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Abstract Introduction

This paper presents the results of applying two

different types of neural networks in two different

approaches to the sensor validation problem. The first

approach uses a functional approximation neural

network as part of a nonlinear observer in a model-

based approach to analytical redundancy. The second

approach uses an auto-associative neural network to

perform nonlinear principal component analysis on a

set of redundant sensors to provide an estimate for a

single failed sensor. The approaches are demonstrated

using a nonlinear simulation of a turbofan engine. The
fault detection and sensor estimation results are

presented and the training of the auto-associative neural

network to provide sensor estimates is discussed.

Nomenclature

AANN Auto-Associative Neural Network

ALT Aircraft altitude, (feet)

CVGFB Compressor Variable Geometry FeedBack

CVGMA CVG MilliAmpere command signal

DPBLD Delta Pressure between the compressor

DTAMB

FADEC

FDIA

ITT

MMVFB

P25

P3

PLA

T25

T3

WF

WFMA

XM

XNL

XNH

discharge and the bypass duct

Temperature variation from standard day

temperature, (deg F)

Full Authority Digital Engine Control
Fault Detection, Isolation, & Accommodation

Interstage Turbine Temperature (deg F)

Main Metering Valve position FeedBack

Low pressure compressor inlet pressure

Compressor discharge pressure, burner inlet

Power Lever Angle (thrust demand)

Compressor inlet temperature (deg F)

Temperature at burner inlet, (deg R)

Fuel flow (Ibm/hour)

Fuel Flow MilliAmpere command signal
Aircraft Mach number

Fan rotor speed, (rpm)

Core rotor speed, (rpm)

"This paper is declared a work of the U.S. Government and is not
subject to copyright protection in the United States."

Safety and reliability are key design issues in

turbine engines. Methods such as analytical

redundancy for handling online faults can be used to

increase an aircraft's reliability. Analytical redundancy

has been demonstrated on a turbofan engine in

reference [1]. This approach used an online nonlinear

model of an engine to provide estimates for failed

sensors. The model was tuned to closely match the

steady state and dynamic response of the actual engine.

This demonstration required a relatively high fidelity

and highly tuned real-time engine model. In reference

[2] a bank of Kalman filters was used to provide

probabilistically weighted parameter estimates of

measurements. This approach required a dither to

disturb the system from a quiescent state in order to

identify the system online. As an alternative, an auto-
associative neural network was used for sensor

validation of a rocket engine in reference [3]. This
reference indicates that the neural network estimates of

the sensor values could be used to replace failed sensor

values in a feedback control system. The work

presented here is a continuation of the work in

reference [4] and is based on the work in [1,3,5].

In the following, the sensor validation problem is

introduced and two approaches to the problem are

presented: a model-based approach using a nonlinear
observer, and an auto-associative neural network. The

nonlinear observer uses neural networks to model the

variation of the system with the operating point. The

auto-associative neural network (AANN) approach is
trained to be able to estimate a variable from a set of

analytically redundant measurements when the sensor

corresponding to that variable is faulty. The AANN

provides a nonlinear principal component analysis and

data dimensionality reduction via the funneling

structure of the neural network. These two approaches

are demonstrated on a model of a turbofan engine.

Results are presented showing the overall system

response during simulated sensor faults. The difficulty

in training the AANN to provide estimates when

provided erroneous information is also discussed.

NASA/TM--1998-208483 1
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The Sensor Validation Problem

While we will apply the approaches in this paper to

nonlinear systems, we will use the following linear

system to illustrate the concept of sensor validation:

2 = Ax + Bu (1)

y = Cx (2)

x is the system state vector, u is the system input vector,

and y is the system output vector. A, B, and C are

system matrices of appropriate dimension. The "m"

outputs or measurements, y, are a linear function of the

"n" state variables, x. Assuming that the A,B, and C

matrices include models of the actuators and sensors,

then y contains the sensed outputs used by the control

system to generate the actuator commands, u. The

sensor validation problem can be posed by the

following three questions:

1) In a real physical system where hardware failures

can and do occur, how does one detect when the

information provided to the control system through

the measurement vector, y, is incorrect?

