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Abstract

A mathematical model is developed to describe the sound emitted from an arbitrary

point within a turbulent flow near solid boundaries. A unidirectional, transversely-

sheared mean flow is assumed, and the cross-section of the cold jet is of arbitrary shape.

The analysis begins with Lilley's formulation of aerodynamic noise and, depending

upon the specific model of turbulence used, leads via Fourier analysis to an expression

for the spectral density of the intensity of the far-field sound emitted from a unit

volume of turbulence. The expressions require solution of a reduced Green's function

of Lilley's equation as well as certain moving axis velocity correlations of the turbulence.

Integration over the entire flow field is required in order to predict the sound emitted

by the complete flow. Calculations are presented for sound emitted from a plug-

flow jet exiting a semi-infinite fiat duct. Polar plots of the far-field directivity show

the dependence upon frequency and source position within the duct. Certain model

problems are suggested to investigate the effect of duct termination, duct geometry,

and mean flow shear upon the far-field sound.

1 Introduction

There is considerable interest today in developing a new generation of supersonic and sub-

sonic civil transports that are relatively quiet despite their enhanced capabilities. To achieve

this noise reduction, improved theoretical models are required to account for effects ignored

in previous theories of aerodynamic noise.

In his celebrated analysis of a_rodynamically-generated sound, Lighthill [1, 2] rearranged

the equations of motion for a compressible fluid to obtain the inhomogeneous wave equation,

the basis of classical acoustics for stationary media, for density fluctuations p':

V2p, 20_P ' -s(y, t).
- co Ot'-"T = (i)



Here, V 2 -c32/0y_ is the Laplacian, co the mean speed of sound, t time, and s an acoustic

source that Lighthill identified as a convecting quadrupole related to the Reynolds stress

tensor. Thus, one of Lighthill's major advances, called Lighthill's acoustic analogy, is that

the problem of sound generated aerodynamically can be replaced by an equivalent stationary-

medium problem involving an acoustic source distribution that incorporates the dynamics of

the actual flow. The theory met with considerable early success in predicting major aspects

of the radiated sound field of cold jets, and even today the theory and its direct extensions

find practical use. Both Goldstein [3] and Lilley [4] provide more recent perspectives on

Lighthill's theory.

However, as demonstrated by Lush [5], careful comparison of jet noise data with Lighthill's

theory revealed subtle but significant discrepancies, such as the frequency-dependence of the

far-field directivity, which the theory was unable to explain. It was gradually recognized that

though Lighthill's analogy is exact, there are difficulties in estimating the acoustic source

distribution when the radiation is refracted by the flow of the medium.

Inclusion of refractive mean flow effects requires modification of the operator in the gov-

erning equation. Lilley [6] derived a nonlinear moving-medium wave equation from the exact

transport equations to include these effects. Lilley's equation is considerably more compli-

cated than that used by Lighthill, and this proves to be the equation's major disadvantage.

Mani [7, 8], in an effort to retain the simplicity of Lighthill's equation while including convec-

tion of the medium, proposed a two- region plug-flow model: (1) an inner region possessing

a plug flow surrounded by (2) a stationary region. Goldstein, on the other hand, employed

a linearized version of LiUey's equation for unidirectional, transversely sheared mean flows,

and showed that in both the low [9, 10] and high [11] frequency limits mean flow shear can

significantly influence the directivity in free jets. In these investigations, both Mani and

Goldstein modeled the sound source as a convecting multipole.

LighthiU's theory, based upon the free-space Green's function, also failed to account for

the diffractive and sound-generating effects of solid surfaces near the turbulent flow, including

the effect of duct termination. Goldstein and Rosenbaum [12] accounted for these surface

effects in a Lighthill-type formulation. They predicted the far-field directivity in terms of

certain correlation scales of the turbulence for a localized, convecting source. Because this

theory is based upon Lighthill's formulation, it does not include the refractive effect of mean

flow upon the transmission of sound. However, one of its major advantages is that it can

associate particular source regions as being relatively noisy or quiet.

On the other hand, Mani [13] and others, including Savkar [14], Munt [15, 16], and Cargill

[17]) included mean flow effects in the context of the plug-flow type models for terminating
ducts. Mani considered flat ducts while the other investigators focused upon cylindrical

ones. Each of these investigations assumed a waveguide, propagating from minus infinity

within the duct, served as the source of the sound that radiated to the far-field. Due to

their waveguide sources, these models fail to include the convective amplification expected

of turbulence-generated sound. Furthermore, these waveguide models fail to provide insight

into the relative contributions of certain regions of the flow to the overall directivity.

To investigate the refractive effect of mean shear in the presence of solid surfaces, we here

adopt the approach of Goldstein and Rosenbaum but begin with Lilley's equation rather

than Lighthill's. We thus obtain a general expression for the spectral density of the far-field

intensity due to a unit volume of turbulence within a jet. Then, due to the difficulty in
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solving Lilley's equation and to gain insight into this classof problems,weapply the theory
to asimplified plug-flowjet problem, and therebyderiveexplicit expressionsto calculate the
directivity for a localizedsource.

The structure of the paper is as follows: In the next section,we derive expressionsfor
the spectral density of the far-field intensity for a localized convectingacousticsourcethat
is located within a turbulent jet. The analysisincludes the effectof duct termination and
the model applies to unidirectional jets with transverselyshearedmean flow of any cross-
section. Beginningwith a linearized version of Lilley's equation for the acoustic pressure and

following a Fourier transformation in time, the transformed pressure is expressed in terms of

an integral involving a reduced Green's function of Lilley's equation and a transform of the

localized source. Integration by parts is then required to transfer derivatives with respect to

source coordinates from the source term to the Green's function. The final expression for the

transformed pressure is then given by an integration over the source region of the contracted

product of a Reynolds stress tensor and a second-ranked tensor involving gradients of the

reduced Green's function and of the mean fluid velocity. An expression for the spectral

density of the intensity is then formed and via a set of variable transformations re- expressed

in terms of a fourth-order moving axis velocity correlation function. We subsequently focus

upon the spectral density of the intensity due to a unit volume of turbulence, and assume

that the fourth-order correlations can be adequately represented in terms of second-order

correlations to derive a simplified form of the spectral density. This expression is further

simplified by assuming the turbulence possesses axisymmetric symmetry. A final expression

for the spectral density is obtained upon assuming the turbulence is isotropic.

Section 3 is devoted to the applying the foregoing theory to a plug-flow jet that exits

between two parallel plates. A formal solution to the Green's function is obtained using

the Wiener-Hopf method of analysis. The analysis is followed through to its completion,

and sample plots of the far-field directivity are presented in section 4. Two appendices

supplement the Wiener- Hopf analysis.

2 General Theory

Below we consider a jet of arbitrary cross-sectional shape that exits a semi-infinite duct (see

Fig. 1) and develop a general expression for the spectral density of the far-field intensity due

to a convecting localized acoustic source located within the flow. This general expression for

the spectral density is then simplified by application of additional assumptions relative to

the nature of the turbulence.

2.1 General Expression for the Spectral Density

Let the total fluid velocity v(y, t) at any point y in the fluid be given by the sum U(y) +

u(y, t). Here, U represents the mean velocity, u the fluctuating part with zero mean, and t

time. To simplify the analysis, we assume a unidirectional, transversely sheared mean flow,

at least in a local sense. Then if il denotes a unit vector in the direction of the jet and

Y = (Yl, Y2, Y3) a Cartesian coordinate system with origin at the end of the duct, the mean

flow is of the functional form ilU(y2, y3)- According to Lilley's equation as presented by
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Goldstein [3], the pressurevariable II(y,t) = (c_/c_)lnp/po (with p = p(y,t) the pressure)

is then governed by the third-order wave equation

j
where the acoustic source F(y, t) is given by the expression

F(Y't)=-P° ( D°V'V'uu-2(VU)" v9 V )Co Dt i)yl -uu . (3)

Lilley's equation as given above is derived from the exact equations of motion upon neglect

of viscous dissipation and entropy fluctuations and upon linearization about the mean flow.

We further assumed that the mean speed of sound Co is constant and that the turbulence

is incompressible (V • u ,,_ 0). Appearing above is the heat capacity ratio %/c_, a reference
o + U0__ To insurepressure p0, a reference density P0, and the material derivative _ = aT 0_1"

convergence of integrals that will be encountered in the subsequent development, we assume

that uu is identically zero for ]t I > T, where T represents a large period of time that at the

end of the analysis may be taken as infinity.

We next suppose that pressure fluctuations p- p0 are everywhere much less than the

ambient pressure Po. This permits the replacement of II in Lilley's equation with (p-po)/poC_,

where p0 is the mean density. In writing this, we have taken the reference pressure as

p0 = p0c_ with Co = _/cppo/C_po, which is valid for an ideal gas whenever fluctuations in

entropy may be neglected.

Solid boundaries are assumed to be rigid so that n - v must vanish identically. Here,

n represents a unit normal vector directed from the fluid phase into the solid. To derive a

boundary condition upon the pressure, we consider the normal component of the momentum

equation:

n. p(g/+,,.Vv)+V =0 (4)

The first term is identically zero due to the assumption the boundary is rigid. For surfaces

located outside the region of turbulent flow, the acoustic approximation applies so that the

second term, which involves the square of a perturbation quantity, is negligible. The second

term can also be shown to be identically zero for surfaces adjacent to the turbulent flow if the

radius of curvature R of the surface in the flow direction is infinite. Otherwise, the second

term is given by the potentially large quantity +pv2/R. To make progress, we assume that

R is much greater than, say h, a characteristic distance between boundary surfaces (see Fig.

1). Under these conditions, we may require the normal derivative of the pressure to vanish:

0___pp= 0 on solid boundaries (5)
n. Vp = On

In addition to the above requirements, the pressure must satisfy causality and the outgoing

radiation condition.



To solvethis systemof equations,weintroducethe Fouriertransform P(y) of the pressure

with respect to time:

1 FP -- (P -- Po)' -- _ _ (p -- po)e _' dt
(6)

Transformation of equation (2) with l-I replaced by (p- Po)/po4 gives

(-ik + M_y_y ) V2P- (-ik + M )2p _ 2(VM) • ulVP = r'(y),
(7)

with k = w/co the wave number and M(y_, y3) = U/co the local Ma_h number of the jet.

