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ABSTRACT

As part of the International Space Station (ISS) Trace

Contaminant Control Subassembly (TCCS) development, a

performance test has been conducted to provide reference data
for flight verification analyses. This test, which used the U.S.

Habitation Module (U.S. Hab) TCCS as the test article, was

designed to add to the existing database on TCCS performance.

Included in this database are results obtained during ISS devel-

opment testing; testing of functionally similar TCCS prototype
units; and bench scale testing of activated charcoal, oxidation

catalyst, and granular lithium hydroxide (LiOH). The present

database has served as the basis for the development and vali-
dation of a computerized TCCS process simulation model. This

model serves as the primary means for verifying the ISS TCCS

performance. In order to mitigate risk associated with this veri-

fication approach, the U.S. Hab TCCS performance test pro-
vides an additional set of data which serve to anchor both the

process model and previously-obtained development test data to
flight hardware performance. The following discussion provides

relevant background followed by a summary of the test hard-

ware, objectives, requirements, and facilities. Facility and test
article performance during the test is summarized, test results

are presented, and the TCCS's performance relative to past test

experience is discussed. Performance predictions made with the

TCCS process model are compared with the U.S. Hab TCCS
test results to demonstrate its validation.

BACKGROUND

In the early 1960s, spacecraft air quality control mainly
provided for odor control. Since that time, development of a

TCCS suitable for supporting long duration space travel by hu-

mans has moved beyond basic odor control to a system-level
approach for specifying and designing spacecraft contamination

control systems. This development process is responsible for

the TCCS design selected for deployment onboard the ISS. In
addition, useful design and verification tools for TCCS proc-

esses have been developed. A summary of the ISS TCCS design
and process simulation tool development is provided by the

following discussion in addition to a brief summary of past

TCCS testing.

TCCS DEVELOPMENT HISTORY - Air quality control

onboard spacecraft has been a concern since space travel began.

During the Mercury, Gemini, and Apollo programs, contamina-

tion control systems were simple and relied upon physical ad-

sorption by activated charcoal. These systems were designed

primarily for odor control.[ 1 ]
Unfortunately, expendable activated charcoal beds de-

signed solely for odor control did not fully address the chal-

lenge of spacecraft cabin atmospheric quality. To address this
challenge, several studies were conducted between 1965 and
1970 by Lockheed Missiles and Space Co, Inc. (LMSC) and the
Hamilton Standard Division of United Aircraft Co. to investi-

gate conceptual trace contaminant control system designs and
advanced regenerative integrated life support system designs for

spacecraft.[2-6] As a result of these studies, a system utilizing

both activated charcoal adsorption and catalytic oxidation was

established as the principle trace contaminant control system

design approach for long duration space missions.
Between 1968 and 1975, LMSC conducted additional work

on high temperature catalytic oxidation and activated charcoal

adsorption which led to the development of a pre-prototype
TCCS design.[7, 8] By 1975, a prototype contamination control

system had been built and tested by LMSC.[9] This prototype

design is the basis for today's ISS TCCS.

ISS TCCS DESCRIPTION - The ISS TCCS is comprised

of an activated charcoal bed, a high temperature catalytic oxi-
dizer (HTCO), a granular lithium hydroxide (LiOH) bed, a

blower, a flow meter, and an electrical interface assembly. Fig-

ure 1 shows a simplified process flow schematic of the TCCS
and figure 2 shows a view of the flight hardware configuration.

Trace chemical contaminants are removed from the ISS

cabin atmosphere by circulating air through the charcoal bed to
remove high molecular weight contaminants and ammonia.

More volatile, low molecular weight contaminants such as
methane, hydrogen, and carbon monoxide are removed by the
HTCO.

The HTCO is comprised of three primary parts -- a recu-

perative heat exchanger, an electric heater, and a catalyst bed. It

is designed to provide a high single pass methane oxidation
efficiency. The heat exchanger assembly preheats the air as it

enters the HTCO. Further heating is provided by the heater



element.Finalairheatingoccursinthecatalystbedviaradia-
tion,conduction,andliberationof theheatofreactionfromthe
oxidizedcontaminants.

TheLiOHbed,locateddownstreamoftheHTCO,removes
anyacidicoxidationproductsthatmaybeproducedintheevent
thathalocarbonsbreakthroughthecharcoalbed.It granular
LiOH.

Theblowerandflowmetermaintainasteadyflowrateof
throughthesystemthatissufficienttomaintainindividualtrace
contaminantconcentrationsbelowtheirrespectivespacecraft
maximumallowableconcentration(SMAC).Thetotalflow is

passed through the charcoal bed while only a portion flows

through the HTCO and LiOH bed. The split flow combines
downstream of the LiOH bed before exhausting from the TCCS.

