] 1C.R. Pattipati, S. Deb, M. Dontamsetty, and A. Maitra. Start: System testability analysis

and research tool. IEEE AES Magazine, pages 13-20, January 1991.

[9] K.R. Pattipati, V. Raghavan, M. Shakeri, S. Deb, and R. Shrestha. TEAMS: Testability

Engineering And Maintenance System. American Control Conference, pages 1939-1996, June

1994.

[lo] V. Raghavan. Algorithms for Sequential Fault Diagnosis. Ph.D Thesis, Dept. of Electrical and

Systems Engineering, University of Connecticut, Storrs, CT 06269-3157, 1996.

[l l] V. Raghavan, M. Shakeri, and K.R. Pattipati. Optimal and near-optimal test sequencing

algorithms with realistic test models. Submitted to IEEE Transactions on Systems, Ma.n, and

Cybernatics.

1121 R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1) 57-95, Apr.

1987.

[13] M. Shakeri. Advances in System Fault Modeling and Diagnosis. Ph.D Thesis, Dept. of Electrical

and Systems Engineering, University of Connecticut, 1996.

[14] M. Shakeri, K.R. Pattipati, V. Raghavan, , and S. Deb. Near-optimal sequential testing

algorithms for multiple fault isolation. IEEE International Conference on Systems, Man and

Cybernetics, pages 1908-1914,1994.

[15] M. Shakeri, K.R. Pattipati, V. Raghavan, and A. Patterson-Hine. Multiple fault isolation in

redundant systems. IEEE International Conference on Systems, Man and Cybernetics, 1995.

[16] M. Shakeri, K.R. Pattipati, V. Raghavan,' A. Patterson-Hine, and T. Kell. Sequential test

strategies for multiple fault isolation. IEEE Autotestcon, 1995.

[17] M. Shakeri, V. Raghavan, and K.R. Pattipati. Multiple fault isolation in redundant systems.

In Preparation.

[18] M. Shakeri, V. Raghavan, and K.R. Pattipati. On-line multiple fault diagnosis strategies. In

Preparation.

[19] J.H. Sheppard and W.R. Simpson. Multiple failure diagnosis. IEEE Autotestcon, pages 381-
- .

389, 1994.

1996 IEEE Au totest Conference, Dayton, Ohio, September 1996

/*I";-:

Optimal and Near- Optimal Algorithms for Multiple Fault
Diagnosis with Unreliable Tests* jy-.3,5

c' ' p p $,.I,'\&.
3 fiqe 69

M. Shakeri and V. Raghavan K.R. Pattipati "" @..2 d2
Qualtech Systems Inc., U-157, Dept. of Electrical and Systems Engineering,

119 Storrs Rd, Mansfield, CT 06250 University of Connecticut, Storrs, CT 06269-3157
Email: krishna@sol.uconn.edu

A. Patterson-Hine
NASA-Ames Research Center, Mail Stop 269-4,

Moffett Field, CA 94035-1000
Email: AnnPatterson-Hine@styx.arc.nasa.gov

Abstract - In this paper, we consider the problem of
constructing optimal and near-optimal multiple fault
diagnosis (MFD) in bipartite systems with unreliable
(imperfect] tests. It is known that exact computation
of conditional probabilities for multiple fault diagnosis
is NP-hard. The novel feature o f our diagnostic al-
gorithms is the use o f Lagrangian relaxation and sub-
gradient optimization methods to provide: (I) near
optimal solutions for the MFD problem, and (2) upper
bounds for an optimal branch-and-b'ound algorithm.
The proposed method is illustrated using several ex-
amples. Computational results indicate that: (I) our
algorithm has superior computational performance to
the existing algorithms (approximately three orders of
magnitude i;;;-i;;ovement over the algorithm in [3]), (2)
the near optimal algorithm generates the most likely
candidates with a very high accuracy, and (3) our al-
gorithm can find the most likely candidates in systems
with as many as 1000 faults.

I. Introduction

With the increased recognition of importance of de-
sign for testability, there is an increasing trend towards
the use of smart sensors for on-board system health man-
agement. The results of on-board tests are available to
the ground test systems and operators as a block of symp
toms. Due to improper set up, operator error, electro-
magnetic interference, environmental conditions, or alias-

*Research supported by NASA-Ames Research Center and the
Department of Economic Development of the State of Connecticut.

ing inherent in the signature analysis of on-board tests,
the nature of tests may be unreliable (imperfect). Imper-
fect tests introducedm additional element of uncertainty
into the diagnostic process: the pass outcome of a test
does not guarantee the integrity of components under
test (because the test may have missed a fault), or a
failed test outcome does not mean that one or more of
the implicated components are faulty (because the test
outcome may have been a false alarm). Consequently,
the diagnostic procedures must hedge against this uncer-
tainty in test outcomes.

In this paper, we consider the problem of construct-
ing optimal and near-optimal multiple fault diagnosis in
bipartite digraphs with unreliable tests. This problem
is a central and long-standing concern in system fsult
diagnosis, and medical decision making [lo]. When the
false alarm probabilities of all tests are zero, the problem
simpliies to the parsimonious covering theory (or proba-
bilistic causal model) discussed in (161. Peng and Reggia
[15] proposed a competition based connectionist method
to subdue the problem of combinatorial explosion in com-
puting the posterior probabilities of all possible combi-
nations of failure sources in probabilistic causal models.
However, this method does not guarantee a global opti-
mum and suffers from large computation times even for
problems with small numbers of failure sources, m=26.

Genetic algorithms are offered as an alternative to the
connectionist methods [3, 91. Genetic algorithms are
based on an analogy with Darwin's biological evolution-
ary theory in which a group of solutions evolves via natu-
ral selection. It emulates the rules of biological evolution-

ary process, such as reproduction, crossover, mutation,
and natural selection, etc. At each iteration, a popula-
tion of individuals is established, where each individual
corresponds to a point in the search space. The objective
function is evaluated for each individual to rate its fit-
ness. Then, a next generation is formed based on the sur-
vival of the fittest. Therefore, the evolution of individuals..
from generation to generation tends to result in fitter in-
dividuals (i.e., solutions) in the search space. These algo-
rithms converge extremely slowly, and have been applied
to small problems with m=20 failure sources (causes, dis-
orders) and n=20 tests (manifestations, symptoms).

Wu [203 proposed a decomposition method based on
common and disjoint causal (failure source) relationships
among the given symptoms (tests). This method decom-
poses the original problem into smaller and independent
subproblems, and therefore, increases the performance
and efficiency of multiple fault diagnosis. However, this
approach is not applicable for systems with large num-
bers of nondecomposable causes and symptoms.

In this paper, we present a novel approach, using
Lagrangian relaxation, to solve multiple fault diagnosis
problem. By defining new variables and constraints, the
multiple fault diagnosis (MFD) problem reduzes to a
combinatorial optimization problem with a set of equal-
ity constraints. The constraints are relaxed via Lagrange
multipliers. The relaxation procedure generates an upper
bound for the objective function. The procedure of min-
imizing the upper bound via a subgradient optimization
produces a sequence of solutions that are modified, in a

. computationally effective way, to produce a sequence of
feasible solutions to the M F D problem. If the objective
function value for the best feasible solution and the upper
bound are the same, the feasible solution is the optimal
solution. Otherwise, the difference between the upper
bound and the feasible solution, termed the approximate
duality gap, provides a measure of suboptimality of the

that the M F D algorithm can be extended to solve mul-
tiple fault diagnosis problems with repetitive application
of tests.

The paper is organized as follows. In Section 11, we
formulate the multiple fault diagnosis problem in a bi-
partite system. In Section 111, we present a near-optimal
algorithm based on Lagrangian relaxation and subgra-
dient optimization method to diagnose multiple faults,
and generate an upper bound for the likelihood of mul-
tiple fault candidates. The upper bound can be used in
an optimal branch-and-bound algorithm. The multiple
fault algorithms for a set of L-ranked multiple fault di-
agnoses are presented in Section IV. In Section V, we
consider the multiple fault diagnosis problem with repet-
itive tests. Several examples are presented in Section VI.
Finally, in Section VII, we summarize the results and
discuss future research issues.

11. Problem Formulation

The M F D problem in bipartite systems with imper-
fect tests consists of a bipartite digraph DG = {S, T, E),
where

S = is l , ..., s,) is a finite set of independent failure
sources (failure nodes) associated with the system;

T = i t l , t2, ..., tn) is a finite set of n available bi-
nary outcome tests (test node), where the integrity
of system failure sources/components/modules can
be ascertained;

; I

E = {eij) is the set of digraph edges (links) specify-
ing the functional information flow between the set
of failure sources and the set of tests in the system.

The input requirements of the failure nodes and edges
of the digraph are as' follows: '

M F D solution. Alternatively, the optimal solution can Failure node: A p,+,,+ probability vector of failure
be found via a tree search (or branch-and-bound) proce- nodes P = [p(sl), ...,p(s,)], where p(si) > 0 is the
dure. The computational complexity of the near-optimal a priori probability of failure source si.
algorithm is a linear function of the number of failure
sources, m and the number of failed tests, ITf 1.

Next, we present an approach to determine a ranked
set of multiple fault diagnosis solutions (i.e., the best,
second best, ..., L t h best diagnosis). In this approach,
following Murty [12] and Cox et. al. [5], we: (1) parti-
tion the MFD problem, based on its best solution, into
disjoint subproblems; (2) solve the subproblems and sort
them by the values of their solutions, and (3) select the
subsequent best solutions. One of the advantages of this
approach, compared to the one in [14], is that since the
subproblems are disjoint, the optimal solution of each
subproblem is different from the others. Finally, we show

2. Link (edge): A set of probability pairs Pii = 'm representing the detection-falsealarm
probabilities of the set of tests, where Pdij and P fii
are the detection and false alarm probabilities of test
t j and failure source si, respectively (see Figure 1)-
Figure 2 shows a bipartite digraph model.

The problem is to find the most likely candidates X E
S that are consistent with the results of applied tests.
Thii is formulated as:

max Prob(XITp, Tf) xc_s

Si ~ d i j t j
fail r . r fail

pass pass

Figure 1: Detection-False-Alarm Probability of Failure
Source si and Test tj

Failure Sources
A 1

Tests

Pmn
Figure 2: Illustration of the Bipartite Digraph Model

where Tp C T and Tf C T denote the set of passed and
failed tests, respectively. Using Bayes' rule and elimi-
nating the constant factor Prob(Tp , Tf), we obtain the
following equivalent maximization problem:

max Prob(Tf , TplX)Prob(X) xcs (2)

For notational simplicity, we define binary vector g
of size m, where xi = 1 if failure source si E X; xi = 0,
otherwise. Note that, given a multiple fault candidate X ,
the tests axe independent. Thus, the above probabilities
can be evaluated as follows:

where O(tj) E {p(=pass), f(=fail)} is the outcome of
test t j , and PdV = 0 and Pfij = 0 for eij bf E.

111. Problem Solution

One approach for generating the optimal multiple fault
diagnosis is to consider all possible combinations of fail-
ure sources, i.e., the power set 2S, and select the mul-
tiple fault candidate with the highest likelihood func-
tion in (1). However, the computational complexity of
this approach is exponential in the number of failure
sources m. In the following, we present an algorithm,
based on Lagrangian relaxation and subgradient opti-
mization method, to generate a near-optimal solution for
this problem.

By substituting (3) and (4) into (2) and taking the
natural logarithm of the resulting objective function, the
problem is equivalent to:

By substituting (5), (6) and (7) into (8), the problem
reduces to:

- oi

max CIjETj ln(1-) I [I IEi(wi j) l) + xcs

where pi = a, 7ifj = 1 - Pfii and mej =
1 - P d i j f o r i = 1 ,..., m a n d j = 1 ,..., m. By
(i) eliminating constant factors Czl ln(1- p (~ i)) and
zkET, ELl and (ii) defining new variables -
yj = [~ ~ l (~) x i] ~ = l (P f i j)] for tj E Tf , and tak-

ing the natural logarithm of it, the problem reduces to
the following optimization problem:

m -
Pdij

m

subject to : ln(yj) = C zi In(=) + C l n (n j) (11)
i=l Pfij i=1

o 5 yj 5 1 for tj E T~ (12)
~ i = O 0 r 1 for i=1, ..., m (13)

where y = [yl, ..., yIT,(], and 1.1 denotes set cardi-
nality. For simplicity, we define new variables hi =
ELl ln(Pfii) for t i E Tf. Note that, if we define - - P d . . -
Pcjj=(-=.t') for i = 1, ..., m and j = 1, ..., n, then P q j ,

Pf ij
hj and pi are sufficient statistics for solving this problem.
The following lemmas present two important properties
of the M F D problem.

Lemma 1: If P fik=O and Pdik = 1 for any passed test
tk, then the optimal solution does not contain failure
source si, i.e., xi=O (or equivalently si $! X).

Proof: If si E X (or xi = I), then the second part
of the objective function in (lo), and, consequently, the
overall objective function will be unbounded, i.e., it
would be -oo.

. Using Lemma 1, the size of the MFD problem can
be reduced by removing all failure sources {silP fik=O,
Pdik = 1 and tk E T,) from the problem.

Lemma 2: If the 'filse alarm probabilities of a failed
teit-lj are zero, i.e., P fii=O for i = 1, ..., m, then the
optimal solution contains at least one xi=l, such that
PdG > 0. That is, the optimal solution must cover the
failed tests.

Proof: We prove this lemma by contradiction. P fij=O
for i = 1, ..., m results in hj=O. If for all Pdij > 0,
xi=O, then we have ln(yj)=O and, hence, yj = 1. Thus,
ln(1- yj), the first part of the objective function in (lo),
and, consequently, the overall objective function will be
unbounded.
Using Lemma 2, we define the following constraints:

. -Aa:>c f o r t j E T f and h j=O (14)

where A = {alj) is a binary matrix of size IHI xm;
H = {tj E Tflhj = 0 for j = 1, ..., n); each row I of
matrix A corresponds to a failed test t j with hj = 0;
an=l, if Pdij > 0 for i = 1, ..., m; otherwise, ali=O, and
e is a vector of 1's. -

Adding the set of constraints (14) to the problem in
(10)-(13) results in a smaller search space and tighter
upper and lower bounds (best feasible solution found),
and, therefore, a better estimate of the optimal solution.

Lemma 3: When all tests are perfect, that is, Pdij = 1
and Pfii = Ofor i = 1 ,..., m, j = 1 ,...,nand eij E El
using Lemmas 1 and 2, the problem reduces to the fol-
lowing set-covering problem: max, E, iE,- pixi subject
to (13) and (14), where S' is the reduced set of failure
sources, i.e., S after eliminating the failure sources satis-
fying Lemma 1.

Proof: This lemma can easily be proved by Lemmas 1
and 2. Pdij = 1 and Pfij = 0 for the failed tests results
in hi = yj = 0. Therefore, the first part as well as the
second part (using Lemma 1) of the objective function in
(10) can be eliminated, and the problem reduces to the
traditional set covering problem. The set covering prob-
lem can be solved optimally by any optimal set-covering
algorithm [2, 71, or near-optimally via a Lagrangian re-
laxation and subgradient optimization method [I].

By relaxing the constraints in (11) via Lagrange mul-
tipliers (Xi), we obtain the Lagrangian function:

subject to (12), (13) and (14), where fj(Xj, yj) and ci(X)
denote the first and second equations in the brackets in
(15), respectively. The important point here is that fhr
rnaxirnizaiion of Lagrangian function in (15) with respect
to a: and y can be carried out independently for each fixed
A. ~axi&zation of Q(X, 2, yJ with respect to y is equiv- - -
alent to:

fi
max fj (Ai, yj) = ln(1- yj) + Xi ln(yj) for t j E Tf 116)

' J < ~ j l l

The maximumof this function is yj*(Aj) = &u(Aj). At
the value of yj* (Aj), the first and second derivatives of the
function 3re zero and negative, respectively, indicating
that fj (Ai, yi) is a maximum (where u(.) is the unit step
function).

The maximization of the Lagrangian function
Q(& 3 g) with respect to 3: is equivalent to:

subject to (13) and (14), which is a traditional set-
covering problem. This problem has been extensively
studied by the operations research and management sci-
ence communities 12, 71. There exist a number of opti-
mal algorithms, based on feasible solution exclusion con-
straints, Gomory f-cuts and tree-search procedures for
this problem [2,7]. Let g*(A) be the optimal solution of
this set-covering problem. Thus, Q(& $(A), f(a) is
an upper bound for the optimal objective value in (10).
This result is summarized in the following Lemma:

Lemma 4: Let J* be the optimal value of the objective
function in (lo). Then &(A, g*(A), - y*(A)) 2 J* for any
A. -

Proof: Let go and yo be the optimal solution of the
problemin (10). T ~ ~ ~ ~ Q (A , E ~ , ~ O) 5 Q(Al.3:*(A),f(A))-
This is because, :*(A) and y*(A) are optimal with respect
to the relaxed problem in715). Since the optimal solu-
tions :O and yo satisfy (l l) , we have Q(A,:O, yo) = J*, -
and there fore,^* < &(A, *(A) , g*(A)).

