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Abstract

In this paper we describe a systematic approach for constructing asymptotic boundary

conditions for isotropic wave-like equations using local operators. The conditions take a recur-

sive form with increasing order of accuracy. In three dimensions the recursion terminates and

the resulting conditions are exact for solutions which are described by finite combinations of

angular spherical harmonics. First, we develop the expansion for the two-dimensional wave

equation and construct a sequence of easily implementable boundary conditions. We show

that in three dimensions the analogous conditions are again easily implementable in addition

to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely,

Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we

provide numerical examples to demonstrate the effectiveness of these conditions for a model

problem governed by the wave equation.
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1 Introduction

The topic of boundary conditions for wave-like equations has been an active area for the

past two decades, with much work focusing on the development of sequences of conditions

of increasing accuracy based on local operators. Growing interest in demanding problems in
computational electromagnetics and aeroacoustics has increased the need for more accurate and

efficient techniques. In this paper we discuss and derive a sequence of boundary conditions

for isotropic problems. Preliminary results of this work are found in [8]. Generalizations

to anisotropic problems, such as the linearized compressible Euler system, will be discussed

elsewhere. The present development originates with the well-known reference [2]. It differs

from that and from others in that conditions of arbitrary order are expressed recursively using

auxiliary functions. This allows them to be implemented with great ease. It also allows the

adaptive determination of the order of the boundary condition, which we will demonstrate

elsewhere [7]. Moreover, in three space dimensions, the recursion truncates for finite spherical

harmonic expansions, leading to an exact condition. This condition is similar to that of Grote

and Keller [3, 4], but is somewhat easier and cheaper to use as it avoids spherical harmonic
transformations.

This paper is divided into four parts. In section 2 we describe the procedure for the

two-dimensional wave equation. The key idea is to construct a sequence of operators that

approximately annihilate the residual of the preceding element in the sequence, viewed as a

function on the artificial boundary. The sequence begins with the first order operator proposed

in [2]. The recursive operators are constructed in such a way that they yield a stable class

of conditions. The stability issue however is not discussed in this paper and will be reported

elsewhere. Also, we indicate how these conditions can be approximated numerically. In section

3 we discuss analogous constructions for the three-dimensional wave equation. Generalizations

to a hyperbolic system, that is Maxwell's equations in the TM case, are presented in section

4. Finally, in section 5, we give some numerical results.

2 The Two-Dimensional Wave Equation

A formal series representation for an outgoing solution of the two-dimensional wave equation

1 02u 02U 10U 1 O2U

C2 i_ 2 -- Or 2 +-r -_r -t-m_r2 002 (2.0.1)

takes the form:

u = _ an(O)fn(r,*),
rt-_O

oo

f" : Z ct
k----0

(2.0.2)

(2.0.3)



where,

By setting

(f_+l)_=

it is easilyobservedthat

1)2 _ n2(k + _ ,,
2(k + 1) f_' an = -n2an" (2.0.4)

10u Ou 1

_-_+ _+ y_=Wl, (2.0.5)

Wl = _ an(O)fn'l(r,t),

n=O

oo

fn,1 = Z r-k-3/27k, lf_(a -- r),

(2.0.6)

(2.0.7)
k=l

7k,1= -k. (2.0.S)

By direct computation we note that wl = O(r-2)u = 0(r-5/2). We now seek relations

approximately satisfied by Wl, which in addition do not involve radial derivatives. In [8] we

proposed a sequence of time derivatives of wl to derive higher order conditions. While they are

accurate, we found them to be only marginally stable. Here we propose adding a damping term

to the time derivative of wl, as first suggested by Barry, Bielak and MazCamy [1]. Precisely,

we apply the operator 1 _ + Lr to wl. This leads to the following calculations:

