
TRANSONIC PERSPECTIVE

A Critique of Transonic Flow Research

NASA/TM. -- _f/-- 207538

#_" i; ,*"it s,t] _-

o _'/ ,_-;:/

February 18-20, 1981
at

NASA/Ames Research Center
Moffett Field, CA 94035

NUMERICAL PREDICTION METHODS (REYNOLDS-AVERAGED NAVIER-STOKES

SIMULATIONS OF TRANSONIC SEPARATED FLOWS)

Unmeel Mehto and Horvord Lomox

NASA/AMES RESEARCH CENTER



NUMERICAL PREDICTION METHODS

(REYNOLDS-AVERAGED NAVIER-STOKES SIMULATIONS

OF TRANSONIC SEPARATED FLOWS)

by

Unmeel Mehta

and

Harvard Lomax

Ames Research Center, NASA

Moffett Field, California 94035

Presented at the Symposium on

TRANSONIC PERSPECTIVE

February 18-21, 1981

Ames Research Center, NASA

Moffett Field, California 94035



i

INTRODUCTION

During the past five years, numerous pioneering archival publications

have appeared that have presented computer solutions of the mass-weighted,

time-averaged Navier-Stokes equations (Farve, 1965) for transonic problems

pertinent to the aircraft industry. These solutions have been pathfinders

of developments that could evolve into a major new technological capability,

namely the computational Navier-Stokes technology, for the aircraft industry.

So far these simulations have demonstrated that computational techniques,

and computer capabilities have advanced to the point where it is possible to

solve forms of the Navier-Stokes equations for transonic research problems.

At present there are two major shortcomings of the technology: limited com-

puter speed and memory, and difficulties in turbulence modelling and in com-

putation of complex three-dimensional geometries. These limitations and

difficulties are the pacing items of the continuing developments, although

the one item that will most likely turn out to be the most crucial to the

p_ogress of this technology is turbulence modelling. The objective of this

presentation is to discuss the state of the art of this technology and suggest

possible future areas of research.

At present, the viscous transonic flow research is conducted by either

a zonal viscous-inviscid interaction procedure or a global Navier-Stokes pro-

cedure. There is no formal presentation of the state of the art dealing with

viscous-inviscid interaction procedures at this Symposium. For this, one is

referred to the proceedings of an AGARD Symposium on "Computation of Viscous-

Inviscid Iterations" (1980). These procedures have achieved some success

but most either predict poorly or fail when faced with flow separation. The

procedure of Le Balleur (1980) for small separated regions is promising.

There does not appear to be a single one of these procedures which gives

acceptable results under a wide range of conditions. Of course, these pro-

cedures are being further developed, and in those cases where they can be

trusted, they should be computationally cheaper to use than a global Navier-

Stokes calculation. One expects that both the viscous-inviscld interaction

procedures and the global Navier-Stokes approach will contribute to the

understanding of various transonic flow phenomena and in providing insight

for developing efficient numerical methods.

We now discuss some of the flow conditions for which the Navier-Stokes

equations appear to be required. On an airfoil there are four different

types of interaction of a shock wave with a boundary layer: (a) shock-

boundary-layer interaction with no separation, (b) shock-induced turbulent

separation with immediate reattachment (we refer to this as a shock-induced

separation bubble), (c) shock-induced turbulent separation without reattach-

ment, and (d) shock-induced separation bubble with trailing edge separation.

The shock-induced separation is caused by a strong shock wave. A proper

treatment of interaction of this shock with a boundary layer requires the

Navier-Stokes equations, at least locally (Melnik, 1980).

Shock waves that terminate in the vicinity of boundary layers are seldom

steady, particularly on transonic wings and control surfaces. In some cases,



the shock-boundary-layer interactions are observed to oscillate periodically
with relatively large amplitudes (Finke, 1975). These fluctuations can cause
stalling, buffeting, flutter, and control-surface buzz. The first two phenom-
ena arise at large angles of attack when the upper-surface separation of the
boundary layer extends from the shock wave to the trailing edge and beyond.
The last two phenomenaare manifested when the separated boundary layer
experiences lateral oscillations in the wake. A different type of transonic
flow problem is recently reported by McCroskey,et al. (1981). They report
transonic flow near the leading edge for free-stream Machnumbersas low as
0.2 on an oscillating airfoil. This flow is characterized by a small super-
sonic bubble with or without shock waves. At Machnumbersbetween 0.3 and
0.5, the airfoil mayexperience shock induced leading edge stall (McCroskey
et al., 1981).

There are at least two motivations for understanding separated flows:
(a) controlling and minimizing the effects of separation when it is an un-
desirable feature, and (b) organizing separation so that it constitutes a
natural way of improving aerodynamic performance. The latter occurs in
three dimensions where strakes are used to create streamwise vortices that
increase performance at cruise and climb conditions. It appears that air-
craft designers are not so muchworried about incipient or microscopic
separation bubbles of small extent as they are about a boundary layer failing
to reattach before the trailing edge. If that happens, it may cause, depend-
ing on its severity, stall and buffet, pitchup motion, and possibly degrada-
tion of lateral stability.

Whenthe boundary-layer assumptions are almost valid through a small
separated region which is not caused by a shock wave, it is possible to
determine, using the boundary-layer equations, the main effects of the sep-
aration with an integral method (Le Balleur, 1980), and the quantitative
structure of the separated region with a differential method. But when the
separation region is not small, this approach fails, and the Navler-Stokes
equations are required.

In computational aerodynamics, both the physics and numerics are equally
important. Physics is involved in selecting the appropriate governing equa-
tions and formulating suitable initial and boundary conditions. Numerics, on
the other hand, deals with generating a grid system, devising stable, accurate,
and efficient approximating schemesfor solving the differential equations
along with the initial and boundary conditions, and actually carrying out the
solution procedure. All of the processes are important, and they all affect
the accuracy of the solution. For the purposes being discussed here, the
accuracy required of the solution is determined by the practical requirements
of the aircraft industry. If this solution fulfills these requirements, then
it is accurate enough. The above processes dealing with physics and numerics
for the Navier-Stokes equations constitute the Navler-Stokes technology.

At present, computer simulations of transonic flow fields are usually
validated by comparison with experiments which are in themselves simulations.
This reliance on experiment results principally from the fact that the effects
of turbulence must be modelled and the models are essentially empirical. In



addition, this reliance results whena numerical solution, for all practical
purposes, is not shownto be independent of the discretization errors. It is
usually not possible to show the extent to which a large scale, numerical
simulation is affected by discretization errors which is caused, at present,
by lack of computer speed and memory. On the other hand, the validity of an
experimental simulation is, moreoften than not, questionable. Generally, a
quantitative assessment of effects of any knowndeficiencies in the data is
lacking. Rarely are the initial and boundary conditions completely documented.
There is usually a minimumrather than a comprehensive set of data.

Keeping in mind the above general shortcomings of both numerical and
experimental simulations, we discuss the state of the art of predictive
Navier-Stokes technology dealing with the above processes and present some
computedsimulations of transonic flows.

GOVERNINGEQUATIONS

Navier-Stokes Equations

The continuum, compressible fluid mechanics is described by the class-
ical Navier-Stokes equations, properly modified to take into account varia-
tions in density and temperature, along with equations governing conservation
of massand energy and an equation of state, taken from equilibrium thermo-
dynamics. This system is referred to here simply as the Navier-Stokes equa-
tions. Weshall assumethat solutions of this system, subject to appropriate
initial and boundary conditions, do exist and are unique. However, only local
existence theorems in two- and three-dimensional problems have been estab-
lished (Solonnikov and Kazhikhov, 1981); and the Cauchyproblem for a perfect
polytropic gas in three-dimensions is solvable "in the large" provided the
initial data are close to constants (Matsumuraand Nishida, 1980). In short,
the mathematical analysis of the above system is far from complete.

In the Navier-Stokes equations, the assumptions concerning the stress
tensor and the heat-flux vector exclude rarefaction shocks without specif-
ically assuming the second law of thermodynamics. Therefore, the entropy
condition (Lax, 1973) need not be satisfied by a numerical method for these
equations. The effect of viscosity and heat conductivity develops a con-
tinuous transition through a shock wave. In the transonic flow regime,
these equations are valid through this wave which is, however, quite thin
if its intensity is strong enough. For example, at a Machnumberof 1.05
and Reynolds numberof 107, the shock thickness in air is almost the same
as the thickness of the linear sublayer of a turbulent boundary layer on a
smooth flat plate. The latter thickness corresponds to about y+ _ 5,
where y+ is the Reynolds numberbased on the friction velocity and a
length scale of turbulence. At lower Machnumbers the shock is even thicker.
A shock wave with such a small thickness is not usually resolved in current
transonic simulations. (Likewise, the contact discontinuity is not resolved.)
Instead, it is considered to be a discontinuity, the location of which is
part of the solution procedure. However, its thickness maynot be small when



it begins to interact with a viscous boundary layer and can even lose its
identity as it penetrates into the viscous region.

Reynolds-AveragedNavier-Stokes Equations
with Mass-WeightedVariables

In the study of turbulence by meansof the Navier-Stokes equations, it
is usual to use someform of averaging. For example, Monin and Yaglom (1971)
present a general space-time averaging procedure for functions f(x,t) given
by the equation

<_(x,t)> =// f(x - __,t - T) g (_,T)d_ dr (1)

Here, the overbar and the underscore indicate an instantaneous value and a

vector field, respectively. The non-negative weighting function, g, satisfies

the normalizing condition

g(_,T) d_dT = 1 (2)

The choice of this weighting function determines the significance of the

averaged quantities. For example, if g is a constant over some time

interval T and zero outside of it, and the dependence on _ is a Dirac

delta-function, <f(x,t)> is referred to a time-averaged quantity. In un-

steady flows, the interval T must be large compared to the periods char-

acteristic of time scales that cannot be resolved computationally, but small

compared to the period of resolvable flow motion.

The system of equations determined by applying the above time-averaging

procedure constrained with the Reynolds conditions (Monin and Yaglom, 1971)

gives rise to Reynolds-averaged Navier-Stokes equations. For compressible

fluids, these equations contain second-order moments, such as <0'u'>, and

a third-order moment <p'u'u'>, due to fluctuations ih the fluid density

(Van Driest, 1951). Here, the prime denotes fluctuating quantity. Therefore,

for these fluids, instead of time-averaged flow quantities, mass-weighted

time-averaged quantities are preferable. For example, the mass-weighted

velocity u i equals to <Pui>/<_>. This averaging procedure eliminates the

above moments from the averaged Navier-Stokes equations but it does not

remove density fluctuations from turbulence. This procedure appears to be

first used in the study of atmospheric turbulence by Hesselberg (1926)

(Favre, 1969). A comprehensive discussion of this procedure for compressible

turbulent flows is presented by Favre (1969) and by Cebeci and Smith (1974).

Henceforth, the equations resulting from this type of averaging are simply
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called the Reynolds-averaged Navler-Stokes equations. These equations, with-
out external forces, maybe written in dimensional form as

6 + (PUi),i = 0 (3)

(Pui) + (pujui),j =-P,i + (P°ij),j
(4)

(ph) + (pujh),j = p + ujp,j + P°ij ui,j - (Pqj),j (5)

Here, p and p are, respectively, time-averaged mass density and pressure;

ui and h are, respectively, mass-weighted mean velocity and enthalpy. The
Cartesian-tensor summation convection is used. The overdot indicates a

partial derivative with respect to time; and subscripts after commas denote

partial differentiation. Further, the symbols oi" and qj, respectively,
represent the specific time-averaged total shear s_ress and heat flux as

follows:

i

oij = 2v(Sij - _ Uk,k6ij ) - Rij
(6)

<_u'.h' >
J

qj = -- h +
PrL 'j P

(7)

where _ is the kinematic viscosity.

the molecular and turbulent transport.

and the Reynolds stress tensor - PRij

These include contributions of both

The mean strain-rate tensor Sij
are given by

1

Sij = _ (ui, j + uj,i) (8)

-- T !