(The Fourier transform of a quantity with respect to time is denoted by a superscript t.) An

expression for the Fourier transform of the source can be obtained from equation (3):

F_(Y)=-P°[(-ik+MoO--Y)V'V'(uu)t-2(VM)'o-_lV(uu)t]"yl
(8)

The pressure boundary condition on solid surfaces transforms simply to _P = 0. Finally, P

is required to satisfy the radiation condition at infinity as well as causality.

A formal solution to P can be expressed in terms of a Green's function G as

P(x) = - f. G(xly)r'(y) dy

= PO/vG(Xly)[(-ik+ MO-_I)V.V.(uu)*-2(VM)" 0--_lV(uu)t dy. (9)

Here, l; represents all the volume outside of solid boundaries, but effectively, because the

source is localized, the integration need only be performed over that region for which F* is

nonzero. The Green's function satisfies the same governing equations and conditions as P,

except that a delta function replaces the original source term. Thus, G(xly) is governed by

the field equation

(9 [V_G (-ik+Mo_l)2G ] 2(V,M)_zlV,G -6(x y), (10)( 7"--ik+ Maz 1 ) - - " = -

with n. KT,G = 0 on solid boundaries. Finally, we require G to satisfy a radiation condition

at infinity and causality. Here, V, - a= _ represents the gradient operator with respect to the

observer's coordinates x, and y now represents the source coordinates.

It is convenient to integrate by parts in equation (9) and thereby transfer all the deriva-

tives with respect to y to the Green's function. To assist in this process, we define three

integrals,

I_ = [,GV. V. uu dy (lla)

Yl

I, = [G(VM).--_-0 V. uu dy (11c)
Oyl.IV
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so that P may be expressed as the sum

P = po(-ikI_ + h - 2/_)' (12)

Next, we display certain easily proved vector-dyadic identities that are valid for arbitrary

scalar, vector, and symmetric dyadic functions of position S(y), V(y), and D(y), respec-

tively:

SV.V.D = V-V.(SD)-2V.(D.VS)+D:VVS (13a)

V. (SW) = 2SVV-V + (VS).VV (13b)

V1S. OY2 _ OV1S. V2 _ 0VI_______fS.V2 (13c)
Oyl Oyl Oyl

V-V.D = 27.(D.V)-D:VV. (13d)

In the third identity, V1 and V2 are two distinct vectors.

Now consider integral I_ in conjunction with equation (13a) with S set to G and D to

uu. Integrate the identity over the volume 1; and apply Gauss's divergence theorem to the

first two integrals. The resulting surface integrals vanish at infinity because both the source

and the Green's function vanish in this limit. They also vanish along all solid boundaries

due to the condition n • v = n • u = 0. This is easily seen for the second surface integral.

That the first integral vanishes along solid boundaries can be seen via the second identity

above with S set to G and Y to u. It follows that I_ is given by

I_ = Iv uu : VVG dy. (14a)

In a similar manner, it can be shown using the above identities that Ib and Ic reduce to the

volume integrals

Ib = -fuu" _O-_VV(GM) dy (14b)
Jy (Tyl

I_ = /vUU" o_lV(GVM) dy

0 [V(GVM)]S dy (14c)=- fun" N

In the latter expression, the superscript S denotes the symmetric portion of the dyadic; e.g.

if a and b are vectors, the symmetric portion of the dyadic ab is (ab + ba)/2.

Putting these results together yields the expression for the transform of the acoustic

pressure

P(x) = -po/(uu) t: (_(xly) dy (15)

with the second-ranked tensor (_ given by

0 {VV(GM)+ 2[V(GVM)]S}.G(xly) - ikVVG +
(16)



In this expression,G -= G(xly ) and M - M(y2, y3).

Because only statistical information is available for the source, we introduce the spectral

density of the intensity I_(x). In the far-field at location x, the spectral density is related

to P via the expression

Iv(x)- [PI2 (17)
2T copo "

As stated previously, the source is presumed to have a duration of 2T with T some large

period of time. Introduction of the above expression for P then yields

I_(x)- P0 (u'u')_(u"u")_" : dy" (18)2Tco Iv Iv (_(xiy') : (_'(xiy") dy'

for the spectral density. The asterisk denotes the complex conjugate.

We now use the fact that the Fourier transform of a convolution is proportional to the

product of the Fourier transforms of the two components, and that, provided f(t) is real,

the Fourier transform of f(-t) is the complex conjugate of the Fourier transform of f(t). It

is then easily shown that

//- T_ u'u'u"u"e dr (19)
7/" OO

where the fourth-order, two-point, two-time velocity correlation tensor is given by

1
/r u(y', t)u(y", t+ r)u(y",t + r) dt (20)

UtUtUtlUtt _ "_ T

Here, single primes on velocity u denote position and time (y', t) and double primes position

and time (y", t + r).

We now decompose this correlation tensor as

u'u'u"u" = 7_4(y', y" - y', r) + u'u' u"u", (21)

with _4 the fourth-order velocity correlation tensor

"]'_4(Y', Y" - Y', r) = u'u'u"u" - u'u' u"u". (22)

Note that due to the assumption that the process is stationary, the correlation tensor

u'u' u"u" is independent of r. Thus, integration of this term over r in equation (19) will

lead to the delta function 6(w). Consequently, this term is possibly nonzero only at zero

frequency, w = 0. An argument can be made that the contribution of this term to the

spectral density is identically zero (see, e.g., Goldstein and Rosenbaum [12]) even for ¢z = 0,

a frequency which is of no physical interest. In any case, we now ignore this contribution

and write the spectral density in terms of R.4(y', y" - y', r) as

I_(x) - po /__o/v/v (_(x[y'): R4(y', y"-y', r): (_*(x[y")e -i'_ dy' dy" dr. (23)2_rc0 oo

The above expression can be simplified a great deal. We first note the assumption that the

turbulence is stationary in time leads to a useful symmetry property of T_4(y', y" - y', r).



Specifically, in equation (22) interchange primed and double primed quantities and replace

r by -r. Due to stationarity, the resulting integral corresponding to equation (20) must be

independent of a translation in time. Upon replacing the variable t with t + r, we obtain the
result in Cartesian tensor notation

"R4(y', y"-y', r) =- 7_ijkt(y', 7, r)= "Rktij(y", 7 (1), -r)

1 i 17_ • .
= _7_ijkl(Y, 7, r)+_ _uj(Y, rl (1), --r), (24)

with _= y"-y' = -r/(1) separation vectors. This expression is then introduced into the

above expression for the spectral density, and it is easily shown that the second term is the

complex conjugate of the first, thereby leading to the expression

2rCo
(25)

where N denotes the real operator.

It is helpful to introduce two further changes in the variables of integration. We introduce

a new vector y,

Y =
\ 2 ' 2 ] '

which together with r/replaces y' in the above integrals. With respect to the original vectors

y' and y", y represents an average of the transverse locations but the same location as y_

with respect to the component in the direction of flow.

A further change in the variables of integration takes into account the convection of the

source: replace (r/, r) with (_, _) via the definitions

= rl - ilUcr, (27a)

= r. (27b)

After this change in variables, replace the dummy variable of integration _ with r and so

obtain the expression for the spectral density

2_'Co ,o

_4(Y, ¢, r): (_*(xly + (il_t + _)/2 + ilUcr)e -_" dy d¢ dr, (28)

where

7_4(y, _, r) = T_a(y + (i1_1 -- _)/2, _ + iIU_r, r). (29)

is the moving axis correlation function. In the above expression for the spectral density, V

represents the same physical volume (but in the new coordinates) as in the original variables.

Now, according to the argument of Goldstein and Rosenbaum [12], the typical correlation

length l of the turbulence in the moving frame is small compared to a typical dimension h

of the duct boundary (see Fig. 1); i.e., l << h. On the other hand, the length scales that



appearwithin the Green's function (seeequation (10)) are the wavelengthk -1, h, and h (1),

where h (1) is a characteristic distance over which gradients of the mean velocity change. If

the correlation length is also much less than the wavelength and hO), the following argument

can be made to simplify the above expression for the spectral density of the intensity: First,

by definition of the correlation length, if ]_] > l, then 7_4(y, _, r) --, 0. But, because I is

much smaller than any length scale that appears within G, the Green's function is nearly

constant for 0 < [_[ < 1. Consequently, under these conditions, _ in the arguments of the

Green's functions may be set equal to zero in the above expression for the spectral density.

This permits us to obtain

where the omission of integral limits denotes the integration is to be performed over all space.

We also expect the above step to be valid for thin shear layers. If a shear layer of thickness

h (1} is much smaller than the correlation length (h (1) <_ l) and the source is located outside

of and not too close to the shear layer, we expect the Green's function in the far-field to be

relatively independent of both of these length scales. In any case, upon calculation of the

Green's function and knowledge of the length l, the validity of this step can be evaluated.

For design purposes, interest usually centers not in the prediction of the total far-field

sound, but rather in ascertaining the regions of the flow that produce an inordinate amount

of sound in the far-field. For this purpose, we let I_(x[y) denote the spectral density of the

intensity at x due to a source at location y:

I_(x) =/v I_(x[y) dy. (31)

From the above relations, we see that I_(xly) is given by

p0 _ {(_(x[y):/_: [/7_4(y, ', T)d,]: (_*(x[y q-ilUcT)e -i'_ dT}.I_(xly)- 2_co
(32)

To obtain the total spectral density in the far-field, the above equation would need to be

integrated over all the noise-producing regions.

Further simplification of the above equation is not possible without making additional

assumptions concerning the nature of the turbulence.

2.2 Reduction in Order of Turbulence Correlations

Goldstein and Rosenbaum [12] suggest representing fourth-order velocity correlations in

terms of second-order correlations, not only for r = 0 as Batchelor had done, but for r _ 0.

