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BOUNDARY AND INTERFACE CONDITIONS FOR HIGH ORDER FINITE

DIFFERENCE METHODS APPLIED TO THE EULER AND NAVIER-STOKES

EQUATIONS

JAN NORDSTR(')M * AND MARK H. CARPENTER ¢

Abstract. Boundary and interface conditions for high order finite difference methods applied to the

constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict

and strong stability. The interface conditions are stable and conservative even if the finite difference operators

and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead

to good results for the corresponding nonlinear problems.
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1. Introduction. In many computational problems, low order finite difference methods (second order

or less) are not accurate enough. Examples in which high-frequency components in the solution must be

resolved by using high order finite difference methods (HOFDM) include aeroacoustics, turbulence and

transition simulations, the propagation and scattering of electromagnetic waves, and simulation of reactive

flows at high speeds [1], [2], [3], [4], [5], [6]. The efficiency [7] of HOFDM can be used either to increase

the accuracy for a fixed number of mesh points or to reduce the computational cost for a given accuracy by

reducing the number of mesh points.

The main reason that low order finite difference methods are used in practical calculations is because of

the difficulty that arises for HOFDM near the boundaries of the computational domain. On a Cartesian mesh,

it is quite easy to derive nonsymmetric boundary operators that have high formal accuracy; the difficulty is

to derive highly accurate and stable operators. In [8] and [9] HOFDM are constructed based on the work in

[10] and [11]. In these strictly stable schemes, the growth rates of the analytic and semidiscrete solution are

identical. Strict stability is obtained by constructing discrete operators that satisfy a summation-by-parts

(SBP) rule which mimics the integration-by-parts rule in the continuous case. For calculations over long

times, strict stability is very important beacuse it prevents error growth in time for fixed Ax.

In [12] it was shown that many G-K-S stable [13] (convergence to true true solution as Ax --+ 0) scalar

schemes were not strictly stable. Moreover, many scalar schemes that were both G-K-S stable and strictly

stable exhibit time growth when they are applied to systems of equations. The underlying reason for the

error growth in time caused by the way the mathematical boundary conditions were imposed. An orthogonal

projection operator is used to impose the mathematical boundary conditions in [14] and [15]. In the so called

SAT (simultaneous approximation term) procedure [16], a linear combination of the boundary conditions in

the form of a forcing hmction and the differential equations is solved near the boundary. Both these methods

impose the correct boundary conditions and preserve strict stability.
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Another important concept is strong stability. An approximation is strongly stable if the solution,

including the values at the boundary points, can be estimated in terms of all data in the problem [17]. The

stability estimate in the strongly stable case leads directly to the error estimate if no extra or numerical

boundary conditions are necessary. Stability analysis using the Laplace transform technique leads to strong

stability if the Kreiss condition is satisfied; see [18] and [9] paper IV. Note that strict stability leads to strong

stability, but strong stability does not imply strict stability.

Most investigations regarding HOFDM are done on linear hyperbolic model equations with constant

coefficients on a uniform mesh. However, nonlinear Navier-Stokes calculations on nonuniform meshes have

been performed [19]. One of the conclusions in [19] was that the treatment of the metric derivatives is a

crucial point for nonsmooth meshes. This problem is analyzed in [20] where so called mimetic difference

operators (discrete operators with the same symmetry properties as the continuous operators) are derived.

In [15], strict stability for parabolic and hyperbolic systems in curvilinear coordinates on a single domain

were investigated.

Generating a smooth grid around a complex configuration can be very difficult, if not impossible, and is

often the most time-consuming aspect of the solution procedure. This fact has limited the use of HOFDM in

practical calculations to the small class of simple geometries which can be smoothly mapped onto the unit

cube. In this paper we consider a structured multiblock approach in which each subdomain is diseretized by

using a discrete operator with the SBP property. The subdomains are patched together to a global domain

by using suitable interface conditions. This technique was used in [21], [22] and [23] for Chebyshev spectral

methods.

In [24], stable and conservative interface conditions for HOFDM applied to the scalar advection-diffusion

equation on multiple domains were derived. In each subdomain the step size was constant but significantly

different from that in the adjacent subdomains. Also, the finite difference operators could vary from sub-

domain to subdomain. In this paper we will generalize the results in [24] and extend the analysis to the

one-dimensional constant coefficient Euler and Navier-Stokes equations.

The rest of this paper will proceed as follows. In section 2, some basic definitions are given. In section 3,

the Navier-Stokes equations on conservative, primitive, and characteristic variable form are given. In section

4, the continuous problem is analyzed, while the discrete problem is investigated in section 5. Numerical

experiments are performed in Section 6 and we summarize and draw conclusions in section 7.

2. Definitions. Consider the linear initial boundary value problem

(2.1)
wt = Pw + SF(x,t) ,x E _ ,t > O,

w = 5f(x) ,x_ ,t=o,

LeT = 5g(t) ,x E F ,t > O,

where P is the differential operator and Lc is the boundary operator. The initial function 5f, the forcing

function _F, and the boundary data 5g are the data of the problem; w denotes the difference between a

solution with data f,F,g and one with data f + 5f,F+ 5f,g + 5g. There are many concepts of well posedness,

see [17]. Here we consider the following definition.

DEFINITION 1. The problem (2.1) is strongly well posed if the solution w is unique, exists, and satisfies

/o /o(2.2) Ilwll_,+ Ilwll_.dt<_Kce'7°t{ll_fll 2 + (II_FI[2 + ]l@ll_)dt},

where Kc and 7k may not depend on _F, 5 f ,@. I1" II_, and H" lit are suitable continuous no,_s.



The semidiscrete version of (2.1) is

(2.3)

(wj)_ = Qwj+bFj(t) ,xj c_ ,t kO,

wj = 5fj ,xjc_ ,t=O,,

LDWj = _g(t) ,xj E F ,t >_0,

where Q is the difference operator approximating the differential operator P, 5Fj is the forcing function, 5fj

the initial function, LD the discrete boundary operator where numerical boundary conditions are included,

and (fg the boundary data. It is assumed that (2.3) is a consistent approximation of (2.1).

Closely related to the concept of well posedness is the concept of stability.

DEFINITION 2. The problem (2.3) is strongly stable, if for a sufficiently fine mesh, the solution wj

satisfies

/o /o(2.4) iiwll + ]lwll2dt _ Kde'dtili_fll 2 + (II_FII2 + 11@ll2)dt},

where Kd and _d may not depend on 5Fj, 5fj,bg. II" Ila and II " lit are suitable discrete norms.