After evaluating the optimum values g*(A) and y*(A)
for a fixed & the problem reduces to one of minimking
the upper bound Q(A)= Q(A, z*(A), y*(A)). Since Q(A) is
a piecewise function of A, this problem cannot be solved
using differentiable optimization algorithms. As an al-
ternative, we use a subgradient optimization algorithm
1131 to produce a sequence of upper bounds for Q(A).

If we denote by Q*, the optimal Lagrangian func-
tion value, i.e., Q*= Q(A*)=rnin~ Q(A), the difference
(Q* - J *) is termed the exact duality gap. Since the
problem in (10)-(14) is NP-hard [4], we may never know
the global optimal solution J*. Instead, we construct
several feasible solutions to this problem from the La-
grangian function solution, and select the best feasible
solution from the set. Let J (r , f , yf) be the best fea-
sible value, then we have, J (x , ~f ,$) 5 J* 5 Q*. A
nice feature of the Lagrangian relaxation method is that
the approximate duality gap:

. ,

provides an overestimate (by the value of the exact du-
ality gap, (Q* - J*)) of the error between the global
optimal solution and the best feasible solution found.
Thus, in some cases, even though the best optimal so-
lution found is the optimum solution of the problem, the
approximate duality gap may be nonzero, see Example 1
in Section VI. Based on extensive computational experi-
ments, the relative approximate duality gap, SJ, defined
by:

is small for the multiple fault diagnosis algorithms (typi-
cally less than 5%). The pseudocode of the multiple fault
diagnosis algorithm is presented in the next section.

A. Mul t ip le Fault Diagnosis Algorithm

Let (gf, gf), Qmin, Qub and Qra be the best feasible
solution found, minimum upper bound, current upper
bound and maximum lower bound (function value based
on the best feasible solution found, i.e., J(:f, - yf)) for

&(A, g, g), respectively. The pseudocode of multiple fault
diagnosis algorithm is shown in Figure 3.

Initialization: Initialize: (1) Aj = 1 for j = 1, ..., ITr/,
(2) Qmin = 00, (3) Qlb = -00, and (4) set iteration count
t .= 1. The reason for initializing Aj = 1 is that it results
in yj' = 0.5.

S t e p 1: Find optimum values g* (A) by solving the
set-covering problem in (17).

S t e p 2: Find optimum values - y* (A)
where y;(Aj) = &u(xj) for j = 1, ..., ITf 1.

S t e p 3: Evaluate y(g*(A)) using equation (11).
S t e p 4: Update KT, gf , Qminl Qub and Qla as follow^:

If J(z*(A), &*(A))) 2 Q I ~ , then
d = :*(Ah gf = y(z*(A)),
and Qlb = J(z*(A), g(z*(A))),
QU~=Q(A,Z*(A)~~~*(A))~
Qmin = min(Qmin, Qua).

S t e p 5: Calculate the subnradient - ., -
dj = ln(&) - {Cgl ":(A) in(%) + hj}
for j = 1, ..., ITf 1 .

S t e p 6: Stop if ~ 2 ; d: = 0 since in this case we
cannot define a suitable step size.

S t e p 7: Define a step size /3 by B = - f Sw- (Cj=', d ;)

where initially f = 2. If Qmin has not
decreased in the last 10 iterations of the
subgradient procedure with the current value
o f f , then f is halved. This approach to
deciding the value of f is basqd on the
procedure of Fisher [6]. The parameter cr with
typical value 1 < cu < 1.1 is to ensure that P
does not become too small as the gap between
Q,b and Qlb decreases [I].

S t e p 8: Stop i f f 5 0.05 or t 2 100 (or any other
suitable stopping criteria).

S t e p 9: Update the Lagrange multipliers Aj as follows:
Aj = max(0, Aj + pdj) for tj E Tf, t + t + 1,
and go to step 1.

Figure 3: Pseudocode of MFD Algorithm

B. Improving the Computat ional Complexity

The computational complexity of MFD algorithm for all
steps except the first step is O(mlTf I). It is well known
that the set-covering problem is NP-hard [ll], and there-
fore, the first step of the multiple fault diagnosis algo-
rithm limits the size of the problem that we can solve.

One of the important points here is that a near-optimal
solution as well as an upper bound solution for the setr
covering problem can be found via Lagrangian relax-

ation method [I] in a manner similar to the M F D al-
gorithm. Let gn(A) and gu(A) denote the near-optimal
(best feasible solution found) and upper bound solution
for the set-covering problem, respectively. Note that
any feasible solution for the set-covering problem is a
feasible solution for the multiple fault diagnosis prob-
lem. However, for a given 1, the best feasible solu- ,
tion for set-covering may not be the best feasible solu-
tion for the multiple fault diagnosis problem. Therefore,
we have: J(zn (a, g(gn (A))) < J* < &(A, :*(A), g* (A))
5 Q(A,."(A),g*(A)). Thus, using gU(A) and "(A), we
can generate a sequence of upper and lower bounds to
the multiple fault diagnosis problem. In this case, the
multiple fault diagnosis algorithm should be modified as
follows: replace the optimal solution :*(A) in the algo-
rithm with the near-optimal solution gn(A), except in
&,I, where :*(A) should be replaced by the upper bound
solution e (A) . By this modification, the computational
complexity of this approach reduces to O(mlTfl), and
therefore, can be applied to large-scale systems. Note
that, because of storage complexity of storing Pdij and
P fij for all failure sources and tests, the available mem-
ory of a given computer may limit the largest size of the
problem that we can solve.

In large-scale systems, it is practical to assume that
the detection and false alarm probabilities of each test
t j is the same for all failure sources connected to it, i.e.,
Pdij=Pdj and Pfij=Pfj, if eij E E, otherwise, Pdij=O
and P fii=O. In this case, we define a binary reachability
matrix R = {rij) such that rij = 1 if eij E E, otherwise,
rij = 0. The detection and false alarm probabilities of
each test t j for each failure source si can be evaluated
as follows: Pdij = rijPdj and P fij = rijPfj. Note
that, in this case, the binary matrix R = rij can be
stored in a bit-compact format, and consequently, the
storage complexity of the problem reduces by a factor
of approximately 2K, where I(is the number of bits for
representing a floating variable in a given computer. For
example, the storage complexity of the M F D problem
for a system with 10,000 failure sources and tests when
K=32 bits (or equivalently 4 bytes) are 800 Mbytes for
storing Pdij and Pfij, and 12.5 Mbytes for storing the
binary matrix R = {rij). However, by storing Pdjl pfj
and R = {rij), the total memory required reduces to
12.6 Mbytes.

Despite the complexity analysis results for the com-
binatorial nature of multiple fault problem, the optimal
solution for this problem can be found via a branch-and-
bound. In the branch-and-bound algorithm: (1) a bi-
nary tree is employed for the representation of the 0-1
combinations, (2) the feasible region is partitioned into
subdomains systematically, and (3) valid upper and lower
bounds are generated at different levels of the binary tree.

The main objective in a general branch-and-bound algo-
rithm is to perform an enumeration of the alternatives
without examining all 0-1 combinations of failure sources.
Details of branch-and-bound algorithms can be found in
any integer programming textbooks, e.g., 18, 13, 17, 181.

N. Ranked Set of Most Likely
Candidates

In this section, we consider the problem of determining
a ranked set of solutions to the multiple fault diagnosis
problem. That is, the problem is to find L sets of most
likely candidates. We present the following sequential
approach to solve this problem:

Initialization: Find the first most likely candidate X1
for the multiple fault diagnosis problem.

Algorithm:
DO for I = 2, ..., L, or until no feasible solution exists,

Eliminate the set of candidates { X' , ...,xr-I)
from the problem and generate the I-th mo-t likely
candidate.

END

The first part of the algorithm, i.e., initialization, can
be solved by the algorithm of previous section. In this
section, we present an approach to solve the second par1
of the sequential algorithm. In this approach: we solve
a series of modified copies of the initial multiple fault
diagnosis.

A. Ranked Algorithm: Modified Copies of
MFD Problem

In this approach, at each iteration, we solve a series
of multiple fault diagnosis probiems assuming that the
states of some of the failure sources are known prior to
diagnosis, i.e., some failure sources are known good, and
some of them are known bad (definitely faulty). A similar
approach has been considered by Murty 1121 for deter-
mining a ranked set of solutions to assignment problems.
and was recently enhanced by Cox et. d. [5] within the
context of multi-target tracking. For simplicity, we r e p
resent the multiple fault diagnosis problem by four-tuple
I'=(MFD, G, 3, X), where

1. M F D is the problem in (10)-(14),

2. G C S represents the set of known good failure
sources, i.e., for all si E G, xi = 0 (or si 4 X),

3. B C S represents the set of definitely faulty failure
sources, i.e., for all si E B, xi = 1 (or si E X),

4. X is the optimal solution to the M F D problem sub-
ject to G and B.

Note that the number of unknown failure sources in
r=(MFD, G, B, X) is m - IGI - IBI. Initially, G and B
are empty, i.e., I" = (MFD, 0,0, X1). Subsequent solu-
tions to I" are found by solving a succession of multiple,
fault diagnosis problems that are created from r1 by a
process called partitioning. A problem, r, with the best
solution X and size m - IGI - IBI, is partitioned into a
set of subproblems, rl, ..., I'm-lGl-lBl+l, S U C ~ that:

The union of the set of possible solutions to I'l
through rm-~G~-~B~+l is exactly the set of possible
solutions to I',

The sets of possible solutions to rl through
rm-lGl-lBl+l are disjoint, and

~ ~ - I G I - ~ B I + ~ has only one solution X.

Let us assume that rr is a dummy subproblem
that is used to generate the subproblems rl through
rm-IGI-IBl+l from . The following procedure shows:
(1) how to update the subproblem I" = (MFD, Gr,
Br, Xr), and (2) how to make subproblem I'r = (MFD,
GI, Bl, XI) form rr for 1 = 1, ..., m - IGI - IBI, se-
quentially, and finally, (3) rm-lGl-lBl+l = I". Initially,
rr=r. Then, for 1 = 1, ..., m- IGI - I BI, rr is partitioned
as follows:

Select any si E S - (Gr U Br),

* If si E X, then GI + Gru{si) and Br + Bru{si),
else Bl c Br U {si) and Gr c Gr U {si).

Note that, at each iteration, the problem I" is partitioned
into two disjoint subproblems. This is because we force
the subproblems to be different in the status of only one
failure source si in the system, i.e., we add sj to the
set of definitely faulty failure sources in one subproblem,
and to the set of known good failure sources in another
subproblem. In addition, X cannot be a solution to I'r
for I = 1, ..., m- !GI - IBI. Further more, rr is the only
subproblem which contains X and only X as its solution.
This is because Br=X and Gr=S - X.

As an illustration, let us consider a simple system with
3 failure sources isl, s2, s3). In addition, let us assume
that the optimal solution for the M F D problem in this
case is X={sl), i.e., r1 = (MFD, 0, 0, X1 = Isl)).
Therefore, the M F D problem can be partioned into the
following subproblems; rl = (MFD, G = (sl), B = 0,
Xi); I'2 = (MFD, G = 0, B = (~r,s2}, X2), r3 =
(MFD, G = {s2), B = (sl,s3), Xs), and r4 = (MFD,
G = (s2,s3), B = (~ 1 3 , X4).

Therefore, we partition according to its best so-
lution X1, and place the resulting subproblems to-
gether with their best solutions, except the last one, i.e.,
rm-IGl-IBI+l, on a priority queue of four-tuple (M FD,
G, B, X). We then find a problem in the queue that
has the best solution. The solution of this problem is the
second-best solution to the multiple fault diagnosis prob-
lem. Now, we remove this problem from the queue and
replace it by its partitioning. The best solution found in
the queue now is the third-best solution to the multiple
fault diagnosis problem, and so on. The pseudocode for
the Lranked algorithm is shown in Figure 4.

Initialization: Find the first solution X1 to M F D
problem, and initialize a priority queue of four-tuple
prob!ems to contain only r l=(MFD, 0, 0, X1). The top
problem on this queue will always be the problem with
the highest likelihood solution.

S t e p 1: Clear the list of solutions to be returned.
S t e p 2: DO until priority queue of problems is empty.

S tep 2.1: Take the top problem
l=(MFD, G, B, X) off the queue.

S tep 2.2: Add X to the list of solutions.
S tep 2.3: If the cardinality of solution set is L, Stop.
Step 2.4: Let rr =I?,
Step 2.5: DO for 1 = 1 ,..., m- IGI - IBI,

S tep 2.5.1: Partition rr into rr and I" as follows:
Step 2.5.2: Select any Si E S - (Gr U Br),
S tep 2.5.3: If si E X, then

GI + Gr U {si) and Br +- Br U { s i) ,

else B' + Br U {si) and Gr + Gr U {si).
Step 2.5.4: Find the best solution XI to r'. If X'

exists, add (MFD, GI, BI, XI) to the queue.
END

END
-

Figure 4: Pseudocode for ~ k a n k M F D Algorithm

Since each subproblem is NP-hard, we use the near-
optimal M F D algorithm of previous section to solve
the ranked set problem near-optimally, i.e., X is a near-
optimal solution for the problem r=(MFD, G, B, X).
Thus, it is possible that I-th solution, i-e., x', has higher
likelihood than the k-th solution, i.e., xk, where k > 1.
Note that, we perform one partitioning for each of the G
best solution, in the worst case, each partitioning c r e a k
O(m) new problems. This creates up to O(Lm) multi-
ple fault problems and insertions on the priority queue.
Each problem takes at most O(mlTf I) time to solve near-
optimally, and each insertion takes a t most O(log(Lm))
time. Therefore, the worst-case execution time of this
approach is O(Lm(mlTf I + log(Lm))), or approximately,
o(Lm21Tf 1).

V. Multiple Fault Diagnosis with
Repetitive Tests

A reasonable and common situation in unreliable test-
ing is to apply a test several times to improve the con-
fidence about a given hypothesis (a set of multiple fault
candidates). For example, in order to reduce the prob-'
ability of error, i.e., false alarm and missed detection of
some faults (disorders or diseases), a system (a patient)
may be tested multiple times, and because of imperfect
nature of tests, the test results may be different. In this
section, we assume that each test t j has been applied n j

times in which it passed and failed p j and q j times, re-
spectively, i.e., n j = p j + q j . Note that applying a test
at different times is equivalent to applying independent
tests with the same structure. In this case, let us assume
that Tf and Tp denote the set of failed and passed tests
(without any redundancy), respectively, and Tf nTp may
not be empty. Thus, the problem is:

subject to (11)-(14). This problem is similar to the prob-
lem in (10). Thus, the algorithms in previous sections can
be readily applied to solve this problem. In this case: (1)
in the first step of the M F D algorithm, ci(A) is a func-
tion of p k for K = 1, ..., ITPI, i.e., the number of time
that test t k passed, and (2) in the second step of the
M F D algorithm, the optimum of the objective function
with respect to - y is replaced by y; (A j) = -&u(Aj) for
j = 1, ..-, [Tfl.

