
NASA/CR-,,_,.....;___ 20823.5

Research institute for Advanced Computer Science
NASA Ames Research Center

Performance Analysis and Portability
PLUM Load Balancing System

of the

Leonid Oliker, Rupak Biswas, and Harold N. Gabow

RIACS Technical Report 98.02 May 1998

To appear in the Proceedings of the Fourth International Euro-Par Conference
University of Southampton_ UK, September 1-4, 1998.

Performance Analysis and Portability of the

PLUM Load Balancing System

Leonid Oliker 1, Rupak Biswas 2, and Harold N. Gabow 3

1 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
_ MRJ, NASA Ames Research Center, Moffett Field, CA 94035, USA
3 CS Department, University of Colorado, Boulder, CO 80309, USA

Abstract. The ability to dynamically adapt an unstructured mesh is a
powerful tool for solving computational problems with evolving physi-
cal features; however, an efficient parallel implementation is rather diffi-
cult. To address this problem, we have developed P[_0M, an automatic
portable framework for performing adaptive numerical computations in

a message-passing environment. PLUM requires that all data be glob-
ally redistributed after each mesh adaption to achieve load balance. We

present an algorithm for minimizing this remapping overhead by guar-
anteeing an optimal processor reassignment. We also show that the data
redistribution cost can be significantly reduced by applying our heuristic
processor reassignment algorithm to the default mapping of the parallel
partitioner. Portability is examined by comparing performance on a SP2,
an Origin2000, and a T3E. Results show that PLUM can be successfully
ported to different platforms without any code modifications.

1 Introduction

The ability to dynamically adapt an unstructured mesh is a powerful tool for effi-

ciently solving computational problems with evolving physical features. Standard
fixed-mesh numerical methods can be made more cost-effective by locally refining

and coarsening the mesh to capture these phenomena of interest. Unfortunately,

an efficient paralIelization of these adaptive methods is rather difficult, primarily

due to the load imbalance created by the dynamically-changing nonuniform grid.

Nonetheless, it is generally thought that unstructured adaptive-grid techniques

will constitute a significant fraction of future high-performance supercomputing.

With this goal in mind, we have developed a novel method, called PLUM [7],

that dynamically balances processor workloads with a global view when perform-

ing adaptive numerical calculations in a parallel message-passing environment.

The mesh is first partitioned and mapped among the available processors. Once

an acceptable numerical solution is obtained, the mesh adaption procedure [8]

is invoked. Mesh edges are targeted for coarsening or refinement based on an

error indicator computed from the solution. The old mesh is then coarsened,

resulting in a smaller grid. Since edges have already been marked for refinement,

the new mesh can be exactly predicted before actually performing the refine-

ment step. Program control is thus passed to the load balancer at this time.

If the current partitions will become load imbalanced after adaption, a repar-
titioner is used to divide the new mesh into subgrids. The new partitions are

thenreassignedamongtheprocessorsin a waythat minimizesthecostofdata
movement.If theremappingcostiscompensatedbythecomputationalgainthat
wouldbeachievedwithbalancedpartitions,all necessarydataisappropriately
redistributed.Otherwise,thenewpartitioningisdiscarded.Thecomputational
meshis thenrefinedandthenumericalcalculationisrestarted.

2 Dynamic Load Balancing

2.1 Repartitioning the Initial Mesh Dual Graph

Repeatedly using the dual of the initial computational mesh for dynamic load
balancing is one of the key features of PlUM [7]. Each dual graph vertex has a

computational weight, Wcomp, and a remapping weight, Wremap. These weights

model the processing workload and the cost of moving the corresponding element

from one processor to another. Every dual graph edge also has a weight, Wcomm,
that models the runtime communication. New computational grids obtained by

adaption are represented by modifying these three weights. If the dual graph

with a new set of Wcomp is deemed unbalanced, the mesh is repartitioned.

2.2 Processor Reassignment

New partitions generated by a partitioner are mapped to processors such that the
data redistribution cost is minimized. In general, the number of new partitions is

an integer multiple F of the number of processors, and each processor is assigned

F partitions. Allowing multiple partitions per processor reduces the volume of
data movement but increases the partitioning and reassignment times [7].

