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THE WAVELET ELEMENT METHOD

PART II: REALIZATION AND ADDITIONAL FEATURES IN 2D AND 3D *

CLAUDIO CANUTO?, ANITA TABACCO$, AND KARSTEN URBAN§

Abstract. The Wavelet Element Method (WEM) provides a construction of multiresolution systems and

biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single

reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used

on the reference domain. By introducing appropriate matching conditions across the interelement boundaries,

a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does

not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features.

In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases.

We address additional features such as symmetry, vanishing moments and minimal support of the wavelet

functions in each particular dimension. The construction is illustrated by using biorthogonal spllne wavelets

on the interval.

Key words, wavelet element method, matching conditions.

Subject classification. Applied and Numerical Mathematics

1. Introduction. The construction of multiresolution systems and wavelets on general domains and

manifolds in _n is a crucial issue for applying wavelet methods to the numerical solution of operator

equations such as partial differential and integral equations. This problem has been recently addressed by

many authors [15, 7, 13, 4, 14, 10, 16].

In [4], the Wavelet Element Method (WEM) was introduced borrowing ideas from analogous constructions

in spectral methods. Tensor products of scaling functions and wavelets on the unit interval are mapped to

the subdomains in which the original domain is split. By matching these functions across the interelement

boundaries, globally continuous biorthogonal wavelet systems are obtained, which allow the characterization

of certain function spaces and their duals. These spaces contain functions which are piecewise regular with

respect to a Sobolev or Besov scale in each subdomain, and satisfy suitable matching conditions at the

interfaces.

The construction of [4] does not uniquely determine one particular wavelet basis. It rather indicates

the algebraic conditions to be satisfied in order to obtain a globally matched basis, leaving the freedom of

enforcing additional features for the basis. The purpose of the present paper is to exploit this freedom,
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indicating how to construct wavelet bases that have properties such as, e.g., minimal local support, moment

conditions or symmetry.

While [4] deals with the general spatial dimension n, here we detail our construction in the univari-

ate, bivariate and trivariate cases separately, showing additional properties in each particular dimension.

Following the guidelines given in this paper, one can concretely build scaling functions and wavelets (as

well as the related transforms) on fairly general domains starting from a given multiresolution analysis on

the unit interval. As an example, we illustrate the results of our construction when a biorthogonal spline

wavelet system on the interval is used. The filter coefficients for this example are given in the Appendix. An

application to the numerical solution of 2D elliptic boundary value problems is presented in [5].

The outline of the paper is as follows. In Section 2 we recall the main properties of biorthogonal systems

on cubes, which may fulfil homogeneous boundary conditions. Section 3 is devoted to the description of the

multiresolution analyses on general domains. The construction of the corresponding wavelets in 1D, 2D and

3D is described in Sections 4, 5 and 6, respectively.

2. Biorthogonal systems on reference domains. In this section, we use tensor products to con-

struct scaling functions and biorthogonal wavelets on hypercubes starting from suitable multiresolution

analyses on the unit interval (eventually fulfilling homogeneous boundary conditions).

We will frequently use the following notation: by A < B we denote the fact that A can be bounded

by a multiple constant times B, where the constant is independent of the various parameters A and B may

depend on. Furthermore, A < B _< A (with different constants, of course) will be abbreviated by A _ B.

2.1. General setting on the interval [0, 1]. There are many examples of biorthogonal wavelets on

the interval available in the literature, see [2, 9, 18, 6, 11, 17] for example. In this subsection we collect

the main properties of those biorthogonal wavelet systems on the interval constructed in [11, 17]. We first

describe the general approach and then the modifications for fulfilling boundary conditions as introduced in

[4, 13].

The starting point are two families of scaling functions

Ej := {_j,k: k • Aj}, -_j := {_j,k: k e Aj} C L2(0,1),

where Aj denotes an appropriate set of indices and j > j0 can bc understood as the scale parameter (with

some j0 denoting the coarsest scale). For subsequent convenience, these functions will not be labeled by

integers as usual, but rather by a set of real indices

(2.1) Aj :---- {wj,1,...,_'j,Kj}, 0---- vj,1 < rj,2 < "- < rj,Kj ----1.

In other words, each basis function is associated with a node, or grid point, in the interval [0, 1]; the actual

position of the internal nodes Tj,2,..., Tj,Kj-1 will be irrelevant in the sequel, except that it is required that

Aj C Aj+1 (see (2.3-h)). It will be also convenient to consider F.j as the column vector (_j,k)keaj, and

analogously for other sets of functions.

The families ='j, ._j can be constructed to be dual generator systems of a multiresolution analysis in

L2(0, 1)

(2.2) Sj := span _.j, Sj :--- span -_j,

in the sense that the following conditions in (2.3) are fulfilled:



(2.3-a)The systems W-j and e j are refinable, i.e., there exist matrices Mj, J%/Ij, such that

-,= M,%+_, % = & %+,

This implies, in particular, that the induced spaces Sj, Sj are nested, i.e., Sj C Sj+ 1, Sj C Sj+ 1"

(2.3-b) The ]unctions have local support: diam (supp {j,k) _ diam (supp _j,k) "_ 2-J.

(2.3-c) The systems are biorthogonal, i.e., ({a,k,_j,k')L_(O,O = 6k,k,, for all k, k' C Aj.

(2.3-d) The systems wj, __j are uniformly stable, i.e.,

k_ e_ %,k ~ Jlclb(_,)L2(0,1)

where e := (ck)kea,.

k6Aj L2(0,1)

(2.3-e) The ]unctions are regular, i.e., {j,k 6 H_(0, 1), _j,k 6 H#(0, 1), ]or some 7, 5 > 1, where H*(O, 1),

s > O, denotes the usual Sobolev space on the interval as defined, e.g., in [1].

(2.3-f) The systems are exact of order L, L >_ 1, respectively, i.e., polynomials up to the degree L- 1, L- 1

are reproduced exactly: IPL- I (O, 1) C Sj, K)L_I(0, 1) C Sj, where g)_(0, 1) denotes the set of the algebraic

polynomials of degree r at most, restricted to [0, 1].

(2.3-g) There exist biorthogonal complement spaces Tj and Tj such that

%+1 = % (_Tj, Tj J__, Sj+I : & (_%, Tj J- %.

(2.3-h) The spaces Tj and Tj have bases

T, = {rlj,h : h • V/}, Tj = {_j,h : h • Vj},

(with Vj := Aj+I \ Aj = {t'j,1,...,uj, Mj}, 0 < t,j,_ < ... < _9,Mj < 1) which are biorthogonal (in the

sense of (2.3-c)) and uniformly stable (in the sense of (2.3-d)). These basis ]unctions are called biorthogonal
wavelets.

(2.3-i) The systems W-j and Tj are boundary adapted, i.e., at each boundary point:

(i) only one basis function in each system is not vanishing; precisely,

(2.3-i.1)

(2.3-i.2)

_,.k(0)# 0 .=. k : 0.

?]j,h(O) # 0 _ h = vj,1,

{j,k(1) # 0 ¢:::::v k = 1,

rlj,h(1) # 0 *=* h = _'j,M,;

(ii) the nonvanishing scaling and wavelet ]unctions take the same value; precisely, there exist constants

co and Cl independent of j such that

(2.3-i.3) {j,0(O) = _J,_'j,l (0) : co2 j/2, _j,1 (1) : _?j,_j,_, (1) = C12jl2.

The same holds for the dual systems F.j and "rj.

(2.3-j) The system W-j is boundary symmetric, i.e., _j,0(0) = _j,l(1) =: Aj and also for _j. D

In addition, thanks to Jackson and Bernstein type inequalities, these systems yield norm equivalences

for a whole range in the Sobolev scale:

(2.4)
i dj,hrlJ, h 2X, c_

k6Ajo J=Jo h6Vj k6A_ o J=jo h6V,
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FIG. 2.1. Primal scaling functions.

where s E ( - min(],,'_), min(L,_)) and X 8 = HS(0, 1) if s _> 0 or X s = (H-8(0, 1))' if s < 0. In particular,

for s = 0 we have a Riesz basis of L2(0, 1).

The following concept will bc important in the sequel. The system F.j is said to be reflection invariant,

if A i is invariant under the mapping x _-* 1 - x and

(2.5) (j,k(1 - x) = (j,l-k(x), for all x • [0, II and k • Aj.

A similar definition can be given for the system T j, as well as for the dual systems. If Ej is reflection

invariant, then Tj can be built to have the same property. This will be always implicitly assumed.

Example. Throughout the paper, we shall illustrate our construction of matched scaling functions and

wavelets starting from biorthogonal spline wavelets on the real line, as introduced in [8]. The corresponding

multiresolutions on the interval are built as in [11, 12] with the choice of parameters L = 2 and L = 4, using

SVD for the biorthogonalization. The particular implementation used to produce the pictures of the present

paper is described in [3]. Figures 2.1 and 2.2 show the primal and dual scaling functions which are boundary

adapted, whereas Figures 2.3 and 2.4 refer to primal and dual wavelets. These, and all the subsequent Figures

of the paper, correspond to the level j = 4. 0

2.2. Homogeneous boundary conditions on the interval. Boundary adapted generator and wa-

velet systems can be easily modified to fulfill homogeneous Dirichlet boundary conditions. To this end, let

us first introduce the following sets of the internal grid points:

(2.6) A!-_ := Aj \ {0, 1}, vt "t_j := vj \ {vj,1, Vj,Mj}.

Let us collect in the vector f_ = (fl0,fll) • {0, 1} 2 the information about where homogeneous boundary

conditions are enforced, i.e., fJd = 1 means no boundary condition, whereas fla = 0 denotes boundary

condition at the point d • {0, 1}. Correspondingly, let us set

{ Ain t if _ = (0,0),

Aj \ {0}, if _ = (0,1),
(2.7) A_:= Aj \ {1}, if fl = (1,0),

Aj, if f/= (1, 1).

Let the generator systems be defined as
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FIG. 2.2. Dual scaling functions.
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Fla. 2.3. Primal wavelets.

and let us define the multiresolution analyses

(2.8) Sj_ := span--_, S_ :----span 4"ff.

Note that we have simply omitted the scaling functions which do not vanish at those end points of the

interval where boundary conditions are enforced.