2) Once it is known that something is wrong with the

information presented in y, how does one isolate

the source of the problem?

3) Once it is known where the problem is, (which

sensor has failed), how does one accommodate the

problem?

While faults occur in devices other than the sensors, (a

component fault for example), the sensors must be

validated first, prior to addressing any system

components, since all information is obtained through

the sensors. We are concerned only with sensor

validation in this paper. The three steps to the sensor
validation are Fault Detection, Isolation, and

Accommodation (FDIA).

cm_ [ C°ntr°ller

y or estimates /

as required

I Thresholding I.,, I

-_ and Sensor [_

[ Validation l _

System IY_Model

measurements

Figure 1 Block Diagram of Model-Based

Approach to Sensor Validation

v

A Model-Based Approach to Sensor Validation

One approach to sensor validation is to include an

onboard model of the system as part of a real-time

diagnostics system. In this approach the output of the
model is used to validate the sensed information. The

absolute value of the difference between the model

outputs, _, and the real system measurements, y, is the

error, e, which is fed back to the threshold scheme as

shown in Figure 1. With a model-based method the

violation of a single threshold isolates the fault to a

single measurement. Then the estimated value can be

used in place of the measured value. The onboard

model is the heart of the system.
An onboard model was used in references [1,6,7].

In reference [6], a piecewise linear model of an engine

is used in conjunction with a Kalman filter to provide

an estimate of engine damage. Reference [7] used an

online model as part of a control system. The main

issue in reference [7] is the ability to provide estimates

of unmeasurable variables, thrust and stall margin, for
two new control modes. Reference [8] used functional

approximation neural networks to schedule the control

variables used in a full envelope control design for a

simulation of the J-85 turbojet engine.
There are two main issues to be addressed when

using an online model. The first is accuracy. When

dealing with a real manufactured product, there are

variations from product to product because of

manufacturing tolerances. There are also changes

associated with aging, and wear and tear in engines that

are in service for extended periods. These engine-to-

engine variations complicate the fault detection method

using thresholds. Attempts to take these deviations into

account by online identification and adaptation

contribute to the second issue: computational overhead.

As in any mass produced product, cost is. a

consideration and the extra computational overhead of

an online model or model and adaptation scheme can

easily double the computations required. This also

greatly contributes to the complexity of the software
checkout and validation task.

An AANN Approach to Sensor Validation

The second method, the Auto-Associative Neural

Network (AANN) approach to sensor validation, can be
used when the information in the measurements is

analytically redundant in the sense that if one

measurement is lost, it can be replaced with an estimate

from the remaining valid sensors. For the system

described by equations (1,2), consider the case with m

sensors such that m is greater than the size of the state

NASAJTM--1998-208483 2
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vector, n (m>n). An estimate of the state vector can be

made from a subset of the outputs, Yv as long as the
state vector is observable from the subset of outputs, as

follows in equation (3):
T -1 r (3)c,) C,y,

C a contains the rows of C corresponding to Ys. Note

that in going from Ys to _ there is a reduction in the
dimension of the data. This state estimate can be used

to estimate the full output, _, :

= Cfc : [c(CTCs)-ICsT]ys (4)

(Note: SuperscriptT indicatesa matrixIranspose)

If a non-zero direct feed-through term, D, appears in

equation (2), it would read: y=Cx+Du. In this case it is

possible to create a fictitious measurement y* that can

be constructed as y*=y-Du, so the above technique is

still valid since u is known. The point to be made using

equation (4) is that the subset of redundant sensor

measurements can be used to estimate any missing

measurements as long as the state is observable from

the remaining subset of valid sensors.

However, in comparison, a Kalman filter provides

better noise filtering and excellent dynamic estimates of

the outputs of a linear system. For nonlinear systems,

the extended Kalman filter can be used, but it imposes a

much greater computational burden because of the

complexities involved with representing a nonlinear

system with a family of piecewise linear models. An
auto-associative neural networks can be used to extend

the functionality of equation (4) to nonlinear systems.