We first generate a similarity measure M that indicates how the remapping

weights Wremap of the new partitions are distributed over the processors. It is
represented as a matrix where entry Mij is the sum of the Wremap values of all the

dual graph vertices in new partition j that already reside on processor i. Various

cost functions are usually needed to solve the processor reassignment problem

using M for different machine architectures. We present three general metrics:

TotalV, MaxV, and MaxSR, which model the remapping cost on most multipro-

cessor systems. Tota:[Y minimizes the total volume of data moved among all the

processors, MaxV minimizes the maximum flow of data to or from any single pro-

cessor, while MaxSl_ minimizes the sum of the maximum flow of data to and from

any processor. Experimental results [2] have indicated the usefulness of these

metrics in predicting the actual remapping costs. A greedy heuristic algorithm

to minimize the remapping overhead is also presented.

TotalV Metric. The TotalV metric assumes that by reducing network con-

tention and the total number of elements moved, the remapping time will be

reduced. In general, each processor cannot be assigned F unique partitions cor-

responding to their F largest weights. To minimize TotalV, each processor i must
be assigned F partitions ji_f, f - 1, 2,..., F, such that the objective function

P F

"_-- E E Mij,_.¢

i=l f=l

is maximized subject to the constraint

ji_r_jk_s, fori_korr_s; i,k=1,2, ,P; r,s-l,2,...,F.

We can optimally •solve this by mapping it to a network flow optimization
problem described as follows. Let G - (V, E) be an undirected graph. G is

bipartite if V can be partitioned into two sets A and B such that every edge

has one vertex in A and the other vertex in B. A matching is a subset of :edges,

no two of which share a common vertex. A maximum-cardinality matching is

one that contains as many edges as possible. If G has a real-valued cost on each

edge, we can consider the problem of finding a maximum-cardinality matching

whose total edge cost is maximized. We refer to this as the maximally weighted

bipartite graph (MWBG) problem (also known as the assignment problem).

When F- 1, optimally solving the Torn:iV metric trivially reduces to MWBG,

where V consists of P processors and P partitions in each set. An edge of weight

Mij exists between vertex i of the first set and vertex j of the second set. If
F > 1, the processor reassignment problem can be reduced to MWBG by du-

plicating each processor and all of its incident edges F times. Each set of the

bipartite graph then has P x F vertices. After the optimal solution is obtained,

the solutions for all F copies of a processor are combined to form a one-to-F

mapping between the processors and the partitions. The optimal solution for

the TotalV metric and the corresponding processor assignment of an example

similarity matrix is shown in Fig. l(a).

The fastest MWBG algorithm can compute a matching in O(IVI 2 log IVI +

IVIIEI) time [3], or in O(1VI1/21EI log(IVIC)) time if all edge costs are integers of

absolute value at most C [5]. We have implemented the optimal algorithm with

a runtime of O(IVI3). Since M is generally dense, IEI _ IYl 2, implying that we

should not see a dramatic performance gain from a faster implementation.

)

New Partitions

:l U i!

........win'unto

New Partitions New Partitions

New Processors New Processors
TotalV moved _ 640 TotalV moved _ 570

MaxV moved -_245 MaxV moved = 255
MaxSR moved = 475 MaxSR moved _ 465

(b) (c)

New Partitions

Fig. 1. •Various cost metrics of a similarity matrix M for P = 4 and F = 1 using
(a) the optimal MWBG, (b) the optimal BMCM, (c) the optimal DBMCM, and (d) our
heuristic algorithms

New Processors New Processors
TotalV moved = 525 TotalV moved = 550
MaxV moved = 275 MaxV moved-- 260

MaxSR moved = 485 MaxSR moved = 470

(a) (d)

MaxV Metric. ThemetricMaxV,unlikeTotalV,considersdataredistribution
in termsof solvinga loadimbalanceproblem,whereit is moreimportantto
minimizethe workloadof themostheavily-weightedprocessorthan to mini-
mizethesumof all theloads.Duringtheprocessof remapping,eachprocessor
mustpackandunpacksendandreceivebuffers,incurremote-memorylatency
time,andperformthecomputationaloverheadofrebuildinginternalandshared
datastructures.Byminimizingmax(a×max(E1emsSent),f_> max(E1 emsRecd)),

where a and fl are machine-specific parameters, MaxV attempts to reduce the to-

tal remapping time by minimizing the execution time of the most heavily-loaded

processor. We can solve this optimally by considering the problem of finding
a maximum-cardinality matching whose maximum edge cost is minimum. We

refer to this as the bottleneck maximum cardinality matching (BMCM) problem.