DEFINITION 3. The approximation (2.3) of (2.1) is strictly stable if the analytical and discrete growth

rates (see (2.2) and (2.4)) satisfy

(2.5) vd < vc + O(ax),

where Ax is the mesh size.

For later reference we also define some useful matrix operations; see [25].

DEFINITION 4. Let A be a p × q matrix, B be an m x n matrix, and I_ the l x 1 identity matrix, then

(a00 01 )( 00)0 0A®B= " " , Il®B= . . . . .

ap-l,oB ... ap-l,q-lB 0 0 ... B

The p x q block matrix A ® B and the l x 1 block diagonal matrix I1 ® B are called Kronecker products. There

are a number of rules for Kronecker products (see [25]). In this paper we will make use of,

(2.6) (A ® B)(C ® D) = (AC) ® (BD), (A ® B) T = A T ® B T.

The following lemma will be used frequently below; it is a direct consequence of the first rule in (2.6).

L EMMA 1. Let A be an m x m matrix, B be an n x n matrix, A = In ®A and [_ = B®Im, then _iB = JBA.

Proof: The first condition in (2.6) leads to .4/} = (Is ® A)(B ® Ira) = B ® A = (B ® I,_)(I_ ® A) = [_fI.

[]

3. The Euler and Navier-Stokes equations. The one-dimensional constant coefficient Navier-

Stokes equations in primitive (W), characteristic (C), and conservative (Q) variable form are

(3.1) Wt -}-AWx = eBWxx, Ct + ACx = effCxx, Qt + FI = eFV

respectively.With e = 0,equation (3.1)becomes the one-dimensionalconstant coefficientEuler equations.

The overbar isused to denote variableswith a constant state.The relationbetween W, C, Q where W =

(p, U, T) T is

(3.2) C=/_SW, Q=TW



where

( -1/x/_ l/x/2 -V/_/- 1/2")' )
/_ = _ 1/'y 0 -1/x/_ ,

1/x/_ l/x/2 X/7- 1/2_/

o o /g = _/5 pe o ,

o o #/v/,7(_- 1)M&

1 0 0 /
T= _ p 0

e2/(7(7-1))+_2/2 Pit fi/(_(_-l)M 2)

Note that il_/l_T ---/3.

The transformation (3.2) implies that the matrices and fluxes in (3.1) are

(3.3) .3 =
_ p 0 )

e2/_/p _ 1/_/M_ ,

0 ('3'- 1) _2M2

(3.4)
0 0 0 )

/_= 0 (A+2fi)//_ 0 ,

0 0 .),Y_/(Prf)

(3.5)

0 _+_

(3.6) 1 a¢ c_2q_ --ozq_ ,._ = (RR)#(RR)-I =
_-,_ -_¢ o+,_

(3.7) F I = 'TfIW = _._-IQ, pV = T#W_ = _#_-IQ_.

The dependent variables and parameters p,u,T,p,c, Moo,#,A,_,Pr,'f and e are respectively the density,

x,y,z components of the velocity, the temperature, the pressure, the speed of sound, the free-stream Mach

number, the shear and second viscosity, the coefficient of heat conduction, the Prandtl number, the ratio of

specific heats, and the inverse Reynolds number. The notations 0 = (A + 2/2)/_, ¢ = (_/- 1)Y_/(Prfi), a =

V/2/('r- 1) has also been introduced.

4. The continuous problem. In this paper we will consider interface conditions between subdomains.

However, interface conditions are closely related to boundary conditions; therefore, we start with the single

domain problem.



• i

4.1. The continuous single domain problem. To make the presentation self-contained, some results

in [27] are included in this section. Consider the Navier-Stokes equations on characteristic form,

(4.1)

Ct ÷ ACx = eXCxx T F(x,t) ,t_>0 ,-l<x<l,

C = f(x) ,t=0 ,-l<x<l,

L-1C = g-l(t) ,t_>0 ,x-----l,

L+IC ---- g+l(t) ,t_>0 ,x---+l,

where C = (fi_u - p, a(p_2 _ p), fi_u + p) T,o < e < < 1 and L_I, L+I are the boundary operators. For fi > 0,

there is inflow at x -----1 and outflow at x = 1.

4.1.1. Well posedness. Let

;1 2(g, v) = g_Ydx, (g, U) = Ilgll2, Ilgll_= lull=_1 + Igl_=+l
1

denote the L2 scalar product, the L2 norm, and the boundary norm respectively. The energy method applied

to (4.1) leads to

[[CI[ 2 = [CTAC -- 2ecT2cx]_-+I - 2e(Cx, .:_Cx) -t- 2(C, F).

The boundary conditions (see [27] and [22])

(4.2) L-1C--(h+ Ihl)c - _2c_= g-l,
2

L+IC= _ (A_'ADC-6_(.Cx_ = {g+l}i, i= 1,2,(4.3)
g-J /

where ]AI= diag(JA11,IA21,lA31)leadsto

IICll_-- - 2_(c_,2c_) + 2(C,F)

(4.4) - [CT AIC - 2cT g_l]x=_l -- [CT AoC + 2CT g+l]_=+l,

where g+l = (gl, g_,g_ - (2/_)g_)T and

IAll 0 ([All - A1)/2 )
(4.5) Az= IAI, Ao = 0 1_21 0 .

(Im_l- A1)/2 0 IAal

Integration of (4.4) leads to

/0IlCII2 + e_T{2_ (c_, XC_)e-'Ttdt + -_ IICIl_e-_tdt}

2_0T I_0T(4.6) _< e'T(llfl? + _ ]lgll_.e-'Ttdt + _ [[F]J2e-'Ttdt},

where 0 < _ < 1, _ = rain Id_h D = I_,IH,and

_ 1_31-I)_11 IA3I- I:_1
H=diag(H_,l,H_), H_ 1_l+l_31' H3-I,Xal_l)_l"

i i i i

Note that (4.2),(4.3) reduce to the characteristic boundary conditions for the Euler equations as e -+ 0.

Uniqueness follows directly from the estimate (4.6). Existence can be shown by using the Laplace-

transform technique or via difference approximations; see [26] and [28]. Since (4.6) is of the form (2.2), we

can conclude that the following theorem holds.

THEOREM 1. The problem (_.1) with the boundary conditions (,{.2),(,_.3) is strongly well posed.



4.2. The continuous multiple domain problem. In

[-I, O] and [0, i] and focus on the interface problem at x = O.