The reduction of the data dimension going from Ys to

can be thought of as a principal component analysis.
The structure of the auto-associative neural network

used for the nonlinear system considered here

essentially resolves the principal components which are
nonlinear functions of the measurements. These

principal components are then used to estimate all of
the sensed variables.

Bottle-neck

1 ___"_ output_ 1

2 2

3 3

Mapping De-mapping
layer layer

Figure 2 Structure of a Four Layer (Matlab notation)

3-6-1-6-3 Auto-Associative Neural Network

Auto-Associative Neural Networks (AANN)
An AANN is a feedforward network architecture with

outputs which reproduce the network inputs. The
architecture used here consists of two halves, the

mapping layer (on the left in Figure 2) and the de-

mapping layer. These halves are interconnected

through the bottle-neck layer. The mapping layer

compresses the data into a reduced order representation,

eliminating redundancies and extracting the key

features (principal components) in the data. The

dimensionality reduction characteristics of this
architecture are discussed in [5]. The de-mapping layer

recovers the encoded information from the principal

components.
The minimum number of nodes in the bottle-neck

layer that will provide sufficient information for data

recovery represents the degree of freedom of the data

system. In the sense of a linear system, the bottle-neck

layer must contain at least n nodes, were n is the size of
a non-redundant state vector, (a minimal

representation). The observability requirement still

holds for nonlinear systems.

The AANN is trained in two steps. The first step

trains the entire network using valid data. This requires
the selection of the number of nodes in the various

layers. The size of the bottle-neck layer is critical to

obtain the desired effect of eliminating the

redundancies in the measurements. The second step

involves the modification of the training set to include

false data in the sense of faulty measurements. The
network is then retrained with a data set that includes

erroneous information in order to learn how to filter the

false information. There are various approaches to this

second step, some of which include freezing specific

weights within the AANN. We'll discuss two different

approaches to this second training step next.

AANN Fault Training Approach 1 The first

approach looks at the outputs of the bottle-neck layer as

the weighted combination of the inputs. If one of the

inputs is faulty, this fault will have a reduced effect on

the bottle-neck layer because it is only one component

of many data inputs. As a simple example, consider the
case where this network structure is used for three

measurements of the same temperature and the

bottleneck layer is just one node. Then the mapping

layer performs a weighted averaging of these

temperature measurements. Faulty information in one

sensor is then reduced to 33% of the original value
because there are a total of three measurements used in

the average calculation. Thus the bottleneck layer

performs a weighted averaging.

NASA/TM--1998-208483 3
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Figure 3 Functional Map of Logic

Training Approach 2

AANN Fault Training Approach 2 The second

approach to retraining the mapping layer attempts to

train the mapping layer to learn threshold logic [5].

Consider the previous example of three temperature

measurements, T1, T v T 3. If T 1 does not agree with the

average of the other two temperatures, within some

threshold (bounded by T L and T H in Figure 3), then the

contribution of T1 to the estimate of the temperature

would be zero. We assume that T 2 and T 3 fall within

some acceptable bounds for this example. Without T 1,

the temperature estimate would be made from the

average of T 2 and T 3, (T2+T3)/2. This voting logic is

represented by a functional map as shown in Figure 3.

The full functional map for this example would be four

dimensional and has sharp contours associated with it.

A neural network can be trained to approximate this

functional map, but the map surface is complex and the

training is tedious. Reference [5] discusses this method

for training an AANN. The key advantage to this

approach is that it allows the detection, isolation, and

accommodation to be accomplished in one step. The

key drawback of this approach is that the training is not

trivial and a simple example as this sometimes is much

easier to be coded in a standard software language.

In summary, the AANN approach to sensor

validation trains a neural network to learn the

relationships between a set of redundant sensors such

that if one sensor is bad an estimate for that sensor can

be obtained from the remaining valid sensors. Note

that the neural network constitutes a model of a portion

of the engine and as such it has the same accuracy,

updating, and computational issues mentioned

previously for more conventional models.

Example Using a Turbofan Engine Model

Examples of the two approaches to sensor

validation are demonstrated using a nonlinear model of

a turbofan engine consisting of the engine and control

system (FADEC). The external variables are PLA,

ALT, DTAMB, and XM. PLA is a pilot command

input whereas ALT, DTAMB, and XM are considered

external system inputs due to ambient flight conditions.