Batchelor's original suggestion (and we now resort to Cartesian tensor notation),

UI_ t_ Is_ tt UiU j Ukra l "[- UiU k uju l "b UiU l _Zj'a k at w = 0,iuJ akul _ - t t _ tt_ tt t t . tt. tt t t _ tl_ rl (33)

is based upon the assumption that the part of the joint probability of the velocity (with zero

time delay) associated with the energy-bearing eddies is approximately normal. Goldstein

and Rosenbaum extend this reasoning by saying that if the velocity correlations are separated
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in both spaceand time, the central limit theoremsuggeststhe joint probability distribution
would be evencloserto a normal distribution. In light of this, equations(22, 29) indicate
the fourth-order correlation iR4(y, _, r) = 7_ijk_(y,_, T) canbewritten as

7_ijkz(y,_,, T) = 7_,kT_it -4- 7_aT_jk, (34)

where the second-order velocity correlation is defined by

7_ij(y, _, T) =_ U_U_ (35)

When this result is introduced into equation (32) and the symmetric property of C, is

considered, the spectral density may be written as

I_(xly) = P0_ ¢_j _ L'kt
7rcO o0

Here, we have suppressed the x and y dependence of Gij(x[y) and introduced the abbreviated

notation

-* ilVcr) (37)_T = Gij(xly +

2.3 Axisymmetric Turbulence

Turbulence measurements (see [18]) indicate that 7_.j is approximately an even function of T,

at least for jet mixing regions. Furthermore, under the assumption of locally axisymmetric

turbulence, Goldstein and Rosenbaum [19] contend the correlation tensor may be represented

by

/_,j(y, _, r) = A_,_j + Bh_j + C51,51j + D($li_j + 51j_,), (38)

where A, B, and C are functions of y, % and _ = ]_[ and are even functions of _1- The

coefficient D is also a function of y, _', and ( = [_[, but is odd with respect to _1. Goldstein

and Rosenbaum [12] show that this assumption leads to the spectral density expression

I,.,(xly) = po e-'' [( .0Ts -- + - Q22)+ G,sG,sQ, ] dr .(39)
_rco

following extensive algebraic manipulations. (This expression differs slightly from that ob-

tained by Goldstein and Rosenbaum in that we are unable to apply a reciprocity relationship

that is valid for a Green's function of the Helmholtz equation.) Here, Qij = Qji and

= /('/'_12, - 7_2 ) d_ (40a)

Q_3 = /(7_2 + 7_u7_22) d_ (40b)

Q33 = .f(_2 - 7_2) d_ (40c)Q=

./(7_2- _,-_3) d_ (40d)O=

S = f7_2 d_ (40e)

These five integrals depend only upon four correlations: _u, _2, 7_1_, and 7_23.
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2.4 Isotropic Turbulence

Considerable simplification of the spectral density expression can be obtain upon assuming

the turbulence is locally isotropic in the moving reference frame. Then coefficients C and D

in equation (38) are identically zero, and the expression for the correlation tensor reduces to

7_.j(y, _, r)= A_i_j + B_, (41)

where A and B are functions only of_ and r. In this case, define a correlation scale L(y, r),

1

where _ is the rms of the turbulent velocity at y. Then Goldstein and Rosenbaum [12]

show that

for i, j = 1, 2, 3, and

7 (43)Q_ =

Clearly, it follows that the spectral density of the intensity may be written as

I (xly)- 8 rco GijGT dr] (45)
It should be recalled that Gij is a constant with respect to r in this expression.

Determination of the far-field directivity due to a source at y has thus been reduced

to finding the Green's solution G of equation (10) in the far-field and then forming (_, as

defined in equation (16). Then, together with appropriate knowledge of the turbulence, the

spectral density of the intensity at x due to a source at y may be found from equations

(36), (39), or (45) according to whether the turbulence in the moving frame has no special

symmetry properties, is axisymmetric, or is isotropic, respectively.

3 Application to a Plug-Flow Jet Exiting a Flat Duct

As mentioned previously, the Lilley equation that governs the Green's function that appears

in the above theory has few known exact solutions, and so it is expected that certain ap-

proximations will be required to make progress. In this section, we apply the above theory

to a simple model problem.
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3.1 Formulation

One of the simplest relevant problems is that of a 2-D, plug-flow subsonic jet of thickness

2b exiting a fiat duct into a resting medium (see Fig. 2). In this model, vortex sheets of

effectively zero thickness separate the jet outside the duct from the two fluid layers at rest.

The equation (10) that governs G can then be replaced by two simpler equations in which M,

the local jet Mach number, is constant. Current boundary conditions on the Green's function

must be supplemented with conditions across the vortex sheets [3]; specifically, pressure and

particle displacement must be continuous across the sheets. Furthermore, we must specify

that the sheets are attached to the end of the duct walls as well as their departing slopes.

Application Of these latter conditions require that we revert to a kinematical description of

the problem; i.e., we must recast the problem in terms of a velocity potential.

The assumption of a plug flow within the jet also permits simplification of the expression

for (_ in equation (16). Specifically, we obtain

= vvca, (46)

M °-- Application of this operator to the equation governing G togetherwhere/: = ik ÷ 0_1"

with the relation £:_(x- y) -= (ik- M_--_a)_(x- y) yields

(v_ + k2) z:a
iM 0 _ 2v z:a + k (1+ -r j £G

= 0 for ]z21 > b
(47)

=_(x-y) for Ix2[<b,

following integration.

We now regard £:G as the Fourier transform of "pressure" in time, and seek to solve

the corresponding problem for the velocity potential ¢(xx, x2). It is evident that ¢ satisfies

(compare with Mani [13])

+ k2)¢ = 0 for Ix21> b
(4s)

iM 0 ,_2
V_¢+k 2(1+-_-_/ ¢ =S(x]y) for[x_ I<b

in the bulk fluids. Due to the relation between velocity potential and pressure within the

jet, the above source term S must satisfy

(iM/k).O--z_-]S(xly) = 6(x- y). (49)ikcopo[1 +
aXl

Along the rigid walls of the duct, ¢ satisfies the zero gradient condition

c3¢/0z2 = 0 for zl < 0 and z2 = +b. (50)

Continuity of pressure along the vortex sheets requires

¢(xl,b+) = [1 + (iM/k) o (51a)

[1 + (iM/k)bg°a]¢(xl,-b+) = ¢(x_,-b-) (51b)

for zl > 0. (The plus or minus signs following the symbol b denote the addition or sub-

traction, respectively, of an infinitesimal positive quantity such that evaluation is taken on
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the appropriate side of the duct walls or vortex sheet.) Furthermore, the displacements

r/(xl, :t=b) of the vortex layers from the respective mean positions at x2 = +b are related to

the velocity potentials via

i (52a)r/(xl, +b)= k-"_ 0_2

[1 + (iM/k)o-_7]rl(Xl, +b) -- _i 0_(xl,0x2_2)1_2=+b_: (52b)

for xl > 0. In addition to the above requirements, we require the sheets to be attached to

the ends of the duct walls and to depart with zero slope (Kutta condition). Furthermore,

we seek a solution that satisfies both causality and the radiation condition; the Helmholtz

instability, however, precludes full satisfaction of the latter condition.

3.2 Formal Far-Field Solution via the Wiener-Hopf Method

The above equations for the velocity potential constitute a classical Wiener-Hopf problem

due to certain boundary conditions prescribed on the semi-infinite duct (xl < 0) with other

conditions prescribed on the semi-infinite vortex layer (xx > 0).

Noble [20] describes in detail how such problems are solved. The basic idea is to assume

the wavenumber k has a small imaginary component, which here is taken as positive. Fourier

transformation of the governing field equations with respect to the spatial coordinate xl

leads to a set of differential equations that can be solved with constants of integration to be

determined from proper application of the boundary conditions. Fourier transformation of

the boundary conditions lead to functions in the complex a-space that are analytic in either

the "plus" or "minus" regions; these are denoted by subscripts + and -, respectively. Here,

a is the Fourier variable associated with xl. The plus and minus regions are assumed to

possess a small region of overlap due to the small imaginary component of k. The goal of the

Wiener-Hopf method is to eliminate unknowns in such a way so as to obtain functions that

are analytic in the minus and plus regions on opposite sides of an equation. Then, because

of the common domain of analyticity, the one expression must be the analytic continuation

of the other. The two sides of the equation then represent an entire function in the complex

a-plane. If the solution is unique, it can be shown that the entire function is identically

zero for all a. Integration constants can then be determined, and the solution in the Fourier

transform space is formally determined. Inversion then leads to the desired result.

We define the Fourier transform of ¢ as ¢ = (I)+ q- ¢_ with functions ¢+ and (I)_ analytic

in the plus and minus regions, respectively. These functions are related by the equation

¢±(a,x ,kly ) H(+x,)¢(xl, k[y)eikC'zl dxl. (53)
J .-- ¢_

Here, H(x) represents the unit Heavyside step function. In the subsequent Wiener-Hopf

analysis, we usually suppress the dependence of (I) and similar functions upon k, and y, and

further adopt the notation of Noble; i.e., we simply write (I)+(a, x2) -- (I)+(a) = (I)+(x_) - (I)+

according to whichever form is convenient provided there is no risk of confusion.

Fourier transformation of equation (47) then leads to the set of equations

(I)"- k272(I) = 0 for Ix2[ > b (54)

¢,, _  (x2- for Ix21< b (55)
ikcopo(1 + Ma)
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with primes denoting derivatives with respect to x2. Scalars 7 and w are defined by the

relations

7(a) -- (a 2- 1)1/2
= (a- 1)1/2(_+ 1)1/2 (56)

_zT(a) -- [a2- (1 -bMa)2)]1/2
_= (1 - M2)l/2(a - aL)l/2(a -- au) '/_, (57)

where aL = --1/(1 + M) and av = 1/(1 - M). We further define the branch cuts for -'/and

for :v as 4-1 to 4-00 and 4-(1 :]= M) -1 to 4-oo, respectively, and require both functions to be

positive for a ---* oo - i0. The common strip 5 and the plus and minus analytical regions

in the complex a-plane, R(+) and R(_), respectively, are displayed in Fig. 3. If we assume

that k = [k[ exp(i6) and no other singularities are present in the region, the strip may be

described as the region between the two lines in the complex a plane that pass through the

points a = o_ L and a = 1 with slope - tan 6. If _ < Ir/2 as displayed in the figure, the plus

region is to the right and above the line passing through a = aL. Similarly, the minus region

is to the left and below the line passing through a = 1. It can be demonstrated that R(k-),)

and R(kw) are positive throughout 5. If other singularities are present within the described

strip, the thickness of the strip can be reduced as necessary to exclude these singularities as

long as there is a common region of overlap.