The associated biorthogonal wavelet systems T_, Tff are the same as the previously defined ones, except

that we possibly change the first and/or the last wavelet depending on/_. More precisely, the wavelets can be

chosen to vanish at each boundary point in which the corresponding component of fl is zero. If the boundary

condition is prescribed at 0, the first wavelets rlj,_.l and ¢b,_j.1 are replaced by

(2.9) _ 1 1
:= -- ,Tj,_j,_.- _ (,)j,_,l - _j,o),_J'_J_ v_ (_'_'_ - _j,0), -o ._

respectively. The wavelets r/D_j,Mj and ¢/D_j,Mj vanishing at 1 are defined similarly. Observe that the set of

grid points V_ which labels the wavelets does not change, i.e., V_ = Vj for all choices of _.
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FIc. 2.5. Primal and dual wavelet corresponding to the first wavelet grad point having homogeneous boundary conditions.

-__ a and 2_, "a fulfill the conditions in (2.3) stated above, provided the indexThe new systems -j, Tj Tj

/_ is appended to all symbols. In addition, if the systems 2j and -_j are reflection invariant, see (2.5), the

systems with boundary conditions can be built to be reflection invariant as well, in an obvious sense (i.e.,

the mapping x _-* 1 - x induces a mapping of --2 into itself if/_ = (0, 0) or f_ = (1, 1), while it produces an

--(0,1) _(1,0) in the other cases).exchange of "j with -j

Example (continued). Figure 2.5 shows the modified wavelets defined in (2.9) for the B-spline mul-

tiresolution chosen to illustrate our construction. B

2.3. Tensor products. Multivariate generators and wavelets can be easily built from uuivariate ones

using tensor products. Hereafter, we describe the construction in the domain _ = (0, 1) n, which will serve

as a reference domain later on.

Let the vector b = (fl_,...,fl") (where fit E {0,1} 2 for 1 < I < n) contain the information on the

boundary conditions to be enforced. Let us set, for all j _> j0,

and similarly for Qjb(_). These spaces are trivially nested. In order to construct a basis for them, we define

for_=(_;,...,_n) Efiandk=(kl,...,k,_) EA b:=Aj ×...× Aj

n

:= =
/=1

we set



sothat

5b(_) : span ((_j), _jb((_) = span (_)j).

Biorthogonal complement spaces wb(_), i.e., spaces satisfying

are defined as follows. Set V_ := A_+ 1 \ A b and for any ]z -- (]zl,..., ]Zn) E V_, define the corresponding
wavelet

_j,_(_) := (0£1 ®...®Oh°)(_) = fIOh,(_i),

/=1

where

Then, set

t_l
^ _j,h,, ifhl EAj ,

_hz := r/J,h,' if hi C Vj.

_J := {_j,h : h • vb}, and Wj(fi) := span_j.

The definition of _j and I)db(_) is similar. The wavelet systems _j and _j axe biorthogonal and form Riesz

bases in L2(_): the norm equivalences (2.4) extend to the multivariate case as well.

Finally, considering the boundary values, we note that, given any l • {1,..., n} and d • {0, 1}, we have

(_j,k)l_:,=d -- 0 iff ]¢z# d or (]q = d and fitd = 0)

and

(_Pj,h)li,=d -- 0 iff ht # ua or (hi = vd and/3_ = 0),

with va = vj,1 if d = 0, and r'd = _j,Mj if d = 1.

3. Multiresolution on general domains. In this section, we describe the construction of a mul-

tiresolution analysis on our domain of interest Y/ C lrt ". As already mentioned, fl is split into subdomains

f/i, which are images of the reference element _ = (0, 1) n under appropriate parametric mappings . The

multiresolution analysis on gt is then obtained by transformations of properly matched systems on 12.

We will first describe our technical assumptions on fl and the parametric mappings from the reference

domain to the subdomains. In Subsection 3.2, we detail the construction of scaling functions and wavelets

on a subdomain. The matching for the scaling functions will be described in Subsection 3.3. Most of

the wavelets in f_ simply arise by a mapping from the reference element without any matching; these

functions will be described in Subsection 3.4. The more complex matching for the wavelets will be detailed

in the subsequent sections for the 1D, 2D and 3D cases, separately. Finally, in Subsection 3.5, certain

characterization properties of Sobolev spaces are summarized.

3.1. Domain decomposition and parametric mappings. Let us consider our domain of interest

12 C K/'_, with Lipschitz boundary OQ1.The boundary 012 is subdivided in two relatively open parts (with

respect to 0Q), the Dirichlet part FDir and the Neumann part FNeu, in such a way that

0Q = FDir t.3 FNeu, FDir f'] FNeu = 0.

1Note that also certain domains that do not have Lipschitz boundary can be treated by this approach. Indeed, we have to

assume that fl can be split into subdomains in such a way, that the assumptions on the parametric mappings are fulfilled.



We assume that there exist N open disjoint subdomains fli C fl (i = 1,..., N) such that

N

i=l

and such that, for some r > _ (see (2.3-e)), there exist r-time continuously differentiable mappings Fi : l_l --*

_i (i -- 1,..., N) satisfying

(3.1) fli -- Fi(l_/), IJFil :-- det(JFi) > 0 in _,

where JFi denotes the Jacobian of Fi; in the sequel, it will be useful to set Gi := F( 1.

Let us first set some notation, starting with the reference domain _. For 0 _< p ___n - 1, a place of _ is

a subset & C 0_ defined by the choice of a set/2_ of different indices 11,... ,ln-p E {1 ..... n} and a set of

integers dl,... ,dn-p E {0, 1} in the following way

(3.2) & = {(:_1,..-,xn) : xll =dl, ..., xl._p = dn-p, and 0 < xt <_ 1 if I _ £:_}

(thus, e.g., in 3D, a 0- face is a vertex, a 1-face is a side and a 2-face is a usual face of the reference cube).

The coordinates }l with l C E_ will be termed the frozen coordinates of &, whereas the remaining coordinates

will be termed the free coordinates of &.

Next, we set up the technical assumptions for the mappings Fi. To formulate these, we need some

notations. Let & and &_ be two p-faces of _, and let H : & ---* &' be a bijective mapping. We shall say that

H is order preserving if it is a composition of elementary permutations (s, t) _-* (t, s) of the free coordinates

of #. An order preserving mapping is a particular case of an affine mapping (see [4], Lemma 4.1).

The image of a p-face of _ under the mapping Fi will be termed a p-face of fli; if Fi,i, := 0_ N 012i, is

nonempty for some i # i p, then we assume that Fi,i, is a p-face of both fli and f/i' for some 0 < p < n - 1.

In addition, setting Fi,i, = F_(#) = F_,(9'), with two p_faces & and _' of _, we require that the bijeetion

Hi,i, := Gi, o Fi : & ---*(_ fulfills the following Hypothesis (3.3):

a) Hi,i, is affine;

b) in addition, if the systems of scaling functions and wavelets on [0, 1] are not reflection invariant (see

(2.5)), then Hi,i, is order preserving.

Finally, the decomposition is assumed to be con]ormal in the following sense: the intersection _i N i=/i,

for i # i _ is either empty or a p face, 0 < p < n - 1; moreover, for i = 1,..., N we suppose that 0fli N rDir

and 0fli N FNeu are (possibly empty) unions of p-faces of fli.

To summarize, we need the following assumptions:

(a) The mappings Fi : _ ---' l=li are r-times continuously differentiable, with r > % and satisfy IJFiI > 0

in _;

(b) The mappings Fi fulfill Hypothesis 3.3 above;

(c) The domain decomposition is conformal.

3.2. Multiresolution and wavelets on the subdomains. Let us now introduce multiresolution

analyses on each fli, i = 1,..., N, by "mapping" appropriate multiresolution analyses on i_l. To this end, let

us define the vector b(fli) = (B1,..., _n) E {0, 1} 2n as follows

f_=_ 0, ifF_({_l=d})CFD_, l=l,...,n, d=O, 1.

( 1, otherwise,



Moreover,letusintroducetheone-to-onetransformationv H 9 :-- v o Fi, which maps functions defined in

h into functions defined in _. Next, for all j > j0, let us set

v,(F/,) := {v : _ • ff(_')(h)}

A basis in this space is obtained as follows. For any/¢ • A_ (_'), set k (i) := Fi(]_); then, define the set of grid

points

_ji := {k(i) : _ • a_(")}

in hi. The grid point k, whose image under G i is ]_, is associated with the function in Vj (F/i)

j,k := _j,_ o Gi,

i.e., Wj,k-(i)= _J,k'^ The set of all these functions will be denoted by _}. This set and the dual set _} form

biorthogonal bases of Vj (F/i) and _ (f_i), respectively, with respect to the inner product in L2(F/i)

(3.4) <u,v>_,:= £ u(x)v(x)lJai(x)lex= £ _(_)_(_)e_,
i

which, due to the properties of the transformation of the domains, induces an equivalent L 2 type norm

Ilvll_(n,) _ {v,v}a, ^ 2 L2(F/i).= IlVllL=(_), Vv •

Coming to the detail spaces, a complement of Vj (F/i) in Vj+I (f_i) can be defined as

wj(ai) := 1_ : _ • w_("')(h)}.

A basis qJ} in this space is associated with the grid

_'_ := _}+1 \_(:} = {h = Fi(h ) : h • V_ (f_i)}(3.5)

through the relation

(3.6) ¢(i) ij,h := Cj,h o Ci, Vh • _j, h = Fi(h).

The space Wj(f_i) and the similarly defined space !¢Vj(f_i) form biorthogonal complements; the bases @},

and t_} are biorthogonal (with respect to {., ')a, ). It is easily seen that the dual multiresolution analyses on

f_i defined in this way inherit the properties of the multiresolution analyses on _.

Finally, we introduce a concept that will be useful in the sequel. A point h E 7-/} is termed internal to

_i if h = Fi(h), with h = (hi,"- h,_) such that each component h_ belongs to A int U V int (see (2.6)).
' --3 --J

3.3. Multiresolution on the global domain. Now we describe the construction of dual multireso-

lution analyses on _. Let us define, for all j _>J0,

(3.7) Vj(fl) := {v • C°(h): via , • Vj(fli), i= 1,...,N};

the dual spaces _ (ft) are defined in a similar manner. In order to define a basis of _ (f_), let us introduce

the set

N

(3.8) ]Cj := U K:}
i=1



containing all the grid points in _. Each point of tCj can be associated to one single scale basis function of

Vj(fl), and conversely. To accomplish this, let us set

I(k)::{iE{1,...,N}: kE_2i}, VkcICj,

as well as

k (+) := ai(k), Vi E I(k), Vk E ]Cj.