<P uiuj > (9)
Rij = P

The above equations are identical to the equations used to determine

laminar flows, except for the Reynolds stress tensor and turbulent heat

flux vector, equations (7) and (9). In addition, these equations essentially

exhibit a term by term correspondence with those for the incompressible

fluids. This correspondence permits extension of the large body of expe-

rience existing with modelling turbulence for constant-density flows to

transonic flows, provided turbulence structure in both these flows is

closely the same. Interpretation of Morkovin's hypothesis (Morkovin, 1964)

suggests that this is the case for boundary layers and wakes at free-stream

Mach numbers less than about 5 and of Jets at Mach numbers less than about

1.5 (Bradshaw, 1977). This hypothesis states that the effects of density



fluctuations on turbulence are small when the root-mean-square density fluc-
tuation is small comparedwith the absolute density. Transport-equation tur-
bulence models, which are discussed below in terms of mass-weighted, time-
averaged variables, contain additional terms due to compressibility effects.
These terms are negligible according to the above hypothesis in the transonic
regime.

Turbulence Modelling

There are two approaches for turbulence modelling: the first-order
approach in which the Reynolds stress tensor is modelled, and the second-
order approach in which this tensor is determined from the Navier-Stokes
equations. In the former approach, one forms the equations for the first-
order quantities, such as meanvelocities, and models the second-order quan-
tities that appear in them. See equations (4) and (I0). In the latter
approach, equations are formed for the first- and second-order quantities
(ui and Rij), and the third-order terms are modelled. These equations may
be simplified to yield algebraic stress models, which still require differ-
ential equations, both for the turbulent kinetic energy and energy dissipa-
tion (Rodi, 1980).

In transonic, turbulent-flow simulations, the first-order approach is
almost always used, and it forms the basis for the so-called zero-equatlon
(algebraic), one-equation, and two-equation models. In practice, the actual
form of these models and the manner of applying them generally differ in
detail from investigator to investigator. General definitions and character-
istics of these models are available from Cebeci and Smith (1974), Reynolds
(1976), Reynolds and Cebeci (1976), Rubesin (1977), Launder (1980), and
Rodi (1981). (Simulation of transition is not considered in this state-of-
the-art review.)

Somezero-equation models are based on the Prandtl mixing length hypoth-
esis. But other first-order turbulence models are based on the "Newtonlan"
assumption, and they are, therefore, eddy-viscosity models. Bousslnesq's
eddy viscosity concept (1877) is based on an analogy with the gradient-
diffusion mechanismof the kinetic theory of gases. Methods based on this
concept are also knownas eddy-diffusivity or gradient-transport methods.
Corrsin (1974) has presented limitations of gradient-transport models. In
these methods, the eddy viscosity, _T' is assumedto be a scalar and is
defined by a Newtonian constitutive equation of the form

= ! v26i j 1Rij 3 - 2_T(Sij - 3 Uk,k6ij) (i0)

Here, v2 = Rii is the turbulent kinetic energy. The v2 term maybe
absorbed in p. This relation restricts Ri_ and Sil to the sameprin-
cipal axes, which is not true in general. I_ is posNible to modify this
relation in order to removethis restriction (Saffman, 1974). Algebraic
models relate VT directly to Reynolds-averaged field quantities. Both

one- and two-equation models contain a partial differential equation

for turbulent kinetic energy, which defines a turbulence velocity scale, v.
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One-equation models use a prescribed, empirical length-scale distribution,
and two-equatlon models use an additional partial differential equation to
define a turbulence length scale, £. A combination of the turbulence
velocity and length scale determines the value of the eddy viscosity

9T = cv£ (ii)

where c is a constant. Methods using partial differential equations for
turbulent quantities are also called transport-equation methods.

In the eddy-conductivity concept, the transport of heat due to the
time-averaged product of fluctuating enthalpy and fluctuating velocity is
modelled. It is assumedthat the turbulent heat flux follows a law similar
to Fourier's law. Further, it is generally assumedthat dynamic eddy vis-
cosity, _T, and turbulent thermal conductivity have the samefunctional
relationship with temperature. Although the turbulent Prandtl number varies
across the boundary layer, it is commonlyconsidered to be a constant, and
it is usually taken to be 0.9 for air. Apparently, more complexmodelling
of the turbulent heat flux than this has yet to be attempted in transonic
simulations.

There are manyzero-equation models. As an example, a model used by
Baldwin and Lomax (1978) for attached, separated, and wake flows is briefly
outlined below. This model is patterned after that of Cebeci (1971). The
turbulent boundary layer is regarded as a composite layer consisting of
inner and outer regions. In each region, the distributions of v and
are prescribed by two different empirical expressions. For example, in the
log-law region, £ is proportional to y, the distance normal to the wall,
and in the outer layer, £ is proportional to the boundary-layer thickness.
The proportionality of Z to y is extended into the viscous sublayer with
a damping function suggested by Van Driest (1956). In the outer region,
the vorticity is used to define the boundary-layer thickness.

In the inner layer, 0 s y s Yc' the expressions for v and £ are

(V)inner = £1_I (12)

and

(_)inner = _IY[I- exp (-y /lo121w/26_w) ]
(13)

with c = 1.0 in equation (ii). Here, _i = 0.4, _ is the vorticity, and

subscript w indicates wall values.

In the outer region, y > Yc, the expressions for v and £ used by

the Baldwin-Lomax (B-L) model are:



and

i Lmax I
(V)°uter = I0._ _ U2dif/Lmax

the (14)
smaller

(_)outer = YmaxCBL_2 (15)

with c the Clauser constant equal to 0.0168 in equation (ii). The quan-
tity U.._alris the difference betweenmaximumand minimumabsolute velocity,
the value of CBL is 1.6, and the Klebanoff intermittency factor, _2, is
given by

_2 i + 5. _Ymax_

-i
(16)

The quantities Ymaxand Lmax are determined from

L(y) = yI_l [i - exp (-y/io121w/26Vw)] (17)

The above exponential term is negligible in the outer part of the boundary
layer. In wakes, it is set to zero. The quantity Lmax is the maximum
value of L(y) that occurs in this equation, and Ymax is the value of y
at which it occurs.

The region of validity of the inner and outer scales is determined by
Yc" It is the smallest value of y at which values of inner and outer eddy
viscosity are the same. The value of _i in the inner region and of c in
the outer region are assumedto be universal constants for Re > 5000, where
Re is based on the momentumthickness. At lower Reynolds numbers, they are
functions of Reynolds number.

As an exampleof a two-equation model, the Wilcox-Rubesin (W-R) model
(Wilcox and Rubesin, 1980) is presented below. This model is an extension
of the model developed by Wilcox and Traci (1976), which evolved from the
model formulated by Saffman and Wilcox (1974) and that by Saffman (1970).
In the earlier models, the term determining the rate of production of kinetic
energy was inconsistent with that in a stress-equation formulation. The
present model removes this inconsistency. In this model, the turbulent
kinetic energy and the specific energy dissipation are given by

(pv2) + (pujv2),j = 2POijui, j - _iPmV2+ [(_ + B2VT)V2j],j (18)



_2

(p_2) + (puj_2), j = B3 _ Poijui,j _

+ [(_ + B5VT)m2j]

where the length scale is defined by

[B4 + _5(_,k )2] pw3

,j
(19)

= X (20)

The eddy viscosity is computed from equation (ii) and the constitutive equa-

tion (i0) is used to provide Rij. Wilcox and Rubesin (1980) recommend

following values of the constant in the above model:

i i0

BI = 0.09, _2 = B5 = 0.5, B4 = 0.15, B6 = _-, B 7 = -7

2

c = [i - (i - B6) exp (-ReT/2)]/2

B 3 = B7 [i - (i - B26) exp (-ReT/4)]/c

The turbulence Reynolds number is calculated as

v_

Re T

The Reynolds-averaged Navier-Stokes equations along with turbulence-model

equations constitute the governing equations of the Navier-Stokes technology.

Conservation-Law Forms

The Reynolds-averaged Navier-Stokes equations, as presented in equations

(3) to (5), are not in a form generally suitable for simulations of flow fields

around aerodynamic shapes. For such shapes, surface-oriented coordinates are

preferred. Furthermore, the choice of dependent variables made for these

equations is not the only choice available.

For unsteady flows, Moretti (1979) recommends using the velocity com-

ponents, pressure (actually in p) and entropy for the dependent variables.

This is motivated by the fact that, in inviscid flows, there are two types

of surfaces across which flow quantities can be discontinuous; character-

istic surfaces and stream surfaces. Across the characteristic surfaces,

pressure and velocities are discontinuous, but not entropy. In contrast,

across stream surfaces, entropy is discontinuous, but not pressure. Any

other thermodynamic parameters, such as energy or density, are discontinuous

across both the surfaces. The above recommendation does not, however, lead

to the conservative-law form (Lax, 1957 and 1973, and Richtmyer and Morton,



1967) of the governing equations. If this is not crucial, then the above
variables may be appropriate. Another choice is to use density, energy, and
the contravariant componentsof the velocity vector. This leads to a non-
divergence form of the equations. It is possible to put these equations in
the divergence or conservative-law form (Vinokur, 1974, and Eisemanand
Stone, 1980). A third choice is to use the Cartesian componentsof velocity
and conservative variables. It is this third choice written in the
conservative-law form that is presented below.

The conservative-law form of the Navier-Stokes equations in conservative
variables facilitates capturing of discontinuities and maintenance of global

conservation of fluxes. The importance of these issues is decided by appli-

cations and acceptable error bounds. As indicated in our earlier discussion

of Navier-Stokes equations, shock waves and contact regions are treated as

physical discontinuities during flow simulations. The above conservative

form of these differential equations avoids fictitious sources along these

discontinuities. Further, there is a weak solution of these equations, in

the absence of differentiability, across the discontinuities. In principle,

these theoretical results facilitate capturing of discontinuities. Whether

these theoretical advantages are maintained or not in simulations depends

upon the numerical scheme along with the grid system which will be discussed

in the next two main sections of this paper. Likewise, the issue of main-

taining global conservation of fluxes depends upon the numerical scheme.

Analytical integration of a convective flux term with respect to an inde-

pendent variable yields a difference between boundary values of the flux.

Construction of a differencing scheme that preserves this conservation prop-

erty is relatively easy if the conservative-law form is used to begin with.

Sometimes it is possible to formulate a differencing scheme which conserves

fluxes, starting with the nonconservative form. However, strictly speaking,

it is the discrete form that governs the conservation of fluxes and not the

differential form. Global conservation of fluxes does not automatically

assure that the discontinuities are captured correctly. Conservation errors

are analogous to truncation errors. As long as conservation errors remain

bounded and do not affect acceptable accuracy, it is immaterial whether or

not the governing equations are in the conservative-law form.

The above considerations concerning conservation of fluxes also apply

to transport equations for turbulence modelling. These equations are not

in the conservative-law form [e.g., equations (18) and (19)], albeit the

Reynolds stress equations are based on conservation laws, namely the Navier-

Stokes equations. If the transport models were formulated in the conservation-

law form, then similar numerical treatment is possible of all the governing

equations of Navier-Stokes technology.

When the Navier-Stokes equations in the conservative-law form are trans-

formed from the Cartesian coordinates to arbitrary curvilinear coordinates,

the resulting equations are not automatically in the conservative-law form,

although they can be made to be so (Viviand, 1974). This is done in order

to facilitate global conservation of fluxes. Theoretically, however, this

form is not necessary for obtaining the weak solution as (_ + VT ) + 0 and

for avoiding fictitious sources along discontinuities, provided the metric

coefficients multiplying the transformed derivatives and their first

i0



derivatives with respect to the new independent variables are continuous.

This can be readily demonstrated following Lax (1954), but the derivation is

not given here. Further, it can be shown that the shock speed in the

Cartesian coordinates and the curvilinear coordinates differ by a factor

containing the metric coefficients.

Reynolds-Averaged Navier-Stokes Equations
in Curvilinear Coordinates

Below, the Reynolds-averaged Navier-Stokes equations in conservative

Cartesian variables are presented in arbitrary curvilinear coordinates

(_,r). In nondimensional form, these equations can be written

d 3C d 3V

3Q+ E i_ 1 i_ 1 i8T 8_ i Re 3_i=l "= i

(21)

where d is the number of dimensions, and Q, C, and V are vectors

Q = _ [p, pu I, ... , pud, e] T

C = Q;//i + p ¢i i

d 8_.