Three sample ports are provided at the charcoal bed inlet, char-
coal bed outlet, and the LiOH bed outlet.[10]

TCCS PERFORMANCE VERIFICATION

Verification of the TCCS's contamination control performance

has been based upon extensive testing and process model de-

velopment. The following discussion provides a summary of

past TCCS performance testing, the successful development of
a TCCS process model, and the approach selected for verifying

the 1SS TCCS performance before flight.
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Figure 1. TCCS Process Flow Diagram
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Figure 2. ISS TCCS Flight Configuration

PERFORMANCE TESTING EXPERIENCE - Perform-

ance data for functionally similar TCCS units having a ISS

flight-like hardware geometry have been collected beginning
with the first prototype built by LMSC. In late 1973, the first

integrated prototype testing, during which the TCCS was chal-

lenged with a contaminant load, began. This test continued for

241 days and was completed in mid-1974. A follow-on test
lasting 373 days was conducted between late 1974 and late

1975 to investigate high temperature catalyst poisoning. This
test used the same catalyst batch that had been used in the 241-

day test. Both of these tests successfully determined that the

prototype TCCS design could maintain atmospheric contamina-
tion concentrations below specified maximum allowable lev-

els.[l 1]
Additional TCCS prototype testing conducted between

1985 and 1997 by NASA/MSFC has confirmed the results ob-

served during the earlier LMSC tests. Included in the
NASA/MSFC space station development test series are 4 inte-

grated atmosphere revitalization tests, a 749-day life test, and a
system-level contaminant challenge test.[ 12-18]

Also in support of space station development, functional

pre-prototype and development TCCS units were built by
LMSC. The pre-prototype unit was successfully tested by Boe-

ing as part of a predevelopment atmosphere revitalization sub-

system test. The development unit was tested successfully for

45 days by LMSC.[19, 20] Data collected during the LMSC

development test were used as the most recent TCCS process
model validation basis.

A substantial amount of bench scale performance testing of

activated charcoal, catalyst, and LiOH has been conducted as

part of the TCCS development.J21-25] Data from these tests
have been used to refine the TCCS process model.

PROCESS MODEL DEVELOPMENT - In addition to

TCCS hardware concepts, computerized techniques for design-

ing and modeling the TCCS process were also under develop-
ment between 1968 and 1975. A key product of this

developmental work was establishing the adsorption potential

theory as a design and performance simulation tool for fixed
activated charcoal beds.[26] Its use for charcoal bed design and

process modeling was based upon work reported by W. K.
Lewis in 1950. This work demonstrated the utility of the ad-

sorption potential theory for predicting adsorption isotherms

without collecting large quantities of adsorption equilibrium
data. [27] Such a tool was found to be very useful because it

can lower the cost of design and development by reducing the

need for expensive integrated TCCS testing.

Based upon this early work, the first generation of the
Trace Contaminant Control Simulation Computer Program

(TCCS-CP) was developed and released in 1975. This early
version of the TCCS computerized process model was used by

LMSC to analyze prototype TCCS design performance. [28, 29]

By early 1977, LMSC developed a more complex, system-
level version of the TCCS-CP. Spacelab contamination control

system test data were used to validate this version of the process
model.[30, 31 ] Comparisons between test data and performance

predictions made by the process model showed good correlation
in most cases.J32, 33] In late 1977, a modified version of the
TCCS-CP was released as a generalized contamination control

system model.J34] Between 1977 and 1986, this version, and
slight variations of it, were used by the NASA/MSFC and



McDonnellDouglasSpaceSystemsforSpacelab mission pre-
flight contamination control system performance analyses.

Between 1986 and 1995, improvements were made to the

TCCS-CP by both LMSC and NASA/MSFC. During this time,

the TCCS-CP served as a primary engineering analysis tool for

the Spacelab Program and was becoming increasingly impor-

tant in the development of the ISS TCCS. LMSC made im-

provements that allowed for more user-friendly input data

manipulation, improved runtime user interfaces, and program
execution on a personal computer.J35]

Jointly, LMSC and NASA/MSFC developed enhanced in-

put and output data manipulation capabilities, improved the
routine for humidity condensate absorption, included catalytic

oxidation poisoning effects relating to methane removal, and

changed the basic charcoal loading equations based upon the

latest bench-scale performance tests. The resulting process

model is designated as the TCCS-CP Version 8.1.[36-38] This
version of the TCCS-CP has been used extensively by both the

Spacelab and ISS programs as a process simulation tool.
TCCS VERIFICATION APPROACH FOR ISS - The ISS

Program chose to verify TCCS performance via analysis using
the TCCS-CP Version 8.1. This approach, while less expensive,

deviates from the traditional approach of verification by testing.