VI. Examples

Example 1: In this example, we consider: (1) a simple
diagnostic problem with m = 20 failure sources (disor-
ders) and n = 20 tests (manifests) which was used as an
example in [3]; (Example 1.a - l.d), and (2) a diagnostic
problem with m = 15 failure sources and n = 10 tests
from [9]; (Example 1.e). The false alarm probabilities for
these systems are all zero, i.e., Pf i j = 0 for i = 1, ..., m
and j = 1, ..., n and Tp= T - Tf. Figures 5 and 6 show:
(1) the set of failed tests Tf , (2) diagnostic results, (3)
likelihood, (4) processing time and total number of runs
to converge to the diagnostic results, (5) total processing
time and total number of runs, and (6) approximate du-
ality gap. The diagnostic results are based on the near-
optimal multiple fault diagnosis algorithm in Figure 3.
The processing times for these examples are obtained by
running the M FD algorithm on a SPARC 10. Binglin
et. al. [3] presented a genetic algorithm which required

Figure 5: M F D Algorithm Results for Examples 1.a-1.e

Figure 6: M F D Algorithm Results for Examples 1.a-1.e

10 minutes to find the set of diagnoses in Example 1.a
with an IBM PS/2 Model 40 SX-20 MHz microcomputer.
These results show the superior performance of our al-
gorithm compared to the algorithm in [3]. Miller et. al.
[9] have not reported the processing time for Example
1.e. However, the largest problem that they considered
contained 20 failure sources and 15 tests.
Example 2: In this example, we consider systems with:
(1) m=n=100, m=n=500 and m=n=1000, (2) the prob-
ability of each failure source is set to a random number
between (0.001, 0.5), (3) each test, on average, covers 5,
10 and 20 failure sources, (4) detection probabilities of
a test associated with its covered failure sources are set
to random numbers between (0,1), (5) the false alarm
probabilities are assumed to be zero, and (6) the num-
ber of failed tests are 5, 10 and 20. Figures 7, 8 and '9
show the simulation results for these systems. Each row
of these Figures represents the average of simulation re-
sults for 5 randomly generated systems. Note that, in
most of the cases, the average approximate duality gaps
are around 5%. However, in iome of the cases, for ex-
ample, the last row of Figure 7, the approximate duality
gap is very large, i.e., 22.15%. In order to improve the
solution (or, equivalently, approximate duality gap), we
can apply the L-ranked algorithm. The average approx-
imate duality gap based on 2-ranked algorithm for the
last set of systems in Figure 7 reduces to 1.49%.
Example 3: In this example, we consider three systems
with 10 failure sources and 10 tests as in [15]. The false
alarm probabilities are assumed to be zero. The sim-
ulation results for 21° possible combinations of test re-
sults are shown in Figure 10. The second column shows
the number of correct cases out of 1024 possible com-
binations of test results. The third column shows the
weighted probability of correct cases. The columns cor-
responding to Nd and Nf denote the unweighted prob-
abilities of detection, i.e., the unweighted probability of

Figure 10: MFD Alg. Results for Examples 3.a-3.c

Figure 7: Simulation Results for m=n=100

Figure 11: 2-raa!;ed Alg, Results for Examples 3.a-3.c

Figure 8: Simulation Results for m=n=500

common faulty failure sources in the optimal and near-
optimal solutions, and false alarm, i.e., the unweighted
probability of faulty failure sources in the near-optimal
solution and not in the optimal solution. Figure 11 shows
the simulation results based on the 2-ranked algorithm.
The average weighted (unweighted) accuracy based on
the M F D algorithm and 2-ranked algorithm are 97.71%
(94.99%) and 99.96%(99.77%), respectively.
Example 4: In this example, we apply the AdFD and
Lranked algorithms to the medical example in [14, 191.
The system under consideration is for neuropsychiatric
diagnosis. The system consists of 26 disorders (failure
sources) from psychiatry and neurology which affect men-
tal status. A list of 56 symptoms (tests) and signs was
assembled for each disorder. There are 384 links in the
system, each of which connects a disorder to a manifes-
tation. Similar to [14], five groups of test cases are used
to test the M F D and Lranked algorithm. Manifesta-
tions are chosen randomly from the total set of 56 possi-

Figure 9: Simulation Results for m=n=1000

ble manifestations based on a uniform distribution. Each
group of test cases consists of ten different sets of manifes-
tations. Each case in the first test group has one present
manifestation (failed test); each case in the other groups
have 3, 5, 7 and 9 manifestations. If any randomly gen-
erated test result is inconsistent with the causal network,
the case is discarded and a new one is generated. The
inconsistent test results may occur because the causal
network used in the experiment has some perfect tests,
i.e., Pdij = 1 and P fij = 0. Thus, after applying the first
Lemma, and reducing the size of the problem, the sec-
ond Lemma may not be satisfied, i-e., there exists a failed
test that is not covered by any failure source. Simulation
results show that among all 50 cases M F D algorithm
and 2-ranked algorithm generate 98% and 100% optimal
solutions, respectively. Peng and Reggia applied their
competition-based connectionist methods to this causal
network. Their algorithm generated 74% of globally o p
timal solutions, and 90% of one of the three globally o p
timal solutions.

VII. ~onclusion

In this paper, we considered the problem of construct-
ing optimal and near-optimal multiple fault diagnosis
in bipartite systems with unreliable (imperfect) tests.
We presented a multiple fault diagnosis algorithm based
on Lagrangian relaxation and subgradient optimization
method, which provides near optimal solutions for the
multiple fault diagnosis, and upper bounds for an optimal
branch-and-bound algorithm. Computational results in-
dicate that our algorithm can be used in systems with
as many as 1000 faults. In addition, we presented an
algorithm to generate the set of L-ranked multiple fault
candidates. In this algorithm, we find the most likely
candidate using the near optimal multiple fault diagn*
sis algorithm. Then, we partition the problem, based on
the first solution, to a set of disjoint subproblems. The

solutions to these subproblems with the highest likeli-
hood represents the second most likely candidates. This
procedure is continued until Granked multiple fault di-
agnoses are found, or no more feasible solutions exist.
We showed that the computational complexity of this
approach is 0(Lm2 ITf I), and therefore, applicable for
systems with as many as 1000 faults and tests. Finally,
we extended the multiple fault diagnosis problem to re:
dundant or repetitive tests. In this case, the problem is
very similar to the original multiple fault diagnosis prob-
lem, and therefore, the MFD algorithm can be extended
to this problem as well.

[7] M.L. Fisher and P. Kedia. Optimal solution of set
covering/partitioning problems using dual heuris-
tics. Management Science, 36:674-688,1990.

[8] C.A. Floudas. Nonlinear and Mixed-Integer Opti-
mization, Fundamentals and applications. Oxford
University Press, 1995.

[9] J.A. Miller, W.D. potter, R.V. Gandham, and C.N.
Lapena. An evaluation of local improvement opera-
tors for genetic algorithms. IEEE %ansaction on
Systems, Man, and Cybernetics, 23(5):1340-1351,
September/October 1993.

In this paper, we assumed that the test results are
[lo] R.A. Miller, M.A. McNeil, S.M. Challinor, F.E.

known prior to diagnosis. That is, we considered the Masarie, and J.D. Myers. The internist-l/quick
problem of multiple fault diagnosis with unreliable tests. medical reference project. West. J. Med. 145. pages
The problem of sequential multiple fault diagnosis strat-
egy (testing) with unreliable tests is an important prob-

816-822, 1986.

lem in fieldmaintenance. Furthermore, thisrder of par- [l l] R.E. Miller and J.W. Thatcher. Complexity of Com-
titioning in the L-ranked algorithm may improve the ac- puter Computations. Plenum Press, 1972.
curacy of the near-optimal solutions. We expect to in-

[12] K.G. Murty. An algorithm for ranking all the as- . vestigate these challenging issues in our future efforts.
signments in order of increasing cost. Operations

Acknowledgment R-search, 16:682-687,1968.
We would like to thank Yun Peng, Jim Reggia and

Jonathan Wald for allowing us to use the data for the [IS] G-L- kmhauser and Wolse~ L-A- Integer and Corn-
medical application example. binatorial Optimization. John Wiley3nd Sons, 1988.

References

[I] J.E. Beasley. A Lagrangian heuristic for set-covering
problems. Naval Research Logistics, 37:151-163,
1990.

[2] J.E. Beasley. Enhancing an algorithm for set cov-
ering problems. European Journal of Operational
Research, 58:293-300, 1992.

[3] Z. Binglin, Y. Tinghu, and H. Ren. A genetic a]-
gorithm for diagnosis problem solving,. Conference
Proceedings. International Conference on Systems,
Man and Cybernetics, 2:404-408, 1993.

G.F. Cooper. The computational complexity of
probabilistic inference using bayesian belief net-
works. Artificial Intelligence, 42:393-405, 1990.

[5] I.J. Cox and M.L. Miller. On finding ranked as-
signments with application to multi-target tracking
and motion correspondence. IEEE If.ansactions on
AES, 32(1):486-489,1995.

[6] M.L. Fisher. The Lagrangian relaxation method
for solving integer programming problems. Manage-
ment Science, 27(1):1-18, 1981.

[14] Y. Peng and J.A. Reggia. Abductive Inference Mod-
els for Diagnostic Problem-Solving. Springer-Verlag,
1990.

[15] Y. Peng and J.A. Reggia. -A connectionist model
for diagnostic problem solving. IEEE Transaction
on Systems, Man, and Cybernetics, 19(2):2S5-298:
March/April 1989.

[16] Y. Peng and J.A. Reggia. A probabilistic causal
model for diagnostic problem solving, part 11: Di-
agnostic strategy. IEEE +Transaction 'on Systems:
Man, and Cybernetics, 17(3):395-406, May/June
1987.

[17] A. Schrijver. Theo y of Linear and Integer Program-
ming. John Wiley and Sons, 1986.

[18] M.M. Syslo, N. Deo, and J.S. Kowalik. Discrete
Optimization Algorithms. Prentice-Hall, Inc, 1983.

[19] J. Wald, M. Farach, M. Tagarnets, and J. Reggia.
Generating plausible diagnostic hypotheses Kith self
processing causal networks. Journal of E x p e ~ e n i a l
and Theoretical AI, 3591-112, 1991.

[20] T.D. Wu. A problem decomposition method for
efficient diagnosis and interpretation of multiple
disorderss. Computer Methods and Programs in
Biomedicine, 35:239-250, 1991.

Algorithms for Multiple Fault Diagnosis with Unreliable Tests a, '5b

Mojdeh shakerit, Vijaya ~ a ~ h a v a n ~ , Krisl~na pattipatitt, and Ann pa t t e r son-~ ine++ '

Qualtech Systems ~ n c . ~

Box-407, Mansfield Center, CT 06250

e-mail: mojdeh@sol.uconn.edu

Department of Electrical and Systems ~ n ~ i n e e r i n ~ ~ ~

.University of Connecticut, Stcrrrs, CT 06269-3157

e-mail: krishna@sol.uconn.edu
-- .

NASA-Ames Research Center, Mail Stop 269-4ttt

Moffett Field, CA 94035-1000

e-mail: Ann-Patterson-Hine@styx.arc.nasa.gov

Abstract

In this paper, we consider the problem of constructing optimal and near-optimal multiple

fault diagnosis (MFD) in bipartite systems with unreliable (imperfect) tests. I t is known that

exact computation of conditional probabilities for multiple fault diagnosis is NP-hard. The

novel feature of our diagnostic algorithms is the use of Lagrangian relaxation and subgradient

optimization methods to provide: (1) near optimal solutions for the MFD problem, and (2)

upper bounds for an optimal branch-and-bound algorithm. The proposed method is illustrated

using several examples. Computational results indicate that: (1) our algorithm has superior

computational performance to the existing algorithms (approximately three orders of magnitude

improvement over the algorithm in [3]), (2) the near optimal algorithm generates the most likely

candidates with a very high accuracy, and (3) our algorithm can find the most likely candidates

in systems with as many as 1000 faults.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

With the increased recognition of importance of design for testability, there is an increasing

trend towards the use of smart sensors for on-b~ard system health management. The results of

on-board tests are available to the ground test systems and operators as a block of symptoms.

Due to improper set up, operator error, electromagnetic interference, environmexltal conditions: or

aliasing inherent in the signature analysis of on-board tests, the nature of tests may be unreliable

(imperfect). Imperfect tests introduce an additional element of uncertainty into the diagnostic

process: the pass outcome of a test does not guarantee the integrity of components under test

(because the test may have missed a fault), or a failed test outcome does not mean that one or more

of the implicated co~nponents are faulty (because the test outcome may have been a false alarm).

Consequently, the diagnostic procedures must hedge against this uncertainty in test outcomes.

In this paper, we consider the problem of constructing optimal and near-optimal multiple fault

diagnosis in bipartite digraphs with unreliable tests. This problem is a central and long-standing

concern in system fault diagnosis, and medical decision making [lo]. When the false alarm probabil-

ities of all tests are zero, the problem simplifies to the parsimonious covering theory (or probabilistic

causal model) discussed in [l G] . Peng and Reggia [15] proposed a competition based connectionist

method to subdue the problem of combinatorial explosion in computing the posterior probabilities

of all possible combinations of failure sources in probabilistic causal models. However, this method

does not guarantee a global optimum and suffers from large computation times even for problems

with small numbers of failure sources, m=26.

Genetic algorithms are offered as an alternative to the connectionist methods 13, 91. Genetic

algorithms are based on an analogy with Darwin's biological evolutionary theory in which a group of

solutions evolves via natural selection. It emulates the rules of biological evolutionary process, such

as reproduction, crossover, mutation, and natural selection, etc. At each iteration, a population of

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 3

individuals is established, where each individual corresponds to a point in the search space. The

objective function is evaluated for each individual to rate its fitness. Then, a next generation is

formed based on the survival of the fittest. Therefore, the evolution of individuals from generation to

generation tends to result in fitter individuals (i.e., solutions) in the search space. These algorithms

converge extremely slowly, and have been applied to small problems with m=20 failure sources

(causes, disorders) and n=20 tests (manifestations, symptoms).

Wu [20] proposed a decomposition method based on common and disjoint causal (failure source)

relationships among the given symptoms (tests). This method decomposes the original problem

into smaller and independent subproblems, and therefore, increases the performance and efficiency

of multiple fault diagnosis. However, this approach is not applicable for systems with large uumbers

of ~~o~~decomposable causes and symptoms.

In this paper, we present a novel approach, using Lagrangian relaxation, to solve multiple fault

diagnosis problem. By defining new variables and constraints, the multiple fault diagnosis (3 i F D)

problem reduces to a. combinatoriaJ optimization problem with a set of equality constraints. The

constraints are relaxed via Lagrange multipliers. The relaxation procedure generates an upper

bound for the objective function. The procedure of minimizing the upper bound via a subsadient

optimization produces a sequence of solutions that are modified, in a computationally--eii'ective

way, to produce a sequence of feasible solutions t o the MFD problem. If the objective function

value for the best feasible solution and the upper bound are the same, the feasible solution is the

optimal solution. Otherwise, the difference between the upper bound and the feasible solution.

termed the approximate duality gap, provides a measure of suboptimality of the MFD solutiou.

Alternatively, the optimal solution can be found via a tree search (or branch-and-bound) procedure.

The computational complexity of the near-optimal algorithm is a linear function of the number of

failure sources, m and the number of failed' tests, ITjl.

Next, we present an approach to determine a ranked set of multiple fault diagnosis solutions

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 4

(i.e., the best, second best, ..., L-tll best diagnosis). In this approach, following Murty [12] and

Cox et. al. [5] , we: (1) partition the MFD problem, based on its best solution, into disjoint

subproblems; (2) solve the subproblems and sort them by the values of their solutions, and (3)

select the subsequent best solutions. One of the advantages of this approach, compared to the

one in [14], is that since the subproblems are disjoint, the optimal solution of ex11 subproblem is

different from the others. Finally, we show that the AdFD algorithm can be extended to solve

multiple fault diagnosis problems with repetitive application of tests.

The paper is organized as follows. I11 Section 11, we formulate the multiple fault diagnosis prob-

lem in a bipartite system. In Section 111, we present a near-optimal algorithm based on Lagrangian

relaxation and subgradient optimization method to diagnose multiple faults, and generate an upper

bound for the likelihood of multiple fault candidates. The upper bound can be used in an optimal

branch-and-bound algorithm. The multiple fault algorithms for a set of L-ranked multiple fault

diagnoses are presented in Section IV. In Section V, we consider the multiple fault diagnosis prob-

lem with repetitive tests. Several examples are presented in Section VI. Finally, in Section VII, we

summarize the results and discuss future research issues.

The MFD problem in bipartite systems with imperfect tests consists of a bipartite digraph

DG = {S, T, E) , where

S = {sl, ..., s,) is a finite set of independent failure sources (failure nodes) associated with

the system;

0 T = {tl , tz, ..., t,) is a finite set of n available binary outcome tests (test node), where the

integrity of system failure sources/components/modules can be ascertained;

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Figure 1: Detection-False- Alarm Probability of Fa.ilure Source s; and Test 2j

E = {e;j) is the set of digraph edges (links) specifying the functional information flow between

the set of failure sources and the set of tests in the system.

The input .equirements of the failure nodes and edges of t.he digraph are as fo1lois.s:

I. Failure node: A y r io r i probability vector of failure nodes P = [p(sl), ..., p(s,)], where p(s;) >

0 is the a priori probability of failure source s;.

2. Link (edge): A set of probability pairs P;j = (Pdij, Pfij) representing the detection-false-

alarm probabilities of the set of tests, where Pd;j and P fij are the detection and false alarm

probabilities of test t j and failure source s;, respectively (see Figure 1). Figure 2 shows a

bipartite digraph model.

The problem is to find the most likely candidates X c S that are consistent with the results of

applied tests. This is formulated as:

where Tp c T and Tf 2 T denote the set of passed and failed tests, respectively. Using Bayes' rule

and eliminating the constant factor Prob(Tp, Tf), we obtain the following equivalent maximization

problem:

Submitted to I E E E Trans. on Systems, Man, and Cybernetics

Figure 2: Illustration of the Bipartite Digraph Model

For ilotational simplicity, we define binary vector : of size m, where x; = 1 if failure source

s; E X; x; = 0, otherwise. Note that, given a multiple fault candidate X, the tests are independent.

Thus, the above probabilities can be evaluated as follows:

where O(tj) E {p(=~ass), f(=fail)) is the outcome of test t j , and Pd;j = 0 and Pfij = 0 for

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

One approach for generating the optimal multiple fault diagnosis is to consider all possible

combinations of failure sources, i.e., the power set 2s, and select the multiple fault candidate with

the highest likelihood function in (1). However, the computational complexity of this approach is

exponential in the number of failure sources m. In the following, we present an algorithm: based on

Lagrangian relaxation and subgradient optimization method, to generate a near-optimal solution

for this problem.

By substituting (3) and (4) into (2) and taking the natural logarithm of the resulting objective

function, the problem is equivalent to:

max C In(Prob(O(tj) = f IS)) +
X E S t j€T,

By substituting (5) , (6) and (7)'into (S), the problem reduces to:

-
wherep; = .&],Pf,. = 1-PIij and Pdi j = 1- Pdij f o r i = 1 ,..., mand j = 1 ,..., m. By

(i) eliminating constant factors Egl ln(1- p(s;)) and CCETp CC1 l n (n ik) , and (ii) defining new
-

variables yj = [n ~ l (~) x i] [n ~ l (~ i j) ~ for t j E Ti, and taking the natural logarithm of it, the

problem reduces to the following optimization problem:

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 8

m -
Pdi j

m

subject to : 1n(yj) = C X; ln(=) + C l n (m j)
i=l Pf ij ;=I

0 5 yj < 1 fort j E Tj

x; = 0 or 1 for i = 1, ..., m

where - y = [yl , ... , yli-,l], and I .I denotes set cardinality. For simplicity, we define h j = xzl 1 n (v i j)

for t j E TI. The following lemmas present two important properties of the MFD problem.