V =_E Rj i
i j=l 8x.J

3 _i d 8 _i

- +)-_ uj"//i 8 t 3 x.
j=l j

d 8 _i

¢i =_ 8x_ [0, gjl' "'" ' _jd' uj IT
j=l j

R = [0,i °il' """

d

, Old , uj oij + qi

°iJ = (_ + _T) f - _ 3_k _ _ij
k=l _=i

8_ k 8ul. + 3x.8_k3uJ8 )
3x. 3_ k -- _kj 1

11
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Pr d _$j _eI

e _ Uk Uk
el= F- "2

k=l

p = (y - l)oe I

j=l ]

(xI, ••. , xd)

(_i .... ' _d)

_i = ! _(xJ+I', xJ+2)

_x _ 2(
j _i+l' _i+2 )

In the above expression, subscripts (i, i+l, i+2) and (j, j+l, j+2) vary

in a cyclic order, (i, 2, 3), (2, 3, i) etc. The Stokes hypothesis,

(3_ + 2_), of local thermodynamic equilibrium has been used, and total energy-

per-unit volume and the internal energy-per-unit mass are represented by e

and el, respectively.

The second-order, thin-shear-layer approximation neglects in equation
(21) all streamwise- and cross-derivatives of the viscous as well as turbu-

lence stress terms. The momentum equation in the direction away from the

surface (_2-direction) is retained. If this were also neglected, we have
the first order, thin-shear-layer approximation which is analogous to the

classical boundary-layer approximation. Investigators using the second-order

thin-shear-layer approximation justify it on the basis that the neglected

terms in the complete equations are not computed correctly with the available

grid resolution anyway, so why keep them. This approximation is, however,

valid only for "small" separation bubbles and for "weak" shock-boundary-layer

interactions. This approximation applied to equation (21) leads to the fol-

lowing equation

i:l ° i=l5xi (23)

with

12
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T ( 2 d _2 _u_, _2 _}ui _$2 .._

qi = pr Pr--__ _xi _2

(24)

Instead of equation (23), some investigators (e.g., Steger, 1978, and

Pullium and Steger, 1980) use, for convenience, the following equation

d _C i = i_l_d (3_2)
i=l =

(25)

Boundary Conditions

Boundary conditions for the above governing equations are determined

by mathematics and physics. The mathematical character of these equations

dictates the number and type of these conditions that determine the well-

posedness of these equations. Further, this mathematical character is

determined by the theory of characteristics. Theoretical analyses of two

kinds are available: one based on the classical energy method (e.g., Elvius

and SundstrDm, 1973) which follows the earlier work of Serrin (1959), and the

other on the normal mode concept (Kreiss, 1970). Most of the work is done

for the compressible Eulerian and shallow-water equations. A few recent

studies deal with the compressible Navier-Stokes equations (e.g., Oliger and

Sundstr_m, 1978, and Gustafsson and Sundstr_m, 1978). These studies consider

both number and a possible set of admissible forms of the boundary conditions.

At present, such studies serve as a guide rather than as a useful tool in

practical transonic simulations. A theoretical study of the well-posedness

of the governing equations of the Navier-Stokes technology has yet to be

done. The boundary conditions discussed below are based on both the math-

ematical character of the equations and physical considerations. They are

not based on the analytical procedures mentioned above.

The mathematical character of the system represented by the linearized

form of equation (21) is incompletely parabolic (Belov and Yanenko, 1971) or

parabolic-hyperbolic. Without the time derivative, it is elliptic-hyperbolic.

The system given by equation (23) or (25) is incompletely hyperbolic or

hyperbolic-parabolic. This system is parabolic only in (_2 - t) plane. The

global character of these systems remains the same even if the local character

may be, for instance, purely hyperbolic. Therefore, the boundary conditions

are determined by the global character of these systems.

First we discuss the boundary conditions for the system represented by

equation (21). Consider each equation of this system separately from the

others as an equation determining Qi; the other Q's in this equation are
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assumed to be known quantities. Here Qi is a component of vector Q. The

mass conservation equation requires one boundary condition in each coordinate

direction for QI" The second derivative of Q2 in Q2-equation requires
two boundary conditions in each coordinate direction. Likewi3e, two boundary

conditions are required for the remaining Q's. This means that if _._ is

the boundary of computational region ,_ , then everywhere on _ conditions

specifying Q2, "'" , Qd+l are required; and on a part of _, a condition

specifying QI is needed. These considerations determine the number of

boundary conditions on _. The type of the boundary condition for a Qi

in any direction is determined by the highest derivative of this Qi in

that direction. The boundary condition should be one order lower than the

highest derivative. This constraint yields boundary conditions which are

either Dirichlet, Neumann, or mixed type.

The above heuristic considerations help formulate boundary conditions

based on physics. A set of these conditions for equation (21) are presented

below. In such problems, two kinds of boundaries arise: rigid-wall bound-

aries, _'_w, and open boundaries, _o' The rigid wall constrains the flow

field along _w. This physical constraint is relatively easy to formulate

and convert into computational boundary conditions. Open boundaries do not

provide a material constraint, and hence appropriate conditions are not

obvious.

The rigid-wall boundary provides velocity and temperature conditions on

8_w • The behavior of a real gas at ordinary conditions (Knudsen numbers

less than 10-2 ) is accurately described by the no-slip and no-temperature

jump conditions. These are the only two physical conditions available. (In

contrast, for inviscid flows there is only one physical boundary condition,

namely, no flow normal to the rigid walls. Further, for an inviscid flow

past an airfoil, a Kutta condition must be imposed at the trailing edge of

the airfoil.) Considering the case of impermeable walls, the no-slip con-

dition translates into vanishing contravariant velocity components, _Zi = 0.
Further, the temperature condition gives either a Dirichlet or a Neumann

condition for the total energy.

The mass conservation equation governs the material derivative of QI"

Consequently, on _, Q1 changes if its previous history is known, otherwise,

a condition on Q must be specified This means that if fluid is on _j]_I
or inside_,Q I is determined by the mass conservation equation. But if

fluid enters _ by crossing _._, QI must be specified. Therefore, QI

cannot be specified on B_ w , and it must be calculated from its material

derivative. When this recourse leads to numerical difficulties, a new

governing equation is formulated by appropriately combining the momentum

equations to form the normal derivative of pressure. After expressing

pressure in terms of Q's (equation of state), we have
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(26)

The left-hand side of the above expression simplifies for orthogonal curvi-

linear coordinates. As equation (26) is derived from the momentum equations,

and as it replaces the mass conservation equation, it is not a boundary con-

dition on QI" This equation is subjected to the no-slip condition, when
it is used. The above viscous terms vanish when the first-order thin-shear-

layer approximation is valid; and they can be neglected only when the second-

order thin-shear-layer approximation is valid.

These conditions are also valid for internal flow problems. However,

when simulations of the external flow problems include wind-tunnel wall

effects, one alternative is to use the no-slip condition. Another alternative

is not to compute the wall boundary layers. In this case, obviously walls

cannot be considered as open boundaries if they interfere with the flow field

around an aerodynamic body from that observed in free flight. This is the

situation of present transonic wind tunnels. An ideal situation is to

measure all required flow quantities just outside the wind-tunnel wall

boundary layers and use these values as boundary conditions. Probably the

next best avenue is to measure only pressure, again perhaps just outside the

wall boundary layers, and then consider the boundary formed by pressure

measurement locations as an open boundary. Another approach is to contour

the wind-tunnel walls, such that they coincide with streamlines in free-flight

conditions. The slip boundary condition is enforced along these contoured

walls. This is restrictive, because in unsteady flows these free-flight

streamlines, at a short distance from the body, can be time dependent. In-

stead of these alternatives, the adaptive wind tunnels (see for instance,

Sears, 1981) could allow the use of the free flight boundary conditions.

The inflow, outflow, and tangentflow open boundaries require different

treatments. The above discussion dealing with material derivative of Q1

shows that on inflow boundary, Q1 must be specified. On outflow, Q1 is
determined from the mass conservation equation; and on tangentflow boundary

equation (26) is used.

For external flow problems, boundary conditions are available at infin-

ity, but not at finite distances. If the inflow boundary is at, say, about

ten times the characteristic length of an aerodynamic body, then the influence

of the body at that distance should be negligible, and therefore, it is
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possible to use the conditions at infinity as inflow boundary conditions.
This leads to the specification of remaining Q's.

The main difficulty in specifying the outflow boundary conditions across
a wake of a body is that the boundary values are part of the solution and
hence not knowna priori. However, we do know something about the outflow
boundary. There are no physical boundary layers, and flow field is inviscid
for all practical purposes. This suggests that the boundary conditions must
not introduce any boundary layer. This requirement is also valid for the
open tangentflow boundary. Further, on the part of the outflow boundary
which cuts the wake region, the flow is rotational. During passage of vorti-
ces or "eddies" through this boundary, pressure values on this boundary vary.
The variation dependsupon the strength of these vortices. In addition,
extrapolation along curvilinear coordinates, when the Reynolds-averaged
Navier-Stokes equations are in the conservation-law form as in equation (21),
may introduce errors becauseof one or more of the relations between metric
coefficients are not satisfied. This situation is analogous to that between
equation (23) and equation (25). Becauseof these reasons, we present here a
possible set of conditions on the open outflow and tangentflow boundaries.
Simply stated, the Euler equations are considered as boundary conditions for
the Navier-Stokes equations. In other words, the viscous and heat conduction
terms are neglected on the outflow and tangentflow boundaries. This approach
was applied to the incompressible Navier-Stoke equations by Mehta and Lavan
(1975) and Mehta (1977). The above conditions satisfy the type constraint on
the boundary conditions as required by the mathematical character of the sys-
tem represented by equation (21). Whenthe wind-tunnel flows are simulated
with open boundaries, as discussed above, the outflow condition on Q1 may
be replaced by the measuredpressure values.

For the system represented by equations (23) or (25), again heuristic
arguments are used for determining the numberof boundary conditions. The
above rlgid-wall boundary conditions are applicable to the equations of this
system. However, the open boundaries for these equations require a different
treatment. In {2-direction, the above considerations are valid. But in
other coordinate directions, the system represented by these equations is
hyperbolic. Therefore, the direction of flow of information dictates the
boundary conditions. The local characteristics or eigenvalues determine the
numberand the admissible forms of boundary conditions. For a hyperbolic
system, the eigenvalues are real. The numberof negative eigenvalues with
distinct eigenvectors determines the numberof boundary conditions. This
number is the sameas the numberof inward characteristics into R. In other
words, if inflow is supersonic in the "hyperbolic" directions, then all Q's
must be specified, otherwise one less specification is required. On outflow
boundaries (in these directions), if the flow is supersonic, then nothing can
be specified; and if it is subsonic, one condition is required.

As it is indicated in the section, Numerical Methods, in practice mainly
nondissipatlve numerical methods require extraneous dissipation, which is
provided by the addition of higher-order even-power derivatives in each of
the original differential equations. These added terms dissipate unresolved
high frequencies, but they are supposed to be constrained not to alter the
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resolved frequencies beyond the error bounds for these frequencies. One

point of view is that these terms do not change the mathematical character

of the original equation because they are a part of the truncation errors of

a numerical method. (See page 331 of Richtmyer and Morton, 1967.) These

terms disappear when A_ ÷ 0. An alternative point of view is to consider

these terms as part of the original differential equations, since &_ is

never equal to zero. In this case, these terms do not change the character

of the original parabolic equations. Also, they do not change the global

character of the original hyperbolic equations, provided they do not intro-

duce any boundary layers at the boundaries. This is achieved by not adding

these terms either on the boundaries or next to the boundaries in 62-

direction. This avoids additional boundary conditions for both parabolic and

hyperbolic equations. These terms may form interior "boundary layers" such as

captured (smeared) shocks. In this case, the "additional boundary conditions"

for these terms are automatically provided by the appropriate neighboring,

interior flow quantities.

Some numerical methods require extra boundary conditions (e.g., Mehta,

1977, and Yee, 1981). These conditions are called numerical boundary condi-
tions.

COMPUTATIONAL GRIDS

A computational grid system is a necessary part of any numerical solu-

tion based on a finite difference, a finite volume, or a finite element method.

The selection of a grid system is based primarily on the requirement for

accuracy in the final solution. Secondary considerations are the effect on

computational efficiency of the solution algorithm, and finally the ease of

grid generation using available computer architecture. These concepts are
discussed below.

Accuracy Requirements

Accuracy requirements are determined by the application of the numerical

so]utions of governing equations along with initial and boundary conditions.

if the solutions serve the purpose for which they were intended, then the

accuracy requirements are satisfied for that particular application. These

requirements vary with purposes of applications and frequently tend to be

subjective. Unlike the accuracy requirements, the discretization (truncation)

errors are independent of both purposes of applications and subjectiveness.

