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Abstract

An analysis is presented of the effects of airfoil thickness and mean aerodynamic

loading on boundary-layer receptivity in the leading-edge region. The case of acoustic

free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading

edge in a low Mach number flow, is considered. An asymptotic analysis based on large

Reynolds number is developed, supplemented by numerical results. The airfoil thickness

distribution enters the theory through a Strouhal number based on the nose radius of

the airfoil, S = wrn/U, where w is the frequency of the acoustic wave and U is the mean

flow speed. The influence of mean aerodynamic loading enters through an effective angle-

of-attack parameter #, related to flow around the leading edge from the lower surface

to the upper. The variation of the receptivity level is analyzed as a function of S, #,

and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a

finite nose radius dramatically reduces the receptivity level compared to that for a flat

plate, the amplitude of the instability waves in the boundary layer being decreased by

an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found

to further decrease the receptivity level for the upper surface of the airfoil, while an

increase in receptivity level occurs for the lower surface. For larger angles of attack

close to the critical angle for boundary layer separation, a local rise in the receptivity

level occurs for the upper surface, while for the lower surface the receptivity decreases.

The effects of aerodynamic loading are more pronounced at larger values of S. Oblique

acoustic waves produce much higher receptivity levels than acoustic waves propagating

downstream parallel to the airfoil chord.



Chapter 1

Introduction

The accurate prediction of boundary-layer transition and the need to control this phe-

nomenon are becoming increasingly important in the development of advanced aeronau-

tical vehicles. These requirements have focused renewed attention on the physics of the

transition process. It was known for many years that boundary-layer transition is influ-

enced significantly by the free-stream disturbance environment. However, the physical

mechanisms by which energy is transferred from the long wavelength free-stream distur-

bances to the much shorter wavelength instability waves were not understood. This came

to be known as the receptivity problem (Morkovin 1969).

In order for an external disturbance to generate an instability wave, energy must be

transferred to the unsteady motion in the boundary layer at an appropriate combination

of frequency and wavelength. To simplify the discussion, it is useful to consider the

situation where the external disturbance is of small enough amplitude that the unsteady

motion can be represented as a linear perturbation of the mean flow. Attention can then

be restricted to a single time harmonic, with the results for general time dependence

obtained by superposition. In this report, we consider linear, time-harmonic disturbances

to the mean flow.

The earliest theoretical analysis of instability wave generation in a boundary layer

was presented by Gaster (1965). He considered the case of two-dimensional Tollmien-

Schlichting (TS) wave excitation in a parallel boundary layer by a time-harmonic dis-

turbance at the wall. The wall disturbance was localized in the streamwise direction,

and hence the wavenumber spectrum of this disturbance was broad. Thus, the input

disturbance contained energy at the appropriate frequency-wavelength combination to

directly excite an instability wave.

The first attempts to predict receptivity to naturally occurring free-stream distur-

bances (Rogler & Reshotko 19"/5, Tam 1981) were based on a parallel flow formulation

similar to that of Gaster. However, naturally occurring free-stream disturbances (sound

waves, turbulence, etc.) travel at much higher speeds than instability waves. Thus, the

wavenumber spectrum of the free-stream disturbance at a given temporal frequency is

concentrated at wavenumbers which are significantly different than the waveuumber of

the instability wave. Hence, these parallel flow analyses succeeded only in finding 'par-

ticular solutions' in the boundary layer which are unrelated to the instability wave. In

order to transfer energy from a naturally occurring free-stream disturbance to an insta-

bility wave, a wavelength conversion process is required. A more complete discussion

of the differences between instability wave generation by localized disturbances and by



naturally occurring disturbancescan be found in Kerschen(1989).
Experimental investigations in the 1970sshowedthat receptivity can occur in the

vicinity of the leadingedgeand in localizeddownstreamregions. Reviewsof theseand
more recentexperimentsare presentedby Kachanov,Kozlov & Levchenko(1982) and
Nishioka& Morkovin (1986). The experimental resultsstimulated theoretical investiga-
tions (Goldstein 1983,1985)which showedthat the wavelengthconversionprocesstakes
placein regionsof the boundary layer wherethe meanflow exhibits rapid changesin the
streamwisedirection. This occurs (a) near the body leadingedgeand (b) in any region
farther downstreamwhere some local feature forcesthe boundary layer to adjust on a
shortstreamwiselength scale.The rapid streamwiseadjustment requiresthat nonparallel
meanflow effectsbe included at leading order, in contrast to the parallel flow assump-
tion of classicalOrr-Sommerfeldstability theory. Reviewsof receptivity arepresentedby
Goldstein & Hultgren (1989)and Kerschen(1990). A discussionof the roleof receptivity
in transition prediction canbe found in Heinrich, Choudhari& Kerschen(1988). Results
for receptivity in localizeddownstreamregionsarepresentedin Kerschen,Choudhari &
Heinrich (1989),Choudhari & Kerschen(1989, 1990)and Choudhari (1990),in addition
to publications referencedabove.

In this report, we present a theoretical analysisof receptivity in the leading-edge
region. Previoustheoretical studies of leading-edgereceptivity have been restricted to
the Blasius boundary layer on a semi-infinite, zero-thicknessplate. The motion has
beenassumedincompressibleand two-dimensional. Goldstein (1983) developeda high
Reynoldsnumber asymptotic analysisfor this problem. The small parameter e utilized

in his analysis is defined as e = (wv/U2)-k, where w is the frequency of the unsteady

motion, v is the kinematic viscosity of the fluid and U is the speed of the free stream.

Note that e_ is the frequency parameter F of classical stability theory, which can also

be interpreted as the inverse of a Reynolds number based on the convective wavelength
U/w of the unsteady motion.

Goldstein, Soekol & Sanz (1983) calculated the receptivity coefficient for an acous-

tic wave propagating downstream parallel to the surface of the flat plate. Heinrich &

Kerschen (1989) calculated receptivity coefficients for a wide range of free-stream distur-

bances including obliquely incident acoustic waves, convected gusts (the linear represen-

tation of free-stream turbulence) of various orientations, and a yon Karman vortex street

passing above the plate surface. At low Maeh numbers, the strong leading-edge diffrac-

tion field created by obliquely incident acoustic waves produces receptivity coefficients

which are an order of magnitude larger than those for the other types of disturbances.

The receptivity coefficient for oblique acoustic waves is proportional to M-½ in the low

Mach number limit, and the strongest receptivity occurs for acoustic waves propagating

upstream toward the leading edge along one surface of the plate. Heinrich & Kerschen

(1989) also examined the influence of wind tunnel walls on leading-edge receptivity to

upstream propagating acoustic waves. A weakly damped oscillatory pattern as a function

of frequency was found. The oscillations are related to the alternate cut-on of upstream

and downstream traveling acoustic modes in the wind tunnel. For high frequencies,

this pattern gradually approaches the isolated plate result. Various parts of Heinrich &

Kerschen's results on leading-edge receptivity are summarized in publications referenced

above; a full account can be found in Heinrich (1989).

The theoretical investigations of leading-edge receptivity discussed above have signif-

icantly advanced our understanding of the receptivity process. However, the results are



restricted to the incompressible,zero-pressure-gradientBlasiusboundary layeron a plate
of zero thickness.Bodiesof practical interestgenerally havea leadingedgewith a finite
radiusof curvature, rn, which enters the receptivity problem through the non-dimensional

parameter S = wrJU. This parameter is typically O(1) or larger in aerodynamic ap-

plications. Even in the case of laboratory experiments, S may be large enough to cause
significant deviations from the zero-thickness model.

A second disadvantage of the zero-thickness geometry is that the influence of mean

aerodynamic loading cannot be investigated, since any asymmetrical mean flow com-

ponent in the vicinity of the leading edge leads to boundary-layer separation. It is well

known that aerodynamic loading significantly influences both the mean development and

the stability of the boundary layer. Hence, it is reasonable to anticipate that aerody-

namic loading is an important parameter in the receptivity problem as well. In fact, in

his laboratory experiments, P. Leehey found (private communication) that small changes

in the 'angle of attack' of his plate produced dramatic changes in the receptivity to acous-

tic waves. Thus, in order to make predictions of relevance to practical applications, it is

essential to incorporate both finite leading-edge thickness and mean aerodynamic loading

into the receptivity theory.

In the present report, we extend the theory for leading-edge receptivity to address

the effects of leading-edge thickness and mean aerodynamic loading. In chapter 2, a high

Reynolds number asymptotic analysis (e << 1) of leading-edge receptivity is presented

for the case of a symmetric mean flow past a parabolic leading edge. The nose radius

parameter, S = wrn/U, is assumed O(1). We find that, when S reaches the value 0.3, the

receptivity coefficient is reduced by an order of magnitude compared to the S = 0 case.

The numerical results calculated under the assumption that S = O(1) suggest that the

receptivity coefficient is singular for small values of S. In chapter 3, the small-S behavior

is investigated further by developing a small-S asymptotic theory. The leading term cor-

responding to S = 0 is found to agree with the flat-plate results of Heinrich and Kerschen

(1989). For free-stream disturbances which produce a locally symmetric unsteady motion

about the leading edge, the receptivity coefficient varies linearly for small S. However,

for free-stream disturbances which induce an anti-symmetric component in the unsteady

flow about the leading edge, the receptivity coefficient varies with S½. This singular term

leads to a sharp decrease in the amplitude of the receptivity coefficient relative to the

flat-plate value. In chapter 4, the effects of mean aerodynamic loading are analyzed. The

influence of aerodynamic loading enters through an effective angle-of-attack parameter

#, related to flow around the leading edge from the lower surface to the upper. Modest

levels of aerodynamic loading are found to decrease the receptivity level for the upper

surface of the airfoil, while the receptivity is increased for the lower surface. For larger

angles of attack close to the critical angle for boundary layer separation, a local rise in

the receptivity occurs for the upper surface, while on the lower surface the receptivity

decreases. These effects are more pronounced at larger values of S. Conclusions of the

study and recommendations for future work are summarized in chapter 5. This work has

also been presented in Hammerton & Kerschen (1996, 1997, 1998).



Chapter 2

Receptivity for a leading edge with

no aerodynamic loading

2.1 Introduction

The receptivity process through which flee-stream disturbances generate instability waves

in boundary layers was first discussed by Morkovin (1969). The transfer of energy from

the free-stream disturbance to the instability wave generally comes about through non-

parallel mean flow effects, which may arise either in the leading-edge region, or in a

localized region farther downstream in the boundary layer (Goldstein & Hultgren 1989;

Kerschen 1990).

Up to now, theoretical studies of leading-edge receptivity have been restricted to

a semi-infinite, zero-thickness plate. Goldstein (1983) developed an asymptotic analysis

for this problem; leading-edge receptivity coefficients for various free-stream disturbances

were calculated by Goldstein et al. (1983) and Heinrich & Kerschen (1989). However,

aerodynamic bodies designed for subsonic flow generally have finite thickness distribu-

tions with a parabolic leading edge. In the present chapter, we examine the influence

of the thickness of a body on leading-edge receptivity. The body is assumed to be two-

dimensional, with a symmetric cross-section and a parabolic leading edge. An asymptotic

theory for the case of a symmetric mean flow is developed in this chapter. Results are

presented for receptivity to acoustic waves in the free stream, incident on the body at

arbitrary angle. Attention is focused on the variation of the receptivity level with the

nose radius of the body and the incidence angle of the acoustic field.

In §2.2, a high Reynolds number asymptotic analysis (e6 = _w/U}; e << 1) is formu-

lated for an incompressible, two-dimensional flow. This follows the approach of Goldstein

(1983) but remains valid for a nose radius comparable to the free-stream disturbance

length scale Ue/w. Here Ue is an effective free-stream speed, defined in §2.2, which in-

cludes a correction to the free-stream velocity due to the flow perturbation created by

downstream portions of the airfoil. Two streamwise regions enter the analysis, one re-

gion where the distance downstream is O(U_/w) and the disturbance is governed by the

linearized unsteady boundary layer equation (LUBLE), and a second region at distances

O(e-2U_/w) where the disturbance is governed by the triple-deck structure, correspond-

ing to the asymptotic form of the Orr-Sommerfeld equation (OSE) in the vicinity of the
lower branch.

