
NASA/CR--1998-207402

A Semantic Analysis Method for Scientific

and Engineering Code

Mark E.M. Stewart

NYMA, Inc., Brook Park, Ohio

Prepared under Contract NAS3-27816

National Aeronautics and

Space Administration

Lewis Research Center

April 1998



NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A03

Available from

National Technical Information Service

5287 Port Royal Road

Springfield, VA 22100
Price Code: A03



A SEMANTIC ANALYSIS METHOD FOR SCIENTIFIC AND ENGINEERING CODE

Mark E. M. Stewart

NYMA

200i Aerospace Parkway

Brook Park, OH 44142

1. Abstract

This paper develops a procedure to statically analyze aspects of the meaning or semantics

of scientific and engineering code. The analysis involves adding semantic declarations to a

user's code and parsing this semantic knowledge with the original code using multiple expert

parsers. These semantic parsers are designed to recognize formulae in different disciplines in-

cluding physical and mathematical formulae and geometrical position in a numerical scheme.

In practise, a user would submit code with semantic declarations of primitive variables to

the analysis procedure, and its semantic parsers would automatically recognize and docu-

ment some static, semantic concepts and locate some prograzn semantic errors. A prototype

implementation of this analysis procedure is demonstrated. Further, the relationship be-

tween the fundamental algebraic manipulations of equations and the parsing of expressions

is explained. This ability to locate some semantic errors and document semantic concepts

in scientific and engineering code should reduce the time, risk, and effort of developing and

using these codes.

2. Introduction

2.0 Motivation

With revolutionary increases in computer speed, scientific and engineering simulation has

moved from the manual calculation of problems to computer simulation codes. Across a

wide range of disciplines including aeronautics, astrophysics, combustion, geophysics, molec-

ular dynamics, structural analysis, and weather and climate modeling, computer simulations

inexpensively explore important problems that researchers previously studied only with ex-

perimental and theoretical methods. However, these scientific and engineering codes involve



a large number of semantic details including the implementation of formulae and manipu-

lation of geometrical concepts. Even with current testing techniques, identifying errors in

these semantic details is a problem that significantly hinders scientific code development.

The available software for developing and maintaining this scientific and engineering software

includes modern computer languages, syntactic analysis (lint [14], ftnchek [18]), compilation

control (make [6]), source debug tools (dbx), and version control (sccs). Further, there

are widely accepted techniques for testing scientific programs--solution comparison with

available analytic test cases, comparison with available experimental results, examination of

the formal and observed order of accuracy of the numerical scheme, as well as verification of

convergence. However, these are tests of an ensemble of details that may detect the presence

of an error but cannot identify the faulty detail. A program containing either of the errors

(2.0)

C

P = RHO* (E-(U* U + V* V))* (GAM-1. ) (2.0)
C

(pressure is incorrectly calculated from density, total energy (intensive), velocity, and the

ratio of specific heats) or (2.1)

C

C
FS(I,J,N) = DW(I+2,J,N)- 2.*DW(I,J,N) + DW(I-1,J,N) (2.1)

(the second difference is geometrically incorrect) will fail these traditional testing methods.

However, finding these errors can be very difficult. In practise, developers use their knowledge

and skill to devise diagnostic tests which narrow a manual search.

In manual checking, developers examine code, interpret its meaning and verify it is correct.

However, manual checking is frequently incomplete and incorrect, always time consuming,

and limited by the individual's semantic knowledge. To aid in manual interpretation, de-

velopers encode some semantic information in variable names, comments, and written doc-

umentation which must, however, still be processed manually.

What are the semantic details being checked? They include program execution order and

logic which are not considered here. They also include mathematical and geometrical con-
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cepts including derivatives, integrals, points, and vectors. Further, simulations use the phys-

ical principles and formulae of individual disciplines. For example, in aerodynamics the

gasdynamics and Navier-Stokes equations are fundamental formulae. These mathematical,

geometrical, and physical equations are an unambiguous domain of knowledge in contrast

to the knowledge of other fields. Further, the representation of this mathematical and phys-

icaJ knowledge, in the form of mathematical notation, formulae, and specific terminology

has evolved to be simple yet exacting. These properties make equations more suitable for

implementation in a rule system than many other domains of knowledge.

This paper exploits these properties to perform automatic testing and documentation of

some semantic concepts by using well established compiler techniques. Users must declare in

their code some semantic information about primitive code variables. However, the current

method parses this embellished code to recognize the patterns of stored mathematical, geo-

metrical, and physical formulae. In this way, the code's semantic implementation is partially

checked and documented. In particular, the code lines (2.0) and (2.1) can be recognized as

incorrect.

The benefits of automated analysis and verification of code semantics include reduced time,

risk, and effort during original code development, subsequent maintenance, second party

modification, and reverse engineering of undocumented code. A satisfactory semantic anal-

ysis would also provide a useful but not sufficient test for correctness. Further, semantic

recognition results are code documentation. These benefits should apply to codes in a wide

range of scientific and engineering disciplines.

In the next subsections, related technology is explained, and some basic concepts and nota-

tion from compiler parsing are presented. The semantic analysis procedure and a prototype

implementation are described in Section 3, some theoretical analyses of the problem are

presented in Section 4, and finally, three test problems are shown in Section 5.

2.1 Related Technology

Currently, automatic code testing is largely limited to syntactic testing. Lint [14] and ftnchek

[18] test programs for conformance with language syntax and portability rules. However,

there are some basic semantic tests performed by these testing codes, such as type check-

ing, which can reveal semantic errors. There are also efforts to organize and manage code



developers [11].

A body of work exists [17,19] in computer science where predicate logic is extended and

used for Pascal program verification. Assertions are placed at crucial points in a Pascal code

including entry and exit points. These assertions specify the code by defining relationships

between program variables which must be true when execution passes the assertion's position

in the code. The assertions are parsed with the code into verification conditions which are

logical expressions. If all these verification conditions can be proven to be true with a

theorem prover, then the program is consistent with its specification. Physical formulae and

their geometrical interpretation do not enter this work. However, many practical concepts

are similar including the need for parsing, program annotations, and a body of rules.

An influential approach to documentation is WEB [15] which allows natural language docu-

mentation to be embedded within a program. Different processors produce either compilable

code or a natural language document. In this way, program documentation accompanies a

code and is more readily updated when code is modified.

Influential and insightful work exists in fields other than program testing and documentation.

Natural language analysis is concerned with dissecting the semantics of written and spoken

language. Lexical analysis and parsing are computer algorithms used to automate this

analysis [3].