Therefore, in the discussion that follows, the accuracy constraints are not

quantified, and the emphasis is placed on the discretization errors.

Simulations of flow regions, throughout which the scales of motion are

essentially the same in all directions, are probably best carried out by

equi-spaced Cartesian meshes. In this case, the evaluation of mesh errors on

the solution is completely determined by the size of the single-space inter-

val. On the other hand, a flow field with a surface along which there is a

turbulent boundary layer, is generally computed using a highly "stretched"
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mesh "normal" to the surface. This mesh is very fine near the surface and

usually is constructed to increase exponentially in the direction "normal" to

it. In this case, the errors of the solution are much more intimately tied

to the grid structure, and the evaluation of errors is not simple. The situ-

ation is again not simple to evaluate when attempts are made to align and

cluster meshes with shock waves, the position of which are not known a priori.

The relationship between solution errors and grid choice is very important to

the evaluation of transonic viscous flow simulations. It is still very much

in the stage of development and our comments here are based on limited

experience.

It seems to be generally accepted that one of the coordinate families

should lie along any surface that is generating a viscous boundary layer.

Usually, at least 15 grid-points spaced nonuniformly from the surface to the

"outer edge" of the layer are required for even marginal resolution. This is

accomplished most conveniently by using a body-oriented system. This further

facilitates application of surface-boundary conditions. It is reasonable to

expect that the accuracy is best when grid lines leaving the surface are

normal to it, although this does not appear to be crucial.

It also appears to be generally accepted that one of the coordinate

families should be made to lie along a shock, if this is possible. This is

often quite possible for bow shocks which interface with a completely known

free-stream flow field. For interior shocks, this is much more difficult,

and turbulent, transonic Navier-Stokes simulations have been, so far, done

with shock capturing techniques rather than shock-fitting ones. This is

primarily due to the fact that the latter methods introduce algebraic and

data management complexities in the viscous-lnteraction regions. In contrast,

the shock-capturing techniques do introduce errors, and these errors depend

upon the grid system and the choice of numerical method (see Numerical Tech-

niques for Computing Shocks). When one of the coordinate families is not

aligned with a shock, these techniques tend to thicken the shock-wave region.

This thickening may modify the shock-boundary layer interaction phenomena.

Therefore, one of the principal weaknesses in evaluating the errors and reli-

ability of the present Reynolds-averaged Navier-Stokes codes is estimating

the effect of the grid system on the shock strength, location, and thickness.

A systematic and dependable study of this issue would be most welcome.

The discrete governing equations for flow simulations around complicated

aerodynamic geometries involve the following geometrical quantities, depend-

ing upon the numerical methodology: in case of finite-difference methods,

there are metric coefficients and the Jacobian of topological transformations;

when there are finite volume methods, we have lengths or surface areas, and

areas or volumes; and the finite-element methods contain shape factors. All

these geometrical quantities are obviously grid dependent and they appear

along with physical quantities in the overall numerical process. Clearly,

it is the combination of physical and geometrical quantities that appear in

the difference formulas that should be accurately resolved in order for the

simulated flow to be a useful solution of the governing system. This suggests

that geometrical quantities require proper representation just as the physical

quantities. The standard technique of refining the mesh is usually not
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available, because computational resources do not permit it. A necessary but

far from sufficient condition is to make sure that a given grid, along with

a numerical scheme, maintains the free stream if the free-stream boundary

conditions are applied.

Methods For Generating Grid Systems

At the present time, the property of providing a body-fitted grid system

for external aerodynamic problems is automatically satisfied in two dimensions

by all currently popular curvilinear grid-generating schemes. But appropriate

interior grid systems for each class of topological geometries require trial-

and-error manipulations of different variables in these schemes. (See, for

instance, Sorenson, 1980.) Based on methodology, there are two types of grid

generating schemes, algebraic and differential. An algebraic grid-generation

scheme is a direct approach. It may be further classified into a conformal-

transformation procedure and a nonconformal-transfo_ation procedure. A

description of conformal transformations for computational aerodynamics is

given, for example, by Sells (1968), Ives (1976), and Moretti (1980). (A con-

formal transformation may be defined either by an analytical function or by

two Laplace equations resulting from the fact that the real and imaginary

parts of an analytical function are harmonic. The procedure based on the

latter definition does not require a separate discussion.) Some of the non-

conformal procedures are the parametric multisurface transformations (Eiseman,

1978 and 1979), transfinite interpolations (Eriksson, 1980), and the iso-

parametric mappings (Forcey et al., 1980). (Note, Eiseman has not used the

adjective, "parametric.") On the other hand, a differential grid-generation

scheme is an indirect approach. This again may be further categorized as

that based on a hyperbolic differential system and on an elliptic differential

system. A hyperbolic procedure was first presented by Barfield (1970); and

then it was extended and analyzed by Starius (1977). Recently, Steger and

Chaussee (1981) have modified Starius' procedure. Thompson, Thames, and

Mastin (1974) exposed the elliptic procedure to the computational aerodynamic

community by extending, in particular, the work of Barfield (1970), Godunov

and Prokopov (1972), and that of Amsden and Hirt (1973).

When a boundary of a flow field can be mapped with an analytical function,

when the resulting distribution of boundary grid points is nearly satisfactory,

and when the interior grid distribution is less of a concern, conformal trans-

formations are the best. They give rise to simple geometrical mapping quan-

tities, and it is easy to assemble a grid system with them. Furthermore,

they provide exact values of geometrical quantities. These transformations,

however, cannot be extended to three dimensions, but they can be used in two-

dimensional cross sections of a three-dimensional flow field.

The hyperbolic transformation procedures give, in two dimensions, orthog-

onal curvilinear grid systems. With these procedures, it is not automatically

possible to control either the location of the outer boundary or the distribu-

tion of points on it. Therefore, they cannot be used directly for internal

flow problems or for patching different grid systems. Further, their applica-

tion and usefulness in three dimensions remain to be demonstrated. On the
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other hand, the elliptic transformation procedures have been extended to

three dimensions (e.g., Mastin and Thompson, 1978, and Lee et al., 1980).

Under these conditions, the possibility and ease of a reasonable grid control

is still to be demonstrated. The elliptic procedures require more computa-

tional time than the other procedures. These procedures, generally, assemble

nonorthogonal grid systems. They allow some flexibility, and consequently

control, in the nature of grid system at the boundaries. But they do not

allow local grid control without affecting the entire grid system because of

the ellipticity of the grid-generating differential system. The solutions of

both hyperbolic and elliptic grid-generating differential procedures are con-

strained by the accuracy requirements just as the solutions of the flow

governing equations.

Unlike the elliptic procedures, the parametric multisurface transforma-

tion procedures allow local grid control. By the very nature of these pro-

cedures, they provide more flexibility, which results in precise grid control,

than the other procedures. However, they require a more complex specification

of generating variables than the others.

Sometimes it &s possible to choose the type of grid pattern. For

instance, turbulent transonic and inviscid transonic (or transonic viscous-

inviscid interaction) simulations past an airfoil are almost always conducted,

respectively, with the 'C' and the '0' grid. One may also use the 'H'

grid. This introduces a geometrical singularity, if the two halves of a

vertical line in the 'H,' one below and one above the horizontal line, meet

at an angle other than 180 °, as in '>-_.' This requires a special treatment.

Use of the 'C' grid avoids the difficulty of the mesh singularity. However,

as it is usually programmed, it does not make efficient use of mesh points in

the region behind the trailing edge. This is also the case for the 'H' grid.

Most currently available Reynolds-averaged Navier-Stokes codes with 'C'

grids have been used with a number of grid points ranging from 45 to 85 on

the airfoil surface. I Of the three grids as they are usually programmed, the

'O' grid gives the best airfoil resolution for the same number of grid

points. However, its use can create numerical difficulties at a sharp trail-

ing edge.

An important problem that is beginning to emerge with the availability

of more powerful computers is the generation of a grid system around a com-

pleto aircraft. Recently, there have been some attempts at generating a grid

system around some parts of an aircraft. Lee and Rubbert (1980) and Lee et

al. (1980) have explored the possibility and presented some ramifications of

constructing a grid system for three-dimensional configurations such as a

wing-body-nacelle shape. The computational domain is divided into a multiple

set of rectangular blocks. An elliptic grid-generating scheme is used within

each block. With this approach, there are two major shortcomings. It intro-

duces geometrical singularities in the transformed domain where there were

none to begin with and the grid control in the physical domain is poor,

1In contrast, current inviscid transonic simulations are generally conducted

with '0' grids that use about 150 grid points on the airfoil surface.
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particularly, across block boundaries and along the trailing edge of the wing.
The above investigators have also considered a single-block around a wing-
body configuration. In this case, geometrical singularities becomeregular
in the transformed domain. Eriksson (1980) has used an algebraic schemefor
the sameconfiguration. The resulting 'C' grid pattern around both the
leading edge of the wing and the wing tip appears to be acceptable. Moretti
(1980) has shownhow to assemblea grid system in cross-sectional planes of
a fuselage-and-arrow-wing configuration using conformal transformations.
Complexthree-dimensional geometries are first rendered quasi two-dimensional,
then two-dimensional grid-generating techniques are applied.

Methods for Improving Flow Simulation Accuracy

Onerequirement of accurate solutions is that they be, for all practical
purpose, independent of the grid system. So far, this has not been system-
atically demonstrated for turbulent, transonic simulations. The generally
accepted practice of indicating the order of truncation error of a numerical
method does not quantify the discretization errors. Although quantification
of these errors is difficult, it is possible to determine their effects
through grid-refinement studies. On the other hand, minimization of these
errors maybe achieved by a proper choice of both the numerical method and the
grid system. Usually, there is more freedom in choosing the grid system than
in choosing the accuracy of the numerical method. Further, the choice of the
grid system is determined by a priori knowledgeabout the solution. Most of
this knowledge is available in terms of generalities rather than specifics.
For example, surface boundary layers are always resolved with the help of
somestretching function near the known surface. But without the specific
information, such as the magnitude and location of gradients in the flow
field, the grid system employed can often be wasteful and not satisfactorily
concentrated on those regions where a better resolution is desirable.

For a better utilization of grid-point resources, there is a growing
interest in solution-adaptive grid systems. In a moving finite-element
method, which allows both nodal amplitudes and nodal positions to movecon-
tinuously with time, nodes generally moveautomatically to those regions
where they are most needed (Gelinas et al., 1981). In finite-difference
methods, there are currently two basic strategies. The first strategy
involves tracking a fluid property, such as the density gradient, and insert-
ing or regridding so that finely spaced grid-points are in the immediate
vicinity of that selected property (for instance Dwyer, 1980, and Kovenyaand
Yanenko, 1980). The second strategy is to minimize tile leading term or
terms of the modified equations that determine the order of the truncation
error of a numerical method (e.g., Pierson and Kutler, 1980, and Rai and
Anderson, 1980).

So far, the adaptive grid techniques have been primarily applied in one-
and two-dimensional Burgers' equation, and for a two-dimensional heat equa-
tion. Extension of these techniques to the Navier-Stokes equations for
turbulent, transonic simulations is a difficult undertaking. Questions, such
as what flow variables to monitor, which truncation errors to minimize,
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whether all flow variables and/or truncation errors should be considered
simultaneously, and which parts of the flow domain require special checking,
need to be resolved. Of course, how to best adapt the grid system is a major
research effort. These issues becomemuchmore involved when there are
unsteady shock-boundary layer interactions. The obvious payoff of solution-
adaptive grid systems is in terms of efficient use of computer resources.

ComponentAdaptive or Zonal Grid Systems

In the numerical simulation of three-dimensional flows, each component
of an aircraft has its own "natural" grid system, which is usually not
"natural" for the other components. Consequently, different grid systems,
each suitable for a particular component, are constructed. This leads to the
concept of component-adaptive grid systems, also referred to as the zonal
grid approach. Thesedifferent systems must, of course, interact. This is
accomplished by embeddingone type of grid into another (e.g., Atta, 1980)
or by someother form of patching neighboring regions (Forcey et al., 1980,
Eisemanand Smith, 1980, and Lee and Rubbert, 1980). In any form of grid
patching, the region of interaction between the different grid systems
requires special consideration. For instance, maintenance of global con-
servation and consistent accuracies. Perhaps the most important problem in
the practical use of zonal grid systems is their effect on the numerical
stability of the solution process. This aspect is just beginning to receive
attention. The above research efforts and related issues are crucial for
rapid advances in computational aerodynamic technology.