(4.7)

this section we split the domain [-1, 1] into

The two coupled problems are

U_+AU_ = c)_U_+F(x,t) ,t_>0 ,-l<x<0,

U = f(x) ,t=0 ,-l<x<0,

L-1U = g-l(t) ,t_>0 ,x=-l,

Lo(U-V) = o ,t>_o ,x=O,

(4.8)

Vt+AV_ = ef(v_+F(x,t) ,t>O ,0<x<+l,

V = f(x) ,t=0 ,0<x<+l,

Lo(V-U) = 0 ,t>0 ,x=0,

L+IV = g+l(t) ,t>0 ,x=+l,

respectively. The characteristic variables in the left [-1, 0] and right [0, +1] domain are U and V respectively.

The coupling between (4.7) and (4.8) is given by the operator Lo.

By subtracting (4.1) from (4.7-4.8), by transforming the problem on [0, +1] onto [-1, 0] via the trans-

formation x --* -_, and finally by replacing _ with x, we obtain

(4.9)

Ct+A¢_ = e)_¢_ ,t_>0 ,-l<x<0,

¢ = 0 ,t=0 ,-l<x<0,

L-1U = 0 ,t>0 ,x=-l,

L+IV -_ 0 ,t > 0 ,x = -1,

Lo(U-V) = 0 ,t>O ,x=O,

where

and

(4.1o)

4.2.1.

= 0)¢= 9 v - c ' o -it ' o R '

L-1U-- (/_ + I_-I)O- e2u_,L+19 = {(A 21_1)9 + _2_} ,_= 1,2.2

Well posedness. The energy method applied to (4.9) leads to

I1¢11_ [¢T_¢ T - _=-1= - 2e¢ xox]x=o - 2e(Ox,xcx).

The analysis of the single domain problem implies that the boundary terms at x = -1 are negative semidef-

inite with the boundary operators (4.10). At the interface x = 0, we have

)1 U-FV A 0 0 -eX O+V

(4.11) = 2 (U - 9)_ -eX 0 0 0 (U - T_)_ "

(0+9)_ o -_2 o o (O+#)_

Well posedness for the Euler equations (e ---- O) requires _r - _r = 0 since/k is nonsingular. With that

choice we get

[¢T/_¢ _ 2ecTf(¢x]x=O = _2e0T _(O + V)x = -2e((fls)TO)TB(W1 + W2)x,



_ " r ¸¸ _:, ;r r:_x _ _

where (/_S)-IU = WL, (/_S)-Iv = W R denotes the primitive variables in the left and right domain respec-

tively. The structure of/_ (see (3.4)) and a transformation to the original coordinate system lead to the

following theorem.

THEOREM 2. If Theorem 1 holds and the interface conditions

eD1 (U - V)x -- 0, D1 = 1 a -1

are used, then (4.7) and (4.8) are strongly well posed.

Remark. The problems (4.7) and (4.8) are strongly well posed in the sense that the solutions can be

estimated in ternms of the data in the corresponding one domain problem (4.1).

Remark. The condition (4.12) in primitive variable formulation is

( )(wLwR) (010)eD2 (WL--WR)x =0, D2= 0 0 1 "

5. The discrete problem. Let U,13U be the numerical approximations of the scalar quantities u and

ux respectively. The approximation :DU of the first derivative

T)U : P-1QU, Pux - Qu = PTel, ITel[ -- O(Ax m, Ax n)

satisfies the SBP rule

(5.1) (u, z)v)v = UNVN -- UoVo - (Z)U,V),-

where

(5.2) (U,V)p=UTpv, P=PT, Q+QT=D, D=diag[-1, O,..,O, 1]

and 0 < PminAxI __ P __ pmaxAxI. Operators of the SBP type arise naturally with centered difference

approximations; for examples see [11],[29], [12],[30].

The second derivative can be obtained by applying the first derivative operator twice. Such an ap-

proximation satisfies the SBP rule (5.1) exactly. However, there are drawbacks with such a procedure. A

second derivative formed in that way is unnecessarily wide and inaccurate and can lead to odd-even mode

decoupling. A second derivative operator with the following properties,

(5.3) :D2U = P-1RU, Puxx - Ru = PTe2, Te2 = O(Ax m, Axn),

(5.4) R ----(--ST M + D)S,

was suggested in [24]. The matrix D is given in (5.2); M is positive definite, i.e., UTMU > 0 and 0 <

mminAxI _ M < mmaxAxI.

S is a diagonal matrix with a discrete representation of the first derivative on the first and last rows,

{Su}0 ----{:Du}0 ----ux(xo,t) + Te3, {Su}_ = {T_u}n -_ Ux(Xn,t) q-Te3,



where IT al= o(zxx ) and

800 S01 802 803 . • •

0 1 0

0 1 0
1

S=_x ".. ... ...

0 1 0

0 1 0

• . . 8nn_ 3 8nn--2 8nn--1 8nn

The second derivative defined in (5.3) and (5.4) satisfies a modified SBP rule We have

(U, /)2Y)p : Un {/)V}n - V0{/)Y}0 - (sU)T M(SV).

The notation ITcll, ITs21 = O(Ax m, Ax n) and ITs31 ---- O(Ax r) means that the approximation of the

differential operator is accurate to order m in the interior of the domain, to order n at the boundary and

that the approximation of the boundary conditions is accurate to order r. The relation between the different

orders of accuracy, i.e., m, n, r is discussed in section 5.1.2 below.

Examples of first and second derrivative approximations are given in (A.I)-(A.5) in appendix A. The

approximations are second order accurate in the interiour of the domain and first order accurate at the

boundary. This means that for (A.I)-(A.5) we have m = 2 and n = i.

So far we have considered difference approximations of scalar quantities• The corresponding approxima-

tions for vector quantities are defined by using Kronecker products (see definition 4). The spatial operators

/), I)2 and the matrices that define them are of the form B ®/3 in this paper. As an example, p-i® means

(p-I ® 13)(Q ®/3) -- p-IQ ® I3. In the sequel, that notation is implied.

Let H = H T > 0; for later reference we introduce the notations

(5.5) (U,V)H = UTHV, (U,U)H ---- IIUIl , IIUIl . = lUll=0+ IUl =n

5.1. The discrete single domain problem. We introduce a uniform mesh xi = -1 + iAx, xo =

--1, xn = +1. The finite difference approximation of (4.1) with the SAT technique [16] for boundary condi-

tions is

(5.6)
Ct +/_/)C = c5(/)2C + F

+ P-I{o'-I(LDlC - g-1)e-1 + a+l(LD1C - g+l)e+l},

c(o) = /,

where

(5.7) /) = p-l® ® I3, /)2 = p-1R ® I3,

(5.8) R = Qp-1Q ® I3 or R -_ (--STM + D)S ® I3,

(5.9) /_ ---- I n ® _k, X -_ I n ® X, e-1 ---- (1, ...0) T ®/3, e+l = (0, ...1) T ®/3.

