
N ASA / CR- 1998-207657

Aircraft/Air Traffic Management

Functional Analysis Model, Version 2.0,

Technical Description

Melvin Etheridge, Joana Plugge, and Nusrat Retina

Logistics Management Institute, McLean, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS2-14361

April 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 487-4650

Contents

Chapter 1 Introduction .. 1-1

PURPOSE OF THE MODEL ... 1-1

Chapter 2 Description of Simulation Events .. 2-1

Chapter 3 Technical Design .. 3-1

PROGRAM DESCRIPTION .. 3-2

PROGRAM MODULES ... 3-2

GLOBAL LIST AND OVERALL MODEL DIAGRAM .. 3-4

MODEL PROCEDURES .. 3-5

SIMULATION OBJECTS ... 3-11

Controller Object (controllerObj) .. 3-12

System Object (sysObj) .. 3-12

Aircraft Object (aircraftObj) .. 3-13

Load Object (loadObj) ... 3-14

CHANNEL OBJECTS .. 3-17

ChannelList .. 3-17

Lock Channel ... 3-18

Unlock Channel .. 3-19

EVENT PROCESSING .. 3-19

TELL Method Process Trigger ... 3-22

Random Event Processing .. 3-31

OUTPUT ... 3-33

Resetting Output Parameters .. 3-34

Gathering Output Statistics .. 3-34

Final Report .. 3-35

ERROR PROCESSING .. 3-37

Appendix A FAM 2.0 Error & Warning Messages

Appendix B FAM 2.0 Test Plan

°°°

Ul

Appendix C FAM 2.0 ModSim III Code Listings

FIGURES

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 3-9.

Figure 3-10.

Figure 3-11.

Figure 3-12.

Figure 3-13.

Figure 3-14.

Figure 3-15.

Figure 3-16.

Figure 3-17.

Figure 3-18.

Figure 3-19.

Figure

Figure

Figure

Figure 3-23.

Figure 3-24.

Figure 3-25.

Figure 3-26.

FAM 2.0 Main Module Code Listing .. 3-2

Program Global List Hierarchy .. 3-4

Simulation Object Class .. 3-11

Simulation Object Contents ... 3-12

Types of Controller Objects ... 3-12

Types of System Objects ... 3-12

Aircraft Object Diagram .. 3-13

Relationship of Aircraft Files .. 3-14

Load Object Data Structure ... 3-15

l.x:_okupLoad Pseudocode ... 3-16

Pseudocode for buildLoad Procedure .. 3-17

Communications Example ... 3-18

Method lockChannel Pseudocode ... 3-18

Relationship Between simObj and channelObj ... 3-19

Method unlockChannel Pseudocode ... 3-19

Method lookupAssociatedEvtList Pseudocode ... 3-22

ProcessTrigger Method Pseudocode .. 3-25

Associated Event Block Before Setting ORG and DST 3-26

Associated Event Block After Setting ORG and DST 3-26

3-20. Event Pending Lists for Sector Change Event ... 3-27

3-21. Method commenceEvt Pseudocode ... 3-28

3-22. Logic Flow of Random Event TELL Methods .. 3-31

TELL method processTrigger .. 3-31

TELL method generateRandomEvent ... 3-32

TELL Method setupRandomEvent Pseudocode .. 3-33

Final Report Production Pseudocode .. 3-36

iv

Contents

TABLES

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

3-7.

3-8.

Program Module Descriptions .. 3-3

Global List Descriptions ... 3-4

Sample trig.evt File ... 3-20

Sample Event Dictionary File ... 3-21

Sample trig.evt File ... 3-23

Trigger Event Object Block Contents ... 3-23

Pointer Location in trigevtObj .. 3-24

Sample Sector Change Associated Events .. 3-26

3-9. Wait Statistics Fields in simObj ... 3-34

3-10. Controller and Systems Objects Statistics Counters ... 3-35

B-1. Random Event Processing Tests ... B-1

B-2. Event Dictionary Error Detection Test .. B-2

B-3. Aircraft Event Sequencing Tests ... B-3

B-4. ARTCC Tests .. B-3

B-5. AOC Event Test Plan .. B-4

B-6. Airport Controller Tests .. B-6

B-7. TRACON Controller Tests, First Phase .. B-7

B-8. TRACON Controller Tests, Second Phase ... B-7

B-9. Communications Channels Tests .. B-8

B-10. Type File Tests .. B-8

B-11. Sector Dictionary File Tests .. B-9

B-12. AOC Dictionary File Tests .. B-9

Table B-13. Airport Dictionary File Tests .. B-9

Table B-14. TRACON Dictionary File Tests .. B-10

Table B-15. Load File Tests .. B-10

Table B-16. Scenario File Tests .. B-11

Table B-17. Other Runtime Error Tests .. B-12

Chapter 1

Introduction
} : :

The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0

(FAM 2.0), is a discrete event simulation model designed to support analysis of

alternative concepts in air traffic management and control. FAM 2.0 was devel-

oped by the Logistics Management Institute (LMI) under task order NS703 of the

National Aeronautics and Space Administration (NASA) contract number NAS2-

14361. This document provides a technical description of FAM 2.0 and its com-

puter files to enable the modeler and programmer to make enhancements or modi-

fications to the model. Those interested in a guide for using the model in analysis

should consult the companion document, Aircraft�Air Traffic Management Func-

tional Analysis Model, Version 2.0 Users Manual.

PURPOSE OF THE MODEL

FAM 2.0 is designed to be used by personnel at NASA, the Federal Aviation Ad-

ministration (FAA), and other organizations and institutions. Those who analyze

and decide among competing programs for modernizing air traffic management

may find that FAM 2.0 is a useful tool. We intend the model to be usable with lit-

tle or no instruction by individuals who are unfamiliar with either the model or the

host simulation environment. The intended user is the analyst, not the modeler.

FAM 2.0 is designed to provide quantitative time and queuing information about

• personnel work/task loads,

• equipment demand/utilization, and

• communications channel saturation.

This information is for

• aircraft,

• air traffic management and control, and

• airline operations centers.

FAM 2.0 provides users the flexibility to define the simulation scenario to address

the particular issue or question under analysis. Baseline simulation scenarios come

with the model, representing several different 3-hour periods of all flight opera-

tions by the Denver Air Route Traffic Control Center (ARTCC), Denver Terminal

1-1

RadarApproachControl (TRACON),andtheDenverInternationalandColorado
SpringsMunicipalAirports.Userscanmodify thebaselinescenarioor loadan
entirelynewscenarioif desired.Permissibleusermodificationsinclude

• addingor deleting scenario events,

• changing the model's behavior when an event occurs,

• changing the characteristics of simulation objects (i.e., aircraft and

ARTCC sectors), and

• Defining new simulation objects (i.e., aircraft and ARTCC sectors).

These modifications are made to simple text files. Generally, users makes change

once to the appropriate file in the baseline scenario and the model applies that

change wherever appropriate in the simulation. Similarly, entirely new files in the

appropriate format can be loaded at simulation initialization to replace corre-

sponding parts of the baseline.

FAM 2.0 was developed in the MODSIM III simulation environment hosted on an

HP-UNIX platform. Since MODSIM HI generates an executable (.exe) file, FAM

2.0 can run on any HP-UNIX platform. It is available from LMI, McLean, Vir-

ginia.

1-2

Chapter 2

Description of Simulation Events

FAM 2.0 is a discrete event simulation model centered around the events associ-

ated with a given simulation scenario. Currently, the model replicates the opera-

tions of Denver ARTCC, Denver TRACON, and the Denver and Colorado

Springs Airports. Users have the option of modifying some part(s) of the baseline

simulation and/or entering an entirely new scenario.

The simulation has two types of events:

A priori events, events that are known in advance for each flight, and

random events, events that occur randomly during a flight.

An example of an a priori event would be a handoff of an aircraft from one con-

troller to another. Random events include both routine and unusual or emergency

events that occur randomly, such as a request for a change of flight level.

Each of these primary events, both a priori and random, has a 3_txed set of associ-

ated sub-events. Continuing the previous example, a handoff from one controller

to another might be broken down into the following associated sub-events:

Request from losing to gaining controller to take control

Acceptance of control from gaining controller to losing controller

Instructions from losing controller to aircraft to contact gaining controller

Aircraft "rogers" acknowledgment.

A request for change of flight level might have these associated sub-events:

Aircraft contacts controller

Controller "rogers"

4, Aircraft requests new flight level

41, Controller clears aircraft to climb/descend to new flight level or denies re-

quest

Aircraft acknowledges.

2-1

There are, then, two levels of events: (1) the primary events and (2) for each pri-

mary event, a set of associated sub-events. To differentiate between the two,

hereinafter we note a primary event with an upper case 'e' ("Event") and an

associated sub-event with a lower case 'e' ("event").

During the simulation run, whenever a FAM 2.0 primary Event occurs, the model

executes the set of associated events. Each of the associated events carries with it

personnel task loadings, equipment requirements, and communications channel

demands all in units of time.

There can be more than one set of associated events for each a priori Event type.

The associated event sets could vary according to the equipment installed on the

aircraft or available to the controller. An example could be the use of data link to

provide certain communications. The situation could exist where some aircraft

had a data link and others did not. Communications with controllers would pri-

marily use the data link, if installed. The model would use different sets of associ-

ated events in the simulation for aircraft with and without data link.

There are two sources of primary Events. The a priori Events are contained in a

text file, which is read by the model at the start of the simulation. Random events

are generated by a random event generator inside the model. During the simula-

tion, when an Event occurs, whether from the a priori Event file or originated by

the random event generator, the model then executes the appropriate sets of asso-

ciated events.

With this approach, users only need to change a particular set of associated events

once before running the model in order to have the change occur throughout the

simulation. If, for example, controller handoffs of aircraft were done automati-

cally via a data link, reducing pilot and controller task loading associated with the

handoff, an analyst would make the appropriate changes in the event task loads

and (possibly) eliminate the "aircraft changes communications frequency" event.

If desired, users can add or eliminate some a priori Events entirely. In the case of

adding Events, users must copy a text file of associated events into the appropriate

directory. Details are in Chapter 3.

Two sets of a priori Events reside in the baseline scenarios. One contains the

Events associated with flights as they actually occurred. The flights used the cur-

rent point-to-point system of air navigation based on ground-based navigational

radios. The flights were conducted under positive FAA control by ground-based

controllers using conventional voice communications radios. The other set of

events contains the wind-corrected great circle flight (so-called "free flight")

tracks for the same flights. This enables the user to compare current navigation

procedures and free-flight procedures.

2-2

In addition to modifying the events associated with one or more primary Events,

and/or changing the primary Event file, users can, if desired, also read in an en-

tirely new primary Event text file. This would be appropriate if a user wishes to

analyze a different set of flights.

2-3

Chapter 3

Technical Design
_!i!_iiiiiiii!iliiiiii_i_iiiliiilii_iii!ilii!iiiiiiii!!i!_!!i!i!i_i!ii_i_ii_i!iili!!ii ii_ilii__iiJi iili i!i_iiii_iiii i_iiliiiilliiliiiii:iiiiiiiiili_iiililii!ii_i_ii_iiiiiiliiiiiiiiilii!iiiiiiiiiiii_iiiiiiiiiiiiiiiiii!iilļiiii_ili_iiiiliii!_ _i_iiii_!ii!ii! iiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii::¸ :̧¸:_::_::::̧_:¸:¸¸::_¸¸:_¸̧_:¸¸_:_:!!_::!!:!:i!:i:i_:!i: _::!:!:!::!::i i: i::!_::!: :i_:i!:! _::i:!!3::i!:_:_:i_::_::_::_::_:iiiiili_iliii!i!_iiiii!iii_iii!iiiii_i!ii_iii_iilii̧!ii!iiii_ !ii i_iii!i!i__i_!iiii¸

This chapter contains the technical design for the Functional Analysis Model

(FAM 2.0). Sections detail each object and included elements, methods, and files.

The environment, MODSIM HI, is an asynchronous, object-oriented, simulation

language on UNIX and other platforms. MODSIM uses the C++ programming

language to generate an executable file, making the model extremely portable.

This chapter contains computer commands and code listings of file contents. For

clarity, we use the following convention:

¢ Computer commands are in this font. Embedded file names, paths, and

flags set by the user are in italics and enclosed in < >.

4 Code listings of file contents are in this font. Again, embedded file names,

paths, and flags set by the user within a file listing are in italics and en-
closed in < >.

You should substitute the appropriate entry for your simulation when you en-

counter italicized text enclosed in <.> in a program listing.

The following are the two main methods in MODSIM:

4, ASK Methods. These are methods or functions that are members of ob-

jects and are executed synchronously, i.e., in the same way as any function
or subroutine is executed in C/C++

TELL Methods. These are methods that are scheduled for execution at a

future time. Control comes back immediately to the calling method before

the TELL Method is actually executed.