Expert system techniques [12] also provide a means to encode and organize knowledge and

to synthesize results from this knowledge. A classic expert system is INTERNIST [20,21], a

program which attempts to duplicate the diagnostic reasoning of human medical clinicians.

A number of other domain specific expert systems exist [12,23]. Bobrow [4] contains a

number of papers on qualitative reasoning about physical systems and in particular about

the diagnosis and verification of electronic circuits. The capabilities of expert systems pattern

matching differ from programming language parsing. More complex rules can be constructed

in an expert system than in a parser as will be explained in section 4. The pattern matching

algorithm of choice for expert systems is the Rete algorithm [8].

2.2 Underlying Technology

The semantic analysis procedure developed in the next section uses well established compiler
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parsing techniques to recognize the use of mathematical formulae. Since compiler technology

is not well known outside computer science, the following subsection briefly explains basic

concepts and notation crucial to understanding the subsequent sections. When explained,

important terminology is printed in bold type.

In a compiler, a parser recognizes from the words and punctuation of a program which

grammar rule of the programming language is being used. The acceptable programming

language order is the syntax of the language, and it is represented by a set of grammar rules

called a syntactic gramanar. These compiler parsing techniques arose from a need for ef-

ficient, easily implemented methods for transforming an expressive, high-level programming

language, such as FORTRAN or C, into machine code. Following the introduction of the

first FORTRAN compiler [22], considerable theoretical and practical efforts were directed at

improving parsers. LALR(1) parsing [1,2] emerged as a prominent method of implementing

a compiler parser since the allowed grammar rules are expressive enough for most program-

ming languages, and a set of grammar rules, called a grammar, can also be automatically

converted to a parsing subroutine. In particular, the parser generator YACC [13,16] auto-

matically transforms a set of grammar rules into a very fast parsing subroutine.

The words and punctuation of a programming language are represented by tokens and, like

a natural language grammar rule, an LALR(1) syntactic grammar rule specifies a way these

tokens can be placed in order. Two grammar rules axe shown in (2.2). Grammar rules in this

paper use a notation similar to YACC's. Unlike the sequential execution of C or FORTRAN

code, a rule in a grammar executes when the rule pattern matches the input sequence.

With these properties LALR(1) grammar rules axe general enough to recognize more than

programming language syntax rules, and in Section 3 they will be used to recognize code

semantics.

Var " Var * Var

{ calc_prod(); )
I vat + vat

{ check_add(); }

(2.2)

Each LALR grammar rule (2.2) always has left- and right-hand sides and is terminated with

a semicolon. The pattern to be matched is a sequence of one or more tokens, for example,

vat + vat or vat * vat in (2.2), which is located to the right of the colon or vertical bar. To



the left of the colon is a single token called a non-terminal symbol, for example, vat in (2.2).

Action code may follow the pattern and is enclosed in braces, for example, calc_prod() or

check_add(). Action code is supplied by the grammar rule writer and is executed when the

rule pattern matches. Multiple grammar rules with the same left-hand side may be combined

by replacing the colon with a vertical bar, as in (2.2). Every token in a grammar rule has

an associated data structure which stores information about the token and may be used by

action code. Among other functions, action code can be used to create and manipulate data

structures representing the code. Compiler theory is explained by Aho [1,2].

The tokens and their associated concepts are represented in a hierarchical form resulting

from token replacement. When the tokens in the input sequence match the pattern of a

grammar rule, they are replaced in the sequence with the left-hand side token, for example,

var in (2.2). This left-hand token can then be part of yet another pattern match, for example,

in the case var * vat + vat. This hierarchy is not only structural but also semantic with

leaves involving details and branches involving substantive concepts. In particular, with

semantic grammar rules, one can move from an expression containing program variables to

a derivative or integral and to a term in a differential equation.

3. Semantic Analysis Procedure

In this section, the details of an automatic semantic analysis procedure are developed. In

particular, it is explained how semantic declarations and program code are represented and

translated into semantic statements which can be recognized by semantic parsers. Further,

the representation, organization, and storage of mathematical, physical, and geometrical

equations in multiple semantic parsers is explained. Finally, prototype software for this

semantic analysis procedure is demonstrated.

3.0 Semantic Declarations

A program's primitive semantic quantities must be identified to the semantic analysis pro-

cedure, and this is done by including Semantic declarations within a user's code. For

example, the sample user program line

C

C
VAR = EI + P / RHO + 0.5 * V * V (3.0)



might be supplemented with semantic declarations to become

C?
C?
C

C

P == pressure_static, RHO ---- density_static
V == Speed, EI == internal_energyintens

VAR = EI + P / RHO + 0.5 * V * V

(3.1)

The semantic terms assigned to program variables, for example, pressure_static or den-

sity_static in (3.1), are distinct from tokens and come from a lexicon of semantic terms which

are similar to the English technical terms. Since these semantic declarations depend on the

user's program they must be provided by the user. However, they are the sole adjustment

to a user's code. The declarations are distinguished by "C?" in the first two columns and

appear to be comments to a FORTRAN compiler.

The user's program (3.0 or 3.1) is syntactically parsed by the semantic analysis procedure into

a parse tree (Figure 1) based on the syntactic grammar for a programming language. This

syntactic parser could be many established programming languages including C, however,

FORTRAN is used here.

J

VAR

\

EI

+

\

l

÷

\

,

1 \ l \

P RHO 0.5

l \

V V

Figure 1 A parse tree representation of the code statement VAR = EI + PIRHO + 0.5 • V • V.

3.1 Semantic Initialization--The Annotated Parse Tree

Each leaf and branch node of the parse tree contains a data structure with semantic infor-

mation. In (3.2) two sample leaf data structures for the variables P and R/-/O of Figure 1 are

shown. A number of specialized slots or members are included in each data structure and



these members correspond to semantic properties of the variable or node. For example, the

physical quantity, stencil-wise location, and physical dimensions are some members shown

in (3.2). Token values representing semantic concepts are stored in these leaf members, that

is, the parse tree is annotated.

As a program's semantic declarations are syntactically parsed, the syntactic grammar rule

actions transfer the semantic declarations into the corresponding structure members. For

example, the declaration of the variable P as pressure_static in (3.1) results in the static

pressure semantic token, static_pressure, being loaded into the quantity member of the leaf

data structure for variable P. The physical dimensions of static pressure, ML-1T -2, are

known from a semantic program table and are placed in the dimensions member. RttO is

handled similarly. Unknown or undeclared information is represented by the token, unknown.

string: P string: RHO
quantity: static_pressure quantity: static_density
units: unknown units: unknown
location: unknown location: unknown

dimensions: pointer to ML-1T -2 dimensions: pointer to ML -z

(3.2)

The tokens placed in leaf members of data structures are unique integer values which rep-

resent a concept throughout the semantic analysis. Just as "static pressure" is used in the

English language as a unique alphabetic representation of the concept of gas pressure, the

token static_pressure with its integer value is used to uniquely represent static pressure in

the semantic analysis. In this way, highly specific properties and concepts may be uniquely

represented, recognized, and manipulated. To distinguish tokens in this paper, they are

printed in lower case italics.