Therefore, it contains an element of risk even though the proc-

ess model has been validated against integrated TCCS devel-

opment testing data.[39]

To address the perceived risk of this approach, the TCCS
Performance Confirmation Test (TPCT) was defined. The

TPCT was designed to provide the necessary data that would

further validate the TCCS-CP, supplement the existing TCCS

test database, and tie the process model's validation and previ-

ous development test results to flight hardware performance.
Although the TPCT is not a formal part of the TCCS de-

sign verification process, the data collected during its conduct

serve ihe important function of minimizing the perceived risk
associated with hardware verification by analysis.

PERFORMANCE TEST OBJECTIVES

The TPCT was designed to confirm the ability of the ISS

U.S. Hab TCCS flight unit to control a specified contamination

load at representative cabin environmental conditions. Specific

objectives of the TPCT are the following:

1. To challenge the TCCS with a trace contaminant load

representative of the ISS to confirm performance.
2. To obtain contaminant concentration versus time data

for use in process model validation.

3. To compare the performance of the TCCS flight unit

with performance observed during development tests.

PERFORMANCE TEST DESIGN

In order to properly confirm the U.S. Hab TCCS perform-
ance, the trace contaminant load and test volume atmospheric

conditions must be defined. These parameters are central to the

test design. The test volume atmosphere was required to be

maintained between 18 °C (65 °F) and 27 °C (80 OF). Relative

humidity was required to be 50 :t: 5%. To prevent inward leak-

age of laboratory atmosphere into the test volume, it was re-
quired that the test volume pressure be maintained at a
minimum of 3 mm Hg over the prevailing barometric pressure.

To achieve the primary test objectives, a trace contaminant

load based upon ISS design specifications was defined. This

load is based upon the combined equipment offgassing from
75,000 kg of spacecraft hardware and the metabolic production

of 5.25 crewmembers. The metabolic loading is based upon 4

people plus a 1.25 human metabolic equivalent for laboratory

animals. Equipment and metabolic rates used to determine the

test injection rates are listed by table 1. The injection rates de-
rived from the table ! equipment and metabolic rates were then

adjustment to accommodate up to 0.23 kg/day (0.5 lb/day) out-
ward atmospheric leakage assuming that the TCCS provides
100% removal efficiency.J40, 41] The final test injection rates

along are listed by table 2.
Seven of the compounds included in the test load were con-

sidered to be of most interest. They are ethanol; di-
chloromethane; 1,1,2-trichloro- 1,2,2-trifluoroethane (Freon

113); methane; acetone; carbon monoxide; and ammonia. These

7 compounds represent 63% of the total ISS design specifica-
tion trace contaminant load. They also include the primary

TCCS design drivers- dichloromethane, anamonia, methane,
and carbon monoxide. Of the additional compounds listed in

table 1, methanol is of most interest because of its potential for

rapid activated charcoal bed breakthrough. The total test load
represents 87.5% of the total ISS design specification load. This

loading was also deemed manageable for the in-line gas sample

analysis system to be used during the TPCT.

According to ISS performance specifications, the TCCS
must maintain each individual contaminant's concentration be-

low 90% of its respective SMAC. Table 2 also includes a listing

of SMACs for the test compounds.

Table 1. ISS Equipment Offgassing and Metabolic Rates

COMPOUND

ethanol

methanol

2-propanol

n-butanol

toluene

xylene

chlorobenzene

dichioromethane

l,l,2-trichloro- 1,2,2-
trifluoroethane

trichlorofluoromethane

methane

acetone

2-butanone

4-methyl-2-pentanone

cyclohexanone

carbon monoxide

ammonia

EQUIPMENT
RATE

(mg/kg-day)

7.85 × 10 -3

1.27 × 10 -3

3.99 × 10 -3

4.71 x 10 -3

METABOLIC
RATE

(mg/man-day)

4

1.5

1.33

0

0

1.54 × 10 -3 0

2.15 × 10-3 0

1.89 × 10-2 0

1.41 × 10-3 0

6.39 × 10-4 160

3.62 × 10-3 0.2

6.01 × 10-3 0

1.41 × 10-3 0

6.62 × 10-4 0

2.03 × 10-_ 23

8.46 × 10-5 321



TEST CONFIGURATION SUMMARY Table 2. Performance Test Contaminant In ection Rates

The following summary provides a brief description of the

facility, the integration of the test article with the facility

and its control, and the analytical methods employed during the
test. Detailed information on the test facility, test conduct, and

test article restoration planning is provided by Reference 42.
FACILITY DESCRIPTION - The Trace Contaminant