Lemma 1: If Pd;k = 1 for any passed test tk, then the optimal solution does not contain failure

source s;, i.e., x;=0 (or equivalently s; 4 X).

Proof: If s; E X (or xi = I), then the second part of the objective function in (lo), and.

consequently, the overall objective function will be unbounded, i.e., it would be -m.

Using Lemma 1, the size of the MFD problem can be reduced by removing all failure sources

(silP fik=O, Pdik = 1 and tk E T,) from the problem.

Lemma 2: If the false alarm probabilities of a failed test t j are zero, i.e., Pf;j=O for i = 1, ..., m,

then the optimal solution contains at least one x;=1, for which Pd;j > 0. That is, the optimal

solution must cover the failed tests.

Proof: We prove this lemma by contradiction. Pfij=O for i = 1, ..., m results in hj=O. If for all

Pdii > 0, xi=O, then we have ln(yj)=O and, hence; yj = 1. Thus, ln(1 - yj), the first part of the

objective function in (lo), and, consequently, the overall objective function will be unbounded.

Using Lemma 2, we define the following constraints:

A g > g f o r t j € T j and h j = O (14)

where A = {alj) is a binary matrix of size IHI xm; H = {tj E TfIhj = 0 for j = 1, ..., n}; each

row 1 of matrix A corresponds to a failed test t j with h j = 0; al;=l, if Pd;j > 0 for i = 1, ..., m;

otherwise, al;=O, and g is a vector of 1's.

Adding the set of constraints (14) to the problem in (10)-(13) results in a smaller search space

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 9

and tighter upper and lower bounds (which result in faster convergence), and, therefore, a better

estimate of the optimal solution.

Lemma 3: When all tests are perfect, that is, Pdij = 1 and PIij = 0 for i = 1, ..., m, j = 1, ..., n

a.nd eii E E, using Lemmas 1 and 2, the problem reduces to the following set-covering problem:

m a , - CSiE,- In(pi)ri subject to (13) and (14), where S- is the reduced set of failure sources, i-e.,

S after eliminating the failure sources satisfying Lemma 1.

Proof: This lemma can easily be proved by Lemmas 1 and 2. Pd;j = 1 and P fij = 0 for the

failed tests results in hj = yj = 0. Therefore, the first part as well as the second part (using Lemma

1) of the objective function in (10) can be eliminated, and the problem reduces to the traditional set

covering problem. The set covering problem can be solved optimally by any optimal set-coveri~lg

algorithm [2, 71, or near-optimally via a Lagrangian relaxation and subgradient optimization - . method

(11 -

By relaxing the constraints in (11) via Lagrange multipliers { Xj}, we obtain the Lagrangian

function:

max Q (A, g, - y) =
Ejg

C {111(1 - yj) + X j 11l(~j)} +
tjETf

subject to (12), (13) and (14), where fj(Xj,yj) and ci(A) denote the first and second expressions

in the brackets in (15), respectively. The important point here is that the maximization of La-

grangian function in (15) with respect to a: and - y can be carried out independently for each fixed A.

Maximization of Q(A, a:, - y) with respect to - y is equivalent to:

max fj(Aj, yj) = ln(1- yj) + X j ln(yj) for t j E T j
0 < ~ j S l

Submitted to IEEE Trans. on Systems, Man, and Cybernetics
*

The maximum of this function is y:(Aj) = &s(Aj). At the value of y;(Aj), the first and sec-

ond derivatives of the function are zero and negative, respectively, indicating that fj(Aj,yj) is a

maximum (where u(.) ,is the unit step function).

The maximization of the Lagrangian function Q(A,g,y) with respect to a: is equivalent to:

..-

max W (a 3) = c;(A)z;
E i=l

subject to (13) and (14), which is a traditional set-covering problem. This problem has been

extensively studied by the operations research and management science communities [2, 71. There

exist a number of optimal algorithms, based on feasible solution exclusion constraints, Gomory

f-cuts and tree-search procedures for this problem [2, 71. Let 2*(A) be the optimal solution of this

set-covering problem. Thus, Q(A, g*(A), y*(A)) is an upper bound for the optimal objective value
-.....

in (10). This result is summarized in the following Lemma:

Lemma 4: Let J* be the optimal value of the objective function in (10). Then Q (A, :"(A),

y*(X)) 2 J* for any A. -

Proof: Let ,z.0 and - yo be the optimal solution of the problem in (10). Thus. Q(X, go, yo) I -

Q(X, * (A) , y*(A)). This is because, "(A) and - y*(A) are optimal with respect to the relaxed problem

in (15). Since the optimal solutions go and - yo satisfy (1 I), we have &(A, 2, yO) =- J' , and therefore,

J* 2 &(A, ,*(A), y*(A)).

After evaluating the optimum values ,*(A) and - y*(X) for a fixed A, the problem reduces to one

of minimizing the upper bound &(A)= &(A, x*(A), y*(X)). Since Q(A) is a piecew~ise differentiable

function of A, this problem cannot be solved using differentiable optimization As an

alternative, we use a subgradient optimization algorithm [13] to produce a sequence of upper bounds

for &(A)-

If we denote by &*, the optimal Lagrangian function value, i-e., Q*= Q(r)=minxQ(X), - the

difference (Q* - J*) is termed the exact duality gap. Since the problem in (10)-(14) is NP-hard [4],

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 11

we may never know the global optimal solution J*. Instead, we construct several feasible solutions

to this problem from the Lagrangian function solution, and select the best feasible solution from

the set. Let J(*, f , 2) be the best feasible value, then we have, ~ (* , f , - yf) < J* < Q'. A nice

feature of the Lagrangian relaxation method is that the approximate duality gap:

&* - J(X' ,d ,gf) = (QX - J*) + (J* - J (K , ~ ~ , $)) > 0 (18)

provides an overestimate (by the value of t11e exact duality gap, (Q* - J')) of the error between

the global optimal solution and the best feasible solution found. Thus, in some cases, even though

the best optimal solution found is the optimum solutio~l of the problem, the approximate duality

gap may be nonzero, see Example 1 in Section VI. Based on extensive computational experiments,

the relative approximate duality gap, 6J, defined by:
- --

is small for the multiple fault diagnosis algorithms (typically Iess than 5%). The pseudocode of the

multiple fault diagnosis algorithm is presented in the next section.

A. Multiple Fault Diagnosis Algor-ithm

Let (f, - yf), Q,i,, Qua and Qla be the best feasible solution found, minimum upper bound,

current upper bound and maximum lower bound (function value based on the best feasible solu-

tion found, i.e., J (~ ,yf)) for Q(X,g,g), respectively. The pseudocode of multiple fault diagnosis

algorithm is shown in Figure 3.

Submitted to IEEE Trans. on Systems, Man, and Cyberzletics 12

Initialiiation: Initialize: (1) X j = 1 for j = 1, ..., ITr!, (2) Qm;n = W , (3) Qlb = -w, and (4)

set iteration count t = 1, The reason for initializing X j = 1 is that it results in yj* = 0.5.

Step 1: Find optimum values * (. A) by solving the set-covering problem in (17).

Step 2: Find optimum values - y*(A) where $(Aj) = &$u(Xj) for j = 1, ..., ITf I -

Step 3: Evaluate - y($(A)) using equation (11).

Step 4: Update z f , y f , Qminr Qub and Qlb as follows:

If J(z*(A),y(z*(X))) 2 Qlb , then :f = :"(A), grf = y(z*(A)),

and Qlb = J(g*(A), - y(:*(X))),

Qub=Q(X,X(X),y*(X)) ,

Qmin = mill(Qnin, Qtrb) -

-
Step 5: ~a1cu la t~ ' the subgradient d j = ln(&) - {Cg+2f(\) l n (5) f h j) for j = 1, ..., ITf(.

Pf i j

Step 6: Stop if ~2; d: = 0 since in this case we cannot define a suitable step size.

S tep 7: Define a step size /3 by 0 = - f where initially f = 2. I f Qmin has not cc,Zf* $1

decreased in the last 10 iterations of the subgradient procedure with the current value

off , then f is halved. This approach to deciding the value off is based on the

p~ecedure of Fisher [6]. The parameter a. with typical value 1 < a. < 1.1 is to ensure

that p does not become too small as the gap between QUb and Qlb decreases [I] .

Step 8: Stop iff _< 0.05 or t 2 100 (or any other suitable stopping criteria).

S tep 9: Update the Lagrange multipliers X j as follows: X = max(0, X j + Bdj) for t j E T j ,

t t t + 1, and go to step 1.

Figure 3: Pseudocode of MFD Algorithm

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

B. Computational Issues

The computational complexity of MFD algorithm for all steps except the first step is O(nzl'l"f1).

It is well known that the set-covering problem is ,NP-hard [Ill, and therefore, the first step of the

multiple fault diagnosis algorithm limits the size of the problem that we can solve.

One of the important points here is that a near-optimal solution as well as an upper bound

solution for the set-covering problem can be found via Lagrangian relaxatior~ method [I] in a manner

similar to the AIFD algorithm. Let gn(X) and e (X) denote the near-optimal (best feasible solutioll

found) and upper bound solution for the set-covering problem, respectively. Note that any feasible

solution for the set-covering problem is a feasible solution for the multiple fault diagnosis problem.

However, for a given A, the best feasible solution for set-covering may not be the best feasible

solutidi for the multiple fault diagnosis problem. Therefore, we have: J(gn(X), - y(C(X))) < .I' F:

Q(A, g(A) , g*(X)) < Q(X, g"(X), - y* (a)). Thus, using y (X) and gn(X), we can generate a sequence

of upper and lower bounds to the multiple fault diagnosis problem. I11 this case, the multiple

fault diagnosis algorithm should be modified as follows: replace the optimal solution g*(& in the

algorithm with the near-optimal solution gn(X), except in Qub where "(A) sllould be replaced by the

upper bound solution gu(X). By this modification, the computa.tiona1 complexit_v of this approach

reduces to O(mJTjJ) , and therefore, can be applied to large-scale systems. Note that, because of

storage complexity of storing Pdij and P f i j for all failure sources and tests, the available memory

of a given computer may limit the largest size of the problem that we can solve.

In large-scale systems, it is practical to assume that the detection and false alarm probabilities

of each test t j is the same for all failure sources connected to it, i.e., Pd;j=Pdj and Pf;j = P f j ,

if e;j E E, otherwise, Pdij=O and Pf;j=O. In this case, we define a binary reachability matrix

R = (~ i j) such that T i j = 1 if e;j E E, otherwise, r;j = 0. The detection and false alarm

probabilities of each test t j for each failure source s; can be evaluated as follows: Pd;j = rijPdj

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 14

and Pf;j = r;jP fj. Note that, in this case, the binary matrix R = T i j can be stored in a bit-

compacted format, and consequently, the storage complexity of the problem reduces by a factor of

approximately 2I<, where Ii' is the number of bits for representing a floating variable in a given

computer. For example, the storage complexity of the MFD problem for a system with 10,000

failure sources and tests when K=32 bits (or equivalently 4 bytes) are 800 Mbytes for storing Pdij

and Pfij, and 12.5 Mbytes for storing the binary matrix R = {r;j). However, by storing Pdj, 11fj

and R = {T;~}, the total memory required reduces to 12.6 hrlbytes.

Despite the complexity analysis results for the combinatorial nature of multiple fault problem,

the optimal solution for this problem can be found via a branch-and-bound. In the branch-and-

bound algorithm: (1) a binary tree is employed for the representation of the 0-1 combinations, (2)

the feasible region is partitioned into subdomains systematically, and (3) valid upper and lower

bounds are generated at different levels of the binary tree. The main objective in a general branch-

and-bound algorithm is to perform an enumeration of the alternatives without examining all 0-1

combinations of failure sources. Details of branch-and-bound algorithms can be found in any integer

programming textbooks, e.g., [8, 13, 17, 181.

IV. Ranked Set of Most Likely Candidates ... -

In this section, we consider the problem of determining a ranked set of solutions to the multiple

fault diagnosis problem. That is, the problem is to find L sets of most likely candidates. We present

the following sequential approach to solve this problem:

Initialization: Find the first most likely candidate X1 for the multiple fault diagnosis problem.

Algorithm: DO for l = 2, ..., L, or until no feasible solution exists,

Eliminate the set of candidates { x~,...,x"~) from the problem and generate

the 1-th most likely candidate.

Submitted to IEEE Tram. on Systems, Man, a.nd Cybernetics 15

The first part of the algorithm, i-e., initialization, can be solved by the algorithm of previous section.

In this section, we present an approach to solve the second part of the sequential algorithm. In this

approach, we solve a series of modified copies of the initial multiple fault. diagnosis.

A. Ranked Algorithm: Modified Copies of M F D Problem

In this approach, a t each iteration, we solve a series of multiple fault diagnosis problems as-

suming that the states of some of the failure sources are known prior to diagnosis, k., some failure

sources are kno\t.n good, and some of then1 axe know11 bad (definitely fa.ulty). A simi1a.r approach

has been considered by Murty El21 for determining a ranked set of solutions to assignment prob-

lems, and was recently enhanced by Cos et. al. [5] within the contest of multi-target tracking. For

simplicity, wve represent the multiple fault diagnosis problem by four-tuple F=(M FD, G, B, X),

where

1. M F D is the problem in (10)-(14),

2. G E S represents the set of known good failure sources, i.e., for all s; E G, z; = 0 (or s; $ X),

3. B E S represents the set of definitely faulty failure sources, i-e., for all s; E B, xi = 1 (or

- . SiEX) ,

4. X is the optimal solution to the MFD problem subject to G and 3.

Note that the number of unknown failure sources in I'=(MFD, G, B, X) is m - IG(- IBI. Initially,

G and B are empty, i.e., r1 = (M F D , 0,0, X1). Subsequent solutions to r1 are found by solving

a succession of multiple fault diagnosis problems that are created from r1 by a process called

partitioning. A problem, r, with the best solution X and size m -]GI - I B], is partitioned into a

set of subproblems, rl, ..., rm-lGl-lBl+l, such that:

The union of the set of possible solutions to rl through rm-IGI-IBl+l is exactly the set of

possible solutions to r,

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

The sets of possible solutions to & through I'm-lG1-lB1+l are disjoint, and

~m-lG1- lB1+l has only one solution X.

Let us assume thai I?' is a dummy subproblem that is used to generate the subproblems rl

through I'm-IGI-IBI+l from I'. The following procedure shows: (1) how to update the subproblem

I" = (MFD, G', Br , XT), and (2) how to make subproblem rl = (MFD, GI, B1, Xl j form I?' for

I = 1, ..., m. - IGI - I BI, sequentially, and finally, (3) I'm-IGI-IBl+l = I" - Initially, rT=I'. Then, for

1 = 1, ..., m-]GI - IBI, rT is partitioned as follows:

Select any s; E S - (G' U BT),

If s; E X, then GI c- GT U {s;) and BT + B' U {si), else Bl t BT U {s;) and Gr + Gr U {si).

Note that, at each iteration, the problem I" is partitioned into two disjoint subproblems. This is

because we force the subproblems to be different in the status of only one failure source s; in the

system, i.e., we a.dd s; to the set of definitely faulty failure sources in one subproblem, and to the

set of known good failure sources in another subproblem. In addition, S cannot be a solution to

r1 for 1 = 1, ..., m - IG(- (BI. Further more, I" is the only subproblem which contains X and only

X as its solution. This is because BT=X and G'=S - X.

As an illustration, let us consider a simple system with 3 failure sources {sl, sz , s3). In addition,

let us assume that the optimal solution for the M F D problem in this case is X={sl), i-e., I" =

(MFD, 0, 0, x1 = {sl)). Therefore, the hdFD problem can be partioned into the following

subproblems; I'l = (MFD, G = {sl), B = 0, XI); r2 = (MFD, G = 0, B = {s1,s2), X2), r3 =

(MFD, G = {sz), B = {s~,sQ), X3), itnd r4 = (MFD, G = (~ 2 , ~ 3) , B = {sl), X4).

Therefore, we partition I" according to its best solution X1, and place the resulting subproblems

together with their best solutions, except the last one, i.e., I'm-IGI-IBI+l, on a priority queue of

four-tuple (MFD, G, B, X). We then find a problem in the queue that has the best solution. The

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 17

solution of this problem is the second-best solution to the multiple fault diagnosis problem. Now,

we remove this problem from the queue and replace it by its partitioning. The best solution found

in the queue now is the third-best sdution to the multiple fault diagnosis problem, and so on. The

pseudocode for the L-ranked algorithm is shown in Figure 4.

Initialization: Find the first solution X1 to M F D problem, and initialize a priority queue of

four-tuple problems to contain only I'~=(MFD, 0, 0, XI). The top problem on this queue will

always be the problem with the highest likelihood solution.