The structure of the solution in the LUBLE region is analyzed in §2.3. The inviscid

4



pressure field and slip velocity induced by the free-stream disturbance (analyzed in §2.4)

drives the unsteady motion in the boundary layer. Far downstream in the LUBLE region,

the solution consists of a Stokes wave, and a set of asymptotic eigensolutions that contain

velocity but not pressure fluctuations. These asymptotic eigensolutions are equivalent to

those obtained by Lain & Rott (1960) and Ackerberg & Phillips (1972), but modified to

include the effects of the mean pressure gradient and surface curvature. The asymptotic

analysis for distances far downstream determines the form of the eigenfunctions, but

not their coefficients Ci. These coefficients can be found only through a full solution

of the LUBLE, which must be determined by numerical methods. Lain & Rott (1993)

have recently generalized their eigenfunctions to take account of arbitrary streamwise

variation in the mean flow. The direct development in parabolic coordinates presented

here is more convenient for our purposes, but it can be shown that our expressions for

the eigenfunctions are in agreement with these more general results.

The wavelengths of the asymptotic eigenfunctions shorten progressively with distance

downstream. Eventually, the self-induced pressure field associated with the displacement

thickness of each asymptotic eigenfunction becomes significant, and the triple-deck struc-

ture replaces the LUBLE as the correct asymptotic approximation to the Navier-Stokes

equation. The first asymptotic eigenfunction of the LUBLE matches on to the Tollmien-

Schlichting wave solution of this triple-deck region. Thus, the form of the free-stream

disturbance and the geometry close to the nose influence the amplitude of the Tollmien-

Schlichting wave only through the coefficient CI of the first as2_anptotic eigenfunction.

Therefore, we call C1 the 'Receptivity Coefficient'. The primary objective of this chapter

is to determine the Receptivity Coefficient as a function of leading-edge geometry and

free-stream disturbance characteristics.

For the fiat-plate case, it is not clear whether the set of eigensolutions obtained by

Lam &: Rott are complete. A second, very different set of eigensolutions was obtained by

Brown & Stewartson (1973) which, they argue, better represent the physical properties of

the flow. While the relationship between these two sets is a fundamental question which

deserves further study, this must first be done in the context of the fiat-plate problem. For

a parabolic body, generalizations of the Brown & Stewartson eigensolutions should also

exist, but we concentrate solely on the generalizations of the Lam-Rott solutions since it

is demonstrated in Appendix B that they match naturally to the Orr-Sommerfeld modes

further downstream.

In §2.4, the inviscid pressure field and slip velocity produced by the interaction of a

free-stream acoustic wave with an airfoil are determined. The exact form of the unsteady

slip velocity in the vicinity of the leading edge is determined by the global solution about

the airfoil. This depends on the magnitude of the reduced acoustic frequency k = cab/c,

where b is the airfoil semi-chord and c is the speed of sound. Here we present results

for the limiting cases k << 1 and k >> 1, when relatively simple expressions for the slip

velocity can be obtained. Numerical solutions of the LUBLE are then carried out in §2.5,

and comparisons with the asymptotic eigenfunctions of §2.3 are utilized to determine the

Receptivity Coefficient Cl as a function of S = car,,/U_ and characteristics of the free-

stream acoustic wave. The analysis presented is for S = O(1); the only restriction is that

S (( e -2, so that the unsteady disturbance in the nose region is governed by the LUBLE.

2.2 Formulation
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Figure 2.1: An illustration of the physical situation of interest: a thin, symmetric airfoil

of chord 2b is at zero angle-of-attack in a uniform flow of speed Uo_, with a plane wave

incident at an angle 0 with respect to the airfoil chord.

We consider a thin, symmetric airfoil of chord 2b at zero angle-of-attack in a uniform

flow of speed Uoo. A plane acoustic wave of frequency w, propagating at an angle

with respect to the airfoil chord, is assumed to be incident on the airfoil as illustrated

in figure 2.1. Two-dimensional, low-Mach-number flow is considered. Since the Mach

number is small, the mean flow can be analyzed using incompressible theory. For the

unsteady component of the flow, most features of interest can also be analyzed with

incompressible theory. The influence of compressibility on the unsteady component of

the flow is discussed in §2.4. The Reynolds number is assumed large, so the flow field is

inviscid and irrotational everywhere except in the vicinity of the airfoil surface.

2.2.1 Inviscid Outer Flow

Introducing Cartesian coordinates (x, y) normalized by the airfoil semi-chord b, with the

origin located at the airfoil leading edge, the airfoil shape is given by

y = ±Ss (x), 0 < x _ 2 (2.1)

where s (x) is the non-dimensional thickness distribution of the airfoil and the thickness

parameter _ << 1. The airfoil is assumed to have a rounded leading edge and a sharp

trailing edge. The dimensional complex potential W for the steady, inviscid flow past



the airfoil is given by thin-airfoil theory,

[ )]W=Uo_b z +5 -_xt ln(z-xt)dx, +O(6 2 , (2.2)

where z = x + iy and the dimensional velocity (u, v) is given by u - iv = b-ldW/dz.

For an airfoil with a rounded leading edge of radius rn, the small argument expansion
of the thickness distribution has the form

s (z) = s_:c_/2+ s2z + s3z 3/2 + O(x _) (2.3)

where s l = (2r,/5_b) l/2. The coefficient of the leading term in 2.3 must be O (I), implying

that rn = 0(52b). The thin-airfoil expansion 2.2 is invalid in the vicinity of the leading

edge, and must be replaced by a local expansion (Van Dyke, 1964a: Chapter 4). The

natural length scale for this local expansion is the airfoil nose radius r,. Introducing a

parabolic coordinate system (_, f/) in the local region, with rn as the length scale,

) ]x + iy = _--_- + if/ 2 + 1 , (2.4)

the airfoil surface is given by _ = 1 + ½5s2_3/(1 + _2) + 0(52). Thus, at leading order in

the local coordinates, the airfoil surface is defined by the parabola F/= 1.

The complex potential describing the leading approximation to the steady, inviscid

flow in the vicinity of the airfoil nose is

1

w = + i(o- 1))=, (2.5)

leading to a slip velocity, U,_/(_ _ + 1) _/2, where the constant U_ is determined by match-

ing with the thin airfoil expansion (2.2). For leading-edge shapes that contain a wedge

component (s2 :fi 0), the approximation (2.5) is valid only at O(1) in the thickness pa-

rameter 5 and matching with (2.2) then shows that U_ = Uoo. However, for leading-edge

shapes in which the S½ multiplies a locally analytic function of x, the even coefficients

in (2.3) vanish. The Joukowski airfoil is one example of such an airfoil. In this case the

leading-edge region is also parabolic at 0(5), and the matching then gives

/20 _l ¸

2x_

The 0(5) term in (2.6) is essentially a correction to the 'free-stream speed' in the local

leading-edge region, due to the flow perturbation created by downstream portions of the
airfoil.

The scattering of the acoustic wave by the airfoil produces an unsteady perturbation

to the inviscid, irrotational flow described above. This unsteady, inviscid perturbation is

considered in §2.4. The slip velocity and pressure associated with the inviscid flow drive

the viscous flow in the boundary layer adjacent to the airfoil surface.

2.2.2 Boundary-layer flow

7



The boundary-layer flow in the vicinity of the leadingedgeis also analyzedmost conve-
niently in parabolic coordinates.Although the noseradius r,, is the most natural length

scale for the steady flow, the length scale U_/_v is more convenient for analysis of the

unsteady flow. Thus, we introduce new coordinates,

= s½ = s½ (2.7)

where

S- _Jrn

(2.8)

is a Strouhal number based on the airfoil nose radius.

The flow around the body is analyzed in terms of the incompressible vorticity equa-

tion. Utilizing U_ for the velocity scale, U,/_v for the length scale and w-1 for the time

scale, the non-dimensional form of the vorticity equation is

+ - + (2.9)

where _, is the streamfunction, the velocity is given by v = h-l(_,_ei - _e_), where

eg and e_ are unit vectors in the _ and 7=/coordinate directions, respectively, and the

metric coefficient h = (4 2 + _2)½. The vorticity -_ is related to the stream function by

= h-2(_sgg + _,_,_). The small parameter

£6 = VL.d

_-_-2<< I (2.10)

is the reciprocal of the Reynolds number based on the disturbance lengthscale. The flow

satisfies the no-slip boundary conditions on the body surface,

@=@,)=0, on @=,S'½, (2.11)

where terms of higher order in 6 have been neglected. The analysis presented here

considers the small-e limit but with S -- O(1).

Since the Reynolds number is assumed large, viscosity is important only in a thin

boundary layer adjacent to the body surface. To analyze the boundary-layer flow, we set

_/- S½ = e3r/, _ = _, @ = e3_. (2.12)

The incompressible vorticity equation, expressed in terms of the stream function, then
becomes

+ H" - c6 _ H 2 _¢ 0(_, 7/)

LH 2 J _'
(2.13)

where H = (_2 +S)½. This equation is exact, except for the approximation that h = H in

the boundary layer. Careful consideration of the asymptotic structure, at all stages of the

evolution of the disturbance, shows that the correction term O(e3rlH -2) never becomes



significant and henceit is dropped throughout this presentation. At large valuesof r/,

the boundary-layer flow matches to the inviscid slip velocity,

H-t_, _ Us(¢,t), as 7/_ c_. (2.14)

For O(1) values of _, the terms on the right side of (2.13) can be neglected, leading

to the unsteady boundary-layer equation. The unsteady component of the flow, a small

perturbation to the mean flow, then satisfies the linearized unsteady boundary layer

equation (LUBLE). The LUBLE region is considered in the following section. However,

the solution of the LUBLE contains components whose wavelen_hs progressively shorten

with distance downstream. When ( = O(e-1), terms on the right hand side of (2.13)

become significant and the correct asymptotic approximation to (2.13) has the triple-

deck structure. The structure of the developing boundary layer is summarized in figure

2.2. The asymptotic matching of the two streamwise regions is discussed briefly at the

end of §2.3.

2.3 Unsteady boundary-layer region

In this section, we consider (2.13) for O(1) values of( in the limit e --* 0. Subsequently, the

behavior of this solution at large values of { will be considered, in anticipation of matching

with the Orr-Sommerfeld region that exists farther downstream in the boundary layer.

For ( = O(1) and e --, 0, the terms on the right-hand side of (2.13) can be neglected.

Integrating once with respect to 7/then gives the unsteady boundary-layer equation

H2_,Tt + (_,7q2_,_ - _,mO_) - ¢H-2k_,7 _ - _,nm = -HuP_ (2.15)

where the pressure gradient P_ ((, t) is obtained by matching to the outer (inviscid) flow,

P_(_,t.) = H OUs - U OU_
- "Oi-

(2.16)

In this chapter, we consider uncambered airfoils at zero angle-of-attack to the mean

flow. The slip velocity in the region of the parabolic nose is then given by

Us(_, t) = _ + A u,(_)e -it, (2.1"/)

where the steady contribution follows from (2.5), while the time-dependent perturbation

depends on the particular form of the free-stream disturbance, as discussed in §2.4. Since

the velocity field associated with an acoustic wave is of very small amplitude compared

to the mean-flow speed, we assume that the amplitude scale factor A << 1. The steady

and unsteady components of the flow field can then be analyzed separately. Thus, the

streamfunction within the boundary layer can be written in the corresponding form

= 7) +/x (2.18)

where extraction of the factor _ from the mean-flow component is motivated by the form

of (2.17). The function ¢({, r/) describing the steady boundary-layer flow satisfies

¢,m_ + ¢,,7¢ + _(¢_¢_ - ¢,¢_) - SH-2(¢,_ _ - 1) = 0, (2.19)



5r
_> (iii) - --

. - - - (ii)
Outer edge of boundary .-- -i" _ .................

layer .-"" .-i-'--- (i) q = S ll2
s

s :

!_....._i Orr-Sommerfeid Regime
LUBLE :

:Overlap :
Regime :

: Region :

l<<_c<<e -a
q=O

Figure 2.2: A schematic illustration of the boundary layer structure for a body with a

parabolic leading-edge in a symmetric mean flow. The three decks in the Orr-Sommerfeld

region are (i) the viscous wall layer; (ii) the main inviscid layer; and (iii) the outer

irrotational layer.
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with boundary conditions ¢ = ¢_ = 0 at 7/ = 0 and ¢_ ---, 1 as 7? ----, oc. It may be

observed that written in this form the steady equation involves S and hence it appears

that the steady flow is dependent on o.,, the frequency of the unsteady perturbation.