The TELL Methods allow for asynchronous execution of events. As an event is

generated, it is placed in an execution queue for execution at its scheduled execu-

tion time, even if there are previously generated events scheduled for execution at

a later time. In other words, MODSIM executes events in the order of their exe-

cution time, not in the order in which the events are generated. The user (or pro-

grammer) simply sets up the event queue and, upon the internal StartSimulation0

command, the MODSIM environment and program takes over the execution of all

events as necessary. MODSIM also has the advantage of being able to generate

and remove objects from the simulation during the simulation run. This capability

enables FAM 2.0 to only have aircraft objects in the simulation for those flights

that are actually active at that point in the simulation.

3-1

PROGRAM DESCRIPTION

FAM 2.0 executes from the UNIX command line and at execution requires two

mandatory input files:

Scenario file

• Output file name.

For more detail about these input files, see the companion document, Aircraft/Air

Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

PROGRAM MODULES

The FAM 2.0 program is composed of a number of program modules. All

MODSIM programs run from a main module. The FAM 2.0 main module code

listing is in Figure 3-1.

Figure 3-1. FAM 2.0 Main Module Code Listing

//MAIN MODULE faro

BEGIN

{scenario file and output file are user input}

processCommandLine (scenarioFile, outputFile);

readScenarioFile (scenarioFile);

)rocessScenarioFile;

IF there are no ERRORS

NEW (outStream);

ASK outStream TO Open (outputFile, Output);

{finalReport object is responsible for printing

NEW (finalReport);

{simulationEnd is a user input}

TELL finalReport TO print IN simulationEnd;

StartSimulation;

END IF;

END MODULE.

the final report}

3-2

Table 3- l contains the descriptions of the other FAM 2.0 program modules.

Table 3-1. Program Module Descriptions

Module Description

DaircraftMod.mod Definition of aimraftObj and related methods

DairportContMod.mod Definition of airportcontrollerObj and related methods

DAOCMod.mod Definition of AOCObj 1 and related methods

DassocevtMod.mod Definition of assocevtObj and related methods

DchannelMod.mod Definition of channelObj and related methods

DerrorMod. mod

DfamStreamMod. mod

DfinalReportMod. mod

DglobalMod.mod

DloadMod.mod

DoutputStatMod. mod

DpnmaryEvtMod. rood

DprocedureMod. mod

DsectorMod.mod

DsimMod.mod

DstatMod.mod

DTRACONContMod.mod

DtnggerMod.mod

laircraftMod.mod

lairportContMod.mod

IAOCMod.mod

lassocevtMod.mod

IchannelMod. mod

lerrorMod.mod

Definition of famerrorObj and related methods

Definition of famstreamObj and related methods

Definition of finalReportObj and related methods

Definition of various global objects and variables

Definition of IoadObj and modeTypeloadObj and related methods

Definition of outputStatObj and related methods

Definition of primaryEvtObj and related methods

Definition of procedures

Definition of sectorObj and related methods

Definition of simObj and related methods

Definition of iStatObj and rStatObj and related methods

Definition of TRACONControllerObj and related methods

Definition of trigEvtObj and related methods

Implementation of aircraftObj and related methods

Implementation of airportcontrollerObj and related methods

Implementation of AOCObj and related methods

Implementation of assocevtObj and related methods

Implementation of channelObj and related methods

Implementation of famerrorObj and related methods

IfamStreamMod.mod Implementation of famstreamObj and related methods

IfinalReportMod.mod Implementation of finalReportObj and related methods

Ig/obalMod.mod Implementation of various global objects and variables

IloadMod.mod Implementation of IoadObj and modeTypeloadObj and related methods

IoutputStatMod.mod Implementation of outputStatObj and related methods

IprimaryEvtMod.mod Implementation of primaryEvtObj and related methods

IprocedureMod.mod Implementation of procedures

IsectorMod.mod Implementation of sectorObj and related methods

IsimMod.mod Implementation of simObj and related methods

IstatMod.mod Implementation of iStatObj and rStatObj and related methods

ITRACONContMod.mod Implementation of TRACONControllerObj and related methods

ItriggerMod.mod Implementation of trigEvtObj and related methods

Mairport.mod Implementation of main module

Note: Airline Operations Center (AOC).

3-3

GLOBAL LIST AND OVERALL MODEL DIAGRAM

Figure 3-2 shows the hierarchy of the significant program global lists for FAM

2.0. Table 3-2, which follows, contains a description of these lists.

Figure 3-2. Program Global List Hierarchy

.... I

Evem

Octionary

S*c,_Ch_

•_ 747

_ A$$0C

-- DEF

E:::::
2 Depart

L

_ Aeeoc

Evti

Evt i+I

Evt i+k

Evil

Evt i+1

Evt i+n

Evti

Evt i+1

Evt i+m

.............. I.................

i E
G Iobal Lists i

" " "'"'T"'""" " '

...........,................L1......................I.............................I
Airport

Type title here

__ Denver Int'l

l_._Tower

I_ G round

I-" Clearance
L--Other

! Colerado

Springs

_ Tower

G round

I--" Clearance
t_. Other

Aircraft Aircraft i Sector : AOC i TRACON

Dictionary List List ! :

,., lios., I Sector, [
1_737 F ill --'AD L DENN App

:_;-:rbo"--:;:;"' _A'A:;; _":":'-: : / EDEN :Cont_:_r: DepF _............ 7"........ !...........................] COS _............................. :

i U (Turboprop) I ! L"""=_

i DEN S. App

I- D._." !IECon,.o,,..3....................
AA Den S. Dep

'I : i Controller 4 i

l_ BWI '1]

E °_" /
•, , _COS App & Dep

Table 3-2. Global List Descriptions

Global list Description

EventDictionary

aircraftDictionary

ai rcraftList

aircraftTypeList

sectorDictionary

sectorList

sectorTypeList

AOCDictionary

List of primary Events and their associated event list(s)

List of aircraftObj; one for each type of aircraft (e.g., 747) with all of
its loads

List of aircraftObj; one for each instance of aircraft (e.g., UA1707)

List containing the names of each unique aircraft type

List of sectorObj; one for each type of sector (e.g., sector_A) with all
of its loads

List of sectorObj; one for each instance of sector (e.g., sector 54)

List containing the names of each unique sector type

List of AOCObj; one for each type of AOC (e.g., UA) with all of its
loads

3-4

Technical Design

Table 3-2. Global List Descriptions (Continued)

Global list Description

AOCList

AOCTypeList

aptContDictionary

aptContList

aptContTypeList

TRACONContDictionary

TRACONContList

TRACONContTypeList

TRACONAptPosList

channelList

activationList

eventTimeList

AOCNameList

airportNameList

TRACONNameList

usedAssocEvtList

usedTriggerList

List of AOCObj; one for each instance of sector (e.g., UABWl)

List containing the names of each unique AOC type

List of airportControllerObj; one for each type of airport controller
(e.g., all_colorado) with all of its loads

List of airportControllerObj; one for each instance of sector (e.g.,
colorado_tower)

List containing the names of each unique airport controller type

List of TRACONControllerObj; one for each type of TRACON con-
troller (e.g., denver_area) with all of its loads

List of TRACONControllerObj; one for each instance of sector (e.g.,
denver_approach)

List containing the names of each unique TRACON controller type

List of airports and positions for each TRACON controller

List of channels used for all simulation objects

List containing the activations times of all aircraft

List containing the times of all events in the a priori event file

List of AOC names

List of airport names
List of TRACON names

List to store old associated events for later cleanup

List to store old primary Events for later cleanup

MODEL PROCEDURES

FAM 2.0 has several procedures that read and validate user input files. Procedures

are different from ASK and TELL Methods because they are not affiliated with

any objects. Procedures are traditional subroutines that are called directly from the

main module to process various user inputs.

The following list explains some key procedures for FAM 2.0. All procedures are

contained in IprocedureMod.mod and the corresponding definitions are contained

in DprocedureMod.mod. A partial list of the FAM 2.0 procedures follows. These

procedures are key in creating and searching lists.

3-5

Procedurename:checkAOCName

Input: name

Output: TRUE/FALSE

Description: Check Airline Operations Center (AOC) name to ensure it exists in
AOClist

Procedure name: checkAirportName

Input: name

Output: TRUE/FALSE

Description: Check airport name to ensure it exists in airportlist

Procedure name: checkTraconName

Input: name

Output: TRUE/FALSE

Description: Check TRACON name to ensure it exists in TRACONlist

Procedure name: lookupAircraftDictionary

Input: aircraft type

Output: aircraftObj

Description: Match the aircraft type (e.g., 747) and retrieve the corre-

sponding aircraftObj from aircraftDictionary list containing all its loads

Procedure name: lookupAircraftList

Input: airline, flight number

Output: aircraftObj

Description: Lookup airline and flight number and retrieve the aircraftObj

with matching airline and flight number (e.g., UA 1707)

Procedure name: lookupSectorDictionary

Input: sectorType

Output: sectorObj

Description: Match the sector type (e.g., sectorA) and retrieve the corre-

sponding sectorObj from sectorDictionary list containing all its loads

Procedure name: lookupSectorList

Input: sectorlD

Output: sectorObj

Description: Lookup sector ID and retrieve the sectorObj with matching
sector identifier (e.g., sector54)

Procedure name: readEventDicFile

Input: event dictionary file name

Output: (none)

Description: Reads the event dictionary as specified in the file name (e.g.,

event.dic)

3-6

Technical Design

t

Procedure name: allocateGlobalLists

Input: (none)

Output: (none)

Description: Allocates all global lists for the model

Procedure name: deallocateGlobalLists

Input: (none)

Output: (none)

Description: Deallocates all global lists for the model

Procedure name: initializeGlobalLists

Input: (none)

Output: (none)

Description: Initialize each global list with appropriate objects

Procedure name: printGlobalLists

Input: (none)

Output: (none)

Description: Prints information about members of each global list

Procedure name: readTrigEvtFile

Input: a priori event file name (e.g., trig.evt)

Output: (none)

Description: Reads event file line by line. For each vector or row in the
event file:

• Create a trigevtObj and call it trigger

Schedule it for execution, (e.g., TELL trigger TO processTrigger IN

trigger, time)

Procedure name: addChannelToChannelList

Input: channelPos, channelValue

Output: (none)

Description: Adds channel to global channel list

Procedure name: getPrimaryEvtPtr

Input: eventName

Output: primaryevtObj

Description: Searches the event dictionary for an exact match for primary

Event and returns a pointer to the event

Procedure name: doesPrimaryExist

Input: event name

Output: TRUE/FALSE

Description: Returns whether the primary Event exists or not in the event

dictionary

3-7

Procedure name: lookupAssociatedEvtList

Input: primaryEvtName, aclType, ac2Type, sectorlType, sector2Type

Output: QueueObj

Description: Given a primary event name, aircraft 1 type, aircraft 2 type,

sector 1 type and sector 2 type, lookup the corresponding associated event

list

Procedure name: readTypeFile

Input: file name, type

Output: type file name

Description: For each type specified in the file, create a typeObj in the cor-

responding global list (e.g., aircraftTypeList, sectorTypeList, etc.)

Procedure name: buildLoad

Input: loadList, mode, Type, Load, pEvtName, aEvtName, modeName,

typeName, maxlndex

Output: (none)

Description: When reading the load file for a particular object (e.g.,

747.ac), build the load for various personnel/radio/equipment for this ac-

tivity [specified by primary event (pEvtName), associated event

(aEvtName)] for each mode (modeName) and mate-type (typeName). Add

the loads to the input load list (loadList).