The unknown diagonal matrices a-1 and a+l will be determined below.



5.1.1. Stability. Theenergymethodleadsto
d 2
hT]rcJl_= -c_(_,Q + Q_£)6 + cC_(2R + RT_)C + 2(6, F)_

(5.10) + 2cT a-1 [LD-1c - g-l] + 2cTO'+I [LD1C -- g+l].

The definition of the first derivative operator p-1Q and Lemma 1 leads to

(5.11) --CT (AQ + QT A )C = 6To_.Co -- CTAGn.

The definition of the second derivative operators R ----(-STM + D)S and R = Qp-1Q yields

cT(xR + RT fo C -----2C0)(:DC0 + 2CnXT)C,_

(5.12) - (s6)T (.f( M -}- (X M)T)( s6)

cT(X.R + RT f()C = -260X_)60 + 2CnZDCn

- 2(p-1Qc)Tp_p-1QC,(5.13)

respectively.

By introducing (5.11),(5.12) and (5.13) into (5.10) we get

d

d-t ]]Cl]2 + 2e(DC, fC_'_C)H = [cT_kc - 2ecTxDc]_ -0 + 2(6, F)p

+ 2cTO'-I[LD-]c - g-l]

(5.14) + 2CNToº+1 [LD1C - g+l],

where the scalar products and norms are defined in (5.5) and

R = Qp-1Q =_ H = P,

R = (--STM + D)S => H = (S(p-1Q)-I)T( M + MT
2 )(S(P-1Q)-I)"

D D
The boundary operators L_I, L+I are the discrete versions of (4.2)-(4.3), with one important modification.

In [27] it is shown that the two outflow conditions in (4.3) determine the value of the last row of f(cx in

terms of the in-going characteristic variable and boundary data; i.e., (4.3) implies that

(5.15) {__c2Cx}3 __ )_1 -I)_11Cl -[-gl -(2/or)g2, x : +1.
2

To explicitly incorporate (5.15) into (5.6) we use

(5.16) LD1C { (A -_ ]A])C- c._:/)C}- ----- ----g-l,
o

(5.17) L_IC---- { (/_ - ]/_[) }C - c2/)C = g+l,
i:n

where (g+1)3 is equal to the right-handside of (5.15). The boundary conditions (5.16),(5.17) inserted in

(5.14) yields

d 2
IlClIp= -24z)6, 296). + 2(6, F)p

+ {cT[+/_ + o--l(/+ l/_])]C}/=o+ {cT[--2eX --2eo--iJt']:DC}i=o

+ {cT[--_ + o-+1(_--I_l)]C}i=_ + {6r[+2c2 - 2_o.+12196}i=_

(5.18) _- {oº__16163(_1 -- I_ll)}i=n -[- 2CTg_x -- 2CTg+I .



Thechoice,

(5.19)

leadsto

(5.20)

O'_ 1 = --I3, O'+1 = _T3,

IICIl_= - 24_c, 2_C)H + 2(C,F)p

-- [CT AIC - 2cT g_l]i=O -- [CT AoC + 2CT g+l]i=n,

i.e., a growth rate which is exactly the same as in the continuous case (compare (5.20) with (4.4)).

definitions of AI, Ao are given in (4.5). Integration of (5.20) leads to

[[C[12 -I- e nDT{2e foT(Dc, i_fDC)He--VDtdt + @ fOT ][Cl[2D e--nDtdt}

The

1[(5.21) <-enDT{llfll2 + _D Jlg[J_'_e-n_tdt + _?---D NFII2 e-nDtdt}"

The estimate (5.21) is similar to (2.4) and hence (5.6) is a strongly stable approximation. The problem

(5.6) is also strictly stable (we can choose r/D = r/and 6D = 6, see (4.6),(2.5)). We can summarize the result

in the following way.

THEOREM 3. The approximation (5.6) of the problem (4.1) is both strictly and strongly stable if (5.19)

holds.

5.1.2. Accuracy. The problem describing the deviation Ej = C(xj,t) -Cj(t) between the exact

continuous solution and the discrete approximation given by (5.6) is

Et + ._:DE = e.,_T_2E + T

(5.22) -t- P-I{cr-I(LD_IE)e-1 + Cr+l(LDiE)e+l},

E(0) = 0.

T = T DO + T BC is the truncation error. T °O and T Be comes from the approximation of the differential

operator and the approximation of the boundary conditions respectively. The truncation errors have the

general structure

I °(A_) I °(_(_-_))

o(a_-) 0

(5.23) T D° : : , T Bc = "

O(Ax m) o
O(tx n) O(tx(r-l)

In [31] and [32] it is shown that difference approximations to mixed hyperbolic-parabolic equations

retain the accuracy of the interior scheme (O(Axm)) if a finite number of points (independent of the total

number) are closed with boundary stencils (O(Axn)) that are one order less accurate. A requirement for

that conclusion is that an energy estimate holds, which in turn means that the mathematical boundary

conditions must be approximated to the order of the internal scheme. The discussion above implies that

that n = m - 1 and r = m is necessary.

We will now apply the theory in [31] and [32] to the type of difference approximations considered in this

paper, i.e., where difference operators of the SBP type are used together with a penalty formulation for the

boundary conditions.

10



First, we split E and the T into

/°/gl

(5.24) T _ = • -- O(zX:),

gn-1

0

two parts, i.e., E = E 1 -4-E 2 and T = T 1 + T 2 where

/,°/0T 2 = = O(Ax(m-1)).

0

gn

Next, we use the energy method to estimate E 1. The energy method applied to (5.22) with E, T replaced

by E 1 ,T 1, and the conditions (5.19) leads directly to

IIE1liP -<O(Ax").

Finally we use the Laplace-transform technique to take care of the boundary error and estimate E 2.

So far, the treatment has been general. However, in order to keep the algebraic complexity at a reasonable

level, we now need to simplify and be specific. We will consider the inviscid (e = 0) Euler equations at an

inflow boundary approximated with the second order scheme given by (A.1) and (A.2) in appendix A. The

half-plane problem obtained by Laplace-transforming (5.22) with E, T replaced by E 2, T 2 becomes

g_2 ___/_(_12 _ _0 2) = O. I(A ___ i_l)E02 + Axe0,

(5.25) g_2 ___/_(_2+1 __ _32. 1)/2 = 0, j > 1,

/_2 ___ 0, j--,c¢

where g = sAx. The second and third equations in (5.25) lead to

(1) (0)(0)(5.26) E_=al 0 _+a2 1 _+a3 0 _;_,

0 0 1

_(g/_j) + v/1 + (g/_j)2 ,_j > 0
(5.27) tcj= 0 ,)_j =0 ,

-(g/Aj) -- _/1 + (g/Aj)2 , Aj < 0

where the branch of the square root is the one with positive real part for Re(g) > O. The case when Xj = 0

presents no problem; it only reduces the number of equations in (5.6). In the sequel, we assume )_j _ 0.