Then, for any k E K:j let us define the function qoj,k as follows

(3.9) _j,kln, := {

II(k)[-1/2 wj,k, if i E I(k),

0, otherwise.

This function belongs to Vj (f_), since it is continuous across the interelement boundaries (see [4], Section

4.2). Let us now set Cj := {qOj,k : k • ]Cj}. The dual family _j := {_j,k : k • ]Cj} is defined as in (3.9),

_(i) by =(i) (For our B-spline example, matched scaling functions are displayedsimply by replacing each Wj,k _Uj,k"

in Figures 4.1 and 5.2 in Sections 4 and 5, respectively.) Then, we have Vj(fl) = span_Sj, _(f_) -- span_j.

By defining the L 2 type inncr product on f_

N

(3.10) (u, v)n := E<u, v)fl,,
i=1

it is easy to obtain the biorthogonality relations (qoj,k, qbj,k,)n = _k,k', from those in each f/i.

3.4. Wavelets on the global domain. We now begin the construction of biorthogonal complement

spaces Wj(f_) and ITVj(f_) (j > 3o) for Vj+I (I2) and _+l(f_) as well as the corresponding biorthogonal bases

• j and _j. Given the set of grid points

N

i=1

we shall associate to each h • 7_j a function _b¢,h • Wj(ft) and a function _j,h • 17Vj(fl). Then, we shall set

% := : h • nj}, := : h • nj}.
_/'(i) (defined in (3.6))At first, let us observe that if h • _} is such that the associated local wavelet .e.j.h

vanishes identically on Ofli \ Of_, then the function

(i)
(3.11) ej,h(X ) := ¢j,h(X), if x • ai,

0, otherwise,

will be the global wavelet associated to h. This situation occurs either when h is an internal point of fli

(recall the definition of internal point given at the end of the previous subsection), or when all non internal

coordinates of h correspond to a physical boundary (see Figure 3.1).

The remaining wavelets will be obtained by matching suitable combinations of scaling functions and

wavelets in contiguous domains. In each of the three coming sections, we shall detail the construction of the

univariate, bivariate and trivariate matched wavelets, respectively. Precisely,

- in 1D, wavelets are matched across the interface between two contiguous subdomains (i.e., subinter-

vals), see Section 4;

in 2D, wavelets are matched around the common vertex of several subdomains (cross point), or

across the common side between two subdomains, see Section 5;

10



FIG. 3.1, Scaling function grid points (circles) and wavelet grid points (crosses) in the subdomain 12,. The upper and right

parts of the boundary of the subdomain belong to F. Wavelet grid points in the shaded area are associated to global wavelets

constructed according to (3.11).

in 3D, wavelets are matched around cross points, or around a common edge of several subdomains,

or across the common face of two subdomains, see Section 6.

Before going further on, let us make a general remark on vanishing moments. Wavelets on the reference

domain satisfy the conditions

fn&%j,h(_)d_ = O, vh, rid L- 1,

where _ = (&_,..., _r.) and Irl = maxi ri; this follows from the fact that @(_) contains the set 7_L_ 1(_)

of all polynomials of degree < L - 1 in each space variable. Unless a very special mapping is used, similar

conditions in f_ are not satisfied. However, they are replaced by analogous conditions, which still imply the

compression property of wavelets. Indeed, @ (fl) contains the subspace

T_L_I(n) = {p G C°(fi) : (Pla,_'G T_L_I(_), Vi},

so that one has

(p,%h)a = 0, Vh e _tj, Vp • PL__(n).

A dual condition holds for the dual wavelets Cj,h (x).

3.5. Characterization of Sobolev spaces. At the end of our construction we shall obtain a system

of biorthogonal wavelets on fl which allows the characterization of certain smoothness spaces. For instance,

let us set

(3.12) g_(fl) := {v • U_(fl) : v = 0 on FDi_}

for s • zW \ {0}, and let us emend the definition by interpolation for s ig SV, s > 0 (after setting H°(f_) =

L2(fl)). Fhrthermore, we introduce another scale of Sobolev spaces, depending upon the partition P :=

{fli : i = 1,..., N} of _; precisely, we set

(3.13) U_(a;T') := {v • H_(fl) : Vln , • HS(ai),i = 1,...,N}

for s • _¢ \ {0}, equipped with the norm

N

Ilvll.;(a;_) _- _ II_la,ll-.(a,), Vv • g_(f_;'P),
i=1

11



and we extend the definition using interpolation for s _ _W, s > 0 (again we set H°(_; P) = L2(fl)). The

following Theorem summarizes the characterization features of our wavelet systems; they can be exploited

in many different applications.

THEOREM 3.1. _4], Theorem 5.6) Assume that s e [0, min(L,'7)). Then

f
H_(f_;7 _) = / v • L2(_) :

In addition, if v • H_(Ft;7_), then

(3.14) v = _ (v,_jo,k>__jo,k +
kEK:jo

the series being convergent in the norm of H_(f_; 79), and

(3.15) _IIvll.:(_,_.)~ _ 2_°t<v,_jo,_>.l_ +
kEK:j o

_ 2_.j I(_,_j,h)_? < _ •
j=jo hET"fj

O0

J=3o hET_ i

C_

_ 2_j I<,,_,.>.1 _-
j=jo hETlj

A dual statement holds if we exchange the roles of Vj(f_) and _(_).

Moreover, if s • ( - min(L,-_),0), the formulas (3.14) and (3.15) hold for all v • H_(_;P) :--

(H_ _1(f_; 7_)) ', provided the inner product (., .)_ is replaced by the duality pairing between the spaces H_(_; 7_)

and gb_l(f_; "P). []

4. Univariate matched wavelets and other functions. In this section, we describe the construction

of matched wavelets and other functions in the one-dimensional case. Since this material will be used in

the subsequent construction of higher dimensional wavelets, we restrict ourselves to the natural reference

situation of the interval I = (-1, 1) divided in the two subintervals I_ = (-1,0) and I+ = (0, 1) by the

interface point C = 0. It is straighforward to reduce any other one-dimensional matching to the present

situation, by possibly introducing a suitable parametric mapping.

The scaling function _j,0, associated to the interface point C = 0, is defined by

1 _(:,_(:_+1), :_•I_,
(4.1) _3j,0(_:) := _ L _j,o(&), _: • I+.

Example (continued). For our B spline example, the function (4.1) and its dual are displayed in

Figure 4.1. []

4.1. Wavelets. Let us consider the local basis functions on each subdomain

( _j,l(X q- 1), e ----O,

"+ ^ S_j,0(_), e = 0,
_b_ (x) := & • I+,

t r/._,_,j,_(k), e = 1,

and let us set (see [4], (5.6))

Yj°+l(/:k) :: span{C/ : e • {O, 1}}.

12
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FIG. 4.1. Matched primal and dual scaling functions at the cross point.

Any function v + E Vj°+l(I+) can be written as v- = _--]_e_{0,1} s[ _; let us denote by c_ + := (a0 _, af) the

vectors of the local degrees of freedom. We want to build the local space

yj°a(I) := {v• c°(t) : vll_ • _°1(I±)}

by matching functions in Vj°l(I_) and V3__l(I+) , and we want to find a basis for the subspace W°(I) :=

{v • Vj°+l(I): (v, _j,o)L2(1) = 0}. The matching condition between two functions v ± • Vj°l (I+) reads:

s o _jj (1) + s_- _]j,_,,Mj (1) = S0+ _j,0(0) + Sl+ r/j,_,l (0),

which, in view of the boundary values of the univariate scaling functions and wavelets (see (2.3-i.3)), is

equivalent to

(4.2) s o+s; =s0 ++sl +-

^

Next, we enforce the additional condition of orthogonality to qSj, 0 which is expressed as

O= (O_o_j,l(' + 1) + Slrlj,v._,_ (" + 1),$j,C,[_I,OI)L2(_I,0)

(4.3) + (so+_j,o(1+_%,-_.,(),_3,_,_o,,_)_(o,)
1

= _ (so + s+),

where the last equality is a consequence of the biorthogonality on the interval.

Using the matrix-vector notation of [4] (see formula (5.24) therein), condition (4.2) and condition (4.3)

multiplied by v/2 read

where

z_:= , _ = (_-,_+)_ = (s0 ,s_ ,s0+ s_+)_
1 0 1 0

It is easily seen that :D:D t -- diag (4, 2) is positive definite, so that :D has full rank 2.

dim W°(I) = 2. It is directly seen that

(4.4) ger:D = span {(0, 1, 0, 1) t, (1,-1,-1, 1)t}.

This implies that

13



For the dual system, we have the same condition. So, it remains to find 2 particular choices of a E Ker 2)

and & E Ker 2), i.e.,

a t := hi,1 (0, 1, 0, 1) t + at,2 (1, -1, -1, 1) t,

&l := 51,a (0, 1,0, 1) t + at,2 (1,-1,-1, 1) t,
l = 1, 2,

that will define primal and dual wavelets _, ¢_, l= 1, 2, as

(4.5) _(_) := { a,_ _,1(_ + 1)+ (a,,a - a,_) _,_ Mj(_ + 1), _ • L,-a_,2_j,0(_)+ (a_,t+ hi,2)n_,_j,_(_), _ •/+.

The coefficients have to be chosen in order to obtain biorthogonal functions. Using the biorthogonality on

the interval, it is readily seen that

^

---- ,¢j )L (-1,1) = 2al,lCl.m,1 q'-4al,2hm,2.

This can be rephrased by the matrix equation

(4.6) Id = A X f4 t,

where

(o1,1al ) ( 11 (20)A:= , A:= , X:= .
a2,1 a2,2 a2,1 t22,2 0 4

Since we have 4 equations for 8 unknowns, one can, in principle, choose 4 coefficients and the remaining 4

are then determined by (4.6).

convenient to relabel the wavelets ¢_, ¢-_, l -- 1, 2, obtained by any particular choice of theIt is

coefficients as

(4.7) g)_- := _1, _+ := _],

(and similarly for the dual wavelets) so that they arc associated in a natural way to the grid points hi • 7"/5

located around C and defined as h+ := F+(uj,1), h_ := F_(-1 + uj,Mj).

The above mentioned freedom in the construction can be used to _ additional features, which will

now be described.

4.1.1. Additional features. Depending on the particular application one has in mind, one might need

the basis functions to have some additional features such as, for example, zero values at the cross point,

(skew-) symmetry and reflection invariance. We will now address these issues.