To find the BMCM of the graph G corresponding to the similarity matrix,

we first need to transform M into a new matrix M'. Each entry Mij represents

the maximum cost of sending data to or receiving data from processor i and

partition j" p p

y--1 x--I

Currently, our framework for the MaxV metric is restricted to F- 1.

We have implemented the BMCM algorithm of Bhat [1] which combines a
maximum cardinality matching algorithm with a binary search, and runs in

O(IVI_/21E I log[V[). The fastest known BMCM algorithm, proposed by Gabow

and Warjan [4], has a runtime of O(([Y[log[V[)_/2[E[).
The new processor assignment for the similarity matrix in Fig. 1 using this

approach with a -/3= 1 is shown in Fig. l(b). Notice that the total number of
elements moved in Fig. l(b) is larger than the corresponding value in Fig. l(a);

however, the maximum number of elements moved is smaller.
MaxSR Metric. Our third metric, HaxSP,, is similar to MaxV in the sense that

the overhead of the bottleneck processor is minimized during the remapping

phase. MaxSR differs, however, in that it minimizes the sum of the heaviest data

flow from any processor and to any processor, expressed as (axmax(ElemsSent)

+ /3xmax(ElemsRecd)). We refer to this as the double bottleneck maximum
cardinality matching (DBMCM) problem. The MaxSR formulation allows us to

capture the computational overhead of packing and unpacking data, when these

two phases are separated by a barrier synchronization. Additionally, the BaxSR

metric may also approximate the many-to-many communication pattern of our

remapping phase. Since a processor can either be sending or receiving data, the
overhead of these two phases should be modeled as a sum of costs.

We have developed an algorithm for computing the minimum BaxSR of the

graph G corresponding to our similarity matrix. We first transform M to a new

matrix M". Each entry Mij contains a pair of values (Send, Receive) correspond-
ing to the total cost of sending and receiving data, when partition j is mapped

to processor i"
P P

H

Mij = {Sij - (a _ Mi_, y =]f=j), R.ij - (_ _ Mzj, x _ i)}.
y--1 x--I

Currently, our algorithm for the MaxSR metric is restricted to F- 1.

Let al,a2,.. , ak be the distinct Send values appearing inM", sorted in

increasing order. Thus, ai < ai+x and k < p2. Form the bipartite graph Gi -

(_ Ei), where V consists of processor vertices u - 1, 2, , P and partition

vertices v 1,2, .,,P, and Ei contains edge (u,v) if Suv < ai; furthermore,

edge (u, v) has weight Ruv:ifit is in El.

For small values of i, graph Gi may not have a perfect matching. Let in, i,

be the:smallest index such that Gimin has a perfect matching. Obviously, Gi has
a perfect matching for all i _>imi, Solving the BMCM problem of Gi gives a

matching that minimizes the:maximum Receive edge weight. :It gives a matching

with MaxSR value at most ai+ MaxV(Gi) Defining

MaxSl_(i)= rain -bMaxV(Gj))

it is easy to see that MaxSR(k)equals the correct value of MaxSE. Thus, our al-

gorithm computes MaxSR by solving k BMCM problems on the graphs Gi and

computing the minimum value MaxSP,(k). However, we can prematurely termi-

nate the algorithm if there exists an i,nax such that aim_x+l > MaxSR(i,nax), since

it is then guaranteed that the MaxSP, solution is MaxSP,(imax).

