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INTRODUCTION

Manydesignproblemsaremultidisciplinary;thatis,
theyrequire the coordination of information from a num-

ber of highly specialized disciplines. (For example, air-

plane design may include the disciplines of

aerodynamics, structures, propulsion, controls, and man-

ufacturing.) The point of view, design emphasis, and

design approach of each discipline specialist can be quite

different. Often, the practice has been for specialists to

independently optimize each discipline with limited
direct interaction or communication with others. Under

the sponsorship of the federal High Performance Com-

puting and Communications Program (HPCCP), the

MultiDisciplinary Optimization Branch at the NASA

Langley Research Center is investigating the use of a dis-
tributed heterogeneous computing system to facilitate

communications, apply computer automation, and intro-

duce parallel computing to produce a truly multidiscipli-

nary design optimization (MDO) process. This concept is

illustrated in figure 1.

As part of this work, NASA Langley has developed

a heterogeneous distributed computing environment,
called the Framework for Interdisciplinary Design Opti-

mization (FIDO) (reference 1, 2, 3). The purpose of the

FIDO project is to demonstrate the technical feasibility
and the usefulness of its approach to optimizing the pre-

liminary design of complex systems and also to provide a

working environment for testing various optimization

schemes. The FIDO system has now progressed beyond

the feasibility stage and is being upgraded with major

new capabilities. Because these capabilities require a

more detailed geometry description than has been used

so far, a commercial computer aided design (CAD) sys-
tem will be used

This report f'n'st presents the philosophy behind some
of the decisions that have shaped the FIDO system and

then gives a brief case study of the problems encountered

in integrating a CAD system into the FIDO system and

proposed solutions. The report is an expanded version of
a paper presented at the Engineering Foundation confer-

ence on Optimization in Industry, Palm Coast, FL,
March 1997.

Figure 1. Concept of an MDO framework on HPCCP heterogeneous network of computers.



FIDO SYSTEM PHILOSOPHY

The FIDO system is a heterogeneous distributed

computing environment being developed at the NASA

Langley for optimizing complex designs that depend on

several engineering disciplines for design analysis. The

system has three purposes: demonstrate technical feasi-

bility, demonstrate usefulness for selected applications,

and provide a working environment for use by Langley

researchers testing various optimization schemes. Philo-
sophically, the FIDO system can be considered as a tool

to be applied by a "design manager" who needs to

improve a complex product design process. Basically,

FIDO automates the coordination of analyses by the vari-
ous disciplines (each on its assigned computer) into an

overall optimization scheme, while allowing for visual-

ization and steering of the process by the design man-

ager.

Simplified test problem

For the purpose of developing the FIDO system, a

very simplified test problem, based on preliminary

design of a High Speed Civil Transport (HSCT,
figure 2), was chosen. The disciplines included in the

optimization are structures, aerodynamics, propulsion,

performance, and an interdisciplinary interface (see sys-
tem schematic, figure 3). The FIDO system was first

demonstrated for a version of this design problem with

fast, limited-fidelity discipline codes (equivalent plate

structural analysis, linearized aerodynamic analysis,

table lookup propulsion, and a range equation for perfor-

mance fuel weight estimation), a geometry given by a set

of points, a small number of design variables (on the

order of ten), and a simple objective function. Recently it

has been demonstrated with medium-fidelity structural

(coarse-grain finite element analysis) and aerodynamic
(supersonic marching Euler) codes.

Modularity

The FIDO system design is modular. The modules

for such services as the graphical user interface (GUI),

Executive control, Data Manager, Setup, and Spy (shown

in figure 3) are intended to be independent of any partic-

ular application. In practice, some small changes may be

necessary; for example, the introduction of higher fidel-

ity discipline codes has required changes to system calls

for transferring files to higher capacity computers. Obvi-

ously, the discipline modules and the code governing

their use are much more dependent on the particular
problem.

For integration into early FIDO versions, discipline

codes were modified to make them modular. The legacy
source codes, which were decades old and contained

deeply embedded output and stop statements, were made

to act like well-behaved library subroutine modules. For

the latest FIDO version, "wrapper" technology has been

Design Conditions
Mach 2.4

Altitude 63,000 ft.