However, w also enters the scaling of the streamwise coordinate _. Re-writing (2.191 in

terms of 4 = S-_,

¢= + ¢,,¢ + 4(¢,.¢_ - ¢,¢,_) - (1+ (_)-_(¢ 2 _ t) = 0. (2.20)

it is seen that the steady flow is indeed independent of w.

The time-dependent contribution to the boundary-layer flow satisfies the lineaxized

unsteady boundary layer equation (LUBLE),

_2_S ' )9r(_P) = Cram + (¢ + _¢_)¢_7 + ill2 - _¢7_ + _/--5 (P7 ¢7

dp= ( S) _ Ou,d_ iH - _ u, H O_ '

with boundary conditions

+ _(¢.7¢_ - ¢7¢7_)

(2.21)

¢=¢7=0 at 7/=0 and g'7---*Hu, as rI---,oo. (2.22)

These equations must be solved numerically; the methods used are described in §2.5.

However, as discussed in §2.1, we axe primarily interested in the component of the un-

steady field that, in the large-_ limit, matches onto the Tollmien-Schlichting wave so-

lution of the Orr-Sommerfeld equation. In the following two subsections, we develop

large-_ asymptotic solutions for the steady and unsteady components of the flow. For

convenience, in the rest of this section we restrict attention to the upper surface of the

body (ie _ > 0). Corresponding results for _¢< 0 can be obtained by inspection.

2.3.1 Steady Boundary Layer Equation

In order to analyze the laxge-_ behavior of the unsteady flow, the asymptotic form of the

steady flow is required. The expansion for the steady flow is most naturally developed in

terms of the streamwise coordinate scaled on the body nose radius, 4, as defined in (2.4).

Far downstream of the nose (4 >> 1), the pressure gradient for the steady flow past a

parabola decays to zero and hence the mean flow approaches the flat-plate solution. The

asymptotic form of the solution is given by Van Dyke (1964b),

A C ln42 1
¢(,_,r/) ,_, F(r/) + t t(r/)--_- + (BtGI(r/) + G2(q))_,

(2.23)

where F(r/) is the Blasius function, Gl(q) = 71F'(rl) - F(rl), AI and B1 are as yet unde-

termined numerical constants, and G2(q) satisfies

_111 II2 +FG2+2F'G'2-F"G2= F'2 I+2A,FF", G2(01 = C;(0)= G_(0)=0. (2.24 /

11



The value of A L is fixed by the physical requirement of exponential decay of vorticity at

the outer edge of the boundary layer. Hence G2(r/) must decay exponentially for large r/,

which gives A_ = 0.60115. The value of BI cannot be determined by the large-_ analysis

since _-2Gl(r/) is an eigensolution of the perturbation equation. The next term in the

expansion is O(_-_), c_ _ 3.774, the fractional power arising as the next eigensolution

of an infinite sequence (Libby & Fox, 1963). It appears that B_, together with the set

of similar constants appearing in higher-order terms, is dependent on conditions close to

the nose of the body and hence can be determined only by numerical integration from

= 0. This we discuss in §2.5. The next four ignored terms in the expa,lsion are of order

_-3.r74, _-4 in 2_, _-4 ln_ and _-4. As we will demonstrate in due course, the fact that

these terms are of similar magnitude until _ is extremely large poses certain problems in

the numerical treatment of the problem.

In developing the solution to the LUBLE, the limiting behavior of the steady flow

close to the surface is required. This is found to be

¢ U_r/2 (I+A ln_2 1) r/31 U_2r/50(r/2__3.z74, r/5__22 -V- + 6 5! + ln ), (2.25)

where U_ - F"(O) = 0.4696.

2.3.2 Linearized Unsteady Boundary Layer Equation

We now consider the evolution of the unsteady perturbation to the mean flow, which is

governed by (2.21). Far downstream (_ >> 1), the unsteady component of the stream-

function consists of a particular solution, ¢,,, determined entirely by the local conditions

far downstream, together with a set of asymptotic eigensolutions,

!/.,(r/, _; S) = ¢p(r/, _; S) + _ C_(S)_bi(r/, _; S). (2.26)
i

The particular solution is a generalization of the classical Stokes layer solution, driven by

the local value of the unsteady pressure gradient (2.21), see Lighthill (1954) for details.

The eigensolutions ¢i depend on the geometry of the body far downstream, but are

independent of the local free-stream disturbance. These eigensolutions are generalized

forms of the eigenfunctions found by Lam & Rott (1960) for the flat-plate boundary

layer, taking account of the non-Blasius mean flow. The coefficients Ci multiplying the

asymptotic eigenfunctions are determined entirely by conditions close to the leading edge

(_ = O(1)). One of these eigensolutions, which we label _b_, matches on to the Tollmien-

Schlichting wave in the Orr-Sommerfeld region farther downstream, where _ = O(e-Y).

Thus, it is only through the coefficient C1 that the unsteady disturbances in the free

stream influence the amplitude of the Tollmien-Schlichting wave.

Our primary interest is in the relationship between the free-stream disturbances and

the amplitude of the Tollmien-Schlichting wave. Thus, we focus on the asymptotic eigen-

solutions of the LUBLE. Guided by the results for the fiat-plate case (Goldstein, 1983),

we anticipate the development of a two-layer structure for _ >> 1, consisting of a main

layer where 7/= O(1) and a new inner layer of width O(_-l).

Inner layer

Introducing an inner variable m = _q, the homogeneous form of the LUBLE then becomes

12



U_m r2,1, - me,,,,,,) + 0
_b_m,,, + i(1 + )_b_ + 2( 3 _ ._,,,

_"-_ U_ "7(_/S_)(rngA._ - g2e) - -_(rn_b,.e - 2_be) 24(3 (rn_,._ - 4_,e)

(2.27)

where it follows from (2.23) that 7(_) = 1 + 2AI ln_/_ 2 + BL/_ 2+ O(_-3774). The regular

perturbation solution to (2.28), for large (., leads to solutions related to the particular

solution _bp. Thus, the asymptotic eigensolutions must arise as a balance between the

highest m derivative (i.e. wall-normal derivative) and the terms involving _ derivatives.

It is then clear that the eigensolution must contain a factor exp(T(_)) and it is for this

reason that the higher order terms containing derivatives with respect to (. have been

retained in (2.28).

Writing ¢ = exp(T((.))f((.,M), where a new boundary layer variable M = m(1 +

S/2(. 2) has been introduced to simplify the solution, f((., M) satisfies

U;F((./v/S) dr t_..nfMMM+ifM (.2 d(.(MfM-f)= (.3 +0( ),

where F(_) = 7(_) - 3/2_ 2 and

(2.28)

R = U_(.(MfMe -- fe) + -_L," JMM -- 2MfM)

U_ 2M 3 dT SM dT
(MfM- 2f). (2.29)2(.5

If dT/d( is set equal to -A(.2/U_F, where A is an eigenvalue to be determined sub-

sequently, solution to the leading order equation immediately follows using separation of

variables,

¢ "-' D(.2"eT(_)_o(M) + (.-aq(M) +...]. (2.30)

Here D is an arbitrary constant whose value is chosen for convenience later, and r is a

constant that is determined at a later stage of the analysis. The exponent T((.) is then

determined by integrating the large-(, expansion of (.2/F((./S{). This exponent can be

separated into two components, T = T (°) + T 0), where

A(.3 { 3 - AtSIn(_/S), + (2At + 3/2 - Bt)-_2 }T(°I((.)= (2.31)

is large for large (. and hence must be included in the leading-order form of the eigenso-

lution, while the terms in T0)((.) are small for (. >> 1 and thus could be considered as

algebraic correction terms rather than as exponential amplitude functions. The first few
terms in T (t) are of the form

T(1)((.) = b_St.ssr 1 b2S21n2((.2/S) baSS_o.77"-_-7+ (. + b'3S21n((2/S) + + 0 ((.-2.635) (2.32)(.

13



where the coefficients b, are determined by the higher order terms of (2.25).

The leading-order mode-shape function p(M) satisfies the differential equation

/:(p) = 0, (2.33)

where the operator/2 is defined by

F.(p) = p'" + ip' + A(hfp'- p),

with p' - PM, etc. The boundary conditions at the wall are

(2.34)

p(0) = p'(0)=0, (2.35)

and matching to the main layer requires that iv" ---* 0 as M _ ¢x_ so as to avoid expo-

nential growth of the inner solution. The differential operator and boundary conditions

are homogeneous and thus form an eigenvalue problem for A. In fact, the leading-order

equation is identical to the flat-plate equation, the effect of curvature having been ab-

sorbed into the boundary-layer variable M. Thus p(M) and the value of the eigenvalue
1. _.

A = e-Z'_p-2 can be obtained immediately from Goldstein (1983) as

J." D! --

_' = e4'_p 2M - p, (2.36)p( M) = U° f°U ( M - _l)Ai(,_)d/_l
f0_ Ai(_)dh:/ '

where p is a solution of Ai'(-p) = 0. An infinite set of such roots (pi > 0) exists, with

corresponding mode-shape functions pi(M).

The value of T for each eigensolution, ¢, is then determined by a solvability condition

on the O(_ -3) correction to the mode shape, q(M). This function satisfies

where

£:(q) = 7£(p), (2.37)

n(p) -- 2TUg(Mp'-p)+U---_(M2p"-2Mp ') U°M3 SAM. ,_. (Mp'-4p)+--_o (M p -2p). (2.38)

The boundary conditions at the wall and the matching condition to the main layer are

the same as for p(M). Integrating by parts and using the boundary/matching conditions

on p and q gives the relation

(2.39)fo=p" f.(q)dM = fo°°q"£.(p)dM,

the right hand side vanishing by virtue of (2.33). Hence T is determined by the condition

fo°°p"TC(p)dM = O. (2.40)

This gives 7- = 7 (°) + $7 0), where T (°} is the flat-plate value and

7(1) = e-¼ i'_ f_ Mp"(Mp' - 2p)dM
4U[_2p'_ f_" p"'(Atp'- p)dM (2.41)
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It should be noted that this result does not involve linearization in S, but is valid for

S = O(1). By suitable change of variables, this can be re-cast into the form

r(0 =
i J2 - 2Ai2(-P)

4U[_2p

8p 3 - 27.

40U_2p 3 1

Jl

(2.42)

where expressions for the integrals J,, = f_(z + p)"[Ai(z)]2dz are given in Appendix

A. Similarly, the expression for T (°) (Ooldstein, 1983) can be expressed in terms of p,

avoiding the need for numerical evaluation of the integrals,

=_( 1J4_ 889- 16p 3r(0) 1 -3 + = (2.43)
4 12 Jl ] 1260

The value of ri for each eigensolution is obtained by substituting pi into (2.42) and (2.43).

Finally, we set the value of the arbitrary constant in (2.30) to D = 2 -_ so that, in the

limit S ---, 0, our expression for the asymptotic eigenfunction reduces to the result given

by Goldstein (1983).

Main layer

In the main part of the boundary layer, where 7/ = O(1), the unsteady motion is es-

sentially an inviscid response, driven by the displacement thickness of the inner layer.

Setting %b= (_2/2)" exp(T(_))g(_, 7/) and substituting into the homogeneous form of the

LUBLE, g((, 7/) is found to satisfy

Crmg - ¢,_g,7 = e¼i'r p_U_ (_- W (¢rmg_ - ¢'7g'_) ) + • (2.44)

Solving, and matching to the inner layer then gives

;3itr :3,'-I )

e4 p_ U 6
g = ¢ F'(r/) + --; + O(_ -2) .

q
(2.45)

Large-_ ¢ matching

In Appendix B it is shown that it is the first asymptotic eigensolution which matches

on to the Tollmien-Schlichting wave that becomes unstable farther downstream. In §2.5,

numerical solutions of the LUBLE are compared to the first asymptotic eigenfunction,

in order to extract the receptivity coefficient C1. The two most convenient points of

comparison are the wall shear and the displacement thickness of the boundary layer.

