
J
c_ ¸

/ "7 -'./S'-J

1996

NASA / ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

APPLICATION OF CONSIDER COVARIANCE

TO THE EXTENDED KALMAN FILTER

Prepared by:

Academic Rank:

Institution and Department:

John B. Lundberg, Ph.D.

Assistant Professor

Auburn University

Department of Aerospace Engineering

NASA/MSFC:

Laboratory:
Division

Branch:

MSFC Colleague:

Structures and Dynamics Laboratory

Guidance and Control Systems Division

Flight Mechanics, Guidance, Navigation, and

Control Systems Branch

John M. Hanson, Ph.D.

XXIII





_TRODUCTION

The extended Kalman filter (EKF) is the basis for many applications of filtering theory to

real-time problems where estimates of the state of a dynamical system are to be computed based

upon some set of observations. The form of the EKF may vary somewhat from one application

to another, but the fundamental principles are typically unchanged among these various

applications. As is the case in many filtering applications, models of the dynamical system

(differential equations describing the state variables) and models of the relationship between the

observations and the state variables are created. These models typically employ a set of

constants whose values are established my means of theory or experimental procedure. Since the

estimates of the state are formed assuming that the models are perfect, any modeling errors will

affect the accuracy of the computed estimates. Note that the modeling errors may be errors of

commission (errors in terms included in the model) or omission (errors in terms excluded from

the model). Consequently, it becomes imperative when evaluating the performance of real-time

filters to evaluate the effect of modeling errors on the estimates of the state.

EKF WITH CONSIDER COVARIANCE

Assume that the EKF is to be applied to a system described by the (possibly) nonlinear

differential equations

)( = F(t,X,C) (1)

using the (possibly nonlinear) observation-state equation

Y = G(t,X,C) + _ (2)

where X is the state whose values are to be estimated and C is the set of consider parameters.

Note that C encompasses parameters in the equations of motion and the observation equation

although it will be rare that any single parameter will be in both sets of equations. Note also that

the values of C are not perfectly know, i.e., the true values of C are not available; only some

nominal values of C (which will be referred to as CN) and the uncertainties are known. The

variable e represents the measurement error which is assumed to white noise and have the

following statistics

E _¢_ = 0 ; E [cie?] = Ri (3)

To apply the EK_F, this system is converted into a linear system by expanding Eq.s (1)

and (2) about a reference trajectory XN(t) that is known with the corresponding observations

which are described by

XN = F(t, XN, CN)

YN=G(t,X_CN)
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Theresultingsystemandobservationequationsaregivenby

= A(t,XN,CN)x + B(t,XN,CN)c

y = Hx(t,XN,CN)x + I-_(t,XN,CN)c + e

where x=X-XN c=C-CN , A 3F B=OF
' 3X ' 3C

the solution for x(t) in Eq. (4) can be written as

x(t) = _(t,tk) x(tk) + ®(t, tk) C

where • and O satisfy

• (t, to) = A(t, XN,CN) _(t, to) ; _(to, to) = I

(4)

(5)

, and
3G

• Note that

(6)

fg(t,to) = A(t,XN, CN) e(t, to) + B(t,XN,CN) ; e(to,to) = 0

The filter state vector is x(t), the estimate of x(t) is _(t), and the estimate of X(t) is recovered

using X(t) = XN(t) + _(t).

To initialize the filter, assume that initial values for Xk.l=_(tk_l) and

Pk-1 = E[(Xk-l-_k-1)(Xk-l-_k-1) T] as well as XN(tk-1) are given• This information is to be

propagated to tk and combined with the observation Yk = y(tk) to form the estimate _(tk). Once

the values for _(tbtk-1) and fg(tk, tkq) are computed, the propagation of the filter state vector is

carried out using Eq. (6) in the form

xk = _(tk, tkq) Xk-1 + ®(tk, tkq) c (7)

Similarly, the true state vector would be propagated using

Xk = _(tk, tk-1) Xk-1 (8)

since for the true state vector there is no error nor uncertainty in the consider parameters. Using

Eq.s (7) and (8), the covariance matrix corresponding to Xk is written as

Pk = E [(×k-Xk)(Xk-Xk) T]

A _" r

(I_,k-lE[(Xk-l-Xk-1) (Xk-l-Xk-1) ] T T---- (I)k,k_l + (I)k,k_ 1 E [(Xk_l-_k_l) CT] Ok, k-1

"" T
+ _;)k,k_lE[C (Xk_l_Xk_l) ] T T(I)k,k_ 1 + l_k,k_ 1 E [c c T] Ok, k_ 1
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For now let, Wk_ 1 = E [(Xk.l-_k_ 1) CT] which will be discussed in more detail in the following

sections. The expected value expression in the last term represents the uncertainties in the

consider parameters which is assumed known and can be represented as

E[ccT_ = YI

Thus, for now, the propagated covariance matrix becomes

Pk T (I)k,k_lWk_10kTk_1=(Ilk, k_lPk.l(I_k,k.1 +

T T
+ Ok, k_lWk.l(I)k,k_l + Ok, k_lFIl_k,k_ 1 (9)

Note that the first term in this equation represents the propagate covariance matrix if there were

no consider parameter effects and the remaining three terms are the contributions of the consider

terms.