3.2 Translation of Code to Semantic Statements

Just as the user's program (3.0) may be converted to the parse tree of Figure 1, a branch

of the parse tree may be converted back to the original sequence of program elements (3.0).

This conversion is a depth-first traversal of the branch while reading the data structure's

string member. However, by changing which data structure member (3.2) is read and placed

in the token sequence, it is possible to transform the original FORTRAN statements into

semantic statements. For example, the term P/RHO, which is the parse tree branch

beyond '/' in Figure 1 (with the member values of (3.2)), is transformed by substitution of
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the physical quantity member of the leaf structure into the sequence

static.4wessure, /, static_density, EOS. (3.3)

The sequence is terminated with the punctuation EOS. By substituting different members

of the leaf structure, a variety of input sequences may be generated. For example, if the

dimensions slot is read as the parse tree is traversed, then the token sequence would be

M 1L -1T -2, /, M 1L -3T o, EOS. (3.4)

In this way, tokens can be formed into semantic expressions which express different aspects

of the code statement, including physical dimensions, grid location, and physical formulae.

3.3 Semantic Grammar Rules

Just as the original program statement (3.0) is parsed by the FORTRAN grammar rules

which recognize the acceptable FORTRAN order, the transformed statements, (3.3) and

(3.4), may be parsed by grammar rules which recognize semantic patterns. For example,

a grammar containing rules (3.5a-f) can recognize the use of a particular formula in the

statement fragment (3.3).

speed_squared

kinetic_energyAntens

workAntens

enthalpyintens

sound_speed_squared

total_en th alpy An tens

• speed * speed (3.5a)

• half* speed_squared (3.5b)

: static_pressure / static_density (3.5c)

• work_intens ÷ internaJ_energyAntens (3.5d)

: gamma * workAntens (3.5e)

• enthalpyAntens q- kinetic_energyAntens (3.5f)

In particular, if the branch of the parse tree in Figure 1 rooted at '/' were transformed to

(3.3) and submitted to a parser with the grammar rules (3.ba-f), then rule (3.5c) would

recognize this expression. To register this observation, the data structure at the root of

the branch being tested--'/' in Figure 1--is annotated by placing the left-hand side token,

workAntens, in the quantity member.

There is considerable flexibility about which branches can be translated, parsed, and anno-

tated in this manner. In practice, program translations such as (3.3) and (3.4) are performed



during the syntactic parseasthe parse tree is constructed. Consequently, subsets of the code

statement, corresponding to branches of the parse tree, are compared to the semantic rules.

For example, for the parse tree in Figure 1 one would translate and semantically parse the

1V 2 and El+ P _ 2 at the corresponding pointsbranches corresponding to V 2, ½V2 v v ___ , -_+_V' p' p

in the syntactic parse. While the syntactic parsing routine is called once for the whole pro-

gram, a semantic parsing routine is called many times to parse branches involving relatively

short token sequences.

3.4 Expert Grammars

Since each rule incorporated into a semantic parser (3.5a-f) will only recognize a specific

formula, to increase recognition capabilities, rules must be included which represent funda-

mental equations, their derivations, and certain variations. The inclusion of rules is perhaps

the biggest challenge of developing this analysis procedure.

It is impractical to incorporate the necessary mathematical and physical formulae into a sin-

gle semantic parsing routine. For simplicity of organization and maintenance, each semantic

parsing routine is restricted to the semantic grammar rules for a particular area of expertise,

for example, gasdynamics. This set of semantic rules is called a semantic gram.mar or

expert gramanar, and YACC automatically converts it into a subroutine for an expert

parser or expert. Further, any number of areas of expertise can be simultaneously rep-

resented with their own expert parsers. Since the semantic grammar rules for an area of

expertise can be implemented with some generality, an expert parser can be written once

and used by all users.

Annotation of the parse tree with an expert's conclusions stores, organizes, and communi-

cates the semantic information produced by these expert parsers. Each expert parser can

study a branch before the branch is enlarged, and any annotation may be used by another

expert to recognize a larger portion of an expression. Further, the apphcation of rules to the

conclusions of other rules allows a hierarchy of semantic concepts to be constructed which

naturally connects details with substantial semantic issues. For example, in the discrete

derivative code (3.6) experts would first recognize the differences in U and X, and then the

ratio of these differences.

DUDX(I) = (U(I + 1) - U(I))/(X(I + 1) - X(I)) (3.6)
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Further experts could recognize the use of this discrete derivative in many different equations.

Due to its specialization, an expert grammar must parse unfazniliar tokens from outside

its area of expertise. Further, there may be undeclared semantic quantities in the parse

tree. The token sequence sent to an expert parsing routine is filtered so that unfamiliar or

undeclared tokens are translated to the unknown token, unknown. Each grammar contains

rules (3.7) to parse these unknown quantities.

notknown unknown

notknown * sem_expr
notknown + sem_expr
notknown- sem_expr
notknown / sem_expr
sem_expr * notknown
sem_expr + notknown
sem_expr- notknown

sem_expr / notknown
( notknown )

(3.7)

3.5 Development of Expert Parsers

In the following subsections, three expert parsers axe described for analyzing different se-

mantic aspects of physical formulae. Aspects are distinctly different semantic properties of

code which must be satisfied. The first expert analyzes the physical dimensions aspect of

program statements. Although this test is relatively simple, it provides a very useful test of

correctness. The second aspect is recognition of physical formulae, and it is demonstrated

with a gasdynamics expert using rules similar to (3.5a-f). Third, geometrical location is

determined for array variables defined on a structured grid.

3.5.1 Dimensional Analysis Expert Parser

Physical dimensional analysis provides a necessary semantic test for the correct use of all

physical formulae. The code (3.8)

C

C?
C?

C

C

CC == sound_speed_squared, GAM == ratio_of_specific_heats
RHO == density_static, PROFIL == total_enthalpy_intens

H = RHO * PROFIL- CC / GAM

(3.8)

would be flagged by this expert as incorrect since the two right-hand side terms have different

dimensions. The proper code should have parentheses starting before PROFIL and ending

11



after GAM.