Step 1: Clear the list of solutions to be returned.

Step 2: DO until priority queue of problems is empty.

Step 2.1: Take the top problem I'=(MFD, G, B, X) off the queue.

Step 2.2: Add X to the list of solutions.

Step 2.3: If the cardinality of solution set is L, Stop.

Step 2.4: Let I" =I',

Step 2.5: DO for 1 = 1 ,..., m- IGI - IBI,

Step 2.5.1: Partition I" into I" and I" as follows:

Step 2.5.2: Select any s; € S - (G' U Br),

Step 2.5.3: If si E X, then G' c Gr U (s;) and BT t BT U {s;),

else B' t Br U {s;) and G' t Gr U {s;).

Step 2.5.4: Find the best solution X' to I". If X' exists, add (MFD, G', B', x') to

the queue.

END

END

Figure 4: Pseudocode for L-Rank MFD Algorithm

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 18

Since each subproblem is NP-hard, we use the near-optimal M F D algorithm of previous section

to solve the ranked set problem near-optimally, i.e., X is a near-optimal solution for the problem

I'=(MFD, G, B, X). Thus, it is possible that l-th solution, i.e., x', has higher likelihood than

the k-th solution, i.e., xk, where k > 1. Note that, we perform one partitioning for each of the

L-best solution, in the worst case, each partitioning creates O(m) new problems. This creates up to

O(Lm) multiple fault problems and insertions on the priority queue. Each problem takes at most

O(mlTfl) time to solve near-optimally, and each insertion takes at most O(log(Lm)) time. There-

fore, the worst-case execution time of this approach is O(Lm(mlTfl + log(Lm))), or approximately,

0(Lm21Tf1)-

V. Multiple Fault Diagnosis with Repetitive Tests

- .

A reasonable and common situation in unreliable testing is to apply a test several times to

improve the confidence about a given hypothesis (a set of multiple fault candidates). For example,

in order to reduce the probability of error, i.e., false alarm and missed detection of some faults

(disorders or diseases), a system (a patient) may be tested multiple times, and because of imperfect

nature of tests, the test results may be different. In this section, we assume that each test t j has

been applied nj times in which it passed and failed--& and qj times, respectively, i-e., nj =' pj +
rlj. Note that applying a test a t different times is equivalent to applying independent tests with

the same structure. In this case, let us assume that Tj and Tp denote the set of failed and passed

tests (without any redundancy), respectively, and Tj n Tp may not be empty. Thus, the problem

is:

subject to (11)-(14). This problem is similar to the problem in (10). Thus, the algorithms in

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 19

previous sections can be readily applied to solve this problem. In this case: (1) in the first step of

the AfFD algorithm, c;(A) is a function of f i k for li = 1, ..., ITPI, i.e., the number of time that test tk

passed, and (2) in the second step of the MFD algorithm, the optimum of the objective function

with respect to - y is replaced by $(Aj) = &u(hj) for j = 1, ..., ITfI.

VI, Examples

Example 1: In this example, we consider: (1) a simple diagnostic problem with m = 20 failure

sources (disorders) and n = 20 tests (manifests) which was used as an example in [3]; (Example 1.a

- 1-d), and (2) a diagnostic problem with rn = 15 failure sources and n = 10 tests from [9]; (Example

1-e). The false alarm probabilities for these systems are all zero, i.e., Pfij = 0 for i = 1: ..., m and

j = 1, ..., n a-nd Tp= T - Tf. Figures 5 and 6 show the failure source and detection probabilities -. ..

for Example (1.a) through (1-d), and Example (l.e), respectively. Figures 7 and 8 shoti~: (1) the

set of failed tests Tf, (2) diagnostic results, (3) likelihood, (4) processing time and total number of

runs to converge to the diagnostic results, (5) total processing time and total number of runs, and
- -

(6) approximate duality gap. The diagnostic results are based on the near-optimal multiple fault

diagnosis algorithm in Figure 3. The processing times for these examples are obtained by running

the M F D algorithm on a SPARC 10. Binglin et. al. [3] presented a genetic algorithm. which

required 10 minutes to find the set of diagnoses in Example 1.a with an IBM PS/2 Model 40 SX-20

MHZ microcomputer. These results show the superior performance of our algorithm compared to

the algorithm in [3]. Miller et. al. [9] have not reported the processing time for Example 1.e.

However, the largest problem that they considered contained 20 failure sources and 15 tests.

Example 2: In this example, we consider systems with: (1) m=n=100, m=n=500 and m=n=1000,

(2) the probability of each failure source is set to a random number between (0.001,0.5), (3) each

test, on average, covers 5, 10 and 20 failure sources, (4) detection probabilities of a test associated

with its covered failure sources are set to random numbers between (0,1), (5) the false alarm prob-

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Figure 5: Probabilities for Example 1 .a- 1 .d

Figure 6: Probabilities for Example 1.e

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Figure 7: M FD Algorithm Results for Examples 1 .a- 1 .e

Ex.

1.a

1.b

1.c

1.d

1.e

Figure 8: M FD Algorithm Results for Examples 1 .a- 1.e

{silsi E X}

{Il 9, 10, 14, 171

{415,17120)

{1,5,9,14,16,17)

{4,5,8,14119)

{314,9112~ 13)

{jltj E Tf 1

{1,2,4,5,7,8,13,15}

{7, 8, 9, 11,14, 151

{1,3,4,6,7,11,13,15,16}

{1,2,3,7,8,12,13,17)

{1,2,415,7,8,9,10)

Ex.

1 .a

1.b

1.c

1 .d

1 .e

Prob(X(Tfl Tp)

3.66e-O9

1 .32e-lo

6.82e-l3

2.49e-O9

7.77e-O2
J

Convergence

Runs

8

2

2

1

2

Approxi~tlate

Duality Gap

4.68%

4.76%

4.69%

4.69%

4.52%

Time (sec)

0.170

0.009

0.050

0.004

0.007

Total
- .

Runs

58

65

68

64

58

Time (sec)

0.310

0.240

0.340

1.83

0.15

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 22

abilities are assumed to be zero, and (6) the number of failed tests are 5, 10 and 20. Figures 9,

10 and 11 show the simulation results for these systems. Each row of these Figures represents the

average of simulation results for 5 randomly generated systems. Note that, in most of the cases, the

average approximate duality gaps are around 5%. However, in some of the cases, for example, the

last row of Figure 9, the approximate duality gap is very large, i.e., 22.15%. In order to improve

the solution (or, equivalently, approximate duality gap), we can apply the L-ranked algorithm. The

average approximate duality gap based on 2-ranked algorithm for the last set of systems in Figure

9 reduces to 1.49%.

Figure 9: Simulation Results for m=n=100

Example 3: In this example, we consider three systems with 10 failure sources and 10 tests as

in [15]. The false alarm probabilities are assumed to be zero. The simulation results for 2'' possible

combinations of test results are shown in Figure 15. The second column shows the number of correct

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Figure 10: Simulation Results for m=n=500

Average

Test

Coverage

5

5

5

10

10

10

20

20

20

cases out of 1024 possible combina.tions of test results. The third column shows the weighted

probability of correct cases. The columns corresponding to Nd and hij denote the unweighted

probabilities of detection, i.e., the unweighted probability of common faulty failure sources'in the

optimal and near-optimal solutions, and false alarm, i.e., the unweighted probability of faulty failure

sources in the near-optimal solution and not in the optimal solution. Figure 16 shows the' simulation

ITfI

5

10

20

5

10

20

5

10

20

results based on the 2-ranked algorithm. The average weighted (unweighted) accuracy based on the

M F D algorithm and 2-ranked algorithm are 97.71% (94.99%) and 99.96%(99.77%), respectively.

Example 4: In this example, we consider the medical example in [14, 191. The system under

consideration is for neuropsychiatric diagnosis. The system consists of 26 disorders (failure sources)

from psychiatry and neurology which affect mental status. A list of 56 symptoms (tests) and signs

was assembled for each disorder. There are 384 links in the system, each of which connects a

Convergence

Runs

1

3

16

1

1

15

1

6

11

Approximate

Duality

Gap

4.15%

3.96%

4.23%

4.82%

4.60%

6.60%

3.75%

3.00%

16.03%

Time

(set)

0.54

1.62

7.15

0.48

1.20

19.25

0.56

6.55

26.19

Total

Runs

62

72

66

58

69

67

5 1

64

64

Time

(set)

23.56

44.58

32.77

26.99

46.68

85.37

30.41

60.33

184.06

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Figure 11: Simulation Results for m=n=1000

disorder to a manifestation. Similar to [14], five groups of test cases are used to test the MFD

Approximate

Duality

Gap

5.89%

5.12%

4.59%

4.09%

4.27%

4.99%

4.28%

4.94%

9.42%

Average

Test

Coverage

5

5

5

10

10

10

20

20

20

and L-ranked algorithms. Manifestations are chosen randomly from the total set of 56 possible

manifestations based on a uniform distribution. Each group of test cases consists of ten different

ITf[

5

10

20

5

10

20

5

10

20

sets of manifestations. Each case in the first test group has one present manifestation (failed test);

each case in the other groups have 3, 5, 7 and 9 manifestations. If any randomly generated test

result is inconsistent with the causal network, the case is discarded and a new one is generated.

Convergence

The inconsistent test results may occur because the causal network used in the experiment has

some perfect tests, i.e., Pdij = 1 and P f;j = 0. Thus, after applying the first Lemma, and reducing

the size of the problem, the second Lemma may not be satisfied, i-e., there exists a failed test that

is not covered by any failure source. Simulation results show that among all 50 cases MFD and

Runs

2

2

2

1

2

5

1

11

28

Total

2-ranked algorithms generate 98% and 100% optimal solutions. Peng and Reggia applied their

Time

(sec) '

3.39

3.53

5.02

2.27

3.83

11.90

3.26

30.29

139.14

Runs

67

73

67

54

55

66

53

57

76

Time

102.09

122.88

138.56

87.95

99.53

169.60

103.29

137.15

374.54

Submitted to IEEE Trans. on Systems, Man, atid Cybernetics

Figure 12: Failure Source and Detection Probabilities for Example 3.a

Figure 13: Failure Source and Detection Probabilities for Example 3.b

p(s l)= 0.34 p(s2)= 0.14 p(s3)= 0.06 p(s4)rr. 0.24 p(s5)= 0.27

p(sg)= 0.36 p(s7)= 0.30 p(sg)= 0.06 p(sg)m 0.28 p(slo)= 0.10

Pdl,2= 0.06 PdlS4= 0.68 PdlP6= 0.10 Pd lS7r 0.51 Pd2,1n 0.53

Pd2,3= 0.81 P d ~ , 4 = 0.09 PdZn5= 0.85 PdZSg= 0.13 Pd2,9= 0.34

P d 2 , ~ ~ = 0.85 Pd3,2= 0.54 Pd3,5= 0.45 Pd3,6r 0.90 Pd3,7= 0.59

Pd3,10= 0.29 Pd4 2= 0.74 Pd4,5= 0.52 Pd4,7r 0.65 Pd4,9= 0.32

Pd5,3= 0.72 Pd5,g= 0.49 P e t 3 x 0.09 P 4 , 5 r 0.66 P d 6 , 1 0 ~ 0.44

P ~ T , ~ = 0.22 P d 7 , ~ = 0.46 Pd7,5= 0.21 PdlP6r 0.76 Pd7,10= 0.43

p d ~ , ~ = 0.29 Pdg,2= 0.34 P d 8 , ~ = 0.25 P d g S l t 0.39 Pdg4= 0.20

Pdg 5= 0.90 Pdg 6= 0.48 Pdg,7= 0.38 PdlOr2= 0.74 Pd10,8r 0.27

Figure 14: Failure Source and Detection Probabilities for Example 3.c

Submitted to IEEE Trans. on Systems, Man, and Cyberiletics

Figure 15: MFD Alg. Results for Examples 3.a-3.c

Figure 16: Zranked Alg. Results for Examples 3.a-3.c

N.f

0.39%

0.31%

0.37%

N d

98.63%

97.60%

97.66%

Example

3 .a

3.b

3.c

Correct cases

Times (out of 1024)

992 (96.88%)

971 (94.82%)

955 (93.26%)

Weighted

99.91%

98.61%

94.61%

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 27

competition-based connectionist methods to this causal network. Their algorithm generated 74%

of globally optirrlal solutions, and 90% of one of the three globally optimal solutions.

VII. Collclusion

111 this paper, we considered the problem of constructing optimal and near-optimal multiple

fault diagnosis in bipartite systems with unreliable (imperfect) tests. We presented a multiple fault

diagnosis a~gorithm based on Lagrangian relaxation and subgra.dient optimization method, which

provides near optimal solutions for the multiple fault diagnosis, and upper bounds for an optimal

branch-and-bound algorithm. Computational results indicate that our algorithm can be used in

systems wit11 as many as 1000 fa.ults. 111 addition, we presented an algorithm to generate the set

of L-ranked multiple fault candidates. In this algorithm, we find the most likely candidate using

the near optima.1 multiple fault diagnosis algorithm. Then, we partition the problem, based on

the first solution, to a set of disjoint subproblems. The solutions to these subproblems with the

highest likelihood represents the second most likely candidates. This procedure is continued until

L-ranked multiple fault diagnoses are found, or no more feasible solutions exist. We showed that

the computational complexity of this approach is 0(Lm21Tf I), and therefore, applicable for systems

with as many as 1000 faults and tests. Finally, we extended the multiple fault diagnosis problem to

redundant or repetitive tests. In this case, the problem is very similar to the original multiple fault

diagnosis problem, and therefore, the MFD algorithm can be extended to this problem as well.

In this paper, we assumed that the test results are known prior to diagnosis. That is, we

considered the problem of multiple fault diagnosis with unreliable tests. The problem of sequential

multiple fault diagnosis strategy (testing) with unreliable tests is an important problem in field

maintenance. Furthermore, the order of partitioning in the L-ranked algorithm may improve the

accuracy of the near-optimal solutions. We expect to investigate these challenging issues in our

future efforts.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Acknowledglnelzt

We rvould like to thank Yun Peng, Jim Reggia and Jonathan Wald for allowing us to use the

data for the medical application example;

References

[I] J.E. Beasley. A Lagrangian Beuristic for set-covering problems. Naval Research Logistics,

37:151-163, 1990.

[2] J.E. Beasley. Enhancing an algorithm for set covering problems. European Journal of Opera-

tional Research, 58:293-300, 1992.

[3] 2. Binglin, Y. Tinghu, and H. Ren. A genetic algorithm for diagnosis problem solving,. Con-

ference Proceedings. International Conference on Systems, Man and Cybernetics, 23404-408,

1993.

[4] G.F. Cooper. The computational complexity of probabilistic inference using bayesian belief

networks. Artificial Intelligence, 42:393-405, 1990.

[5] I.J. Cox and M.L. Miller. On finding ranked assignments with application to multi-target
- -

tracking and motion correspondence. IEEE Transactions on Aerospace and Electronic Systems,

[6] M.L. Fisher. The Lagra~lgian relaxation method for solving integer programming problems.

Management Science, 27(1):1-18, 1981.

[7] M.L. Fisher and P. Kedia. Optimal solution of set coveringfpartitioning problems using dual

heuristics. Management Science, 36:674-688, 1990.

[8] C.A. Floudas. Nonlinear and Mixed-Integer Optimization, Fundamentals and applications.

Oxford University Press, 1995.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 29

[9] J.A. Miller, W.D. potter, R.V. Gandham, and C.N. Lapena. An evaluation of local improve-

ment operators for genetic algorithms. IEEE Transaction on Systems, Man, and Cybernetics,

23(5):1340-1351, September/October 1993.

[lo] R.A. Miller, M.A. McNeil, S.M. Challinor, F.E. Masarie, and J.D. Myers. The internist-i/quick

medical reference project. West. J. Med. 145, pages 816-822,1986.

[I 11 R.E. Miller and J. W. Tlzatcller. Con~plexity of Computer Conzputations. Plenum Press, 1972.

[12] K.G. Murty. An algorithm for ranking all the assignments ill order of increasing cost. Opera-

tions Research, 163682-687, 1968.

[13] G.L. Nemhauser and Wolsey L.A. Integer and Conzbinatorial Optimization. John Wiley and

Sons, 1988. -

[14] Y. Peng and J.A. Reggia. Abdu-ctive Inference hlodels for Diagnostic Problem-Solving.

Springer-Verlag, 1990.

[15] Y. Peng and J.A. Reggia. A connectionist model for diag~lostic problem solving. IEEE Trans-

action on Systenzs, Man, and Cybernetics, 19(2):285-298, March/April 1989.

[16] Y. Peng and J.A. Reggia. A probabilistic causal model for diagnostic problem solving, part

11: Diagnostic strategy. IEEE Transaction on Systenzs, Aian, and Cybernetics, 17(3):395-406,

May/June 1987.

[17] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1986.

[18] M.M. Syslo, N. Deo, and J.S. Kowalik. Discrete Optimization Algorithms. Prentice-Hall, Inc,

1983.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 30

[19] J. Wald, M, Farach, M. Tagamets, and J. Reggia. Generating plausible diagnostic hypotheses

with self processing causal networks. Journal of Experimental and Theoretical AI, 35:91-112,

1991.