Range 6,000 mi.

Payload 30,000 Ibs

Length 300 ft.

Max Load 2.5g

Figure 2. Sample FIDO application: High Speed Civil Transport (HSCT).
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developed for unmodified legacy codes to properly for-

mat input, intercept unwanted output, and handle runtime

errors that otherwise could cause unacceptable module
behavior.

Communications

Each discipline analysis and auxiliary module is

assigned, according to its computational needs and over-

all system balance, to an appropriate computer in a bet-

erogeneous network of workstation, parallel, and super

computers (see figure 1). Communication between the

computers is handled by a Communications Library (ref-

erence 4, middle of figure 3) that is called from each
module or, in the case of a legacy discipline code, its

driver or wrapper.

The communication library contains functions

designed to facilitate the communications within a gen-
eral system of computer codes executed in a hetero-

geneous, distributed network of computers. This library
allows the FIDO system to be programmed without

recourse to the underlying message-passing primitives

and minimizes the impact on FIDO of any changes in

them. (Currently the primitives are the PVM system from

Oak Ridge National Laboratory (reference 5).)

Coordination

Coordination of discipline analyses is provided by a

problem-dependent Master module (figure 3). Currently,
the code of this module must be rewritten for each spe-

cific application. For example, the simplified preliminary

design of an HSCT (figure 2), the initial focus applica-

tion of the FIDO project, requires code to perform a com-

plex iterative looping behavior (figure 4). Ideally, the
Master module would be rewritten to provide an interac-

tive visual programming method for this linking of the

modules containing the discipline codes. FIDO research-

ers are currently investigating the use of a commercial,
general-purpose task automation system (iSIGHT 1 from

Engineous Software Inc.) to provide a more readily mod-
ified coordination function.

Data base

All major data elements (individual items or file

pointers) passed between modules go through and are

stored in the central Data Manager (figure 3). Using the

file pointers, data files are passed directly on request

from the generating computer to the requesting com-

puter. Because the communications library allows direct

passing of data messages between the discipline comput-
IThe use of this commercial product does not imply endorsement

by NASA.

Figure 3. Schematic of the Framework for Interdisciplinary Design Optimization (FIDO) system.
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Figure 4. FIDO discipline interaction diagram for an HSCT application.
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ers, direct communications of messages can be imple-

mented if the increased efficiency warrants it.

User interface

The FIDO Graphical User Interface (GUI) gives the

design manager control of the process and provides a

way to view optimization progress and intermediate
results. A feature of FIDO is that the viewing module

(Spy in figure 3) can be invoked in multiple instances
and from remote sites on the network in order to allow

remote experts to evaluate the design graphically while it

is in progress (figure 5).

Configuration files

Before execution of each case, the design manager

typically invokes the GU]'s Setup module to pick the

system configuration and the initial conditions and con-

straints of the optimization process from a range of previ-

ously defined possibilities. These are contained in four

configuration files that define the data in standardized
formats: a file of the characteristics of all host machines

to be considered; a file pairing the computational mod-

ules with the machines to be used for execution of a par-

ticular case; a file defining the base aircraft geometry,

flight conditions, and design variable initial and bound-

ing values; and a file specifying which segments are to be

run in a debug or demonstration mode.

Upgrades

Current plans are to upgrade the FIDO system to use

more realistic analysis modules, including both high-

fidelity structure (adaptive refinement finite-element
method) and aerodynamic (Navier-Stokes CFD) codes.

A commercial computer aided design (CAD) system

(Pro/ENGINEER ® from Parametric Technology Corpo-
ration 2) will be used to provide these codes with a uni-

fied, high-fidelity surface description. Because the

purpose of the FIDO framework is to automate the MDO

process, the CAD system must regenerate a new surface

model each time the value of any geometric design vari-

able is changed (as in figure 6).

2The use of this commercial product does not imply endorsement
byNASA.
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Figure 5. FIDO interface concept, showing design manager conference with discipline expert.