Zero values at the interface. The scaling and wavelet systems on the interval are supposed to be boundary

adapted and boundary symmetric. Then, (4.5) implies

_)l(o) = )t t al,l, _(0) ---- )_j al,l, for l= 1 or l= 2,

where )_j is defined in (2.3-j). Choosing these coefficients to be zero implies zero value of the corresponding

wavelet function at the interface. Note that it is not possible to enforce the condition for l = 1 and I = 2

simultaneously, as this would contradict (4.6).

14



Symmetry and skew symmetry. Let us assume that :.j, --j and T j, Tj are reflection invariant.

implies in particular

Then, we get, for 5 c I,

_j,0(5) = _j,1(1 - 5), zlj,_j, _ (5) = _/j,Vj.Mj (1 -- 5).

!al,a2)(_5) = ( --a2 _j,l(1 _- 5) -f- (al + a2) 'I"Ij,Vj,Mj (1 + :_), 5 C I_,
3 a2 _j,o(5) + (al - a2) nj,_,j,_ (5), 5 C I+,

=  Jo1,-o2 (5),

This

where the notation CJol,a2) abbreviates that the function is associated to the vector (al, a2). This implies

¢_(-5) = { _(5),-¢_(5)' ififa,,2at'l==0,0' for l = 1 or 1 = 2,

so that we can choose one wavelet function to be either symmetric or skew symmetric. The choice A =

0) one symmetric one skew-symmetric wavelet. The dual wavelets are then defined by

1 x

leads to and
1 0

( 0 1/4 ) and have the same properties.the matrix A = 1/2 0

Reflection invariance. Under the same assumptions as before, the choice A = ( 1 1 _ leads to
k 1 -1 ]

primal wavelets that reflect into each other under the mapping _ _ -_. The dual wavelets are then defined

by the matrix A = ( 1/4 1/8 ) , and have the same property.
1/4 -1/8

Vanishing moments. Set, for a function f and a domain D,

M_(f; D) = JD x_ f(x) dx.

Using the fact that the scaling functions in [0, 1] reproduce the constants, and exploiting the biorthogonality

and the boundary adaptation property, it follows that

(1,$j,O)L2(,+) = _-1 = (1,$j,1( ' __ 1))L_(I_),

where again A_-1 is defined in (2.3-j); by similar arguments, we get

(Xr,_j,O)L2(l+) = 0 : (Xr,_j,l( • "_ 1))L2(I_) 1 < r < L - 1.

It is easily seen that these relations imply that the monomials x r (0 < r < L - 1) restricted to the whole

interval I belong to Vj (I). Since the matched wavelets ¢_. are orthogonal to Vj (I), we conclude that

M_(¢_.;I)=0, 0<r<L-1.

Dual relations hold for ¢_. We conclude that the wavelet functions that arise by the matching procedure

automatically have the same order of vanishing moments on the whole interval I as the original functions

on the interval [0, 1].

15
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FxG. 4.2. Matched primal and dual wavelets at the cross point.

Support located in only one subdomain. It is readily seen that (4.5) implies that the arising wavelets are

both located in both subdomains. It is not possible to localize them on only one side. However, since

diam (supp T/j,h) _ diam (supp rIj,h) "" 2-J,

one still has diam (supp Cj,h) _ 2 -j for h = h+; the same property holds for the dual functions.

Example (continued). For our B splint example, matched wavelets defined in (4.5) with the choice of

matrices A and _4 which guarantee reflection invariance (see above), are shown in Figure 4.2. [3

4.2. Another basis of matched functions. Now we aim at defining a basis of the local space Vj°l (I).

Compared to Subsection 4.1, the orthogonality condition (4.3) is missing, so that we obtain the following

matching conditions in matrix vector form

2:) ot = 0, with T) := (1, 1,-1,-1), vt=(vt-,ot+)t=(O_O,_l,c_+o,C_+)t.

It is obvious that KerC = span {(1, -1, 0, 0) t, (0, 0, 1, -1) t, (0, 1,0, 1) t} and we have to find 3 particular linear

combinations, i.e.,

ct _ = at,x (1, -1, O, O)t + at,2 (0, O, 1, -1) t + a+,3 (0, 1, O, 1) t,
l = 1, 2, 3,

&l = 5t,1 (1,-1, O, O) t + at,2 (0,0, 1,--1) t + at,3 (0, 1,0, 1) t,

which give rise to the three basis functions

at,1 _j,l(X) --_ (at,3 -- at,l) ?lj,uj,Mj (_:), :C E I_,(4.8) O_ (&) := , I : 1, 2, 3,
a_,2_,0(_) + (a+,z- a_,2)_,vj, (_), _ E I+,

In this case, the biorthogonality gives the conditions

^/ -m
<_l,rn = (_j,_j)L2(-1,1)

----2(a_,15m,1 + a_,25m,2 + a_,3am,a) - at,15m,3 - a_,35m,_ - at,2hm,3 - a_,3am,2,
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~t
which can be rewritten as Id = B Y B , where

(a11512513)( 11 12 13)(201)B := a2,1 a2,2 52,3 , /_ :: 52,1 52,2 52,3 , Y := 0 2 -1 .

a3,1 a3, 2 a3, 3 53,1 a3, 2 53, 3 --I --I 2

After choosing one particular solution of this algebraic system, we rclabel the functions as

^0 ^2 ^ ^3
(4.9) 0_- := OJ, zgj := Oj, z9+ := 0j;

the dual functions are defined similarly.

4.2.1. Additional features. Additional features can be required to the functions 0_, l = 1,2, 3 just

introduced.

Vanishing moments. In this case we have

M_(_}; I) = (al, 1 -_-a/,2)M_({j,0; I),

so that one preserves the order of vanishing moments if and only if al,1 = -al,2.

Zero values at the cross point. Similarly to the results of Subsection 4.1, we obtain 0}(0) = at,3 and

_-(0) = 51, 3.

Symmetry of the arising functions. Using the same arguments as above, we obtain

so that we have

if at,1 = -al,2 and at,3 = O,

if at,1 = at,2.

Support located in only one subdomain. Obviously, one has

I_, if al, 2 = al,3 _- O,(4.10) supp0_ C I+, if at,1 = at,3 = 0,

so that it is possible to construct 3 functions, such that only one of them is localized in both subdomains.

Example (continued). We give one particular example of three functions, one located in I_, one in

I+ and one in both subintervals. For the latter one, also the vanishing moment property is preserved. Let

(4.11) B:=
1 0 0 /
0 0 1 •

0 1 0

It is readily seen that B -1 = B t, hence we obtain the coej_icients for the dual functions by

(4.12)
3/4 1/4 1/2 )

B=BY -t = 1/2 1/2 1 •

1/4 3/4 1/2

These particular functions are displayed in Figure 4.3. D
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FIG. 4.3. Primal and dual basis functions defined by (4.11) and (4.12).

5. Bivariate matched wavelets. We shall now construct matched two dimensional wavelets, by

firstly considering an interior cross point, next a boundary cross point and finally the common side of

two subdomains. In each case, we indicate how wavelets can be defined, which have the most localized

support.

5.1. Matched wavelets around an interior cross point. We describe the construction of wavelets

associated to grid points h 6 7-/j which are close to a cross point C, at which Nc subdomains meet. We

assume that these subdomains are (re-)labeled by _21,..., f_Nc, in a counterclockwise order. Moreover, we

set Fi,i+l := 0f_ifqOf_i+l. We start with the situation in which C is interior to f/. In this case, it is convenient

to set _'_Nc+I :: _']1.

At first,we deal with a particularchoiceofthe mappings to the referencedomain. Next, we shallshow

that allother possibilitiescan be easilyreduced to thischoice,which - therefore can be thought of as a

reference situation.

So, suppose that, for all i 6 {1,... ,Nc}, one has C = Fi(0, 0) and F,,i+a = Fi(#01) = Fi+t(#10), where

&ol := {(0,_2) : 0 < _2 < 1} and _1o := {(_1,0) : 0 < _1 < 1}. The grid points surrounding C, to which we

will associate the matched wavelets, are the 2No points hc,t defined as follows:

(5.1) hc,2i-1 = Fi(Vj, l,Vj,1), hc,2i = Fi(0, vj,1), 1 < i < Nc.

Note that each evenly numbered point belongs to a side meeting at C, whereas each oddly numbered point

is internal to a subdomain meeting at C (see Figure 5.1).

Dropping the index j, let us set

¢0¢0>(x)= =

18
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FIG. 5.1. Grid points hc,i, i -- 1,..., 10, around a cross point C common to 5 subdomains.

I_[; ) (X) = _lO(X) = _J,'5,i (;;_1)_j,O(;_2),

I/2[? (X) = _11 (;T) = _j,'j,t (;_I) 7_j,ui, I (;_2),

(see [4], formula (5.5)), as well as Vjo+, (_i):-- span{tbff ) : e e E2}. A function v (0 • vie1 (_,) is written as

e6 E 2

, (i),
we shall introduce the column vector ¢x(O := [c_ )_EE 2. In order to characterize the local space

5c1(_'_) := {v • C°(_) : vl_ i • 5c1(__i) if i • {1,... ,Nc}, via ` - 0 elsewhere},

we proceed as in [4] (see Section 5.2), i.e., we enforce the continuity among the v (i) by considering the point

C firstly, and the sides Fi,i+l, secondly. Recalling (2.3-i.3), the continuity at C yields the set of linearly

independent conditions

.... (i+1) (i+1) (i+1) (i+1)
C_(0_ "q- OL(0'? q'- Ot _ -_- (]_il) _-- O{00 "[- O/01 -_- Or10 "q- Olll , l<i<Nc-1,(5.2)

or

co.a (i)=co.ot (i+1), 1 <i<Nc-1,

with co = (1, 1, 1, 1). Denoting by _ := (e_(i))i=l ..... Nc • 1_4Nc the column vector of all degrees of freedom,

these conditions can be written in matrix vector form as

co -CO
Co (* = 0, where Co = "-. '..