The first equation in (5.25) leads to

E(g) = diag(g+Ajaj - (Aj +oJ_" l(Aj + I_Jl)), J -- 1,2,3.(5.2s) E(g)_ = _xh0,

A nonsingular E(g)), i.e.,

(5.29)

and (5.26),(5.27) lead to

det(E(g)) # O, Re(g) > 0,

1_:21 < const.lAx_oh Re(g) > O, j > 0;

i.e., the Kreiss condition is satisfied. Parseval's relation and the fact that E 2 (t) cannot depend on go(T) for

t < T leads to

t l__12dt < coast. IAxgol2dt, j > 0

11
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FIG. 5.1. The mesh close to the interface at x = O.

and finally, since go = (0(Ax),

I]E2Hp <_ (..0(ix2).

It still must be shown that (5.29) holds. The inviscid condition for strict stability Aj + oA_I(Aj + ]Aj [) < 0

(see (5.18) and (5.27)) which implies g+Ajaj = [Aj]X/1 + (_/Ay) 2 _> 0, leads directly to (5.29). The procedure

to estimate the boundary error at an outflow boundary is exactly the same as in the inflow case. We can

summarize the result in the following Theorem.

THEOREM 4. The approximation (5.6) of the problem (4.1) with e = 0 is second order accurate if

Theorem 3 holds and the first derivative operator 7) = p-1Q is given by (A.1) and (A.2) in appendix A.

Remark. The procedure that was exemplified above to prove accuracy in the second order accurate case

is general. The last step where one uses the Laplace-transform technique to estimate the boundary error

E 2 is not necessary i) if the boundary stencils have the same order of accuracy as the internal stencil, i.e.,

n = m and ii) if the approximation of the mathematical boundary conditions is one order more accurate,

i.e., r=m+l.

5.2. The discrete multiple domain problem. A finite difference approximation of the coupled

problems (4.7) and (4.8)is

u,+ AZ)LU = ji_2LU+F+BT o

-_ PLI((TI(Un - Vo) -_- o'V((_LU)n -- (:DRV)o))c L

(5.30) U(0) = f

v, + A_Rv = _2_9_v + F + BTm

+ PRI(O'XR(Vo - U,_) + o'v((vRV)o - (VLU)n))eR

y(o) = f.

The characteristic variables in the left (subscript L) [xo = -1, Xn = 0] and right (subscript R) [x0 = 0, xm =

+1] domains are U and V respectively, see Figure 5.1. BTo, BT_ denote the boundary terms at x = ±1

respectively. Definitions of :D,T)2,/_, X,e-l,e+l are given in (5.7),(5.8),(5.9), and eL = (0,,, 1) T ® 13, eR -:

(1,,, 0) T ® 13.

The values of a-1 and a+l that lead to strict and strong stability for the discrete single domain

problem are given in (5.19). We must still determine at, qy, x y Note that the difference operatorsO"R, O" R •

T)L, T)_,7:)R, _ can be different in the left and right domains and that Axi _ AxR.

5.2.1. Conservation. To calculate the strength and speed of a shock with finite mesh size, one needs

a conservative scheme. Let us start by considering a continuous problem in conservation form, ut + f= --

0, Ix[ _ 1, t > 0. Integration over the domain leads to

u dx+f+l-f_l=O,

12



i.e., the total change of u in the domain is only due to the flux through the boundaries. Note that integration

of f_ over the the domain reverses the differentiation process and leaves information only at the boundaries.

Let F, :DF denote the numerical approximations of f, f_. The discrete SBP derivative satisfies

(5.31) f_ -:Dr -- T_I, :Dr ----p-1Qf, T_I = O(Axr).

Multiplying (5.31) with the operator lTp where lT ---- [1, 1, ...,, 1] ® Ip (f has p components) and observing

that f+l - f-1 +1= f'l f_dx leads to

ITpfx = fx dx + O(Axr).
1

The operator lTp is the discrete integration operator. This operator reverses the process of differentiation,

leaves information only at the boundaries, and converges to the continuous integration operator as Ax --, O.

We can now prove the following theorem.

THEOREM 5. The approximation (5.30) of the problem (._.1) is conservative if

(5.32) a/-a_-A=0, aLV-an V+eX--0,

where the matrices A and X are given in (3.5), (3.6).

Proof: Multiplying (5.30) with 1TpL and lTpR leads to

(l_PLV + l_PRYh = -(I_QLhU + I_QRhV) + c(l_R_2V + I_R.2V)

+(_ - _)(U_ - go) + (_ - _)(VU_ - _Yo)

(5.33) +2(U, F)p L + 2(V, F)p R + ST:Z_°m,

where BT includes the boundary terms at x = ±1. To obtain (5.33) we have made use of Lemma 1.

The inviscid terms can be written

(5.34) ITQL_.U ÷ 1TQRA = -(AU)o ÷ (AU)n - (_.V)o + (_.V)m.

Next, we consider the viscous terms. Both R ----Qp-1Q and R ----(--STM + D)S lead to

I_QLP[_QL$Cu + I_QRP_IQR$:v = - (2DV)o + (2vv)_

(5.35) -- (XT)V)o + (f(I)V)m.

By inserting (5.34) and (5.35) into (5.33), neglecting the boundary terms at x ----±1, letting F ----0, and ap-

plying condition (5.32), we obtain (1TpLU+ 1TpRv)t ----0; i.e., the approximation (5.30) is conservative. []

5.2.2. Stability. We start with the following observation.

Remark. Stability of the one domain problem does not imply stability of the multiple domain problem.

Stability means that the solution can be estimated in terms of the (bounded) boundary data. In a multiple

domain problem, the boundary data are made up of the solution(s) in the other domain(s). Boundedness of

the data would require an a priori assumption.

The main result of this paper is given below.

THEOREM 6. The approximation (5.30) of the problem (_.1) is both strictly and strongly stable if

_2 (1 + a) 2(5.36) a V--at)f, (_/= (__-f_e2-5/3), f_> _- 5>0,
-- 2O_R 2O_L ' --

13



"g:" " .7 ¸ i _ :.'._,:":: : . :

and if Theorem 3 and 5 hold. OLL,O_R denotes the minimal eigenvalue of P if Tl = Qp-1Q and the minimal

eigenvalue of (M + MT)/2 if R = (-STM + D)S. The matrices A,X are given in (3.5),(3.6).