There are three main challenges to the integration of

a CAD system into an environment for aerospace system

optimization, such as FIDO: (1) devising a method for

dealing with aeroelasticity, (2) allowing for replacement
of the CAD system when desired, and (3) determining

the sensitivity derivatives needed by the gradient-based

optimizer. The approaches used to address these chal-

lenges are discussed in the following sections.

AEROELASTIC AND REPLACEMENT

CHALLENGES

Aeroelasticity

In aircraft design, aeroelasticity involves the interac-

tion of aerodynamic forces and structural deformations --

the airframe deformations depend on the loads imposed

on the aircraft (especially on the wings) by the air flow,

and the air flow is influenced by the deformations. Deter-

mining a deformed shape consistent with the correspond-

ing aerodynamic loads is an iterative process.

Because the aeroelastic deformations do not change
the parameters that define the design shape of the air-

craft, it was decided to avoid the first challenge, model-

ing the deformations in the CAD system. Instead, the

CAD system is used only for the outer design cycle,

where it regenerates the aircraft model with updated val-

ues of its parametric design variables. The framework

then copies the updated model to a separate, Non-Uni-
form Rational B-Spline (NURBS) database, and this

NURBS model, which exactly matches the CAD model,
is used for the inner aeroelastic-deformation and load-

balance iterative loop in FIDO.

In this inner loop (figure 7), automated methods are
used to obtain from the NURBS database (reference 6)

the surface geometry information needed by the compu-

tational fluid dynamics (CFD) grid regeneration tool
CSCMDO and finite element model (FEM) grid regener-

ation tool BSMART. The CFD analysis code CFL3D is

used to compute aerodynamic forces that are converted

into structural loads for computation of deformations by

a computational structural mechanics (CSM) code,
COMET-AR. These deformations are then converted to a

NURBS representation and the NURBS geometry is

modified to reflect the aeroelastically deformed model.

This loop is repeated until the loads and deformed model
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Figure 6. Parametric change of leading-edge sweep in Pro/ENGINEER model of an HSCT.

shape converge, usually in three to five iterations. Then,

the CFD and CSM results are applied to the overall opti-

mization process, along with other discipline results, to

determine a new set of values for the design variables

(CAD parameters). These new values are used to regen-

erate the CAD model, and the whole process repeats until
no further improvement in the objective is evident.

CAD replacement

It has become apparent that no one CAD system is
uniquely applicable to MDO frameworks. Because most

CAD systems can export the required NURBS geometry,
the uncoupling of the CAD and aeroelastic databases as

described above also eases the second challenge, because

it simplifies the replacement of the CAD system when
this is desired

SENSITIVITY DERIVATIVES

CHALLENGE

The third major challenge to integration of the CAD

system into FIDO is the determination of the sensitivity
derivatives used by the gradient-based optimizer. Essen-

tially, what is needed is the partial derivative of each

computational grid point position with respect to each

geometric design variable. These geometric derivatives

can be chained together with derivatives in the discipline

codes with respect to the grid points to obtain, eventu-
ally, sensitivities of constraints and objective functions

with respect to the design variables. An example is the

derivative of total aircraft weight with respect to wing
leading-edge sweep angle, including contributions from

the aerodynamic loads and the structural deformations.

The optimizer then applies the overall derivatives to its

algorithm for determining improved values of the design
variables.

Derivatives using NURBS database

In some instances it will be possible to relate the

NURBS control points to the design variables. For those
design variables, the required derivatives can be com-

puted without recourse to the CAD system. But, some

alternate means will have to be found to compute the
derivatives of design variables that cannot be so related.

Finite difference approximations

The usual direct approach is to apply an incremental
change to each geometric design variable in turn and

compute its finite difference approximations for the

required derivatives. This method is being used by the
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Figure 7. Aemelastic iteration loop (heavy arrows) in the FIIX) system.

FIDO project in the interim while pursuing analytic
derivative methods.