Procedure name: doesTypeExist

Input: typeName, simObjType

Output: TRUE/FALSE

Description: Given a type name (e.g., sectorA) and simObj type (e.g., sec-

tor), check whether this type exists in sectorType list

Procedure name: lookupSectorType

Input: sector ID

Output: sector type

Description: Given a sector ID (e.g., sector54), lookup its type (SectorC)

Procedure name: lookupAircraftType

Input: airline, flight number

Output: aircraft type

Description: Given airline and flight number (e.g., UA1707), lookup its

type (777)

Procedure name: readSectorDicFile

Input: file

Output: (none)

Description: Read the sector dictionary file (e.g., sector.dic) and set up the

sectorList (global list)

3-8

Technical Design

Procedure name: lookupAOCDictionary

Input: AOCType

Output: AOCObj

Description: Match the AOC type (e.g., UA) and retrieve the correspond-

ing AOCObj from AOCDictionary list containing all its loads

Procedure name: lookupAOCList

Input: AOC name

Output: AOCObj

Description: Lookup AOC name and retrieve the AOCObj with matching

AOC identifier (e.g., UABWI)

Procedure name: lookupAOCType

Input: AOC name

Output: AOC type

Description: Given AOC name (UABWI), lookup its type (UA)

Procedure name: readAOCDicFile

Input: AOC dictionary files

Output: (none)

Description: Read the AOC dictionary file (e.g., AOC.dic) and set up the

AOC list (global list)

Procedure name: lookupAptContDictionary

Input: airport controller type

Output: airportControllerObj

Description: Given an airport controller type (e.g., tower or all_colorado),

return the airportControllerObj block from the airport dictionary contain-

ing all its loads

Procedure name: lookupAptContList

Input: airport name, controller name

Output: airportControllerObj

Description: Given an airport name (e.g., colorado) and a controller name

(e.g., ground), return the airportControllerObj block from the airport list

Procedure name: lookupAptContType

Input: airport name, controller name

Output: type name

Description: Given an airport name (e.g., colorado) and a controller name

(e.g., ground), return its type (e.g., all_colorado)

Procedure name: readAirportDicFile

Input: airport dictionary file

Output: (none)

3-9

Description:Readtheairportdictionaryfile (e.g.,airport.dic) and set up

the airport list (global list)

Procedure name: lookupTraconController

Input: TRACON name, airport name, position name

Output: TRACONControllerObj

Description: Given a TRACON name (e.g., denver_TRACON), an airport

name (colorado), a position (e.g., final), return the corresponding TRA-

CONControllerObj block (e.g., controller_THREE)

Procedure name: readTraconDicFile (file)

Input: TRACON dictionary file name

Output: (none)

Description: Read the TRACON dictionary file (e.g., TRACON.dic) and

set up the TRACON controller list (global list)

Procedure name: lookupTraconContDictionary

Input: type name

Output: TRACONControllerObj

Description: Given a TRACON controller type (e.g., denver_area), return

the TRACONControllerObj block from the TRACON dictionary contain-

ing its loads

Procedure name: lookupTraconContList

Input: TRACON name, controller name

Output: TRACONControllerObj

Description: Given a TRACON name (e.g., denver_TRACON) and a con-

troller name (e.g., controller__THREE), return the TRACONControllerObj

block from the TRACON list (global list)

Procedure name: readRandomEvtFile

Input: random event file name

Output: (none)

Description: Read and process the list of random events (e.g., file

rand.evt)

Procedure name: readScenarioFile

Input: scenario file

Output: (none)

Description: Read the scenario file (scenario.sc)

Procedure name: processScenarioFile

Input: (none)

Output: (none)

Description: Process and trap errors in the scenario file

3-10

Procedurename:processCommandLine

Input: scenario file, output file

Output: (none)

Description: Parse the command line for FAM 2.0 execution at the UNIX

prompt

4, Procedure name: getDeactivationTime

Input: airline, flight number

Output: (none)

Description: Get the deactivation time for a particular flight, given its air-

line and flight number, from the aircraft list

SIMULATION OBJECTS

A simulation object represents a person (pilot, controller, dispatcher), communi-

cations device (radio), or equipment system (radar, computer, etc.). A simulation

object can also be a collection of other simulation objects, such as an aircraft,

which contains simulation objects representing pilots, radios, and equipment.

Simulation objects perform activities and/or collect simulation statistical data.

The loads for performing the events for each personnel, radio, and equipment are

contained in the load file. Examples of simulation objects are aircraft, sector,

AOC, airport controller and TRACON controller. Figure 3-3 diagrams the vari-

ous kinds of simulation objects.

Figure 3-3. Simulation Object Class

...,...................ILIIZZIZZ _.................,..,...............
i aircraftOb i arcraftObl i aocObj i ! arportContro erObj :; YaACONControlerObj'

A simulation object contains sets (queues) of controllers, radios, and equipment

depicted in Figure 3-4.

3-11

controllerQue:

radioQue:

equipmentQue:

Figure 3-4. Simulation Object Contents

I H I.......I I
controllerObj

I H I.......I
commDevObj

I H I.......I
equipmentObj

simObjType

typeName

loadList

(e.g., AIRCRAFT, SECTOR, AOC, AIRPORT, TRACON)

(e.g., 747, SECTOR_A, UA, TOWER, DENVER_TRA)

Contains loads for a particular object (e.g., aircraftObj,

Controller Object (controllerObj)

There are three types of controller objects, shown in Figure 3-5.

Figure 3-5. Types of Controller Objects

controllerObj]

Ii I I
[pilot l dispatcher [

Used in Aircraft Used in AOC

I
controller I

Used in sector, airportController &
traconController

System Object (sysObj)

System objects can be either communications device objects (commDevObj) or

equipment system objects (equipmentObj), as shown in Figure 3-6.

Figure 3-6. Types of System Objects

sysObj

I I
[commDevObj] lequipmentObj I

3-12

Technical Design

Table 3-10 on page 3-34 contains details on statistical counters for the con-

trollerObj and sysObj.

Aircraft Object (aircraftObj)

The aircraft object (aircraftObj) is a type of simulation object (simObj). In addi-

tion to the data fields and methods inherited from simObj, aircraftObj has airline,

flight number, activation time, and deactivation time. Figure 3-7 is a diagram of

an aircraft object.

Figure 3-7. Aircraft Object Diagram

Variables:

airiine

flightnurr_r
activationtime

deactivationtime
LoadUst

controllerObj

I o,o H oioH ot.....t olo
H u, H u, I1oo i_ui_

The aircraft dictionary (aircraftDictionary) is a list holding different types of air-

craft. For example, if there are only two types of aircraft, 747 and 777, then this

list would point to two aircraft objects. Each of these two aircraft objects will

contain all the loads for various combinations of primary Event, associated event,

mode, and mate-type.

The aircraft list (aircraftList) is a list holding all the instances of aircraft in the

model. For example, if the model has four aircraft (UA1701, UA1702, UA1801,

and UA1802), the list would point to four aircraft. The records in the aircraftList

do not contain the actual loads; the loadList points to the corresponding aircraft

type object in the aircraftDictionary. Figure 3-8 diagrams this relationship.

3-13

aircraftDictlonaty I_

l--

Figure 3-8. Relationship of Aircraft Files

747

IoaclList

c':_:c:° _D

_-D
I

SECT_C.G__ D

JNIr_CALL_ - C]
. _-D

,:c:_Ccc__.._ []

777

IoadList

i
i
i

SECT_CHG

AOC_AC

r _ w

! IIu'l'°'; Iu'"°'!LoadList LoadList LoadList LoadList _k

aircraftObj of type 747 aircraftObj of type 777

Similarly, the sector, AOC, airport controller, and TRACON controller objects are

defined this way. Each simulation object has its own dictionary and list:

• sectorObj has sectorDictionary and sectorList

• aocObj has aocDictionary and aocList

• airportControllerObj has aptContDictionary and aptContList

• traconControllerObj has traconContDictionary and traconContList.

Load Object (loadObj)

Task, communications, and equipment loads are implemented via a complex data

structure. The data structure involves building and searching multiple linked lists.

The complexity is due to the requirement of varying loads by mode (i.e., whether

the object is the originating object [ORG] or destination object [DST] of the

event) and mate-type (object type of mate) for a particular event.

3-14

For example:

//Cl : controllerl; R1 = Radiol; EQI = Equipmentl

//PRIMARY_EVT ASSOC_EVT MODE MATE-TYPE C1 R1 EQI

SECT_CHG CALL AC ORG 747 2 2 2

SECT_CHG CALL_AC DST SECTOR_A3 3 3

SECT_CHG CALL_AC DEF 747 2 2 3

SECT_CHG CALL_AC ORG DEF 2 2 2

SECT_CHG CALL_AC DEF DEF 2 2 2

The above load will be implemented via the data structure shown in Figure 3-9.

Figure 3-9. Load Object Data Structure

defauitLoad:

(tTDdeT_')

P4maryE_Narne-SECT_CHG
Assod_edE_Name = CALL_AC

._deT_"

DEF

modeTypeLoadUst:

ORG

DEF 12121al
747

.z_eT_

rr_eT_

rr_T_

1213131SECTOR_A

I I747

LOOKUP LOAD METHOD

The lookup load method (lookupLoad in lsimMod.mod) builds and searches the

loadObj data structure. It requires five parameters in order to retrieve a load value

for a particular activity. The parameters are primary Event name, associated event

name, mode, mate-type, and an index. The first two are self-explanatory. The

meanings of the other parameters are:

3-15

Mode.If thesimulationobjectparticipatesin anactivity asthe

_- origin, thenthemodeis ORG;

_- destination,thenthemodeis DST;and

_- DEF maybeusedto specifyeithermode.

• Mate-type

If modeisORG,themateis DST,andthemate-typeis its objecttype
(e.g.,747,SECTOR_A,UA).

If modeisDST, themateis ORG,andthemate-typeis its objecttype
(e.g.,747,SECTOR_A,UA).

_I, index.An integervaluethatreferencesaparticularcontrol-
ler/radio/equipmentwithin thesimulationobject

Thepseudocodefor the lookupLoad method is shown in Figure 3-10.

Figure 3-10. LookupLoad Pseudocode

FOR each load in the load list

Match the primary Event and associated event name

Find the exact mode and mate-type

If not found, find DEF for mode and exact mate-type

If not found, find exact mode and DEF for mate-type

If not found, find DEF for mode and DEF for mate-type

If found, retrieve load value

If not found, THEN it is an error

BUILD LOAD

The modeTypeLoadObj contains the mode, mate-type, and a list of load values.

The build load procedure (buildLoad in IprocedureMod.mod) requires seven pa-

rameters in order to build a list of modeTypeLoadObj to hold the load values of a

particular activity. See Figure 3-9. The parameters are

the loadList from the simulation object,

the mode TypeLoad object,

the primary Event name,

the associated event name,

the mode,

3-16

Technical Design

• the mate-type, and

• the maximum number of loads for the activity.

Once the modeTypeLoad list is built, a load value along with its index can be in-

serted via method setLoad of the modeTypeLoad object.

The pseudocode for the buildLoad procedure is shown in Figure 3-11.

Figure 3-11. Pseudocode for buildLoad Procedure

If primary Event and associated event name already exist in

the loadList

If mode and mate-type are DEF

Create a default modeTypeLoadObj for the loadObj

ELSE

Add a new modeTypeLoadObj to the loadObj

ELSE IF primary Event and associated event name do not exist

in the loadList

Create a new loadObj

If mode and mate-type are DEF

Create a default modeTypeLoadObj for the

ELSE

Add a new modeTypeLoadObj to the loadObj

loadObj

CHANNEL OBJECTS

Similar to simulation objects, channel objects gather statistics of communication

(e.g., the communication time between a pilot and personnel of the tower con-

troller) between simulation objects via communications devices such as radios.

The channel object must be acquired as a resource object.

ChannelList

Figure 3-12 is an example of activities of simulation objects request channels at

various times during simulation. In this example, Channel 1.0 is used by Sector 1

and UAIAD (an AOC). If Channel 1.0 is in use by one of these objects, it cannot

be simultaneously used by the other. In this event, a communication involving the

other object is queued until Channel 1.0 is free.

3-17

Figure 3-12. Communications Example

ChannelList

channelObj
1 I

Channel 1.0 H

I I
Channel 2.0 H Channel 3.1 I [Channel 4.5

Lock Channel

The lock channel method (lockChannel in module IsimMod.mod) is called from

method commenceEvt. Once a channel is requested by an activity, it will be

locked until it completely serves that activity. While a channel is locked, requests

from other simulation objects for that channel will be queued. The pseudocode for

method lockChannel is in Figure 3-13.

Figure 3-13. Method lockChannel Pseudocode

Find the first radio in the commQue that has load value

greater than zero

Retrieve the channel value from the commDevObj

Find the channel object associated with this channel value

Lock the channel

3-18

Technical Design

Figure 3-14 shows the relationship between simObj and channelObj.

Figure 3-14. Relationship Between simObj and channelObj

channelObj

I channelList t] channel1.0 t

I sectorList }

sectorObj

I Sector_l I

k

i_Sector_l I I

I
v

Unlock Channel

The unlock channel method (unlockChannel in module lsimMod.mod) is called

from method commenceEvt. When a channel f'mishes serving an activity, it will be

released to serve other activities. The pseudocode is shown in Figure 3-15.

Figure 3-15. Method unlockChanneI Pseudocode

Unlock the channel

Update statistics for the channel

EVENT PROCESSING

FAM 2.0 processes events dynamically during the simulation run. It reads the

primary Events from the a priori event file (named trig.evt), which contains a set

of primary Event vectors (records). Before simulation start, FAM 2.0 retrieves the

associated event list for each primary Event. Table 3-3 contains a short sample

trig. evt file with three primary Event vectors.