The wall shear is determined by the solution in the inner layer. However, for comparison

with numerical solutions, it is most convenient to express the wall shear in terms of a

derivative with respect to 7/. Rewriting (2.30) in terms of 7/and evaluating _,1_ at q = 0,

the contribution to the wall shear due to the asymptotic eigensolution ¢_ is

%b_'(r/= 0) = eT,(_)_2 U_p i e4 (1 + O(_-2)).
f0_ Ai(z - pi) dz

(2.46)
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Taking the first root of Ai'(-p) = 0, namely Pt = 1.01879, and evaluating the numerical

coefficient, the wall shear for the first asymptotic eigensolution is

Ot(q = O) = O.4356(l + i)eT_°_(_) (_) U+leT_ll(',) (l + O(_-2)), (2.47)

where T[°)(()is given by (2.31), T_I)(_) is a small correction term given by (2.32) and

rL = -0.69213 - S 1.9878 i. (2.48)

The contribution to the displacement thickness due to an asymptotic eigensolution is

obtained from the solution in the main layer,

'' )e4'" p_ U[_
¢ +°(¢ -2) , (2.49)

where the result for the first asymptotic eigensolution _pt follows by substituting p_ and

7x.

Since T cx c3 at leading order, the wavelengths of the asymptotic eigenfunctions

decrease with distance downstream, increasing the importance of longitudinal derivatives.

The LUBLE (2.15) is obtained from (2.13) by neglecting higher-order derivatives with

respect to _. Thus, although the asymptotic eigensolutions derived in this section are

uniformly valid solutions of the LUBLE as _ ---. oo, they are not uniformly valid solutions

of the full linearized Navier-Stokes equation.

Terms on the right side of (2.13), which were neglected in the LUBLE, become sig-

nificant when _ = O(e-x). An irrotational layer outside the mean boundary layer, driven

by the oscillating displacement thickness of the eigensolutions, must then be considered,

and the associated pressure gradient appears in the leading-order equations governing

the inner layer. This coupled viscous-inviscid interaction has the triple-deck structure,

corresponding to the small-e asymptotic approximation to the Orr-Sommerfeld equation

in the vicinity of the lower branch. The development of the boundary layer structure

was summarized in figure 2.2. A complete treatment of the linear development of the

instability would require an asymptotic solution for the Tollmien-Schlichting wave of the

Orr-Sommerfeld equation, taking account of the surface curvature and non-zero pressure

gradient. This Tollmien-Schlichting wave solution could then be matched to the first

Lam-Rott asymptotic eigensolution of the LUBLE, as was done by Goldstein (1983) for

the flat-plate case. However, for O(1) values of S, with e and & of the same order, the

Orr-Sommerfeld region is influenced by the full airfoil thickness distribution, necessitat-

ing a general development that does not seem justified in the present context. For flow

around a semi-infinite parabolic body, we verify in Appendix B that the eigensolutions

obtained here do indeed match on to the Tollmien-Schlichting wave.

In this chapter we restrict ourselves to examining only the receptivity process, that

is, the determination of the coefficient Cl of the first eigensolution, which matches to

the unstable Tollmien-Schlichting mode. The remainder of the chapter is concerned

with obtaining the Receptivity Coefficient for different free-stream disturbances. This is

accomplished by comparing numerical solutions with the asymptotic solutions obtained
above.

16



2.4 Free-stream Disturbances

In this section we consider the inviscid flow field produced by the interaction of a free-

stream acoustic wave with the airfoil. The acoustic wave is assumed to be incident on

the airfoil at an angle 0 with respect to the airfoil chord, as illustrated in figure 2.1. The

slip velocity and surface pressure fields generated by this interaction drive the unsteady

motion in the boundary layer, leading to the generation of a Tollmien-Schlichting wave.

For a low Mach number flow, the acoustic wavelength 2_c/_ is long compared to

the hydrodynamic length scale U_/w. Thus, outside the boundary layer, the unsteady

flow in the vicinity of the leading edge is incompressible and irrotational. Potential flow

theory then shows that this local flow has the form

u,(_) = _,(0) + _,(0)_. (2.50)

Here _/H and 1/H correspond to purely symmetric and anti-symmetric flow about the

leading edge, respectively. The coefficients _s and _. multiplying these eigenfunctions

are independent of the nose geometry, but depend on the free-stream disturbance, being

determined by global features of the unsteady flow. Substituting (2.50) into (2.21) gives

+ _a iY 2 + • (2.51)

Hence, writing ¢ = roses + _aCa, it follows that the Receptivity Coefficient for the upper

surface is given by

C,(S) = ,_,(0) Cs(S) + _a(O) Ca(S), (2.52)

where Cs and Ca are extracted from the solutions of

( ")/

=

_2_ S (2.53)

9v(¢a) =iH 2 + H-------5-

respectively. The corresponding Receptivity Coefficient for the lower surface is obtained

by replacing 0 by -&

The remainder of this section is concerned with calculating as(0) and xa(0), the

coefficients of symmetric and anti-symmetric flow about the nose. These coefficients

are found by asymptotic matching of the local solution (2.50) for the unsteady slip

velocity with an appropriate global solution. The nature of this solution depends upon

the magnitude of the reduced acoustic frequency k = wb/c, where c is the speed of

sound in the undisturbed medium. Calculation of the velocity field about a thin wing,

including compressibility effects, is described in Sedov (1965: Chapter 2, pp 87-107).

In general no simple expression for the slip velocity can be obtained. Here we consider

two cases that do lead to relatively simple results. The first case is that of extremely

low Mach numbers, such that the acoustic wavelength is long not only compared to the

hydrodynamic length scale, U_/w, but also compared to the airfoil chord, i.e., k << 1.

In this situation the unsteady interaction of the acoustic wave with the airfoil can be

analyzed using the classical unsteady airfoil theory for incompressible flow. The second
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caseis that of acousticwavelengthslong comparedto U_/w but short compared to the

airfoil chord, i.e., k >> 1. In this case acoustic diffraction theory can be used to analyze
the interaction.

First consider the case k << 1, where incompressible, unsteady airfoil theory applies

(see for example, Garrick, 1957). Since the airfoil semi-chord is the relevant length scale

for the unsteady aerodynamic interaction, the airfoil thickness can be ignored (except in

the region of the leading-edge, where (2.50) is applicable). Thus, the airfoil reduces to

a zero-thickness flat plate, and the solution consists of two potential flow components, a

non-circulatory component, plus a component due to the vorticity shed from the sharp

trailing edge. The shed vorticity is convected downstream by the mean flow and hence

takes the form 7(x, t) = "_ei(_-0 where a = oJb/U_ is the aerodynamic reduced frequency.

The non-dimensional complex potential for this unsteady flow is given by

e"(?)w=--_ e-i°_ "+
i_ 'e-it _ { (-_o '_

2rr f2 e'°*°ln\(--l_0/ dx°' (2.54)

where ((z) = z- 1 + _/z(z - 2) and (0 = ((x0). Applying the unsteady Kutta condition

then fixes the strength of the shed vorticity,

27r sin 0

= ( _-_--_ ½ (2.55)
f2°° e iaz° dx0

\zo-2]

For matching with the local solution (2.50), the small-x expansion of the velocity on the

airfoil surface is required. We find

(+sin/9 1 }u(x,O:l=) .., _ -72 ( + J(a))x-] +cos/9+O(x]) e -it
as x -+ o, (2.56)

where J(a) represents the effect of the shed vorticity,

*0 / = O , as a --_ ¢x3. (2.57)

f2°° eia*° (z-'__2) _ dxo

Thus for the high reduced aerodynamic frequencies of interest in the present study, the

effect of shed vorticity on the unsteady flow in the vicinity of the leading edge is smaller

than the contribution due to the non-circulatory component, by a factor of O(1/a).

Matching with the large sc limit of the local leading-edge solution (2.50) then gives

to, = cos/9, tea = a] sin/9. (2.58)

The symmetric and anti-symmetric components of the local flow past the leading edge

are seen to be in phase, owing to the incompressible nature of the unsteady interaction.

Except for values of/9 near 0 and rr, the slip velocity near the leading edge is dominated

by the anti-symmetric component of (2.50), which reaches a peak value (b/r,) 1/2 sin/9 at

the nose of the airfoil. Note also that, in this limit, the flow about the nose (and hence

the Receptivity Coefficient) is the same for an airfoil with sharp trailing edge as for a

body with a rounded trailing edge.
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Next consider the opposite limiting case,k >> 1. The acoustic wavelength is then

short compared to the airfoil chord, and the interaction of the acoustic wave with the

leading edge can be analyzed by taking the airfoil chord to be semi-infinite. As in the

first case, on the scale of the acoustic wavelength, the airfoil appears at leading order as

a zero-thickness plate and the problem reduces to the classical Sommerfeld diffraction

problem (Noble, !958). The velocity potential for the unsteady flow is given by

¢(x,y) = -sin _Srr(2k) ½ a-_

which leads to a slip velocity

1,_z2e 4 _i
u(x, O:l:) = cos 8eikC°_°(1 :t=erfcP) -+-sin _v .-:---:-:_x 2

where ¢I, = e-¼i'_(2kx)½ sin _8. Hence, as x ---. 0,

e -it '

(2.59)

e-it , (2.60)

,.,t _ii_. }
u(x,O=l=).._ 4-sin_8 z2e 4," x-½+cosS+O(x½) e -it. (2.61)

Matching the slip velocity on the upper surface to the local solution in the vicinity of the

leading edge, then gives

2e-¼i_-

_, = cos0, _" (TrM,)½ sin(½0), (2.62)

where M_ = U_/c is the Mach number of the mean flow, which has been assumed small.

The anti-symmetric component of the local flow past the leading edge lags the incident

field (and the symmetric component) by a phase angle rr/4, owing to the influence of

compressibility. The anti-symmetric component again dominates the symmetric compo-

nent, except for values of 8 near zero. However, the dependence on the incidence angle

is fundamentally different than for the case of small k. The anti-symmetric component of

the slip velocity has a peak value 2ei'q4(c/roarn)½ sin ½8 at the nose, a result that depends

only on the compressibility of the fluid and not on the airfoil semi-chord b.

In the next section, the symmetric and anti-symmetric components, C,(S) and Ca(S),

of the Receptivity Coefficient are calculated, and sample results are presented illustrating

the dependence of the Receptivity Coefficient Ct(S) on the incidence angle 8 of the
acoustic wave in the limits k << 1 and k >> 1.

2.5 Numerical Results

In §2.3, we utilized asymptotic methods to obtain the non-Blasius generalizations of the

Lam-Rott asymptotic eigenfunctions, the first of which is the precursor of the Tollmien-

Schlichting wave. The asymptotic analysis determines the form of these eigenfunctions,

but not their coefficients Ci. It appears that the Receptivity Coefficient Ct for a particular

free-stream disturbance can be determined only by numerically solving the LUBLE over

the full range of _ and examining the behavior for large _.
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Figure 2.3: Plot of Q(_) = (ln_)-'_([¢" - F"]/F"),_=o against (ln_) -'. Comparison

with the large _ asymptotic form, (2.23) yields B1 -_ 2.08.

In contrast to the flat-plate studies of previous authors, where the mean flow is known

throughout, in the present study the mean flow, governed by (2.19), must be computed

as well as the unsteady disturbance, governed by (2.21). The initial conditions at _ = 0,

which correspond to the steady Hiemenz flow and its quasi-steady linear perturbation,

take the form of ODEs in 77, which were solved using a fourth-order Runge-Kutta method.

The solution was then obtained by marching downstream using a Keller Box scheme

(Keller & Cebeci, 1970) for both the mean flow, given by a nonlinear PDE (2.19), and the

linearized disturbance equations for symmetric and anti-symmetric components, (2.53).

From the asymptotic form of the eigensolutions, it is clear that the growth or decay of the

disturbance is very sensitive to the mean flow. For this reason, the departure of the mean

flow away from the Blasius solution was calculated rather than the mean flow directly.

The value of the unknown coefficient B1 in (2.23) can then be extracted from the wall

shear. From the asymptotic expansion for the mean flow close to the wall (2.25),

~ A, + + 774(ln
77=0

(2.63)

From figure 2.3, where the above quantity is plotted for real _, comparison of the

numerical result with this asymptotic form gives B1 _ 2.08. This is somewhat higher

than the value suggested by Van Dyke (1964b), who estimated B1 _ 1.6 - 1.9 based on
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coarse numerical results and on numerical patching of the asymptotic series valid near

the nose to the series valid far downstream. The computations undertaken in the present

work extend to much higher values of _, allowing much more accurate extrapolation to fax

BI. In addition, the magnitude of the next term in the asymptotic series can be estimated

from figure 2.3. By considering the magnitude of the correction term at _ = 30, the

coefficient of the next term in expansion (2.63) is estimated to be approximately 10,

which probably explains the under-estimation of Van Dyke.