Proof : Strict and strong stability of (5.30) follows if the interface treatment at x ----0 is of a dissipative

nature. For that reason we neglect the terms at the boundaries x = il and use F = 0. The energy method

leads to

d 2
_/(FrVlIp_+ [[VII_R)= --UT (AQL + QT fk)U - vT (;kQR + QT A)V

+_UT(fCRL+ R_fC)U + _VT(fCR. + R_fC)V

+2U[(_(U_ - Yo) + _[ (_V_ - VYo))

(5.37) +2Vo_(_(Vo - v_) + _ (DVo- Dun)).

Equations (5.11),(5.12) and (5.13) lead to

(5.38) --UT (AQL + QT_)u = UoT_Uo - uT_un

(5.39) --VT(AQR q- QTRA)V = VoTAVo - VT AVm

(5.40) uT(f(RL + RT f()U <_ -2UoXDU0 + 2Unf(7)Un - 2aLT)UT f_Dun

(5.41) vT (xRR + RT x)v <_ -2VoXDV0 + 2VmXDVm - 2aRDvT)(DV0.

By inserting (5.38)-(5.41) into (5.37) and neglecting boundary terms at x = =El we obtain

d 2
_(IIUHpL + IIVII_,R)< WTEW,

where

/'/W= V0 E=
7)U= '

l)yo

-(o_ + _)
_v + _Yc

_ay
J--cr V --2aLeX 0 "

o"V -- cX 0 --2aRcX

The problem (5.30) is strictly and strongly stable if E is negative semidefinite. E is an almost full

matrix; to obtain explicit stability conditions, simplifications of E are necessary. The energy method applied

to the continuous multiple domain problem leads to (4.11) which suggests that the variables

I U_-Yo

1 Un-kVo

W = _w = -_ Z)Un-- _Yo

Z)U_+ Z)Vo
-t-I -I 0 0 /

1 +I +I 0 0

o o +I -± '
0 0 +I +I

are of interest. The use of these variables and the conservation conditions in Theorem 5 leads to

E1 = SE_ T =

( 2(2_ - _) o 2_v + _R _R

0 0 0 0 )9_v + _Yc o -(_L + _R)dC (_R - _L)JC "

To show that E1 is negative semidefinite, first assume that the first condition in (5.36) holds. Secondly,

add and subtract the matrix -2132)( to the upper left block in El. The condition for negative semidefiniteness

(see Lemma 1) becomes

- T T
(5.42) yT(2(2a/-- A) + 2fle_:)yl + e[(Y ® R) Y2] [AE_ ®/}][(Y ® R)Ty2] <_ 0,

14



where/_ :/_T)_/_, AE2 ----yTE2y and

-2/9 (1+2(r) 1 )
E2-- (1+2a) --(aLTaR) aR--aL •

1 aR -- aL --(aL + aR)

The first term in (5.42) is nonpositive if the second relation in (5.36) holds. Negative definiteness that implies

AE2 < 0 is obtained if the third relation in (5.36) holds. []

5.2.3. Accuracy. In this section we will consider the accuracy close to the interface. The procedure is

similar to the one used in section 5.1.2 for the single domain problem. The problem describing the deviations

Oj = U(xj,t) - Uj(t) and fly -- Y(xj,t) - Vj(t) between the exact continuous solutions and the discrete

approximations given by (5.30) is

v_ + A_Lu = ,:_v_v + TL
+ PLl(q_(Vn - Vo) + aV((I)LU)n -- (1)RV)o))eL

v(o) = o
(5.43)

Vt + __lPRV = ¢f(:p2V + TR

+ P_l(_(v - u) + _((v_V)o - (V_V)_))e_
Y(O) = O.

For simplicity, we have used the notation U --- 0 and V -- V. Note also that the terms at the boundaries

x ----4-1 are neglected. The treatment at the boundaries x ----4-1 has been discussed in section 5.1.2.

TL and TR are the truncation errors from the approximation of the differential operator and the interface

conditions. The truncation errors have the general structure

TL = o(_) , TR: O(A_) .

O(_x(_-_))

The discussion in section 5.1.2 on the size of the truncation error is applicable also for the interface problem.

Following the procedure in section 5.1.2, see [31],[32], one splits Up the errors in two parts, the first

T 1part ( L, T_) contains the truncation error of the internal scheme, and the second part contains a boundary

contribution (T 2 T 2_ with one order lower accuracy. The structure of these errors arek L_ R]

()()TI = O( Ax'ff ) , T2 : 0 ,

o o(Ag_"-_))

T)_: O(ax_) , T_: 0 .

Also the error is divided into two parts; i.e, we consider U : U 1 + U 2 and V : V 1 J- Y 2 .

By using the energy method, U 1 and V 1 will be bounded by T_ and T 1. This procedure is straightfor-

ward, entirely similar to the one in section 5.1.2 and will therefore not be repeated here. Suffice it to say

that the stability conditions given in Theorem 6 lead to

IIU_IbL-4-IlVlllP__<O(Ax_,)4-O(A_).
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To bound U 2 and V 2 in terms of T 2 and T 2 requires use of the Laplace-transform technique. That analysis

is given in detail below.

Also in this case, we keep the algebraic complexity down by considering the inviscid (e - 0) Euler

equations approximated with the second order accurate approximation given by (A. 1) and (A.2) in appendix

A. The problem for _2 = _ and _2 = _ obtained by Laplace-transforming (5.43) becomes

(5.44)

8LUn "-_ _k(O n -- 0n--1 ) = 20.IL(Vn -- Yo) -]- AXLgL

8LOj + /_(_rj+ 1 -- Uj_I)/2 = 0, j _ n- 1

8Rt -_-/_(t+l -- t--l)/2 _- 0, j ___1,

r)s -_ 0, j-_-oo

-_ o, j--_

where SL = sAxL, SR = sAxR, gL : O(AX(L n-l)) and gR = O(Ax(Rm-1)) •

The last four equations in (5.44) lead to

(5.45) (1) (o)(o)Us = 0._ 0 (nk)j-_ + 0.2 1 (n2)j-_ + 0.3 0 (n3)S-_,

0 0 1

(5.46) (1) (o)(o)Vj = a_ 0 (nl) j + 0._ 1 (n2)S + 0.3 0 (n3)j,

0 0 1

(5.47) _;_ =- 0

-(_/AS) + VII + (s/Aj) 2

,Aj >0

,Aj=O ,

,A s < 0

(5.48)
-(_/Aj) + V/1 + (g/Aj) 2

-(_/_D - vii + (_/_j)_

,Aj >0

,Aj=O ,

,Aj <0

where the branch of the square root is the one with a positive real part for Re(g) > O. Also, in the case in

which Aj = 0 presents no problem, only the number of equations in (5.6) is reduced. We assume As ¢ 0 in

the following.