Control Test Facility located in the Boeing-Huntsville Life Sci-

ences Technology Center (LSTC) was used for conducting the

TPCT. This facility was previously used to test a flight-

qualifiable Russian Mir TCCS.[431
The test facility is comprised of a rack to control system

atmospheric temperature, humidity, and chemical contaminant

injection; a 9 m 3 stainless steel mixing chamber; an in-line gas

chromatograph/mass spectrometer (GC/MS) with a pre-
concentrator; and an in-line Fourier transform infrared (FTIR)

spectrometer. These major components are interconnected by

5.1 cm (2-inch) electro-polished stainless steel tubing to create
a closed air loop. The components were configured as shown by

figure 3. The flight unit TCCS is mounted in its own transpor-
tation fixture. It is connected to the closed air loop via approved

adapters.
The TCCS receives air from the system after it has been

conditioned for temperature, humidity, and contaminant load.

After processing by the TCCS, the air is directed back to the
mixing volume. The entire system is a closed loop.

The test system is monitored for airflow, temperature,

pressure, relative humidity, and contaminant load. Four sample

ports are used to monitor the chemical composition of the test
atmosphere. These ports are located at the TCCS inlet, down-
stream of the activated charcoal bed, downstream of the LiOH

bed, and at the TCCS exhaust.

COMPOUND

ethanol*

methanol

2-propanol

n-butanol

toluene

xylene

chlorobenzene

dichloromethane*

1,1,2-trichloro- 1,2,2-

trifluoroethane*

trichlorofluoromethane

methane*

acetone*

2-butanone

SMAC
(mg/m j)

2,000

9

150

40

60

220

46

10

400

560

3,800

50

30

4-methyl-2-pentanone 140

cyclohexanone 60

carbon monoxide* 10

ammonia* 7

INJECTION
RATE

(mg/h)

25.4

4.3

12.5

15.0

6.2

11.5

4.8

6.7

59.1

4.4

37.0

11.4

18.8

4.4

2.1

11.4

70.5

*Primarytest compoundscomprising 63% of the ISS specification load.
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Figure 3. Simplified Test Facility Layout



CONTAMINANTINJECTION- Bothgaseousandliquid
phasechemical contaminants were injected into the test cham-
ber atmosphere during TCCS performance testing. Three meth-

ods were employed during the test. The following discussion

provides a summary of each method.

Gaseous Contaminant Injection - Methane and carbon

monoxide gases were supplied from separate pressurized bottles

containing the following certified percentages of each contami-
nant:

1. 14.98 + 0.01% methane/balance nitrogen

2. 4.00 + 0.08% carbon monoxide/balance air

Methane and carbon monoxide injection was controlled by in-

dividual mass flow controllers with upstream pressure regula-
tion.

Liquid Contaminant Injection - Liquid contaminants were
injected as a single mixture. A syringe pump was programmed

to pump the liquid mixture from a 10 mL glass vial to an injec-

tion port located on a heated bypass tube. The contaminants
immediately evaporated upon injection and air flowing through

the bypass tube swept them into the mixing chamber. The air

from the mixing tank was then directed to the TCCS. The liquid

contaminant vials were replaced daily, from Monday through

Friday, to provide fresh stock solution during the data gathering

phase of the test.
Ammonia Injection - Ammonia was injected continuously

by a KIN-TEK Model 585-C precision gas standard generator.

This unit dispensed a stable flow of pure ammonia directly into

the mixing chamber. The permeation tube was refilled periodi-

cally to maintain a constant ammonia injection rate for the du-
ration of the data collection period.

ANALYTICAL METHODS - Atmospheric sampling and

analysis methods used during the test are the following:

I. Automated sample collection followed by analy-

sis using in-line GC/MS and FTIR instruments.

2. In-line sample collection using gas detector
tubes.

3. Sample collection into evacuated cylinders fol-

lowed by off-line analysis by GC/MS and gas
chromatography (GC) instruments.

The in-line GC/MS system was comprised of a Hewlett
Packard 5890 Series II GC and a Hewlett Packard 4972 mass

spectrometer system (MS). The GC/MS was preceeded by an
Entech Model 7000 preconcentrator. The automated GC/MS

system collected and analyzed one sample per hour.
The FTIR system was a MIDAC Model 12001 containing a

20-meter constant volume gas cell that utilized a 0.5 cm mer-

cury-cadmium-telluride (MCT) detector. The FTIR scan time

per sample was approximately 3 minutes. The FTIR, like the

GC/MS system, was completely automated.
Additional in-line analysis for ammonia and carbon mon-

oxide was conducted as needed using detector tubes manufac*

tured by Drager. This technique was used to verify
concentration order of magnitude only.