It is convenient to decompose (I) as (I) = @ + V, where @(x2) satisfies the homogeneous

portion of equations (54, 55). On the other hand, the function V(x2) represents a free space

Green's function within the jet in that it satisfies the sour_ term in equation (55), but no

specified conditions on the duct or vortex sheets. In particular, we take V as

0 for x2 > b (58)Y(z2) - iex'pIikayl-kw[x2--Y2[) for x2 < b
2k 2=,co Po (l+Ma)

Application of the radiation condition to • yields the result

Ae_k.yx2
_(z2) = Be -k_'_2 + Ce k_

De_

for x2 > b

for Ix21 < b

for x2 < -b

(59)

where integration constants A, B, C, and D must be determined from application of the

boundary conditions along the duct and vortex sheets. (There should be no risk of confusing

these four constants of integration with identical symbols that appear in connection with

the turbulence correlation tensor in, e.g., equation (38).)

We now adopt the method advocated by Noble on page 125 of his book to obtain the

pair of Wiener-Hopf equations associated with the current problem. Let S (°) and D (°) be

defined as the sum and difference of • evaluated just outside the duct and vortex layers:

s (o)= _(+b+)+ _(-b-)
D(°)= 9(+b+)- _(-b-)

(60a)

(605)

The notation S (0 and D (0 is similarly used to denote the sum and difference of g/evaluated

just inside the duct and vortex layers, and S (y) and D (y) the sum and difference of V

14



evaluatedexactly at x2 = b and x2 = -b. Primes, e.g., S (°)', denote the sum or difference of

the function derivatives with respect to x2 evaluated at x2 = +b. These sums and differences

may be decomposed into plus and minus functions, e.g., S (°) = S(+°) + S (°). Lastly, we note

that because V is given in (58), the quantities S_v) and D (v) and the related primed quantities

are known in principle at this stage of the analysis. As is seen later, the decomposition of

a known function into plus and minus functions can be accomplished via an integration in

the complex a-plane.

It is easy to demonstrate from these definitions and equation (59) the following identities

for the 'outer' sums and differences:

S (°) = (A+D)e -k_ (61a)

D (°) = (A- D)e -k_ (61b)

S(°)'= S(+°)' = -kT(A- D)e -k_ (61c)

D(°)' = m(+°)' = -k_(A + D)e -k_ (61d)

We obtained the extra relation in the latter two equations from the assumption the duct

is rigid, i.e., equation (50) requires S [°)' = D (°)' = 0. From the above set of equations, it

clearly follows that elimination of A and D leads to

S(+°)'= -kTD (°) (62a)

D(+°)'= -kT S (°). (62b)

A similar procedure for the inner fields yields

S(0 =

D (/) :

S(0 ' =

D(/) ' =

and elimination of B and C gives

S(0'

D(i)'

2(C + B) cosh kbw

2(C - B) sinh kb:v

2kw( C - B) cosh kbw

2kw(C + B) sinh kbw,

(63a)

(635)

(63c)

(63d)

: kwD (0 coth kbw (64a)

= k_S (Otanhkbw. (645)

The above conditions derive largely from the differential equations and application of

the radiation condition. We now consider the remaining requirements of conditions imposed

along the duct and vortex sheets. The rigid boundaries on the inside of the ducts require

S(J)' + S (v)' = D_)' + D (v)' = 0. (65)

The effect of imposing continuity of particle displacement along the vortex sheets can be

discovered by eliminating r; in equations (52 a, b) and taking the half Fourier transform.

Addition and subtraction of the results lead to the two relations

(1 + ia)S(+°)' = S(O'+ S (v)' (66a)

(1 + Ma)D(+°)': D(i)'+ D (V)', (66b)
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wherein weused equation (65).

The final set of conditions is found by defining the half Fourier transform of the pressure

jump across each of the duct elements:

F(a,:t=b) = {¢(xl, +b-4-)- [1 + (iM/k) ]¢(xl, +b_)}e ik"xl dxl (67)

Integrate and take the sum and difference to obtain

S(_.F) = S (°) - (1 + Ma) (S (0 + S (v))

D(F) = D (°) -(i + Ma) (D (0 + D(v)).

(68a)

(68b)

Due to the continuity of pressure along the vortex sheets, equation (51), it is clear that

F(a, +b) is analytic in R(_). Consequently, we have added the minus subscript to S (f) and

D {F) above. This concludes the formulation stage of the Wiener-Hopf problem. Below we

proceed to solve it.

Equations (62a, 64a, 66a, and 68b) are seen to constitute one set of four equations

involving the five unknowns D (°), D (0, S(+°)', S (0', and D(._F), and the knowns D (y) and

s(v} ' = -kwD (y). Equations (62b, 64b, 66b, and 68a) constitute another set involving the

unknowns S (°), S (i), D(+°)', D (i)', and S(_.F), and the knowns S (v) and D (v)' = -kwS (v).

Each set of equations leads to a Wiener-Hopf equation, which when split supply the missing

relation.

Straightforward algebraic manipulations of the above relations lead to the following set

of Wiener-Hopf equations:

r(a)S(+ °)' = -kD(.. F) - k(1 + Ma)D(V)[1 + tanh kbw]

Z(a)D(+°)' = -kS[ f)- k(1 + Ma)S(Y)[1 + coth kbw].

(69a)

(69b)

Kernels Y(a) and Z(a) that appear above are defined by the relations

(1 + Ma) 2 tanh kbw
r(a) = 1 + (70a)

3' w

1_+ (1 + Ma)2 coth kbzvZ(a) = (70b)

To make progress, we need estimates of the various terms in the above equations as [a[ --) co

in the strip, which in turn correspond to certain physical properties as xl --) 0. According
3/2

to the full Kutta condition, displacement of the vortex sheet behaves as rl(xl,:hb ) x 1

as xl --+ 0+. This requires that both S (°)' and n(+°)' behave as O(a -s/2) as [a[ --+ oo in

the positive half plane. The requirement that pressure on the duct be finite leads to the

conclusion that D(_F) and S(_F) are of order O(a q) as la[ --> oo in the negative half plane with

q<l.

As noted by Munt [16] and others, the vortex layer in a linear model such as this has

an inherent instability, which grows exponentially rapidly downstream. Associated with this

instability are zeros of the kernels Y and Z, which are located respectively, say, at u (Y) and
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u(0z) in the complex a plane. The exact location of these zeros depend upon k; for real

positive k they are located in the region _a < 0 and _a > 0. (Here, _ is the imaginary

operator.) A numerical investigation revealed these zeros were nearly stationary when 6 is

varied over the range 0 < 6 _< zr/2; furthermore, they were always located in the second

quadrant of the complex plane, which we henceforth assume to always be true.

The next step in the Wiener-Hopf procedure is to split the kernel functions as Y(a) =

Y+(a)Y_(a) and Z(a) = Z+(a)Z_(a) with the plus and minus functions regular and non-

zero in the respective half planes. If 6 is nearly zero, one can deduce that Y± and Z± behave

as O(a :/2) as lal _ oo in the respective half planes. However, if 6 = r/2, the respective

instability zeros become part of Y+ and Z+. Then Y+ and Z+ are O(a a/2) and Y_ and Z_

are O(a -:1_) in the respective half planes as [a[ --+ oo.

To impose causality [16, 21], we set 6 = _r/2 and assume the latter split of the kernels.

Rearrangement of the two Wiener-Hopf equations then leads to the following:

kD(-F) (71a)- J+= J- v_

kS(f) (71b)
Z+D (°)' - K+ = K_ Z_

The new functions appearing above are defined via

-k(1 + Ma)D(V)(a]y)(1 + tanhkbw)

J(a[y) = Y_(a)

= J+(a[y) + J_(a[y) (72a)

and

-k(1 + Ma)S(V)(aly)(1 + coth kbw)

K(aly) = Z_(a)

= K+(aly) + K_(a[y). (72b)

Here we indicate for future reference the dependence upon source location y through the

free-space Green's function V(x_[y).

The left-hand sides of the two equations appearing in (71) are analytic in the plus half

plane, and from the previous estimates, together with the evident smallness of J+ and K+,

vanish in the limit as [a[ _ oo. Similarly, the right-hand sides are analytic in the minus half

plane and vanish as [al ---* oo. Due to the existence of an overlap region, the two functions

must be analytic continuations of each other. Moreover, application of Liouville's theorem

leads to the conclusion that both entire functions are identically zero. Thus we obtain the

results

S(+o),(a[y ) _ J+(a[y) (73a)
Y+

D(+O),(a[y ) _ K+(a[y) (73b)
Z+
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The inversionformula for x2 > b then leads to the expression

-ipokco 1 (J+(aly) K+(aIY)_ e-ik_l-k_(_2-b)da,
£G(xly)- _ fr_\ Y+(a) + z+(a) ] (74)

with the contour F a straight line defined via F : a = ue -i_ with -oc < u < o¢ (see Fig. 3)

and _ = zr/2.

We obtain the causal result for k real and positive by analytic continuation of the above

formula. However, as _ is decreased from _r/2 to 0, the contour F crosses the instability zeros

of Y+ and of Z+. A residue term must be added to the result of the above integration for

each of the two instabihty zeros whenever the contour lies on the other side of the respective

zeros; thus for _ = 0, the above formula must be supplemented by two instability terms. If

these instability terms are not added, the resulting expression will not satisfy the boundary

condition on the duct.

Our interest centers upon the far-field, and there the instability waves are exponentially

large near the downsteam axis, particularly for polar angles 8 less than approximately 45 °

(See Appendix A for an investigation of the zeros of the kernels, which are related to the

questions of causality and instabilities) as measured from the jet axis. There are various

physical mechanisms not represented in the present linear model that will moderate the waves

in this region. To make progress, we ignore the instability waves and limit our attention to

predictions of the spectral density of the intensity for values of 8 greater than either angle

associated with the instabilities. For this limited region, equation (74) with * = 0 is valid.

We can apply the method of stationary phase to evaluate the integral in equation (74) for

large distances from the origin. Before doing so, however, it is useful to make the instabihty

zeros explicit and to express the kernel factors in terms of factors that arise from integration

along the real axis. First, consider once again $ = re/2 and make the instability zeros exphcit

by writing Y(a) = (a- u(oY))(a -- 8(Y))_z(a) and similarly for Z. Here, S(oY) is a second zero

that exists in the cut plane, and equals the complex conjugate of U{oY) when 6 = 7r/2. This

new kernel ]Y(a) could be factored in a straightforward manner by integration over the

vertical contour. (See Appendix B for a discussion of factorization of the kernels.) Now

both zeros lie in the minus half plane, and thus must belong to Y+. Hence we may write

Y+(a) = (a- u(oY))(a - s(Y))Y+(a) and Y_(a) = l?_(a). A similar factorization exists for Z.

