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INTRODUCTION

The Tethered Satellite System (TSS) is designed to deploy a

1.6 m diameter spherical satellite a distance of 20 km above the

space shuttle orbiter on an insulated conducting tether. Because

of the passage of the conducting tether through the earth's

magnetic field, an emf is generated producing a positive

satellite potential of about 5000 V. Electron flow under the

influence of this high positive potential is the focus of the

present analysis.

The ionospheric parameters at TSS orbit altitude are;

thermal velocity of electrons, 1.9 x 105 m/s, thermal velocity of

the ions, i.I x 103 m/s, velocity of the satellite 8 × 103 m/s.

The electrons, with a Debye length, ID = 0.49 cm, spiral about

the earth's magnetic field lines (0.4 Gauss) with a radius of

about 3 cm and the ions spiral with a radius of 5 m. Under these

conditions, the electron thermal energy, kT is 0.17 eV. The TSS

satellite radius, rp is 163 Debye lengths.

There is an extensive literature on the interaction of

satellites with the near-earth ionospheric plasma. The space

charge limitation to the electron current collected by a sphere

at positive electrical potential was calculated by Langmuir and

Blodgett (1924). Parker and Murphy (1967) recognized the

importance of the influence of the earth's magnetic field and

used the guiding center approximation to calculate the electron

current collected by a positive charged satellite. More recently

Ma and Schunk (1989) have calculated the time dependent flow of

electrons to a spherical satellite at positive potential

utilizing numerical methods and Sheldon (1994) used similar

methods to solve this problem for the steady state.

In order to analyze some of the phenomena that occurred in

the ionosphere during the TSS flights, it would be useful to have

analytic expressions for these electron flows. The governing

equations are very complex and an exact analytical solution is

not likely. An approximate analytical solution is feasible

however, and the results of one attempt are presented herein.

MATHEMATICAL MODEL

Electron flow to the spherical satellite is modelled here by

the use of the cold plasma one-fluid momentum and continuity

equations with the Poisson equation used previously [Sheldon

(1994)]. In the present calculation, it is assumed that there

will be a sheath region around the satellite devoid of ions due

to positive satellite potential being much higher than the ram

ion energy. Electrons drift toward this sheath along the earth's

magnetic field lines with an average velocity (kT/m) I/2,

neglecting the average initial velocity due to their ambient

spirals. At the outer boundary of this sheath there will be a

negative space charge potential barrier approximately equal in

magnitude to the electron ambient thermal energy. The governing
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equations are written in non-dimensional spherical coordinates

(r,8,_) with the magnetic field aligned with the polar axis. The

steady-state momentum equations for ur, u 0 and u_, the r, 8, and

components of the average velocity of the electron flow, are

then:

U aur 4 u° aur ue2 u_2-----@V+Bu_sinS=O
r ar r 88 r r 8r

(I)

u Sue % aue UeUr u2
_--a_ + r _ _ r rtc°tfl- Ir _+u_Bcos_=o---V

(2)

and

u au_ _ ue Ou_ +--+uru_ u_u ecoto_Bursino_BuecosO=O
Or r 88 r r

(3)

where r is in units of _D and the velocities are in units of u A =
(kT/m) I/2, where m is the electron mass. The electric potential

energy, V(r,8) is in units of kT and B = oc/_ e = 0.2, where _c is
the electron cyclotron frequency in the earth's magnetic field

and Oep is the electron plasma frequency. The continuity equation
is

1 @ (ranu¢) + 1 8 (sin@nue) =0 (4)
r @r sin8 8@

where n(r,8) is the electron density in units of the ambient

electron density, n A and Poisson's equation is

a (r2 8v) I a 8v+ (sinS-_-r_) =nr 2_7 sin8 88 OV
(5)

SOLUTION

In order to get an approximate solution to Eqs(1)-(5) the

magnetic field parameter, B is considered a perturbation

parameter. Using the perturbation expansion in (1)-(5), the zero

order equations (no magnetic field) are,

u¢°(r) 8u_° (r) 8v ° (r) :0 (6)
8r 8r

1 a [rZn 0 (r) (r) ] :0 (7)
rar ur°

! (r 2 BY° (r)) =n o (r) r 2
8r 8r

(8)
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The equations to first order in B are

ara [ul(r,8) u_ °(r) -v l(r,e)] =o
(9)

8
ur°(r) -_ [ru._ (r,e) ]

8v _(r ,e) :0 (10)

ur°(r) [ 8u**(r'e) u.1(r,e)4 Bsine] =0
8r r

(ii)

1 0
-r a--r [r_(nl(r'O) u2(r)+n°(r)url(r'e))] (12)

4 sinel @e8 [n o(r) ue l(r,e) sine] =0

8 [r 2 8V1(r,@) ] + 1 8 [ 8V1(r,e) sine] =n1(r,O)r 2 (13)
8r 8r sine _ @e

The solution to the zero order Eqs.(ll)-(13) can be obtained

from Langmuir and Blodgett (1924). They considered a spherical

electron emitter of radius rm outside of a collector with
negligible initial velocity of the electrons leaving the emitter.

The boundary conditions were V°(rm)=0 and (dVO/dr) rm =0. In the

present case the outer boundary condition is taken at a virtual

cathode of radius r0, where u °(r^)=l and n°(r0)=l.• _ U

With the boundary condltion, u%1(r0,8)=0, Eq. (ii) gives,

u¢ 1 (r, 8) =B sin____O@(ro2_r2) (14)
2r

The remaining first order perturbation equations are linear

and allow the separation Iof variables. Defining u r =gr(r)gA(8),

ue1=hr(r)he(e), n1=kr(r)ke(8), V1=fr(r) fe(8), the separated e_-

dependent Eqs. yield the following results

(e) =-EAeP_/(cosO) sine (15)
!

fB (e) --gB (e) =_A(P e(COSB) (16)
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A_-

+I

2_+I f (l-x) P_(x) dx2
-1

(17)

P_(cosS) is the Legendre polynomial of the first kind.

The r-dependent equations can be combined into a coupled

set, of linear Eqs. which do not reduce to a standard form. An

approximate solution is obtained by expanding the dependent

variables in a Taylor's series about r Only the leading terms0"
are used here. Combining with the 8-dependent functions, the

final results largest order are

uz(r, 8) =uz °(r) : [(9/2) rm2a 2)]i/3
(18)

Ue(r, 8) - ( r° )sin8 (19)
r

u_(r,@) = sin____e(r02_12)
2r

(2O)

n (r, 8) -n° (r) =i ( rm)2[ 2_____ ]i/3

r 9 Im 2

(21)

V(r,O) =V °(r) :(2 -I/3) [(3/2)rma]¢/3
(22)

(7) =7 +0.372+0.07573+0.0143274+0-0021675

(23)

where 7=in(rJr) and i=4xr0ZnAuA.

The results for the azimuthal velocity, Eq.(14), are

compared with the numerical results of earlier work

[Sheldon(1994)] in Fig. I. While the present method introduces

considerable error in the actual values u_, the radial profiles
have the correct shape, similar results were obtained for
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ur(r,e), V(r,e) and n(r,@).

CONCLUSIONS

The perturbation method has allowed approximate

determination of the electron flow in the proposed model. The

previous numerical solution was more accurate, however the

intention here was not accuracy, but a better understanding of

the influence of the controlling parameters. This is available in

Eqs(i8)- (23) .
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Figure i. Radial profiles of the azimuthal electron velocity.

Vp=1000_ Nondimensional units 1D and u A defined in text.
(a) 8::22= .5 °, (b) 8=67.5 °.
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