The complexity of generating suitable three-dimensional grid systems is
somewhatanalogous to problems in design and manufacturing. In these dis-
ciplines, computational geometry, that is the computer representation,
analysis, and synthesis of shape information (Forrest, 1971), has been
invaluable. It has given rise to the fields of computer-aided design (CAD)
and computer-aided manufacturing (CAM). In CADand CAM,parametric trans-
formation procedures are used to describe a single surface (Faux and Pratt,
1979). In a grid system, multiple surfaces are defined, and the constraints
placed on these surfaces are muchmore severe than on a single surface. The
roots of parametric multi-surface transformation procedures appear to be in
computational geometry. In three dimensions, complexity of generating grid
systems, and difficulties in visualizing a grid system during and after it
has been generated, call for using interactive graphics, just as in CADand
CAM.

Managementof Grid Systems

The secondary criteria for selection of a grid system, mentioned in the
beginning of this section, deals with the care of the grid system and the
associated data base. Someaspects of this criteria have been dealt with
above. Implicit numerical algorithms for both finite difference and finite
volume methods are more efficient when based on grids with ordered discretiza-
tions (see the section, Effect of Grid Topologies on Computational Efficiency),
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and zonal methods and finite element methods do not necessarily produce well-

ordered data bases. The real importance of well-ordered data bases occurs in

studies involving three-dimensional spaces, and we have very little experience
in this area.

NUMERICAL METHODS

Two Crucial Nonlinear Convective Phenomena

In order to clarify the discussion presented below, it is useful to

develop a concept that can be used to relate physical and numerical phenomena.

We search for some form of scale in both time and space that is common to

both phenomena, and find an excellent candidate in the frequency content of a

harmonic analysis made of the physical variables with reference to either time

or space. The physical side of this concept can range from the very "natural"

(in experimental studies of isotropic turbulence) to the rather "contrived"

(in the harmonic analysis of a discontinuity). On the numerical side, these

frequencies form part of the exact solution to certain model linear problems

with periodic boundary conditions, but are only loosely related to the eigen-

system of most difference equations actually being solved. Nevertheless, the

association of frequency with scale is a very convenient concept when discuss-

ing some of the broader aspects of the numerical simulation of fluid flow.

The Euler equations model an unsteady flow that can contain a discon-

tinuous solution referred to as a shock wave, or simply as a shock. For the

Navier-Stokes equations, shock waves are not, strictly speaking, discontinuous,

their thickness being of the same order as the thickness of the linear sub-

layer in a turbulent boundary layer (see the section, Navier-Stokes Equations).

The spectral analysis of a variable having a discontinuity, or an abrupt jump

that is "nearly" discontinuous, is shown in figure i. Notice that all, or

"nearly" all, of the high-frequency terms have finite amplitude. In the

theme of the previous paragraph, all or nearly all scales are present. This

has an important influence on the construction of numerical methods used to

compute flows with embedded shocks.

In this paper, we are interested in flows that have significant regions

of turbulence and separation. Laminar flows and flows with attached turbu-

lent boundary layers can be computed using the methods we are discussing, but

they usually can also be calculated by simpler and less expensive methods.

Although the vorticity that is essential for the production of turbulence is

generated by the viscous properties of the fluid-surface interface and curved

shock wave, turbulence itself is generated away from the surface and caused

by the nonlinear interactions of the convection terms in the Euler equations,

the same terms responsible for the generation of shock waves. For the points

relative to this discussion, the most illuminating aspect of turbulent flow

lies in the spectral representation of its inertial range shown in figure 2.

This gives the amplitude of the kinetic energy associated with each harmonic

in a spectral analysis of a typical high Reynolds number turbulent flow,

Tennekes and Lumley (1972). Notice that the scales of both axes in the figure
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are logarithmic, that almost all of the energy is carried in the low wave

numbers, and that molecular dissipation is limited to the relatively high

wave numbers where the energy content is low. The flow represented by the

high energy, low-frequency region is referred to as large scale or large eddy

motion, and the flow represented by the opposite end as low scale or small

eddy motion. The results shown in figure 2, referred to as the energy cas-

cade, greatly influence models used to approximate the effects of turbulence.

Numerical Techniques for Computing Shocks

There are two cormnon approaches used when devising numerical methods for

calculating flow fields with shock waves. They are referred to as shock

fitting and shock capturing. Shock-fitting methods employ some kind of test

for detecting the shock location, and then treat the shock as a local dis-

continuity across which the Rankine-Hugoniot relations must be satisfied.

Shock-fitting methods are probably to be preferred where they can be generated

by reliable and efficient codes. They eliminate the need for conservation-

law forms of the governing equations (which has certain simplifying attrac-

tions), and they produce sharp discontinuities at the jump location. They are

quite popular for computing many flows that can be modelled by the inviscid

Euler equations, especially where the flow field is supersonic, see, for

instance, Kutler (1974) and De Neef and Moretti (1980). However, the flows

of interest in this report can have strong shock boundary-layer interaction,

and the effect of viscosity must be included in this region. Further, we are

interested in the flows that contain three-dimensional and oblique shocks.

Shock fitting under these conditions can become extremely difficult, and our

remaining attention is limited to shock-capturing methods.

The point of a shock-capturing technique is that the shock forms and

moves about in a mesh, while some kind of analytic connection is maintained

between the flows on the two sides of the wave front. This does not mean

that the shock-capturing methods cannot have built-in logical tests that try

to isolate the shock location. Very often they do, and very often they make

use of the test results to make local adjustments to the differencing scheme

to improve its capturing capability. Still, by definition, a shock-capturing

numerical method connects the dependent variables on the two sides of the

wave.

An immediate consequence of shock capturing relates to the spectral

structure of a discontinous function shown in figure i. Since the capturing

technique is based on some kind of numerical continuity across the shock, the

harmonic analysis can be used to represent the result. It is well known that

a finite grid can only support a finite number of frequencies in a discrete

Fourier series. For example, an equispaced grid of M points can accurately

accommodate k = M/2 harmonics of the form eikx. Frequencies higher than

k reappear as lower frequencies, a property referred to as aliasing. In an

unsteady flow with a moving shock, these higher frequencies are constantly

being generated by the nonlinear convective interaction. For example, the

product of the waves eikx e i_x brought about by terms such as u _x v,

produces two harmonics, one having a lower frequency proportional to k - _,

26



and the other having a higher frequency proportional to k + 4. This behav-

ior can be verified in numerical simulations by observing how a simulated

shock constantly tries to steepen. A linear discontinuity shows no such

tendency. The situation just described can be summarized as follows:

(i) Any discrete grid system can accurately support only a limited

number of low frequencies. If higher frequencies are placed on it, they

appear as amplitudes of low order terms.

(2) Convective nonlinear interactions are constantly cascading low

frequencies to higher ones.

The numerical difficulty brought about by this situation in the case of

shocks is illustrated in figure 3. The frequencies to the right of the mesh

cut-off line are referred to as subgrid frequencies. If their production is

permitted, they must alias back into the low-frequency range causing numerical

error. This error can be severe enough to cause numerical instability. The

standard way to cope with the subgrid scale generation is to include in the

computing process some form of numerical dissipation which removes the sub-

grid terms before any significant part of them cross the cut-off boundary.

Notice that this is an arbitrary, numerical, error-control procedure that has

nothing to do with any physical dissipation which occurs at much higher fre-

quencies.

The practical implementation of adding the numerical dissipation of the

subgrid terms takes many forms. The process can be "hidden" in the differ-

encing scheme. Such is the case for the various Lax-Wendroff types where the

actual dissipative mechanism, which is provided by the fourth and higher

even-order derivatives, is uncovered by inspecting the modified partial dif-

ferential equation (e.g., Warming and Hyett, 1974, and Lerat, 1979). Upwind

space-differencing schemes have the same property, which is again revealed by

inspecting the modified partial-differential equation. Central differencing

schemes for the first derivative of a space term are well known to be non-

dissipative, so when these are used in shock-capturing algorithms, higher

order dissipation terms are deliberately added to the computations (Von

Neumann and Richtmyer, 1950, MacCormack and Baldwin, 1975, Warming and Beam,

1976, Briley and McDonald, 1977, and Steger, 1978). From the arguments

presented here, they are no better or worse than the forms which have no

overt dissipation. All numerical schemes that capture shock waves with satis-

factory accuracy have some numerical error, and its quantification is

usually subjective and problem dependent. This situation can be attenuated

to a certain extent by mesh clustering, but is usually worse fur Navier-

Stokes codes than it is for potential codes, simply because the meshes for

Navier-Stokes computations are usually coarser.

The above discussion presents one valid point of view for assessing

shock-capturing techniques. However, it is not the only one. An alternative

point of view is based on the theory of characteristics in supersonic flows.

For example, the usual justification of upwind differencing in locally

supersonic regions is not based on dissipation but on the fact that they can

be made to approximate a local method of characteristics. The Lax-Wendroff
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methods also tend to approximate a local method of characteristics. In both

cases, for all one-dimensional linear convective problems, a discontinuity

can be solved exactly at a Courant number of one. Model problems, however,

seldom occur in practical application. It is interesting to notice that

central differenced first-derivative terms with deliberately added dissipation

can be made to create a system that has the properties of upwind differencing.

A second consequence of using a shock-capturing method is to create the

problem of insuring the proper location and strength of the shock as it moves

about in the mesh. Lax (1954 and 1973) has shown that this can be suitably

approximated if the difference equations are locally conservative. The most

common way of enforcing this condition is to cast the governing partial dif-

ferential equations in conservation-law form, and then make sure the differ-

ence scheme maintains this property. When such a technique is employed, a

shock profile, represented, for example, by the pressure distribution, is

"smeared" over a few mesh points, but, for many practical applications, the

general position and strength are adequately represented. Many variations

of shock-capturing methods exist which attempt to make the wave structure

"crisper" and to eliminate overshooting of shock profiles. Our experience

with numerical calculations which include boundary layer indicates that the

details of shock smearing and overshoot are not of critical importance in

determining the flow behavior along body surfaces. From this point of view,

a wide variety of published methods are quite adequate for capturing shocks

in Navier-Stokes codes.

Numerical Techniques for Computing Turbulence Effects

The problem of computing turbulence is much more difficult than that of

capturing shocks. In fact, at the Reynolds numbers typical of transonic

aerodynamic flows, no attempt is made to compute turbulence; rather, we try

to approximate the effects of turbulence. The reason is, as in the case of

shock capturing, the incapability of numerically resolving the full range of

scale. However, in the case of turbulence, the problem is much more severe,

since the scale to be resolved extends in all three space directions as well

as in time.

A plot of the longitudinal turbulence energy spectra for eight differ-

ent types of flow is shown in figure 2. It is seen that energy-dissipating

eddies (large k) are apparently independent of both Reynolds number and

type of flow. Further, the form of the energy spectra in the inertial sub-

range at high Reynolds number conforms to the Kolmogoroff spectrum law

(k-_/3). This result is strictly experimental; no numerical simulation has

yet produced real evidence of an inertial subrange in three dimensions. In

order to accomplish this, one needs to provide a mesh that can support more

than two orders of magnitude of frequency variation in all the three space

dimensions. It is estimated that this will require a mesh with about (1024) 3

grid points. For an incompressible flow that contains all of the modes, the

calculation would need a total storage of about 7 x 109 words using the most

sophisticated numerical techniques.
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The simple realities of computer resources force us to make one severe

approximation and to accept one severe constraint in formulating our gov-

erning equations before we even start to consider the numerical methods.

The approximation is the use of the Reynolds-averaged equations discussed

earlier. This eliminates the need to resolve the small eddy motion, but

introduces the problem of closure. The constraint is to permit extreme

coordinate distortion in only one direction. This permits us to approximate

viscous effects normal to very thin layers, but, at high Reynolds numbers,

in that direction only. Probably the most important result of all this is

that the computational processes that finally emerge have the capability

of qualitatively simulating flows witch regions of separation and large-scale

unsteady behavior. The crucial question, of course, is their reliability.