Next, suppose _ = 0+. In this case, the contour F collapses onto the real axis, passing

above the negative real a_ds and the branch point at a = -1, and below the branch point at

a = 1 and the positive real axis. In the process of decreasing g from 7r/2 to 0, the zero at U(oY)

remains almost stationary, but the zero s(0v) that was originally located at u_v}" migrates to

ct = -2/M - i0; this zero thus remains part of the minus analytic plane. If we designate the

factorization along this contour with tildes, i.e., Y(a) = Y+(a)Y_(a), it clearly follows that

Y+(a) = (a- u(0V))l)+(a) and Y_(a) = Y_(a)/(a- U(oV)), with similar results for Z.

To apply the method of stationary phase, we define polar coordinates (r, 0) (See Fig.

4.) via the relations z1 = r cos0 and x2 - b = r sin0, and initially limit 0 to the range

0 < 0 < _r. Deform the contour by setting a = - cos(0 + iT) with -oc < r < oo. The new

contour is a branch of an hyperbola, and the deformation does not cross the branch points

at a = +1. Ignoring any pole or other possible branch point contributions, the method [20]
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givesfor kr _ oo

£G(xly) "., poCo_ _ __(a - u_oY))_"+(a)+ (a - _(a)]

with a = - cos 0. Explicit expressions for J+ and K+ are derived in the next subsection from

equation (72) with Y_(a) and Z_(a) replaced by _"_(a)/(a- u_Y)) and Z_(a)/(a- u(oZ)),

respectively.
We now consider possible residue and branch point contributions to £:G in the far field.

Aside from poles due to the instability zeros and the branch point at a = 1, the integrand

is free of singularities in the upper plane. The possible contribution of instability zeros

is discussed below. The branch point is not crossed in the deformation, and thus cannot

contribute to the integral. It is shown in the next subsection that the only singularities

of J+ and K+ in the minus analytic region are simple poles at the zeros of cosh kbva and

sinh kbw, respectively; K+ also possess a simple pole at aL. However, Y+ and 2+ possess the

identical respective poles, and hence these poles cancel. As in the upper plane, the branch

point at a -- -1 is not crossed in the deformation, and may thus be dropped from further

consideration. The only remaining possible singularities of the integrand are due to zeros of

Y+ and Z+ in the lower plane. There are in fact an infinite number of these zeros, but each

gives rise to an exponentially small residue term in the far field. Prior investigators, e.g.,

Munt [16], have shown that the sum of these terms is negligible compared to the dominant

contribution given above.

Consider the possible contribution of the instability zeros to the above integral. In

particular, we wish to precisely define the region of the instability wave. Set

u(0r) = - cos(0(0 r) + ir0(r)) (76a)

and

_cos(00 z)+ i 0%, (76b)

where U(oY) and U(oz) are the locations of the instability zeros when _ = 0. It follows that the

instability wave may be neglected relative to the contribution in equation (75) provided 0 is

greater than the larger of 0(0Y) and 0(oz) (which as stated previously are each approximately

450).

Equation (75) represents a formal solution to the far-field Green's function L:G that

appears in the expression G = VV/:G (equation (46)). Successful use of this solution to

predict the spectral density of the intensity requires several more steps, which are described

in the next subsection.

3.3 Spectral Density for a Source Located Inside the Duct

We here use the above formal result for £:G to derive an explicit expression for the spectral

density of the intensity of sound in the far-field due to isotropic turbulence located at various

positions within the duct. The primary steps needed to complete this task are

1. Factorize Y and Z
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2. DecomposeJ and K

3. Evaluate "Correlation Integral"

By "correlation integral", we mean the integration involving the correlation scale L(y, r)

over the variable r that appears in equation (45).

Factorization of the kernels is by far the most difficult of these steps. Provided a kernel,

say, y(a), is regular and nonzero within the strip, and it possesses the proper asymptotic

behavior, the corresponding factor y+ is given [20] by the expression

1 /oo-io lny(z)dz (77)
lnY+(_)= 2-_iJ-oo+i0 z-_ '

for _ _ 0+. The path of integration here is above the negative real axis, below the point

a, and below the positive real axis. All singularities along the real axis must be assigned

to either the upper or lower planes. The path of integration is then modified to pass either

below or above, respectively, the singularity as displayed in Fig. 5. To avoid distracting the

reader at this point of the analysis, we consider properties of the kernels and their detailed

factorization in two separate appendices. In Appendix A we investigate the zeros of the

kernels, and in Appendix B we consider a practical method to factorize them. In any case,

the kernel factors are most conveniently calculated numerically. We here assume the kernel

factors are available, and move on to consider the decomposition of J and K.

The first step in decomposing J and K is to demonstrate that these two functions are

regular at the branch points of w, namely, O_L and au. To show this, form the sum and

difference of V(b) and V(-b) to obtain S (y) and D (y), respectively, and substitute the

results into equation (72). Upon expressing the hyperbolic tangent and cotangent functions

in terms of exponentials, we obtain

J(a) = (a - u(oY)) exp(ikayl) sinhktvy2 (78a)
ikcopoY_ (a) vz cosh kbvz

(a - u (z)) exp(ikayl) cosh kwy2 (78b)
g(a) = ikcop02_(a) w sinh kbw"

These expressions clearly show that the only branch point of J and K is that associated

with the kernel factors ]7_ and Z_, namely the point a = 1.

Decomposition of these functions is accomphshed via use of a formula similar to that

used for factorizations. For J+ we have

1 /oo-i0 J(z) dz (79)= J-o¢+i0

with an equivalent formula for K+. For a source located within the duct (yl < 0), the

contour may be closed over the lower half plane, and the integral evaluated using Cauchy's

integral formula. Summing over the residues yields

oo n (-) (Y) • (-) • (2n-1)_ry2-i (-1) (a_-(112)- Uo )exp(,ka,_(l/2)yl)sln [ 2b ,_,, ,

J+(a) = k2bcoPo-(_ - M2 ) Y_ . (-) (-) _ (_) _va),=1 Y- - -
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and

i
k2bcop°

_ (a(o-) _ U(oz)) exp(ika(o-)yl )

-) -a)

1 oo (_l),_(a_-)_ u(Z))exp(ika_-)yl)cosmry2/b] (SOb)

Here,

1 M

= _(aL + av)- 1 -- M 2 (81)

represents the midpoint between the two branch points of w. The set of points a(-) represents

the zeros of w sinh(kbw) and of cosh(kbw) in the lower-half plane:

0_(--) { (_ kb(li!V/2)IV2fl'2(Z- M 2) - k:b 2
& kb(,_1_) Ck2b 2 . v27r2(1 M 2)

for v >_ kb/(rV/-f - M 2)

for v <_ kb/(rv/-f - M 2)
(82)

1 3 S .. for zeros of cosh(kbw).Here, v = 0, 1, 2,... for zeros of wsinh(kbw) and v - 2, 2, _,"

Observe that a_ -) = aL. Values of £G in the far field can now be determined from knowledge

of the kernel factors together with the above expressions for J+ and K+.

Due to the exponential dependence upon yl in both J+ and K+, every term of G =

VXT£G has this same dependence, and this fact along with the form of the turbulence

correlation found by Chu [18] for L(y, r) permits an exact evaluation of the "correlation"

integral.

To make progress in the following, we make this dependence upon yl explicit by writing

VVJ+(aly ) and VVK+(aly ) as

oo

VVJ+(a[y) = _ B,_(1/,,(a)exp(ika_-_l/,)yl ) (83a)
n=l

oo

VVK+(a[y) = _ Bn(a)exp(ika_-)y_). (83b)
n----0

The B_(a)are independent of yl and are easily determined from the above equations. In

particular, if we define the set of dyadics F_ as

Fv = exp(-ikct(7)yl )b2VV exp( iko_(Z)yl ) sin( v_ry2/b) (84a)

for v = n - (1/2) with n = 1,2,3,..., and

F _ = exp(-ika_-)y, )b2VV exp( ika(7 )yl ) cos( I/Try2� b) (84b)

for u = n = 0, 1, 2,..., the B_(o) may be expressed by the equations

-i(a(o-) - u Z))Fo
Bo(-) = _ (85a)
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for v =0,

B,,(a) =
-i(- 1)(_+(,12))(a_-)_ u_Y))F_,

k2/PCop0(1 - M2)Y_(a(_-))(a(_ -)- 6)(a(_ -) - a)

for v = n - (1/2), n = 1, 2, 3,..., and

(85b)

i(-1)"(a_-)- u(°Z))F" (85c)
B_,(a) = k2tPcopo( 1 _ M2)2_(a__))(a(_ ) _ 60(a(_) _ a)

for v = n = 1, 2, 3, .... To complete the definition of B_(a), we give explicit expressions

for F_:

F_= -ix ilk2b__L-)2sin(_y2/b)+
(ili2 + i2il)ikba(Z)v_r cos(v_ry2/b) - i2i2v27r 2 sin(vrcy2/b) (86a)

for v = n - (1/2) with n = 1, 2, 3,..., and

F_ = -[i,ilk2b 2a{_-)2 cos(vTry2/b)+

(ili_ + i2il)ikba_-)v_rsin(vTry2/b) + i2i2v27r 2 cos(v_ry2/b)] (86b)

for v = n = O, 1, 2, .... It then follows from equation (75) that (_ may be written as

eikr _--1B--(,12)exp(lka_-)ll2)yl) _,=o B_ exp(ika_-)yl)
d ~ p0_o _ (_ _ _))?+(_) + (_ _ _(o_))2+(_) (87)

with a = -cos 6 for kr ---* o_.