3-19

Table 3-3. Sample trig. evt File

EVENT

ACT IVATE_AC

1 2 3 4 5 8 7 8 9

ALT_ ALT_
TIME AL FN AC_T AL FN SCT1 SCT2 ARPT

i000 UA 1707 747 NULL 0 1 0 NULL

SECT_CHG 1000 UA 1707 NULL NULL 0 1 2 DEN

DEACT IVATE_AC 4000 UA 1707 NULL NULL 0 2 0 NULL

Notes:

1. TIME=Simulation time of primary Event initiation.

2. AL=Airline of primary (#1) aircraft.

3. FN=Flight number of primary (#1) aircraft.

4. AC_T=Type of primary (#1) aircraft.

5. ALT_AL=Airline of secondary (#2) aircraft.

6. ALT_FN=Flight number of secondary (#2) aircraft.

7. SCTl=ldentification number of primary (losing) sector.

8. SCT2=ldentification number of secondary (gaining) sector.

9. ARPT=Name of airport.

10. TRC=Name of TRACON.

11. AOC=Name of AOC.

12. ACCHNL=Communications channel for aircraft-to-aircraft communications.

10 11 12

TRC AOC ACCHNL

NULL NUL 0.0

L

DEN NUL 0.0

L

NULL NUL 0.0

L

EVENT DICTIONARY

The event dictionary contains the file names of the sets of associated events for

each primary Event (a priori or random). There can be more than one associated

event list for each primary Event, since the associated events can vary with the

types of aircraft and sectors participating in the primary Event. The dictionary also

introduces priority of the event. The priority determines the rank of service prior-

ity when events are queued up for processing at various simulation servers or ob-

ject, like sectors, AOCs, and airport and TRACON controllers.

Table 3-4 contains a sample event dictionary showing the file format.

In the event dictionary, NULL indicates that the field (column) does not apply to

that Event. DEF (default) indicates that the associated event file for that record

(row) should be used in all cases unless the type of the objects involved in the ac-

tual event are listed in another record. For example, referring to Table 3-4, there

are five sector change (SECT_CHG) event records, the first five rows of the table.

The first record applies to 747 aircraft where both sectors are type SECTOR_A.

Similarly, the second record applies to 747 aircraft where the Sector 1 type is

SECTOR_A and the Sector 2 type is SECTOR_B. The third and fourth records ap-

ply when the aircraft is a 777 and the sectors are the types shown. The fifth record,

with DEE, applies to all cases not covered by the first four records.

3-20

Technical Design

Table 3-4. Sample Event Dictionary File

1 2 3 4 5 6

EVENT ACITYP AC2TYP SCTITYP SCT2TYP ASCEVT_FILE PRIORITY

SECT_CHG

SECT_CHG

SECT_CHG

SECT CHG

SECT_CHG

DEPART

APPROACH

ALT_CHG

CONFLICT

CATCH_FIRE

Notes:

1.

2.

3.

4.

5.

6.

747

747

777

777

DEF

DEF

DEF

DEF

DEF

DEF

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

SECTOR_A

SECTOR_A

SECTOR_B

SECTOR_B

DEF

NULL

NULL

NULL

NULL

NULL

Type of primary aircraft (1).

Type of second aircraft (2).

Type of primary or losing sector (1).

Type of secondary or gaining sector (2).

Associated event file name.

Event priority.

SECTOR_A

SECTOR_B

SECTOR_B

SECTOR_A

DEF

NULL

NULL

NULL

NULL

NULL

sector_chg747.evt

sector_chg747.evt

sector_chg777.evt

sector_chg777.evt

sector_chgdef.evt

departure.evt

approach.evt

altitude_change.evt

conflict.evt

catch_fire.evt

5.0

5.0

5.0

5.0

5.0

5.0

5.0

i0.0

i0.0

15.0

In operation, FAM 2.0 first looks for a record with a match in the appropriate type

fields. If it finds one, it uses the associated event in that record. If no match is

found, it will look for DEF and use that associated event file. If no default row is

found, then the FAM 2.0 will generate an error and stops. For example, if the air-

craft type 7 4 7 is the primary aircraft participating in an event, FAM 2.0 will use

the associated event if it finds a record with 7 4 7 in AC1TYP. If FAM 2.0 finds

no exact match between 7 4 7 and AC1TYP, then it will search for DEF under

AC1TYP. If it finds no such record FAM 2.0 generates an error message and

stops.

LOOKUP ASSOCIATED EVENT LIST (LOOKUPASSOCIATEDEVTLIST)

The lookup associated event list method (lookupAssociatedEvtList) requires five

parameters in order to retrieve an associated event list. The parameters are

• primary Event name,

• Aircraft 1 type,

• Aircraft 2 type,

• Sector 1 type, and

• Sector 2 type.

3-21

The pseudocode is shown in Figure 3-16.

Figure 3-16. Method lookupAssociatedEvtList Pseudocode

FOR

END

FOR

each primary Event in the eventDictionary

IF primary Event exists

FOR each Key in KeyList of the primary Event

IF AClTYPE<>Key.ACITYPE and DEF<>Key.ACITYPE

Mark this key

END

FOR each Key in KeyList of the primary Event

IF AC2TYPE<>Key.AC2TYPE and DEF<>Key.AC2TYPE

Mark this key

END

FOR each Key in KeyList of the primary Event

IF SCTITYPE<>Key. SCTITYPE and DEF<>Key. SCTITYPE

Mark this key

END

FOR each Key in KeyList of the primary Event

IF SCT2TYPE<> Key. SCT2TYPE and DEF<> Key. SCT2TYPE

Mark this key

END

each Key in KeyList of the primary Event

IF the Key is not Marked,

Return the associated event list

END

IF no associated event list is found, THEN returns the de-

fault associated event list

IF no default associated event list, THEN it is an error

TELL Method Process Trigger

This method is used to process Events from the a priori event file (trig.evt). When

it is brought into the simulation, the first primary Event activates an aircraft (e.g.,

UA1707) at a scheduled simulation time. Other Events include sector changes and
the aircraft deactivation.

As an example, we repeat the sample trig.evt file from Table 3-3 in Table 3-5.

Table 3-5 has three primary Event vectors:

UA1707 is activated under control of Sector 1 at simulation time 1000.

4, UA1707 changes control from Sector 1 to Sector 2, also at simulation time

1000. Although scheduled for the same time, this Event will execute after

the activation Event since it is after the activation Event in trig.evt. (Had it

been before the activation Event, FAM 2.0 would have generated an er-

ror.)

3-22

4, UA1707 is deactivated at simulation time 4000.

Once an a priori event vector is read from the trig.evt file, a trigger event object

block (trigevtObj) is allocated and filled in from the data row in file trig.evt and

then the trigger block is scheduled for execution in the future. The same

trigevtObj is used for random events.

Table 3-5. Sample trig.evt File

NAME

ACTIVATE_AC

SECT_CHG

DEACTIVATE_AC

Notes:

1 2 3 4

TIME AL FN AC_T

1000 UA 1707 747

I000 UA 1707 NULL

4000 UA 1707 NULL

5 6 7 8 9 10 11 12

ALT_ AL ALT_FN SCT1 SCT2 ARPT TRC AOC ACCHNL

NULL 0 1 0 NULL NULL NULL 0 . 0

NULL 0 1 2 DEN DEN NULL 0 . 0

NULL 0 2 0 NULL NULL NULL 0 . 0

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

TIME--Simulation time of primary Event initiation.

AL--Airline of primary (#1) aircraft.

FN--Flight number of primary (#1) aircraft.

AC_T--Type of primary (#1) aircraft.

ALT_AL--Airline of secondary (#2) aircraft.

ALT_FN--Flight number of secondary (#2) aircraft.

SCTl--ldentification number of primary (losing) sector.

SCT2--1dentification number of secondary (gaining) sector.
ARPT--Name of airport.

TRC--Name of TRACON.

AOC---Name of AOC.

ACCHNL--Communications channel for aircraft-to-aircraft communications.

TRIGGER EVENT OBJECT BLOCK (TRIGEVTOBJ)

The trigger event object block (trigEvtObj) contains the information shown in Ta-

ble 3-6.

Table 3-6. Trigger Event Object Block Contents

Field name Data type Description Comments

ID

EVENT

TIME

PRIORITY

AC 1AN

AC1FL

AC1TYPE

AC2AN

AC2FL

SECTINUM

INTEGER

STRING

REAL

REAL

STRING

INTEGER

STRING

STRING

INTEGER

INTEGER

Number of Trigger Event

Name of Trigger Event

Execution Time of Trigger Event

Priority of the Event (e.g., 5.0)

Identifier of Aircraft 1 (e.g., UA)

Flight Number of Aircraft (e.g., 1707)

Type of Aircraft (e.g., 747)

Identifier of Aircraft 2 (e.g., UA)

Flight Number of Aircraft 2 (e.g.,
1708)

Sector I number (e.g., 34)

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional

3-23

Table 3-6. Trigger Event Object Block Contents (Continued)

Field name

SECT2NUM

AIRPORT

TRACON

AOC

CHANNEL

startNextAssocevt

processTrigger

Data type

INTEGER

STRING

STRING

STRING

REAL

RESOURCEOBJ

TELL method

Description

Sector 2 number (e.g., 99)

Name of Airport (e.g., DENVER)

Name of TRACON (e.g., DEN_TRA)

Name of AOC (UA)

Channel value (e.g., 5.0)

Trigger to start next associated event

Asynchronous method to process the
trigger. This method is used for a pri-
ori and random Events

Comments

Optional

Optional

Optional

Optional

Optional

Mandatory

ASSOCIATED EVENT OBJECT (ASSOCEVTOBJ)

The associated event object (assocevtObj) holds information about the associated

event that is taking place. For example, the primary Event Sector Change

(SECT_CHG), has many associated events. One such associated event is Initial

Call, which goes from the aircraft to the gaining sector. This Initial Call event is

then scheduled for the aircraft object:

TELL evt [ORG] TO commenceEvt IN evt[DLY]

CROSS-REFERENCE BETWEEN ASSOCEVTOBJ AND TRIGEVTOBJ

Since there is only one associated event file for each type of primary Event, and

the associated events in the file are executed each time that primary Event type

occurs in the simulation, FAM 2.0 uses keywords for the event originator (ORG)

and destination (DST) in the associated event file. FAM 2.0 translates these key-

words into pointers to the addresses of actual objects in the simulation at run time.

The model looks at various fields in the current trigEvtObj to resolve references

of origin and destination addresses in the assocevtObj. Table 3-7 shows the loca-

tion in the trigEvtObj object block for each generic identifier in associated events.

Table 3-7. Pointer Location in trigevtObj

Generic identifier Pointer location

AC

ALT_AC

L_SECT

G_SECT

SECT

AOC

TOWER

trigevtObj[acl an, aclfn]

trigevtObj[ac2an, ac2fn]

trigevtObj[sectl num]

trigevtObj[sect2num]

trigevtObj[sectl num]

trigevtObj[AOC]

trigevtObj[airport]

3-24

Technical Design

Table 3-7. Pointer Location in trigevtObj (Continued)

Generic identifier Pointer location

GROUND

CLEARANCE

OTHER

APPROACH

DEPARTURE

FINAL

trigevtObj[airport]

trigevtObj[airport]

trigevtObj[airport]

tdgevtObj[TRACON]

trigevtObj[TRACON]

trigevtObj[TRACON]

PSEUDOCODE FOR PROCESSTRIGGER METHOD

Figure 3-17 contains the pseudocode for the process trigger method

(processTrigger). To illustrate the process of assigning actual simulation ad-

dresses based on keywords, Figure 3-18 contains an example of a sector change

associated event block before setting of ORG and DST pointers during the simu-

lation. This is the event as it is derived from the event dictionary. Figure 3-19

shows how the originator and destination are changed to actual simulation objects.

Figure 3-17. ProcessTrigger Method Pseudocode

Find the matching primary Event in the Event Dictionary List

IF trigger name : ACTIVATE_AC

Activate a new aircraft and generated random events if

necessary

ELSE IF trigger name : DEACTIVATE_AC

IF no more activities involving this aircraft

Print statistics and deactivate it

ELSE

Print statistics and schedule the aircraft to deacti-

vate later

ELSE

Get the list of associated events for this Trigger Event

from the eventDictionary (See Figure ii)

Set all the ORG and DST pointers and MODE of each asso

cevtObj in the list to the proper objects (See Figure 12)

FOR each assocevtObj in the associated event list

Set evt[ORG] and evt[DST] according to Table 3-4

TELL evt.orgptr TO commenceEvt (SELF, newassoc, org, 0.0,

A PRIORI) IN evt.dly;

END

3-25

Figure 3-18. Associated Event Block Before Setting ORG and DST

assocevtObj

primname = SECT_CHG

assocname = INIT_CALL

ORG = AC

DST = G_SECT

DLY = 10.0

Figure 3-19. Associated Event Block After Setting ORG and DST

assocevtObj

primname = SECT_CHG

assocname =

ORG

DST

DLY = 10.0

....tu,,,o,1__1aircra"'istI

.... t Sector_2 H
sectorList

OPERATION OF PROCESSTRIGGER

An example would probably best illustrate the operation of processTrigger. As-

sume that the sector change primary Event (SECT_CHG) simply involves the four
associated events shown in Table 3-8.