The dimensional analysis parser's input token sequence contains operators, the token var

for a known dimension and unknown for an unknown one, and this sequence is generated as

explained in Section 3.2. Var's data structure includes a pointer to its physical dimensions

that is available to action code in each grammar rule. The prototype dimensional analysis

grammar is the combination of the rules in (3.7) and Figure 2.

sere_strut

sem_expr

Var

: sem_expr
[ notknown
[ sere_strut sem_expr
[ sere_strut notknown

: Var

[ Var = vaJv

{ check dimensional equality of operands }
] notknown = vat

{ assign right-hand side dimensions to notknown }
] sem_expr EOS

: Var

[ Var _ _LF

{ calculate dimensions of product }

I  'a /var
{ calculate dimensions of quotient }

[ vat + var
{ check dimensional equality of operands }

[ Var- Var

{ check dimensional equality of operands }
[ Va,F _ Var

{ check exponent dimensionless;
calculate dimensions of result }

Figure 2 Grammar rules for the dimensional analysis expert parser. The rules (3.7) also

appear in this expert parser.

In this grammar, action code calculates the dimensions of products and quotients and verifies

the equality of operand dimensions on addition, subtraction, and assignment. Unit checking

is a potential extension of dimensional analysis.

3.5.2 Formula Recognition Expert Parsers

The formula expert parsers are designed to recognize the use of physical formula in different

areas of expertise. In the code
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C

C
P = RHO* (E-(U* U +V* V))* (GAM-1. ) (3.9)

if it has been specified or deduced elsewhere that RHO is static density, E is total energy

(intensive), U and V are x- and y-velocity, and GAM is the ratio of specific heats, then this

code is dimensionally correct. However, (3.9) is not the proper formula for static pressure in

two dimensions. If P is declared to be static pressure the expert parser would note an error,

and if P is undeclared the code would be noted as misunderstood.

The expert's input token sequence is generated by reading the quantity member during

depth-first traversal of a parse tree branch. Each expert grammar has a filter which trans-

lates unfamiliar or undeclared tokens to unknown. One grammar corresponding to the gas-

dynamics formulae (3.5a-f) includes the rules in (3.7) and Figure 3. The prototype expert

grammar which recognizes gasdynamics equations contains many more rules; however, its

structure remains the same. Although Figure 3 excludes the action code, each formula rule

has an annotation action which is to annotate the parse tree with the left hand side token.

3.5.3 Location Analysis Expert Parser

The location analysis expert parser recognizes and analyzes the discrete geometrical loca-

tion of variables and expressions on a structured grid. This information is necessary for

recognition and checking of spatial formulae such as spatial derivatives and integrals and

the analysis of their accuracy. The expert parser recognizes a subscript notation used by

many numerical methods to represent both the physical formulae and, with the subscript,

the discrete geometry. For a discrete second difference of a variable, ¢, the notation would

be

¢i+1 -2¢i + ¢i-1 (3.10a)

where i indexes both a discrete coordinate line of points on a structured grid and an array

containing a structured grid.
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sere_strut

sem_expr

speed_squared

kinetic_energ, yAntens

workAntens

enthalpyAntens

sound_speed_squared

total_enthalpyintens

internal_energyAntens

pressure

Figure 3 A subset of grammar

appear in this expert parser.

sem_expr
notknown

sere_strut sem_expr
sere_strut notknown

speed_squared
kinetic_energyAntens
workAntens

enthalpyAntens

"total_enthalpyAntens
notknown = notknown

notknown = sem_expr
{ assign fight-hand side quantity to notknown }

sem_expr EOS
( sem_expr )

speed * speed
velocity_x * velocity_x ÷ velocity_y * velocity_y

{ verify coordinate system, number of dimensions }
velocity_x * velocity.x + velocity_y * velocity_y
÷ velocity_z * velocity_z

{ verify coordinate system, number of dimensions }

half * speed_squared

static_pressure / static_density
internal_energyAntens * ( gamma- one )

internal_energy_intens + workAntens

* workintensgamma

enthalpy_intens ÷ kinetic_energyAntens

totaJ_energy_intens - kinetic_energyintens

density * work_intens

rules for the gasdynamics expert parser. The rules (3.7) also

The code (3.10) contains an indexing error,

C

C
FS(I,J,N) - DW(I+2,J,N) + DW(I-1,J,N)- 2.*DW(I,J,N) (3.10b)

14



and it would not be recognized as a discrete second difference by this expert parser. De-

pending on the declaration of FS, an error would be declared, or the code would be declared

not understood.

Semantic declaration of an array is different than for a scalar variable since the array may

have multiple semantic definitions depending on an array index value. The LIST construct

is used to create a list or vector of semantic definitions for the index of an array. In (3.11)

the LIST construct attaches to the indices of arrays P and X semantic variables representing

lines of centroid and vertex coordinates in a structured grid.

C
C?
C?
C?
C
C?
C?
C?

I_C_INDEX == LIST { centroid_.lined }
J_C_INDEX == LIST { centroid_line_j }

P[ I_C_INDEX, J_C_INDEX ]

I_V_INDEX == LIST { vertexAine_.i }
J_V_INDEX == LIST { vertexAine_j }
X[ I_V_INDEX, J_V_INDEX ]

(3.11)

A separate grammar must interpret this semantic declaration for each array reference in a

program and determine a stencil-wise location, for example, East_centroid or North_West:

vertex. The parse tree is annotated with this result, and the location analysis grammar

(Figure 4) uses the value in its input token sequence. In particular, for (3.10b) the indices

and expression would be translated to East_East_centroid ÷ West_centroid - two * Cen-

ter_centroid, and this expression cannot be simplified to the intended result, Center_centroid.

The grammar shown in Figure 4 is a subset of the prototype location analysis grammar; how-

ever, it shows the essence of the location analysis rules. An annotation action is associated

with each rule of Figure 4.

3.6 Prototype Semantic Analysis Procedure

A prototype semantic analysis procedure has been constructed by integrating the methods

explained in Section 3. In particular, this software uses a syntactic parser to build the parse

tree for a user's code. Further, it uses the semantic declarations as initial annotations of

this parse tree, and generates semantic statements from these annotations. Extensions of

the expert parsers described in Section 3.5 examine the semantic statements and further

annotate the parse tree with their conclusions. These elements are accessed and controlled

by a graphical user interface (GUI).
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sem_stmt

sere _expr

East_vertex

West_ vertex

Center_centroid

sem_expr
notknown

sere_strut sem_expr
sere_strut notknown

East_vertex
East_centroid

Center_centroid
West_vertex
West_centroid

sem_expr EOS
( sem_expr )
notknown - sem_expr

{ assign right-hand side location to notknown }

East_centroid + Center_centroid

{ If quantities differ then return }
East_centroid- Center_centroid

{ H quantities differ then return }
East_vertex * East_vertex

East_vertex / East_ve_ex
Anywhere * East_vertex

Center_centroid + West_centroid

{ If quantities differ then return }
Center_centroid- West_centroid

{ If quantities differ then return }
West_vertex * West_vertex

West_vertex / West_vertex
Anywhere * West_vertex

East_vertex- West_vertex

{ H quantities differ then return }
East_centroid + West-centroid

{ If quantities differ then return }
Center_vertex * Center_vertex

Center_vertex / Center_vertex
Anywhere * Center_centroid

Figure 4 A subset of the grammar rules for the location analysis expert parser. The rules

(3.7) also appear in this expert parser.