Let GT be the so-called correlation integral. For convenience, we here define the complex

conjugate of the correlation integral as (compare with equation (45))

/:g T° = ei_'(_(x[y + iiU¢r)L(y, r) dr, (88)
oo

and .following integration take the complex conjugate to get _r. From the above expression

for G, it is clear the typical scalar integral I_ is of the form

/:I_, = ei"O+M_-))L(y, r) dr. (89)

Repeated integration by parts leads to

/:1 eiwr(l+MCa(-) ) _L dr (90)
I_ = w4(1 + MCa(_)) 4 oo aT---£

Chu [18] experimentally measured the two-point space-time correlations of both the tur-

bulent velocities and the squares of these velocities in the mixing region of a 4-inch circular

jet for low subsonic Mach numbers. The experiments showed that the fourth derivative of

the relevant "self-noise" data could be fit well with analytical functions of the type

__.L_L= L(0,v)sech (wfr)cos(w.r), (91)
cot 4
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with L(oiv), wf, w. experimentally-determined constants. Unlike the conditions of Chu's

experiments, the present model assumes a planar jet within a two-dimensional space. Per-

haps most significantly, turbulent fluctuations are here constrained to lie within the two-

dimensional space. However, for lack of better information, we will use these results in the

present theory. Introduction of Chu's expression into equation (90) followed by a standard

integration leads to

L _,_

2klk44( 1 + Mca(_)) 4 sech 2k!

seth + Mo t-))k-2ks k.]] }, (92)

where kf -- _Mf/C 0 and k, -- ¢.J./C 0 are wavenumbers corresponding to the respective frequency

parameters.
The above result leads directly to the expression for {_T:

{(k)gr~ poco

_/2 / . (-)
B,,-o/2)I.-(,/2) exp(_ka,,-o/2)Yl )

Z_=o B,J,_ exp(ika(.-)y,) j}" (93)

with a = -cos 8 for kr _ oo.

Our explicit expression for the spectral density of the intensity in the far-field follows

from equation (45) and the above results. Specifically, we find

I_(x/y) ~ 8_c0 _ (7 G_G_ +

in Cartesian tensor notation. The above expression is used in the next section to predict the

directivity for selected values of frequency, Mach number, and source location.

4 Discussion of Results

We discuss various aspects of the theory just derived to give insight into the graphical results

that follow. A small subsection then gives suggestions for future work.

Each term in equation (80) corresponds to a different mode of wave propagation within

the duct, and hence represents the contribution of that mode to the far-field Green's function

£.G. According to equation (82), only certain a(_-) will be real, and the number of real a(_-)

increases with frequency kb; these correspond to traveling waves within the duct. Note that

the associated terms in equation (80) are not exponentially damped in the far-field expression

for £G and similarly for I_. Also note that at sufficiently low frequencies, a(0-) is the only

real a(-); this term corresponds to plane wave propagation within the duct.

All other a(f) will have a negative imaginary part. The corresponding terms in equation

(80) ultimately make exponentially small contributions of order exp(-k]y_ a(-)]) to £G

23



and a similar small contribution to I_,. Here, _ denotes the imaginary operator. Note that

as a source is moved upstream within the duct, these factors decrease rapidly with distance,

so that for a source located sufficiently far upstream, only terms consisting of real a(_-), i.e.,

the traveling modes, will to contribute to the sum. On the other hand, for a source located

near the end of the duct, several terms with complex a(-) will contribute to the far-field,

but the magnitude of each successive term will decrease exponentially rapidly. These terms

can be associated with acoustic waves that cannot propagate within the duct due to their

wavelength being too large. However, if the turbulent source is located sufficiently near the

end of the duct, some of these waves may escape to the far-field.

The casewhere the source is located at dead center (y2 = 0) is of particular interest. For

a source locate there, only symmetric (g = n) modes modes contribute to/:G in the far field.

However, both symmetric and asymmetric (v = n - 1/2) modes still generally contribute to

the far-field intensity because it depends upon VVZ:G.

We now use the preceding theory to predict typical directivities of the far-field intensity

due to sound emitted from a unit volume of turbulence within the duct. Frequency and

source position are the primary parameters varied in this study. Before proceeding, specific

values are required for the turbulence correlation parameters k/and k. that appear within

equation (91) for the turbulent source. According to Chu [18], the data are best fit with the
choices

for a cylindrical jet of radius b0 and exit Mach number M,. We accept these relations even for

our two-dimensional space, and consider bo/b as a geometric ratio (the "radius ratio") with

a value near unity that can be varied to some extent. Also appearing in our expression for

the spectral density is the eddy convection Mach number Me. We here assume the relation

Goldstein and Rosenbaum [12] suggested that it may be suitable to take Mc as the negative

of that given above to model sound emitted from the entrance of a jet as in an augmentor

flap; for this purpose, they principally employed a radius ratio of 0.25. As might be expected,

they suggest a radius ratio of unity to model the sound emitted from the rear of the flap. In

any case, different physical geometries might suggest the use of different values of this ratio.

For our purposes, we take Mc as positive, and use 0.25 and unity for the radius ratio to test

the sensitivity of results to this parameter.

The remaining parameters requiring selection are the Mach number M, the frequency

parameter kb, and the source location (yl, y2). Chu's data was collected for low subsonic

Mach numbers, and so we set M = 0.3 in all our examples. We consider three different

frequencies, low, low intermediate, and high: kb = 0.25_r (wavelength A = 8b), 0.75r (A =

2.67b), and kb = 6r (A -- 0.33b). For the lowest frequency, a(0-) is the only real a(_-). For

the next frequency, a_-_ is also real. For the highest frequency, the real a(_-) correspond

to v = 0, 1/2, 1, ..., 6. Based upon the full duct width, these frequencies correspond

to Strouhal numbers (w/2_r)2b/U of 0.83, 2.5, and 20, respectively. Finally, we assume the
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sourceis located at variousvertical positionsnear the end of the duct. More precisely,we
set Yl = -b, and present results for a source located near the lower wall (Y2 = -0.875b), in

the center between the two walls (y2 = 0), and near the upper wall (y2 = 0.875b).

We plot a scaled spectral density of the intensity ]_,:

_(x[y) = 128rklc_I_'(x[Y) (96)

L'0  'bO

We inserted a scaling parameter Q above so that the maximum value of ]_ equals 100,

thereby aiding comparison of the various results that follow. Figs. 6, 7, and 8 each contain

four polar plots of the scaled spectral density. The three figures correspond respectively

to the low, low intermediate, and high frequencies mentioned above. The first three plots

within each set correspond to a source located near the lower wall, in the center, and near

the upper wall. For these plots, the radius ratio equals 0.25. For the final plot of each set,

the radius ratio is set to unity for a source located at (-b, 0). Thus, comparison of second

and fourth plots within each set reveals the sensitivity to the radius ratio. Finally, a dashed

line drawn at an angle of 45 ° also appears within each graph. The area to the right of this

line represents the region where the instability wave is exponentially large, but which we

choose to ignore in the present solution.

Fig. 6 displays directivities for low-frequency radiation as predicted by the current theory.

All four directivity curves are oval in appearance with maximums occurring near 40 °. Looking

more closely at Figs. 6A, 6B, and 6C, we note that as the source moves from near the lower

wall to near the upper, the angle of the maximum increases slightly from 36 ° to 39 ° , and

the maximum value of the spectral density monotonically decreases only slightly: Q changes

from 2.27 (10 -3) to 2.07 (10-3). From Figs. 6B and 6D, we note the shape of the directivity

curve is nearly unchanged by increasing the radius ratio by a factor of four, but the value of

Q more than doubled with this change from 2.18 (10 -a) to 5.15 (10-3).

Directivities for our low-intermediate frequency appear in Fig. 7. Despite an increase in

the frequency by a factor of three, the gross features of these directivity curves are similar to

those of the lower frequency. However, closer examination reveals that many of the trends

discovered above no longer hold at this increased frequency. As the source location moves

from near the lower plate to near the upper in Figs. 7A, 7B, and 7C, the angle at which

the maximum appears decreases from 44 ° to near 40 °. Moreover, the maximum values Q of

the spectral density in these respective cases are 1.53 (10-3), 1.34 (10-a), and 1.45 (10-3);

there is no longer a monotonic decrease in Q as the source moves from the near the lower

plate to near the upper. For a source located near the upper plate, Fig. 7C, a lobe appears

forming near 60 ° that is absent is all the previous results. Figs. 7B and 7D suggest that

the radius ratio again has little effect upon the shape of the directivity curve. But as in the

low-frequency case, Q is sensitive to the radius ratio; it more than triples from 1.34 (10 -3)

to 4.53 (10 -3) when this ratio changes from 0.25 to 1.

Our high-frequency directivity results are displayed in Fig. 8. As at the lower frequencies

examined above, the major portion of the radiation in the far-field occurs at angles 0 near

40 °. For a source located near the lower plate (Fig. 8A), multiple peaks are clearly seen with

the magnitude of each subsequent peak decreasing as 8 increases. The source located at the

center (Fig. 8B) gives rise to a single major peak near 40 °. A much smaller peak in the
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directivity is observedat an angle near 75 °. The source located near the upper plate (Fig.

8C) gives rise to multiple peaks near 40 °. These maximums again decrease in ilmgnitude as

0 increases, but the angular distance between them are considerably less than for the source

located near the lower plate. A minor peak near 80 ° is observed. In contrast to the lower

frequencies examined above, the angle of the primary maximum is here nearly constant (40°),

independent of the value of y_. The values of Q for these curves are 2.55 (10-s), 1.22 (10-4),

and 2.81 (10-s), respectively; the trend represented by these Q-values is different than in

either of the two preceding cases. Figs. 8B and 8D show two nearly identical directivity

curves. However, the value of Q for the case of unit radius ratio is 5.21 (10-17), several orders

of magnitude less than the value 1.22 (10 -4) found for a radius ratio of 0.25. The sensitivity

to this ratio can be traced to the exponential decrease in the values of the hyperbolic secant

functions that appear in equation (92), which define the integrals I,. High sensitivity of Q

to the radius ratio can be expected at high frequencies.

In the limit of zero jet Mach number, the present theory leading to equation (45) for

I_, is equivaIent to the expression found by Goldstein and Rosenbaum [12] for the spectral

density of "self-noise" intensity in their Lighthill formulation. Goldstein and Rosenbaum

went on to apply their theory to a two-dimensional plug flow jet as we have done, except

they assumed the resulting waves propagated within a three-dimensional space in contrast

to our assumption of a two-dimensional space. Due to this difference in dimensions, it is

difficult to quantitatively compare the two theories. Figs. 13a and 13b of Goldstein and

Rosenbanm give the directivity of self noise for a source located at (-b,0) for low and high

frequencies, respectively. Compared to present results, the directivities of Goldstein and

Rosenbanm vary only slightly with the angle of observation from the plane of the jet.