Grab samples were collected periodically using evacuated

cylinders to check in-line analysis results. These samples were
analyzed off-line using several techniques. They included
GC/MS, GC combined with a flame ionization detector (FID)

for methane analysis, and GC combined with either a thermal

conductivity detector (TCD) or a helium ionization detector

(HID) for carbon monoxide analysis.
INSTRUMENTATION AND CONTROL - The Command

and Data Handling Subsystem (C&DH) processes commands
and monitors TCCS process parameters onboard the ISS via a

level 3 multiplexer/demultiplexer (MDM). This hardware is in

high demand by other agencies and, therefore, was not available
for the Tt_T. This was not a problem because the purpose of

the test was to measure contaminant removal performance, not

integrated system command and control. Therefore, the control

system used during flight hardware acceptance testing was used.
To simulate the function of the level 3 MDM, a VAX sys-

tem configuration was used. In this configuration, a Sorensen

power supply provided 120-volts direct current (VDC) to the
TCCS. Interface control and TCCS mechanical and electrical

operational parameters were monitored with an Application
Generator (AG) VAX Command and Control System. The AG

VAX system provided an interactive TCCS animated display to
interface with the test article. Key parameters such as HTCO

temperature and flow rate, blower speed, and electrical power
were monitored via the AG VAX animated display. These pa-

rameters were logged into a data acquisition system (DAS) da-

tabase to facilitate post-test data reduction and analysis.

PRETEST PERFORMANCE ANALYSIS

A pretest TCCS performance analysis was conducted using

the TCCS-CP Version 8. I process model. This analysis served

to bound the expected TCCS performance and to provide a pre-

liminary performance baseline to which the actual performance
observed during the test could be compared.J44] A brief sum-

mary of the pretest analysis approach and results is provided by

the following discussion.
PRETEST ANALYSIS APPROACH - The pretest analy-

sis employed two data analysis techniques. The first, called
variables search, was used to determine the most significant

process and simulation variables.[45] Those variables that most

directly affect activated charcoal loading were investigated us-

ing this technique. Based upon the variables search analysis, the
most significant variables were found to be contaminant liquid
molar volume, TCCS flow rate, and relative humidity.

A final set of performance simulations were then conducted

using design of experiments/robust design (DOE/RD) tech-

niques.J46-48] The set of simulations conducted using the
DOE/RD approach allowed for a pretest prediction of the 95

percent confidence interval range for each contaminant's con-
centration based upon the allowable variations in the test cham-

ber atmosphere and TCCS process operations.
PREDICTED PRETEST PERFORMANCE - Based upon

the series of pretest process simulations, it was predicted that
methanol, dichloromethane, and ethanol would be the contami-

nants that would most likely saturate the charcoal bed. Metha-

nol breakthrough was predicted as early as 9 hours and as late
as 26 hours into the test. Dichloromethane breakthrough was

predicted as early as 56 hours and as late as 394 hours after test
startup. Breakthrough of ethanol may be observed as early as
41 ! hours and as late as 927 hours after test startup. Predicted

nominal concentrations and the range associated with the pre-

test analysis 95% confidence interval are summarized by Table
3.



Table 3. Pretest Performance Prediction Summary

PREDICTED NOMINAL

COMPOUND RANGE LEVEL

(mg/m 3) (mg/m _)

ethanol 1.4 - 2.1 1.7

methanol 0.78 - 1.17 0.94

2-propanol 0.68 - 1.01 0.81

n-butanol 0.82- 1.22 0.98

toluene 0.34 - 0.50 0.41

xylene 0.62 - 0.93 0.75

chlorobenzene 0.26 - 0.39 0.32

dichloromethane 0.37 - 0.55 0.44

!, 1,2-trichloro- 1,2,2-
3.2 - 4.8 3.9

trifluoroethane

trichlorofluoromethane 0,24 - 0.36 0.29

methane 7.1 - 10.5 8.4

acetone 0.62 - 0.92 0.74

2-butanone 1.0- 1.5 1.2

4-methyl-2-pentanone 0.24 - 0.36 0.29

cyclohexanone 0.11 - 0.17 0.14

carbon monoxide 2.1 - 3.1 2.5

ammonia 3.8 - 5.7 4.6

PRETEST CHECKOUT SUMMARY

TEST VOLUME LEAKAGE - The system volume is ap-
proximately 9 m3 including the mixing chamber and associated

support system plumbing. The allowable system leakage was
established at 0.23 kg/day (<0.5 lb/day). After the TCCS was

installed in the system, the complete integrated system leakage

as measured by pressure decay was found to be approximately

13.6 grams/day (0.03 lb/day).

CONTAMINANT STABILITY - Understanding the back-

ground contamination level and the interaction of the test con-
taminants with the internal surfaces of the test facility were

considered to be highly important to conducting a test of this

nature. Pretest efforts to develop this understanding and its re-
lationship to test bias are provided by the following summary.