The coefficients 0.L (0.1, 0.2 0.3 _T and aR 1 2 3 T: L, LI = (0.R, fiR, aR) will be determined by the first two equations

in (5.44). They, together with the first condition in Theorem 5, lead to

an AxR_R

(5.49)
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A nonsingularE(SL, sR) leads via the Kreiss condition and Parseval's relation; (see section 5.1.2) to the

estimate

IIU=llPL_ o(,,x=_,)+ co(,,x_), iiV=llP.__ co(_x_)+ co(,,xx_).

It still must be shown that (5.29) for E, defined in (5.49), holds. A direct calculation using (5.49),(5.47),

and (5.48) leads to

3

bet(E) = U Gj,
j=l

Gj = p,¢12(1+ V/1+ (aL/),5) 2 V/1+ (_R/)_j)2)

+ I_jIV/1+ (_L/)_j)2V/1+ (_R/Aj)2.

Let X/1 + (_L/)_j) 2 = _L + i_L and V/1 + (_R/Aj) 2 ---- _R + i_R where _?L,_R are non-negative. A simple

algebraic test reveals that the imaginary part and the real part of Gy cannot be zero at the same time if

the inviscid condition for stability _. - 2a_ < 0 in Theorem 6 holds. We can summarize the result in the

following Theorem.

THEOREM 7. The approximation (5.30) of the problem (4.1) with e = 0 is second order accurate; i.e.,

IlUllP=+ IIVIIPR_<O(_x_) 4-o(,,xx_),

if Theorem 6 holds and the first derivative operator 7) = p-1Q is given by (A.1) and (A.2) in appendix A.

Remark. Also in the interface case, see section 5.1.2, the procedure to prove accuracy, which was

exemplified above in the second order accurate case, is general. The last step in which one uses the Laplace-

transform technique to estimate the errors U2andV 2 is not necessary i) if the stencils adjacent to the interface

have the same order of accuracy as the internal stencil, and ii) if the interface conditions are one order more

accurate.

5.2.4. The discrete multiple domain problem in conservation form. The discrete multiple

domain problem (5.30) can be transformed to conservative form by multiplying the equations with In+l ®

T(fitS) -1, Im+l ® T(RS) -1, respectively. The result is

(5.50)

Ut + PLI(QLF I -- eRLF V) -_

Vt _- PRI(QRFI -- eRRF V) =-

+ (1/2)p;I[(F[ - F_)
+ (1 + 2_)e(F[ - V,_) - EL"]
-- (1/2)PRI[(F T - FT)
- (1+ 2a)e(FV - FV) + FB],

where F T = F I - eF V and

FB _'_ ((_I3 Jr- £/_TBT-1)(Un - go), F2 : (_I3 -[- _TBT-1)(Vo - Un).

In (5.50), the forcing terms and the boundary conditions at x ± 1 are neglected.

6. Numerical experiments. By making one-dimensional computations using the nonlinear Euler and

Navier-Stokes equations, we can check whether the theoretical conclusions drawn from the analysis of the

constant coefficient problem agree with the results obtained in practice.

In the calculations below, we use the second order scheme (given in (A.1)-(A.5)) and the fourth and

sixth order schemes reported in [24]. To integrate in time, a five-stage fourth-order RK scheme [33] has been

used. Consider the stability condition (5.36). In the calculations below we have used cr = -1/2 and the
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FIG. 6.1. L2 Errors in calculations using the Euler equations.

conservative estimate a/ = A/2 - _I where _ is determined through tests. Often we use _ = 1.0. Equation

(5.32) has been used to determine the other parameters.

First, we consider a sound propagation problem. The computational results, obtained using the nonlinear

Euler equations at Mach number 0.5, are compared with an exact solution of the linearized problem. In

Figure 6.1 The errors for second, fourth, and sixth order schemes using one domain (1Dom), four uniform

domains (4Dom), and eight randomly spaced domains (Rand) are shown. Clearly, the order of accuracy is

independent of the presence and location of the interfaces. Due to the small amplitudes (c< 10 -7) used in

the sixth order cases, we encounter round off, which can be seen as the kink on the sixth order results.

Next, we consider a viscous shock propagation problem at Mach number 2.0 and Reynolds number 150.

The exact solution of the Navier-Stokes equation for this case can be found in [34]. In Figure 6.2, the errors

for second, fourth, and sixth order schemes using eight uniform domains (Unlf) and eight randomly spaced

domains (NonU) are shown. Also in this case, the order of accuracy is independent of the location of the

interfaces.

The curves in the sixth order case are not straight, see Figure 6.2. The curves are formed as a mean

value of 15 simulations where different wave speeds ws from -0.25 to 0.5 are used. The individual results

for each wave speed are given in Tables 6.1 and 6.2. Note: ws = 0 is stationary shock, and we have subsonic

wave speeds for ws < 0.3. The results from uniform grid calculations are shown in Table 6.1; results from

nonuniform grid calculations are given in Table 6.2. The convergence rate between the two grids is listed.

The asymptotic limit approaches -6. Note that the trends are identical between the nonuniform and uniform

18



-3

_r
v

L-

2
,_, -5

o

O
-I -6

-7

Viscous S hock Propagation

__82 _ , _ , I , , , , I , , I I I I I f , I , , , I I , I I , I.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

Log10 (dX)

FIG. 6.2. L2 Errors in calculations using the Navier-Stokes equations.

cases.

In Figure 6.3, the propagating shock (ws ----0.25) for four different times is shown. In this case, the sixth

order scheme and 24 gridpoints were used in each domain.

Finally we will discuss two additional questions concerning accuracy and stability/efficiency. To investi-

gate the influence of interface conditions on accuracy, we made the calculations illustrated in Table 6.3. The

calculations are run to a physical time T ---- 3 at Mach number 2.0 and Reynolds number Re -- 250. The

sixth order SBP scheme is used, and the number of total points is 289 evenly distributed on the interval

-1/2 __ x __ i. The parameter in the study is the number of subdomains, keeping the total number of

intervals constant. The number of subdomains ranges from 1 to 24. For the case of 24 subdomains, the

spatial operator involves 12 boundary stencils (fifth-order) and one sixth-order interior stencil. No further

divisions are possible when using the sixth-order SBP operator. Note that this case is only marginally less

accurate than the single domain case, for which the most points are discretized with sixth-order stencils.

The previous study indicates that there is little loss of accuracy when subdividing the domain. There

are, however, other costs associated with domain subdivision. Introduction of additional interfaces into the

domain changes the resulting eigenspectrum of the semidiscrete operator. In [22], a reduction in the effective

CFL, when using a penalty boundary procedure, was observed. We experience a similar reduction in the

stability envelop as the number of subdomains is increased.