Our implementation has a runtime of O(IVI 1/2 [El2 log IVI) since the BMCM

algorithm is called IEI times in the worst case; however, itcan be decreased to

O(IEI2). The following is a brief sketch of this more efficient implementation.

Suppose we have constructed a matching A_ that solves the BMCM problem

of Gi for i > imi,. We solve the BMCM problem of Gi+l as follows. Initialize

a working graph G to be Gi+t with all edges of weight greater than MaxV(Gi)

deleted. Take the matching M on G, and delete all unmatched edges of weight

MaxV(Gi). Choose an edge (u, v) of maximum weight in A4. Remove edge (u, v)

from _4 and G, and search for an augmenting path from u to v in G. If no such

path exists, we know that MaxV(Gi) =MaxV(Gi+t). If an augmenting path is
found, repeat this procedure by choosing a new edge (u', v') of maximum weight

in the matching and searching for an augmenting path. After some number of

repetitions of this procedure, the maximum weight of a matched edge will have

decreased to the desired value MaxY(Gi+l). At this point our algorithm to solve

the BMCM problem of Gi+l will stop, since no augmenting path will be found.

To see that this algorithm runs in O(IEI2), note that each search for an

augmenting path uses time O(IE[) and that there are O([E[) such searches. A

successful search for an augmenting path for edge (u, v) permanently eliminates it

from all future graphs, so there are at most [El successful searches. Furthermore,
there are at most [E I unsuccessful searches, one for each value of i.

The new processor assignment for the similarity matrix in Fig. 1 using the

DBMCM algorithm with a -/3- 1 is shown in Fig. l(c). Notice that the MaxSP,

solution is minimized; however, the number of Total7 elements moved is larger

than the corresponding value in Fig. l(a), and more MaxV elements are moved

than in Fig. 1 (b). Also note that the optimal similarity matrix solution for MaxSP,

is provably no more than twice that of MaxV.

Heuristic Algorithm. We have developed a heuristic greedy algorithm that

gives a suboptimal solution to the TotalV metric in O(IEI) steps [7]. All par-

titions are initially flagged as unassigned and each processor has a counter set

to F that indicates the remaining number of partitions it needs. The non-zero

entries of the similarity matrix M are then sorted in descending order. Start-

ing from the largest entry, partitions are assigned to processors that have less

than F partitions until done. If necessary, the zero entries in M are also used.

Oliker and Biswas [7] proved that a processor assignment obtained using the

heuristic algorithm can never result in a data movement cost that is more than

twice that of the optimal TotalV assignment. In addition, experimental results
in Sec. 3.1 demonstrate that our heuristic quickly finds high quality solutions for

all three metrics. Applying this heuristic algorithm to the similarity matrix in

Fig. 1 generates the new processor assignment shown in Fig. l(d).

2.3 Remapping Cost Model

Once the reassignment problem is solved, a model is needed to quickly predict

the expected redistribution cost for a given architecture. Our redistribution al-

gorithm consists of three major steps: first, the data objects moving out of a

partition are stripped out and placed in a buffer; next, a collective communi-
cation distributes the data to its destination; and finally, the received data is

integrated into each partition and the boundary information is consistently up-
dated. This remapping procedure closely follows the superstep model of BSP [9].

The expected time for the redistribution procedure on bandwidth-rich sys-

tems can be expressed as 7 x MaxSR + O, where MaxSR = max(ElemsSent) +

max(ElemsRecd), 7 is the total computation and communication cost to process
each redistributed element, and O is the sum of all constant overheads [7]. This

formulation demonstrates the need to model the MaxSR metric when performing

processor reassignment. By minimizing MaxSR, we can guarantee a reduction in

the computational overhead of our remapping algorithm. To compute 7 and O,

a simple least squares fit through several data points for various redistribution

patterns and their corresponding runtimes can be used. This procedure needs

to be performed only once for each architecture, and the values of 7 and O can
then be used in actual computations to estimate the redistribution cost.

3 Experimental Results

The 3D_TAG parallel mesh adaption procedure [8] and the Pk(JM global load

balancing strategy [7] have been implemented in C and C+÷, with the parallel
activities in MPI for portability. All experiments were performed on the wide-

node SP2 at NASA Ames, the Origin2000 at NCSA, and the T3E at NASA

Goddard, without any machine-specific optimizations.