In connection with experimental evidence of the downstream beaming of low frequency

radiation [5], we note that Goldstein and Rosenbaum find finite directivities in the limit

8 _ 0. In contrast, the present theory indicates that for finite jet Mach numbers the

directivity vanishes in this limit, independent of the frequency. This property of the present

theory, which is no doubt related to the well-known refraction of waves as they cross a vortex

sheet [22], can be deduced from equation (70) and the realization that both Y+(a) and Z+(a)

must possess the singular behavior (a + 1) -1/2 as a = -cos0 --_ -1. Consequently, the

inverse of these kernel factors and hence I_ both vanish in this limit. However, as noted

above, the present theory should reduce to the self-noise theory of Goldstein and Rosenbaum

in the limit of zero jet Mach number. We should therefore expect that if the limit M --* 0

is taken prior to the limit 0 _ 0, a finite directivity will result. That this is indeed the case

can be seen by noting that the pole of the Z(a) kernel at a = o_L = O_(0-) moves to --1 in

this limit. However, according to equation (85a), Bo will also have a simple pole at a = -1.

These two singularities will therefore cancel in B0/Z+, thereby leading to the conclusion that

the present theory predicts a finite directivity along the jet axis in the limit of zero jet Mach

numbers.

As noted above, the present model predicts a zone of relative silence near the jet axis for all

frequencies, not just for high frequencies as is seen experimentally. Thus, the present model

cannot predict the downstream beaming observed by Lush [5] for low-frequency radiation.

This failure of our model problem has at least two plausible explanations. One possibility is

simply that the region of downstream beaming is also the region of wave instability, and our

solution, which excludes this instability wave, is not strictly valid in this region. According
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to this view, the directivity of sound within the instability region cannot be known from
the presentmodel. A secondpossibility is that the present model problem, selectedfor
its relative easein solution, doesnot capture the important physicsthat givesrise to the
downstreambeaming,e.g., the refractiveeffectof mean-flowshear.Goldstein [9, 10]showed,
e.g., that convectingquadrupolesof infinite lifetimes in a free jet give rise to downstream

beaming in the low frequency limit; that model predicts that the directivity of pressure in

this region is proportional to the gradient of the Mach number at the source location. In

the present plug-flow model, there are no gradients of the mean velocity except within the

vortex layers, which are effectively of zero thickness. We also precluded sources from being

located within such layers. Thus, this possible cause of downstream beaming was eliminated

by selecting a plug-flow model.

In this contribution, we have insisted upon satisfying the condition of causality, and this

insistence lead to the instability wave and the related question of interpretation within the

instability region. We note, however, that Dowling, et al. [23] have argued that causality

need not be satisfied in problems of the present type.

Future Work

Our expression for the spectral density of the far-field intensity due to a unit volume of

turbulence, equation (45), can be applied to several different geometries and mean velocity

profiles. In the present effort, we applied the expression to a two-dimensional duct from

which a plug flow jet exits. Below we list possible extensions of the present work.

l° The present study examined only one Mach number and a few frequencies and source

positions. Predictions of the model should be extended to a broader range of parame-

ters, and these results should then be compared in detail with prior models and relevant

experimental data.

2. Compare predictions of the present two-dimensional space problem with those calcu-

lated using a non-causal Green's function.

. The present plug-flow model is limited to a two-dimensional space. It is anticipated that

extension of the model to sound radiation in a three-dimensional space while retaining

the two-dimensional duct/jet geometry would give insight into the directivity due to

jets passing through narrow slits.

4. Adaptation of this plug-flow model to cylindrical ducts would be helpful.

5. The inclusion of mean flow shear (in whatever geometry it is feasible) would represent

a tremendous advance in current understanding.

6. Results of these investigations should be implemented into code (e.g., the MGB code)

for the design of actual jets.
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5 Summary

Starting from a linearized version of the LiUey equation, we derived an expression for the

spectral density of the far-field intensity for sound emitted from a unit volume of turbulence

located within a jet and near solid boundaries. The theory is valid for arbitrary unidirec-

tional, transversely sheared mean flows. The theory was applied to a simple two-dimensional

jet that exits a relatively long duct. Due to the complexity of the governing equations, a

simple plug flow was assumed for the jet. The resulting equations were solved exactly in a

formal sense using the Wiener-Hopf technique. Using existing turbulence correlation data,

the spectral density was calculated and plotted for a wide range of frequencies and for sources

located at various points just inside the duct.
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Appendix A Zeros of Kernels

Due to the need to impose causality, the location of zeros of Y and Z (defined in equation

(70)) in the complex plane and their path as certain parameters change play an important role

in the present analysis. Where possible, we here employ analytical techniques to investigate

the zeros, and, where these fail, indicate suitable numerical procedures. Munt [16] gives an

excellent discussion on this topic in connection with a related kernel for cylindrical jets.

For the present kernels, perhaps the most useful information is obtained upon assuming

k is pure imaginary, i.e., _ = arg k = r/2. In this case, all poles of Y and Z must lie along

the real axis. Therefore, we can employ the argument principle around a large contour in the

upper or lower plane to determine whether any zeros are present. Furthermore, the easily

proved general identity,

(A.1)

is extremely useful. (For this discussion of the kernel zeros, it is useful to consider Y and

Z as functions of both cr and k.) If k is pure imaginary, for any zero located in the upper

complex plane, say, at cr = U(oY), there must also exist a zero of Y in the lower complex plane

at U(oY)" . Exactly the same reasoning applies to the kernel Z.

We examined the change in arg Y and arg Z along a closed path just above the real axis,

say from -R < _a < R for large R, and then along the semi-circular contour following the

path a = R_ ¢ with 0 < ¢ < _r. One can deduce (See Munt [16] for details.) that the change

in argument for both kernels is 27r, indicating the presence of one simple zero in the upper

plane for each kernel and hence another one at the complex conjugate of this root.

If the roots are located in a region in the complex plane where 2_ kb_v >> 1, then to

within an exponentially small order the hyperbolic tangent and cotangent functions may be

replaced by unity. To this order of approximation, the two kernels become identical to each

other and to the kernel found by Crighton and Leppington [21] for a single semi-infinite

vortex sheet. Crighton and Leppington located this zero at

u0 = - cos( 4 + iro), (A.2)

where ro is the positive root of

cosh r0 = [1 + v_ + M2]/x/2M (A.3)

This zero is located in the second quadrant of the complex plane, and the actual zeros

a = U(oY) and a = U(oz) of the two respective kernels are expected to be located nearby. Since

there must be a location in the upper complex plane where 2R kb_ >> 1, it follows that

these are the sole zeros in the upper plane indicated by the argument procedure.

Before leaving this case, we note that the above argument procedure did not capture all

zeros of Y and Z in the cut plane, for some zeros are possibly located along the real axis

between -1 and CrL. The number of zeros in this region increase with the magnitude of kb.

There are no other zeros along the real axis.

The above zeros account for all zeros of both kernels in the cut plane when k is pure

imaginary. For _ = lr/2, the contour of integration F, used for factorization of the kernels
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(SeeFigure 3.) coincideswith the imaginary axis. Thus, all the discoveredzeroslie in the
minus analytic plane,and arepart of the plus kernel factors. It is usefulto tracethesezeros
as6 decreasesto zero,and thereby determinewhether they becomepart of the plus analytic
region. The trajectory of thesezeroscan be determinedby numericallysolving the implicit
equation

09e a_z_Y
06

- 0r" (A.4)
06 0-_

For all cases investigated, we found

1. The zeros at a = u(0r) and c_ = U(oz) remained virtually stationary as _ decreased to

zero. Therefore, these zeros were crossed by F, and are the so-called instability zeros.

. The zeros initially located at s(0r) = _0"(r)" and S(oz) = _0°(z)* for $ = r/2 migrated to just

below the real axis for _ --* 0. In this limit one can deduce these zeros are located (to

within an exponentially small error) at a = -2/M. These zeros remain fully within

the minus analytic region.

. The zeros initially located between -1 and aL appeared to migrate about the point

_L SO aS to lie fully below the real axis when 6 = 0. These zeros thus also remained

within the minus analytic region.

We now suppose k is real and positive. Both Y and Z possess an infinite number of poles

associated with the zeros of cosh kb_ and sinh kbw, respectively, along the line R a = _;

they also possess a finite number of poles along the real axis between aL and au.

Now consider the zeros. For 2N kbva >> 1, the hyperbolic tangent and cotangent func-

tions may again be replaced by unity. Alternatively, for -2_R kbcv >> 1, these functions

may be replaced by -1. This latter situation occurs in the first and third quadrants relative

to an origin at a = _. The same procedure (rationalization followed by factorization of a

sixth-order polynomial) given by Crighton and Leppington [21] can be used to identify all

roots satisfying either criteria. Only two of the six polynomial roots are approximate roots

of our kernels, and these were identified above: the instability zero at u0 and the root near

a = -2/M - i0.

The other possibility is that 2[R kbw I <_ O(1). This region consists of a strip on either

side of the line R a = & and the strip on either side of the real axis between &L and av. It

appears that these zeros are interlaced with the poles that occur in these regions.

To more closely investigate these zeros, we factor _, cosh kbw from the denominator to

obtain

y

7 cosh kb_
cosh kb_v +

(1 + Ma)27 sinh kbva_

_u
(A.5)

The quantity in square brackets is suitable for use with the argument method to investigate

zeros in the cut plane because it has the same zeros as Y, but none of the poles. Furthermore,

the branch point singularities at a - :kl are weaker than in Y, which aids implementation

of the argument method near these points.
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We numerically calculated the change in argument of the quantity above in square brack-

ets along paths surrounding extensive regions of the upper and lower complex planes to

determine the precise number of enclosed zeros. The results confirm that the only zeros in

the cut plane consist of the instability zero and the zeros associated with poles in the strips

mentioned above. The zero near a = -2/M is not captured because it lies on the branch

cut. In addition, a finite number of zeros lie along the real axis between 1 and av; these

are interspersed with poles of Y that lie in this region. Numerical calculations indicate that

these zeros move into the other Riemann sheet as 8 increases from zero. However, we have

not been able to prove in general that this is the case.

These results suggest that each kernel has only one zero, namely, u(0r) for the Y kernel

and U(oz} for the Z kernel, that represents an instability zero. The contour of integration F

does not appear to cross any other zero when 6 varies in the range 0 < 6 _< r/2. However,

since we have not been able to analytically prove this result, an investigation of the zeros of

the kernels should be conducted for each new value of kb and M.

Appendix B Numerical Factorization of Kernels

Factorization of kernels tends to be the most difficult aspect of the Wiener-Hopf analysis,

particularly if the goal is to obtain analytical expressions. However, the present analysis only

requires knowledge of the kernel values at particular points in the complex plane, and for this

purpose numerical evaluation of the factors is quite acceptable. In this appendix, we discuss

a straightforward and practical approach for the numerical factorization of these kernels.