The controller feedback variables are XNL, XNH, T25,

ITT, MMVFB, and CVGFB. XNL, XNH, T25 and ITT

are engine outputs whereas MMVFB and CVGFB are

the actuator feedbacks of the fuel flow main metering

valve and the compressor variable geometry position

respectively. We also consider the additional

measurements P25, P3, T3, WF, DPBLD which are

used for the analytically redundant information needed

in the AANN approach. While fuel flow, WF, is not

normally directly measured, it can be obtained from

another variable for this engine which will be shown.

Figure 4 shows a block diagram of the closed-loop

system. Note that MMVFB and CVGFB are actuator

outputs, not engine outputs. These two variables are

outputs of single input, single output servo loops.

These servo loops are higher bandwidth inner-loops

when compared to the engine outer loop variables. In

this sense, they represent the system inputs, WFMA

and CVGMA. In the following examples, we will first

look at a classical model-based approach to analytical

redundancy using a model-based, nonlinear observer to

estimate the main metering valve feedback, MMVFB.

Then we will use the AANN to detect faults in the two

rotor speeds, and to provide estimates for the two rotor

speeds, XNL and XNH.

ALT, DTAMB, XM x_

PEA | I

_ Engine Turbofan I
[ Controller WFMA_. Engine

(FADEC.______)CVGMA J I

I, XNL, XNH, ITT, T25, MMVFB, CVGFB t

other engine outputs: P25, P3, T3, WF, DPBLD [

Figure 4 Schematic of Example Turbofan Model

Consisting of Separate Control and Engine Modules
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CVGFB2
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.,...,.....,.,., ......... ,... ............... • ,!',''', ......... T.. .-, .... , ......... .

i FADEC 1 _ " ! Plant :
i MMVFB t ! i i

PLA :: I i _t_ __1 Servo If WFMA _1 Fuel _ _ [ i
Schedules _ c°ntr°l#11 i :_- "-_

: I I I I. : [ Engine
--------q_ and Engine [ , [ iCVGMA_ I _ I :

ALT : I i I _ ,-'-,, _ I Servo " _ I _ I :
DTAMB.:i MamLoop _ control#2 I :[ Geometry _ _ l!

XMNi,: ,ii,t:, --]" ' CVF I': !': ........ :i?": .... ::.'[:
/

XNL, XNH, ITT, T25 _

XNL

XNH

ITT

T25

Figure 5 Dual Redundant FADEC System Block Diagram

MMVFB Observer

MMVFB is the position feedback from the main

metering fuel valve. Its purpose is to address the

nonlinearities within the actuator to prevent "hunting"

(oscillation) in the fuel control system. In a system

with dual redundant FADEC's as shown in Figure 5,

when the MMVFB sensor for FADEC #1 (MMVFB1)
fails then FADEC #2 must take over the control of the

engine assuming it still has a good MMVFB signal

(MMVFB2). The MMVFB fault must be detected and

the controller must be switched in one time sample in

order to maintain the stability of the actuator loop

because of the high bandwidth nature of this loop.

Thus fast fault detection is critical to avoid a degraded
mode.

One of the issues with a dual redundant FADEC

system is that although differences between two
redundant measurements can be detected, there is

insufficient information to isolate a soft fault. A soft

fault is a fault that does not cause a large, sudden

change in the measurements that would be outside of

the normal rate of change for that signal. A drifting

measurement is an example of a soft fault. A tie

breaking vote is required to isolate a soft fault and

analytical redundancy can be used to provide a third

vote in a system with dual FADEC' s. The advantage of

having the third vote is that the sensor fault can be
detected and isolated. This allows the valid sensor to

be recognized and used, and permits the engine to

operate normally without the need to switch to a

degraded mode.