In practise, users submit their code and its semantic declarations through the GUI. The

result of the analysis is an annotated parse tree, that is, the parse tree with the node data

structures (3.2) completed with declared and deduced information. The GUI allows the user

to display this information which includes the physical quantity represented by a variable

or expression, as well as its physical dimensions, location, and the formula it was recognized
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from. A dictionary provides definitions for the semantic tokens. Of course, the available

information is hmited by the extent of semantic declarations and expert grammar rules as

will be explained in Section 4.

This semantic analysis software not only detects some semantic errors but also documents

some semantic aspects of the code. The code lines (3.12)

C

C

PY = (PX*GXY +QXY)*SX(J)
P(IWOUT,J) DIM(P(IWALIN,J),PY)

(3.12)

are obscure since they involve derived quantities, and it is not clear which formulae are used.

However, the GUI allows the user to display what has been defined and deduced about a

variable or expression.

4. Theory

In this section theoretical analyses are used to move beyond specific application and imple-

mentation details and understand more general properties of this semantic analysis proce-

dure. Several of the experts have a very simple theoretical analysis. The physical dimensions

expert (Figure 2) parses token sequences composed of only seven tokens where five are op-

erators, and it requires no more than a few rules. However, geometrical location analysis

(Figure 4) is more complex due to the larger number of potential locations in a stencil and

the ways they may be combined. Formula analysis (Figure 3) is the most complex due to the

number of physical quantities involved, the algebraic rules satisfied and the equations which

can be derived. The following analysis is specialized to formula analysis. In particular, this

section demonstrates that the transformations permitted by an LALR(1) grammar are a

subset of the fundamental transformations for algebraic equations. The limited capabilities

of these grammar rules has implications for what equations must be included in an expert

parser, error detection, and computational complexity.

4.1 Rewrite and Reduction Substitution Rules

A grammar rule which specifies the transformation of a sequence of tokens satisfying one

pattern into a sequence of tokens satisfying another pattern is a rewrite rule--the token

sequence is rewritten. LALR(1) grammar rules are a specialized type of rewrite rules, referred
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to here as reduction substitution rules since they rewrite and reduce one or more input

tokens to a single token, never increasing the number of tokens in the token sequence as it is

recognized and simplified with token replacement. The rule (4. la) is a reduction substitution

rule; however, rules (4.1b,c) are not, and could not be implemented in an LALR(1) parser.

speed_squared

speed * speed

enthalpy + kinetic_energy

: speed * speed (4.1a)

:speed_squared (4.1b)

: kinetic_energy + enthaJpy (4.1c)

Rules (4.1a-c) can be implemented with an expert system.

4.2 Transformation of Equations

The equations represented by LALR(1) grammar rules in expert parsers are generally neither

reduction substitution rules nor order dependent. The expressions comprising the left- and

right-hand sides of equations have the algebraic properties (4.2) [10].

a+b = b+a Commutative Law of +(x)
(a + b) + c = a + (b + c) Associative Law of + (x) (4.2)
ax(b+c) = axb+axc Distributive Law

Further, equations satisfy the reflexive, symmetric, and transitive properties as well as (4.3a-

e) [10],

If E1 = E'I, E2 = EL then E1 = E2 and E_ = E'_

are equivalent equations (4.3a)

If E1 = E2, 3 E3 then E1 + E3 = E_ + E3 (4.3b)

If E1 = E2, 3 E3 then E1 - E3 = E2 - Ea (4.3c)

If E_ = E2, 3 E3 then E_ • E3 = E2 • E3 (4.3d)

If E_ = E2, 3 Ea ¢ 0 then E_/E3 = E2/Ea (4.3e)

where El, E2, E3, E'_ and E'2 are expressions with identical domains of definition. These

properties are fundamental to the manual derivation of expressions and equations. Fur-

ther, the capabilities of a semantic recognition procedure depend on both the fundamental

equations and these transformations.

4.2 Commutative and Distributive Laws

Since the pattern of each grammar rule is order dependent, the pattern matching of formulae

must allow for the commutative and distributive laws (4.2). For example, for the code
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fragment P • GAMMA/RHO the branch representation may be the left-hand side of Figure

5, but the corresponding token sequence, static_pressure * gamma / static_density, cannot

be parsed by the rules (3.5a-f) due to token order. One commutative transformation of the

branch is the right-hand side of Figure 5,

/ /

\ / \

, RHO *

/ \ \

P GAMMA GAMMA P

/

COMMUTES RHO

J

Figure 5 Commutative transformations of the parse tree representation of the code fragment

P • GAMMA/RHO

and the resulting token sequence, gamma

by (3.5a-f).

* static_pressure / static_density, can be parsed

A multiplicative or additive expression involving n tokens can be rearranged by the commu-

tative law in up to n! ways. To include all permutations of a formula as grammar rules is

impractical for formulae involving a large number of terms. In this paper, an expression's

tree representation is transformed into each of the possible permutations, and formula recog-

nition is attempted by each expert. It may be possible to define a normal form [9] for each

grammar rule, where a function, O(token), provides an ordering of tokens which determines

the recognizable permutation. However, the token ordering, O(token), depends on all the

grammar rules and their combinations.

The distributive law (4.2) is accounted for by transforming an expression's tree representation

into each possible alternate form, and formula recognition is attempted by each expert.

For example, for the code 2pl - 2p2, the binary tree representation may be the LHS of

Figure 6, and the distributive transformation would be the right-hand side for which formula

recognition is possible.

19



\ 1 \l
DISTRIBUTES

_: 2 --

1 \ / \ 1 \

2 Pl 2 P2 Pl P2

Figure 6 Distributive transformations of the parse tree representation of the code fragment

2pl - 2p2

4.3 Equation Equivalence Transformations

The equation properties (4.3) are identical to the substitution and solve equation manipula-

tions (4.6a,b)

If E1 = E2, 3 F + E1 then F + E1 = F + E2

If E1 = E_ + E3, B E2 inverse then E3 = E1 - E2

Substitution (4.6a)

Solve (4.6b)

where E_, F are expressions containing one or more terms. These rules apply similarly for

subtraction, multiplication and division. A special case of the substitution manipulation is

the reduction substitution

If T = E, 3F + E then F + E = F + T Reduction Substitution (4.6c)

where T is a single term, and the rule is also valid for subtraction, multiphcation and division.