1201 T.D. Wu. A problem decomposition method for efficient diagnosis and interpretation of mul-

tiple disorderss. Computer Methods and Programs in Biomedicine, 35239-250,1991.

Test Sequencing Algoritl~ms with Unreliable Tests

Vijaya ~ a ~ l i a v a n ~ , Mojdeh shakerit, and Krislina pattipatitt

Qualtech Systems ~ n c . ~

Box-407, Mansfield Center, C T 06250
e-mail: vijayQsol.uconn.edu

Department of Electrical and Systems ~ n ~ i n e e r i n ~

University of Connecticut, Storrs, C T 06269-3157
e-mail: krishnaOsol.uconn.edu

Abstract

In this paper, we consider imperfect test sequencing problems under single fault assumption. This
is a partially observed Markov decision problem (POMDP), a sequential multi-stage decision problem
wherein the states are the set of possible failure sources and information regarding the states is obtained
via the results of imperfect tests. The optimal solution for this problem can be obtai~ted by applyir~g a
continuous state Dynamic Programming (DP) recursion. However, the DP recursion is cornputationally
very expensive owing to the continuous nature of the state vector comprising the probabilities of faults.
In order to alleviate this computational explosion, we present an efficient implementation of the DP
recursion. We also consider various problems with special structure (parallel systems) and derive closed
form solutions/index-rules without having to resort to DP. Finally, we consider various topdown graph
search algorithms for problems with no special structure, including multi-step DP, multi-step information
heuristics and certainty equivalence algorithms. We compare these near-optimal algorithms with DP for
small problems to gauge their effectiveness.

An important issue in the field maintenance of systems is the imperfect nature of tests due to improper
setup, operator error, electromagnetic interference, environmental conditions, or aliasing inherent in the
signature analysis of built-in-self-tests. Typically, a user complaint, which is a subjective measure of system
performance, can also be considered as an imperfect test because it do& provide some insight into the
malfunction. Imperfect testing introduces an additional element of uncertainty into the diagnostic process:
the pass outcome of a test does not guarantee the integrity of components under test (because the test may
have missed a fault), or a failed test outcome does not mean that one or more of the implicated components
are faulty (because the test outcome may have been a false alarm).

The consequences of a test error depend on the disposition of the system after repair. If a test results in a
false alarm, a functioning component is replaced, and a failed component may be left in place. If the system
is then returned to service, the system fails immediately. In the case of missed detection by a test, the overall
test could indicate that no item has failed. In this case, the system might be returned to service where it fails
immediately or it might be scrapped. Either choice implies a cost. Relatively little attention has been given
to imperfect testing. Most research efforts were directed a t finding test strategies for systems with special
structure (parallel systems). The most complete treatment for parallel systems with imperfect tests is by
Firstman and Gluss [I] in which a two level testing is studied with both false alarms and missed detections
in tests. However, it is assumed that test errors are ultimately recovered by repeating the tests until a
proper repair is made. The test sequence is then determined in the same manner as for perfect testing. The
perfect-test rechecks assures test termination with proper repair and thus fails to capture the fact that test
errors are often unrecoverable. For many systems, imperfect test results cannot be recognized either because
of the test design or because retesting is economically infeasible. In these cases, the consequences of test

Submitted to IEEE Trans. on Systems, Man, and Cybernetics 2

errors occur outside of the repair facility. Nachlas and Loney [2] presented the problem of test sequencing
for fault diagnosis using unreliable tests for parallel systems. The objective of the fault diagnosis problem is
to minimize the expected cost required to diagnose and repair the failed component. They present heuristic
algorithms based on efficient enumeration of permutations of test sequences, which are not suitable for large
problems with arbitrary structures. These problems bekng to a class of hypothesis testing problems with
dynamic information seeking. Problems in dynamic search arise in a wide variety of applications [lo] [l l]
[12] [13] [14]. Dynamic search in the context of sequential detection was extensively treated by Wald [18] In
[15],[1G],[l~, different search problems in the presence of false alarms were considered.

In this paper, we consider a generalized formulation of the test sequencing problem in the presence of
imperfect tests for systems of arbitrary structure. The test sequencing problem in this case is a partially
observed Markov decision problem (POMDP) [8] [9], a sequential multi-stage decision problem wherein the
states are the set of possible failure sources and information regarding the states is obtained via the results
of imperfect tests. The optimai solution for this problem can be obtained by applying a co~ltinuous state
Dynamic Programming (DP) recursion. However, the DP recursion is computationally very expensive owing
to the continuous nature of the state vector comprising the probabilities of faults. In order to alleviate
this computational explosion, we present an efficient implementation of the DP recursion. We also con-
sider various problems with special structure (parallel systems) and derive closed form solutions/index-rules
\\ritllout having to resort to DP. Finally, we consider various top-down graph search algorithms for problems
with no special structure, including multi-step DP, multi-step information heuristics and certainty equiv-
alence algorithms. We compare these near-optimal algorithms with DP for small problems to gauge their
effectiveness.

2 Optillla1 Test Sequencing with Imperfect Tests

In its simplest form, the test sequencing problem with imperfect tests is as follows< -"

1. A system with a finite set of failure sources S = {so, s l , sz , . . . , s,) is given. We make the standard
assumption that the system is tested frequently enough that only one or none of the faults has occurred.
The "no-fault" condition is denoted by a dummy failure source so;

2. The a priori probability of each failure source, p(si) is known;

3. A finite set of n available tests T = {tl, &, . . . , t,) are given, where each test t j cfiecks a subset of
failure sources. The relationship between the set of failure sources and the set of tests is represented
by a reachability matrix R = [rij], where rij = 1 if test t j monitors failure source si;

4. The reliability of each test t j is characterized by the detection-false-alarm probability pair (P&,.Pfj)',
where Pdj = Probitest t j fails I any of the failure sources monitored by t j has,failed), and Pfj =
Prob{test t j fails I none of the failure sources monitored by t j has failed};

5. Each test t j (l 5 j 5 n) costs an amount cj measured in terms of time, or other economic factors;

6. Each failure source s i (l 5 i 5 m), once identified has repair/replacement cost fi, false repair/replacement
cost CRi, and missed repair/replacement cost CMi associated with it.

The problem is to design a test algorithm with minimum expected diagnostic cost to isolate the failure
source, if any, with a specified level of confidence a (typically, a E [0.95,0.99]). Employing the single fault
assumption, the reachability matrix R, and the test reliabilities (P4, Pjj) can be combined into a single
matrix of "likelihoods", D = [dij], where dij is given by

where dij = Prob{ test t j fails I failure source si has occurred).
When tests are perfect, that is, P9. = 1 - Pfi = 1 for all tests, we have dij = rij. This corresponds to

a perfectly observed Markov decision problem, and has been discussed extensively in [7]. T h e solution to

'Extension to the case when (Pdj, Pfj) are functions of failure source si is straightforward.

Submitted to IEEE lkans. on Systems, Man, and Cybernetics 3

this problem is a diagnostic decision tree, wherein the root corresponds to the state of complete ignorance,
the intermediate nodes relate to states of residual ambiguity and the leaves correspond to individual failure
sources. The test algorithm terminates when the failed element is isolated with complete certainty (that is,
a = 1).

When the tests are imperfect, the test sequencing problem is a partially observed Markov decision problem
(POMDP), a sequential multi-stage decision problem wherein the states are the set of possible failure sources
and information regarding the states is obtained via the results of imperfect tests. It can be shown [4]
that the probabilities of failure sources conditioned on all the previous test results constitute a sufficient
statistic (i.e., contain all the necessary information) for deciding the next test to be applied. Formally, let
j(k) E {1,2,. . . , n) be the test applied a t stage k and let O(k) E {I(= pass),O(= fail)} be the outcome of
test tj(k): Further, let Ik- be the information available to decide on test tj(k) to be applied a t stage k. This
informat~on includes all the past tests applied and their outcomes given by:

Using Bayes' rule, the conditional probabilities of hypotheses {ai(k) = p(silIk) i = 0,1, . . ., m), which
are the information states of the decision process at each stage k, can be shown to evolve as

The above recursion is initiated with ni(0) = p(si), i = 0 , l . . . , m, the a priori probability distribution of
failure sources. The optimal test tj(k) is given by the dynamic programming (DP) recursion [4]:

h*({?ri(k)}) = min [) (-di.j(k)ri(k)
j(k)€tl,2,...,nl cj(*) + Cdlj(k)*l(k) h- -j--;n=o dlj(r)rl(k)

where cj(k) is the cost of test tj(kIl h*({lri(k))) is the optimal expected cost-to-go from the information state
{ri(k) : i = 1,2,. . . , tn), the terms involving h* inside the brackets are the optimal costs-to-go'frcxn the
information states corresponding to the fail and pass outcomes, respectively. The terminal states of this
recursion have known cost :

where
i' = arg max q

1

This definition of terminal cost function corresponds to the policy of repairing the most likely fault. Since
{r i) are continuous, the above DP recursion is continuous. Thus, the consideration of imperfect tests in
the test sequencing problem formulation converts a finite (albeit large) dimensional search problem of the
perfect test case into an infinite dimensional stochastic control problem.

3 Systems of Parallel Structure

Parallel systems are characterized by a reachability matrix R with ones on the diagonal and zeros every-
where else, for some permutation of tests. That is, every failure state is detected by one, and only one test.
For parallel systems, we can explicitly characterize the optimal policy in the perfect test case: at each state
of ambiguity, test a module with the highed miio of probability of failure and the cost of iesting the module.
For the imperfect testing case, such a closed form solution cannot be obtained without making additional
assumptions. However, in the following subsections, we derive closed-form solutions for some special cases.

Submitted to IEEE lkans. on Systems, Man, and Cybernetics

3.1 Special Case 1:

Let us specialize the above to a parallel system with the following assumptions:

all test costs are equal

a test can be applied more than once

a fault is implicated if its posterior probability at any stage of testing exceeds a given threshold y
(typically, y E [0.95,0.99])

Given this problem context, we first consider a greedy one-step lookahead strategy that maximizes the
posterior probability of correct decision assuming that a decision would be taken a t the nest stage implicating
the failure with the maximum posterior probability (MAP decision rule).

Let a! and p denote the false alarm and missed detection probabilities of tests. Let ri(k) denote the
conditional probability of the failure source si a t R-th stage of testing (stage 0 is when no tests have been
applied). Let fij(OjIsi) denote the conditional probability density of the outcome Oj E (0, 1) of test ti given
that si is present. Given the nature of the tests, we further know that,

g(Oi) = p6(Oi) + (1 - j?)6(0; - 1) for i = j
fij(Oj1si) = h(Oi) = (1 - (*.)6(0i) + a6(Oi - 1) for i # j (7)

where 6(.) is the Dirac Delta function.'
Let us assume that test tjk is the next test to be applied at stage I.. Then, 4nce the greedy approacli

corresponds to the assumption that the next test is the final one, the decision rule at the nest stage is to
implicate the failure source sd such that:

.---

which translates to,
~ d (~) f d j k (O(jk , k)I~d) = m?x {~i(k)fijk(O(jk, k)lsi))

Let us define:
P(Clsi, jk) = Prob(Correct Decision IS^, jk)

p(Clsi, jk) = Pr ni(k)g(O(jt, k)) > rnF{*i(k)6(0(jk, I.)))) {
We can simplify the above equation as,

In order to simplify the above two equations, we define:

- rn = arg max ~ (k)
I

r% = arg max ~ (k)
i#m

2The function 6(x) is defined via:

Submitted to IEEE 'llans. on Systems, Man, and Cybernetics

Then we have for i = i iE

.m(k) P(CIsx, jk) = QB(-) for j k = E
riir(k)

.=(a) = 1 - Qh(-) for jk #
r m (L)

and for i # Tii,

= 0 for jk # i

where

Qg(a) = Pr(g(z) > ah(x) I PDF of x is g(x))

Qh(a) = Pr(g(x) > ah(x) I PDF of z is h(x))

Therefore, we have:

rrn (k) rm(k) rrn(k)(l- ~ ~ (- 1) for jk = E P(Cljk) = adk)Qg(--_) +
riii(k)

rm(k) . rrn (k)
= ~ r n (k) Q ~ (--_ + -dk)(l - Qh(=)) for jk = 6

~ d k)
riii(k) %i(k) = xj:(k)Qg(-) + r ~ (k) (l - Qh(-)) for all other jk
~ j k (k) .~r , , f L)

Now an index jk is to be chosen so that the above expression is maximized. In the following, we will show
that P(CIjk) for j k other than i% and m is less than P(Cl7i1.). Let us transform Qg(.) and Qh(.) by for~nir~g
the likelihood ratio: , .

Assume that if 2 has a PDF h(x), then X has a probability density function fh(X), distribution function
Fh(X), and integral of the distribution function Qh(X). That is,

Similarly, assume that if x has a PDF of g (x) , then X has a probability density fg(X), distribution function
Fg(X), and integral of the distribution function Qg(X). It follows that:

Qh(a) = 1 - Fh(a), and Qg(a) = 1 - Fg(a) (21)

It can be easily shown that:

and that

Qg(a) = 1 - J a Xfh(A)dX = 1 - aFh(a) + qh(a)
-M

Now, let us define
1 1

P(Y) = 1 - Qh(;) + yQg(;)

and note that,
r- (k)

P(Cljk) = am(k)(p('i-) for jl: # iril and jk # rfi
n d k)

Submitted to IEEE l l ans . on Systems, Man, and Cybernetics 6

We have,
1

P(Y) = Y + Y Q ~ (~)

and cp(0) = 1. Now,
d 1 1 1 1

-P (Y) dy = 1 - - F h (-) + * h (-) = Q g (;) 2 0
Y Y Y

Hence, we know that cp(y) is a non-decreasing fuliction, and that its minimum value is a t y = 0 which is
unity.

Therefore,
r i k (k) P (C l j k) = r = (k) (~ (-) for jk # Ei and jk # ?it
r d k)

(28)

Since cp(y) Q g (x) for 0 < x , y < 1, the conditional probability P(Cl jk) is maximized by choosing jk = m.
However, P(CIEi) can be greater than P (C l h) , and we have to check this condition. Now suppose we define
the Binary Bayesian Equal-cost hypothesis test, where the hypotheses are that the measurement x has come
either from a probability distribution f(.) or from g(.) with q , and ?r, being the associated priors. We can
write the corresponding minimal probability of error as,

Note that

(r m (k) + r f i (k)) (30)

and -

Hence, the optimal strategy is to set jk = lit if

} >f.*{l- ne (l i)
r* { *z(;::fi (k) r= (k) + 7 r f i (k)

2 .,
Otherwise, set jk = Ei.

The above decision rule can be further simplified by substituting the exact expressions for Q,(.) and
Qh(.) . That is, the optimal strategy is to set jk = m if

By combining the terms, and expanding Qg(.) and &hi.) , the above comparison can be written as,

where the indicator function I(E) = 1, when the logical expression E is true, and zero otherwise. This
implies that, when both missed detections and false alarms are present, the optimal policy is to test the
fault with highest posterior probability if the above expression is not greater than zero. Otherwise, the fault
with the second highest posterior probability should be tested. Note that, when the probability of missed
detection /3 is zero, then the above expression is always greater than zero, implying that the decision rule is
to choose jfk) = m, i.e. test the fault with second highest posterior probability.

3.2 Special Case 2:

Let us consider another special case involving a parallel system with the following assumptions:

the test costs {cl , cg, . . . , c,,,) are known

Submitted to IEEE Tkans. on Systems, Man, and Cybernetics

0 a test cannot be applied more than once

0 a fault is implicated when a test detecting it fails

the tests have no false alarms

the missed detection probabilities {Pi) are known

Given this scenario, we now proceed to show that the optimal test sequence is an index rule.
Let S* = {j(l), j(2), . . ., j(m)) represent the index set of the optimal test sequence that minimizes the

expected testing cost. Before writing down the expression for the expected testing cost, let us consider the
testing strategy described above in detail. The first test to be applied is tj(l), and this test is always applied.
The second test is applied under one of the following two situations:

1. the component sj(l) is not faulty (hence tj(l) would not fail), or

2. the component sj(l) is faulty but the test tj(l) missed detecting it (the probability of th.is event is Pj(l))

Similarly, the third test tj(3) in the sequence is applied if sj(l) and sj(2) are not faulty or if the tests tj(l)
and tj(2) missed detecting them.

Now, the above discussion lets us write the expression for the expected testing cost as,

Let S1 = {jl(l), j1(2), . . . , jl(m.)) be another sequence of tests obtained from S* by interchanging ter~ns
h and h + 1. That is,

jl(i) = j(i) for i # R and i # k + 1

jl(h) = j(k + 1)

jl(k + 1) = j(k)

If 9 is the optimal sequence, then for any h, the expected test,ing cost of S1 should be greater than or equal .
to that of S*. Hence, by expanding and simplifying the logical expression EIJ(S1)] 2 E [J (S)] , we get

That is, the optimal sequence satisfies the above ordering relation. To prove the converse, observe that the
inequality

p(~jl(k))(l - bji(k))Icji(k) 2 p(sj(k))(l - Bj(k))/~j(k) (36)

implies that E[J(S*)] < E[J(S1)] and that therefore any sequence that is different from S can be transformed
to S by successive exchanges of neighboring indices and the result is a reduction in cost. Therefore, the
ordering relation (35) defines an optimal sequence of tests.

