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Introduction

For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has
become an important concern for both ground tests and in-flight operation. The complexities of
the SSME suggest that active, real-time condition monitoring should be performed to avoid large-
scale or catastrophic failure of the engine.

In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's
Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded
many nominal tests and the qualitative spectral features of the SSME plume are now well
established. Significant discoveries made with both wide-band and narrow-band plume emission
spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD)
system.

The OPAD system is designed to provide condition monitoring of the SSME during ground-
level testing. The operational health of the engine is achieved through the acquisition of spectrally
resolved plume emissions and the subsequent identification of abnormal emission levels in the
plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of
the technology, could find its way on to an actual space vehicle and provide in-flight engine
condition monitoring. This technology step, however, will require miniaturized hardware capable
of processing plume spectral data in real-time.

An objective of OPAD condition monitoring is to determine how much of an element is
present in the SSME plume. The basic premise is that by knowing the element and its
concentration, this could be related back to the health of components within the engine. For
example, an abnormal amount of silver in the plume might signify increased wear or deterioration
of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut
down before catastrophic failure occurs.

Currently, element concentrations in the plume are determined iteratively with the help of a
non-linear computer code called SPECTRA, developed at the USAF Arnold Engineering
Development Center. Ostensibly, the code produces intensity versus wavelength plots (i.e.,
spectra) when inputs such as element concentrations, reaction temperature, and reaction pressure
are provided. However, in order to provide a higher-level analysis, element concentration is not
specified explicitly as an input. Instead, two quantum variables, number density and broadening
parameter, are used.

Past experience with OPAD data analysis has revealed that the region of primary interest in
any SSME plume spectrum lies in the wavelength band of 3300 A to 4330 A. Experience has also
revealed that some elements, such as iron, cobalt and nickel, cause multiple peaks over the chosen
wavelength range whereas other elements (magnesium, for example) have a few, relatively
isolated peaks in the chosen wavelength range.

Iteration with SPECTRA as a part of OPAD data analysis is an incredibly labor intensive task

and not one to be performed by hand. What is really needed is the “inverse” of the computer code
but the mathematical model for the inverse mapping is tenuous at best. However, building
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generalized models based upon known input/output mappings while ignoring details of the
governing physical model is possible using neural networks.

Thus the objective of the research project described herein was to quickly and accurately
predict combustion temperature and element concentrations (i.e., number density and broadening
parameter) from a given spectrum using a neural network. In other words, a neural network had
to be developed that would provide a generalized “inverse” of the computer code SPECTRA.

Radial Basis Function Networks

With most neural networks the objective is to estimate a function y(x) from a training set of
representative input/output pairings:
- P
{(x" ’yi)}i=l

It has been shown that traditional backpropagation (BP) neural networks can sufficiently
perform this mapping with only two hidden layers provided the function is well behaved over the
domain of interest. The required hidden layers are usually composed of neurons with sigmoidal
activation functions which combine to form localized “bumps” or response regions within the
input space. In this manner, the network paves the input space with response bumps that are only
non-zero in a small region. Instead of using two hidden layers of sigmoidal units, this local
behavior could also be obtained with a single hidden layer of radial basis functions. By definition,
a radial basis function is one which decreases monotonically away from a central point thereby
giving it an inherent bump form. Classic functions that exhibit this propensity are the Gaussian,
Cauchy, and the Inverse Multiquadric. For RBF networks, the choice of function does not make
much difference as long as it possesses the local response region. The Gaussian function is written
as:

—(f—u,»)z}

Thus, a given hidden RBF neuron will be centered at z; within the input space and have a
“receptive field” which is proportional to o;. Moreover, it will give a maximum response for input
vectors (X ) which are near the center (1).

The goal of the RBF algorithm is to arrange an assortment of these receptive fields so that
response areas are created which sufficiently cover the input space. This is done in a two part
learning scheme known as hybrid learning. The initial layer of the network contains the RBF
centers which are obtained through unsupervised assimilation. This is called unsupervised
because there is not a well defined learning goal; instead categories must be developed from
correlation’s within the input training data. The layer essentially clusters the inputs and specifies
where to position the RBF centers so that the desired response coverage is obtained. Having a
layer with unsupervised learning offers a significant savings in training time over the traditional
BP scheme. However, the hybrid scheme is not optimal in the sense that the BP algorithm is.
The reason for this has to do with the non-linear nature of the BP front-end layer. The weight
parameters which contribute to the hidden layer responses are adjusted with respect to the
performance of the outputs. In contrast, the RBF centers are chosen a priori and remain fixed
throughout the output layer training. As a result, RBF networks normally require more neurons
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to attain the same error goal. This disadvantage, however, is usually outweighed by the savings in
training time.

The output layer of the RBF network is trained in a supervised fashion. Supervised means that
the learning is based on comparison of the network output with the known “correct” answers.
Thus, given that the basis function centers are fixed (making this a /inear network), the optimal
weight array for the output layer which gives the proper functional mapping can be found using
multiple linear regression. Details of this procedure can be found in any decent regression book;
the results are simply stated here. For a set of training input vectors, x, with corresponding RBF
centers y, there will be an array of Gaussian neuron responses, G. Given this, the optimal weight
array can be stated as:

w = [G'G]'G"y

where, y is the corresponding target values. The mathematical form of the weight array is also
known as the normal equation in classical regression theory.

Network Performance

Separate RBF network’s for the monitoring of each metal were created using training data
generated from the aforementioned SPECTRA code. To test the validity of the network
configuration a set of spectral data obtained during a January 1996 SSME Failure event at Stennis
Space Flight Center were used. The spectral scans were taken every half second until the engine
failure. Post test analysis revealed that the major spectral anomalies occurred at the times shown
in Table 1 given below.

Table 1.
Major Anomalous Event Times (Seconds)

130-131
276
283
404-405.5
531-Engine Failure

The neural networks were used to evaluate plume temperature, elemental number densities, and
broadening parameters for every half second of data. The results are shown in Figure 1 on the
next page. Temperature predictions were near perfect; a quick study of the number density
predictions shows that all the major anomalies were indicated by number density spikes at the
appropriate times specified in Table 1. Figure 1 represents two years of concerted effort and can
speak justly of this entire paper. The neural networks passed the anomaly detection objective.
Future work will involve the extension of the technology to real time flight systems.
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Figure 1
Neural Predictions for the Stennis Failure Event
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