Once the filter state vector estimate and associated covariance matrix have been

propagated to tk, it can be treated as an observation and combined with Yk to write

[yk-t-IckCl_k =[Hxklxk +[;k]

where E[rlk] = 0 , E[rlkrl_] = Pk , and E[ekrl_] = 0. The solution for Xk which satisfies

these equations in a least squares or minimum variance sense is

Xk =( HTk R;1Hxk + PI_1 )-I(HTk RI_1 (yk- t-I¢ k c) + 51_1Xk ) (10)

For convenience, let

Mk = (gxTk Rill gxk + _£1 )-1 (11)

which would be the state vector covariance if there were no consider parameters.

The covariance matrix associated with _k is formally defined by

"- T
Pk -- E[(xk-_k)(Xk-Xk) ]

From Eq.s (10) and (I 1),

Xk-_k = Xk- Mk HTk R_:1 (yk- Hck c) - Mk Pk lxk (12a)
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Using Eq. (5) to expresstheobservationin termsof the true stateandtrue considerparameters
(c=0) to write

yk = Hx k Xk + ek

then Eq. (12a) can be written as

Xk-Xk =[ I-MkHTk Rl_lHxkJXk - MkHTk Rf_1 ek

- MZ HTk Rfc1Hck c - Mk PI_I Xk (12b)

Note that from Eq. (11), it can be shown that

[ I- Mk HTk Rf¢1Hxk ] = Mk PI_1 (13)

Consequently, Eq. (12b) can now be written as

Xk-Xk = MkPl_l(xk-Xk) - MkHTk R1j:lek - MkHTk R_:lHckC (12c)

The covariance matrix for _k can now be expressed as

Pk = Mk PI_ 1Mk T- Mk G 1W-k I-'IcT RklHx k S T

- MkHTk Rfc1Hck_krk pI_TM T + MkHTk R17:1HxkM T

+ MkHTk Rf_1HckHHTkRkTHxkM T (14)

where it has been assumed that

E[(xk-__tZ]= 0

E[cff] = 0

E[ccT]= n

E[(Xk-_k)CT] = Wk

E[_k_] = R_

Note that the first and fourth terms of Eq. (14) can be combined to write

Mk (pill + HTk RI_1 Hx k)M T = Mk

Also note that from Eq. (10), the sensitivity matrix can be defined as

3_k - Mk HTk R_:1 Hc k
Sk = 0--7 =

Using this notation, the covafiance matrix for can be written in the form

(15)
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Pk = Mk + Mk PI_1W--k ST + Sk _k _£TM T + Sk FI ST (16)

As was the case with the expression for Pk, the first term in Eq. (16) represents the covariance

matrix if there were no consider parameters and the remaining three terms represent the

contribution of the consider parameters.

The only remaining issues to resolve are the expressions for Wk from Eq. (9) and Wk

from Eq. (16) which are defined as

Wk = E [(Xk-_ k) CT] and

Using Eq. (12c), Wk can be written as

Wk = Mk _£I Wk - Mk H/k R_:1 He k 1-I

Wk = E [(Xk-Xk) CT]

= Mk _£1Wk + Sk FI (17)

Using Eq.s (7) and (8), Wk can be written as

(18)Wk = (;Dk, k-lWk-1 + _k,k-1 I-[

Eq.s (17) and (18) provide the necessary equations to propagate and update W along with the

covariance matrices Mk and Pk. To initialize this part of the filter, it is assumed that

Wo = E [(Xo-_) cT] = 0

i.e., the initial estimate of the state vector is not correlated to the uncertainties in the consider

parameters. Note that by using Eq. (17), Eq. (16) can also be written as

Pk = Mk +WkS T + SkW/ - Ski-IS T (19)

Finally, note that Eq. (7) can be used to define the propagated sensitivity matrix as

Sk-- _ 0Xk3c - I:I)k'k-1 Sk-1 + Ok'k-I (20)

CONCLUSION

The consider covariance EKF can be used to evaluate the effect of uncertainties of

dynamic and measurement modeling errors on the estimate of the state by adjustments made to

the state covariance matrix. While the consider covariance EKF does not predict the actual

errors since the actual model errors are assumed unknown, it does provide a means of identifying

critical elements of the dynamic and observation models for real-time filtering applications.
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