The problem with finite differences is that the

approximated value of a derivative sometimes is very

sensitive to the size of the design variable increment used

to compute it. The mathematical basis for the approxima-
tion is the Mean Value Theorem of calculus, which

assumes that the function being approximated is continu-

ous. This assumption is not strictly true for any computed

function (due to round off and truncation errors) and may

be far off (relatively speaking), depending on the nature

of the geometry at a particular point. Even a relatively

smooth surface geometry has regions of low and high

sensitivity to any given design variable. Thus, the best
size for the increment to use for each design variable

depends on the derivative being computed; different
increments may well be appropriate for different deriva-
tives.

Obviously, trade-offs are involved in computing the

finite difference approximations. If a single increment is
chosen, the resulting poor approximation of derivatives

can lead to poor performance of the optimizer. On the
other hand, if many different increments are used for

each design variable, the overall system performance

may be poor because of the many additional regenera-

tions required of the CAD system. These trade-offs and
other issues relating to the use of finite difference

approximations of geometric sensitivity derivatives are
being studied at the Langley Research Center as the inte-

gration of Pro/ENGINEER with FIDO proceeds.

Analytic derivatives

Ideally, one would like to have analytically defined
sensitivity derivatives for use in gradient-based optimiza-

tion. Because surfaces in the CAD system are defined by

a patchwork of analytic curves and surfaces, it is possible

to produce analytic derivatives of those curves and sur-

faces. And, because the CAD system contains within its

code the logic and equations that relate the surface

patches to the design variables (CAD parameters), it is

theoretically possible to produce analytic derivatives rel-
ative to the design variables.

A computer code, ADI-C (for Automatic Differenti-
ation of C), which has been developed by researchers at

Rice University and Argonne National Laboratory, takes

a normal C code as its input and produces as output the

same code supplemented with additional statements to

compute the analytic derivatives of selected variables



withrespectedtoselectedinputvariables. ADI-C (and its
Fortran forerunner ADIFOR (reference 7)) have been

tested and found to work reliably on such complex soft-
ware as block-gridded CFD codes (reference 8)

Of course, the application of ADI-C requires access
to the source code. Because the CAD system source code

is proprietary, some kind of cooperative arrangement
must be made with its owners in order for ADI-C to be

applied. In preliminary talks, sales representatives have

shown some interest relating to the application of ADI-C

to the Pro/ENGINEER CAD system. It would appear to

be a great advantage for a CAD system to be able to sup-
ply sensitivity derivatives to its users. However, it will

ultimately take a business decision by a CAD system

vendor to devote the necessary resources before this ave-
nue to integrating a CAD system with MDO can be fol-
lowed.

Transformation matrix formulation

There is another approach to obtaining analytic sen-

sitivity derivatives that uses presently available informa-

tion. The geometric sensitivity derivatives are essentially

the linear transformation matrices used in producing the

graphical displays of the geometry. Or, at least, the trans-
formation matrices contain all the information needed to

compute the derivatives, as in the case of rotations. For
Pro/ENGINEER these transformation matrices can be

accessed through a system library known as Pro/
DEVELOP. Thus, the information needed is available

without differentiating throughout the Pro/ENGINEER

source code. At NASA Langley, we are currently looking
into how to write the code necessary to pull out all the

required matrices from the Pro/ENGINEER database and

put them into sensitivity derivative form.

CONCLUDING REMARKS

More and more, the design of complex engineering
products, such as aircraft, is coming to rely on computer-

aided design systems. And, more and more, optimization

methods are being applied to the design of complex engi-

neering products in an effort to make them more efficient
to manufacture, maintain, and use. Thus, there is a natu-

ral need to integrate computer-aided design systems with
the emerging optimization environments, such as FIDO

(the Framework for Interdisciplinary Design Optimiza-

tion described herein). This report has discussed three

issues arising in the integration and how they are being

handled by the FIDO project. Of these, decoupling seems
to handle the aeroelastic issue well and eases the CAD

replacement, but the issue of deriving geometric sensitiv-

ity derivatives from the CAD system is more problemati-
cal. Which of the four proposed solutions (NURBS

database, finite differences, CAD analytical derivatives,
or transformation matrix analytical derivatives) turns out

to be most effective in the long run remains to be seen.
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