! Ow__A+ --wl
c cOt r

oo oo

-- E an E r-k-5/2((lg + 1)(f_l)t + (_lkf_)

n=O k=O

n=0 k=0

1
lcO2Uoo oo 1 1 I n2r2 oo2 + _-, a_ _ r-k-_/2( (k + )2 _ _k - _)f_.= 8--_-u + --_

n=0 k=l

The remainder term is further reduced if ¢fl is chosen to eliminate the first term:

oo

_1= I, W2 = Z anfn'2'
n=O

(2.0.9)

fn,2 = _ r-k-5/27k,2f_(c t _ r), 7k,2 = k(k - 1).
k=2

Clearly, we formally have w2 = O(r-4)u -- 0(r-9/2).

(2.0.10)
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We now state and prove the general formula. Let

oo

n=O

where

Then, for j _> 2:

co

f"'J = Z _-k-J-_/_'_kJY_(_- _),
k=j

7k,j = (-1)J21-Jk( k- 1)... (k- (j- 1)).

I OWj JW" (j__ 1)2 1 02Wj-1

c cgt +r _- 4r 2 wj-l+'4r 2 082 +Wj+l, j=2,...

To prove this we simply expand every term. On the left-hand side we have:

(k+ ½)2_n2 oo
E r-k-j-3/2"yk+ij 2(k + 1) f_ q- E r-k-j-3/2j'YkZf_"

k=j- 1 k=j

On the right-hand side we have:

_,r_k_j_3/2 (j _ !)2 _ n 2 oo24 7k,j-1 -F E r-k-J-3/2"yk,J +lf_"
k=j- 1 k=j+l

Separately we check k = j - 1, k = j and k >_ j + 1.

(j _ ½)2_ ,_2
-Tj,j 2j

(j _ ½)2_n2
(_1)J-121-#j_

2j

= (-1)J-122-j(j - 1)! (j - --3)2
n 2

4

(j _ ½)2_ .__
= 7j-l,j-1 4 '

(2.0.11)

(2.0.12)

(2.0.13)

(2.0.14)

(2.0.15)

(2.0.16)

-_'j+l,j
(j + ½)2_n2

2j +2
+ j_/j,j = (--1)J-121-J(j + 1)!

2j +2

= (--1)J-122-jj !(j _ ½)2 _ n 2
4

(j - ½):- n:
= 7j,j-1 4

_ (_l)J-121-Jj!j
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(k + {)2 _ _2
--"/k+l,_ 2(k + 1)

+ J3'k,j (-1)J-121-J(k + 1).-. (k + 2 - j)
(k + ½)2_ _2

2(k+l)

-j(-1)J-121-Jk... (k + 1 - j)

1)2(j - _ -
(-1)J-122-Jk ... (k + 2- j)

1 )2 n2(j - _ -
7kd-1 4 + "Ykd+l.

n2+(k+l -j)(k -j)

4

This recursion leads to the sequence of conditions:

1 Ou Ou 1

-_a-7+ -fir + _' = _ol, (2.o.17)

1)21 awj Jw (J - _ 1
c Ot + r 3 = 4r 2 wj-l+4r 2

where we have set

w0 = 2u.

02Wj--I

a8 2 +wj+1, j = 1,... (2.0.18)

(2.0.19)

Formally,

wj = O(r-23)u = O(r-(2_+1/2)). (2.0.20)

Using p auxiliary functions involves setting wp+_ = 0 which leads to an expected accuracy of

O(r-2p-2).

3 The Three-Dimensional Wave Equation

The wave equation in three dimensions is given by:

1 02u 02u 20u 1 2
c2 &2 = _ + ;_ + _v,_,

where the spherical Laplacian is given by:

Ou) 1 02uV2u= 1 O sin0_ +sin 0 0"0 sin 2 O 0¢ 2.