Background Contamination - Before starting the test, a

general chemical contaminant background check of the test rig
was conducted. This investigation lasted several days and in-

cluded, but extended beyond, the contaminants introduced dur-

ing the test period. The primary instruments were the in-line
GC/MS and FTIR used during testing. There were no extrane-

ous contaminants found using the ion identification and search

capability with a library of over 300,000 compounds. By in-
cluding the test contaminant detection limits as a quantitative
value, the total background was found to be 1.5 mg/m 3. If those

contaminants which were found to be less than their respective

detection limits are not included, then the background was ap-
proximately 0.22 mg/m 3. The maximum allowable background

contamination was 3.5 mg/m 3.

System Bias and Adsorption by System Walls -Before in-
stalling the TCCS in the test stand, a test of contaminant ad-

sorption by the internal surfaces of the test rig was conducted.
This was accomplished by injecting known quantities of the test

contaminants into the test chamber and monitoring their con-
centration over time.

The liquid phase contaminants were injected as a compos-

ite mixture with a syringe pump in order to emulate the injec-
tion process to be used during the TPCT. Pre-determined

quantities of methane and carbon monoxide were injected con-
tinuously from pressurized gas bottles. A discrete amount of

ammonia was continuously injected as a gas via permeation

tube. The expected concentrations are based on the contaminant

mass injected and known system volume and pressure. Average
steady state concentrations were measured as well as mean

standard deviations and associated 95% uncertainties using t-

factors. System biases were determined by subtracting the ob-

served concentrations from their respective target values.

A wide range of system biases was observed, from -36%

of target for toluene to +48% for trichlorofluoromethane.
Negative bias in the range of 30-37% of the target amount was

observed for n-butanol, 4-methyl-2-pentanone, toluene, ehloro-

benzene, o-xylene, and cyclohexanone. Subsequent analyses

using an off-line method did not show the same bias, so this was

not attributed to system adsorption but was determined to be an
artifact of the in-line trapping mechanism. As such there was no

observed system adsorption.

The above system biases were ultimately used in the final

data reduction when establishing the relationship between pro-
jected tank concentration and observed steady state concentra-
tion.

System Purge and How Balancing - Prior to the start of

contaminant injection, the TCCS was installed online and was
purged with TOC grade air. This was done to establish nominal

functionality of the test article and to set valve positions for

flow rate through the unit.

TESTING SUMMARY

The TPCT began on 19 January 1998. The TCCS operated

continuously until the test was completed on 14 February 1998.

The overall test duration was 624 hours and all of the primary

test objectives were satisfied, A summary of the TCCS and fa-
cility operations during the TPCT are provided by the following

discussion. A brief assessment of the overall TPCT operations

is also provided.

TCCS OPERATIONS - Throughout the test, the TCCS
operated flawlessly. Inlet air flow and HTCO temperature were

maintained at steady levels. The HTCO flow rate adapted to the

total system pressure to provide almost a constant command
voltage to the flow meter by adjusting the blower speed.

FACILITY OPERATIONS - The facility provided a
closed loop which provided air to the TCCS within the required

conditions summarized by Table 4. The average test conditions

were the following:

I. Air temperature of 22.5 °C (72.5 °F)

2. Relative humidity of 50.4%
3. System pressure of 760 mm Hg.

Test operations anomalies were very few and minor. Dur-

ing two test days, it was found that the liquid contaminant in-



jection system was leaking. It was repaired and normal

injections resumed. Also, one ammonia permeation tube dried

up prematurely; however, it was replaced with minimal impact
to the test operation. Adjustments were required to the CO in-

jection after it was found to be injecting at a lower than ex-

pected rate. The CO concentration in the test chamber was

found to be within the expected range after adjusting the flow.

Despite these anomalies, the contaminant injection system

provided a total contaminant load as summarized by Table 5.
The average hourly injection of contaminants for the 624-hour

test was actually very close to the specified rates listed by Table
2.

OVERALL TEST ASSESSMENT - During the TPCT, the

TCCS performed electrically and mechanically without inci-
dent. All TCCS components performed within requirements;

however, the methane single pass removal efficiency was lower

than expected. It was measured at 55% rather than the expected

greater than 90%.