The transformations (4.2) and (4.6a,b) allow general algebraic derivations. For example, the

code (4.7)

C?

C
G == ratio_of_specific_heats, M1 == mach

G=l.4

GAMI=0.5* (G-1.)
C (4.7)

ZED - SQRT( 1. - 2.*(G + 1.) * ( Ml**2 * (1.
.GAM1 * M1 *M1) / ( 1. + G * M1 * M1 )**2))

M2=SQRT((1.-ZED)/ (I+G*ZED))

C

+

represents the equation

z = (1 - + 1)M12(1 + 2:r'-_M_) ) ½
(1 + 7M_) 2

(4.8)

2O



Ms= "1 +Tz"

which is derived from basic aerodynamics and fluid mechanics formulae [7] with the algebraic

transformations (4.2)and (4.6a,b).

4.4 Consequences of Using the Reduction Substitution

Choosing to recognize semantic expressions with a LALR(1) parser has a number of con-

sequences for designing rules for expert parsers, error detection, computational complexity,

and finite termination of the expert parsers.

The basic physical formulae for the derivation of (4.8) are contained in the prototype expert

parser of Section 3.5.2. However, an LALR(1) grammar allows only the reduction substi-

tution (4.6c), and the derivation of (4.8) requires all the transformations (4.6a-c). Conse-

quently, (4.7) cannot be recognized from basic physical formulae by the expert parsers, and

the equation (4.8) must be included in the expert parser for recognition to occur. Further,

without the theoretical ability to recognize all conceivable derivable physical formulae, it is

not guaranteed that the expert parsers can distinguish between an incorrect expression and

an unrecognizable yet correct expression. For example, without (4.8) included in an expert

parser, the code (4.7) could not be recognized. Consequently, the equations included in an

expert parser must be carefully written and more extensive than the fundamental physical

equations of a field.

Manual derivation of (4.8) from fundamental aerodynamic and fluid flow equations is a non-

trivial search even with the guidance of a derivation. Several substitutions must be manually

attempted for each step of the derivation. Consequently, including all the transformations

(4.6a-c) and allowing general derivations could lead to expensive searches. Currently, it

is preferable to include equations, for example (4.8), in an expert parser once and avoid

expensive searches each time the formula is encountered.

Precluding expensive derivations by using only reduction substitutions is not sufficient to

yield a linear computational performance. Although the execution time of the expert parsing

routines generated by YACC is linear in the number of input tokens, because of the commu-

tative and distributive properties (4.2), the expert parsers may need to see transformations

of an expression before recognizing it. Since there could be n! distinct commutative permuta-
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tions of n terms in an additive or multiplicative expression, the computational complexity of

a semantic analysis can increase beyond linear performance. The worst case performance oc-

curs for expressions which are not recognized, since all possible commutative and distributive

transformations of the expression will be considered.

A further consequence of using the reduction substitution is the finite termination of the

expert parser. Assuming the reduction substitution rules of the expert parser do not rewrite

one token as another single token, then each application of a reduction substitution rule will

reduce the number of tokens until termination. At termination either all the tokens have

been completely parsed and a single token remains, or some token sequence remains where

no patterns are recognized. For rule systems involving general rewrite rules (4.1a-c), it is

not as obvious that a sequence will be reduced or that the application of rewrite rules will

terminate after a finite number of steps. Considerable theoretical analysis has been applied

to this problem [5] for computer algebra systems.

5. Results

In this section the procedure for semantic checking is demonstrated with three test problems.

The first problem (Figure 7) demonstrates the gasdynamics expert's ability to recognize gas-

dynamics equations. The second problem (Figure 8) involves code for the calculation of the

discrete, integral convective terms of the Euler equations in a computational fluid dynam-

ics code. The expert for determining geometrical location within a structured grid stencil

works with the expert for recognizing integral quantities and the terms of Euler's equations.

The third case (Figure 9) is a set of discrete, one-dimensional differential equations taken

from fluid dynamics and applied mathematics. Each of these test cases run on engineering

workstations in less than a second of CPU time.

The result of each analysis is an annotated parse tree which cannot be completely displayed

in a figure. Instead, the right most column of each figure displays the physical quantity

deduced for each code line. More detailed information is contained in the annotated parse

tree, including the analysis of variables and sub-expressions. The suffixes pure, put, and nd

represent per-unit-mass, per-unit-time, and non-dimensional respectively.
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C?

C?

C?

C?

C?

C?

C?

C?

C?

C?

C?

C?
C

C

C

C

p == pressure_static,RHO =-- density_static
GAM == ratio_of_specific_heats

U == speed
M == roach

C == sound_speed

T == temperature_static
R == gas_constant
VOL == volume

CP == specific_heat_cp
CV == specific_heat_cv
A =---- area

E == energyinternal_pum

vara= (GAM / (GAM - 1.))
varb = M*C
varc = RHO*U*U + P

vard = (GAM / (GAM - 1.))* P / RHO + 0.5 * U*U
rare = 1. + 0.5*(gam-1.)*M*M
varf = 1. + gam*M*M
varg = 1. + M*gam*M
varh = RHO * U * A

vari = GAM * P / RHO
varj = P / RHO
vark = P / RHO + P / (RHO * (GAM-1.))
varl = P / RHO + (1. /(GAM-1.)) * P / RHO
varm = P / RHO + (1. /(CAM-1.)) * (P / RHO)
yarn = E + 0.5 * U*U
varo = RHO * R * T

varp = R * T / VOL
varq = CP - CV
varr = CP / CV

vats = c - 0.5 * u*( gain - 1. )
vart =c+0.5*u*(gam-1. )

varu = P/(RHO**GAM)

7

7--1

Speed
Momentum_Euler

Enthalpy_Total_pum
Enthalpy_Total_ud
Force_Euler_ud
Force_Euler_ud

Mass_put

Sound_Speed_Squared
Work_pure
Enthalpy_pum
Enthalpy_pum

Enthalpy_pum
Energy_Total_pure
Pressure_Static
Pressure_Static

Gas_Constant (R)
Ratio_of_Speci6c_Heats

Riemann_Invariant _A
Riemann_Invariant _B

Entropy

C

Figure 7 The first semantic analysis test case contains gasdynamics equations.

column displays the physical quantity deduced for the expression.