We seek a formal solution of the form:

'-,= _ _Ca_,m(0,¢)P'm(_,t),
n=O rn=O

an,m = (An,m cos me + Bn,m sin m¢)pnm (cos O),

(3.0.21)

(3.0.22)

(3.0.23)

(3.0.24)
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O0

fn'm(r,t) = _E_,--k-1_n'm'-_-r).7Jk _c_ (3.0.25)
k=0

Assuming each term in the first summation to be a solution, and recalling the fact that

Vsan,m2 = --n(n + 1)an,m, (3.0.26)

we derive the following recursion relation:

(¢n,, W (k(k + 1) - n(n + 1)) cn,m (3.0.27)
Jk+lJ = 2(k+ 1) Jk ,

cn,m cn,m = 0 for k > n so that:where a0 is arbitrary. Note that we may choose ak

n

fn'm(r,t)= _ r-lc-lf_'m(ct-r). (3.0.28)

•-,-k-1 1 ,'In-k:n'mf",m(R, t) = ,-..,__ rlkcn--_k-_ (ct- R), (3.0.29)
k=O

" 2j

rl,=l, rlk= 1"I n(n+l)-j(j-1)' k<n. (3.0.30)
j=k+l

Hence, given fn'm(R,t), the expansion (3.0.28) certainly exists. We emphasize that we do

not need to compute the functions fr_,m in order to implement the boundary conditions. (See

(3.0.47)-(3.0.48).)
We now repeat the derivation of the preceding section. The main difference will be the

termination of the sequence for each finite n. Set,

10u Ou 1

c_- + _rr + -Ur = wl, (3.0.31)

OO n

Wl = Y_ _ an,m(O,¢)fn'm'l(r,t),
n=l m=0

n

fn,m,1= _ r-k-2.yk,lfr_,m(ct _ r).
k=i

By direct computation we note that wl = O(r-2)u = O(r -3) and

")'k,1 = --k.

(3.0.32)

(3.0.33)

(3.0.34)

k=O

Moreover, given fn'm(R, t), the right-hand side of (3.0.28) can be rewritten as an nth order
n,mdifferential operator on fn ,



Nowconsider:

1 6_w I q- --Wl

c Ot r

O0 n n

-= -- E E an,rn E r-k-3((_ -F 1)/¢n'mht,Jk+l! + (_lkfkn'm)

n=l m=O k=O

n n

= _ _ _.,_ _-k-3(_(k(k+ 1)-.(.+ 1)) - _k)f:'_(3.O.3S)
n=l m=O k=O

1 2 _ n n 1
= _v_+Z Z o_,_F_ -_-_k(_+1-2 _ '_'_Vl/J k •

n= l rn-=O k=l

The remainder term is further reduced if 61 is chosen to eliminate the first term:

(_, = 1, w_ = _ _ an,mf n'm'2, (3.0.36)
n=2 rn=O

fmm,a = _ r-k-37k,2jktn'rn'-ltcz -- r), 7k,2 : k(k - 1). (3.0.37)
k=2

Clearly, w2 = O(r-4)u = O(r-S). Moreover, if we were in the special case of a solution in the

span of the spherical harmonics of index less than 2, then w2 = 0 and the condition is exact.

We now consider the general case. Suppose for 1 < j < p, p > 2,

n

_j = _ _ _n,_(0,¢)y_'mJ(r,t), (3.0.3S)
n=j m=0

S̀ '_'j = F. <_-J-'_JS:'_( a - _),
k=j

where again "Yk,j is as given in (2.0.13). Then:

(3.0.39)

c N + r ' _ _ an,m \c Ot + fn,m,p , (3.0.40)
n=p rn----O

and

1 Of n'rn,p

c Ot
+ P_fn,m,p

r
n ( fn,m, Pfn,m_ (3.0.41)= F,_-_-'-_,, ( _ ) +; k )

k----p

( )._ __ _n,m__, r-e-p-2 7k+l,p (k(k+ 1) n(n+ 1)) +pTk,p Jk ,
k=p-1 2(k + 1)
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wherewehaveusedthe fact that 7p-l,p= 0. Noting that:

7k+l,p 1
2(k + 1) -- _Tk,p-1, (3.0.42)

and

we find

(k- (p- 1)) 7k,p_1 ' (3.0.43)
"Yk,p _ -- 2

1 cOwp p
cot +- r Wp

+ (3.0.44)
OO n n

_/k ,p - 1

+ Z _ a,.m Z ,.-k-,,-2 _ (k_p)(k_O__lllf;.m.
n=p-1 m----0 k=p- I

As the k = p and k = p - 1 terms in the final summation vanish, the n = p - 1 and n = p

terms axe eliminated. Moreover,

_k,p-1 (]g _ p)(k - (p - 1)) = "Yk,p+l,
4

(3.0.45)

so the remainder is given by:

Wp+ l =

n n

_, Y_ an,m _ r-k-P-27k,p+lf'_ 'm. (3.0.46)
n=p+ 1 m=O k=p+ 1

By induction we obtain:
10u Ou 1

cOt +_rr +-u=wl'r

10wj J-w" 1c Ot+r ' =_ (v_+j(j - 1))_j-1+_÷1,
where w0 = 2u, wj satisfies (3.0.38)-(3.0.39) and, hence,

j _ 2,.o*

(3.0.47)

(3.0.48)

wj = O(r-2J)u = O(r-2_-x). (3.0.49)

Using p auxiliary functions involves setting Wp+l ---- 0 which leads to an expected accuracy of

O(r-2p-2). However, in the special case:

f=,m = 0, n > p, (3.0.50)

that is when the solution is a finite sum of spherical harmonics, we have:

wp+l = 0. (3.0.51)



Hence,in thiscase,theboundaryconditiondefinedbyp auxiliary functions is exact. Therefore

it is an exact, local boundary condition in space and time in the same sense that the conditions

proposed by Grote and Keller [3, 4] are exact and temporally local. The necessity of a spherical

harmonic expansion in the Grote-Keller formulation probably renders theirs less efficient than

the formulation proposed here. We note that a distinct formulation with the possibility of

avoiding the spherical harmonic expansion is mentioned in their work, but is not implemented.

4 The Two-Dimensional Maxwell System

We now consider the generalization of this technique to a hyperbolic system. Namely, we study

the two-dimensional Maxwell system in the TM case, given by:

Ot Hx = R(O) Hz + O(e) Hx , (4.0.52)
H_ g_ H_

where

( 1 ) ( lcos 1 )0 _ ! sin 0 _ cos 6 0 - _- - _ sin 6

R -- -_ sin0 0 0 e = -! cos 0 0 0 . (4.0.53)
' _ •

cos 0 0 0 - _ sm 0 0 0

Note that it is possible to directly apply results for the wave equation to this system as in

[5]. However, it is instructive to proceed directly. Setting c = (e/_) -1/2, the progressive wave

expansion now takes the form:

where

H_ = r-(_+l/_)h(ct - r)ak(O),
g_

(4.0.54)

f_ = fk-1, (4.0.55)

(cI + R) ao = O, (4.0.56)

(cI + R) ak = -(k - 1/2)Rak_l + Oa_k_l. (4.0.57)

It is easily verified that the matrix on the left-hand side of (4.0.56) is singular, so that a

nontrivial expansion exists. Generally one must solve an eikonal equation to determine the

form of the expansion. A convenient orthonormal basis for expanding the solution is provided

by:

(1) (0)(0)et = 0 , p= cos0 , T= --sin0 . (4.0.58)
0 sin 0 cos 0



These satisfy the relations:

1
Re1 =-% Rp = O,

#

1
R'r = -el_ (4.0.59)

1 1
Oel =----p, _p-------el,

# e

pl=T, "rI=-p.

(_T = O_ (4.0.60)

(4.0.61)

In terms of this basis, a right nullvector, u, and a left nullvector, l, of (cI + R) are given by:

(4.0.62)

(4.0.63)

U = el -- T_ Z = e I -- 7".