Table 4. Required versus Observed Test Conditions

PARAMETER REQUIREMENT
OBSERVED

TEST

CONDITION

18.3-26.7 °C 21.6-23 °C

Temperature (65-80 °F) (71-73 oF)

Pressure 750-786 mm Hg 751-780 nun Hg

Relative Humidity 25-70% 49 - 53%

Table 5. Contaminant Loading Summary

COMPOUND

ethanol

methanol

2-propanol

n-butanol

toluene

xylene

chlorobenzene

TOTAL
MASS

_CTED

(me,)

AVERAGE

INJECTION
RATE

(me/h)

15,444.5 24.8

2,615.7 4.2

12.27,602.9

9,133.2

3,775.3

7,004.9

2,931.8

dichloromethane 4,073.7

1,1,2-trichloro- 1,2,2-
trifluoroethane

35,938.4

14.6

6.0

11.2

4.7

6.5

trichlorofluoromethane

methane

acetone

2-butanone

4-methyl-2-pentanone

cyclohexanone

carbon monoxide

ammonia

57.6

2,692.8 4.3

23,082.3 37.0

6,928.4 I 1.1

11,425.4 18.3

2,687.7 4.3

1,279. | 2.0

5,858.8 9.4

41,525.9 66.5

DISCUSSION OF RESULTS

During the test, the TCCS trace contaminant removal per-
formance was, in general, as expected and was found to be con-

sistent with past TCCS test results. The following discussion
summarizes the observed performance for trace contaminant

removal. Specific attention is given to the key TCCS design
drivers and those contaminants that broke through the charcoal
bed.

CONTAMINANTS OF INTEREST - Key contaminants of
interest for the test included methanol, dichloromethane, am-

monia, carbon monoxide, and methane. Methanol was also of

interest because of its potential for charcoal bed breakthrough

early in the test. Dichloromethane was also of interest because

of its potential for charcoal bed breakthrough in addition to its

role as a TCCS design driver. Also of interest was the increase
in methane concentration that can result from catalyst poisoning

as dichloromethane breaks through the charcoal bed. Ammonia

and carbon monoxide were considered key solely because they

are TCCS design drivers.
PROCESS PERFORMANCE - During the test, methanol

was the first contaminant to break through the charcoal bed.

This breakthrough is shown by Figure 4. Late in the test, di-

chloromethane began to break through the charcoal bed as

shown by Figure 5. Dichloromethane breakthrough was still in

progress at the test's conclusion. The test duration was not suf-
ficient to observe any additional contaminant breakthrough of
the charcoal bed; therefore, all the other contaminants were

maintained at steady concentrations as shown by Table 6. This

performance was consistent with a 100% single pass removal
efficiency.

Figure 6 shows the TCCS's performance for ammonia re-
moval. Ammonia was controlled to between 4 and 5 mg/m 3.

This result demonstrated 100% removal by the phosphoric acid-

treated charcoal bed during the entire test. No ammonia break-

through was observed.

Figure 4. Methanol Concentration Trend



Table6.ObservedLiquidContaminant Concentrations

COMPOUND

Ethanol

Trichorotrifluoroethane

Trichlorofluoromethane

Propanone

Propanol

Butanone

Butanol

Xylene

CONCENTRATION

(l_g/m_)

OBSERVED

2250

+/-200

3530

+/-710

300
+/-50

700
+/-40

870
+/-90

PREDICTED

1580

+175/-140

3670

+410/-330

270

+30/-25

710

+80/-65

780
+90/-70

1100 1170

+/-90 +130/-110

910 930

+/-70 +110/-80

610

+/-50

320

+/-30

225
4-Methyl-2-pentanone +/-20

Toluene

Chlorobenzene

Cyciohexanone

250

+/20

110
+/-10

715

+801-65

270
+30/-25

390

+40/-35

300

+35/-30

130

+15/-10

Methane was controlled to approximately 13 mg/m 3 for the

duration of test. Both samples collected at the TCCS inlet and

just downstream of the charcoal bed (port 2) agreed well. This

agreement demonstrated that methane is not removed by the
activated charcoal. The methane concentration at the overall

TCCS outlet (port 4) was consistently near 11 mg/m 3 while the

concentration downstream of the HTCO (port 3) was consis-

tently near 6 mg/m 3. A mass balance for methane based upon
these results indicated a 55% methane oxidation efficiency for

the duration of the test. As shown by Figure 7, the concentration

began to increase at approximately the time that di-

chloromethane breakthrough of the charcoal bed was observed.
The oxidation efficiency for carbon monoxide was 100%

for the duration of the test. As shown by Figure 8, the concen-

tration was controlled to approximately 1.2 mg/m 3 during the
first 250 hours of testing and then to approximately 2.5 mg/m 3

for the remainder of the test. The low concentration early in the

test was caused by a lower than required injection rate. This test

facility anomaly was corrected and the injection was increased

to within specification for the remainder of the test.
The only observed process-related anomaly involved meth-

ane. During the entire test, the oxidation efficiency provided by

the HTCO was approximately 55%. Two hypotheses have been
proposed for this performance. The first is that the catalyst set-

tled and allowed a portion of the air to bypass it. Because the

HTCO design is kinetically limited with respect to the methane
oxidation reaction, a small amount of air bypassing the catalyst

could effectively reduce the reactor's residence time and, thus,

lead to decreased efficiency.
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The second possibility is also related to the kinetic fimita-
tion. R involves masking of the catalyst surface. Inspection of