We have yet to discuss the role numerics plays in computing turbulence

effects. Two quite different issues are involved. One, the manner in which

the subgrid scales are accounted for, and the other, the manner in which the

turbulence model is implemented. The subgrid scales are constantly being

generated by the large scale structure through the nonlinear wave interactions

in the convective terms. The numerical control of the subgrid energy produc-

tion is brought about by the addition of dissipation, either through the

space derivative approximation or deliberately by additional terms. In either

case the choice is arbitrary, except that it lie in the error band of the

large scale resolution, and that it prevent the accumulation of energy in the

highest frequencies supported by the mesh. The role of this form of dissipa-

tion is often not clearly understood. It has absolutely nothing to do with

physical viscosity at the scale that it is employed. Its detailed form is

largely arbitrary, yet a solution would be physically incorrect if it were

removed, since energy would then flow to subgrid levels and alias back into

large-scale terms where it has no physical meaning. It is essential to the

numerical simulation of the effects of turbulence, but it is not, in con-

ventional terminology, part of the turbulence model, see figure 4.

The second important role of numerics in Reynolds-averaged codes lies in

the detailed coding of the turbulence model. The analytic forms of several

models were given earlier in the section, Governing Equations. Unfortunately,
these are not sufficient to describe the effect of a turbulence model on an

actual calculation. The numerical effect of the complete model is the sum

of all its parts, and this includes the grid clustering, the metric evaluations

(see next section), the internal logic controlling the local evaluation of

parameters such as mixing length, and the choice of difference approximations.

The "accuracy" of all this is difficult to evaluate since the conglomerate is

the actual turbulence model and its fundamental basis is essentially empirical.

The final judgement of the method is usually based on a comparison with some

experiment, and the result may be good or bad depending on the choice of any

one of the method constituents.

Many variations of turbulence models have been tried on transonic flows

with turbulent boundary layers. How well these compare with transonic wind-

tunnel experiments is discussed in the next major section.
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Effect of Grid Choice on Numerical Stability

The basic reason for choosing a nonuniform grid is to improve the
accuracy of a numerical solution for a given numberof mesh-points. There
are two ways in which this is usually accomplished. One is to align, as
closely as possible, a coordinate with a knownor anticipated surface, such
as a shock wave or body surface, in order to fit them more "naturally" into
the mesh. The other is to cluster points in regions where there are rapid
changes of gradients in order to reduce local truncation errors. As a
corollary of the latter process, in order to conserve resources, points are
often spread apart in regions where the curvature is small. Finite differ-
ence, finite volume, and finite element methods all have these capabilities.

The form chosen for a grid can have a profound effect on the solution
process. By far the most important side effect of grid refinement on a
numerical algorithm is its infldence on numerical stability. As is very well
known, the time step of explicit methods is mainly boundedby the size of the
space interval, and this holds for nonequispaced as well as equispaced meshes.
If a single time step is used for advancing the entire solution, an explicit
method is generally limited by the smallest space interval in the mesh. This
limitation can be seriously costly if the time step is forced to be very
small comparedto the time scales of motion that are of interest. In such
cases, the algorithm is said to be stiff, and if the stiffness is caused by
the fineness of a space interval in the grid, the algorithm is said to be
meshstiff.

Codesusing explicit numerical methods for the solution of the Reynolds-
averaged Navier-Stokes equations can be extremely meshstiff when they are
used to study flows with thin boundary layers. This occurs when the grid is
madeto be very fine in the vicinity of the body in order to compute the
viscous effects there. For example, a typical grid spacing normal to an air-
foil surface can be in the order of 0.00001 chords for turbulent boundary-
layer simulations at Reynolds numbersabove 106. Grid point clustering around
shocks and leading and trailing edges can also be the cause of meshstiffness.

By far the most cormmonway to avoid any form of stiffness is to use
implicit, rather than explicit, algorithms. Almost all codes being used to
analyze the compressible, Reynolds-averaged Navier-Stokes equations have some
parts that represent an implicit numerical technique. The use of such tech-
niques involves the solution of coupled sets of simultaneous equations. In
finite difference codes, these simultaneous equations can usually be expressed
as very sparse banded matrices that, in the great majority of cases, have
tridiagonal structures. In fact, the numerical efficiency realizable from
solving tridiagonal systems is so deeply embeddedin finite difference methods
for the problems we are discussing that it has greatly influenced, and at
present even limits, the choice of grid topologies. This is discussed in the
section, Effect of Grid Topologies on Computational Efficiency.
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The Basic Difference Equations

The following is a brief evaluation of the finite-difference techniques

currently being used to solve the types of problems in which we are interested

--completely aside from any consideration of the turbulence model. It does

not represent those formulations which compute the flow using different

equations in different regions, such as an inviscid outer flow coupled with

a boundary layer calculation.

The difference equations used to solve the compressible Reynolds-

averaged Navier-Stokes equations take many forms and vary in accuracy, effi-

ciency, and reliability. Throughout the 1970's, a variety of individual codes

were developed and used to solve specific problems. The particular choice of

problem was usually motivated by some experiment involving shock waves and

turbulent boundary layers with varying amounts of separation. In numerical

terminology, these codes represent methods that range from fully explicit

(e.g., MacCormack, 1969) to factored fully implicit (e.g., Briley and

McDonald, 1977, and Beam and Warming, 1978). The codes are usually written

in terms of numerical operators which are applied in series to prescribed

data bases. Thus, there may be a convection operator followed by a diffusion

operator, or the algorithm may be "space split" so that a one-dimensional

x-operator is followed by a one-dimensional y-operator to form the total

x,y solution of a two-dimensional flow. These techniques are also referred

to as factored forms. In some codes, certain of the factors represent explicit

methods and others implicit ones (MacCormack, 1978, and Shang, 1978).

From a general point of view, at the present time, all of the codes

used to solve the Reynolds-averaged Navier-Stokes equations, and the methods

they represent seem to have about the same potential for accuracy and effi-

ciency of running time, although these can vary according to the capabilities

of the individual coder. The numerical methods they represent appear to be

acceptable everywhere throughout the flow field except possibly at the

boundaries, a matter which is again an individual responsibility. The codes

are generally at least first-order accurate in time. For high Reynolds

numbers (>106), they require about 45 minutes of running time on a CDC 7600

to reach a steady state, if one exists. This estimate is for codes that are

at least partially implicit. It varies, of course, depending upon the number

of grid points, the Mach and Reynolds number, and the angle of attack. If

the codes are fully explicit the running times can he much longer.

Effect of Grid Topologies on Computational Efficiency

For the points to be made in this discussion our basic equation can be

expressed in the form

d_ = AQ - _ (27)
dt

where A is a very large and very sparse nonlinear matrix that represents

some combination of the flux Jacobian, the grid construction, and the space
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differencing. If the grid is chosen so that the physical space is mapped
into a computational space that forms the inside of a rectangular box, and
the boundary conditions are mappedonto the sides of the box, the matrix A
becomesbanded for most commonchoices of finite difference schemes. The
typical form of A for second order finite-difference schemesis shownin
equation (28) for a three-dimensional problem that is formulated in a computa-
tional box.

A

Z
¥ ------_

(28)

In this schematic structure, all matrix entries are zero except those repre-

sented by the diagonal lines and each diagonal line represents a set of 5 × 5

block matrices each of which is composed of a local flux Jacobian. Suppose

the mesh coordinates are represented by x, y, and z and there are a total

of _, My, and Mz points in each coordinate direction. In the particular

case shown in equation (28), the data vector Q is so arranged that the x

data is closely packed, nearby y data skip blocks of x, and nearby z

data skip blocks of y. Of course, this arrangement is arbitrary and, by

permuting the data base, the variables in any one direction can be closely

packed at the expense of the other two.
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One can view the steady state solution of equation (27) in two ways:

one as the solution of the nonlinear system Q = A-if, and the other as the

result of a converged time history of an unsteady process. The former

requires the solution of a set of simultaneous equations having the form

represented by A in equation (28)--which would have to be iterated because

it is not linear. The latter would require the successive solution (with

each time step) of a similar set of equations if the time-marching method

were fully implicit.

Consider the prospect of carrying out either of these solution procedures.

Although the matrix A is sparse and banded, notice that the half-bandwidth

is 5 x Mx x My elements. A solution using simple Gaussian elimination would

require about (5 x Mx x My) (5 x Mx x My x Mz) temporary storage locations to

hold the information required to complete the backward sweep. _lis makes the

solution of such a matrix by direct methods quite impractical on present day

computers with even moderate mesh sizes.

A common finite-difference technique used in the unsteady approach that

overcomes the difficulty just discussed is to factor the time-march process

without changing the order of accuracy of the algorithm. There are several

ways for caryying this out, with differing accuracies and stabilities. They

all have one thing in common which is to greatly reduce the temporary storage

requirements for the implicit operation. Methods commonly referred to as

factored fully-implicit lead to a set of three matrices representing block-

tridiagonal equations that have to be solved in sequence. Each of the

matrices has the form shown in equation (29).

Ap =
(29)
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Notice that this time the matrix is formed by large uncoupled diagonal blocks
each one of which is tridiagonal in sub-blocks of 5 x 5 matrices. In such
cases, each large diagonal block can be solved independently and requires a
temporary storage of only 5 x 5 x Mp words, where p represents x, y, or z.

The role of the topological-box computational space in all of this is to
provide the banded structure of the matrices in equations (28) and (29).
Zonal grids with inerfaces, overlapping meshes, and other forms of nonregular
grid structures lead to A matrices that are not bandedand tend to deviate
from the tridiagonal structure. This can greatly increase the complexity of
the computational algorithm or drive it to explicit (or even numerically
unstable) forms. In either case, efficiency and code reliability can suffer.
Many forms of the finite element approach will lead to the samedifficulties
for the samereason. The problem of generalizing meshstructures beyond com-
putational boxes and keeping the codes that use them computationally reliable
and efficient is one of the most pressing problems in finite difference
developments in the 1980's.

A COMPARISONBETWEENEXPERIMENTSANDCALCULATIONS
OFTURBULENTTRANSONICFLOWS

The following material draws from the relatively young and limited body
of computedresults based on the Reynolds-averaged Navier-Stokes equations
for transonic flows with strong viscous-inviscid interactions. Wehave taken
this material from publications only from NASAAmesResearchCenter simply
becausemost of the published work in this area has been carried out at this
institution.

First of all, consider sometypical computedboundary-layer profiles for
an attached flow. For example figure 5 shows a group of such profiles ahead
of a shock wave on an 18%thick circular-arc airfoil. Theseare compared
with the Compressible form of the law of the wall. In the figure, u+ repre-
sents u normalized with the friction velocity (Deiwert, 1975). A simple
mixing-length model, given by Launder and Spalding (1972), was used to
describe the turbulent transport. All computedprofiles have one grid point
in the viscous sublayer. Notice that the log-law region is well represented
by the grid-point distribution. This is generally the case of presently
available Reynolds-averaged Navier-Stokes computations in attached boundary
layers. Computedvelocity values at x/c = 0.675 differ from the empirical
log-law distribution because of flow separation just downstreamof this
location.

For manypractical uses, the turbulence modelling of attached turbulent
boundary layers without shock-wave interaction is quite acceptable. The
following discusses the status of the Navier-Stokes technology for turbulent,
transonic simulations with emphasis on turbulence modelling for separated
flows and on flow problems which are not feasible to solve with current
simplified viscous-inviscid interaction approaches. This discussion deals
with representative simulations in which flow fields maybe steady, unsteady,
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Figure 5.- Velocity profiles ahead of a shock wave.
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attached, or separated, both in two and three dimensions. Special problems

such as "buffetting" flows, aileron buzz, and airfoil "stall" are considered.

In addition, two types of turbulence simulations are presented, one in which

turbulence models are used in a predictive mode and the other where these

models are used in a postdictive mode. This presentation is motivated in

order to stimulate systematic questioning of what research directions are

needed for accelerating advances in better predictions of separated turbulent

flows in aerodynamic applications.

Axisymmetric Steady Flows

A computation of normal shock-boundary layer interaction for an axisym-

metric flow was carried out by Viegas and Horstman (1979). The tunnel geom-

etry, experimental results, and several computations are shown in figure 6.

This represents an attempt to compare the merits of four different types of

turbulence models at Reynolds number (5.5 x 105 ) based on upstream boundary-

layer thickness and low supersonic Mach number (1.44). The results for pres-

sure distribution are essentially the same for all models. Differences are

evident in calculation of skin friction, which depends, of course, on the

slope of the boundary-layer profile at the surface. In fact, the particular

algebraic model used showed a region of flow separation which did not appear

in the other calculations. The above computors report that the most recent

evaluation of the experiment indicates that flow does not separate. In light

of the results shown in figure 7, a tentative conclusion can be drawn:

This is probably representative of the accuracy one can expect from present

forms of turbulence modelling and numerics. With regard to the algebraic

model, the obvious question is: What details made the model used for Levy's

results shown in figure 7 so superior to that used for the results in

figure 6?