In this example a nonlinear observer is used to

estimate the value of MMVFB. This particular
observer uses two neural networks to estimate the core

rotor speed, XNH, which is used to provide steady state

correction to the MMVFB estimate as shown in Figure

6. This steady state correction prevents the
accumulation of an error in MMVFB that could build

up over time. Note that this correction term has an

integral error term separate from the integral within the

fuel valve dynamic model. A separate integral was

used to avoid having to retune the deadband used

within the fuel valve dynamic model (Figure 7). Not

shown in Figure 6 is a range limit that was part of the

integrator limit and windup protection logic that was

included in this model. The dynamic behavior of

MMVFB is estimated using a first order model that was
identified from simulation data. This first order,

nonlinear fuel valve dynamic model is shown in Figure

7 and contains a deadband nonlinearity.

NASA/TM--1998-208483 5
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FADEC I ( MMVFB

I

servoI [ : Foei
control ¢ WFMA • ValVe:

Fuel valve

Dynamic
Model

MMVFB Observer

MMVFB [ Estimated [-1- Estimate NN #1 WF _.1 NN #2

MMVFB I 2TA :_¢_F6t6 XNHe.'+ I_6!WF V , 2 & correctedcalC:

XNH

Estimated

XNH --

Figure 6 Block Diagram of MMVFB Nonlinear Observer with Neural Networks #1 and #2

deadband gain limited integral

Llimit flag

Figure 7 Fuel Valve Dynamic Model

Note that the deadband is not symmetric. It was tuned

using transient responses from the closed loop engine

simulation. The model of the engine was treated as a
black box and the model source code was not available.

This nonlinear, first order model comprised the

dynamic response of the observer. The steady state

correction path is based on the XNH estimate error.

The XNH estimate is obtained through two neural
networks which are described below.

Two single input, single output, neural networks
are used in the MMVFB observer. Both networks are

simple functional approximations that could have been

accomplished with nonlinear curve fitting routines.

The advantage of using neural networks for functional

approximation is that the nonlinear functions used in

the curve fitting do not have to be selected other than

the nonlinearity used within the network node

activation functions which is typically sigmoidal or

some type of smooth "S" shaped function. The first

network in Figure 6, (N.N. #1) generates a steady state

estimate for fuel flow given MMVFB. The second

network (N.N. #2) generates an estimate for corrected

rotor speed (XNH0) given corrected fuel flow, WF c.

Since no details were available regarding the control

system schedules, the closed loop model was used to

determine the extent of these nonlinearities. Steady

state data was collected from the engine simulation for

1260 operating points. These 1260 operating points

were obtained by varying PLA, DTAMB, ALT, and

XM. PLA was varied over a range from 13-77.

Temperature was deviated +20 degrees Fahrenheit from

standard conditions in increments of 10 degrees. The
variations for altitude and Mach number are shown in

Figure 8. These variations in altitude, ALT, and Mach

number, XM, are typical for a commercial turbofan

engine. Figures 9 and 10 show the variations of WF,

MMVFB, and XNH for the 1260 steady state operating

points. Note that fuel flow is almost a quadratic

function of the main metering valve position, which

one might expect for the choked flow of a valve with a

flow area that is proportional to the square of the valve

position. The corrected rotor speed is plotted as a

function of the corrected fuel flow in Figure 10 for the

1260 operating points. Equation (5-8) gives the

relationships used to calculate the corrected terms.

theta = T 2 / Tst d , T,t a = 518.7°F (5)

delta = P2 ] Pstd , P_=14.67 psia (6)

XNH e : XNH / _ (7)

WF c = WF/ delta/ _ (8)

The curve shown in Figure 10 is very smooth and we

assume that this is by design. There is probably a curve

like Figure 10 that is part of the engine control system

schedule. For this program we did not have access to
the details of control system. The fault detection

scheme was developed separately and the control

system was considered to be a "black box".