Submitted to IEEE Bans. on Systems, Man, and Cybernetics 8

4 Near-optimal Test Sequencing using Information Heuristics and Certainty
Equivale~~ce

An alternative to DP-based test sequencing algorithms is the class of approximation techniques that
employ greedy heuristics based on information theory. For example, in a one-step lookahead information
heuristic algorithm, if {iri(k)) is the current information state at stage k , we select a test tj(k) if it maximizes
the information gain per unit cost of the test. The selection rule is:

where IG({ni(k)) ,tj(k.) is the information gain given by:

IG({ni(b)) ,ti(&)) = H ({ni(k)}) - H({~i(k + I) } ltjis applied) (38)

We can write the expression for the information gain explicitly as:

Another alternative to DP-based algorithms is the Certainty Equivalence technique. In this approach, we
compute the best test to be applied a t every stage, assuming that the tests are reliable, using AO'algorithm
[7] that uses the current posterior probabilities of failures for prior probabilities. Once the test result is
known, the posterior probabilities of the failures are updated using (3) and the best test is computed again
as above.

Both of the above approaches do not mandate that a test cannot be repeated. Hence, a suitable stopping
criterion is necessary in order to terminate the testing process. One 'stopping criterion is to compute the
expected cost incurred on applying the chosen test and stop testing at the current stage if the computed
cost is greater than the expected cost a t the current stage. Another stopping rule would involve pruning
the ambiguity group at every stage based on the posterior probabilities and stop when the ambiguity group
of faults contains a single fault. A reasonable pruning rule can be devised by the following consideration:
if the tests are only :.cry slightly imperfect, then after the application of a fairly large number of tests, the
posterior probabilities of non-existent failure states are reduced to a tiny fraction of their prior probabilities
before testing. Hence, a failure source si could be removed from the ambiguity group at stage b, if

where Np is a factor suitably chosen (e.g., N, > 100).

5 Implementation of Dynamic Programming Solution

The sequential testing problem formulated earlier via DP cannot be solved in its original form, since the
state space (consisting of the posterior probability vector) is continuous. Hence, some form of discretization is
necessary for the computer implementation of the DP method for this problem. Even with this discretization,
we will see that problems having more than 20 failure sources cannot be solved optimally owing to the non-
polynomial time complexity of DP. However, DP can serve as a benchmark against which the performance
of near-optimal algorithms can be compared, a t least for problems of small size. In the following, we present
an efficient technique to implement the DP recursion that makes use of "leann data structures. These data
structures circumvent the explosive storage requirements of DP, while guaranteeing fast access to states.

Submitted to IEEE lkans. on Systems, Man, and Cybernetics 9

5.1 O u t l i n e of the technique

Before we get into the details of state space quantization, let us consider a rough overview of the solution
procedure. Suppose that quantization is already performed and we have a set X = {xi : (1 < i < n,)) of
states at hand. Note that every element xi represents a vector posterior probabilities of failure sources. For
example, a two failure source problem with n, = 3 uniform quantization levels results in X I = (1.0,0.0),
x2 = (0.5,0.5), and x3 = (0.0,l.O). Let us also define an appropriate terminal cost function f(.), such that
f(xi) is the cost incurred if no further testing is carried out a t state xi. Note that f(.) depends on the
maintenance/repair philosophy followed. Let Jk(xi) represent the optimal cost-to-go for s tate x i at stage
6 (k = 1,2 , . . .) of testing. For an M-stage DP problem (i.e., no more than N tests would be used before
diagnosis/repair), by definition,

J ~ (x i) = f (x i) , V l < i < n , (41)

Now suppose there are n tests in the system, and it is desired to determine the optimal test to be performed
for every state-stage {(zi, k) : 1 < i 5 n,, 1 5 k 5 Ar - 1). Let us define the state-mapping functions for the
n tests, T (zi),Tj (xi), 1 5 j _< n, 1 < i 5 n.,, The definition of the state-mapping functions is as follows:

3c.
when test 3 is applied at state xi, the pass outcome takes the posterior probability state to ?,(xi) E S,
and the fail outcome transforms it to Tjf (x i) E XI. Let Pjp(xi) and Pjf(xi) be the associated probabilities
of these events conditioned on state xi.

The recursive DI' forn~ulation of (4) call be adapted to the above quantized version as follows:

The index j that maximizes the above recursion is the best test to apply a t stage k. Thus, we initialize this
recursion a t It = N with,

J ~ (x i) = f (xi) 1 < i < n, (43)

and carry through backwards from stage k = M - 1 to k = 1.
However, tile computer implementation of this recursion requires consideration of the following important

issues that directly affect the size of the problems that call be solved:

1. Q u a n t i z a t i o ~ l Scheme: \Ye need to determine the optirhal quantization scheme to map floating point
probabilities (that can lie anywhere in [O,l]) to discrete levels. We will see that any simplistic rule to
quantize the probabilities may result in quantization levels that do not map valid probability states.

2. S t a t e Space D a t a S t ruc tures : If the storage is not an issue, then the above recursions can be solved
verv easily by precomputing the mapping functions Tjp(xi),Tjf (xi), 1 < j < n, 1 -< i _< n,. However,
we will see that the storage requirements are prohibitively high for even small problems with not too
many quantization levels. Hence, we need to determine efficient ways of storing the discrete probability
states and computing the test-mapping functions on the fly.

In the following, we consider the above issues and present effective solutions that let us push the envelope
in solving such an intractable problem.

5.2 Quant iza t ion

The problem of probability state quantization is formulated as follows. Consider a posterior probability
state space Pm of m dimensions. That is, a valid state p E Pm is a vector of m elements {pl ,pzl . . . ,p,}
such that,

m

Suppose we want to uniformly divide the interval [O, 11 into n, divisions, i.e., we ordain that the only valid
probabilities are {0,6,26,. . . , nq6), where 6 = l /nq is the quantization interval, and n, + 1 is the number
of quantization levels. For a specified n,, the objective is to determine a set of m non-negative integers

Submitted to IEEE 'fians. on Systems, Man, and Cybernetics 10

{QI, q2, - . . , qm) such that the vector 3 = {q16, q26,. . . , qm6) represents the quantized probability state.
Clearly, it is necessary to have,

m

Note that various simplistic scalar quantization rules such as {qi = rpi/61), or {qi = Ipi/6J), or even
{qi = hi/& + 0.511, will result in quantized states that do not satisfy (45) for most choices of n,. Hence,
we need to devise a vector quantization scheme, that transforms any given probability state to a valid
quantized probability state. A suitable criterion to choose the integers {ql, q ~ ~ . . . ,qm) could be to minimize
the Euclidean distance between the quantized and unquantized probability states.

Formally, the optimal choice of the quantization vector q = { q l , qz, . . . , qm) minimizes the Euclidean
distance measure between the absolute and quantized probability states defined by,

subject to the constraint,
*r

Cqi = n, (47)
i= 1

This is a resource allocation problem with quadratic cost function which has a well-known optimalsolution
procedure via greedy approach 151. This approach starts by assigning zeros to all qi, and incrementing one qi
at a time by 1, that results in the maximumdecrease of the cost function in (46). However, a direct application
of this algorithm requires tn.n, computations of cost function decrements (mn, multiplications). In the
following, we present a technique that converges to the optimal solution requiring at most m2 computations
of cost function decrements and m divisions. Our technique results in substantial computational savings for
large values of n,.

The basic idea involved in our technique is to compute a fast, but accurate first estimate of the quan-
tization levels, and then use the greedy algorithm from that point on, instead of starting from an all-zero
q vector. With this in mind, let us now consider the following version of the above problem with a tighter
constraint set:

m

Minimize d(q) = C (p i - qj6)2
i= 1

subject to the constraint,
q ia<pi V l < i < m , O s q i

Suppose, the solution to the above version is given by ij = {GI, i2,. . . , $,). The original problem can be - -
reformulated in terms of this partial solution as follows:

ni

Minimize d(r) = Ebi - 46 - ri6)'
i=l

subject to the constraint,

If {ri) are constrained to be positive, then an appropriate change of variables results in the same resource
allocation problem as in (46), but with a reduced resource constraint. It can be easily shown that the
resource constraint nq - CEfii in the reduced problem can never exceed m. Then, a quick solution of the
problem in (48) would reduce the number of cost function computations from mn, to m2. In the following,
we present the optimal solution to the modified problem and show that {ri) are all positive for the optimal
solution, allowing us to use the greedy approach to solve the reduced resource allocation problem.

Lemma 1 The optimal solution to the modified problem in (48) is given by,

Submitted to IEEE Trans. or1 Systems, Man, and Cybernetics 11

Proofi Clearly {#i}gl is feasible. Increasing any {ii} results in an infeasible solution. Decreasing any
{Gi} results in cost increase. Hence, {4i)g1 is an optimal feasible solution to the problem in (48) and (49).

Lemma 2 The resource variables {ri}gl of the reduced problem in (50) are non-negative for the optimal
soluiion.

Proofi It suffices to show that the optimal solution vector q satisfies

Suppose this is not true, and that for some k, qk = ik - 1. Since the elements in q satisfy (45) and since
the elements in q^ sum to an integer less than or equal to n,, there must exist some index 7E such that
qfii. = ifii.+ 1. Assume without loss of generality that % = (k+ 1). Now, consider an alternative quantization
vector qa where,

Qlk i = k
(54)

qi otherwise

The difference between the cost functions induced by the above two quantization vectors can be written as,

The final inequality in the above equation follows directly from the definition of ii = Ipi/6J, implying pi 2 4i
and (& + 116 2 pi. Thus we see that a solution q violating the statement of the lemma cannot be optimal.
Hence, it follows that the optimal solution always contains 4 thereby forcing the variables ri in (50) to be
non-negative.

It is instructive to determine the total number of distinct discrete probability states resulting from such
a quantization scheme. This can be formally written as the number of distinct solutions in non-negative
integers for the following equation:

m

Lemma 3 The total num.6er of distinct discrete probability states arising out of quantization of qn rn-
dimensional probability space (m failure sources) into nq divisions along each probability coordinate is given
by (nq+m-1

m-1 > -
Proofr Consider a line segment of length n,, with points Po, PI,. . . , Pnq marked out a t integer intervals.

Any solution (in positive integers) of (56) corresponds to a decomposition of this segment into m pieces
whose lengths are positive integers. The m - 1 end points of these pieces (other than Po and Pnq) must be
chosen from among the n, - 1 points Pl , P2,. . . , Pnq-1. This can be done in (n;~:) ways. However, note
that we are looking for all non-negative solutions of the problem. Adding rn to both sides of (56), we get

Now the variables yi = qi + 1 are strictly positive if qi are non-negative, and there are ("':?;I) ways of
choosing distinct, positive yi variables. Thus, the number of non-negative integral solutions is identical and

is rq+m-l rn-1) a

Submitted to IEEE 'fians. on Systems, Man, and Cybernetics 12

5.3 D a t a S t r u c t u r e s f o r S t a t e Space Representat ion

In the previous section, we presented the quantization procedure for the discretization of posterior prob-
ability space. The DP recursion described in (42) requires the following fundamental operations to be
performed repeatedly:

Given a quantized state xi, compute the resulting states Tjp(xi) and Tif (Xi) due to pass and fail
outcomes of an admissible test j.

Access the cost-to-go estimates at the states Tjp(xi) and Tjj(zi) obtained in the earlier cycle of com-
putation and revise the cost-to-go estimate a t xi.

A naive approach to address the above operations is to precompute the mapping functions Tjp(.) and
Ti (.)¶ and store the appropriate pointers in each xi, so that Tjp(zi) and Tj (xi) states can be accessed
directly from xi for any given test j . This requires an extra storage of n("q2"1) pointer variables (which
require 4 bytes each on most computer systems), where nq is the number of quantization divisions of each
probability coordinate, tn is the number of failure sources and n is the number of tests. Clearly, a runtime
calculation of these mapping functions and efficient data structures that enable fast access of the transformed
states, would free up so much valuable memory space that we would be able to solve a much larger dimensional
problem than is possible with the above simplistic approach.

However, this approach requires us to devise methods to:

enumerate and store the quantized states in efficient data structures.

access the cost-to-go for a given state.

These are no sinlple tasks, since a simplistic table storage of states (each state is a colle-cL~an of m integers)
takes up (Rq~~;l)m[loglo nql bytes of memory space on conventional computer systems (assuming that the
integers are concatenated to form a string). And random access of a state in such a table requires an average
of ("q:'21')/2 comparisons.

in the following, we present a highly storage-efficient, fast-access data structure tuned for this purpose.
We first need to introduce some notation in order to give a formal description of the data structures involved.
Consider a directed graph T = (V, E) where, V is the set of vertices (nodes) and E is the set of edges. In
addition, let T be a direcced rooted tree having one vertex which is the head of no edges (called the root)
and each vertex except the root is the head of exactly one edge. The relation (v, w) is an edge of T denoted
by v -+ w. If v -+ w , then v is termed parent of w and w is the child of v. Let the function d(v) represent
the depth of the node v in the rooted tree.

In order to illustrate why rooted tree is chosen to represent the set of discretized probabilities,,let us
consider an example system of tn = 4 failure sources and nq = 3 quantization inter.va!s. We then obtain
following quantization vectors (shown in the next page.)

Blanks are used whenever qi remained unchanged from its previous value in order to bring out the
similarity of the enumerated state space to a rooted tree. Also, note that q3 and q4 are intentionally bunched
together, since the last coordinate (in this case q4) is fixed when the first rn - 1 coordinates are defined,
hence its storage can be eliminated. By placing a node a t every non-blank entry in the above table and
connecting nodes from left to right, i.e., ql nodes to 92 nodes, 92 nodes to q3 nodes, we can form a directed
rooted tree, where every node is a child of just one parent. The nodes in the first layer (ql nodes) can be
assumed to be emanating from a single dummy node qo for the sake of completeness.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

The data structure based on the above directed rooted tree would cons is'^ of the following elemental
structures: The elemental data structures for representing the above rooted tree and the pseudo-code for
the associated state-access routines are described in Appendix A.

The total number of nodes in such a rooted tree structure is bounded by 2("',+:['), and the combined
memory requirement for a DP scheme utilizing these data structures is no more than 7(nq:T11) bytes on
most conventional computer systems. In addition to being inexpensive in terms of storage, note that the
access to the cost and policy corresponding to a given quantized state does not take .more than m - 1
operations, making it attractive for runtime computation of test mapping functions.

5.4 Terminal Cost Function

As defined earlier, the terminal cost functiotl is the probabilistic cost incurred when the testing is stopped
a t a given quantized probability state. We define the following cost function for our DP implementation:

where
i' = arg max q (i)

I

This definition corresponds to repairing the component with the highest posterior probability value. It makes
sense to choose this terminal cost because of the following reason: when the test costs are significantly lower
than the false repair costs and missed repair costs (which is usually the case in practice), then there should
be an incentive to apply another test and skew the probability distribution to reduce the entropy of the state.
For instance, the uncertainty in the state (0.1,O.g) is less than that of the state (0.2,0.8) and hence should
have a lower terminal cost. However, the terminal cost difference between the states (0.2,O.S) and (0.21,0.79)
should not be sizable. The above definition conforms to this principle and also gives us a consistent stopping
rule: testing should be stopped when the average cost incurred after applying any test is higher than the
cost of stopping a t the present state.

Submitted to lEEE llans. on Systems, Man, and Cybernetics

5.5 Simulation Results

5.5.1 Comparison wi th DP

In order to compare the performance of the information heuristics and certainty equivalence with DP, we
considered two small systems; one with 3 failures and 3 tests and another with 5 failures and 5 tests. For
these systems, it is possible to quantize the posterior proabilities into very small intervals, thus resulting
in an accurate implementation of the Dynamic Prog~amming recursion. Specifically the two systems we
considered are described below:

Table 1: Parameters of System 1
[Number of Faults = 3 1

Number of Tests = 3
Number of DP Quantization Levels = 500
D-Matrix
1 1 0
0 1 1
0 0 1
Test Costs 1.0 1.0 1.0
False Repair Costs 100.0 100.0 100.0
Missed Repair Costs 100.0 100.0 100.0
Prior Probs of Faults 0.25 0.35 0.4

Table 2: Parameters of System 2
I Number of Faults = 5

Number of Tests = 5
Number of DP Quantization Levels = 40
D-Matrix
1 1 0 0 0
0 1 1 - 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1
Test Costs 1.0 1.0 1.0 1.0 1.0
False Repair Costs 100.0 100.0 100.0 100,O 200.0
Missed Repair Costs 100.0 100.0 100.0 100.0 100.0
Prior Probs of Faults 0.25'0.2 0.3 0.15 0.1

Tables 3-6 show the comparitive performance of various algorithms (multi-step look-ahead DP, multi-
step information heuristics and Certainty Equivalence) for system 1 for various values of test unreliabilities.
Tables 7-10 show the comparitive performance of these algorithm for System 2. Tables 11-12 show the
comparative performance of the information heuristic and certainty equivalence techniques for Graham and
Garey's pathological example [6] with m = 10. Note that INFO(k) denotes information heuristics with b-step
look-ahead, DP(k) denotes dynamic programming with k-step look-ahead, and CE denotes the Certainty
Equivalence technique. It is observed that for low values of test unreliabilities, the heuristic techniques have
resulted in near-optimal solutions. However, their performance degrades as the probabilities of false alarm
and missed detection were increased. Also, it is interesting to note that there is not much difference between
the performances of info-heuristic technique and certainty equivalence approach for systems 1 and 2 for
low values of test unreliabilities. Another interesting observation is that CE resulted in consistently lower
probability of error compared to information heuristics. However, for the worst case example of Graham
and Gary, CE was always better than the information heuristics.