CO -co

• H_(Nc-1) x4Nc

Let us now enforce continuity along the sides ri,i+l. To this end, observe that

(5.3)

V!/+1) (X) = . [/ (i+1) ' , (i+1)_ (i+1), (Xl)),i._,.,+, AjktO_o0 "q- OL(0i? 1) ) {j,0 (Xl) q- (O_10 "t- Otll )_j,v,,t
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with Aj defined in (2.3-j). Because of the linear independence of the univariate functions, the matching is

equivalent to

• (i+1) (,+1)
(5.4) 0/(i)O(i) AF 0/_i)O(i) = 0/_0÷ 1) -]- 0/_:÷ 1) '

0_)_ --[-0/i1' = 0/10 "_-0/11 "

Since we have already enforced the continuity at C 6 Fi,i+l (see (5.2)), it is enough to require that a

particular linear combination of the latter equations holds; precisely, we enforce

0/(0_ Ot (0i? -{- 0/I/0 ) 0/Iil ) (i+1) (i+1) _ (i+1) (i+1)-- -- = 0/00 -_- 0/01 -- (_10 -- 0/11

(for details, see [4], Proposition 5.2). Introducing the vectors c' = (1,-1, 1, -1) and c" = (1, 1,-1,-1),

these conditions can be rephrased as

(5.5) Cl a = O, where C1 =

Ct -- Ctt /

• " 6 l_ Ncx4Nc

CI __ Ctl

__C rt C t

We are interested in finding a basis for the subspace wc(_) := {v 6 Vj_I(_ ) : <v, _Sj,c)e -- 0}. Recalling

that, by (3.9),

1 (_j,0 ® _j,0)(x) &=G,(x), i=l,...,Nc,
_ c,., (_) - v_

wc obtain the condition

gc

E0/ =0
i=1

So, introducing the vector b := (1,0, 0, 0), all conditions enforced so far can be summarized in

[co]T_a = 0, where _) = C 1 6 _2Nc×4Nc

B

B := (b,...,b) 6 _I×4Nc.

It can easily be seen that

8 -4

-4 8 -4

". '• --4

-4 8

8

8

Nc

6 j_2Nc x 2Nc ;

the evident symmetric positive definite character of 2:)2:) t means that 2:) has full rank. This implies the

existence of exactly 2No linearly independent functions in wC(_), i.e., dim W_(_) = 2Nc. The parallel
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constructionfor l_c(f_) leads to the condition T_& = 0 (note that the matrix 2) is the same as for the

primal system). Finally, we enforce biorthogonality between the primal and dual basis functions determined

in this way. To this end, we choose a basis {t¢1,..., tC2Nc} in Ker T_, and we look for linear combinations of

these vectors

2Nc 2Nc

Otl = _ el, m lg_rn, a I = _ al, rn l_m,

m= l _,r_= l

1 < l <2Nc,

such that, if a l is decomposed as (al'(0)i=l ..... 2Nc, the corresponding wavelets

{ _-_ al_'(i)_b,(_c), ifxEf_i,l<i<Nc,
0, elsewhere,

and the dual ones _l defined in a similar manner, form a biorthogonal system. Then, setting K: :-=j,c

(tem),,_=l ..... 2No, A :-= (al,,,_)l,m=l ..... 2No, [4 := (al,m)l,m=l ..... 2No, and .A := (al)l=l ..... 2No = /CA t, fit :=

(&_)l=l ..... 2No = K:At, and exploiting the biorthogonality property in each subdomain, we can express the

biorthogonality condition in the form .A t fit = Id, i.e.,

(5.6) A1CtlC[4 t = Id.

Since K: obviously has full rank, K:tK: is regular, so this matrix equation has a solution. In particular, one

can choose A = Id and consequently _[ = (K:tK:) -1. In Subsection 5.1.1, we shall exhibit a specific basis in

Ker T_, which allows to obtain primal wavelets with minimal support around C.

Once the biorthogonal wavelets Ct and _l (1 < l < 2No) have been determined, they can bej,c j,c - -

associated to the 2Nc grid points hod surrounding C, defined in (5.1).

Reduction to the reference situation. Let us now show that we can reduce any interior cross point

situation to the one described above. To this end, let us consider any subdomain f_i having C as a vertex.

Then, we have the following 4 cases:

a) C=Fi(0,0), b) C=Fi(1,1),

c) C=Fi(O,1), d) C=Fi(1,0).

Recalling the assumption det (JFi) > 0 in (3.1), it follows that in cases a) and b) the indices of the frozen

coordinates of f'i-l,i and f'i,i+l are given by E._,__., = {2}, £:p_,,+x = {1}, whereas in cases c) and d) one

has/:r,-L, = {1}, £:i_ +_ = {2}. It is straightforward to see that the matching conditions along Fi_Li and

Fi,i+l in cases a) and b) yield the same vectors c' and c" defined above, whereas the roles of these vectors

are interchanged in the remaining cases.

If ¢x(i) =,I, oL00,(i) °_01,(i)°_10,(i)a_i)l)t ' let us denote by &(i):= ,£o_00, Otlo, 0_01,Ol_/1))t(i)(i) (i) " the modified vector and

by _ the matrix obtained by modifying D according to cases c) and d). Since it is readily seen that

co" (e') t = Co- (e") t = O, b. (d) t = b. (c")* = 0, c'- ct (i) = c". &(i) as well as c". a (i) = d- fit(i), we obtain,

as desired, T_ a = 2) fit.

This procedure can be applied to all subdomains meeting at C, and so we are back to the reference

situation.

The biorthogonalization is performed following the same guidelines described above; obviously, the

definition of the wavelets and the associated grid points has to be adapted to the specific orientation of the

mappings to the reference domain.
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5.1.1. Wavelets with minimal support. The perhaps most important feature, in view of numerical

applications, is a minimal support of the wavelets, since this implies minimal length of the corresponding

filters.

Let us first consider under which circumstances it is possible to construct wavelets that are supported

in only one subdomain _i. By the matching at the cross point and the sides, we obtain the three conditions

(5.7) Co • _(i) ----e' • a (i) ----e" • ¢_(i) _--O.

It is readily seen that the vectors (a,-a,-a, a), for some a c Mr, are the only solutions of (5.7). Thus, any

function defined as

a¢00(_) - a¢01(_) - a_10(_) + a_11(_), x • a,,(5.S) ¢(x)
[ 0, elsewhere,

belongs to vie1 (12) and is supported only in 12i. However, such a function cannot be a wavelet because,

by imposing the orthogonality to _Sj,c, one gets the extra condition b • a 0) = a(0_ -- a -- 0. This implies

that it is not possible to have wavelets supported in only one subdomain. On the contrary, we are going to

show that it is possible to construct 2Nc - 1 out of 2No wavelets to be supported in only two contiguous

subdomain. To this end, let us deal with subdomains _2i and _2i+1. Considering the block structure of the

matrix T_, the corresponding vectors of coefficients a (i), a (i+1) have to fulfill the local equation

C ! --C t! _1_(i+ 1) _--- O.

b b

It is easily seen that the two linearly independent vectors

(otl,(i),_l,(i+l)) :__ (0, 0, _l, l, 0, _l, 0,1)t, ((_2,(0,(_2,(i+1)) := (_1,1,0,0,1,_2,_1,2)e

solve this equation. Setting all the remaining coefficients in c_ to zero leads to the two seeked wavelet

functions.

We observe that one out of these 2Nc functions is linearly dependent on all the others: since all these

functions vanish at C, there are at most (2No - 1) linearly independent functions among them. On the

other hand, we now show that the following 2No functions are linearly independent:

(5.9) {

¢},c(x) :=

for I ----2i -- 1, i • (1,...,Nc},

(5.10) {

for l = 2i, i • {1,...,Nc - 1}, and

(5.11)

eEE 2

eEE 2

O, elsewhere,

e6E 2

eEE 2

O, elsewhere,

_)2Nc rx. _ _/,glob(_ ,_ { _11 (X),
j,C _, ' :_ "vJ'C _'_) :_ O,

x•_,l <i<Nc,

elsewhere.
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v'2Nc,_m cmIndeed, if _ := z-,,_=l j,c =- 0, then ¢(C) = 0 implies "_2Nc = 0 and ¢lrNc,1 = 0 implies A2Nc-1 = 0.

Then ¢1al _ 0 implies A1 ¢_,c + A2 ¢j2,c _ 0, which in turns implies ,kl = )_2 = 0. Considering in sequence

f_2,. • •, f_Nc-1 shows that all the coefficients must vanish•

Note that the primal basis we have just exhibited corresponds to choosing the following basis in Ker :D

_¢_m := (O,''',O,(otl'(i))t,(otl'(i+l))t,o,..•,O)t, if m= 2i- l, i C {1,...,Nc},

_m :_-- (0,..., 0, (Ot2'(i)) t, (Ot2'(i+l)) t, 0 .... ,0) t, if m = 2i, i E {1,..., Nc - 1},

tC_N_ := (d,...,d) t with d = (0,0,0,1),

and to choosing A = Id in (5.6). Then the dual matrix .4 is given by A = (K:t/c) -I, where

]ctK: =

4 4 1 -1

4 12 3 -3

1 3 ".

-1 -3 ".

1 1t2 2 2

• •• °•

• .• ••

'•• ••°

'•• •••

1 3

-I -3

............ 2

1 2

-1 2

2

1 -1

3 -3 2

4 4 1 2

4 12 3 2

1 3 4 2

2 2 2 Nc

Example (continued). We consider the situation in which four subdomains _-_1,..., _'_4 meet at C (for

simplicity, we assume linear parametric mappings from each subdomain to the reference domain}• For our

B-spline example, we show in Figure 5.2 the matched scaling function and the three different types of wavelets

associated to grid points around C. [q

5.1.2. Tensor products of matched univariate functions. A common situation for an internal

cross point is the case Ne = 4, i.e., four subdomains meeting at C. In such a geometry, it is easy to

construct a basis for WC(f_) by properly tensorising the univariate matched functions defined in Section 4.

First of all, let us note that, by possibly introducing appropriate parametric mappings, we can reduce

ourselves to the situation in which each subdomain is the image of one of the subdomains I± x I± (we use

here the notation set at the beginning of Section 4), and C is the image of C' = (0, 0). Then, let us consider

the set of univariate functions given by the scaling function _j,0 defined in (4.1), the wavelets _} defined in

(4.5) (4.7) and the functions _} defined in (4.8) (4.9). A basis in WC(f_) is obtained by taking the image

of 8 linearly independent tensor products of such hmctions satisfying the condition of orthogonality to the

dual scaring function _j,0 = _j,0 ® _j,0- For example, a possible choice is

(obviously, these functions are extended by zero outside the union of the four subdomains) whose association

to the 8 wavelet grid points around C is self evident• Note that this construction does not necessarily require
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FiG. 5.2. Matched scaling ]unction (1st row) and primal wavelets Cj,mC. In the first row the wavelet Ib_, C is displayed.

