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INTRODUCTION

The extended Kalman filter (EKF) is the basis for many applications of filtering theory to
real-time problems where estimates of the state of a dynamical system are to be computed based
upon some set of observations. The form of the EKF may vary somewhat from one application
to another, but the fundamental principles are typically unchanged among these various
applications. As is the case in many filtering applications, models of the dynamical system
(differential equations describing the state variables) and models of the relationship between the
observations and the state variables are created. These models typically employ a set of
constants whose values are established my means of theory or experimental procedure. Since the
estimates of the state are formed assuming that the models are perfect, any modeling errors will
affect the accuracy of the computed estimates. Note that the modeling errors may be errors of
commission (errors in terms included in the model) or omission (errors in terms excluded from
the model). Consequently, it becomes imperative when evaluating the performance of real-time
filters to evaluate the effect of modeling errors on the estimates of the state.

EKF WITH CONSIDER COVARIANCE

Assume that the EKF is to be applied to a system described by the (possibly) nonlinear
differential equations

using the (possibly nonlinear) observation-state equation

Y = G(t,X,C) +¢ 9))
where X is the state whose values are to be estimated and C is the set of consider parameters.
Note that C encompasses parameters in the equations of motion and the observation equation
although it will be rare that any single parameter will be in both sets of equations. Note also that

the values of C are not perfectly know, i.e., the true values of C are not available; only some
nominal values of C (which will be referred to as CN) and the uncertainties are known. The

variable € represents the measurement error which is assumed to white noise and have the
following statistics

Ele]=0 ; Eleel]=Ri ©)
To apply the EKF, this system is converted into a linear system by expanding Eq.s (1)

and (2) about a reference trajectory Xn(t) that is known with the corresponding observations
which are described by

Xn = F(t,Xn,CN)

YN = G(tXNCN)
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The resulting system and observation equations are given by

x = A{t,Xn,CN) x + B(t,Xn,CnN) © @
y = Hi(t, Xn,CN) x + Ho(t,XNCN) ¢ +€ &)
oF oF oG
where x=X-Xny , c=C-CN, A= aX,B--a—c—,Hx 3% and H. = . Note that

the solution for x(t) in Eq. (4) can be written as
x(t) = Ot t) x(t) + O(t,t) ¢ ©6)

where ® and O satisfy
Dt to) = AltXn,Cn) Dlbto) 5 Dltoyto) =1

Ot to) = At Xn,Cn) Ot te) + BUEXNCN) ; Otorte) =0

The filter state vector is x(t), the estimate of x(t) is X(t), and the estimate of X(t) is recovered
using X(t) = Xn(t) + X(t).

To initialize the filter, assume that initial values for Xy.1=X(tx.;) and
Py =E[(xk_l-’ik_l)(xk-l-'ik-l)T] as well as Xn(tx-1) are given. This information is to be
propagated to tx and combined with the observation yi = y(tx) to form the estimate X(t). Once

the values for @(ty,tyx-1) and O(ty,tx-1) are computed, the propagation of the filter state vector is
carried out using Eq. (6) in the form

Xk = Pt tr1) X1 + Oltitrq) © ™
Similarly, the true state vector would be propagated using
= Pt ti1) X1 @®

since for the true state vector there is no error nor uncertainty in the consider parameters. Using
Eq.s (7) and (8), the covariance matrix corresponding to X is written as

Py = E [ (xx-Xi) (x|
~ ~ T o~
=Py 11 E [(Xk-l"xk-l) (Xk-l'xk-l)T] Dy 1 + Dy 1 E [ (xae1-Xie1) cT] @E,k-l

~ T T
+ ®1<,1<-1E[C (i1 X)) T Prrer + Ok k-1 E [c cT] Ok 11
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For now let, Wy.1=E [(xk-l-SZk_l) CT] which will be discussed in more detail in the following
sections. The expected value expression in the last term represents the uncertainties in the
consider parameters which is assumed known and can be represented as

E[ccl] = 1T

Thus, for now, the propagated covariance matrix becomes
= T T
Py = @y 1P @ikt + Prox-1Wi1Ok k-1

T T
+ O 1Wia@xxa + Ori1l1Ok k1 )]

Note that the first term in this equation represents the propagate covariance matrix if there were
no consider parameter effects and the remaining three terms are the contributions of the consider

terms.