We turn now to the solution for the disturbance. Since the real part of T(_) is

negative, the first Lam-Rott eigensolution becomes exponentially small far downstream,

compared to the Stokes wave. Moreover, since the eigenvalues are inversely ordered, the

first eigensolution is also exponentially small compared to all the other eigensolutions.

Thus, it is very difficult to extract the coefficient of the eigensolution by direct numerical

solution of the LUBLE. A way round this difficulty is to move the integration off the real

line into the complex _-plane in such a way that the eigensolution will grow exponentially

(Goldstein et al, 1983). This will occur if the streamwise variable _ is chosen such that

-57r/12 < arg _ < -re�12. The inverse ordering of the eigensolutions is also rectified

by this process, the first eigenfunction becoming exponentially dominant for I_1 >> 1.

'Peeling off' the exponentially growing part of the first eigensolution, that is solving for

f = Ce -T_°_ rather than ¢, allows the numerical solution to be continued much further

downstream while retaining accuracy (Heinrich & Kerschen, 1989).

There are essentially two ways of obtaining the Receptivity Coefficient C1, one based

on the wall shear and the other based on the oscillating boundary-layer thickness. The

latter method was used by Goldstein et al (1983) and Heinrich & Kerschen (1989) for the

flat-plate analysis. In the present work the two methods gave virtually identical results,

small differences only arising due to the difference in large-_ extrapolation procedure in

the two cases. Using the wall shear as the basis for comparison, we define

: f um( : 0)
, (2.64)

where f_l = 0.4356(1 + i) (_2/2)n+1. Since the argument of _ was chosen so that the first

eigensolution dominates other components of the solution, f ,-_ Cl¢le-_ °)(0, and hence

C"_CI[ l+blSl'ss7 1 _ ]_0.774 +. b2s2ln2(_;/S) W b3S 2ln(_2/S)_ + b4$2 +... , (2.65)

as _ ---. ¢x_. Thus in principle, C1 can be extrapolated by plotting the numerically obtained

value of C(S, _) against _-0.7T4. However, this method has serious limitations as far as

obtaining highly accurate estimates for C1. Until _ is extremely large, the sizes of the next

three terms in the expansion are very close to that of the leading order correction, with

the relative magnitudes depending also on S. In addition, the analysis of the base flow

suggests that b_ is quite large, so for larger values of S the exponential term cannot be

expanded out until _ is very large. Due to these difficulties, the Receptivity Coefficient

for non-zero S cannot be calculated to the same accuracy as for the flat plate, the

inaccuracy" increasing as S increases. In our calculations, we usually chose arg _ = -_-/4

which ensures that the rate of growth of the first Lam-Rott eigensolution is maximized.

In addition, for this angle any error in the numerically determined value of B_ enters

only the phase of C_ and not the magnitude. For some values of S, the solution for
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arg _ -=-_'/3 wasalsoobtainedand the extrapolated valueof Ct was virtually identical,

further verifying the numerical work as well as the functional form of the eigensolution.

The solution was integrated up to [_] = 15, except for the larger values of S where it

was continued up to [_[ = 20 in an attempt to improve the extrapolation. Computation

to larger values of _ becomes progressively more expensive due to the presence of the

viscous wall layer, the relative thickness of which decreases downstream.

In figure 2.4, the numerically obtained value of the Receptivity Coefficient for acoustic

waves propagating parallel to the airfoil chord, Cs, is plotted for several values of S. In

figure 2.4a it is seen that the magnitude of the Receptivity Coefficient increases slightly

for very small S, but decreases rapidly as the nose radius increases further. For S = 0.3,

the receptivity is reduced to approximately 15% of that for a fiat plate. The decay

of [Cs[ appears to be exponential in S, though this has not been verified analytically.

For S < 0.1, the results for [Cs[ are estimated as accurate to 2%, while the accuracy

for S = 0.3 is only about 10%, due to the difficulties discussed above. However, the

large relative uncertainty for the latter case is of little practical importance, since the

receptivity is so low by this stage. The small increase in the parallel-wave receptivity seen

for very small values of S is in agreement with small-S asymptotic theory which will be

reported elsewhere (Hammerton & Kerschen 1996a). Figure 2.4b shows the change in the

phase of the Receptivity Coefficient as S increases. The increase in arg(C,) corresponds

to a lag in phase of the instability wave.

As we have already noted, computation must be carried out to large values of _ for

accurate determination of the Receptivity Coefficient, since the eigensolution tends to

its asymptotic limit slowly. However, the ratio of Receptivity Coefficients for different

free-stream disturbances can be evaluated accurately at only moderately large values

of _, since the same asymptotic behavior of the eigensolution arises whatever the form

of the free-stream disturbance. In the present chapter, we consider only the effect of

acoustic waves at oblique angles. In figure 2.5, the receptivity due to the symmetric

and anti-symmetric components of the free-stream disturbance is compared for different

nose radii. We define A = Ca�C,, where Ca is the Receptivity Coefficient related to the

anti-symmetric component of (2.50). In figure 2.5a, ]A] is plotted as a function of S.

We see that [Ca[ is larger than [Cs] by approximately a factor of six in the flat-plate

limit S _ 0, where the anti-symmetric component of the slip velocity has a square-root

singularity at the leading edge. The value of [A[ decreases rapidly as a finite nose radius is

introduced, relieving the singularity at the leading edge. Thus, the behavior of Ca for very

small S is quite different from that of Cs, where a small rise in magnitude was seen. The

sharp change in A for small S suggests the appearance of singular behavior in the small-S

expansion, in contrast to the behavior seen in figure 2.4 for the parallel-wave case. Beyond

S = 0.05 the decline in [A[ becomes more gradual, the value of ]A] remaining above 2.5

right out to S = 0.3. For all values of S examined, the anti-symmetric component of the

slip velocity was found to be more effective than the symmetric component in generating

a Tollmien-Schlichting wave.

The phase difference between the Ca and Cs is plotted in figure 2.5b. It is interesting

to note that as S ---* 0, arg A _ rr/4. For reasons given above, A can be calculated

very accurately, and this result is true to an accuracy better than 0.1%. However, the

fundamental reason for this result is not clear. Arg(A) initially drops rapidly as a finite

nose radius is introduced, then remains roughly constant from S = 0.05 out to S = 0.3.

The positive values of arg(A) correspond to a phase lag for the contribution from the
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Figure 2.6: Variation of ]Cll with acoustic incidence angle 8, for k << 1 and non-

dimensional airfoil chord length a = 10. The solid line is for S = 0.0, the dotted
line S = 0.2.

anti-symmetric component of slip velocity, relative to the contribution from the sym-

metric component. This phase lag may be related to the fact that the anti-symmetric

component of the slip velocity takes on its largest values near the nose, while the sym-

metric component takes on its largest value farther downstream. The concentration of

the anti-symmetric component near the leading edge is particularly pronounced in the

limit S ---* 0, where arg(A) takes on its largest value, the slip velocity being singular at

-- 0 in this case.

The variation of the total Receptivity Coefficient C_ with acoustic wave incidence

angle is illustrated for the case k << 1 in figure 2.6. A representative aerodynamic

reduced frequency, a = 10, has been chosen, and results are plotted for two nose radii,

S = 0 and 0.2. The receptivity for the flat-plate case (S = 0) is dominated by the

contribution from the anti-symmetric component, causing the shape of the plot for IC_]

to be quite close to sin 8, except in the vicinity of 8 = 0° and 180 ° where the level is

determined by the symmetric component. The case a = 10, S = 0.2 corresponds to a

typical airfoil design. The overall receptivity level for S = 0.2 is smaller than for the flat

plate, due to decreases in both ]Csl and ICal. Since the finite nose radius causes a larger

decrease in Cs than Ca, the influence of the symmetric component of the free-stream

disturbance is somewhat larger in this case. The peak receptivity for S = 0.2 is roughly

one-fifth that for the flat-plate.

The variation of the total Receptivity Coefficient C1 with incidence angle is illustrated
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Figure 2.7: Variation of IC,I with acoustic incidence angle 0, for k >> 1 and M = 0.1,

and the same values of S plotted in figure 2.6.

for the case k >> 1 in figure 2.7. A representative Mach number M_ = 0.1, has been

chosen. The dependence of the receptivity level on acoustic wave incidence angle is

very different from the case k << 1 illustrated in figure 2.6. The flat-plate result is

again dominated by the contribution from the anti-symmetric component of the free-

stream disturbance, but the plot-shape resembles sin ½O, except near O = 0° where the

symmetric component determines the level. As before, for S = 0.2 the overall receptivity

level is decreased, but the relative contribution from the symmetric component of the

disturbance is somewhat larger.

2.6 Conclusion

Boundary layer transition is influenced both by the stability properties of the boundary

layer, and by the characteristics of the free-stream disturbances and the receptivity of

the boundary layer to these disturbances. The present work has examined the influence

on leading-edge receptivity of the nose radius of an uncambered airfoil symmetric mean

flow, in the low Mach number limit.

Leading-edge receptivity involves a gradual evolution of the boundary-layer distur-

bances with downstream distance, eventually leading to a growing Tollmien-Schlichting

wave. The Receptivity Coefficient is essentially the amplitude of the asymptotic eigen-

function which is the precursor of the Tollmien-Schlichting wave. It is the Receptivity
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Coefficientwhich containsall the relevantinformation about the free-streamdisturbance.
The decay rate of the asymptotic eigenfunction, like that of the Tollmien-Schlichting
wave,is influencedonly by the meanflow. Oneof the most important properties is the
pressuregradient parameter,/3. For symmetric flow past a parabola,

S

- _ + S' (2.66)

where S is the Strouhal number, S = wr,,/U_. Thus, the pressure gradient is everywhere

favorable, decreasing monotonically from its maximum value at the stagnation point and

approaching zero far downstream. Well downstream of the nose, the favorable pressure

gradient has a stabilizing influence on the boundary layer, leading to increased damping

of the Tollmien-Sehliehting waves and of the precursor disturbances. In addition, the

stronger pressure gradient close to the nose has an effect on the Receptivity Coefficient.

As the nose radius of the body is increased (i.e. S increased), the strongly favorable pres-

sure gradient near the nose extends over a larger number of disturbance wavelengths, and

this additional stabilizing influence is likely to result in a decrease in the Receptivity Coef-

ficient. Numerical calculations show that the symmetric component C, of the Receptivity

Coefficient decreases rapidly with increasing S, dropping to approximately 12% of the

flat-plate value when S = 0.3. The anti-symmetric component Ca decreases even more

rapidly, dropping to 5% of flat-plate value when S = 0.3. The total Receptivity Coeffi-

cient C1 is much larger for oblique acoustic waves than for parallel acoustic waves, since

the coefficient _a(0) that multiplies the anti-symmetric component Ca is large compared

to the coefficient t¢o(_) that multiplies the anti-symmetric component C,.

While the detailed asymptotic analysis depends on the exact geometry of the leading

edge, the rapid decrease in receptivity with increasing nose radius should also be valid

for other streamlined bodies. However, symmetric mean flows past leading edges less

streamlined often involve regions of adverse as well as favorable pressure gradient close

to the nose. For such bodies, it is possible that an increase in leading edge thickness

could lead to an increase in the Receptivity Coefficient. For an airfoil at an angle of

attack, both favorable and adverse pressure gradients exist in the neighborhood of the

nose. Analysis of the receptivity in this ease will be presented in chapter 3.

Comparing the asymptotic analysis presented here with numerical and experimental

results is difficult. Numerical work by Murdoek (1981) for a parabola in a flow with

a parallel acoustic wave also showed a decrease in receptivity as the nose radius was

increased. The computations of Lin et al. (1992) were for parallel acoustic waves incident

on half-ellipse leading edges connected to a flat plate and for super-ellipse leading edges

(which avoid the discontinuity in curvature), geometries chosen to match the experiments

of Saric et al. (1994). For both these geometries there are regions of adverse pressure

gradient near the leading edge, as well as the possibility of additional localized receptivity

mechanisms (Goldstein, 1985); hence no direct comparisons can be made with the present

results. In addition, the receptivity level 'seen' in experiments and full Navier-Stokes

calculations is a combination of the receptivity process described in the current chapter,

and the stability characteristics farther downstream. For the flat-plate, Goldstein (1983)

provided the asymptotic analysis of the triple-deck region and thus (in theory) could

calculate the disturbance amplitude at the lower branch. Reproducing such an analysis

for a general airfoil surface would provide little additional physical insight concerning

the receptivity process. By restricting attention to the region in which forcing by the
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free-streamdisturbanceoccurs, the processof receptivity is isolatedfrom the instability

phenomena that occur farther downstream. For a global picture of the transition process,

the current analysis provides an upstream boundary condition for linear stability analyses.
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Chapter 3

Low frequency theory for a leading

edge with no aerodynamic loading

3.1 Introduction

The receptivity process through which free-stream disturbances generate instability waves

in boundary layers generally comes about through non-parallel mean flow effects, which

may arise either in the leading-edge region, or in a localized region farther downstream

in the boundary layer (Goldstein & Hultgren 1989; Kerschen 1990).