The second row shows the functions _aJ, C and ¢_,c that are supported in _1 and _2. The remaining 5 wavelets are rotations

of these two functions. (Note that only a portion of each subdomain around C is shown.)

the functions 0_ to have minimal support in the sense of (4.10), although efficiency will be enhanced by this

feature.
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...... Neumann B C _. Dirichld B C

FIc. 5.3. Grid points hc,i (labeled only by i) around a boundary cross point in the 3 different cases (]rom left to right:

pure Neurnann, mixed and pure Dirichlet case).

5.2. Matched wavelets around a boundary cross point. Let us now consider the situation in

which C E 0_ is common to Nc subdomains _1,... ,_gc ordered counterclockwise. We assume that fll

(_gc, resp.) has a side, termed F1 (FNc, resp.), which contains C and lies on 0_. Then, the following cases

may occur:

a) F1, Fgc E FNeu

b) F 1 E FDir, FNc E FNeu C) F1 E FNeu, FN c E FDir

d) F1, FNc E FDir.

Since all arguments concerning biorthogonalization carry over from the interior cross point case, in the sequel

we will only detail the matching and orthogonality conditions for each case separately.

Pure Neumann case. Let us start by considering case a). The matching at the cross point C only differs

from the interior cross point case by the absence of a matching condition between fll and fiNe. However,

in the interior case, this condition turned out to be linearly dependent on the other ones, hence, there was

no need to explicitly enforce it. This implies that the matrices describing the matching at C are the same:

C0 Neu : C 0.

The matching conditions along the sides are the same as well, with the only difference that now the last

row in (5.5) is missing:

C! --ctt I

(,Neu . .

C t _ _t

E M{ (Nc- 1) ×4Nc

Since C E FNeu, we observe that there exists a dual scaling function _j,c associated to C. Consequently, we

have to enforce orthogonality to this function, so we end up with the set of conditions

_Neu C_ = 0, with _Neu = _"lt_Neu E j_(2No--1)x4Nc

B

As above, it is easily seen that :D Neu has full rank; this implies that dim WjC(fl) = 2Nc + 1. This is precisely

the number of grid points surrounding C to which these wavelets can be associated; in the reference situation,

they are the points (5.1) and the point hc, o := Fl(V£1,0) (see Figure 5.3, left).

Mixed Neumann/Dirichlet case. Obviously, the mixed Neumann/Dirichlet cases b) and c) can be viewed

as symmetric ones, so we will only detail case b) here. Since C E r'Di_, all functions in Vffl(f_ ) have to

25



vanish at C. This means that we have to add one more condition to those posed at C, i.e., wc obtain the

matrix

/-° )cMi× Co --Co= E l_ Nc × 4Nc.

", ".°

C O -- C 0

Furthermore, again we assume to be in the reference situation described above, which implies that £FI ----{2}

and /:i_i.2= {I} for the domain f_l,i.e.,the second coordinate of F1 is frozen. Let us consider a function

V (1) 6 yjCl(_'_l), which is written as

v(1)(x)= _ ._1)_(_), x e _1.
e6E 2

Observing that

_ {(o(01)+
vll! ------0 if and only if the relations .(1) + .(1) = 0 and .i 1) + .ll ) = 0 are satisfied. In otherenforcewe

words, v (D has to be written as

,(1)_. (:_1)) D

where D_]3,_j._ is the univariate wavelet vanishing at 0, defined in (2.9). Since v (1) has already been set to 0 at

C, we now enforce the linear combination

_(.(01)+.(:))+ (._1)+._)) =0

The matrix containing the matching and boundary conditions along the sides takes the form

C ¢ -- C It

C1 Mix --_ ".. ".. 6 _:_Ncx4Nc

C t -- C H

C l _CII

Since there is no scaling function associated to C, we end up with the system

_)Mix O/ = 0, with _Mix = C1Mix''0 6 j_2Nc x 4Nc .

Again, _Mix is easily shown to have full rank, so that dim We(12) = 2No; this is precisely the number of

grid points surrounding C, to which the wavelets are associated (see Figure 5.3, center).

Pure Dirichlet case. In case d), the matching and boundary conditions at C obviously coincide with

those of cases b) and c). As far as the conditions at the sides are concerned, working out as before we end

up with the matrix

_ C tl

C I -- C tl

C1Dir ---- "-. ".. 6 ]_(Nc+I)X4Nc

C p -- C tt

C t
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and the whole system takes the form

_Dir O/ ---- 0, with _Dir = "0 j_(2Nc+I)x4Nc.
/_Dir E

Once again, _DDir has full rank, so that dim W_(f_) = 2Nc - 1 (see Figure 5.3, right).

5.2.1. Wavelets with minimal support. Let us first remark that, as for the interior cross point case,

a wavelet supported in only one subdomain f_i, i = 2, ..., Nc - 1 has to satisfy (5.7). In the pure Neumann

case, the extra orthogonality condition to _i,c makes the existence of such a wavelet impossible. Conversely,

in the mixed Dirichlet/Neumann- and pure Dirichlet cases, its existence is indeed possible.

Pure Neumann case. Let us try to construct wavelets that are supported only in f_l, f_Nc, respectively.

The corresponding conditions read

(5.12) C 0 • O_ (1) ----- C ! • CI_ (1) _ 0, CO " O: (NC) = C I! ' Ot (NC) = 0,

which leads to a(_) = (a, b,-a,-b) and Ot (Nc) = (a,--a, b,-b). Adding the orthogonality condition yields,

as before, a = 0. Choosing b --- 1, we are led to define the following functions:

_01(:_) -- _11(:_), X C _1,

( 0, elsewhere,

j,c _xj := 0, elsewhere;

in addition, let us define _b},C for l = 2i- 1, i • {1,..., Nc - 1} as in (5.9), _,c for l = 2i, i e {1,..., Arc - 1}

as in (5.10) and ¢2Nc =_ Cgl_b as in (5.11). These are 2We + 1 functions (the same number as the dimension

of wc(f_)); two of them are supported in exactly one subdomain, one is supported in all the subdomains

matching at C, while the remaining ones arc supported across two consecutive subdomains.

_-'_2Nc _ rnLet us now show that these functions are linearly independent. Indeed, let ¢ := z-.,m=o mCj,c be such

that ¢ - 0. Now, ¢(C) = 0 implies A2Nc = 0. On the other hand, ¢lr_ _ 0 implies A1 -- 0, and ¢II'Nc -- 0

implies A2yc-1 = 0. Thus, we are left with the same situation as in the interior cross point case.

Pure Dirichlet case. As mentioned above, since in this case we do not have to enforce the orthogonality

condition to _j,c, one can construct wavelets that are supported in only one subdomain. These are defined

as follows

(5.13) 2i-1 (_oo(_)- ¢o1(:_)- ¢1o(_)-_-¢11 (_),
x •_i,

Cj.c (x) :-- (0, elsewhere,

for i E {1,..., Nc}; they are precisely the functions introduced in (5.8) with a --- 1. In addition, one has

the wavelets ¢_c, i • (1,... ,Nc - 1} defined in (5.10), which are supported in _i U f)i+l. No function

supported in all the subdomains surrounding C is needed.

We have defined a system of 2Nc - 1 functions, which is precisely the dimension of WC(f_). The linear

_-'_2Nc--1 ,_ rnindependence of these functions is readily seen. Indeed, since the linear combination ¢ := a.,rn=l m Cj,c -=

0 must vanish on all sides, we obtain that the coefficients corresponding to the even indices arc zero. Next,

considering all the subdomains, we get that the coefficients corresponding to the odd indices also vanish.
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2 3
FIG. 5.4. Wavelets _),c and Cj,c around a Di_ichlet boundary cross point. (Note again that only a portion of each

subdomain around C is shown.)

Mixed Dirichlet//Neumann case. Again, no orthogonality condition to qSj,c is needed. So, we use the

system of functions constructed for the pure Dirichlet case, to which we add one function. Preeiscly, if

i_1 C Fieu, we add the function

-Cj°c(x) L0,

If FNc C FNeu, we add the function

2Nc {Vj,c (z):=
501( ) - x e nNc,
0, elsewhere.

These functions are continuous and supported in 121, _Nc, resp. (note that they correspond to the solutions

_(1) = (-1,0,1,0), _(Nc) = (--1,1,0,0), resp., of (5.12)). As a whole, we have 2Nc functions, so the

dimension of we(m) is matched. FinaUy, the linear independence is obvious. Indeed, assuming for instance
•_'_2Nc - 1 )_ mF1 C FNeu, the linear combination ¢ := z-,m=0 -, Cj,c -= 0 must vanish on F1; this implies A0 -- 0 and

reduces the problem to the pure Dirichlet case.

Example (continued). We consider an L-shaped domain made up by 3 square subdomains meeting at

C. We enforce homogeneous Dirichlet conditions on the whole boundary. The two di_erent types o.f wavelets

produced by our construction are displayed in Figure 5.4. 0

5.3. Matched wavelets across a side. Let us consider two subdomains ft+ and __ having a common

side a := _+ (-1_-. Moreover, let us denote by A and B the two endpoints of a. As in the cross point case,

we may reduce ourselves to a reference situation. Instead of thinking each subdomain as the image of the

reference domain l_, here it is natural to think fZ_ (f_+, resp.) as the image of the domain I_ x I+ (I+ x I+,
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resp.), with

(5.14) A= F_(O,O)= F+(O,O), B= F_(O, 1)= F+(O, 1).

Since the reasoning for the reduction to the reference situation is analogous to the cross point case, we drop

these arguments here. Now, (5.14) implies that the set of grid points on a is given by

_ := {h : h = F+(0, h2), h_ • _3 UVj}

= {h : h = F_(0,]_2), h2 E Aj UVj}.

The grid points F+(0, vj,1) and F+(O,_'j,Mj) are already associated to wavelcts Cj,h, since these points

correspond to the cross points A and B, respectively. Hence, wc are left with the points

Let us first consider the case h • 7-/i_ t with ]_2 • Aj. Consequently, there exists a scaling function

1 f_j,l(x-+l), ifx=F_(__,_2)•fl_,

_j,h(X) := S-_J'£2 (&2) t _j,o(X+), ifx = F+(_+,&2) • ft+,v_
0, elsewhere,

associated to h. The basis functions of the local spaces vjh+l (f_±) arc then given by

¢[(x):=_jh2(_2){_j,l(dc_+l), e=0, {, 7?j,_j.Mj (d:_ + 1), e = 1, ¢+(x) := _J'h_(x2) r/j,_¢.,(&+),_J'°(d_+)'ee== 0,1.