NASA/TM--1998-208483 6
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Figure 10 XNHo vs WF c (N.N. #2)

The original 1260 operating points were combined with

two perturbations around these 1260 operating points to

form a total set of 3780 steady state operating points

that were used to evaluate the steady state observer

performance. Also, the dynamic performance of the

observer was evaluated using a PLA "SLAM" from
PLA=21 to 75 and back to 21. This maneuver was

performed at 420 different operating points obtained

from the same variations in ALT, XM and DTAMB

used to generate the steady state estimates. Table 1 lists

the worst case steady state and transient performance of

the estimator. Note that worst case is conservatively

defined by the largest absolute percent error, where

percent error is defined in equation (10) as:
"true"-" estimate" (10)

%error - * 100%
"true"

Table 1 also lists the worst case estimate error for WF

and XNH. The absolute error corresponds to the point

where the worst case percent error was calculated. It

can be observed that while a 20.2% dynamic error was

the largest percent error recorded in MMVFB, this

corresponds to an absolute error of only 0.009 out of a

full scale of 0.165, which is only 5% of full scale.

Table 1 Worst Case Estimate Errors

Range

Absolute steady
state error

Percent steady

state error (%)

MMVFB WF

(inches) (lbm/hr)
0.13 2240

0.006 291

8.6 16.9

0.00935 143

20.2 28.0

XNH

(rpm)
5400

290

2.0

1338

12.1

Absolute

dynamic error

percent (%)

dynamic error
Note the steady state and dynamic errors are not calculated at

the same point. Since the worst case percent error is based on

the 'true' error, it is possible for the absolute steady state error

to be larger than the absolute dynamic error in Table 1.

The steady state error for XNH is very good. The

steady state error for MMVFB of 8.6% is higher than

we would have liked, although we believe this error can

be improved by modifying the training method. One

approach would be to combine the two neural networks

into one network, and including P2 and T2 as inputs to

the network making this a new, three input, one output

network. This would require the network to learn the

process of calculating the corrected values. Another

approach would be to combine the two networks

through an intermediate calculation of corrected

variables and then to modify the training algorithm so

that both networks could be trained simultaneously. In

the current approach these neural networks were trained

separately. Both of these approaches would avoid the

problem of the accumulation of error when cascading
two neural networks.

NASA/TM--1998-208483 7
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Figure 11 Transient Response of MMVFB Observer

Figure 11 shows the response of MMVFB and

estimated MMVFB during the PLA response (PLA=21-

75-21) for the case where XM=0, ALT=0, DTAMB=0.

In this particular example the estimated MMVFB value

was fed back to the control system in place of the actual

value to demonstrate the closed-loop stability using the

estimated value of MMVFB. This response is typical

of the estimator transient response. An important use

of such an estimator would be to provide a third vote in

a dual redundant FADEC system so that if one of two
MMVFB measurements did fail, the MMVFB estimator

would be able to cast the tie breaking vote, allowing

engine operation to continue normally. This would also

allow maintenance to be scheduled to address the faulty

sensor at an appropriate time, thus improving the
dispatchability of the aircraft.

The two neural networks used here were very

simple. The first network is a two layer, 1-4-1 network

with a total of 4 nonlinear nodes (the output layer is

linear) and a total of 13 variables (8 weights, 5 biases).
Network #1 takes less than 10 lines of "C" code to

program. The second neural network that estimates

corrected high rotor speed from corrected fuel flow is a

1-3-1 two layer network with a total of ten variables (6

weights, 4 biases). The output layer is linear. These

two networks are simple enough that it would be

possible to have online training to keep the steady state

estimates accurate. Keeping the dynamic response

accurate would take more effort, but the problem is

small enough that it would be manageable with current

computer hardware.

AANN Sensor Validation of XNL, XNH

An Auto-Associative Neural Network is used to

recover from sensor failures in the two rotor speed
measurements, XNL and XNH, both of which are used

in the engine control loop. Several different network

architectures were attempted and the bottle-neck layer

size was varied from 1 to 4. The goal of changing the
network size was to minimize the total number of nodes

in the network while still obtaining accurate estimates.

The initial goal for this phase of training was to
estimate the measured values within 4% of the "true"

value. Figure 12 shows the 7-10-4-10-7 auto-
associative neural network and the sensor variables

used as inputs to this network. This network has 31

neurons, 220 weights and 31 biases to be adjusted

during the training process. In Figure 12, the subscript
"c" stands for a corrected value.

Network Training

Besides the selection of the analytically redundant

sensors as previously described, network training plays
a critical role in the success of the sensor validation

scheme. There are three steps in the network training.