In Goldstein (1983), an asymptotic analysis was developed for leading-edge recep-

tivity on a semi-infinite zero-thickness plate. Leading-edge receptivity coefficients for

various free-stream disturbances were calculated by Goldstein, Sockol & Sanz (1983) and

Heinrich & Kerschen (1989). However, aerodynamic bodies designed for subsonic flow

generally have finite thickness distributions with a parabolic leading edge. In chapter

2, the influence of the thickness of a body was examined. The situation considered was

a thin, symmetric airfoil of chord 2b at zero angle-of-attack in a uniform flow of speed

U. A plane acoustic wave of frequency w, propagating at an angle /9 with respect to

the airfoil chord, was assumed to be incident on the airfoil as illustrated in figure 3.1.

A high Reynolds number asymptotic analysis (e 6 = vw/U2; e << 1) was formulated for

an incompressible, two-dimensional flow. The nose radius of the leading edge, rn, enters

through a Strouhal number,

= Wrn
U (3.1)

which is the ratio of the nose radius and the hydrodynamic length scale, U/to.

When S = Oil), two streamwise regions enter the analysis, one region where the dis-

tance downstream is O(U/w) and the disturbance is governed by the linearized unsteady

boundary layer equation (LUBLE), and a second region at distances O(c-2U/w) where

the disturbance is governed by the triple-deck structure, corresponding to the asymptotic

form of the Orr-Sommerfeld equation (OSE) in the vicinity of the lower branch. In the

LUBLE region, the inviscid pressure field and slip velocity induced by the free-stream

disturbance drives the unsteady motion in the boundary layer. Far downstream in the

LUBLE region, the solution consists of a generalized Stokes wave, and a set of asymp-

totic eigensolutions. The wavelengths of these eigenfunctions shorten progressively with

distance downstream. Eventually, the self-induced pressure field associated with tile

displacement thickness of each asymptotic eigenfunction becomes significant, and the
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Figure 3.1: An illustration of the physical situation of interest: a thin, symmetric airfoil

of chord 2b is at zero angle-of-attack in a uniform flow of speed U, with a plane acoustic

wave incident at an angle _ with respect to the airfoil chord.
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triple-deck structure replacesthe LUBLE as the correct asymptotic approximation to
the Navier-Stokesequation. It can be shown that the first asymptotic eigenfunction
of the LUBLE matches on to the Tollmien-Schlichting wave solution of this triple-deck

region. Thus, the form of the free-stream disturbance and the geometry close to the nose

influence the amplitude of the Tollmien-Schlichting wave only through the coefficient Cl

of the first asymptotic eigenfunction. Therefore, we call Cl the 'receptivity coefficient'.

The asymptotic analysis far downstream in the LUBLE region determined the form of

the eigenfunctions, but not their coefficients Ci. These coefficients can be found only

through a full solution of the LUBLE, which must be determined by numerical methods.

Theory for S = O(1) was developed in chapter 2, where associated numerical results

were also presented. These results showed that the receptivity associated with a sym-

metric free-stream disturbance increases slightly with S, for small S (figure 2.4a), but

the receptivity associated with a free-stream disturbance that is anti-symmetric about

the leading edge decreases sharply with S (figure 2.5a). In the present chapter, a small-S

asymptotic theory is developed. In this limit, the streamwise development of the bound-

ary layer can be divided into three regimes. In the nose region, where the distance

downstream is O(rn), the unsteady motion in the boundary layer is quasi-steady at lead-

ing order. In the LUBLE region, where the downstream distance is O(U/w), the unsteady

terms enter at leading order in the disturbance equations, but the mean pressure gradi-

ent is small so that the mean boundary layer flow approaches the flat-plate solution. In

the OSE region further still downstream, a triple-deck structure arises as before. In the

small-S asymptotic analysis presented in this chapter, we focus on the nose and LUBLE

regions. The subsequent asymptotic matching to the OSE region follows that discussed

in chapter 2. Our analysis involves two small parameters, S and e. Formally, we take

e _ 0 and then consider the small-S limit, obtaining correction terms of O(S l/_, S). We

require the boundary-layer approximation to be valid in the nose region Xd = O(rn),

which is true if the Reynolds number based on nose radius is large,

Urn S
- ::>>1. (3.2)

V ¢6

This condition is also equivalent to the requirement that the perturbation in the recep-

tivity coefficient due to finite Reynolds number is smaller than that due to geometric

effects. Thus the asymptotic theory is more relevant to the limit w _ 0 rather than

rn ---}0.

In §3.2, the equations governing the mean flow and the time dependent perturbation

in the boundary layer are obtained. The small-S asymptotic structure of the unsteady

flow in the boundary layer, produced by the symmetrie and anti-symmetric components of

the free-stream disturbance, is analyzed in §§3.3 and 3.4 respectively. In §3.5, numerical

solutions of the asymptotic equations are presented, and the resulting asymptotic expres-

sions for the receptivity coefficient are compared with the numerical results of chapter 2.

Finally in §3.6, the results are summarized and brief comparisons with experiments are
made.

3.2 Formulation

Full details of the derivation of the equations governing the boundary layer flow are given

in chapter 2, together with interpretation of the evolution of the unsteady disturbances
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that eventually leadto instability. Here weprovideonly the key equationsnecessaryto
illustrate the small Strouhal number limit which is the subject of the presentchapter.

The streamfunction _ in the boundary layer, non-dimensionalizedby the quantity
i 1

Uu_/03_, is expressed in the form

= _¢ + Ce -_* (3.3)

where the unsteady component ¢ is assumed small compared to the mean ftow component

_¢. We use parabolic coordinates (_, 7/) defined by

=--- +S (3.4)xd + iyd 2 03

where xa, Yd are (dimensional) Cartesian coordinates centered on the airfoil leading edge.

The parabolic coordinate _ along the airfoil surface has been non-dimensionalized by the

square root of the disturbance length U/03. For the parabolic coordinate rI in the normal

direction, the origin has been shifted to the airfoil surface, and the additional factor e3 in

(3.4) corresponds to non-dimensionalized by the quantity (u/U)½. Thus 77 corresponds

to the conventional normal coordinate for the mean boundary layer.

3.2.1 Steady flow

The steady boundary-layer flow is most naturally expressed in terms of a streamwise

variable scaled on the nose radius,

4 = _/S'/2. (3.5)

The function ¢(4, 7/) describing the steady boundary-layer flow then satisfies the differ-

ential equation

1 2 1) 0,¢._ + ¢.,¢ + 4(¢.,¢_ - ¢.¢_) - _---_--_.(¢_- =

with boundary conditions

¢=¢,=0 at r/=0 and ¢7---,1

For large 4, ¢ takes the form (Van Dyke, 1964)

-- ln_ 2 _ 1
¢(_,r/)--_ F(r/)+a,(r/)---_+ 2(r/)_

(3.6)

exponentially as 77---, oo. (3.7)

+ O (_--_-) , "y2 ,_ 3.774, (3.8)

where the order of the next higher order term is discussed below. In this expansion, F(r/)

is the Blasius function, and the functions Gi(77) satisfy homogeneous boundary conditions

--!

G i ---* 0 exponentially as 77---, oc, (3.9)

_2('G2) = F '2 - 1 + 2(F"'G: - F G:),'--' (3._0)

_,(0) = 9',(0)=0,

with governing equations

62(G_) = 0,
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wherewe definethe set of operatorsG_by

g.,(:)- :" + F:"+ -yF':'+ (i- (3.11)

In the first perturbation term of the large-_ expansion we have -Gl = A1GI, where

GI = 7?F'(q) - F(_), (3.12)

which arises as an eigenfunction of g_ for 7 = 2. The coefficient A1 remains undetermined

at this order. However, the equation for G2(r/) then takes the form

_2(G2) = F n- 1 + 2A,FF". (3.13)

Since the Blasius function F is the solution to the adjoint of g2, the value of Al is fixed

by the solvability condition for G2(r/) which leads to

_o¢_ F(F n - 1 + 2AtFF")d71 = O, (3.14)

and gives A1 = 0.60115.

The equation for G_(7/) involves the same operator G_ and hence contains the same

eigenfunction. Thus, G2 = B1G1 + G2, where G2(r/) satisfies (3.13), with boundary

conditions (3.9) and G_(0) = 0. Since _-2G_ is an eigensolution of the boundary-layer

perturbation equation, the value of the coefficient BI appearing in the O(_ -2) term can

not be determined by the large-_ analysis and therefore depends on conditions close to the

nose of the body. Numerical integration of (3.6) from _ = 0 gives B_ _ 2.08 (chapter 2).

For all "7 > 0, g.y has solutions which decay algebraically as 7/---, _, but only for certain

7 do solutions exist which decay exponentially at infinity. Libby & Fox (1963) give the

first 10 eigenvalues. The first such eigenvalue, "/1 = 2 has already been discussed. The

next eigenvalue, 72 _ 3.774, leads to the next higher order term in the large-_ expansion

(3.8).

3.2.2 Unsteady flow

The time-dependent contribution to the boundary-layer flow satisfies the linearized un-

steady boundary layer equation (LUBLE),

with boundary conditions

(3.15)

¢=¢,=0 at r/=0 and ¢, ---* (S + _2)1/2 us as 7/_oo. (3.16)

Here, us(_) is the slip velocity induced on the outer edge of the boundary layer by the

free-stream disturbance. Note that this equation is written in terms of (, the streamwise

coordinate scaled on the disturbance length scale U/o.,, and hence ¢ must be expressed

in terms of _.
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The developmentof the solution_bisdescribedin detail in chapter2. Far downstream
(_ >>1), ¢ consistsof a particular solution, Cp,driven by the local valueof the unsteady
pressuregradient, together with an infinite set of asymptotic eigensolutions,

(; s) = ¢.(., s) + s).
i

(3.17)

The eigensolutions, ¢i, depend on the geometry of the body far downstream, but are

independent of the local free-stream disturbance. In this chapter, where we are concerned

with the generation of instability waves in the boundary layer, we consider eigensolutions

which are generalized forms of the Lam & Rott (1960) eigenfunctions. Another set of

eigensolutions could also be calculated, corresponding to generalizations of the functions

derived by Brown & Stewartson (1973) for a flat plate. The role of these two sets of

eigensolutions is discussed in chapter 2. The coefficients Ci multiplying the asymptotic

eigenfunctions are determined entirely by conditions close to the leading edge (_ = O(1)).

One of these eigensolutions, which we label ¢1, matches on to the Tollmien-Schlichting

wave in the Orr-Sommerfeld region farther downstream, where _ = O(e-1). Thus, it

is only through the coefficient C1 that the unsteady disturbances in the free stream

influence the amplitude of the Tollmien-Schlichting wave. Our primary interest is in the

relationship between the free-stream disturbances and the amplitude of the Tollmien-

Schlichting wave, as a function of Strouhal number S. Thus, we focus on the asymptotic

eigensolutions of the LUBLE, which develop a two-layer structure for _ >> 1. From

chapter 2, equations (2.31), (2.48) and (2.49), at the outer edge of the boundary layer

(77---+oo), the first asymptotic eigenfunction takes the form

¢, ~ exp(r, (1+
r_ °) = -0.69213, r_)= -1.9878 i,

{ A cln(_2/s) +(2A,+3_B1) S}T_(°) (_) = -I_ 3 _ - ,-,,,., _-_ ¢

(3.18)

-liTr l/ 3/2..i _
where )_ = e • /[Pl Uo). Here Pl _ 1.0187, the first root of Ai'(-p) = 0, and U_ -

F'(O) _, 0.4696. The numerical constants A1 and BI arise from the asymptotic form of

the mean boundary-layer flow far downstream, (3.8).