Submitted to IEEE Bans. on Systems, Man, and Cybernetics

Prob. of Error

Table 3: Comparison of Various DP Methods for Pf=0.05, Pm=O.O5(System 1)

Table 4: Comparison of Various Heuristic Met hods for Pf=0.05, Pm=O.O5(System 1)

Metrics
Ave. Test Length
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

Table 5: Comparison of jJarious DP M,ehods for Pf=O.lO, Pm=O.lO(System 1)

INFO(1)
2.29273
11.515

0.0461903
0.678 128

-

Table 6: Comparison of Various Heuristic Met hods for Pf=O. 10, Pm=O. lO(System 1)

INFO(2)
2.30669
11.1669

0.0443203
0.677073

Metrics
Ave. Test Length
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

DP(1)
2.96716
17.9693

0.0750394
0.392182

-

- -

Table 7: Comparison of Various DP Methods for Pf=0.05, Pm=O.O5(System 2)

INFO(3)
2.54352
11.4625

0.0446153
0.649883

DP(3)
3.63474
8.04204
0.02205
0.451167

Metrics
A v e . T e s t ~ e n 8 6 "

Ave. Testing Cost
Prob. of Error
Ave. Info Gain

Prob. of Error

CE
2.29553
11.3658

0.0454103
0.677529

"

Table 8: Comparison of Various Heuristic Methods for Pf=0.05, Pm=O.O5(System 2)

DP(7)
3.63336
7.95276

0.0216099
0.45221

INFO(1)
3.07231
12.0591

0.0449601
0.456213

DP(3)
3.38965
13.1638

0.0490145
0.563471

Prob. of Error

DP(15)
4.10859
8.39895

0.0214649
0.433815

Metrics
Ave. Test Length
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

Table 9: Comparison of Various DP Methods for Pf=O.lO, Pm=O.lO(System 2)

INFO(2)
3.08141
12.6102

0.047670 1
0.45486

DP(1)
2.41679
21.4411

0.0952055
0.651796

DP(7)
3.53795
13.4766

0.0497751
0.562667

DP(15)
3.52495
13.8521

0.0517699
0.562444

INFO(3)
3.09564
12.3495

0.046295 1
0.453465

CE
3.08723
12.681 1

0.0479951
0.453524

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Prob. of Error

Table 10: Comparison of Various Heuristic h4ethods for Pf=O. 10, Pm=O. lO(System 2)

Table 11: Comparison of Various Methods for Pf=O.lO, Pm=O.lO(Gary' model with m=10)

Metrics
Ave.TestLength
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

Table 12: Comparison'of Various Methods for Pf=0.05, Pm=O.OS(Gary' model with m=10)

INFO(1)
17.5606
17.5606

0
0.0241986

6 .' - 'To~-L~owI~ Graph Search Algorithms

CE
15.1227
15.1227

0
0.0282088

INFO(2)
17.5607
17.5607

0
0.0241994

CE
9.92901
9.92901

0
0.0424652

Metrics
Ave.TestLength
Ave. Testing Cost
Prob. of Error
Ave. Info Gain

The top-down algorithms described in [7] can be readily applied even when the tests are imperfect. This is
because, the HEFs (required for AO*based algorthms) and the information gain expressions depend only on
the posterior probability distribution of the failure sources at the current ambiguity node. These posterior
probabilities can be computed via the Bayes rule given in (3). However, we found that the AO'based
algorithms are not useful due to the explosion of the diagnostic strategy even for moderately sized,systems.
On the other hand, the top-down information heuristic algorithms coupled with the ambiguity pruning
technique described earlier, enabled us to solve large systems. Tables 13-18 demonstrate the performance
of top-down information heuristic algorithm for various randomly generated systems of different sizes and
for various values of false alarm and missed detection probabilities of tests. Note that, cr denotes the false
alarm probability, and fJ denotes the missed detection probability. The following performance indicators
were collected and listed in these tables:

INFO(3)
18.7088
18.7088

0
0.0226679

J, is the expected testing cost

F O (1)
16.4974
16.4974

0
0.0257201

J, is the expected repair cost composed of the missed repair and false repair costs

JN is the average ambiguity group size

INFO(2)
16.4957
16.4957

0
0.0257262

n, is the number of leaf nodes in the diagnostic strategy

INFO(3)
17.4856
17.4856

0
0.0242757

n, is the total number of nodes in the decision tree

We can see that even the slightest uncertainty in the test outwmes results in large diagnostic trees with
increased testing and repair costs, albeit with tolerable values of average ambiguity group sizes. Table 19
shows the performance of the top-down information heuristic algorithm for random systems of various sizes
with b e d test uncertainties (a = 0.01,P = 0.01). We can see that a system containing as many as 2000
failures and 2000 imperfect tests is solved in less than 30 minutes.

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Table 13: Performance of Top-Down Algorithm for a (100,100) system with false alarms only

Table 14: Performa~lce of Top-Down Algorithm for a (100,100) system with missed detections only

Table 15: Performance of Top-Down Algorithm for a (100,100) system with false alarms and missed
detections

Table 16: Performance of Top-Down Algorithm for a (200,200) system with false alarms only

Table 17: Performance of Top-Down Algorithm for a (200,200) system with missed detections only

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Table 18: Performance of Top-Down Algorithm fot a (200,200) system with false alarms and missed
detections

Table 19: Perforn~ance of Top-Down Algorithm for systems of various sizes \vith a = 0.01, P = 0.01

7 Summary

In this paper, we considered the problem of test sequencing in the presence of imperfect tests. The test
sequencing problem is a partially observed klarkov decision problem (POMDP); a sequential multi-stage
decision problem wherein the states are probabilities of the set of possible failure sources and informati011
regarding the states is obtained via the results of imperfect tests. The optimal solution for this problem can be
obtained by applying a continuous state Dynamic Programming (DP) recursive equation. However, the DP
recursion is computationally very expensive owing to the continuous nature of the state vector comprising
the probabilities of faults. In order to alleviate this computational explosion, we presented an efficient
approach for implementing the DP recursion for this problem. In addition, we presented multi-step DP:
multi-step information heuristics and certainty equivalence algorithms for interactive diagnosis of systems
with imperfect tests. We also considered various problems with special structure (parallel systems) and
derived closed form solutio~~s/index-rules without, having to resort too DP. We also presented co~nputational
results demonstrating the effectiveness of the information heuristic based top-down graph search algorithm.

A Data Structures and Pseudo-code for DP I~llplementatio~l

RootedTreeNode . - -

{
NumberOfChildNodes (Integer)
ArrayOfChildNodes (Pointer to RootedTreeNode)
IndexIntoCostVector (Integer)

1
Data Structure to Represent a Node in the Rooted Tree

Cos tVectorNode
{

EstimateOfCostToGo (Floating Point Variable)
Policy (Integer)

1
Data Structure to Represent a Node in the Cost Vector

Procedure RootedStateTreeConstructor

Submitted to IEEE Trans. on Syste~ns, Man, and Cybernetics

Inputs:
RootedTreeNode CurrentNode By Reference
Integer SumTillNow By Value
Integer FaultNum By Value
Integer StateIndex By Reference
CostVectorArray CostVector By Reference
Integer NumLevels By Value
IntegerArray CurrentState By Reference

{
if(Fau1tNum = NumFaults-1)

CostVector[StateIndex].Cost =
TerminalCostFunction(CurrentState)

CurrentP!ode.IndexI~~toCostvector = StateIndex
StateIndex = StateIndex+l
return

1

CurrentNode.Nun~berOfChildNodes = NumLevels - SumTillNow +1
(create storage for childllodes too)
for i=l to CurrentNode.NumberOfChildNodes
{

CurrentState[FaultNumf I] = i
Invoke RootedStateTreeConstructor() with followi~~g inputs:

CurrentNode.ArraYOfChildNodes[i]
SumTillNow+i
FaultNurn+l
Stateindex
CostVector
NumLevels
CurrentState

1
1
Algorithm for Rooted Tree Construction

Procedure GetCostAndPolicyForQuantizedState
Inputs:
RootedTreeNode CurrentNode By Reference
CostVectorArray CostVector By Reference
Integer NumFaults By Value
IntegerArray CurrentState By Reference
Outputs:
Cost
Policy
{

for i=l to NumFaults-1

CurrentNode =
CurrentNode.ArrayOfChildNodes[QuantizedStateVector[i]]

return
1
StateIndex = CurrentNode.1ndexIntoCostVector

Submitted to IEEE Trans. on Systems, Man, and Cybernetics

Cost = CostVector[StateIndex].EstimateOfCostToGo
Policy = CostVecl;or[StateIndex].Policy

1
klgorithm for Accessing Cost and Policy of a Quantized State

References

[I] Gluss, B., "An Optimum Policy for Determining a Fault in a Complex System," Operations
Research, Vo1.8, 1960, pp.512-523.

[2] Nachlas, J.A., Loney, S.R., and Binney, B.A., "Diagnostic Strategy Selection for Series S y s
terns," IEEE Transactions on Reliability, 1'01.39, August 1990.

[3] Bellman, R.E., Dynamic Programming, Princeton: Princeton University Press, 1957.

[4] ~ertsekas, D.P., Dynamic Programm.ing: Deterministic and Stochastic Models, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

[5] Ibaraki, T., and Katoh, N., Resource Allocaiion Problems: Algorithmic Approaches, The MIT
Press, Cambridge, MA, 1988.

[6] Loveland, D.W., "Performance bounds for Binary Testing with Arbitrary Weights," Acta In-
form. , no. 22, pp.101-114, 1985.

[7] Raghavan, V., Pattipati, K.R., Shakeri, M., "Optimal and Near-Optimal Test Sequencing
Algorithms with Realistic Test A.iodelsY', submitted to IEEE Transactions on Systems, Man,
and Cybernetics.

[8] Monahan, G., "A survey of partially observable Markov decision processes," Mgmi. Sci., vol.
28, pp. 1-16, 1982.

[9] Smallwood, R.D., and Sondik, E.J., "Optimal control of partially observable processes over
the finite horizon," Operations Research., vol. 21, pp. 1071-1088, 1973.

[lo] Benkoski, S.J., h/Zonticino, M.G., and Weisinger, J.R., "A surver of search theory literature,"
'

Naval researcl~ Logisiics, vol. 38, no. 4, pp. 469-494, 1991.

[l l] Kadane, J.B., "Optimal whereabouts search," Operations Research, vol. 19, pp. 894-904,
1971.

[12] Tognetti, K.P., "An optimal strategy for whereabouts search," Operations Research, vol. 16,
pp. 209-211, 1968.

[13] Raghavan, V., Willett, P., Pattipati, K., Kleinman, D., "Optimal measurement sequencing in
M-ary hypothesis testing problems," in Proc. 1992 American Control Conference, Chicago,
IL, June 1992.

[14] Sheridan, T.B., "On how often a supervisor shoudl sample," IEEE Trans. Syst. Man Cyber.,
vol. 13, no. 1, pp. 37-46, Jan/Feb 1965.

[15] Dobbie, J.M., "Some search problems with false contacs," Operations Research, vol. 21, pp.
907-925, 1973.

[16] Stone, L.D., and Stanshine, J.A., "Optimal search using uninterrupted contact investigation,"
SIAM J. Appl. Math., vol. 20, pp. 241-263, 1971.

[17] Stone, L.D., and Stanshine, J.A., "Optimal search in the presence of poisson-distributed false
targets," SIAM J. Appl. Math., vol. 23, pp. 6-27, 1972.

[IS] Wald, A., Sequential Analysis, New York: John Wiley, 1947.

2.LIST OF PUBLICATIONS AND PRESENTATIONS

2.1 Publications

7. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A, and Kell, T.," Sequential
Test Strategies for Multiple Fault Isolation", 1995 IEEE AUTOZESTCON, Atlanta, GA,
Aug. 1995.

8. Shakeri, M., Pattipati, K., Raghavan, V., Patterson-Hine, A, and Iverson, D.L.," Multiple
Fault Isolation in Redundant Systems", 1995 IEEE International Conference on Systemsy
M m and Cybernetics, Van Couver, BC, October 1995.

9. Shakeri, M.,, Raghavan, V., Pattipati, I(., and Patterson-Kine, A., "Sequential Testing
Algorithms for Multiple Fault Isolation," submitted to IEEE ~r i&ct ions on Systems,
Man and Cybernetics, August 1996.

10. Raghavan, V., Shakeri, M., and Pattipati, K., "Test Sequencing Algorithms with
Unreliable Tests," submitted to IEEE Transactions on Systems, M m and Cybernetics,
August 1996.

11. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A, ''Optimal and Near-
optimal Algorithms for Multiple Fault Diagnosis with Unreliable Tests," 1996 IEEE
AUTOTEST Conference, Dayton, OH, September 1996.

12. Shakeri, M., Raghavan, V., Pattipati, K., and Patterson-Hine, A., "Algorithms for Multiple
Fault Diagnosis with Unreliable Tests," submitted to IEEE Transactions on Systems, Man
and Cybernetics, August 1996.

2.2 Presentations

The research results were presented at the following conferences and corporations:

1995 IEEE Systems, Man and Cybernetics Cod , San Antonio, TX; Van Couver, BC.
1996 IEEE Automatic Testing Conference, Anaheim, CA, Atlanta, GA; Dayton, OH.
Sikorsky Aircraft, Stratford and Bridgeport, CT

* Boeing Helicopters, Philadelphia, PA
Boeing Defense and Space Group, Seattle, WA
Lockheed-Martin Integrated Systems, Orlando, FL
NASA-Ames Research Center, Moffett Field, CA.

NASA Final Report May 1997

2.3A wards

e Professor Krishna R Pattipati was elected Fellow of the Institute of Electrical and
Electronics Engineers (IEEE) for contributions to "discrete optimization algorithms for large-
scale systems, and team decisionmaking'' in 1995.
The paper entitled, "Sequential Testing Algorithms for Multiple Fault Isolation," received the
Best Student Paper Award at the 1995 DEEE Automatic Testing Conference, Atlanta, GA,
August 1995. A $250. cash award was given to student authors.

NASA Final Report May 1997

1. Pattipati, K.R., and M.G. Alexanridis, " Application of Heuristic Search and Information
Theory to Sequential Fault Diagnosis, " IEEE Trans. on SMC, Vol. 20, No. 4, July 1990,
pp. 872-887.

2. Pattipati, K.R., S. Deb, M. Dontamsetty, and A. Maitra, " START: System Testability
Analysis and Research Tool," IEEE AESMagazine, January 1991, pp. 13-20.

3. Pattipati, K.R., and M. Dontamsetty, "On. a Generalized Test Sequencing Problem," IEEE

- -
Trans. on SMC, Vol. 22, No. 2, March 1992, pp. 332-336.

4. Pattipati, K.R., M.G. Alexandridis, and J.C. Deckert, "Time Efficient Sequencer of Tests
(TEST)," Proceedings of the IEEE AUTOTESTCON, Long Island, NY, Oct. 1985, pp.
49-62.

.6 $ 7

5 . Raghavan, V., Shakeri, M., and Pattipati, K., "Optimal and Near-optimal Test Sequencing
Algorithms with Realistic Test Models," submitted to IEEE Transactions on Systems,
Man and Cybernetics, August 1996.

6. Raghavan, V., Shakeri, M., and Pattipati, K., "Test Sequencing Problems Arising in
Design For Testability," submitted to IEEE Transactions on Systems, M m and
Cybernetics, August 1996.

7. Raghavan, V., "Algorithms for Sequential Fault Diagnosis," Ph.D. Thesis, Department of
Electrical and Systems Engineering, University of Connecticut, Stons, CT 06269-3 157,
May 1996.

8. Pattipati, K.R, V. Raghavan, S. Deb, M. Shakeri and R Shrestha, "TEAMS: Testability
Engineering And Maintenance System", invited paper at 1994 ACC , Baltimore, MD, June
1994.

9. Deb, S., K.R. Pattipati, V. Raghavan, M. Shakeri, and R. Shrestha, "Multi-Signal Flow
Graphs: A Novel Approach for System Testabity Analysis and Fault Diagnosis," IEEE
Aeroqace andElectronic Systems Magazine, May 1995, pp. 14-25.

10. Shakeri, M., "Advances in Fault Diagnosis and Testability Analysis of Large-Scale
Systems,," Ph.D. Thesis, University of Connecticut, Storrs, CT, 06269, August 1996.

11. Shakeri., M., Pattipati, K., Raghavan, V., and Deb. S.,"Near Optimal Sequential Testing
Algorithms for Multiple Fault Isolation.", Proc. of the IEEE SMC conference, San
Antonio, Texas, Oct. 1994, pp. 1908-1913.

NASA Final Report 8 May 1997