_ottle-nec_

XNLc__ayef//_ ''_ EstimatesXNLc

XNH -_" -__. '_ • XNI-Ic

P25c __' _,. _.... P25c

P3c __ .... _ P3c

wFcT3C .... _ wFcT3C

DPBLD _ DPBLD

layer layer
7-10-4-10-7 Network

Figure 12 Auto-Associative Neural Network Schematic for Turbofan Engine Estimates
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The first step is the generation of the training data
from data collected from the previously described 1260

operating points defined by the variations in ALT and

XM (in Figure 8) and PLA and DTAMB. Each

operating point contains a corresponding set of sensor

values containing the steady state measurement of

[XNL, XNH, P25, P3, T3, WF, DPBLD].

The second step is the actual training. The goal is
to train the Auto-Associative Neural Network so that:

1) the network output vector matches the input vector

at each operating point; and

2) the network output vector shall be insensitive to a

single sensor deviation from its "normal" reading.

In this study, a back-propagation algorithm is used to

adjust the weights of the network so that the network

output will return the desired sensor measurements for
both the normal data set and the simulated failed sensor

data set. Because the nature of the desired neural

network is not a simple functional map, it is necessary

to modify the training procedures in order to achieve

the best results. The following factors were used for

the neural network training:

1) Normalization of the sensor data: All the sensor
data are normalized and scaled to have a value

between -1 and +1. This is to assure that all

sensors will have approximately the same
sensitivities.

2) Training with normal data set: The network is first

trained with the normal data set to quickly train the

network to perform under the normal conditions.

By normal we mean, "no fault".

3) Training with simulated failed sensor data set: A

sensor failure is simulated by adding a random

number to a selected sensor reading in the normal
data set. There are two methods of training using

the failed sensor data. The first method generated

a complete training set with only one failed sensor
on each measurement set. It was found that this

type of training tended to be slow and sometimes it
was difficult to achieve the desired results.. The

second training method varied which sensor was

failed within the training set. In this case, a sensor

was randomly selected and random biases were

added to the sensor reading. The goal of training

with data containing faults is to adjust the weights
so that the neural network will minimize the effect

of the bad sensor readings by using other sensors to

provide a good estimate. In this training, it was

also found to be helpful to freeze the first layer

weights connected to the node of the bad sensor

during the back-propagation weight adjustment.

This prevented the failed sensor from being totally

4)

ignored, but required a modification to the standard

back propagation scheme.

Step size and momentum term: It was found that

the momentum term in the training does not

improve the training result because of the batch

training process. The step size selection depends

on the size of the training batch. In this case, it
was selected to be in the order of 1.0'10 .5 because

of the large batch size of the training set.

AANN FDIA Results

The Auto-Associative Neural Network was

combined with simple error threshold logic to construct

a fault detection, isolation and accommodation system.
The focus here is on the neural network estimates and

not on the threshold logic. A comparison was made

between the AANN input and output. If the output

exceeded a prescribed level, a fault was said to have

occurred. One at a time faults are easily detected and

isolated because the neural network provides a good
estimate of the actual sensor value. While the detection

and thresholding logic play an important role in the

resulting transient response during the switch from a

faulty sensor to an estimated value, in the following we

focus primarily on the estimate accuracy of the auto-
associative neural network. We will show a simulated

slow soft fault, then a fast soft fault, and finally we will
consider a hard fault.

In Figure 13, the slow soft fault was simulated for

the low rotor speed, XNL, by adding a bias to the

sensed value of XNL. The negative bias value was a

function of time. Note that because the control system

was trying to regulate XNL, the sensed value of XNL
remained constant and the actual value increased. The

actual value of XNL increased because the controller

was increasing the fuel flow to compensate for the

negative ramp bias in the sensed value of XNL to hold
it constant. Once the measured and estimated values of

XNL differed by more than the preset threshold value

of 1000 rpm, the measured value for XNL was replaced

by the value of XNL estimated by the AANN. A step

response can be observed starting at time equal to 15

seconds when the controller began to regulate XNL
based on the XNL estimate. The actual, measured, and

estimated value of XNL were plotted in Figure 13

along with the XNL fault detection flag which shows

when the fault was detected by exceeding the threshold

value. Note in Figure 13 at a time of 30 seconds that
there remains a bias or offset in the XNL estimate.