As one looks into the details of more sensitive flow properties, one can

anticipate further discrepancies. For example, the W-R model [equations

(18) and (19) witb f17 = 0.9] and the Jones-Launder (J-L) model (Jones and

Launder, 1972) were used to compute the turbulent kinetic energy, v2/2.

Measured and computed profiles of v2/2 are shown in figure 8 at various

x-locations downstream of the shock wave located at x. The measured energy

was determined from a measurement of u_ and with the assumption that

u i : u_ : u_ = 4 : 2 : 3. This assumption was observed to be reasonable for

equilibrium'boundary-layer flows at high subsonic Mach numbers (Acharaya, 1977).

Computed Mach contours and the extent of separation region about an

axisymmetric "bump" are shown in figure 9, along with an infinite-fringe

interferogram and an oil-film visualization. A zero-equation model and the

W-R model, respectively, predict shock locations 0.13 and 0.i0 chord lengths

downstream of the experimental location, which is at x/c _ 0.66. Johnson

and Horstman (1981) report that wall effects are negligible, and they believe

the computational grid is sufficiently refined. Figure 9 also shows a

surface oil-flow visualization indicating separation at x/c _ 0.7, and the

experimental and computed locations of the u I = 0 line.
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The amount of work expended on axisymmetric flows, both experimental and

computational, is quite small compared to two-dimensional studies. Neverthe-

less, the above results are representative of the state of the art of simu-

lating such flows.

Two-Dimensional Steady Flows

Effect of four different algebraic eddy-viscosity models on surface

pressure distribution over an 18% circular-arc airfoil is shown in figure i0.

These models range from an unmodified boundary-layer, mixlng-length model to

a streamwise relaxation model with three magnitudes of the relaxation param-

eter % (Deiwert, 1976). Figure i0 shows the effect of this parameter on

the extent of separation region for the high Mach-number case. Except for the

highly relaxed study, % = 106, the results are all about the same and show an

agreement among themselves that can be expected of different forms of eddy

viscosity turbulence models for flow with mild trailing-edge separation.

The two cases shown in figure I0 have an interesting history that is

worth mentioning. Consider first the results for the lower Mach number, 0.743.

The experimental data came from a wind tunnel and the computations were made

for free air. At the time the computations were made, they were considered to

be acceptable because the upper and lower tunnel wall, which were at a distance

of about a chord length from the model, had been contoured to match an inviscid

free-air calculation for a Mach number equal to 0.775. The contoured walls

were diverged slightly to compensate for wall boundary-layer growth. The

agreement between tunnel experiment and calculation under these conditions is

shown in figure II (McDevitt, 1976). The effect of contouring for one Mach

number and running for another is indicated in figure 12 (Levy, 1978).

While it is not conclusive, it is reasonable to attribute most of the dis-

crepancy between experiment and computation (excluding % = 108) in figure

i0 to be due to an improper boundary condition on the upper surface of the

computational domain. The result for % = 106 is assumed to represent a bad

model for the turbulent region.

The computed and experimental pressure distributions for M_ = 0.788 in

figure i0 illustrate another possible source of trouble in making flow

simulations. This is a case representing fairly steady (see the next sub-

section) shock-induced separation, where the pressure plateau behind the

shock was very poorly estimated by all computations and the computed shock

wave was nearly normal, instead of oblique as in the experiment. The effect

of correcting the calculation by including the proper upper wall as a boundary

condition made very little difference (figure 13). An effort to tie the

discrepancies to the turbulence model was made by Coakley and Bergmann (1979).

The results of this study are shown in figure 7. No essential difference

in the result could be correlated with any of the forms of eddy viscosity

models and mesh refinements that were tried. In fact, the zero-equation model

result reported by Levy (1978) was the closest to experiment both in pressure

distribution and skin friction. However, we attach no significance to this

fact insofar as any model can be considered as superior to the others.
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-1.2

18% CIRCULAR-ARC AIRFOIL, Re = 2 x 106 , M_ = 0,775

(McDEVITT et al., 1976)
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Figure ii.- Effects of v_scosity at design conditions.
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18% CIRCULAR-ARC AIRFOIL, Re = 11 x 106, Moo = 0.720, o_= 0 °

(LEVY, 1978)

TUNNEL WALL

STREAMLINE FROM FREE-FLIGHT SOLUTION

WALL
COORDINATES

1°°t /_ CONTOURED

92' , ' , ' , , "'• L A I J

-3-2-1 0 1 2 3 4 5 6 7

x/c

0

-1 2

-.8

Cp -.4

0

.4
0

PRESSURE DISTRIBUTION

EXPERIMENT

_- COMPUTED, TUNNEL WALLS

----- COMPUTED, FREE FLIGHT SKIN-FRICTION

DISTRIBUTION

- _ .006

C .004' // ,'Cf _ '_

.002' I; X
, i

_ _ 0%
x/c

Figure 12.- Effect of tunnel-wall boundaries off-design conditions.
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18% CIRCULAR-ARC AIRFOIL, Re = 11 x 106, Moo = 0.783, _ = 0°

(LEVY, 1978)
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Figure 13.- Effect of tunnel-wall boundaries near-design conditions.
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The wind-tunnel results shown in figures i0, ii, 12, 13, and 7 were

determined from measurements made in a channel flow. Computations of such

flows are known to be sensitive to inflow and outflow boundary conditions.

In order to check this aspect of the problem, Coakley (private communication,

1981) made some calculations in which the outflow pressure distribution was

fixed at the experimental value. Some preliminary results are shown in

figure 14. The results are encouraging. The shock wave is now oblique

and the level of the trailing edge pressure plateau is matched quite closely.

However, the shock position and skin friction are still parameter dependent

and the investigation is continuing.

We now turn to some results involving performance characteristics and

shock-boundary layer interactions, but no shock-induced separation.

The experimental and computed drag polars and lift curves for the GK I

supercritical 11.5% thick airfoil (Garabedian and Korn, 1971) are shown in

figure 15. The experimental data were taken with tunnel walls set a 6% and

20.5% porosity (Kacprzynski, et al., 1971). For 20.5% porosity, Melnik (1979)

shows two sets of experimental data on the lift curve, uncorrected and cor-

rected. According to him, the corrected data represent free-flight conditions

(see also Morky and Ohman, 1980). There are two sets of computed results.

Deiwert (private communication, 1977) has solved the Reynolds-averaged Navier-

Stokes equations with free-flight boundary conditions and an algebraic model

without relaxation. Melnik (1979) has used the "full" viscous-inviscid inter-

action theory. He has matched the lift coefficient with the experiments and

applied a small Mach number shift of M = -0.005 to obtain agreement with

the experimental shock position. The lift curve shows that both the viscous

effects and the wind-tunnel interference effects are important. Drag values

of both computations differ from the measured values. These computations

again indicate that proper boundary conditions are required for taking into

account wind-tunnel wall-interference effects.

Two-Dimensional Unsteady Flows

An interesting set of experiments (McDevitt, 1976) and calculations

(Levy, 1978) have been carried out for an 18%-thick biconvex airfoil at zero-

degree incidence. Both experiments and calculations showed a region of

"buffetting" or self-excited, oscillating flow in the Mach number range

between 0.72 and 0.79 for a Reynolds number around ii x 106 .

The experiment was conducted using a wind tunnel in which the upper and

lower walls were contoured as mentioned in the preceding subsection. The

calculations used slip-flow boundary conditions along surfaces that matched

these contours. The effect of turbulence was approximated by an algebraic

eddy viscosity model similar to that used by Deiwert (1977). This zonal

model changed form in various regions bounded by the separation location, the

location of reattachment of the separated streamline to the surface stream-

line and the edge of the boundary layer. Unfortunately, the sensitivity of

the solution to the model is an unknown.
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Figures 16 to 19 show a comparison between the experiment and computed

results. Figure 16 identifies the experimental Reynolds number and Mach

number domains within which there are three distinctively different types of

flow. The three types were reproduced by computations made at Mach numbers

of 0.720, 0.754, and 0.783, and a chord Reynolds number of Ii × 106. At

M_ = 0.720, the flow is steady and flow separation occurs near the trailing

edge of the airfoil. At M_ = 0.754, there is unsteady periodic oscillation

in shock-wave location and intensity; and the flow alternates between trailing-

edge and shock-lnduced separation and is quite different on the upper and

lower surface at any given time. At M_ = 0.783, a shock wave induces

boundary-layer separation at its base and the flow is relatively steady,

except in the separated region.

Surface pressure comparison is demonstrated between computations and

experiments for the above three different conditions in figure 17. The

vertical bars on the experimental data represent maximum and minimum values

of fluctuations about mean. The range of computed fluctuations about the

mean computed values is denoted by the shaded area. The steady flow regions

at M_ = 0.720 and 0,783 have been discussed in the previous subsection.

The unsteady flow at M_ = 0.754 is qualitatively very well predicted,

but quantitative comparison is poor, except for the mean values of pressure

over the forward half of the airfoil (figure 17). This is further supported

by figure 18 which shows surface-pressure time histories. Here, the instan-

taneous pressure oscillations are given about the mean pressure, normalized

by the wind-tunnel total pressure. The computed and measured, reduced fre-

quency of these oscillations are, respectively, 0.40 and 0.49. However, the

amplitude of oscillations is quite different. For this case, the shock-wave

shapes from shadowgraphs are compared with computed Mach number contours in

figure 19 where the phase has been arbitrarily adjusted (Marvin et al., 1980).

For another problem, namely, a 14%-thick biconvex airfoil at Re = 7 × 106

and M_ = 0.83, the computed unsteady lift forces and pitching moments are

compared with those for M_ = 0.85 in figure 20 (Levy, Friv_te cc_municztic_n.

1981).

It is not at all surprising that Reynolds-averaged Navier-Stokes equa-

tions are capable of simulating unsteady flows when the computational time-

step is small compared to the period of resolvable flow motion which is of

interest, but much larger than the high-frequency, small-scale fluctuations

which have been averaged out of these equations (see earlier section,

Governing Equations). The question of how high the resolvable frequency

could be relative to the mean frequency of turbulence eddies is addressed by

Chapman (1979).

Another unsteady phenomenon, this time associated with a moving boundary,

is represented by the performance characteristics of the aileron of a P-80

(i.e., F-80) aircraft. This flow has been simulated by Steger and Bailey

(1980) using the algebraic eddy viscosity model and the second-order thin-

shear-layer approximation described in the section, Governing Equations. The

turbulence model was applied from the leading-edge of the airfoil. The P-80

alrfo[l section is an NACA 651-213 with a = 0.5. The aileron buzz is a
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18% CIRCULAR-ARC AIRFOIL, Re = 11 x 106 , Moo = 0.76, (_= 0 °

(SEEGMILLER et al., 1978)
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18% cIRCULAR-ARC AIRFOIL, Re = 11 x 106 , Moo = 0.76
(MARVIN et al ,, 1980)
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one-degree-of-freedom flutter problem (Erikson and Stephenson, 1947). The
interrupted, inviscid shock-wavemotion (e.g., TiJdeman, 1980) causes a phase
shift in the response of the hinge momentto the aileron movement. In the
experiment, at M_ = 0.82 and _ = -i °, the aileron, when freed at an angle
near zero, would buzz with amplitude and frequency as indicated in figure 21.
In the simulation, it would not buzz under these conditions. But if it was
initially deflected to 4°, it would, on being released, buzz as shownin the
figure. The computedand measuredfrequency are, respectively, 22.2 Hz and
21.2 Hz. Further, the computedand measureddeflection of the aileron are,
respectively, -i.i ± ii.i and -3 ± 9.2 deg. Similar calculations are madeat
different airfoil angles of attack to predict the measuredbuzz boundary.

Figure 22 shows results for an unsteady transonic flow over an NACA
64A010airfoil, which is oscillating about its one-quarter chord with a
reduced frequency of 0.2, based on one-half chord. Chyuet al. (1981)
obtained these results with the sameCDC7600 computer code used for the buzz
study discussed above. The computations were done in a coordinate system
fixed to and moving with the airfoil, but stationary at the open boundaries.
This involved generation of a grid system for each time step. The above
investigators report no flow separation. Computedand measuredsurface pres-
sure distributions are shownonly for one-half cycle of an oscillation, as the
airfoil angle varies from ! deg to -i deg. Notice that the computedand mea-
sured results agree muchbetter downstreamfrom the shock wave than upstream
of the shock. Figure 23 showscomputedand measuredshock-wave locus on the
upper surface of the airfoil.