The solution of (4.0.56) is:

ao = A(O)u,

where A(O) is an arbitrary function. For (4.0.57) we expand

ak = Eke1 + Bkp + % (4.0.64)

and note:

The equations become:

E0 = -Co = A, B0 = 0. (4.0.65)

Ek + Ck = - ((k - 3/2)Ck-1 + B__I), (4.0.66)

Ek + Ck = -(k - 1/2)Ek-1, (4.0.67)

E' (4.0.68)Sk ---- -- k-l"

Clearly, the system is solvable if and only if

((k - 3/2)Ck-1 + B__I) = (k - 1/2)Ek_l, (4.0.69)

and then it only determines Ek + Ck, Bk. The complete determination of Ek, Ck follows

from the imposition of (4.0.69) at the next order. (Note that (4.0.69) does hold when k = 1.)

Solving these leads to the simple recursion relations for k > 1:

{E IIEk = -(2k) -1 l, k-1 + (k - 1/2)2Ek_0 (4.0.70)

' (4.0.71)Bk = --Ek_l_
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Ck = (2k) -1 (E__I- (k 2 - 1/4)Ek-1) •

To determine a boundary condition we first note that:

c

which implies

Ez -- _ r-(k+l/2) fk(ct -- r)Ek,

(4.0.72)

(4.0.73)

k=O

oo

ur = cosoux+sin0H = -r)Bk,_ (4.0.74)

He = - sin OHx + cos OHy = _ _-_ r -(k+l/2)
V, _ Ik(ct- _)ck. (4.0.75)

To leading order we use (4.0.65) to obtain:

JEz + Ho = ___ r-(k+l/2)fk(a -- r)(Ek + Ck) = O(r-1) • ](Ez, Hx, Hy)l. (4.0.76)
k=l

A more accurate formula follows from taking the time derivative and using the recursions:

-- k_=or (k+U2) fk(ct--r)(k+l/2)Ek,= _-_r-(k+l/2)fk(ct--r)(Ek+l+Ck+l) = r
k=0

(4.0.77)

c _ (Ez + Ho) + Ez = O(_-2) • I(Ez,/Ix, H_)I. (4.0.78)

To find higher order conditions, we must derive a relationship for the evolution of the

right-hand side, wl, of the equation above. For j _> 1 set

wj = __, r-k-j-1/2 fkTk,jEk = O(r-2J) • I(Ez, Hx, Hy)l. (4.0.79)
k----j

Here "_k,j is again given by (2.0.13). Note that wl is indeed the right-hand side of (4.0.78).

Differentiating wj with respect to t and using (4.0.55),(4.0.70) yields:

1 cgwj _ _-k-j-1/2,el_ m
C C_ -- E " Jk'lk,Jr'_k

k=j

oo

= _ r-k-J-a/2fkTk+ljEk+ 1 (4.0.80)
k=j- 1

1 oo

- 2 _ r-k-j-3/2fkTk+l'J(k + 1)-I(E_ + (k + 1/2)2Ek).
k=j-1

11



Fromthe identity

(k+1/2) 2 =(k-(j-1))(k-j)+2j(k-(j-1))+(j-1/2) 2, (4.0.81)

and (2.0.13)wefinally derive

lOw_ 1 (02w__1 ) J_ (4.0.82)c Ot =_r_\ 002 + (j-1/2)2wj-_ -r _ +_j+l

Putting these together we have a boundary condition whose formal order of accuracy is
r-2m:

1 0 IT" 1

+ = (4.0.83)
c Ot

l O_j Jw = 1 [o2_j__ )c Ot +r 3 _r 2 \ 002 +(J-1/2)2wJ -1. +wj+l, j=l,...,rn-1, (4.0.84)

wo = 2Ez, wm= 0. (4.0.85)

Of course in numerical implementations, this condition must be supplemented with some

of the "outgoing" variable, Ez - vf_Htan and a computation of the variableextrapolation

characteristic along the boundary, Hnorm_a. (For a circular boundary these axe Htan = Ho,

Hnorm_a = Hr.) A three-dimensional version also exists. Moreover, it is exact in the same way

that the condition described in the previous section is exact. See [7] for more details.