For a low Mach number flow, outside the boundary layer the unsteady flow in the

vicinity of the leading edge is incompressible and irrotational. Potential flow theory then

shows that this local flow consists of symmetric and antisymmetric components of the
form

U,(_) = /%(S -I- _2) 1/2 nL /_a(s Jr. _2)1/2" (3.19)

Here _/(S + _2) 1/2 and 1/(S + _2) 1/2 correspond to purely symmetric and anti-symmetric

flow about the leading edge, respectively. The coefficients _,(8) and _(8) multiplying

the symmetric and antisymmetric components are independent of the nose geometry,

but depend on the free-stream disturbance, being determined by global features of the

unsteady flow. When the unsteady disturbance velocity is parallel to the mean flow, (i.e.

= 0), the forcing is entirely symmetric and _, = 0. For oblique (8 _ 0) disturbances,

the unsteady flow will have both symmetric and anti-symmetric components. Calculation

of the coefficients _, and _, for different free-stream disturbances is discussed in §2.4.

Writing _J = _,¢, + _a_b,, and substituting into (3.15), it follows that the receptivity
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coefficientcan bedecomposedinto contributions from the symmetricand anti-symmetric
componentsof the unsteadyouter flow,

c,(s) = _. c.(s) + ,_.co(s),

where C, and Co are obtained from the solutions of

(3.20)

( 2s)_:(_,) = ( i(s + (2) s¥_2 ,

_:(_.) = i(s + (2) s - (2
S+(2'

(3.213)

(3.21b)

respectively. The numerical methods used to obtain values of Ca(S) and C8(S) for fixed

S are described in chapter 2. The remainder of this chapter is concerned with the

asymptotic expansions of Ca(S) and C,(S) as S _ O.

In the nose region, _ = O(1), the mean pressure gradient decreases with distance

downstream, and the mean flow approaches the flat-plate limit as _ _ oo. In the

small-S limit, the nose-region is quasi-steady at leading order; the linearized boundary

layer equations only become fully unsteady when ( = O(1), i.e. $ = O(S-½). Thus

in the receptivity region ( = O(1), the mean flow is close to the Blasius solution, and

the receptivity coefficient is calculated as a perturbation away from the flat-plate value.

Receptivity to the symmetric and anti-symmetric components of the unsteady free-stream

disturbance is analyzed in §§3.3 and 3.4, respectively. In each case the solutions in the

nose and receptivity regions are asymptotically matched, and then the large-( behavior in

the receptivity region is compared to (3.18) in order to extract the receptivity coefficient,
Csor Co.

3.3 Receptivity to symmetric forcing

For symmetric forcing, (3.213) suggests that for small S the unsteady perturbation in

the nose region, _ = O(1), is quasi-steady at leading order and takes the form

¢8 = S½_ (80(_, r/)+ S el(_, r/)+ 0($2)), (3.22)

where the functions 80 and 81 satisfy

and

_8(8o) - 2
1 + _2, (3.23)

JM,(8,) = i(1 +_)(1 - (8o),),

M,(p) - p_ + (¢+ _¢_)p_ + (-_¢,¢ 2)1 +_¢,7 P,_+¢,mP+_(¢,mP_-¢,_P,7_) • (3.24)

The factor S½_ is extracted from ¢8 in (3.22) to simplify the boundary conditions, which
become

8 0 -- 080_ 0 81-081 =

08_0 Or/ 0 on 77= 0

÷ 1 08, I (3.25)- a_" --" 0 exponentially as 77-_ oo.
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Here we are interested in the solution in the large-_ limit, in order to provide upstream

boundary conditions for the receptivity region _ = O(1). In this limit, the mean flow is

given by (3.8) and the unsteady perturbation takes the form,

01 _ _fio(r/)+ In(_)Ha(q) + H4(r/)+ O(_(2-w)),

(3.26)

where we have adopted this rather unusual labeling notation in order to retain consistency

with the notation used in §3.4. The set of functions Hi(r/) and H'-'i(r/) satisfy

Go(H0)= 0, G-2(_0) =
G2(Hz) = n_l(g0), G0(Hz) =

(4)
G2(H4) = -2 - _z,(Ho) Co(Ha) =

+2FIH_ - 2F'Hz,

subject to boundary conditions

i(1 - H_), }

(3)
-iH_ + T_.3(H0) ,

i(1 - H; %.g_) (4) --' ' - n0_.3(go)

+2F'H_- 2F"Hz,

(3.27)

A A

H,=HI= O, Hi=H_= O, on r/= 0, ]
(3.28)

H_---, 1, g_> 1 ---* 0, H'_---* 0, as 77_ co,

where the decay is exponential as r/ ---, co. Here the operator G_ is defined in (3.11)

and the operators "R_!.r are defined in Appendix C. As was noted in §3.2, G2 has an

eigensolution (i.e. a solution of G2(H) = 0 with homogeneous boundary conditions).

Thus Ha and Ha can not be determined entirely by the large-_ asymptotic analysis, but

require knowledge of the full solution in the nose region. However, for the symmetric

case considered in this section, the leading-order term in the small-S expansion can be

determined exactly in terms of the steady flow (Lighthill 1954). In the notation of the

present chapter this gives the quasi-steady solution as 00 = _(r/¢, + ¢) and hence,

Ho = l(r/F' + F), Ha = 1 "_, _ -_,_(r/C, + _,), U_ = _(r/G + G), (3.29)

where Gl(r/), U2(T]) are defined in (3.12, 3.13). Solutions for Hi are obtained using a

fourth-order Runge-Kutta method, shooting from r/ = 0 and using the requirement of

exponential decay as r/---, co.

It is clear from (3.26) that the small-S expansion (3.22) breaks down when S_ 2 =

O(1), which is to be expected since when _ = O(1) we have reached the receptivity

regime where unsteadiness enters at leading order. Within the receptivity region, we are

interested only in the coefficient of the first eigensolution. We therefore anticipate the
-±br 3/2 /

large-_ form (3.18) by setting _p = _w(_,r/)e -_3/3, where A = e 4 /(Pt U[_) as before.

From (3.21a), w is given by

[ 2s ]Af,(w) = i(S + (2) S 7( 2 eaP/a'

3f,(w) - w_ + [¢+ (¢_]w_ + i(s + (2) _ _¢,_ + _d s +_2 ¢0
+(1 - A_3)¢_w + _(¢,row_ - ¢,w,_).

Wr 1

(3.30)
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Usingthe large-_form of ¢ (3.8), weseethat the coefficientswhich appear in JV',(w)

involve terms in (_/S) -l ln(_2/S) and (_2/S)-l, and hence we can expand Af_ as an

asymptotic series in S,

N,(w)~ H{o2(w)+ + + (3.31)

where the partial differential operators (i)JV),7(w) are defined in Appendix C. Now writing

w(_, r/; S) ~ Wo + SIn Sw3 4- Sw4 -4- 0(S_/2), (3.32)

and expanding the right side of (3.30), we obtain a set of equations governing the evolution

of wi ((, rl),

(0) }

Jkfd, l (wo) -=- i_2e "_3/3,

Af_,t (wa) - (3.33)
(o) _,@/3 _(w4) (i

Matching back to (3.26) we see that as _ ---, 0,

~ Ho+(2#0,
1

wa "" -7_H3 - Ha,

ln___2) H3 + 1W 4 ,'_ g 4
+ In(_2)Ha + H4. }

(3.34)

Thus we write

Wo = eX@/aHo + _2qo, ]

1 ^_@/3u

= _ ln(_2)wa + _:.eX@/ZH4 +

"1

W4 q4,

and it can be shown after some algebraic manipulation that

(3.35)

iV-°) (qo)2,3
(o)3f;,,(q3)

A/o(2(q4)

= iea@/a(1 - H_), ]

ie,_@/aH _ (3)= - ]V'g,3(q0),

ie_@/3(1 H; g_) i_2_0 (4) 2F'-'= -- ' - - - J_'_,3(qo) + 2F"q3 - q3,

(3.36)

where q_ denotes the partial derivative of q_((, 7/) with respect to r/. From (3.34), the

functions qi satisfy initial conditions

A A

q0(0, r}) = Ho, q3(0, r/)---= -Ha(r/), q4(0,/']) = H4(rl), (3.37)

and homogeneous boundary conditions, q_(_,O) = _(_,0) = O, q; ---* 0 exponentially
at(i)as rI oo. The differentialoperators ,,A-7(i)z,_,relatedto the operators ,_,_, are defined

in Appendix C. Thus the evolution of the O(S°), O(SInS) and O(S) components of

the unsteady flow has been cast in a form suitablefor accurate nulnericalcomputation.

Numerical solutions of (3.36) are discussed in §3.5.
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3.4 Receptivity to antisymmetric forcing

At first sight, the analysis of the receptivity in the anti-symmetric case appears to follow

very similarly to the symmetric case. However, a subtle difference is seen in the structure

of the solution. Motivated by the anti-symmetric forcing (3.21b), we write the smalLS

expansion of the unsteady perturbation in the nose region, _ = O(1), as

_° = ¢o(&,7)+ se,(_,_)+o(s_). (3.38)

The perturbation is again quasi-steady at leading order in the nose region, with

42 - 1 ]
.£4,(¢0) = ¢-'--2+ 1'

M,(¢,) = i(1 + _)(1 - (¢0),7),

(3.39)

where

Ma(p) -- Ms(p) + ¢,7P,7 - ¢,mP. (3.40)

However, in contrast to the symmetric case, the large-( limit for the unsteady flow
now takes the form

ln(_ 2) 1 5 ln(_2) 1
90 "_ J0(r/) + ---_J,(r/) + _ 2(77) + --_J3(r/) + _-_J4(r/) + O(_ ('-_))

_&(r/) + _ln(_)Jl(r/) + _J2(r/) + ln(_),_(rl) + &(r/) + 0(_ 0-'_))
(3.41)

where the functions Ji(r/) and o_(r/) satisfy

{J,(J0) = 1, {j_,(J_) = i(1- J_),

g2(J,) = 0, _0(],) = -iJ_,
G2(J2) = 2F'JJ- 2F"J,, _o(]2) -- -iJ_ + 2F']_ - 2F"JI,

g3 (g3) (3) (3) ^= n3,o(Jo), g,(,_) = -ig_ + n,,2(Jo),

g_(&) -2 _4) , _4)̂= 7Ca,0(&) g,(,_) i(1 J_ J;)- = - - - 7C,.2 (J0)
+2F'J_-2F"J3, +2F'Y;-2F"J3,

(3.42)

with boundary conditions

J/=4= 0 ff/=ff/l= 0 on r/= 0 '_

J_---*l, --* 0 ._---* 0 as r/---* oo.J[>t (3.43)

Compared to the expansion for the symmetric case (3.26), the additional terms in ln(_2)/_

and 1/_ are included in the large-_ expansion of ¢0 because the operator G2 possesses

an eigensolution. Thus Jl(rl) = Pl(rlF'- F), where the numerical constant Pl can be

determined from the solvability condition for J2. As noted in §3.2, the Blasius function

F is the solution to the adjoint of (_2 and we see that

f0 f00 = F(F'J_ - F"J_) dr 1 = 2Pt F2F '' d71

= P,. (3.44)

Hence J1 - 0 and it follows that ]1 -- 0, and J2(r/) = P2(rlF'- F), where P2 is a

numerical constant. Solutions to the set of equations (3.42) are obtained by shooting, as
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describedin §3.3,but the valueof the constant P2 in the expression for J2 can only be

determined by comparison with numerical solutions of ¢o obtained by integrating (3.39)

forward from _ = 0. Comparing the computed wall shear O_'(_, 0), with the asymptotic

form (3.41) gives

P2 -_ 6.07, (3.45)

but accurate extrapolation is difficult due to the presence of higher-order terms in the

expansion (3.41). The numerical results suggest that the coefficients of these terms are

in fact relatively large. This is discussed further in §3.5.

In the receptivity region c = O(1) where unsteadiness enters at leading order, we

again anticipate the large-_ form of the eigensolution by setting Ca = ve -:'@/3. The

function v(_c, r/; S) then satisfies

[i/s+ 2/s }$4-_- _ e A{3/3,

a;o(_) - N_(v) + ¢.v. - ¢..v,
(3.46)

where A/'s(v) was defined in §3.3. As for the symmetric case, we expand the operator as

an asymptotic series in S,

No(v)~ Nt°_(v),+ Sin_,-3,o¢^rC3_(_)+ SM,_(,)+ O(S_,/_), (3.47)

but in this case, guided by the asymptotic form (3.41) in the nose region, we expand

v(_,_; s) as
v ,,., Vo + $1/_v2 + S In Sv3 + Sv4 + O(S('n-1)/_). (3.48)

Matching back to the nose region then suggests that we set

V0 = eMa/3J0 4-(_p0,
1

v2 = 7eX_3/3J2 + (p2,
%

1
V3 -- eMa/3J3-- 4- Pa,

_2
= _ ln((2)v3 4- lex¢_/3J4 4-v4 P4.