The right

The first problem (Figure 7) demonstrates one expert's ability to recognize gasdynamics

equations. The semantic declarations precede the code, and the equations involve scalar

variables without specified locations. Commutative variations of several gasdynamics for-

mulae are included to demonstrate the role of the commutative law in formula recognition.

As a result of the analysis, each code expression is recognized by the gasdynamics expert

as an instance of a particular gasdynamics formula. Further, a dimensional analysis is per-
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formed. Theseconclusionsare storedas annotations of the parsetree. In a Graphical User

Interface (GUI) associatedwith this semanticanalysis, thesesemantic conclusionsmay be

examined.

C?

C?
C?

C?

C

C?

C?

C

C?
C?

C?

C?

C

C?

C

C

I_C_INDEX == LIST { centroid_lineA }
J_C_INDEX == LIST { centroidAine_j }
I_V_INDEX == LIST { vertex_line_i }
J_V_INDEX == LIST { vertex_line_j }

COORDS == LIST { x_coord, y_coord }
VECTOR == LIST { density_static, x_momentum_puv,

y momentum_puv, energy_total_puv }

W[I_C_INDEX,J_C_INDEX,VECTOR]
P[I_C_INDEX,J_C.INDEX]
X[I_V_INDEX,J_V_INDEX,COORD S]
P == pressure

I == counter, J ----= counter

DIMENSION W(20,20,4), P(20,20), X(20,20,2)

ZZ ----X(I,J,2)- X(I,J-1,2)-{-P(I,J)

XY = X(I,J,1)- X(I,J-I,I)
YY -- X(I,J,2) - X(I,J-1,2)
PA = 0.5 * (P(I+I,J) ÷ P(I,J))

QSP = (YY*W(I+I,J,2) - XY*W(I+I,J,3))/W(I+I,J,1)
QSM -- (YY*W(I,J,2) - XY*W(I,J,3))/W(I,J,1)
FS1 = 0.5*(QSP*W(I+I,J,1) +QSM*W(I,J,1) )

Not Understood
X_Delta
Y_Delta
Pressure_Static

Volume_put
Volume_put
Mass_put

FS2 = 0.5*(QSP*W(I+I,J,2) +QSM*W(I,J,2) ) ÷ YY*PA Force_X_Euler
FS3 = 0.5*(QSP*W(I+I,J,3) +QSM*W(I,J,3) ) - XY*PA Force_Y_Euler
FS4 = 0.5*( QSP*(W(I÷I,J,4)+P(I+I,J))+ Enthalpy_Tot_put

QSM*(W(I,J,4)+P(I,J)))
C

Figure 8 The second semantic analysis test case represents finite volume calculations for the

Euler equations. The right column displays the physical quantity deduced for the expression.

The second problem (Figure 8) demonstrates the analysis of discrete integral equations and

associated grid locations. It includes an error in the first code line, and demonstrates the

use of array notation. In particular, the LIST construct introduced in Section 3.5.3 is

used to define a semantic variable, COORDS, as the vector (x-coordinate, y-coordinate).

When COORDS is associated with an array index as in X[IANDEX,J_INDEX,COORDS],

the third array index of X is defined to have two values: x- and y-coordinate. The semantic

variable VECTOR is similar and is defined to represent the vector of dependent variables

of fluid dynamics equations, (p, pu, pv, pE). The semantic variables I_V_INDEX et al. are
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definedas in Section3.5.3 to represent coordinate lines in a general structured grid. These

semantic variables are used to define the indices of arrays W, P, and X, and associate semantic

definitions with each index value.

With these array definitions, the semantic analysis process is able to recognize the variables

and the use of physical formulae, in particular that XY and YY are differences in x- and

y-coordinates, QSP and QSM are the fluid volumes flowing through the face per unit time,

and FS1-4 are the components of a discrete approximation to the integral _ F. rids where

F = (],g), f = (pu, pu 2 +p, puv,puH), and g = (pv, p_v, pv 2 +p, pvH). A dimensional analysis

is also performed. All of these conclusions are stored as annotations of the parse tree and

are available for examination in the GUI. The analysis also notes that the line involving the

variable ZZ is neither dimensionally correct nor a known formula.

The third problem (Figure 9) demonstrates the recognition of several discrete, one-dimensional

differential equations from fluid dynamics. Again, array variables are involved and provide

stencil locations for use in the analysis, particularly in the recognition of differences and first

and second derivatives. In each case the expert recognizes the mathematical formula. As

always, a dimensional analysis is performed simultaneously.

6. Conclusions

This paper is motivated by a need for improved tools for verification and documentation of

scientific and engineering codes, and it investigates methods for automatically recognizing,

checking, and documenting semantic concepts used in these codes. In particular, a scheme

and prototype code are presented that recognize and check some mathematical, physical

and geometrical formulae. A theoretical analysis of this approach is also presented, and the

method is demonstrated with three test cases.

The prototype semantic analysis procedure proves the basic principles of this semantic analy-

sis technique, however additional work is required and a number of issues remain unexplored.

First, additional semantic knowledge must be incorporated into the expert parsers to expand

recognition capabilities. This semantic knowledge is equations and formulae from additional

scientific and engineering fields. Second, there are several semantic aspects which have not
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C?
C?
C?
C?
C?
C?
C?
C?
C?
C

C

C

C
C
C

C

I_V_.INDEX == LIST { vertexaineA }
I_C_INDEX == LIST { centroid_linei }
I =-- counter

X[I_V_INDEX], P[I_V_INDEX], U[I_V_INDEX]
PHI[LV_INDEX], DX__C_INDEX], DPDX[I_C_INDEX]
DUDX[I_C_INDEX], DPI=IIDX[I_C_INDEX]
X =-- x_coord, P == pressure_static, U == speed
RHO --= density_static, MU =-- viscosity
DT == time_step

DIMENSION X(20), P(20), DX(20), U(20)
DIMENSION DPDX(20), DUDX(20), DUDXI(20)

DX(I) = X(I+l) - X(I-1)
DP -- P(I+I) - P(I-1)
DPDX(I) -- DP / DX(I)
DU = U(I+I) - U(I-1)
DUDX(I) = DU / DX(I)

X_Delta
Press_Delta
Press_.Deriv_X

Speed_Delta
Speed_Deriv_X

DU = U(I+I) - U(I)
DUDXl(I)= DU / (X(I+I)-X(I))
DXX = 0.5*((X(I+I)+X(I))-(X(I)+X(I-1)))
D2UDX2= (DUDXl(I) - DUDXl(I-1)) / DXX

Speed_Delta
Speed_Deriv__X
X_Delta

Speed_2Deriv._X

BURGERS, EULER AND NS EQUATIONS

VAR = U(I) + DT * (u(I) * DUDX(I)) Speed + Time_Step
• Burgers

VAR = U(I) + DT * (U(I) * DUDX(I) Speed + Time_Step
- ( 1. / RHO )*DPDX(I)) * Euler

VAR = U(I) + DT * (U(I) * DUDX(I) - Speed + Time_Step
( 1. / RHO )*DPDX(I) - ( MU / RHO ) * D2UDX2) * Navier_Stokes

Figure 9 The third semantic analysis test case includes one-dimensional finite difference

approximations for several fluid dynamics equations. The right column displays the physical

quantity deduced for the expression.

been explored, including the accuracy of discrete approximations, the consistency of physical

assumptions, more complex geometrical concepts, the counting arguments of program loops,

conditional statements, and branching. Further work is necessary to bring this technique to

users with sufficient utility and convenience.