Table 3-8. Sample Sector Change Associated Events

Primary Event Associated event ORG DST

SECT_CHG

SECT_CHG

SECT_CHG

SECT_CHG

CALL_GSECT

ACK_LSECT

CALL_AC

CALL_SECT

L_SECT

G_SECT

L_SECT

AC

DLY

G_SECT 0.0

L_SECT 10.0

AC 15.0

G_SECT 20

3-26

..Technical Desig n

When the simulation reaches the scheduled time of a SECT_CHG Event,

processTrigger reads the associated event list. ProcessTrigger then places all four

events on the pending list for the simulation object specified as ORG for later

execution. ProcessTrigger uses method commenceEvt for all associated events (a

priori or random). In this example, processTrigger uses the following line to
schedule each associated event in the above list:

TELL evt[ORG] TO commenceEvt IN evt[DLY]

When all the associated events in our example have been scheduled, the pending

list will look like Figure 3-20.

Figure 3-20. Event Pending Lists for Sector Change Event

PendingLists

CommenceEvt CommenceEvt CommenceEvt
(CALL_SECT) (CALL_GSECT) (ACK_LSECT)

20.0 0.0 10.0

I
CommenceEvt
(CALL_GSECT)

0.0

There is a pending (event) list for each simulation object. In our example, with

three objects involving four associated events in the sector change, Sector 1 will

have two events and the other objects one apiece. The events are executed in time

order, so the first event to be executed is Call_GSectl, followed in order by

Call_AC, Call_Sector, and Ack_Lsect.

COMMENCE EVENT METHOD (COMMENCEEVT)

The commence event method (commenceEvt) is the main TELL method for

simObj. In fact, this is the method that is at the heart of all event processing for

FAM 2.0. All events, whether a priori or random, execute associated events via

commenceEvt. CommenceEvt is called from TELL method processTrigger in

ItriggerMod.mod only for the origin of an associated event. ProcessTrigger is the

method that is executed when the simulation time equals the scheduled time for an

a priori primary Event. Figure 3-21 shows the pseudocode for method
commenceEvt.

3-27

Figure 3-21. Method commenceEvt Pseudocode

IN trig : trigEvtObj;

IN evt : assocevtObj;

IN mode : STRING;

IN delta : REAL;

IN eventType : STRING;

//trig - block containing primary Event data

//evt - block containing Associated Event data

//mode - ORG or DST

//delta - wait time

//eventType - A PRIORI or RANDOM

BEGIN

IF simulation time > acdeactivationtime and the event

type is RANDOM,

THEN there will be no more random event allowed in

commenceEvt ().

ENDIF

IF simulation time > simulationEnd

THEN produce Warning message and quit

ELSE

//SETUP FOR EXECUTION OF ASSOCIATED EVENT

Set mate according to mode;

IF mode = ORG

NEW (actblk);

Store beginwaittime in actblk for both ORG and DST

Make sure that the previous associated event has

been completed

Reserve both ORG and DST (put in a request to

acquire the reserve resource)

Lock the occupied resource of SELF

Figure out which object (ORG/DST) will have its

channel occupied

IF it is AC-AC communication, lock channel

specified in TRIG.EVT

IF ORG <> DST, make the DST busy

deltadst = time we had to wait to occupy the DST

TELL DST TO commenceEvt

delta:= time we had to wait to occupy SELF

(i.e., ORG)

Release the reserved resource for ORIGIN and

DESTINATION

IF waitingTime > 0.0, update wait statistics for ORG

and DST

3-28

Technical Design

Figure 3-21. Method commenceEvt Pseudocode (Continued)

//START EXECUTION OF ASSOCIATED EVENT

FOREACH controller IN controllerQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0 update all continuous tasking statistics

ASK each controller to transmit (load)

FOREACH radio IN commQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0 update all continuous tasking statistics

ASK each radio to transmit (load)

FOREACH equipment IN equipmentQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0 update all continuous tasking statistics

ASK each radio to transmit (load)

//FINISH EXECUTION OF ASSOCIATED EVENT

Release the startNextAssocevt resource in the TRIGGER

EVENT so that the next associated event can proceed

Now WAIT for Maximum duration maximum of all loads above

Unlock the appropriate channel for this activity

Release the occupied resource in this object (ORG/DST)

so that any events involving this object can proceed

IF simObjType = AIRCRAFT and we are past its

deactivation time,

IF mode = ORG

THEN dispose of the actblk

THEN deactivate it now

END METHOD;

BEGIN

IF simulation time > acdeactivationtime and the event

type is RANDOM,

THEN there will be no more random event allowed in

commenceEvt () .

IF simulation time > simulationEnd

THEN produce Warning message and quit

ELSE

//SETUP FOR EXECUTION OF ASSOCIATED EVENT

Set mate according to mode;

IF mode = ORG

NEW (actblk);

Store beginwaittime in actblk for both ORG and DST

Make sure that the previous associated event has

been completed

Reserve both ORG and DST (put in a request to

acquire the reserve resource)

3-29

Figure 3-21. Method commenceEvt Pseudocode (Continued)

Lock the occupied resource of SELF

Figure out which object (ORG/DST) will have its

channel occupied

IF it is AC-AC communication,

THEN lock channel specified in TRIG.EVT

IF ORG <> DST,

THEN make the DST busy

deltadst = time we had to wait to occupy the DST

TELL DST TO commenceEvt

delta:= time we had to wait to occupy SELF (i.e., ORG)

Release the reserved resource for ORIGIN and

DESTINATION

IF waitingTime > 0.0, update wait statistics for

ORG and DST

START EXECUTION OF ASSOCIATED EVENT

FOREACH controller IN controllerQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0

THEN update all continuous tasking statistics

ASK each controller to transmit (load)

FOREACH radio IN commQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0

THEN update all continuous tasking statistics

ASK each radio to transmit (load)

FOREACH equipment IN equipmentQue

lookup load for this primary event, associated event,

mode and mate-type

IF load > 0.0

THEN update all contlnuous tasking statistics

ASK each radio to transmit (load)

FINISH EXECUTION OF ASSOCIATED EVENT

Release the startNextAssocevt resource in the TRIGGER

EVENT so that the next associated event can proceed

Now WAIT for Maximum duration = maximum of all loads

above

Unlock the appropriate channel for this activity

Release the occupied resource in this object (ORG/DST) so

that any events involving this object can proceed

IF mode = ORG

THEN dispose of the actblk

IF simObjType = AIRCRAFT and we are past its deactivation

time,

THEN deactivate it now

END METHOD

3-30

Technical Design

Random Event Processing

Random events are processed slightly differently than a priori events. For random

events, FAM 2.0 uses a uniform, real distribution to choose an event from the

random event file (rand.evt). For example, if rand.evt contains FIRE, ALT_CHG,

LOW_FUEL as random event types, when FAM 2.0 generates a random event,

each type has a 33.3 percent probability of being "chosen" as the random event

type.

TELL METHODS

Figure 3-22 shows the logic flow of random event TELL methods.

Figure 3-22. Logic Flow of Random Event TELL Methods

processTrigger (within ACTIVATE_AC)

I
I generateRandomEvent I

I
I setupRandomEvent]

I
generate RandomEvent

PROCESSING RANDOM EVENTS

Figure 3-23 shows the pseudocode for TELL method processTrigger, which is
executed when an aircraft is activated.

Figure 3-23. TELL method processTrigger

//When activating an aircraft:

IF random_mode : TRUE

THEN schedule generateRandomEvent

//This method is contained in ItriggerMod.mod.

Figure 3-24 shows tile pseudocode for TELL method generateRandomEvent.

3-31

Figure 3-24. TELL method generateRandomEvent

//This TELL Method is contained in IaircraftMod.mod.

Find the activation and deactivation time of SELF (aircraft)

IF [(SimTime < deactivation time) AND (SimTime < simula-

tionEnd)]

WAIT until the AC has begun executing the first

associated event of its first a priori primary Event

REPEAT until [(SimTime < deactivation time) AND

(SimTime < simulationEnd)]

WAIT DURATION streaml.UniformReal (minInterRandomTime,

maxInterRandomTime);

IF (SimTime < deactivation time) AND (SimTime <

simulationEnd)

Select a random number from stream2.UniformInt

(i, i00) and depending on the number of random

Events (in rand.evt), pick a random Event for

simulation E.g., if there are i0 random Events,

and we picked 70, then we would choose random

Event #7 from the list

Increment numRandomEventsGenerated

Setup a trigger Event with all relevant for this

random primary Event

Lookup associated event list in the event

dictionary for this random primary Event

ASK SELF TO setupRandomEvent (assocevtlist, trigger

Event);

ENDIF

END REPEAT

ENDIF

END METHOD;

TELL Method setupRandomEvent

The TELL method setupRandomEvent is very much like processTrigger in its

logic. This method is contained in laircraftMod.mod. It sets up the ORG and DST

pointers of each associated event block and then schedules the associated events

via commenceEvt. The pseudocode for setupRandomEvent is shown in Fig-

ure 3-25.

3-32

Technical Design

Figure 3-25. TELL Method setupRandomEvent Pseudocode

//The input parameters are:

IN aelist : QueueObj;

IN trig : trigEvtObj

BEGIN

Create a list of associated events called newassoclist

FOREACH assocevtblk IN aelist;

Increment eventctr

Create a assocevtObj called newassoc and clone the

associated event block from aelist

Set the ORG pointer of newassoc (based on keywords,

e.g., SECT, AC, TOWER, etc.)

Set the DST pointer of newassoc (based on keywords,

e.g., SECT, AC, TOWER, etc.)

Add the newassoc to newassoclist

END FOREACH

FOREACH newassoc IN newassoclist

TELL newassoc.orgptr TO commenceEvt (trig,

newassoc,org, 0.0, RANDOM) IN newassoc.dly

END FOREACH

Dispose of newassoclist

END METHOD

OUTPUT

The output statistics are defined for personnel (controllerObj), radio (sysObj), and

equipment (sysObj) of each simulation object (i.e., aircraft, sector, AOC,

TRACON controller, airport controller, and channel). There are nine statistics:

• MAX_WAITING--the maximum number of associated events waiting.

• AVE_QUE_LEN----_e average queue length of associated events.

• MAX_WAIT_TIME--the maximum wait time for associated events.

• AVE_WAIT_TIME--the average wait time for associated events.

• NUM_SERVED--the number of associated events served.

• TOTAL_TASK_TIME--the total task time.

• PERC_TASKED--the total task time/simulation length.

• MAX_CONT_TIME--the longest period of continuous tasking.

• AVE_CONT_TIME--the average period of continuous tasking.

3-33

In addition,FAM producesstatisticson thenumberof aircraftin eachsector:

• SECTOR_ID--thesectorID.

• NUM_AIRCRAFT--the numberof aircraftin thatsector.

• MAX_AIRCRAFT--the maximumnumberof aircraftin thatsector.

• AVE_AIRCRAFT--the averagenumberof aircraftin thatsector.

Resetting Output Parameters

Resetting output parameters is based on the user input of <stat_start> specified in

the scenario file. In IprocedureMod.mod, a TELL method resetOutputStat-

Counters is scheduled at stat_start time to wipe out any statistics collected so far

in various simulation objects. The statistics are actually stored in personnel

(controllerObj), radio (sysObj), and equipment (sysObj) of each simulation object.

The entire aircraft list, sector list, AOC list, TRACON controller list, and airport

controller list are traversed in order to reset the statistical counters of all the per-

sonnel/radio/equipment of each simulation object in these lists.

Gathering Output Statistics

The gathering of output statistics is done via LMONITORED objects of

MODSIM. The ASK method printQueStats, which belongs to personnel

(controllerObj) and radio/equipment (sysObj) of each simulation objects is prints

out all the statistics gathered for those objects.

WAITING TIME AND NUMBER OF WAITS STATISTICS

Waiting time and number of waits statistics are collected at the simulation object

level via LMONITORED real and integer data types. Table 3-9 lists the relevant

fields in simObj.

Table 3-9. Wait Statistics Fields in simObj

Statistics counters Type

waitingTime

waitingTimeStats

numberOfWaits

numberOfWaitsStats

LMONITORED REAL

rStatObj

LMONITORED INTEGER

iStatObj

These statistics are updated in method commenceEvt in IsimMod.mod. The data is

then copied to corresponding variables for the active personnel, radio, and equip-
ment in that simulation object for that associated event.

3-34

CONTINUOUSTASKINGSTATISTICS

Thecontinuoustaskingstatisticsareupdatedin methodupdateContTaskStats for

personnel (controllerObj) and radio/equipment (sysObj) in IsimMod.mod. This
method is called from commenceEvt.