Specific details are given for the factorization of the kernel Y. Factorization of the kernel Z

can be treated in a similar manner. We first suppose a lies within the range -1 < a < 1,

and then later consider the case of complex a.

We begin with equation (77) for the definition of the plus analytic factor y+(a) for the

generic kernel y = Y+Y_. In using this expression, we assume no zeros exist in the strip

and that Y --o 1 as a _ oo in the strip. Neither Y nor Z, defined in equation (70), satisfy

this latter condition, but it is easy to multipy by suitable functions that have known factors

and thereby correct this defect. For example, if we define :Y by

yvrf -M 2
y -

M2-r

(1 (l + Ma)_tanhkbvv)¢U

_/1 - M 2

M2,./ '
(B.6)

the condition is satisfied. The function "y can be factored as "Y+3'- with -y+(a) = x/_+ 1 and

7_(a). = v/-_ - 1. Then suitable factors of Y = Y+Y_ are Y+(a) = M27+(a)Y+/_/1 - M 2

and Y_(a) = %(a)y_. (Recall that we use a tilde to denote the factorization Y = 1_+1__

along the real axis, and similarly for Z.)

Equation (77) derives (See Noble [20]) from application of Cauchy's integral theorem

to a thin rectangular domain that lies within the analytic strip 5. The path of integration

represents one of the long sides of the rectangle. Because our interest assumes k is real and

positive, the limit arg k _ 0 must be taken prior to numerical evaluation. This limiting

process causes the kernel _', which by definition is analytic within the strip (of finite width
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when arg k > 0), to appear to have singularities along the path of integration. We have

to deal appropriately with these singularities. In particular, it is important to know the

locations of the singularities, their type, and which side of the singularities the path of

integration follows.

Over the path of integration, different branches of the logarithm function are normally

encountered. It is necessary to keep track of these branches during the integration process.

We note certain easily-determined properties of y along the path of integration (See

Figure 5) for k real and positive. First, Y is real, positive, and free of singularities for

a < -1 and for a > av. Simple poles due to zeros of 72 are present at a = +1. Also,

depending upon the values of kb and of M, cosh kbw may vanish along the real axis between

a L and au, thereby giving rise to 2Np simple poles of y in this region. The location of these

poles to the left of _ are given by equation (82) for v = n - (1/2), n = 1, 2, 3,..., Np

with v < kb/Trv/'l- M s. The location of poles to the right, say a(_+), can be obtained from

a (+) = 2_ - a(-). There also may be zeros located in the range 1 < a < au. The locations

of these zeros can generally be determined using a secant method; they alternate in order

with poles that are present. We designate these roots as uj with j = 1, 2, 3,..., Nz. It is

also easily deduced that the imaginary part of the kernel is identically zero in this range.

We know the path of integration lies above the singularities at -1 and a_-), and below

those at a, 1 and a(_+). To determine whether the Nz zeros lie in the upper or lower planes,

we use equation (A.4) to determine the signs of the derivatives Oa/O_5 for _ = 0. In all cases

studied thus far for both kernels Y and Z, this sign has been positive, indicating each zero

belongs to the upper analytical region. Thus, we here assume the path of integration goes

below these zeros.

As observed above, Y is real, positive, and regular outside the range -1 < a < at/, and

hence the (numerical) integrations in these regions is straightforward. However, within the

range -1 < a < au, a suitable representation for in y is required, and to aid us in this

task it is useful to define a related function, say, Cs. This new function is defined such that

arg(ye -iCs) is continuous at the singular points of Y. (Compare with Munt [16].) Here, the

change in arg y as the point a moves from the left to the right of a singularity is always :t:Tr

since only simple zeros and poles are present. Whether the argument increases or decreases

depends upon whether the singularity is a zero or a pole and whether the path goes above

or below. Using our above knowledge of the singularities, we define Cs via the equation

z,bs(a) = lr{[H(a- 1)- H(c_ + 1)]+

N r, N,

_z__,tH(a a_+)(1/2)) H(a- (-)- - c_ _(a/2)) ] - _ H(a- u3)}
n=l j=l

or, more conveniently,

Ns

¢s(a) = r _ qj H(a - Aj). (B.7)
j=l

Here H(z) is the unit step function, Ns = 2Np + Nz + 2 the total number of singularities,

qj the coefficient (either +l) that corresponds to the jth singularity, and )_j the location of

the singularity.
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We next definea function, sayCB, that takes into account changes in the branch of the

logarithm function. This function has a form similar to that of Cs:

NB

Cs(a) = 2r _ _ H(a - _j), (B.S)
j=l

Here Ns is the number of such jumps and _j the location of the jth jump. The coefficient

t_j is 4-1 and corresponds to whether the argument of Y is increasing (+) or decreasing (-)

at _j. The locations of branch jumps a = Aj are found by numerical solution of

arg[Y(a)ei[¢°-_s(°)-_]]_=xj = 0, (B.9)

forj = 1, 2, 3,...,/Vs. Here, Ca, which we may restrict to the range0 < Ca < r, is a

constant angle that may be used to adjust the location of branch jumps away from the Aj

singularities. Setting this quantity to _r has been useful in the current investigation, but

other values may be required for other Mac]: numbers and frequencies.

For a in the range -1 < a < au, we now write lny as

In Y(a) = {lnp[Y(a)ei[ ¢*-¢s(_)]] + iCs(a)} + i[¢s(a)- ¢_], (B.10)

where lnp z denotes the principal branch of In z with -_r < arg z < 7r. The imaginary part

of the quantity in curly brackets is continuous in the given range of a, and the real part has

only logarithmic singularities at the zeros and poles represented by the At.

To proceed with the determination of 3?+ (a), we evaluate the half-residue term in equation

(77) to obtain the expression

f_- h y(z) dz1 in Y((_) +lnY+(_) = _ 2_ri ¢¢ z-c_
(e.ll)

where P denotes the principal value. Noting a key result of analytical integration,

2ri z ---a - 2 qj lnp(av - c_) - _ _ qj ln_, IAj - al,
j----1

(B.12)

we find that y+(a) can be efficiently calculated from the following equation for a in the

range-l<a<l:

]

In = + i[¢s(a) + Cs(a)- ¢o]}+

1 /_-1 ln, y(z) dz 1_.1__/_v {lnp[y(z)ei[¢o-Cs(_)]] + i_s(z)} dz+
2ri _¢ z-a 2ri z-a

qj ln_, (au - a) -

Y, Tri J_u Z -- 0[,

.i=1

+

(B.13)
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The aboveequationis not valid for a = hi, but any needed values of y+(_j) can be obtained

by evaluating the above expression for nearby values of a and interpolating the results.

The principal value integral in the above expression is evaluated numerically as follows:

Constants _j are placed in consecutive order to form subintervals, and integrations are

performed over these individual ranges. A numerical method (e.g., the Ganssian-Kronrod

adaptive method) that does not use endpoint evaluations is required. Only the integral over

the range containing the point a needs to be calculated as a principal value.

The numerical integrations in the above formula can be time consuming, and so it is

convenient to represent the functions l;'+ and Y_ using splines, polynomials, or rational

functions for real a within their respective domains, a > _ and c_ < _, of analyticity.

Outside these respective domains but within the range -1 < a < 1, the factors can be

obtained from the relation Y = Y+Y_.

For our directivity calculation, we also need ]__(a) and z__(a) for a = a(_-) in the lower

complex plane. These can be determined from equations of the type

1 /oo-io lny(z)dz (B.14)
lny_(a)- 2riJ-oo+io z-a '

where the path of integration is the same as above except it is not deformed around a; i.e.,

there is no need to calculate the residue term or the principal value. Straightforward analysis

shows that for a in the lower complex plane, Y_ (a) may be calculated from

In y_(_) =

1 f-x lnpy(z) dz 1 [_, {ln,[Y(z)e i[_°-¢s(z)]] + iCB(z)} dz

2ri J-o¢ z - a 2_ri J-1 z - a

1 Ns _b_

qj[ln ( u- - lnp( j - + - - ln (-1 - -
j=l

1 f,o lnpY(z) dz (B.15)2ri v z - a

As in the case for real a, the integral over the range -1 < z < au is to be subdivided

into several integrals so that no pole or zero of the kernel is crossed during the course of

evaluation.
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Fig. 1: Side view of jet with arbitrary

mean velocity U. Convecting source

displayed.
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Fig. 2: Two-dimensional duct and plug-flow

jet for Wiener-Hopf problem. Vortex sheet

displayed.
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Fig. 4: Definition sketch of polar coordi-
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Fig. 5: Sketch of complex a-plane for

factorization of Y showing contour of

integration around singularities.
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Fig. 6: Polar plot of scaled spectral density of the far-field intensity as a

function of polar angle 0 for frequency kb= 0.25 re, exit Math number M =

0.3, convection Math number M_=0.15, yl/b =-1.0, and (A) y2/b=-0.875 and

radius ratio bo/b--0.25; (B) y2/b=0 and bo/b=0.25; (C) yCb=0.875 and

b0/b=0.25; and (D) y2/b=0 and bo/b=l. Dashed line shows region of

instability wave. Q-values for the respective plots: 2.27 (103), 2.18 (10-3),

2.07 (10-3), and 5.15 (103).
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function of polar angle 0 for frequency kb = 0.75 _x, exit Mach number M=

0.3, convection Math number 1@=0.15, y_/b--1.0, and (A) y2/b--0.875 and

radius ratio bo/b=0.25; 03) y2/b=0 and bo/b=0.25; (C) y2/b=0.875 and

bo/b--0.25; and (D) y2/b=0 and bo/b=l. Dashed line shows region of instability

wave. Q-values for the respective plots: 1.53 (103), 1.34 (103), 1.45 (103),

and 4.53 (103).
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Fig. 8: Polar plot of scaled spectral density of the far-field intensity as a

function of polar angle 0 for frequency kb = 6re, exit Mach number M = 0.3,

convection Mach number M_=0.15, y]/b =-1.0, and (A) y2/b=-0.875 and

radius ratio bo/b=0.25; (B) y2/b=0 and b0/b=0.25; (C) y2/b=0.875 and

b0/b=0.25; and (D) y2/b=0 and bo/b=l. Dashed line shows region of instability

wave. Q-values for the respective plots: 2.55 (10"5), 1.22 (10-4), 2.81 (10s),

and 5.21 (10-17).
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