The computational mesh used in this paper is one used to simulate an acous-
tics wind-tunnel experiment of a UH-1H helicopter rotor blade [7]. Three differ-

ent cases are studied, with varying fractions of the domain targeted for refine-
ment based on an error indicator calculated directly from the flow solution. The

strategies,calledReal_l,Real_2,andReal_3,subdivided5%,33%,and60%ofthe
78,343 edges of the initial mesh. This increased the number of mesh elements

from 60,968 to 82,489, 201,780, and 321,841, respectively.

3.1 Comparison of Reassignment Algorithms

Table 1 presents a comparison of our five different processor reassignment al-

gorithms in terms of the reassignment time (in secs) and the amount of data

movement. Results are shown for the Real_2 strategy on the SP2 with F - 1.

The P MeTiS [6] case does not require any explicit processor reassignment since

we choose the default partition-to-processor mapping given by the partitioner.

The poor performance for all three metrics is expected since PMeTiS is a global

partitioner that does not attempt to minimize the remapping overhead. Previous

work [2] compared the performance of PMeTiS with other partitioners.

Table 1. Comparison of reassignment algorithms for Real_2 on the SP2 with F = 1

Algthm.

P=32

TotalV MaxY MaxSR Reass.
Metric Metric Metric Time

P=64

TotalV MaxV MaxSR Reass.
Metric Metric Metric Time

PMeTiS
MWBG
BMCM

DBMCM
Heuristic

58297 5067 7467 0.0000
34738 4410 5822 0.0177
49611 4410 5944 0.0323
50270 4414 5733 0.0921
35032 4410 5809 0.0017

67439 2667 4452 0.0000
38059 2261 3142 0.0650
52837 2261 3282 0.1327
54896 2261 3121 1.2515
38283 2261 3123 0.0088

The execution times of the other four algorithms increase with the number

of processors because of the growth in the size of the similarity matrix; however,

the heuristic time for 64 processors is still very small and acceptable. The total

volume of data movement is obviously the smallest for the MWBG algorithm

since it optimally solves for the TotalV metric. In the optimal BMCM method,

the maximum of the number of elements sent or received is explicitly minimized,

but all the other algorithms give almost identical results for the MaxV metric.

In our helicopter rotor experiment, only a few localized regions of the domain

incur a dramatic increase in the number of grid points between refinement levels.

These newly-refined regions must shift a large number of elements onto other

processors in order to achieve a balanced load distribution. Therefore, a similar

MaxV solution should be obtained by any reasonable reassignment algorithm.

The DBMCM algorithm optimally reduces MaxSR, but achieves no more than

a 5% improvement over the other algorithms. Nonetheless, since we believe that

the MaxSR metric can closely approximate the remapping cost on many archi-

tectures, computing its optimal solution can provide useful information. Notice

that the minimum TotalV increases slightly as P grows from 32 to 64, while

MaxSP, is dramatically reduced by over 45%. This trend continues as the number

of processors increases, and indicates that PLUM will remain viable on a large

number of processors, since the per processor workload decreases as P increases.

Finally,observethat theheuristicalgorithmdoesanexcellentjob in mini-
mizingall threecostmetrics,in a trivial amountoftime.Althoughtheoretical
boundshaveonlybeenestablishedfortheTotalVmetric,empiricalevidencein-
dicatesthat theheuristicalgorithmcloselyapproximatesbothMaxVandMaxSR.
Similarresultswereobtainedfortheotheredge-markingstrategies.

3.2 Portability Analysis
The top three plots in Fig. 2 illustrate parallel speedup for the three edge-

marking strategies on the SP2, Origin2000, and T3E. Two sets of results are

presented for each machine: one when data remapping is performed after mesh re-

finement, and the other when remapping is done before refinement. The speedup
numbers are almost identical on all three machines. The Real..3 case shows the

best speedup values because it is the most computation intensive. Remapping
data before refinement has the largest relative effect for Real_l, because it has

the smallest refinement region and predictively load balancing the refined mesh

returns the biggest benefit. The best results are for Real_3with remapping before

refinement, showing an efficiency greater than 8.7% on 32 processors.