Statistics of interest are the longest period of continuous tasking and average pe-

riod of continuous tasking. The method updateContTaskStats simply updates the

counter with the loads for the current associated event and keeps track of whether

or not the object (personnel/radio/equipment) has been continuously tasked.

NUMBER OF ACTIVITIES SERVED (NUMSERVED) STATISTIC

The number of activities served statistic is gathered in method transmit for per-

sonnel (controllerObj) and radio/equipment (sysObj) in IsimMod.mod. This

method is called from commenceEvt. Every time FAM 2.0 calls transmit (), it

increments numServed by 1.

CONTROLLER AND SYSTEMS OBJECTS STATISTICS

Table 3-10 shows the statistics counter variables in controllerObj and sysObj.

Table 3-10. Controller and Systems Objects Statistics Counters

Statistical counters Description

maxWaitingTime

aveWaitingTime

maxNumWaiting

aveNumWaiting

numServed

totalTaskTime

contTaskTime

contTaskTimeStats

intervalTotalTaskTime

percTasked

Maximum waiting time for associated events

Average waiting time for associated events

Maximum number of associated events waiting

Average number of associated events waiting

Number of events served

Total tasking time

Longest period of continuous tasking

Statistics object for the continuous task time

Period of continuous tasking

Total task time/simulation length

Final Report

In the module lfinalReportMod.mod, the TELL method Print produces the final

report for sectors, AOCs, TRACON controllers, airport controllers, channels, and
miscellaneous aircraft/sector statistics.1 If there are active aircraft at the end of the

simulation, then the statistics for these aircraft are printed at that time. This

1The exception is the aircraft object type. The aircraft prints its own statistics before it deacti-
vates. All other simulation objects print their statistics at the time of the final report.

3-35

methodis scheduledfor executionin themainmodule.Figure3-26containsthe
pseudocodeto producethefinal report.

Figure 3-26. Final Report Production Pseudocode

BEGIN

IF NumActPending > 0, produce Warning and StopSimulation

//AIRCRAFT STATISTICS (For aircraft that have not been

deactivated)

FOREACH aircraft IN aircraftList

ASK aircraft TO printACStats;

END FOREACH;

Print The number of aircraft in the model is

Print Column headers

//ARTCC STATISTICS

FOREACH sector IN sectorList

ASK sector TO printSectorStats;

END FOREACH;

//AOC STATISTICS

FOREACH AOC IN AOCList

ASK AOC TO printAOCStats;

END FOREACH;

//AIRPORT STATISTICS

FOREACH airport IN aptContList

ASK airport TO printAirportStats;

END FOREACH;

//TRACON STATISTICS

FOREACH TRACON IN TRACONContList

ASK TRACON TO printTRACONContStats;

END FOREACH;

//CHANNEL STATISTICS

Write out column headers

FOREACH channel IN channelList

ASK channel TO printStats;

END FOREACH;

//AIRCRAFT/SECTOR STATISTICS

Print Column headers of SECTOR_ID, NUM_AIRCRAFT,

MAX_AIRCRAFT, AVE_AIRCRAFT

FOREACH sector IN sectorList

write out the statistics

END FOREACH;

Report error or warning if there is any.

END METHOD;

3-36

Technical Design

Error Processing

ERROR MESSAGES

There are two different types of errors: file processing errors and run time errors

(errors occurring during the simulation run). Once an error is detected, FAM 2.0

will attempt to catch additional errors in the same file before quitting the model.

However, if the error is serious and the model cannot possibly continue, it will

quit. Upon quitting, FAM 2.0 will generate all the error messages and direct them

to thefam.err file. If the error occurs during file processing, then the correspond-

ing file name, column and row will be shown. This mechanism provides the flexi-

bility for the user to correct more than just one error.

Examples of file processing errors are

missing a load value in the load file and

a simulation object type does not exist.

Examples of run time errors are

missing simulation object or a requested object no longer exists and

a sector change occurs but the user does not specify the losing sector.

Appendix A contains a list of all error messages and their meanings.

WARNING MESSAGES

FAM 2.0 also identifies potential problems that might cause erroneous output sta-

tistics. These problems are considered to be nonfatal, and FAM 2.0 will continue

to execute. For example, if the user intends to deactivate an aircraft at time 1000,

and there are activities pending, then FAM will issue a warning message in

fam.err and schedule the aircraft for automatic deactivation. This will help the air-

craft complete its activities and gather all the necessary statistics before deactiva-
tion.

3-37

Appendix A

FAM 2.0 Error & Warning Messages
i:)::_i_::_::i_i_:!::ii_):i!ii!:)iii::!:):_:):i::!I_-S:-:?_:!:!:iii::-!::_::::!:_::_:_!-:)ii:):i:::il):!:):!ii:ii:i::ii:ii::i_::ii:ilii!i: i̧i:i!:i!:̧ !ii:)):!i:_ i: i:i̧ !:i: i: i:i: i::-!- !:-! _:!!:i:ii!!i:_i !i :i i:_::!: :_::_: :::iX::_:)::::iii:! :_i_::i: :i::ili:!iii: :i!:i_!i:i:!!i:i:-: i:i!_::_:!i:! i:!:_:;!ii:)ii:::_:::i:::::iiii:::::!: ::_::::::!i:::i::!i:!!::::!!!ii!_::_:::!:ii:i :_!:::: _: ii :: :i :!i :!::_:: :;i: _:i:

"Error: number of pilots must be one or more."

"Error: number of communication devices must be zero or more."

"Error: number of equipment must be zero or more."

"Error: Random event 'random event name' does not exist."

"Error: There is no AOC 'aoc name' for primary event 'primary event name' and

associated event 'associated event name' at time 't' with delay 'delay'

[MODE=ORG]"

"Error: There is no tower controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=ORG]"

"Error: There is no ground controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=ORG]"

"Error: There is no clearance controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=ORG]"

"Error: There is no other controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=ORG]"

"Error: There is no TRACON controller for approach with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 't' with delay 'delay')

[MODE=ORG]"

"Error: There is no TRACON controller for departure with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 't' with delay 'delay')

[MODE=ORG]"

"Error: There is no TRACON controller for final with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

A-1

ciatedevent 'associatedevent name' at time "t" with delay 'delay')

[MODE=ORG]"

"Error: There is no AOC 'aoc name' for primary event 'primary event name' and

associated event 'associated event name' at time 't' with delay 'delay'

[MODE--DST]"

"Error: There is no tower controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=DST]"

"Error: There is no ground controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name" at time 't'

with delay 'delay') [MODE=DST]"

"Error: There is no clearance controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=DST]"

"Error: There is no other controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 't'

with delay 'delay') [MODE=DST]"

"Error: There is no TRACON controller for approach with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 't' with delay 'delay')

[MODE=DST]"

"Error: There is no TRACON controller for departure with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 't' with delay 'delay')

[MODE=DST]"

"Error: There is no TRACON controller for final with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 't' with delay 'delay')

[MODE=DST]"

"Error: number of controllers must be one or more."

"Error: number of dispatchers must be one or more."

"Error: File 'file name' does not exist."

"Error: Error occurs while opening file 'file name '."

"Error: Expected 'token' (Error occurs in file 'file name' at line # and column #)"

A-2

FAM 2.0 Error & Warning Messages

"Error: Expected '=' (Error occurs in file 'file name' at line # and column #)"

"Error: 'token' is not a valid real number; a real value is expected."

"Error: Expected a real value."

"Error: Expected a string."

"Error: Mode 'type name' is invalid."

"Error: Type 'type name' does not exist."

"Error: Loads expected in file 'file name '."

"Error: 'token' is not a valid integer number; an integer value is expected."

"Error: Expected integer value."

"Warning: There are pending activities at time 'simulation time '. "

"Error: index value 'value of index' is out of range."

"Error: Time of a priori event must be in increasing order."

"Error: Time of activity for aircraft with airline 'airline' and flight number

'flightnumber' is less than its activation time."

"Error: Time of activity for aircraft with airline 'airline' and flight number

'flightnumber" is greater than or equal to its deactivation time."

Primary event 'primary event name' is not in the event dictionary."

Sector type "type name' is not in the sector dictionary."

AOC type 'type name' is not in the AOC dictionary."

Airport controller type 'type name' is not in the airport controller diction-

"Error:

"Error:

"Error:

"Error:

ary."

"Error: TRACON controller type 'type name' is not in the TRACON controller

dictionary."

"Error: There is no TRACON controller for TRACON named 'TRACON name'

and controller named 'controller name'. "

"Error: Airport position must be defined in the TRACON dictionary file."

"Error: No random event was specified."

A-3

"Error: stat__startmustbe: stat_start<= simulation_end"

"Error: RandommodemustbeTRUEor FALSE."

"Error: ReuseseedmodemustbeTRUEor FALSE."

"Error: 'tagname' is an invalid tag."

"Error: tag 'tage name' is already defined."

"Error: 'token' must be preceded by a proper tag."

"Error: AOC 'aoc name' does not exist."

"Error: Airport 'airport name' does not exist."

"Error: TRACON 'TRACON name' does not exist."

"Warning: Trigger event 'trigger name' and associated event 'associated event

name' at time 'simulation time' cannot be processed because the simulationEnd
time has occurred."

"Error: There is no default load for primary event 'primary event name ', associ-

ated event 'associated event name ', mode 'mode name' and type 'type name '."

"Error: Previous activity ended after current time."

"Error: ACTIVATE_AC at time 'time' fails; aircraft type 'type name' is not in

the aircraft dictionary."

"Warning: You are trying to deactivate aircraft 'aircraft name' at time

'simulation time', and there are pending activities. Adjust its deactivation time."

"Error: DEACTIVATE_AC at time 'time' fails; aircraft 'aircraft name' does not
exist."

"Error: Primary event 'primary event name' at time 'time' fails; aircraft 'aircraft
name' does not exist."

"Error: Primary event at time 'time' fails; sector # 'sector number' does not ex-
ist."

"Error: There is no associated event list for primary event 'primary event name',

aircraft 1 type 'type name ', aircraft 2 type 'type name ', sector 1 type 'type name ',

sector 2 type 'type name' at time 'time'. "

A-4

FAM 2.0 Error & Warning Messages

"Error: There is no AOC 'aoc name' for primary event 'primary event name' and

associated event 'associated event name" at time 'time' with delay 'delay'

[MODE=ORG]."

"Error: There is no tower controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=ORG]"

"Error: There is no ground controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=ORG]"

"Error: There is no clearance controller for airport 'airport name' (primary event

'primary event name' and associated event "associated event name' at time 'time'

with delay 'delay') [MODE=ORG]"

"Error: There is no other controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay "delay') [MODE=ORG]"

"Error: There is no TRACON controller for approach with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 'time' with delay 'delay')

[MODE=ORG]."

"Error: There is no TRACON controller for departure with TRACON 'TRACON

name' and airport 'airport name' (primary event 'primary event name' and asso-

ciated event 'associated event name' at time 'time' with delay 'delay')

[MODE=ORG]."

"Error: There is no TRACON controller for final with TRACON 'TRACON

name' and airport 'airport name' (primary event "primary event name" and asso-

ciated event 'associated event name' at time 'time' with delay 'delay')

[MODE=ORG]."

"Error: There is no AOC "aoc name' for primary event 'primary event name' and

associated event 'associated event name" at time 'time' with delay 'delay'

[MODE=DST]."

"Error: There is no tower controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=DST]"

"Error: There is no ground controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=DST]"

A-5

"Error: Thereis noclearancecontrollerfor airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=DST]"

"Error: There is no other controller for airport 'airport name' (primary event

'primary event name' and associated event 'associated event name' at time 'time'

with delay 'delay') [MODE=DST]"

"Error: There is no TRACON controller for approach with TRACON 'TRACON

name' and airport 'airport name' (primary event "primary event name" and asso-
ciated event 'associated event name' at time "time' with delay 'delay')

[MODE=DST]"

"Error: There is no TRACON controller for departure with TRACON 'TRACON

name' and airport 'airport name' (primary event "primary event name" and asso-

ciated event 'associated event name' at time 'time' with delay 'delay')

[MODE=DST]"

"Error: There is no TRACON controller for final with TRACON 'TRACON

name' and airport 'airport name' (primary event "primary event name" and asso-

ciated event 'associated event name' at time 'time' with delay 'delay')

[MODE=DST]"

"Error: Expected tag 'tag name'."

"Error: Sector 'sector ID' does not exist."

"Error: Channel 'channel value' could not be found."

"Error: Aircraft 'aircraft name' does not exist; primary event 'primary event

name' and associated event 'associated event name" fails at time 't'; you must

specify an aircraft when an associated event involves AC."