Recently, "stall" boundary of the GKI airfoil has been predicted by Levy
and Bailey (1981). The llliac IV computer code was the sameas that used on
the buzz study gust discussed. Figure 24 shows computedand measuredunsteady
flow boundaries and computedMachcontours. This figure showsmuchbetter
agreementbetween experiment and calculations at the high-Mach-number, low-
lift range than they do on the low-Mach-number,hlgh-lift side. The latter
represents a case where a turbulence model has been pushed far beyond its
limits. Notice the Machcontour plots in figure 24 at two different free-
stream Machnumbers. In the low-Mach-numbercase, there is shock-induced,
turbulent separation bubble. Whether in an experiment there is a transitional
bubble aheadof the shock wave or below it, remains to be determined. In the
high-Mach numbercase, there is again shock-induced separation which extends
beyond the traillng-edge of the airfoil.

Three-Dimenslonal Steady Flows

In their present forms, most Reynolds-averaged Navier-Stokes codes for
two-dimensional flows take rather lengthy, 0.75 to 3.5 hours on a CDC7600,
run times for grids of 4 to i0 thousand points to reach a steady state or the
onset of a periodic flow. Three-dimensional flow simulations on such computers
are, therefore, not con_non. On the so-called class VI computers, such as the
ILLIAC IV, however, somethree-dimensional studies with moderate resolution are
practical at a research level. Weconclude with a brief discussion of two of
these investigations.

21nvestigators of these boundaries have called them buffet boundaries, although
there was no aeroelastic response of the airfoil to aerodynamic excitation
arising from unsteady separated flow (Fung, 1955).
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COMPUTATION OF AI LERON BUZZ BOUNDARY
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OSCILLATING NACA 64A010 AIRFOIL, Re = 1.2 x 107, M=o = 0.8, k = 0.2
(CHYU et al., 1981)
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OSCILLATING NACA 64A010 AIRFOIL, Re = 1.2 x 107, Moo = 0.8, k = 0.2

(CHYU et al., 1981)
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Figure 23.- Shock wave locus on upper surface.
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Surface pressure isobars for a subcritical unseparated flow over a 45 °

swept, 10%-thick circular-arc airfoil at a zero incidence and spanning a

tunnel are shown in figure 25. The second-order thin-shear-layer approxima-

tion was used with the two-equation W-R turbulence model, and only the upper

half of the flow field was computed.

Notice that the computational and experimental Mach numbers are slightly
different. Bertelrud et al. (1980) have explained the difference between the

Mach numbers as follows: The reference Mach number and pressure values for

the experimental isobars were obtained at a location nearly one chord length

ahead of the wing leading edge at the left wall of the channel. The computa-

tional boundary was located at 3.5 chord lengths ahead of same leading edge

of the wing. Therefore, the computed state at the measuring location did not

correspond to the measured state at that location. Figure 25 shows a compari-

son of measured and computed pressure distributions at three spanwise loca-

tions on the wing surface, and it gives the Mach number sensitivity.

Simulations of three-dimensional boattail afterbody flow fields have

been obtained by Deiwert (1980) with the second-order thin-shear-layer approxi-

mation and the same algebraic turbulence model used in the buzz study dis-

cussed above. In figure 26, surface pressure distributions are shown for a

boattail model used by Shrewsbury (1968). The experimental data are shown in

the insert by the triangles, squares and circles corresponding to wlnd_ard,

lateral, and leeward positions. The corresponding computed results are shown

by dashed, dotted, and solid lines. The junction of the forebody and after-

body of the above boattail model is sharp. Deiwert (1980) has reported some

sensitivity of the computed results to the grid spacing in the vicinity of this

junction (figure 27). Figure 28 shows computed results. The upper part is sur-

face pressure topology and the lower one is a limiting surface flow pattern

(surface shear directions) which approximates a surface oil-flow pattern.

The symbols S and R, respectively, stand for flow separation and flow

reattachment; and the subscripts S and N, respectively, denote a saddle-point

and a node-point. Downstream of the circumferential line SS SN, the flow is

separated. Downstream of the circumferential line RN R S RN, the flow is

attached. The direction flow is from SS to SN and from RN to RS. Such

details are available from present Navier-Stokes technology, and they are of

considerable use towards a better understanding of complex flow fields and

towards providing internal consistency checks for simulations.

CONCLUDING REMARKS

The Navier-Stokes technology is currently under vigorous development.

It has opened new possibilities of simulating unsteady, separated, turbulent,

compressible flows that were not accessible five years ago. In this paper we

have presented the state of the art, as we envision it. The primary utility

of this technology is in applications where the present viscous-inviscid inter-

action computations fail, and this generally occurs in simulating separated

flows that are nominally two-dimensional and unsteady, or three-dimensional

steady or unsteady. There is little doubt that the Navier-Stokes technology
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10% CIRCULAR-ARC AIRFOIL SECTION, Re = 5.7 x 106, _ = 0 °

(BERTELRUD et al.. 1980)
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Figure 25.- Surface-pressure distributions on a 45 ° swept wing.
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Moo = 0.9, Redm = 2.9 x 106, a = 0°
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can be of use to the aircraft designers and developers; the question is how
muchand when.

Over the past I0 years substantial advances have been made in computer
speed and memory. Further, our ability to compute flows in rather complex
geometries has greatly improved. It is becoming increasingly clear that
turbulence modelling in the regions of separation, which are not "small," is
the weakest part of the Navier-Stokes technology. In fact, it is rapidly
becoming the primary pacing item for Reynolds-averaged Navier-Stokes.

In the 1970's most of the work was done to prove the capability of
simulating turbulent flows with mild separation. Many turbulence models
were madeto work on isolated experiments. In fact this approach was used to
develop both the numerical techniques and a few empirical constants in the
models. However, very little has been done to establish the reliability of
a code, as distinct from a "model" when it is applied to a variety of experi-
ments. Onemust rememberthat the sameturbulence "model" can give different
results when used in different codes with the sameor different numerical
methods. This is due principally to lack of grid-refinement studies.

Numerical simulations of the Reynolds-averaged Navier-Stokes equations
are, in general, predictive for attached boundary layers. Zero-equation
models have been very useful in engineering analysis of these flows, but they
must be interpreted with caution whenused to approximate separated flows
and flows with strong curvature effects. Simplicity of zero'equation models
require more adjustment for separated flows; complex models, which contain
more empirical constants, need less adjustment. From the results available at
this time, however zero-equation models are judged, there is no clear evidence
to show that one- or two-equation, first-order models are muchbetter.

Oneof the problems in constructing models for external separated flows
is due to the fact that very little is known of the behavior of turbulence in
such flows (Bradshaw, 1978, and Eaton and Johnston, 1980). Wedo know, for
instance, that in separated flows normal stresses are anisotropic and turbu-
lence structure is not in equilibrium. Relaxation procedures and transport
equations for turbulent scales can take into consideration someof the history
effects, namely, the nonequilibrium nature of turbulence; but the Reynolds
stress tensor is modelled to respond instantly to changes in mean strain
field [equation (i0)]. The flrst-order (eddy-viscosity) models, therefore,
can be truly predictive only for flows in which turbulence is nearly in local-
equilibrium Or for self-preserving flows. The second-order (stress-equation)
models are required for nonequilibrium flows. This is illustrated below.

Consider a distortion of a flow field of fully developed, homogeneous
turbulence by application of plane strain (figure 29). This experiment acts
as a test of turbulence models in separated flows whennear-surface effects
are absent. The fluid is conditioned through screens, and it becomesparallel
when it reaches the station where the constant rate of strain is applied.
The subsequent straining of the fluid causes the initially nearly isotropic
turbulence to becomeanisotropic. A measure of anisotropy is plotted as the
ordinate, the lower portion of figure 29. At somedistance downstream, the

67



PARALLEL__
FLOW

Wo = 240
in./sec

CONST PARALLEL

 L°WFSTRAIN

I
T i.Ill_/ Wo
E.._

1f.8

• O A TUCKER REYNOLDS

RSE MODEL

TWO-EQUATION MODE L

I ! 1 ! I

CONST RATE I PARALLEL

OF STRAIN =I-i FLOW

' +.4

ot___f i .
-.2/ J _ i J

-1 0 1 2 3 4 5

x,m

Figure 29.- Normally strained homogeneous flow (Wilcox and Rubesln, 1980).

68



strain is removed and the fluid returns to parallel flow. The measurements

of Tucker and Reynolds (1968) are compared with computed results of Wilcox

and Rubesin (1980). The computation with a second-order (Reynolds stress)

model gives a better agreement with the measured values than that of the

first-order (W-R) model. Although Wilcox and Rubesin modified equation (i0)

to remove the alignment of the Reynolds stress tensor and the mean rates of

strain for the W-R model, the predicted return to isotropy is abrupt when the

strain is removed. This kind of behavior is brought about by the shortcoming

of the first-order models as explained above.

The above example illustrates two points. First, eddy-viscosity models

can probably never be completely predictive for separated flows. Some details

of the structure will most certainly be lacking. More sophisticated models

wiil pick up more of the details, but for stringent requirements they, too,

may fail. The second point, and by far the most important one, is that it

is probably possible to predict the gross behavior of a flow even when certain

of the details are not well represented or even missing altogether. The most

meaningful test of whether or not these calculations have useful information

is whether or not they are used.

There are two schools of thought about modelling turbulence (Lumley,

1978). Some believe that under certain circumstances, rational second-order

(or invariant) modelling can be developed for general computation procedures.

They consider this approach may at least provide a guide for the construction

of the more empirical models. Others believe the structure of turbulence to

be so complex that a search for universal closures is probably in vain.

They believe that practical computations will require empirical techniques

developed for particular flow topology. As for the current efforts in com-

puting turbulence flows for industrial needs, Liepmann (1979) has presented

an adversely critical opinion.

There are probably five different parallel avenues of turbulent separated

flow research: (i) Different turbulence models are applied to the same

geometrical flow problem in order to determine which one is the best;

(2) the same model, without any change in its form or in its empirical con-

stants, is applied to different geometrical flow problems so that its breadth

of application can be determined; (3) for a given form of a model, a computer

optimization is carried out to obtain the best set of model parameters rela-

tive to an available set of experiments; (4) for a specific flow problem, a

determination of the range of flow parameters is carried out for which a

given model with its empirical constants is valid; (5) a model is developed

for a particular flow problem based on a detailed experimental characteriza-

tion of this flow. As demonstrated earlier, elements of avenues (i) and (2)

are already being pursued; remaining avenues need to be pursued.

Computational aerodynamics is probably going to depend more on experi-

mental inputs and checks and less on the solutions of the Navier-Stokes

equations for developing turbulence models. Therefore, experimentalists

should be requested to document well the experiments they conduct during their

quest for understanding turbulence in separated flows. Through that under-

standing, better turbulence models may result at least for these flows, and
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this should increase the utility of the Navier-Stokes technology. Both
experimental and theoretical investigators need to work together to advance
the state of the art of turbulence models for separated flows. It is hoped
that efforts will be devoted to extensive testing of these models on a variety
of experiments without modifications to the basic coding. In addition,
repeated grld-refinement studies are required to demonstrate that a turbulent
numerical simulation tends to be independent of numerics.

In the 1980's, the complex three-dimensional geometries will require
component-adaptive or zonal methods. These procedures, along with limited
availability of computer speed and memory,will guide the Navier-Stokes
technology towards a viscous-inviscid interaction approach, which probably
will consist of matching the Reynolds-averaged Navier-Stokes solutions next
to a body surface with either Euler or potential flow solutions away from
the surface.

If the above efforts prove to work then not only capability but reli-
ability would be established. At this point the Navier-Stokes technology
will comeof age.

In summary, the state of the art of viscous transonic aerodynamics is
presented in a Venn diagram shownin figure 30. At present, transonic,
attached, two-dimensional, steady and fully turbulent flows can be routinely
predicted. Extensive efforts are being made to predict both steady and
unsteady, two-dimensional fully turbulent separated flows. Already promising
starts have been madeto simulate steady three-dimensional flows, either
attached or separated. However, muchremains to be done for laminar-
transitional-turbulent flows. Further, there is negligible progress in meet-
ing the final objective of predicting unsteady, three-dimensional, separated,
and laminar-transitional-turbulent flows.
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