This shows that the matching at h is equivalent to the matching at a univariate interface point. Considering

the wavelet functions ¢} defined in (4.7) for l = -, +, we end up with the two wavelets

• • u_bj,h_ (x) ---- 0, elsewhere,

which will be associated to the grid points h_ := F_ (_j,Mj, h2) and h+ := F+ (vj,1, ]_2), respectively.

_int where h2 • Vy. In this caseFinally, we have to enforce the matching conditions along points h • ._ ,

there is no scaling function associated to h. Again we are reduced to the univariate interface point case, but

now in the situation considered in Subsection 4.2. Considering the basis functions _} defined in (4.9) for

1 = -, 0, +, we end up with three wavelets

Cj,h_ (x) = 0, elsewhere,

which will be associated to the grid points h_ := F-(Vj,Mj,]_2), ho =: F-(1, h2) = F+(0,]_2) and h+ :=

F+ (vj,1, £2).

6. Trivariate matched wavelets. In this section, the exposition will be deliberately less detailed than

in the two previous sections, as the three dimensional construction follows the same spirit presented before.

We shall be mainly concerned with the matching around a cross point. The matching around an edge or

across a face will be easily reduced to lower dimensional situations.
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6.1. Matched wavelets around a cross point. Let us first assume that the cross point C belongs to

it. Let Nc = Nc.3 denote the number of subdomains meeting at C, and let these subdomains be (re-)labeled

by _l,..., f_Nv. It is not restrictive to assume that for all i E { 1,..., Nc}, one has C = F_ (0, 0, 0).

It will be useful to express the number No,2 of faces and the number Nc,1 of edges meeting at C as a

function of Nc. This can be accomplished as follows. Consider the tetrahedron in

_'_ :: {(Xl,X2,_:3) : Xl _> O, X2 -_> O, 2_3 --> O, Xl -f- :_2 -Jr- X3 _< 1}

and, for each i E {1 .... , Nc}, set Ti := Fi(T). Then, Pc :--- Ui Ti is a (distorted) polyhedron in _3, with

the following property: each face (or edge or vertex, resp.) of Pc is in one-to-one correspondence with a

subdomain (or face or edge, resp.) meeting at C. Thus, by Euler's polyhedron Theorem, wc get

Nc,3- Nc,2+ Nc, I= 2.

On the other hand, since each face of Pc is a (distorted) triangle and each edge of Pc is shared by exactly

two faces, one has 3Nc,3 = 2Nc,2. It follows that

(6.1) =iN,Nc,2 -= _Nc, Nc,1 _ c + 2.

The grid points h E _/j, to which we are going to associate the matched wavelets, have the form

(6.2) hc,i,e=-Fi(_el,_e2,_e3), iE{1,...,Nc}, e E E3 \ {(0,0,0)},

with

0, if el = O,vj,1, ife_=l.

Note that there is exactly one of such points which lies inside each subdomain, each face and each edge

meeting at C. Thus, the total number of such points is

Nc,3+ Nc,2+ Nc, l= 3No +2.

This is precisely the number of wavelets to be constructed around C. Indeed, define for each e E E 3

(x) = = o,1

where

Let us consider the spaces

{ _j,o, if el = O,0el :_

_/j,_j,_, if et =- 1.

VjCl(iti) :----- span{¢_') : e E E 3} -- {v (0 -- E °_0) 00) : a(0 :_- ((_0))eeE a E _3}
eEE 3

and let us introduce the column vector ct := ({3t(i))i=l ..... Nc E _SN¢ (8 being the cardinality of E3). In order

to characterize the local space

vjCl(it) := {v E C°(ft) : Vln _ E vjCl(iti) if i E {1,...,Nc}, vln , = 0 elsewhere},
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weenforcecontinuityfirstlyat C, secondly at the edges and finally at the faces meeting at C. This gives

Nc - 1 conditions at C, which can be written as

CO -Co /
C0a = 0, where CO = ... ... _ j_(Nc-1)×SNc,

CO -CO

with co = (1, 1, 1, 1, 1, 1, 1, 1). Next, we have N_d - 1 conditions at each edge, where Ned is the number of

subdomains meeting at the edge; all these conditions can be written as Clot = 0, for a suitable matrix C1

whose structure depends on the topology of the subdomains. Finally, we have 1 condition at each face; they

can be represented as C2t_ -= 0.

In addition, we want to build functions in wC(f_) := {v e VjCl(f_) : (v,_j,c)_ -=- 0}; this adds the

condition B_t = 0, with B := (b,..., b) and b = (1, 0, 0, 0, 0, 0, 0, 0). Summarizing, we have

:D _ = 0 with :D =

Co

C1

C2

B

All the conditions that we have enforced are linearly independent, as shown in [4] (see Section 5.2); thus,

their number is

(Nc - 1) + y_ (Ned -- 1) + Nc,2 + 1 = Nc + 3Nc - Nc,1 + Nc,2 = 5Nc - 2.
edges

Indeed, since each subdomain contains 3 edges meeting in C, one has

E (Ned -- 1) = 3Nc - Nc,1.
edges

We conclude that dim W_(f_) -- 3Nc+2, as desired. After the dual construction is made, biorthogonalization

is accomplished as described in the previous sections; we omit the details. In conclusion, we end up with

3No + 2 primal and dual wavelets _b_,c and _,c, l = 1,... ,3Nc + 2; they are associated to the grid points

(6.2), which from now on will be indicated by hc,l.

Wavelets with localized support. Let us first notice that, as in lower dimension, no function in W_C(ft)

exists, which is supported in only one snbdomain ffti. On the contrary, it is easily seen that for each couple of

continguous subdomains, two linearly independent functions in wC(l'_) can be built, which vanish identically

outside the two subdomains.

Thus, to each point hc,t which lies inside the common face of two subdomains, we associate one of such

wavelet. To all but one points hc,z lying inside the subdomains, we associate other such wavelets, choosing

them to be linearly independent from the previous ones. To each point hc,t lying inside an edge, we associate

a wavelet supported in the closure of the union of all subdomains sharing the edge: it has the local structure

of a tensor product of a two-dimensional scaling function _j,c times the wavelet _j,_l in the direction of the

edge. Finally, to the remaining point hc,l interior to a subdomain, we associate the global wavelet, which is

the three-dimensional analog of (5.11).
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Tensor products of matched ]unctions. According to (6.1), the number of subdomains meeting at C

is even. We consider here the particular situation in which these subdomains can be grouped in two sets

of equal cardinality No�2, all the subdomains of each set sharing a common edge stemming from C. For

instance, this is the relevant case of 8 subdomains meeting at C, and representing the images of unit cubes

lying in the 8 octants of _3.

By possibly introducing additional parametric mappings, we may reduce ourselves to the situation in

which Nc/2 subdomains lie in the upper half space &3 > 0 while the remaining ones lie in the lower half

plane. Each upper subdomain Fli can be written as _i = _ × (0, 1), where D_ is a 2D subdomain in the

plane &3 = 0; the companion lower subdomain is D_ × (-1,0). Thus, we are led to consider the case of Nc/2

subdomains in the plane meeting at C _ -- (0, 0). Let _/! be the bivariate scaling function associated to C I,

and let _bH'l (l = 1, Nc/2) be any system of bivariate wavelets around C, built as in Subsection 5.1.
rj " " ",

^i,_ (l -- -, 0, +)Moreover, let !b_ 'l (l = -, +) be the univariate wavelets defined in Subsection 4.1, and let 0j

the univariate matched functions defined in Subsection 4.2. Then, a system of wavelets around C can be

defined as follows:

Thc functions ¢/1,t ® 0_,+, with l -- 1,..., Nc/2, are associated to the grid points having a strictly
-II l ^I,0 ¢11,1_al,-positive x3 component and not lying on the S3-axis; the functions _0j ' ® _j and _j _ _j are associated

II ^ I,:_
to the analogous grid points having zero or negative &3 component. Finally, the functions _j ® _j are

associated to thc remaining grid points on the x3 axis (obviously, these functions are extended by zero

outsidc the union of the subdomains).

In the case of 8 subdomains meeting at C, the bivariate scaling and wavelet functions may be chosen

to bc themselves tensor products of univariate matched functions, so one can obtain a fully tensorized local

wavelet basis around C.

Cross points tying on the boundary. Let us now assume that the cross point C belongs to 0_. We follow

the same notation as beforc. The grid points h E T/j around C to which wavelets will be associated are

again of the form (6.2), but now the points lying on a face or an edge contained in FDir are missing. Let us

denote by NDil (NcD,i(, resp.) the number of faces (edges, resp.) containing C and contained in FDi_. It is

easily seen that the number Ic of grid points hc,l we are interested in is

lC = NC,3 + (Nc,2 - Ng)_) + (Nc,1 - Ng, i_).

Let us count the number of conditions that define the space We(D). We have Nc,3 - 1 matching conditions

at C, plus one vanishing condition if C E FDi_ or one orthogonMity condition if C ¢_ _Dir' Next, we have

Ned - 1 matching conditions at each edge, plus one vanishing condition at each edge contained in C E FDi:.

Finally, let Nf indicate the number of subdomains sharing the face f (this is 2 if the face is not contained in

012, 1 if it is); then, we have NI - 1 matching conditions at each face, plus one vanishing condition at each

face contained in C E FDi_. Observing that

E Ned = E Nf = 3Nc,3,
edges faces

the total number tc of conditions which define we(D) is

tc = 7Nc,3 (Nc,2 nrDir_ (Nc,1 hTDir_-- -- _vC,2! -- -- _'C,1I"

Since these conditions are linearly independent (see again [4]), we obtain, as desired,

dim Wff(_t) = 8Nc,a - tc = lc.
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FIG. 6.1. Example of 5 trivariate subdomains meeting at a cross point belonging to the Dirichlet part of the boundary (left).

The pictures in the right column show the wavelet grid points having positive, zero and negative z component, respectively (from
top to bottom).

As in the interior cross point case, wavelets can be constructed with localized support. Actually, if

C E FDir, wavelets exist which are supported within one subdomain; they will bc associated to the point

hc,t lying inside the corresponding suhdomain.

Example. Let us consider the domain represented in Figure 6.1 which is divided into 5 subdomains.