60 30, 80,
sr_ 11 Origin2000 / I T3E _._

.... Remap after refinement /'_ 24_ _ | -_

--Remap before refineme '60

18 ""

30- 40

a Real 3 /1_...--" __a Real-3 ._

_ 15 __-'"- "'_"'"°'- i' 6 'i.o...........................20o
,--, _1 SP2 [_ _, Origin2000 [I

_ I _',,..,__--_._II00 I00 __'_::'::

0 8 16 24 32 40 48 56 64 0 4 8 12 16 20 24 28 32 0 1(5 32 48 64 S0 9'6 li2 128

Number of processors Number of processors Number of processors

Fig. 2. Refinement speedup (top) and remapping time (bottom) within PLUM on the
SP2, Origin2000, and T3E, when data is redistributed after or before mesh refinement

To compare the performance on the SP2, Origin2000, and T3E more crit-

ically, one needs to look at the actual times rather than the speedup values.
Table 2 shows how the execution time (in secs) is spent during the refinement

and subsequent load balancing phases for the Real_2 case when data is remapped

before the subdivision phase. The processor reassignment times are not presented

since they are negligible compared to other times, as is evident from Table 1.

Notice that the T3E adaption times are consistently more than 1.4 times faster

than the Origin2000 and three times faster than the SP2. One reason for this

performance difference is the disparity in the clock speeds of the three machines.

Table2. Anatomy of execution times for Real_2 on the Origin2000, SP2, and T3E

Adaption Time: Remapping Time Partitioning Time
P 02000 SP2 T3E 02000 SP2 T3E 02000 SP2 T3E

2 5,261 12.06 3.455 3i005 3.440 2.648 0.628 0.815 0.701

4 2.880 6.734 1.956 3.0105 3.440 1.501 0.584 0.537 0.477
8 1.470 3.434 1.034 2.963 3.321 1.449 0.522 0.424 0.359

16 0.794 1.846 0.568 2.346 2.173 0.880 0.396 0.377 0.301
32 0.458 1.061 0.333 0.491 1.338 0.592 0'389 0.429 0.302
64 0.550 0.188 0.890 0.778 0.5740.425

128 0.121 1.894 0.599

Another reason is that the mesh adaption code does not use the floating-point

units on the SP2, thereby adversely affecting its overall performance.

The bottom three plots in Fig: 2 show the remapping time for each of the

three cases on the SP2, Origin2000, and T3E, In almost every case, a significant

reduction in remapping time is observed when the adapted mesh is load balanced

by performing data movement prior to refinement. This is because the mesh

grows in size only after the data has been redistributed. In general, the remapping
times also decrease as the number of processors is increased. This is because

even though the total volume of data movement increases with the number of

processors, there are actually more processors to share the work. The remapping
times when data is moved before mesh refinement are reproduced for the Real_2
case in Table 2 since the exact values are difficult to read off the log-scale.

Perhaps the most remarkable feature of these results is the peculiar behav-

ior of the T3E when P _ 64. When using up to32 processors, the remapping

performance of the T3E is very similar to that of the SP2 and Origin2000. It

closely follows the redistribution cost model given in Sec. 2.3, and achieves a

significant runtime improvement when remapping is performed prior to refine-

ment. However, for 64 and 128 processors, the remapping overhead on the T3E

begins to increase and violates our cost model. The runtime difference when data

is remapped before and after refinement is dramatically diminished; in fact, all

the remapping times begin to converge to a single value! This indicates that the

remapping time is no longer affected only by the volume of data redistributed

but also by the interprocessor communication pattern. One way of potentially

improving these results is to take advantage of the T3E's ability to efficiently

perform one-sided communication.

Another surprising result is the dramatic reduction in remapping times when

using 32 processors on the Origin2000. This is probably because network con-

tention with other jobs is essentially removed when using the entire machine.