5 Numerical Experiments

We consider numerical experiments with these conditions in the case of the two-dimensional

wave equation with c = 1. Further calculations along with experiments for Maxwell's equations

are in progress [7]. The test case considered here is a Dirichlet problem exterior to a disk of

unit radius. A range of tangential Fourier modes is excited by a time-dependent amplitude

function which both oscillates and decays. Precisely we take:

1 - cos 21rt

u(r= 1,O,t) = l+t_ cosnO, (5.0.86)

for n = 0, 5, 10, 25, 50. The modal wave equation governing the amplitude of cos nO, that is:

02u 02u 10u n 2

Ot2 - Or 2 +-r Or r 2 u, (5.0.87)

is discretized by a standard second order central difference scheme in space-time and the

boundary conditions given by equations (2.0.17)-(2.0.18) are discretized as described below.

12



To constructa secondorder approximationto theseequations,we apply the boundary
condition half waybetweenthe last two meshcirclesand wealsousethe fact that wj+l is

small compared to wj, (wl small compared to u). Then we approximate (2.0.17) by:

_t((_ + _-i)- (_ + _-1))
1 t+

+ _-;((_N+_)-(_-, +_-,))

+ !(_ _++ _N-,+_ + _}-i)
8R

3 t 1 t-

and (2.0.18) by

1 j , t+
-7(_+-_}) + _j + _)

(j -- 1/2) 2 -- n2
= 8R2 (_+-1+ _-i)

3 t 1 t-
+ _j+_ - _wj.+_.

For w0 we use the sum of u at N and N- 1. Note that although the system would formally be

implicit in the 0-derivative approximation for a non-modal algorithm, no matrix factorizations

are involved if we solve sequentially. That is, w_+l is computed before its 0-difference is .used to

update wj. The calculations below are for t = 15 with varying artificial boundary location R.
The value of m is the number of auxiliary functions used, so that the formal asymptotic order

is 2m ÷ 2. The value of 5r is chosen to yield about four digits of accuracy in the numerical

solution. We are thus forced to use a much finer mesh for n = 50 than for n = 0, with the

number of points increasing by a factor of 30. The 'exact' solution is computed with the

same mesh spacing but R = 18. In all cases we choose 6t = 0.85r. Errors were measured at

t = .5, 1, 1.5,..., 15. The time station at which the maximum error occurred, not included in

the tables, was always t = 15 for n = 0, but earlier in the other cases. The largest error was,

however, always recorded aster the waves with largest amplitude passed through the artificial

boundary. We note that at later times the solution is fairly small, so that the relative L2 error

criterion used here is quite strict. Its precise definition is:

E2(t ) = _j('Ulong(r'j,t) -- u(rj, t))2 (5.0.88)
Z_ (_',ong(rj, t)) 2

We first consider n = 0 where (fr = 5 x 10 -3.

13



MaximumRelativeError n = 0

rn R=2

0 3.8 x 10 -t

2 2.2 x 10 -1

5 2.9 X 10 -2

10 4.4 x 10 -4

20 4.6 x 10 -5

R=3

5.0x 10-1

1.2 x 10-I

3.1 x 10-3

1.2 x 10-4

1.2 x 10-4

R--4

5.4 x I0-I

4.0 x 10-2

1.7x 10-4

1.7 x 10 -4

1.7 x 10 -4

The second case is given by n = 5 with 6r = 2.5 x 10 -3.