This is due to the AANN estimation error at this

particular operating point. This value is approximately

100 rpm at a nominal value of 7000 rpm.
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Figure 13 Simulated XNL Slow Soft Fault by
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Figure 14 Simulated XNL Fast Soft Fault by

Adding a Ramp Bias Value to XNL_measured

30

30

The fast soft fault was simulated by adding a fast

changing ramp value to the measured value of XNL.

The response during this transient is shown in Figure

14 and it is similar to the response shown in Figure 13,

except faster and in the opposite direction. The

threshold value for this particular example was set to

500 rpm. It can bee seen the difference between the

measured and estimated values of XNL exceeds the 500

rpm error threshold at approximately 14 seconds. Also

note that the bias started at time equal to ten seconds.

Between 10 and 14 seconds the control system is trying

to compensate for the ramp increase disturbance in the

measured value of XNL by decreasing the fuel flow

(see the bottom plot in Figure 14). The controller

responses results in a constant offset or bias which is

the typical response for a type I control system [9]. As

before, once the fault threshold value was exceeded, the

control system went through an XNL step response and

then continues to regulate on the estimated value of

XNL.

The hard fault was simulated for the high rotor

speed by adding a large bias term to the measured value

of XNH. In Figure 15 the bias value was added at ten

seconds. The fault was detected immediately because

the fault threshold for XNH was exceeded. The control

system switched to the estimated value of XNH. The

control system handled the transient as it adjusted to the

estimated value of XNH. We do not know the control

law, but we believe that the transient in Figure 15 is

different from the responses shown in Figure 13 and 14

for XNL because of how XNH is used in the control

system. The controller recovered in about two seconds.

x 104
1.6 ............

hard fault --"""'_" XNH estimate

1.5 _--

1.4

1.3

1.2

1.1

XNNHHmduaSdred =/_ f_- used

XNH

..... _ est_atel , ,

0 2 4 6 8 10 12 14

Time (seconds)

16 18 20

Figure 15 Simulated XNH Hard Fault by

Adding a Large Bias Value to XNH_measured
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Comments

The results presented here indicate that neural

networks can play a role in sensor fault detection,

isolation, and accommodation. Using neural networks

for nonlinear functional approximation is reasonably

straight forward. The results of the auto-associative

neural network presented here were good. The AANN

was able to detect faults in XNL and XNH using a
simple thresholding scheme and the estimated value

could be used within the closed loop control system.
However, training the network with the fault modified

training set was laborious and time consuming. The

network size was not huge, but when combined with

the fault training set the training times became

significant. Training times in excess of 24 hours on a

Pentium PC platform were not uncommon. The

network had 251 weights and biases to adjust. The

fault training set consisted of 1260"(#

sensors)*(#simulated faults) training cases. The

training times were substantial partially because the

1260 operating points covered a wide operating range.
Several different auto-associative neural networks were

designed. They were of different structures and used

different variables. The training of the neural network

was delicate and sensitive to the learning rate and

required an experienced hand. In most cases the

weights obtained for a given neural network structure

were not unique, i.e., different sets of weights produce
similar results.

Summary

We have presented two approaches to the sensor

validation problem. Two different types of neural

networks were used: functional approximation and
auto-associative neural networks. The functional

approximation neural networks were used as part of a

nonlinear, model-based approach to analytical

redundancy. The auto-associative neural network was

used as part of an FDIA scheme that acted like a fault

filter and only required the addition of some

thresholding logic. The results that were presented

show that neural networks can play a role in fault

detection. We believe more work is required to obtain

a time-efficient training method for the auto-associative

neural network approach.
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the training of the neural networks presented in this
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were extended to four layers networks to perform the

training of the auto-associative neural networks.

Also, all simulations were performed by interfacing

the FORTRAN engine model to the MathWork's
Simulink simulation environment.
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