Let us assume that the three boundary faces meeting at C are contained in FDi_. We want to exhibit one

particular choice of wavelets around C, which can easily be constructed. To this end, let us assume that

C = (0, O, O) and let us divide the wavelet grid points around C into three sets, corresponding to their third

coordinate z being negative, zero or positive as indicated in Figure 6.1.

For defining the wavelets associated to the grid points having z < O, consider the bivariate scaling function

_t and the bivariate wavelets _I,l (1 = 1,..., 6) associated to a 219 interior cross point C' common to three
^11_

subdomains. In addition, let Oj be the matched univariate function defined in (4.9) and having support in

(-1,0). Then, we associate to these grid points the 7 wavelets

_jIi ® flj^L- (to the grid point on the z _axis)

_)II,l ® _/,-, (l = 1,..., 6) (to the grid points around the ax_3).

It remains to define wavelets associated to those wavelet grid points having zero or positive third com-

ponent. To this end, let _I,t (/= 1,..., 3) be the system of wavelets associated to a 219 Dirichlet boundary

cross point common to two subdomains. Then, the functions _II,1 _ _I,O_j _9 uj (l = 1, 2, 3) will be associated to the

three wavelet grid points with z = 0 and the analogous three grid points in the upper half space are identified

with the wavelets _3_{l't ® _,+ (l = 1, 2, 3).

Note that no extra orthogonality to dual scaling functions has to be enforced, since no scaling function

is associated to the 3D Dirichlet cross point C. [7

6.2. Matched wavelets around an edge or a face. Lct a -- ed be an edge, at which Ned subdomains

meet. We can reduce ourselves to the situation in which the subdomains are (re-)labeled by 121,..., _N_d

and for each i E { 1,..., Ned} we have

ed= { Fi(O,O,() : 0<(_<1}.
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It is enough to consider points hed E _j+l which are internal to ed. Precisely, if hed ----- fi(0, 0, h3) with

h3 E --3A_nt'then we build wavelets which, in local coordinates, can be written as _lj,ed ® _j,h3, where _j,ed

are matched bivariate wavelets as defined in subsections 5.1 or 5.2. They will be associated to the points

h c T/j having the form h = Fi(_i, _2, h3), with (1,_2 E {0, vj,1}.

= X-'Tint then the wavelets will be locally represented asOn the other hand, if heu Fi(0, 0, ha) with ha E -3 '

_b_,_d@_j,h3, where now Ib},ed axe matched bivariate wavelets, defined as in the previously quoted Subsections,

but without enforcing the biorthogonality condition Ba -- 0. The association to the grid points surrounding

hed is done as above (note that now hed E "Hi).

At last, let a -- f bca face common to two subdomains fl_ and Ft+. The reference situation is such

that

f={F+(0,_2,_3) : 0<__2,_3_<1}.

A i.'_t then we build wavelets having the local represen-Let hi E/Cj+I. If h I = F+ (0, h2, h3) with h2, ha E --5 '

tation _l ^lj,Y @ _j,h2 ® _j,ha, where CJ,l are matched univariate wavelets as defined in Subsection 4.1. On the

other hand, if hÀ -- F+(O, h2, h3) with h2,h3 E Ai.ntU Y7mt and at least one coordinate in --3_int' then the--3 --3

local representation of the wavelets will be one of the following ones:

^t ®_j h2 ® ^t

where now Oj,f are matched univariate functions built in Subsection 4.2. The association of these wavelets

to the grid points surrounding hf is straightforward.

Appendix A. Mask coefficients. In this appendix we provide all the mask (filter) coefficients of the

univariate scaling functions and wavelets for our B spline example L -- 2 and L -- 4. These are the data

that are needed to reproduce the figures in this paper and to use these functions, e.g., as trial functions for

numerically solving differential and integral equations. Starting from the masks of the univariate functions,

those for multivariate and matched functions can easily be obtained by appropriate tensorization, using the

matching coefficients given in the paper at any interface among subdomains.

Refinement coefficients. Let us start with the refinement coefficients on the real line corresponding to

the equations

¢(x) = 2 - k),
kE2g

where the coefficients here are given by ([8]):

a-1 = 5.000000000000e -- 01, a0 =

for the primal scaling function, and by

5-4 = 4.687500000000e -- 02, 5-3 =

5-1 ---- 5.937500000000e -- 01, 50 =

52 = -2.500000000000e -- 01, 53 ---

for the dual one.

_(X) = 2 -1/2 E _'k _(2X -- k),

kE2g

1.000000000000e + 00, al ---- 5.000000000000e - 01,

-9.375000000000e -- 02, _-2 =

1.406250000000e + 00, _i =

--9.375000000000e -- 02, 5,4 =

--2.500000000000e -- 01,

5.937500000000e -- 01,

4.687500000000e -- 02,

Next, we give the entries of the refinement matrices Mj and ._?/j for the whole bases --j, -j, respectively,
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asdefinedin (2.3-a).Thesematriceshavethefollowingstructure(takenfrom[11]):

M_:---

ML

Aj

MR

ML

Here, the central blocks Aj and fi, j take the form

1

(Aj)m, k - _ am-2k, 3 < m < 2 j+l -- 3, 2 < k < 2j - 2,

() '-AJ ,_,k v_am-2k' 4_<m_<2 j+l 4, 4<k<2 _ 4,

with the previously given coefficients ak and 5k. The upper left blocks are here given by

ML =

7.071067811865e - O1

4.890821903207e - O1

-3.794806392368e - 01

-6.010407640086e - 02

1.084230397819e - 01

4.360491817317e - 02

--2.121320343560e - 02

-1.060660171780e - 02

7.071067811865e - 01 O.O00000000000e+O0 O.O00000000000e+O0

7.733980419228e - 01 7.402524115547e - O1 --2.695844603274e - O1

-2.209708691208e - O1 8.175922157469e - O1 --6.187184335382e - 02

-3.314563036812e - O1 4.529902816976e - O1 3.933281470350e -- O1

1.657281518406e - 01 -1.933495104807e - O1 1.007627163191e + O0

O.O00000000000e+O0 -6.629126073623e -- 02 4.198446513295e - 01

O.O00000000000e + O0 3.314563036813e - 02 --1.767766952966e - 01

O.O00000000000e + O0 O.O00000000000e + O0 -6.629126073624e - 02

O.O00000000000e + O0 O.O00000000000e+O0 3.314563036812e - 02

O.O00000000000e + O0 O.O00000000000e+O0 O.O00000000000e+O0

O.O00000000000e + O0 O.O00000000000e + O0 O.O00000000000e + O0

The lower right blocks MR and 2tT/R arise from their upper left counterparts

in the following way:

0.000000000000e+00

5.082329989778e -- 02

4.419417382416e - 03

-5.966213466262e - 02

-1.800912583334e -- 01

4.198446513295e -- 01

9.943689110436e -- 01

4.198446513295e - 01

--1.767766952966e - 01

-6.629126073624e -- 02

3.314563036812e -- 02

by reflecting rows and columns

(MR)2_-m,2J-k ---- (ML)m,k, m = 0,...,8, k = 0,

and similarly for the dual functions.

Wavelet coefficients. The wavelets on the real line can be written as linear combination of the translates

of ¢ on level 1, i.e.,

_)(X) = 2 -1/2 E bk (_(2X -- k), _/_(x) = 2 -1/2 E bk (_(2X -- k).

kE2g kEZ
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The corresponding masks for our example are given by

bl = 1.060660171780e - 01,

b4 = -1.343502884254e + 00,

br = -5.656854249492e - 01,

for the primal wavelets, and by

b4 = -1.104854345604e - 01,

b2= 2.121320343559e - 01,

b5 = 3.181980515339e + 00,

b8 = 2.121320343560e - 01,

b3= -5.656854249493e - 01,

b6 = -1.343502884254e +00,

bg: 1.060660171780e - 01,

b5 = 2.209708691208e - 01, b6 = -1.104854345604e - 01,

for the dual ones ([8]). Let us now consider the two-scale matrices Gj and C:j for the whole wavelet basis,

which give the transformation

Tj = Gj'=j+I, "_j = dj:'j+l.

Again, Gj and Gj have the same block structure as Mj,/_/j, respectively, possibly with a different size of the

blocks. The inner blocks correspond to those of Mj, /iS/j, by replacing ak, 5k by bk, bk, respectively. Here,

the upper left block of the refinement matrix for the wavelets read:

G L

7.071067811866e - 01 0.000000000000e+00

-4.890821903207e - 01 1.237436867076e + 00

3.794806392368e - 01 -4.313351365238e + 00

6.010407640085e - 02 4.985102807365e+00

-1.084230397819e - 01 -1.555634918610e ÷ 00

-4.360491817317e - 02 -6.717514421272e - 01

2.121320343560e - 02 2.121320343560e - 01

1.060660171780e - 02 1.060660171780e - 01

7.071067811865e - 01 0.000000000000e + 00

-7.733980419228e - 01 -1.473139127472e - 02

2.209708691208e - 01 -5.892556509888e - 02

3.314563036812e - 01 1.325825214725e - 01

-1.657281518406e - 01 -6.629126073624e - 02

GL z

The lower blocks again arise by reflecting the upper blocks.

Homogeneous boundary conditions. Let us now consider scaling functions and wavelets having homoge-

neous boundary conditions. For the scaling functions, one only has to eliminate the first and last row in Mj

and _/j, respectively.

For the corresponding wavelets, we have to modify the first and last wavelet as defined in (2.9). This

means changing the first and last column of GL and GL, respectively, by using the following coefficients
instead:

b0 = 0.000000000000e + 00, bl : -6.916666666667e -- 01, b2 : 5.366666666667e -- 01,

b3 = 8.500000000000e - 02, b4 = -1.533333333333e - 01, b5 = -6.166666666667e - 02,

b6 = 3.000000000000e - 02, b7 = 1.500000000000e - 02,

for the primal wavelets, and

_0 = o.ooooooooooooe + 00, bl = -1.093750000000e + 00, /_2 = 3.125000000000e - 01,

_3 = 4.687500000000e - 01, b4 = -2.343750000000e - 01,

for the dual ones.

The coefficients in the refinement matrices for a whole variety of choices of the parameters L and/_ (for

the construction in [11] based on [8]) can be obtained in MATLAB format from the homepage of the third

author http://mJw. ±gpm. rwth-aachen, de/,,-urban under the topic Software. The software described in

[3] (written in C++) that has been used to produce the pictures in this paper can also be obtained via this

website.

Acknowledgement. The authors feel very grateful to Titus Barsch for his assistance in programming

and producing the pictures.
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