Once the filter state vector estimate and associated covariance matrix have been
propagated to ty, it can be treated as an observation and combined with yy to write

Ek}
Nk

where E[ng] =0 E[nk n]{] =Py , and E[ek T]E] =0. The solution for Xx which satisfies
these equations in a least squares or minimum variance sense is

Xk +

[Yk-HckC} =[ka

X I

% =( HI R Hew+ B )™ (BTG R (i Horoo) + P %) (10)
For convenience, let

My = (HI R Ho+ B )7 ()
which would be the state vector covariance if there were no consider parameters.

The covariance matrix associated with Xy is formally defined by

Px = E [(Xk-szk) (Xk';Zk)T]
From Eq.s (10) and (11),

X - Xk = xk - M HE G R (yx - Hei o) - My Py’ X (12a)
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Using Eq. (5) to express the observation in terms of the true state and true consider parameters
(c=0) to write

yk =Hywxxk + &
then Eq. (12a) can be written as
xic- Xk = 1- M HIx R Hie  xic - My Hx R &
- M HT R&H k¢ - My Pl % (12b)
Note that from Eq. (11), it can be shown that
[1-MiHTx R Hok ] = Mg By (13)
Consequently, Eq. (12b) can now be written as
Xic- Xk = MicPe (xic- %) - MicHik Ri ex - M Hix Ri'Hek (12c)
The covariance matrix for Xy can now be expressed as
P = Mk P’ My - My P! Wi H R Hyx M
- My H{k R Hox Wil P MY + My HTi R Hoo M
+ My Hk R Hei TTHI Ry Hox M7 (14)
where it has been assumed that
E[Oax0) ek] = 0 ElccT] =11 Elexef] = Ry
Elcel] = 0 E (X)) cT) = Wy
Note that the first and fourth terms of Eq. (14) can be combined to write
My (P! + HTx R Heo) MT = My
Also note that from Eq. (10), the sensitivity matrix can be defined as

ox X
S =%='MkH;(rkRk]Hck (15)

Using this notation, the covariance matrix for can be written in the form
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Pp= My + My Pl Wi ST + S Wit Pl MEL + SkTIS¢ (16)
As was the case with the expression for Py, the first term in Eq. (16) represents the covariance
matrix if there were no consider parameters and the remaining three terms represent the

contribution of the consider parameters.

The only remaining issues to resolve are the expressions for Wy from Eq. (9) and Wi
from Eq. (16) which are defined as

Wi = E[ (i) T and Wi = E[(qexi) 7]
Using Eq. (12c), Wi can be written as
Wi = My P Wy - My Hlx R Hex T
= My P Wy + S II a17)
Using Eq.s (7) and (8), Wiy can be written as
Wy = OiaWi1 + Ok I (18)

Eq.s (17) and (18) provide the necessary equations to propagate and update W along with the
covariance matrices My and Px. To initialize this part of the filter, it is assumed that

Wo = E[(xo%o) T =0

i.e., the initial estimate of the state vector is not correlated to the uncertainties in the consider
parameters. Note that by using Eq. (17), Eq. (16) can also be written as

Py = My + Wg SkT + Sy WkT - SkHSE (19)

Finally, note that Eq. (7) can be used to define the propagated sensitivity matrix as

— 0
Sk =—a"c—‘< = Ogie1 Skl + Oxka (20)
CONCLUSION

The consider covariance EKF can be used to evaluate the effect of uncertainties of
dynamic and measurement modeling errors on the estimate of the state by adjustments made to
the state covariance matrix. While the consider covariance EKF does not predict the actual
errors since the actual model errors are assumed unknown, it does provide a means of identifying
critical elements of the dynamic and observation models for real-time filtering applications.
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