TCCS drawings indicated that Dow Coming DC111 silicone

grease had been used in the 7 duct couplings located between
the charcoal bed outlet and the HTCO inlet. Offgassing of or-

ganosilicone compounds from this grease could have resulted in

the formation of silica upon their oxidation. Silica has an ex-

tremely high melting point and once produced would immedi-

ately condense on the catalyst surface. Such a process would
effectively mask or decrease the overall catalyst surface area

leading to degraded methane oxidation efficiency.
It should be noted that carbon monoxide oxidation re-

mained at 100% efficiency throughout the test. Since this reac-
tion is diffusion limited rather than kinetically limited, it is quite

possible for either a flow bypass or catalyst surface area reduc-
tion to have little measurable effect on the carbon monoxide

oxidation reaction.

Final determination of the root cause for the degraded

methane oxidation performance will be investigated before the
TCCS is deployed on orbit. Despite this condition, the TCCS

still has sufficient design margin to maintain the methane con-
centration well below SMAC.

COMPARISON TO MODEL PREDICTIONS - As stated

earlier, one of the test objectives was to obtain data for process
model validation. Central to this validation is the direct com-

parison of observed and predicted contaminant concentrations.

A comparison of the observed and predicted concentrations for
the liquid contaminants is provided by Table 6.

As noted earlier, there were no breakthrough trends ob-

served during the test which was consistent with 100% single
pass removal predicted by the TCCS process model for each of

these compounds. As such, a single test chamber average con-

centration describes the TCCS performance for removing these
compounds. All observed contaminant concentrations were

found to be statistically consistent with the predicted concentra-
tion confidence intervals with the exception of ethanol. The

analytical instrument which was used to provide this result is

biased high. The alternate analytical instrument gave an obser-

vation which was biased low (below projected concentration).

As such it was assumed that the high ethanol concentration has
no physical significance in terms of ethanol removal during the

test period.

Both carbon monoxide and ammonia concentrations were

reliably predicted by the process model. Both were consistent
with 100% removal efficiency by the HTCO and charcoal bed,

respectively.

Predicting methanol and dichloromethane concentration as

they break through the charcoal bed was considered to be the

most significant challenge to process model validation. As
shown by Figures 4 and 5, both methanol and dichloromethane

breakthrough trends were reliably predicted. At the same time,

the methane concentration trend during the time of di-
chloromethane breakthrough shown by Figure 7 was also found

to be consistent with process model predictions.

These results are similar to those documented by Reference
40. In that case and in the case of the TPCT, the process model

predicted contaminant concentrations within an acceptable sta-

tistical range. Based upon the comparison of predicted and ob-
served concentrations for the TPCT combined with their

similarity to previous validation study results, the process

model is considered to provide highly reliable predictions of

TCCS performance.

CONCLUSIONS

Based upon the results of the TPCT, conclusions which can

be made are the following:

1. The TCCS design provides trace contaminant control

for the load specified by the ISS Program.
2. Flight hardware performance is similar to that ob-

served during previous development testing.

3. The TCCS design is robust and provides sufficient

margin to accommodate lower than expected HI'CO
methane oxidation performance without approaching
the SMAC.

4. The process model is a reliable tool for predicting

TCCS performance over time.

SUMMARY

The ISS U.S. Habitation Module TCCS was challenged

with a representative trace contaminant load for 624 hours.

During this time, methanol and dichloromethane broke through
the activated charcoal bed. The approximate time of break-

through for each contaminant was consistent with pre-test proc-

ess model predictions. In parallel with dichloromethane

breakthrough, the methane concentration began to rise as a re-
sult of catalyst poisoning. This indicates a gradual poisoning of

the methane oxidation reaction by dichloromethane's oxidation

products. This effect is consistent with previous observations

during TCCS development and bench scale testing.
Overall, the TCCS operated flawlessly. There were no me-

chanical or control anomalies noted for the flight hardware.
Each trace chemical contaminant was controlled to less than its

respective SMAC and performance was consistent with earlier
TCCS development testing. One exception was a lower than

expected methane oxidation efficiency provided by the HTCO

during the entire test. Hypotheses have been prepared to explain
this observation. Final determination of the root cause is to

made during post-test evaluation of the hardware. In spite of

this performance deficiency, methane never approached its
SMAC.
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