"Error: Aircraft 'aircraft name' does not exist; primary event 'primary event

name' and associated event 'associated event name" fails at time 't'; you must

specify an aircraft when an associated event involves ALT_AC."

"Error: There is no sector ID 'sector ID' for primary event 'primary event name'

and associated event 'associated event name'; you must specify the sector ID

when an associated event involves SECT."

"Error: There is no sector ID 'sector ID' for primary event 'primary event name'

and associated event 'associated event name'; you must specify the sector ID

when an associated event involves L_SECT."

A-6

FAM 2.0 Error & Warning Messages

"Error: There is no sector ID 'sector ID' for primary event 'primary event name'

and associated event 'associated event name'; you must specify the sector ID

when an associated event involves G_SECT."

"Error: scenario file 'file name' does not exist."

A-7

Appendix B

FAM 2.0 Test Plan

This appendix details the testing that LMI carried out on FAM 2.0. The first sec-

tion details the testing done during the model's development. The second section

contains a chart showing the validation and verification testing on the finished
model.

DEVELOPMENT TESTS

Random Event Processing

The random.evt file is a master event file that contains a list of the random events

to be used in simulation. If the random mode is TRUE (in the scenario file), ran-

dom events will be generated for a particular aircraft between its activation time

and deactivation time. However, if the simulation end time occurs before the air-

craft is deactivated, random events will be generated up to the simulation end

time. Table B-1 contains the tests for random event processing.

Table B-1. Random Event Processing Tests

Scenario Required result

Sequential a priori events: No activities will be queued.

T (event0 < T (event2) < ... < T (eventn)

Activitieswill be queued.Concurrent a priori events:

T (event0 (T (event2) (... (-r (eventn)

Simulation end occurs before activities are com-
pleted.

T (eventi) > T (event)) and i < j

Warning: There are pending ac-
tivities at time T. Simulation con-
tinues untilall scheduled events
are completed.

Error: Time of a priori event must
be in increasing order of time.

Missing data in columns TIME, ACCHNL Error: Expected a real value.

Missing data in columns ACAL, AC_T, ALT_ACAL, Error: Expected a string.
ARPT, TRC, AOC

Missing data in columns ACFN, ALT_ACFN, SCT1, Error: Expected integer value.
SCT2

A priori event involvingtwo aircraft but, ACCHNL is Error: Channel is required for ac-
not specified tivities between two different air-

craft.

B-1

Event Dictionary

The event dictionary contains one or more associated event lists for each primary

Event (a priori or random). The associated event list depends on the types of air-

craft 1, aircraft 2, sector 1, and sector 2. Not all events involve two aircraft and

two sectors. FAM matches the corresponding objects from the primary Event

vector (in trig.evt) to their types in the event dictionary.

For example, if a SECT_CHG in trig.evt involves an aircraft and two sectors, then

FAM will match SECT_CHG and column AC1TYP, SECT1TYP and

SECT2TYP in order to find the correct associated event file. DEF is allowed for

these column values. NULL is only allowed for AC2TYP since there is no second

aircraft in the SECT_CHG vector in trig.evt. Table B-2 contains the test for event

dictionary error detection.

Table B-2. Event Dictionary Error Detection Test

Scenario Required result

SECT_CHG involving one aircraft and two
sectors in trig.evt, but SECT_CHG row in event
dictionary (event.dic) contains:

//EVTNAM E...AC 1TYP...AC2TY P
SCT1TYP...SCT2TYP...ASSOCFILE
PRIORITY

SECT_CHG...747...NULL

NULL...NULL...sect_chg.evt ... 5.0

This vector should be (italics for emphasis)

SECT_CHG...747...NULL

SEC TOFI_A. ..SEC TOFt_A. ..sect_chg.evt. . .
5.0

Error message: "Error: There is no as-
sociated event list for primary event"
"SECT_CHG', aircraft I type "747',
aircraft 2 type "NULL", sector 1 type
"SECTOFI_A", sector 2 type
"SECTOR_A" at time t."

Simulation Objects

AIRCRAFT

Each aircraft will be brought into simulation based on its activation and deactiva-

tion time. Once an aircraft is activated, it remains in simulation until it is deacti-

vated. However, the deactivation time of an aircraft must be strictly greater than

its activation time, as well as the times for any events scheduled for that aircraft.

Time of any event involving aircraft j must be greater than or equal to its activa-

tion time and strictly less than its deactivation time. Table B-3 contains the tests

for aircraft event sequencing.

B-2

Test Plan

Table B-3. Aircraft Event Sequencing Tests

Scenario Expected result

Sequential events: No events are overlapping in time

2 aircraft

2 TAKE_OFF Events (different time)

aircraft1: First TAKE_OFF

aircraft2: Second TAKE_OFF

First TAKE_OFF completes before second TAKE_OFF

Sequential events: Second event involving second aircraft con-
tinues after its deactivation time

2 aircraft

2 TAKE_OFF Events (different time)

aircraft1: First TAKE_OFF

aircraft2: Second TAKE_OFF

Second TAKE_OFF does not complete before deactivation of
second aircraft

Concurrent events: events are overlapping

1 aircraft

1 TAKE_OFF Event and 1 SECT_CHG Event (same time)

Aircraft will be deactivated at
specified time after second
TAKE_OFF.

Warning: Aircraft #2 can not be
deactivated at time t. Adjust its
deactivation time.

When the last activity involving
this aircraft is completed, this
aircraft will be deactivated

automatically by FAM 2.0.

Events will queue up for the
aircraft. TAKE_OFF will happen
before SECT_CHG. time.

AIR ROUTE TRAFFIC CONTROL CENTER

An ARTCC is a collection of sectors. For sector change events, sectors serve as

either a losing sector or gaining sector. Sectors are active throughout simulation.

Each sector will serve only one activity at a time. If the same sector is being re-

quested more than once at the same time, FAM 2.0 will queue these activities for

this sector until the completion of the previous activity. If an activity involves a

sector, the sector number must be provided in the a priori event file. If the sector

number is not specified or incorrect, simulation will stop during runtime. This er-

ror cannot be caught before start of simulation. Table B-4 contains the ARTCC

tests.

Table B-4. ARTCC Tests

Scenario Required result

1 aircraft, 1 sector Statistics collected for aircraft and

1 TAKE_OFF Event: aircraft1, sector1 sector.

1 aircraft 2 sectors Statistics collected for aircraft1, sec-

1 SECT_CHG Event: aircraft1, sector1, sector2 torl, and sector2.

B-3

Table B-4. ARTCC Tests (Cont.)

Scenario Required result

1 aircraft, 2 sectors

2 SECT_CHG Events (different time)

aircraft1:sector1 => sector'2

aircraft1 : sector2 => sector1

1 aircraft, 3 sectors

2 SECT_CHG Events (different time)

aircraft1:sector1 => sector2

aircraft1:sector2 => sector3

2 aircraft, 2 sectors

2 SECT_CHG Events (same time)

aircraft1:sector1 => sector2

aircraft2:sector2 => sector1

2 aircraft, 3 sectors

2 SECT_CHG Events (same time)

aircraft1 : sector1 => sector2

aircraft2:sector2 => sector3

Statistics collected for aircraft1, sec-
tor1, and sector2.

Statistics collected for aircraft1, sec-
tor1, sector2, and sector3.

Statistics collected for aircraft1, air-

craft2, sector1, and sector2. Events
queue up for sectors 1 and 2. No

deadlocks for resource acquisition.

Statistics collected for aircraft1, air-
craft2, sector1, sector2, and sector3;

events queue up for sector 2.

AIRLINE OPERATIONS CENTER

There is no limit to how many AOCs a user can define. If an AOC is defined, it

will remain active throughout simulation. If an activity involves an AOC, the

AOC name must be provided in the a priori event file. If the AOC name is not

specified or incorrect, simulation will stop. Table B-5 contains the test plan for

AOC events.

Table B-5. AOC Event Test Plan

Scenario

1 aircraft 1 AOC

1 TAKE_OFF Event

aircraffl: AOC1

1 aircraft 1 AOC

2 TAKE_OFF Events (different time)

aircraft1 : AOC1

aircraft1 : AOC1

1 aircraft 2 AOC

2 TAKE_OFF Events (different time)

aircraft1 : AOC1

aircraft1 : AOC2

Required result

Statistics collected for aircraft1 and AOC1.

Statistics collected for aircraft1 and AOCI.

Statistics collected for aircraft1, AOC1, and
AOC2.

B-4

_stP_n

Table B-5. AOC Event Test Plan (Cont.)

Scenario

2 aircraft 2 AOC

2 TAKE_OFF Events (different time)

aircraft1 : AOC1

aircraft2:AOC2

2 aircraft 1 AOC

2 TAKE_OFF Events (same time)

aircraft1: AOC1

aircraft2:AOC1

2 aircraft 2 AOC

2 TAKE_OFF Events (same time)

aircraft1 : AOC1

aircraft2:AOC2

1 aircraft 1 sector I AOC

1 TAKE_OFF Event

aircraft1, sector1, AOC1

Required result

Statistics collected for aircraft1, aircraft2, AOC1,
and AOC2.

Statistics collected for aircraft1, aircraft2, and
AOC1 ; events queue up for AOC 1.

Statistics collected for aircraft1, aircraft2, AOC1,
and AOC2.

Statistics collected for aircraft1, sector1, and
AOCI.

AIRPORT CONTROLLER

There are four different types of controllers for each airport:

Tower

Ground

Clearance

Other.

An airport controller (e.g., tower) is a collection of personnel, radios, and equip-

ment. The airport controller must be defined before it can be used. Once the con-

troller is defined, it will remain in the simulation throughout the run. If an activity

involves a controller (e.g., tower, ground, clearance, other), the airport name must

be provided in the a priori event file. If the airport name is not specified or incor-

rect, simulation will stop.

Table B-6 contains the test plan for airport controllers. The scenarios in Table B-6

use only tower as the airport controller. The same scenarios have been applied for

any of the other three controller types.

B-5

Table B-6. Airport Controller Tests

Scenario Required result

1 aircraft 1 tower Statistics collected for aicraftl and tower1.

1 TAKE_OFF Event

aircraft1 : tower1

Statistics collected for aircraft1, aircraft2, and
tower1.

2 aircraft 1 tower

2 TAKE_OFF Events (different time)

aircraft1 : tower1

aircraft2:tower1

2 aircraft 1 tower

2 TAKE_OFF Events (same time)

aircraft1 : tower1

aircraft2:tower1

1 aircraft 1 tower I sector

1 TAKE_OFF Event

aircraft1, tower1, sector1

1 aircraft 1 tower 1 sector 1 AOC

1 TAKE_OFF Event

aircraft1, tower1, sector1, AOC1

Statistics collected for aircraft1, aircraft2, and
tower1 ; events queue up for tower 1.

Statistics collected for aircraft1, tower1, and sec-
tor1.

Statistics collected for aircraft1, tower1, sector1,
and AOC1.

TRACON CONTROLLER

Each TRACON controller may serve more than one position and more than one

airport. There are three positions: approach, departure and final. Each TRACON

controller must be defined and assigned an airport name and position before it can

be used. A TRACON controller may serve

• all three positions for the same airport,

• different airports and different positions, or

• different airports and the same positions.

If an activity involves a TRACON controller, the position (e.g., approach, depar-

ture, final), the airport name and TRACON name must be specified in the a priori

event file. If the TRACON controller of the given TRACON name does not serve

the given airport name and position, simulation will stop.

Table B-7 contains the fn'st phase of the test plan for TRACON controller objects.

The scenarios in Table B-7 assume that the TRACON controller, Cont_One, is

defined, and the airport and TRACON name are provided in the a priori event file.

B-6

Test Plan

Table B-7. TRACON Controller Tests, First Phase

Scenario Required Result

Assume that the controller serving Denver, Approach will
be used. Now, Cont_One is defined as the following:

CONI'_NAME AIRPORT POSITION

Cont_One Denver Approach

Cont_One Denver Departure

Cont_One Denver Final

Assume that the controller serving Denver, Approach will
be used; but Cont_One is defined as the following:

CONT_NAME AIRPORT POSITION

Cont_One Denver Departure

Cont_One Denver Final

Statistics collected for TRACON con-
troller Cont One.

Error: There is no TRACON controller
for position Approach.

Table B-8 contains the second phase of the TRACON controller test plan. The

scenarios in Table B-8 assume that the TRACON controller is defined; airport and

TRACON name are provided in the a priori event file. The TRACON controller

named Cont_One will serve all three positions for the given airport.