Maximum Relative Error n -- 5

m

0

2 2.3 X 10 -2

5 3.9 x 10-5

i0 3.9 x 10-5

20 3.9 x 10-5

R=2 R=3 R=4

5.0x I0-I 4.5x10 -I 4.0x10 -1

6.0 x 10-3

6.6 x 10.5

6.6 x 10-5

6.6 x 10-5

1.8 x 10 -3

1.3 x 10 -4

1.3x 10 -4

1.3 x 10 -4

The third case is given by n -- 10 with 6r = 1.8 x 10-3.

Maximum Relative Error n = 10

m

0

2 3.0 × 10-2

5 5.7 × 10 -4

I0 3.9 x 10-5

20 3.9 x 10-5

R =2 R =3 R =4

1.0 1.1 1.1

4.9 x 10-a

9.7 x 10-5

9.6 x 10-5

9.6 x 10 -5

1.5 x 10 -3

2.0 x 10 -4

2.0 x 10 -4

2.0x 10 -4

The fourth case is given by n -- 25 with 6r = 3.3 x 10 -4.
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MaximumRelativeError n = 25

m R=2

0 5.4 x 10-1

2 4.5 x 10-3

5 2.1 x 10-5

10 2.1 x 10-5

2O

R=3

5.7 x 10 -1

7.0x 10-4

6.1 x 10 -5

6.1 x 10 -5

R=4

5.7 x i0 -I

1.9 x 10-4

1.2 x 10 -4

1.2x 10-4

2.1 x 10-5 6.1 x 10 -5 1.2 x 10 -4

Finally we take n = 50 with _r = 1.6 x 10 -4.

Maximum Relative Error n = 50

m R=2

0 4.1x i0-I

2 2.3 x 10 -3

5 2.2 x 10-5

i0 2.2 x 10-5

20 2.2 x 10-5

R=3

4.5x i0-I

3.7x 10 -4

6.6 x 10-5

6.6 x 10 -5

6.6 x 10 -5

R=4

4.5 x I0-I

1.3 x 10 -4

1.3 x 10 -4

1.3 x 10 -4

1.3 x i0 -4

With increasing m we rapidly drive the error down to the level of the discretization error,

so that the results become m-independent. Note that this final error is not zero as we are

comparing with a numerical long domain solution. Indeed, the final error (as m --+ oc) may

increase with increasing domain size. We further checked the m-independence of the results by

carrying out additional experiments with m = 30, 40, 50, 60, which produced errors identical
to the m -- 20 case shown below. Note that for none of the domains tested were the m = 0

results acceptable. For m = 20, in contrast, the errors are dominated by discretization errors
even on the smallest domain. Generally, the n = 0 case is the most difficult, as predicted by

the analysis of [9].

6 Concluding Remarks

We believe the boundary conditions formulated in this paper provide an easily implementable

path to high accuracy, at a computational cost which is favorable in comparison with currently
available alternatives. There are, however, some open issues to be addressed. From a theoret-

ical perspective, asymptotic error estimates are as yet unproven in the two-dimensional case,
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and oneasalwaysexpectssometime nonuniformityin the approximation.Froma practical
perspective,ourcurrentformulationisrestrictedto circular/sphericalboundaries.It would,of
course,be usefulto havemoreflexibility. Theexpansionsthemselvesshouldbe validoutside
somecircle/spherecontainingsources,scatterersandotherperturbations.However,thedirect
impositionof the conditionson a boundaryof different shaperequiresnormalderivativesof
the auxiliaryfunctions.It wouldthenbenecessaryto defineandstorethemoff the boundary,
which wewant to avoidfor reasonsof cost and complexity. Generalizationsto anisotropic
problemssuchastheconvectivewaveequationandthe linearizedcompressibleEulerequation
axealsopossible.Now the boundarymust takea specialshapedeterminedby the eikonal
equationassociatedwith the underlyingvelocity field. This will bediscussedin detail in a
laterpaper.
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