26



8. Acknowledgements

This work supported by the Propulsion Systems Base Program at NASA Lewis Research

Center through the Computing and Interdisciplinary Systems Office (contract NAS3-27816).

Greg Follen and Austin Evans were the monitors. The lexical analysis and FORTRAN syn-

tactic analysis routines are taken from Ftnchek [18]. Wilma Graham has patiently proofread

this manuscript. The author thanks Edmane Envia, Rodrick Chima, Jay Horowitz, and Jack

Wilson for fruitful discussions. Ambady Suresh, Kevin Lamb and Scott Townsend are due

many thanks for considerable direction, advice, and constructive criticism.

27



9. Bibliography

1. A. V. Aho and S. C. Johnson, LR Parsing, Computing Surveys 6, 2 (1974).

2. A. V. Aho, R. Seth.i, and J. D. Unman, Compilers: Principles, Techniques, and Tools

(Addison-Wesley, Reading, 1986).

3. J. Allen, Natural Language Understanding (Benjaxain/Cummings, Menlo Park, 1987)

4. D. Bobrow, Qualitative Reasoning about Physical Systems (MIT Press, Cambridge, 1985).

5. B. Buchberger and P,.. Loos, "Algebraic Simplification," in Computer Algebra--Symbolic
and Algebraic Computation (Springer-Verlag, New York, 1982), p. 11.

6. S. I. Feldman, "Make-A Program for Maintaining Computer Programs," Comp. Sci. Tech.

Rep. No. 57. (AT&T Bell Laboratories, Murray Hill, 1977).

7. J. V. Foa, Elements of Flight Propulsion (Wiley, New York, 1960), p. 164.

8. C. L. Forgy, Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence 19 (1982).

9. K. O. Geddes, S.R. Czapor, and G. Labahn, Algorithms for Computer Algebra (Kluwer

Academic, Boston, 1992).

10. W. GeUert, H. Kustner, M. Hellwich, H. Kastner, The VNR Concise Encyclopedia of

Mathematics (Van Nostrand Reinhold, New York, 1977), p. 84.

11. V. Haase, R. Messnarz, G. Koch, H. Kugler, P. Decrinis, Bootstrap: Fine-Tuning Process
Assessment, IEEE Software July (1994).

12. P. Jackson, Introduction to Expert Systems (Addison-Wesley, Reading, 1986).

13. S. C. Johnson, "Yacc--Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No. 32.

(AT&T Bell Laboratories, Murray Hill, 1975).

14. S. C. Johnson, "Lint, A C Program Checker," Comp. Sci. Tech. Rep. No. 65. (AT&T
Bell Laboratories, Murray Hill, 1977).

15. D. E. Knuth, "The WEB System of Structured Programming," Computer Science Dept.

Rep. STAN-CS-TR-83-980, (Stanford University, Stanford, 1983).

16. J. R. Levine, T. Mason, D. Brown, Lex and Yacc (O'Reilly, Sebastopol, 1992).

17. D. C. Luckham, S. German, F. Henke, R. Karp, P. Milne, D. Oppen, W. Polak, S. Scherlis,
"Stanford PASCAL Verifier User Manual," Computer Science Dept. Rep. STAN-CS-79-731,

(Stanford University, Stanford, 1979).

18. R. K. Moniot, "ffnchek," unpublished except for http://www.dsm.fordham.edu/- ftnchek
(Fordham University, New York, 1989).

19. W. Polak, "Program Verification at Stanford: Past, Present, Future," Article in Workshop
on Artificial Intelligence Informatik Fuchberichte 47, (Springer-Verlag, Berlin, 1981), p. 256.

20. H. E. Pople, "On the Mechanization of Abductive Logic," Third International Joint

Conference on Artificial Inte/figence, 1973.

21. H. E. Pople, J. D. Myers, R. A. Miller, "DIALOG: A Model of Diagnostic Logic for
Internal Medicine," Fourth International Joint Conference on Artificial Intelligence, 1975.

28



22. P. B. Sheridan, The arithmetic translator-compiler of the IBM FORTRAN automatic
coding system, Com. ACM 2:2, 9-21 (1959).

23. P. H. Winston, Artificial Intelligence (Addison-Wesley, Reading, 1984).

29



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public report_g bun_m for _is collection of information is utimated to awmlge I hour pet" response, including the time for rev_ instructions, starching e_ (date sources.
gathe_ng and maintaining the data needed, and cetn0iet_g and reviewing the ¢Ol_tion of h_ormstion. Send comments regarding this burden estimate or any other aspect of this
conectk)n of inlon'notion, including suggestions for re¢luc_ this burOlen, to Washington Hesdquarlers Services, Dgectorote for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Adington, VA 22202-4302. Ilrld to the Office of MIl_gernent and Budget. Paperwod( Reduction Project (0704.0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1998 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Semantic Analysis Method for Scientific and Engineering Code

6. AUTHOR(S)

Mark E.M. Stewart

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES)

NYMA, Inc.

2001 Aerospace Parkway

Brook Park, Ohio 44142

O. SPONSORING/MONrrORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

WU-509-10-11-00

NAS3-27816

8. PERFORMING ORATION

REPORT NUMBER

E-11149

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR--1998-207402

11. SUPPLEMENTARY NOTES

Project Manager, Joseph Veres, Computing and Interdisciplinary Systems Office, NASA Lewis Research Center, organiza-

tion code 2900, (216) 433-2436.

1211. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 64 and 59 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering

code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the

original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different

disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a

user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic

parsers would automatically recognize and document some static, semantic concepts and locate some program semantic

errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the

fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some

semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and

effort of developing and using these codes.

14. SUBJECT TERMS

Software engineering; Computational fluid mechanics

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIfiCATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

35
16. PRICE CODE

AQ_
20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102