Table B-8, TRACON Controller Tests, Second Phase

Scenario Required result

1 aircraft 1 TRACON controller Statistics collected for aircraft1

1 TAKE_OFF Event and Cont One.

aircraft1, Cont_One

2 aircraft 1 TRACON controller

2 TAKE_OFF Events (different time)

aircraft1: Cont_One

aircraff2: Cont One

2 aircraft 1 TRACON controller

2 TAKE_OFF Events (same time)

aircraft1 : Cont One

aircraft2: Cont One

1 aircraft 1 TRACON controller I sector

1 TAKE_OFF Event

aircraffl, Cont_One, sector1

1 aircraft 1 TRACON controller 1 sector 1 AOC

1 TAKE_OFF Event

aircraft1, Cont_One, sector1, AOC1

1 aircraft 1 TRACON controller 1 sector 1 AOC 1 tower

1 TAKE_OFF Event

aircraft1, Cont_One, sector1, AOC1, tower1

Statistics collected for aircraft1,
aircraft2., and Cont_One; events
are queued up for Cont_One.

Statistics collected for aircraft1,
aircraft,?.,and Cont_One; events
queue up for Cont_One.

Statistics collected for aircraft1,
Cont_One, and sector1.

Statistics collected for aircraft1,
Cont_One, sector1, and AOCI.

Statistics collected for aircraffl,
Cont One, sector1, AOC1, and
tower1.

B-?

COMMUNICATIONS CHANNEL

All communications channels are defined in dictionary files. If any a priori event

involves two different aircraft, then the channel must be defined in the a priori

event file. The value of channel must be a real number greater than zero. Ta-

ble B-9 shows the tests for communications channels.

Table B-9. Communications Channels Tests

Scenario Required result

A channel is requested by an event Statistics collected for channel 1.

Event1: channel 1

A channel is requested by multiple events

Event1: channel 1

Event.: channel 1

An event involves communicating via radio 2 in a sector
(the sector has 2 radios); but that sector has only 1
channel assigned through the dictionary file.

Statistics collected for channel 1;
events are queued up for channel 1.

Error: channel not found.

File Processing

TYPE FILES

Each type file contains the type of the simulation object and the load file name

associates with it. The scenarios below involved the aircraft type. But, same test

scenarios have been applied to other simulation object types, such as, sector,

AOC, airport controllers, and TRACON controllers. Table B-10 lists the tests for

the type files.

Table B-IO. Type File Tests

Scenario Expected result

File is in correct format No error.

The load file name is not specified Error: Load file is expected.

The load file name is specified and cannot be located or opened Error: File can not be opened.

DICTIONARY FILES

Sector Dictionary File

Sector dictionary file contains sector IDs, sector types, and 10 channels associate

with each sector. The maximum number of channel is 10. Table B-11 contains the

sector dictionary file tests.

B-8

Test Plan

Table B-11. Sector Dictionary File Tests

Scenario Required result

Sector type is not defined Error: Sector type does not exist.

No channel is specified Error: At least one channel must be specified.

Sector ID is not an integer Error: Sector ID must be integer.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

AOC Dictionary File

The AOC dictionary file contains AOC name, AOC types, and 10 communica-

tions devices associated with each AOC. Table B-12 contains the AOC dictionary
file tests.

Table B-12. AOC Dictionary File Tests

Scenario Required result

AOC type is not defined Error: AOC type does not exist.

No channel is specified Error: At least one channel must be specified.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

Airport Dictionary File

The airport dictionary file contains airport name, controller name, controller type,

and 10 communications devices associated with each controller. Table B-13 con-

tains the airport dictionary file tests.

Table B-13. Airport Dictionary File Tests

Scenario Required result

Airport controller type is not defined Error: Airport controller type does not exist.

No channel is specified Error: At least one channel must be specified.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

TRACON Dictionary file

The TRACON dictionary file contains the TRACON name, controller name, con-

troller type, and 10 communications devices associated with each TRACON con-

troller. Table B-14 contains the TRACON dictionary file test plan.

B-9

Table B-14. TRACON Dictionary File Tests

Scenario Required result

TRACON controller type is not defined Error: TRACON controller type does
not exist.

TRACON controller name in the [AIRPORT_POSITION] Error: TRACON controller name does
is not defined not exist.

No channel is specified Error: At least one channel must be
specified.

Missing channel columns Error: Channel value is expected at
column #.

Extra channel columns Error: Extra channel value.

Position is not approach, departure, or final Error: Position name must be ap-
proach, departure, or final.

LOAD FILE

Each load file contains the number of personnel (controllers/dispatchers/pilots),

communications devices, and equipment. It also contains task and communica-

tions channel loads and equipment system utilization associated with each activ-

ity. Table B-15 contains the tests for the load files.

Table B-15. Load File Tests

Scenario Required result

Missing NUM_PILOTS (for aircraft load file) or Error: NUM_PILOTS is expected and must
NUM_PILOTS < 1 or NUM_PILOTS > 3 be between 1 and 3.

Missing NUM_DISPATCHER(for AOC load file) Error: NUM_DISPATCHER is expected.

Missing NUM_CONTROLLER (for sector, airport con- Error: NUM CONTROLLER is expected.
troller, TRACON controller load files)

NUM_CONTROLLER and NUM_DISPATCHER must Error. NUM_CONTROLLER must be be-
be between 1 and 10 (In case of airport, there must be tween 1 and 10.
one tower controller)

Missing NUM COMMDEVICES or Error: NUM_COMMDEVICES must be
NUM_COMMDEVICES • 10 or between 1 and 10.
NUM_COMMDEVICES < 1

Missing NUM_EQUIPMENT or NUM_EQUIPMENT • Error:.NUM_EQUIPMENT is expected and
10 or NUM_EQUIPMENT < 0 must be between 0 and 10.

Missing = Error: = is expected.

Non-integer value for the number of controllers, or Error: Integer value is expected.
communication devices, or equipment

Missing tag [LOAD] Error: Tag [LOAD] is expected.

Missing tag [LOAD_END] Error: Tag [LOAD_END] is expected.

Extra load column Error: Extra load column is found at line #
column #.

Missing load column Error: Load value is expected at line # col-
umn #.

B-10

Test Plan

SCENARIO FILE

The scenario file relates the actual input file names to the pseudonyms used by

FAM 2.0. Table B-I6 contains the test plan for the scenario file. In Table B-16 the

order of each tag is not relevant. However, under each tag, parameters must be

specified exactly as shown in the user document.

Table B-16. Scenario File Tests

Scenario Required result

Missing $DATA Error: $DATA is expected.

Missing = Error: = is expected.

Missing $WORKING Error: $WORKING is expected.

Missing stat_start Error: stat_start is expected.

Missing simulation_end Error: simulation_end is expected.

Simulation_start < simulation_end No error,

stat_start >= simulation_end Error: Value of stat start must be <
simulation_end time.

Missing a priori_file Error: a priori_file is expected.

Missing random_mode Error: random_mode is expected.

Random_mode <> 'q'RUE" and random_mode <> Error: random_mode must be TRUE or
"FALSE" FALSE.

Missing reuse_seed Error: reuse_seed is expected.

Reuse_seed <> "TRUE" and reuse_seed <> "FALSE Error: reuse_seed must be TRUE or
FALSE.

Missing random_file Error: random_file is expected.

Missing rain_inter random_time Error: rain_inter_random_time is ex-
pected.

Missing max_interrandom_time Error: max_inter_random_time is ex-
pected.

Min_inter_random_time (max_inter_random_time No error.

Min_inter_random_time > max_inter_random_time Error: min inter_random_time must be
(max_inter_random_time).

Missing eventdictionary Error: event_dictionary is expected.

Missing aircraft_type Error: aircraft_type is expected.

Missing sectortype Error: sector type is expected.

Missing sector_dictionary Error: sectoLdictionary is expected.

Missing aoc_type Error: aoc_type is expected.

Missing aoc_dictionary Error: aoc_dictionary is expected.

Missing airport_controlleLtype Error: airport_controller_type is ex-
pected.

Missing airport controller dictionary Error: airport_controller_dictionary is
expected.

Missing tracon_controlleLtype Error: tracon_controller_type is expected.

Missing tracon_controller_dictionary Error: tracon_controller_dictionary is
expected.

B-11

Other Runtime Errors

FAM 2.0 catches a few other runtime errors caught during file preprocessing be-

fore simulation begins that have not been described yet. Table B-17 contains the

tests for these errors.

Table B-17. Other Runtime Error Tests

Scenario Expected result

The ORG or DST keyword in the associated event file
(e.g., L_SECT, AOC, departure) does not have corre-
sponding identifier in the event vector of the a priori-
event file. (Refer to the user documentation in the sec-
tion for associated event)

Missing LOADS when an associated event is being exe-
cuted, but corresponding loads are not found in the in-
volved simulation objects

Missing default LOADS when an associated event is
being executed; and corresponding loads are found, but
the mode and mate-type cannot be matched exactly and
there are defaults specified.

The time for the various events in the file is not in as-

cending order; events are permitted to begin at the same
time

In the case of a sector: Error: There is

no sector ID for primary event "primary
event name" and associated event
=associated event name". You must

specify the Sector ID when an associ-
ated event involves SECT.

Error: There is no load for primary
event (e.g., "SECT_CHG") and asso-
ciated event (e.g., "CALL_AC'), mode
= mode (e.g., "ORG') and type = type

(e.g.," SECTOR_A").

Error: There is no default load for pri-

mary event (e.g., "SECT_CHG") and
associated event (e.g., "CALL_AC"),
mode = mode (e.g., "ORG") and type =
type (e.g.," SECTOR_A")

Error: DLY time must be in ascending
order.

VALIDATION AND VERIFICATION TESTING

Figure B-1 details the tests that LMI ran on the finished FAM 2.0 model. Each

scenario was created with increasing complexity and scale. No errors were en-

countered during this testing.

Figure B-1. Validation and Verification Test Scenarios

FAM Test Scenario Objectives
$c8n_o # Aircraft AFIT¢_ Tower _ AOC

1 2 2

2 1 1 1 1 1
3 1 1 1 1

4 4 1 2 2

5 4 7 2 2

6 50 2 2

Sector Change
DeparturefromAirport
Arri_atAirport
CombinalionofscenariosI-4:

1. take-off::e_dl

2. take-off :: land
3. enter :: land

1 4. enter :: exit

Extension of scenario 4, including

1 Sector_ events
Extension of scenario 5, with mulitple

1 aircraft

B-12

Appendix C

FAM 2.0 ModSim III Code Listings

The code listings for the FAM 2.0 program modules run to over 100 pages. Be-

cause of their limited use and volume, they are published separately. The paper

document and the electronic files are available from LMI. An individual or or-

ganization that does not have access to an HP-UNIX platform but does have a

ModSim HI site license can read the electronic files, which are simple text files,

and create their own model running on their platform.

C-1

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public.reporting burden for this collection of infon_ation _ estimated to =,verge 1 hour per response, inckclir_ the time for re_ instructions, Narchlng existing data sources,
gathenng and maintaining the data needed, and completing and reviewing the collection of information. :_eno oommants regarding this burden estimate o¢ any outer aspect of this

cdlection of information, including suggestions fu reducing this burdan, to Washington Headquarters Services, Directorate Io¢ Infom_atlon Operatx_s and Repolls. 1215 Jeffecson Davis
Highway, Suite 1204, Arllngto_, VA 222024302, and Io the Office of Management and Budge(, P=perwock Reduction Project (0704-0188J, Washington, DC 20503

t. AGENCY USE ONLY (Lemve blank) 2. REPORT DATE

April 1998
4. TITLE AND SUBTrTLE

Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0,
Technical Description

6. AUTHOR(S)

Melvin Etheridge, Joana Plugge, Nusrat Retina

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Logisitics Management Institute
2000 Corporation Ridge
McLean, Virginia 22102-7805

9. SPONSORINGI MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

3. REPORTTYPEANDDATESCOVERED

Contractor Report
S. FUNDING NUMBERS

C NAS2-14361
Task 97-03

WU 538-04-14-02

8. PERFORMING ORGANIZATION
REPORT NUMBER

NS703S2

o.SPONSOR,"I..'O_NG
AGENCY REPORT NUMBER

NASA/CR-1998-207657

il. SUPPLEMENTARYNOTES

Langley Technical Monitor: Robert E. Yackovetsky
Final Report

12a,DIS'i'RIB_IO'N//_VAILABILITYSTATEMENT

Unclassified- UnUited

Subject Category 01 Distribution: Nonstandard

Availability: CASI (301) 621-0390

'13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTI()N CODE

The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event
simulation model designed to support analysis of alternative concepts in air traffic management and control.
FAM 2.0 was developed by the Logistics Management Institute (LMI) under task order NS703 of the National
Aeronautics and Space Administration (NASA) contract number NAS2-14,.,'=61.This document provides a
technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make
enhancements or modifications to the model. Those interested in a guide for using the model in analysis should
consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users
Manual.

14. SUBJECT TERMS

airport
air traffic management
air transportation

17, SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGEs

7O

16. PRICE COOE

A04

20. 'LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

29e-102