In Table 6.4, a study compares the effective CFL of a singledomain calculation, with those from a

comparable grid divided into eight subdomains. Plotted are the errors, and the maximum stable CFL as a
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wave a: 96 128 192 256 384

speed b:128 192 256 384 512

-0.2500

-0.2000

-0.1500

-0.1000

-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

-4.4460

-3.1743

-1.5344

-3.4447

-4.7040

-3.3093

-5.6203

-2.0256

-4.9470

-7.5646

-4.7062

-5.9644

-4.9922

-3.8538

-0.7633

-4.8735

-4.4858

-4.3626

-6.5479

-5.0035

-4.8410

-6.0257

-3.0687

-6.6065

-5.1708

-5.5734

-3.0715

-6.8890

-5.0159

-5.9798

-2.4389

-5.9665

-4.8856

-4.6413

-2.8759

-6.5253

-5.0488

-5.0116

-3.8456

-6.2051

-5.5378

-6.0670

-3.4963

-6.1815

-5.5773

-5.3015

-5.8286

-5.7257

-5.2375

-4.7217

-7.4052

-5.6487

-5.4075

-5.4064

-6.8111

-5.6289

-5.4018

-5.6418

-4.1048

-6.1886

-5.4589

-6.3515

-4.9988

-5.8033
TABLE 6.1

UNIFORM grid, 8 subdomains, refinemen_ between grids

-5.5610

-5.2825

-5.6489

-6.2999

-5.6641

-5.6608

-6.4191

-5.2130

-5.7503

-5.8898

-5.8041

-6.2484

-5.1898

-5.8163

-7.4170

-5.8160

a:b, 6th order explicit; CFL = 0.2.

wave a: 96

speed b:128

-0.2500 -3.9508

-0.2000 -3.8816

-0.1500 -4.4373

-0.1000 -7.6431

-0.0500 -3.2678

0.0000 -4.8406

0.0500 -7.8667

0.1000 -4.2532

0.1500 -1.4577

0.2000 -4.2245

0.2500 -2.9734

0.3000 -4.2383

0.3500 -4.1902

0.4000 -3.4505

0.4500 -2.7380

0.5000 -4.1279

128 192

192 256

-5.0473 -5.6119

-4.6038 -4.8316

-4.8932 -5.1011

-3.4782 -7.2908

-7.4661 -3.7127

-4.7810 -5.2543

-2.9978 -7.8219

0.6385 -2.8840

-5.1589 -6.7711

-4.6373 -4.5406

-4.0155 -5.4352

-3.2435 -4.3861

-3.5835 -3.6667

-3.4125 -4.8703

-2.9597 -3.6868

-3.7378 -3.8465

TABLE 6.2

NONUNIFORM grid, 8 subdomains

max�rain ratio is 6.47.

256 384

384 512

-5.9785

-6.3334

-5.4514

-5.8925

-6.8562

-5.5640

-4.5670

-3.9126

-5.0271

-5.2829

-5.4569

-5.5030

-4.6596

-5.3783

-4.5673

-4.8352

-4.5714

-6.9001

-5.8566

-5.9310

-6.2791

-5.7606

-4.7133

-6.1144

-5.2246

-5.9054

-5.6145

-5.8943

-5.5589

-6.3374

-4.8980

-6.1756

generated randomly, refinements between grids a:b, 6th or_cx _ C-.,FL = 0.2;
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FIG. 6.3. Viscous shock propagation, a domain with randomly spaced interfaces.

Subdomains LOGloerror

1 -4.527

2 -4.584

4 -4.457

8 -4.643

12 -4.313

16 -4.467

18 -4.342

24 -4.358

TABLE 6.3

Variation of L2 error on number of subdomains with grid density constant.

function of Reynolds number for the two cases. Note that while the errors are nearly equivalent for the two

test cases, the maximum CFL for the single domain case is nearly a factor of two larger.

7. Summary and conclusions. We have analyzed boundary conditions and interface conditions for

the one-dimensional Euler and Navier-Stokes equations. Both the continuous and semi-discrete problems

have been considered.

We have considered summation-by-parts operators and derived strictly and strongly stable boundary
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Re LOGloerror CFLmax LOGloerror CFLmax

1000

900

800

700

600

500

300

200

100

40

20

10

-2.154 O.55

-2.242 0.55

-2.347 0.55

-2.477 0.60

-2.637 0.60

-2.841 0.60

-3.429 0.65

-4.027 0.65

-5.741 0.60

-7.892 0.50

-9.535 0.45

-10.968 0.40

DNC

-2.265 0.30

-2.376 0.30

-2.517 0.30

-2.698 0.30

-2.935 0.30

-3.617 0.30

-4.185 0.35

-5.699 0.35

-7.331 0.20

-8.637 0.20

-10.665 0.18
TABLE 6.4

Variation of CFL number and L2 error with Reynolds number for single and multiple domain cases.

and interface conditions for the Euler and Navier-Stokes equations. We have also considered the question

of accuracy, both in the general case and more specifically for a second order accurate approximation of the

Euler equations.

The interface conditions are stable and conservative even if the finite difference operators and mesh sizes

vary from domain to domain. Numerical experiments which include a sound propagating problem and a

viscous shock propagating problem show that the new conditions lead to accurate and stable results for the

corresponding nonlinear problems also.

It was also shown by numerical experiments that there is little loss of accuracy associated with domain

subdivision. However, the introduction of interfaces into the domain changed the eigenspectrum of the

semidiscrete operator and caused a reduction of the CFL number by approximately a factor of two.

Appendix A. Stencils. We now present a few examples of the specific form of the stencils that have

the SBP property. For more accurate stencils, see [24]. The second order accurate discretization matrix that

approximates the first derivative 7P = p-1Q is

1
(A.1) :D=

-1 0 1

-2 2

22



where

(A.2) P=Ax

1
5

1

1

1
3

Q--!

-I 0 1

-I 1

The second order accurate discretization matrix that approximates the second derivative T)_ = P-1(_ ST M_I_

D)S is

(A.3)

1 -2 1

1 -2 1

where

(A.4)

and

(A.5) M= 1
Ax

2 _1
2

1

1

i -2 3

4 2 2

2 10 10
9 9 9
2_ I0 I__9 --I
9 9 9

--i 2

,D--

-i

-i

-I 2

-i

The matrix M can be shown to be positive definite (and symmetric).

0

1

-1

19 10 2
9 9 9
10 10 2
9 9
2 2 4
9 9 9
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