When using up to 16 processors, the remapping times on the SP2 and the Ori-

gin2000 are comparable, while the T3E is about twice as fast. Recall that the

remapping phase within PLUM consists of both communication and computa-
tion. Since the results in Table 2 indicate that computation is faster on the

Origin2000, it is reasonable to infer that bulk communication is faster on the
SP2. These results generally demonstrate that our methodology within PLUM

iseffectiveinsignificantlyreducingthedataremappingtimeandimprovingthe
parallelperformanceof meshrefinement.

Table2alsopresentsthePMeTiSpartitioningtimesfor _eal_2onall three
systems;theresultsforReal_landReal.3arealmostidenticalbecausethetimeto
repartitionmostlydependsontheinitial problemsize.Thereis,however,some
dependenceonthenumberof processorsused.Whentherearetoofewproces-
sors,repartitioningtakesmoretimebecauseeachprocessorhasabiggershareof
thetotalwork.Whentherearetoomanyprocessors,anincreasein thecommu-
nicationcostslowsdowntherepartitioner.Table2demonstratesthat PMeTiS
isfastenoughto beeffectivelyusedwithinourframework,andthat PktJMcan
besuccessfullyportedto differentplatformswithoutanycodemodifications.

4 Conclusions

In this paper, we verified the effectiveness of our PLUM load balancer for adap-
tive unstructured meshes on a helicopter acoustics problem. We developed three

generic metrics to model the remapping cost on most multiprocessor systems.

Optimal solutions for these metrics, as well as a heuristic approach were imple-
mented. We showed that the data redistribution overhead can be significantly

reduced by applying our heuristic processor reassignment algorithm to the de-

fault mapping given by the global partitioner. Portability was demonstrated by
presenting results on the three vastly different architectures of the SP2, Ori-

gin2000, and T3E, without the need for any code modifications. Results showed

that, in general, PLUM will remain viable on large numbers of processors. How-
ever, our redistribution cost model was violated on the T3E when 64 or more

processors were used. Future research will address the improvement of these
results, and the development of a more comprehensive remapping cost model.

References

1. Bhat, K.: An O(n _'5 log_ n) time algorithm for the bottleneck assignment problems.
AT&T Bell Laboratories Unpublished Report (1984)

2. Biswas, R., Oliker, L.: Experiments with repartitioning and load balancing adaptive
meshes. NASA Ames Research Center Technical Report NAS-97-021 (1997)

3. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34 (1987) 596-615
4. Gabow, H., Tarjan, R.: Algorithms for two bottleneck optimization problems. J.

of Alg. 9 (1988) 411-417
5. Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems. SIAM J.

on Comput. 18 (1989) 1013-1036
6. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular

graphs. University of Minnesota Technical Report 96-036 (1996)
7. Oliker, L., Biswas, R.: PLUM: Parallel load balancing for adaptive unstructured

meshes. NASA Ames Research Center Technical Report NAS-97-020 (1997)

8. Oliker, L., Biswas, R., Strawn, R.: Parallel implementation of an adaptive scheme
for 3D unstructured grids on the SP2. Springer-Verlag LNCS 1117 (1996) 35-47

9. Valiant, L.: A bridging model for parallel computation. Comm. ACM 33 (1990)
103-111

10

User: oliker

Date: Tue May 11 14:04:36 2000

For:
Date:
Creator:

Job No:
Emulation:

Submit queue:
Submitted:
Started:

oliker

Tue May 12 12:13:46 PDT 1998
dvipsk 5.66a Copyright 1986-97 Radical Eye Software (www.radical
eye.corn)

155
postscript
IF 1 / Ethernet / UHS
Tue May 11 14:04:36 2000
Tue May 11 14:04:36 2000

QMS 3225 Print System QMS3

User: oliker

Date: Wed Apr 28 19:14:55 2000

For:
Date-

Job No:
Emulation:

Submit queue"
Submitted:
Started:

oliker
Wed Apr 29 17:31" 19 PDT 1998

159

pcl5
IF 1 / Ethernet / UHS
Wed Apr 28 19:14:55 2000
Wed Apr 28 19:14:55 2000

QMS 3225 Print System QMS3