(3.49)

This finally leads to the set of equations

hf- °) (Po) ie_@/3(1 J_), ]1,2 = --

,_o,t^r(°)(P2) = -ie_a/aJ_,

= _,_(po),
.Afi(_)(p4) ie,X_a/3(1 _ j_) _ j_) _ i(2p, ° (4) , ,= ' ' - JV't,2(P0) + 2F"pa - 2F P3,

(3.50)

with initial conditions

po(0,o) = Yo, p_(0,,) = J_, p_(0,,) = -L(,), p,(0,,) = L(,), (3.51)

and the homogeneous boundary conditions, pi(C, 0) = p_(C, 0) = 0, P'i ---' 0 exponentially

as 7/_ oo. As in §3.3, we use p_ to denote the partial derivative of p,(C, r/) with respect

to 7/. Numerical solutions to this set of equations are discussed in the next section.
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3.5 Numerical Results

Having obtained expressions for the evolution of the unsteady flow in the form of an

asymptotic expansion for small S, we now carry out the numerical integration required

to obtain the corresponding asymptotic expansion for the receptivity coefficient CI(S).

As explained in chapter 2, in order to reliably extract the coefficient CI(S) of the first

asymptotic eigensolution from the numerical results, it is necessary to carry out the inte-

gration in the complex-_ plane, in the region -57r/12 < arg(_) < -7r/12 where the first

eigensolution of the LUBLE exhibits exponential growth and is the dominant component

of the solution at large _. The sets of equations (3.36) and (3.50) were integrated forward

in _, from _ = 0 to I_1 = 10 using a Keller Box scheme (Keller & Cebeci (1970)), with

arg(_) chosen as either -_-/3 or -7r/4 to ensure the dominance of the first eigensolution.

For large _, the first asymptotic eigensolution is given by (3.18). Expanding the

expression for the first eigensolution (3.18) for small S, and writing the receptivity coef-

ficient, Ca(S) or Cs(S), as an expansion for small S,

C(S) _, C(0)(1 + c2S 1/2 + c3SlnS + c4S +...), (3.52)

we see that as c ._., oo in the region of the complex plane of interest,

¢ "-" ¢0(1 + c2S '/2 + [c3 - AA,_]SlnS +
3

[c4 + T_ ln(_2/2) -- A_(2A_ + _ - BI - A_ ln(_2))]S), (3.53)

where ¢0 is the first eigensolution for the flat-plate case (Goldstein 1983). The coefficients

C(0), c2, c3 and c4 can then be obtained by comparison with the numerical solution either

at the outer edge of the boundary layer or at the wall.
For the symmetric case clearly c_ ) - 0, while Cs(0), c_s), c(4s) are extracted from the

limiting forms

4c:!o)_ r, [i +
W4/Wo '_ -It 1n(_2/2) -- A((2A, + _ - BI - Al In((2)),

(3.54)

as 7/, ( ---, oo. The evolution of w0 is the flat-plate case described by Goldstein and gives

C_(0) = -0.441 + 0.841 i (3.55)

as the receptivity coefficient for a flat plate, in agreement with earlier results (Goldstein

et al. 1983; Heinrich & Kerschen 1989). Using arg(() = -7r/4, the corrections taking
account of small nose radius effects are calculated to be

c_") _ O, c_") ,_, 3.12 - 2.37 i. (3.56)

Integration using arg(_) = -7r/3 gives a difference of less than 2% in the estimate for

c__). Hence

Re(C,(S)) ,-.-, -0.441 + 0.62 S + O(S °'') , }Im(C, (S)),--, 0.841+3.67S+0(S_'), al = _72 _ 1.887.
(3.57)

In figure 3.2 asymptotic results (3.56) are compared with the results of the full integration
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Figure 3.2: Comparison of numerical and asymptotic results for the receptivity due

to symmetric and anti-symmetric disturbances. Numerical results for the perturbation

f(S) = (C(S)- C(0))/C(0) (see text) are denoted by o, asymptotic theory is marked by

the solid line. Results for Re(f,) and Im(f,) are illustrated in (a) and (b), respectively,

and Re(fa) and Im(fa) are illustrated in (c) and (d).
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for small-S presented in chapter 2. To make the comparisons as clear as possible, we plot

the perturbation from the flat plate result f(S) = (C(S) - C(O))/C(O) as a function of

S and compare this with the asymptotic form (3.52). In figure 3.2a and b, comparisons

are made for the symmetric case, making it clear that the leading-order behavior for the

symmetric receptivity coefficient is indeed described by (3.57). The small discrepancy

between numerical results and asymptotic theory is likely to be due either to numerical

uncertainty in extrapolating C(S) from large-_ calculations (as explained in chapter 2),

or to the higher-order terms in (3.57).

For the anti-symmetric case,

_ (o)

Vo "-' C,,(O)_ (__/2)"' [1

,.,., c_a),
..., c Ol_

v4V3/V°/vo": c_a) + T_') ln(,_/2)

as 77,_ ---, co. Comparing these large-_ asymptotic forms with numerical results gives

(3.58)

1 }Im(C_(S)) ,,_ 1.66 + 6.34S '/2 +24.2S +0(S°'2), a2=_(3,2-1)_1.387

(3.61)

In figure 3.2c and d the asymptotic results (3.60) are compared with the results of the

full integration for small-S presented in chapter 2. It is clear that the coefficient of the

S½ term in (3.61) is correct. While it is not possible to be certain from these results that

the O(S) terms are also correct, the divergence of the asymptotic results from numerical

results arises at similar values of S to the symmetric case, when the O(S) terms were

seen to be correct. In addition, it should be noted that the next higher order term in

(3.61) is O(S°2), a2 _ 1.387 which is very close in magnitude to the O(S) term retained.

Comparison of numerical results and asymptotic solutions in the nose region suggests that

the coefficient of the next term in the expansion (3.41) is fairly large, further suggesting

that the O(S _2) in (3.61) is indeed significant, even for small S. Hence figure 3.2c and d

shows that the asymptotic form (3.61) is at least consistent with numerical results.

The absence of any S In S term in the expansions of the symmetric and anti-symmetric

receptivity coefficients is somewhat surprising. However, further insight can be gained

by considering the case arg(_) = -7r/4 in more detail. In this special case, the operators

JY"(°), J_7"(3) and _.(4) defined in Appendix C are real. Noting that the set of functions H(q)

are purely imaginary, equations (3.36) show that the functions qi(_, 77) are also wholly

imaginary. Hence in the limit I_[ ---* oo, w3/wo is imaginary and Re(c_ _)) = 0. That is,

if there is a S In S term in the small-S expansion of C_(S), then it is wholly imaginary.

Furthermore, we can show from the large-_ limit of w4/wo, that

;r Im(T_t)Re(4')) = + (3.62)

C_(O) _ -5.33 + 1.66 i, (3.59)

as the flat-plate solution, with small-S corrections

4  -1.728- 1.728i, c? o, 4 3.12-3.57i (3.60)
Again there is no significant difference in these results if arg(() is varied. Hence

Re(C,,(S)) ,-., -5.33 +12.08S '/2 -10.7S +O(S '_2)
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Theseresults are in agreementwith the numerical results. The sameresults also apply
to the anti-symmetric case. Further considerationof the large-_limit of w0 and v0 for

arg(_) = -_r/4 proves that

7r

arg(C,(0)) =-5(1 + T(0)), arg(Co(0))= + T[ (3.63)

which confirms the numerics, and also explains the _-/4 difference in phase between flat-

plate receptivity coefficients for symmetric and anti-symmetric forcing noted in chapter
2.

3.6 Summary

In §3.5, the small-S expansions of the real and imaginary parts of the receptivity coeffi-

cients for symmetric and anti-symmetric forcing were compared with numerical results.

From a practical standpoint, the most important quantity is the modulus of the recep-

tivity coefficient, since it is the variation of this that is likely to influence the position of

the transition point. In figure 3.3, the asymptotic prediction for the modulus of the re-

ceptivity coefficient is compared to numerical results, for symmetric and anti-symmetric

forcing. For oblique acoustic waves (0 # 0), the coefficient _a in (3.20) is often large

compared to _, (see chapter 2). Moreover, as S ---* 0 the anti-symmetric receptivity

coefficient Ca is approximately five times larger than Cs, the symmetric receptivity co-

efficient. Hence Ca(S) is much more important than C,(S) in determining the behavior

of the total receptivity coefficient CI(S). In this chapter, we have shown that Ca(S) has

a singular structure for small S, varying as S½, so that small changes in this parameter

have a significant influence on the receptivity. Moreover, the exact form of this leading-

order behavior has been accurately calculated. The rather small range of validity of the

asymptotic expansions at first appears somewhat disappointing. However, numerical re-

sults show that the maximum receptivity occurs for small S and hence the behavior in

this limit is of most interest for practical applications. For S < 0.005, excellent agreement

is seen between asymptotic theory and numerical results, so in this parameter range the

asymptotic expansions developed in this chapter are of quantitative as well as qualitative
value.

The small-S limit is also of interest when considering the experimental results of Saric

et al. (1995). In these wind-tunnel tests, a leading edge consisting of a machined super-

ellipse of either 1:20 or 1:40 aspect ratio is attached to a flat plate. By considering a

super-ellipse profile rather than an ellipse for the leading-edge section, localized receptiv-

ity due to a discontinuity in surface curvature at the join with the flat plate (Goldstein

1985) is eliminated. The region of dominant receptivity should then be the leading edge.

Measurements were made for free-stream speeds 8ms -1 < U < 21ms -1, corresponding to

nose radius Reynolds numbers Re,` = Ur,`/u in the range 130 < Re,` < 670 , consistent

with the assumption Re,, >> 1 used in our analysis. Acoustic forcing at non-dimensional

frequencies in the range 30 × 10 -_ < e6 < 90 x 10 -6 was considered, leading to a Strouhal

number range 0.004 < S < 0.060. Our small-S theory is clearly relevant to the lower end

of this Strouhal number range. The results of the present analysis show that, despite the

small values of the nose radius in these experiments, there can be significant departures

from the fiat-plate results. Many of the detailed measurements of Saric et al. are for a

Strouhal number of 0.01. For this value of S, symmetric disturbances lead to receptivity
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2% greater than the flat plate value, but for anti-symmetric forcing there is a 15% re-

duction compared to the flat-plate result. As noted earlier, despite the small numerical

values of S, by S = 0.01 the computed value of the receptivity coefficient has already

begun to diverge from the asymptotic results.

For leading-edge receptivity, various measures of receptivity can be considered. We

have chosen to define Cl, the coefficient of the first Lam-Rott asymptotic eigenfunction,

as the 'receptivity coefficient'. Alternative definitions of receptivity level that have been

considered in computations and experiments are values based on the Tollmien-Schlichting

wave amplitude at the lower neutral-stability point (branch I), or on an extrapolation

of the Tollmien-Schlichting wave amplitude back to the leading edge. Extrapolation of

the Tollmien-Schlichting wave amplitude back to the leading edge is not advisable, since

the Tollmien-Schlichting wave is not a valid solution of the disturbance equations near

the leading edge. In fact, in extrapolating back to the leading edge the slowly varying

amplitude A(_) multiplying the mode-shape function of the Tollmien-Schlichting wave

should be considered, and A(_c) becomes infinite at the leading edge, the streamwise

velocity fluctuation behaving as _2,a where TI = 7_°) + ST_ 1) is given by (3.18).

A receptivity level defined in terms of the Tollmien-Schlichting wave amplitude at

the lower branch neutral-stability point does allow easy comparison with experiments

or computations, but has the disadvantage that the results depend on the frequency

and Reynolds number, making presentation of the results much less compact. However,

there is a need to relate receptivity levels defined in terms of C1 to levels expressed in

terms of branch I amplitudes. In the asymptotic theory, this is achieved by developing the

asymptotic expression for the Tollmien-Schlichting wave in the OSE region and matching

this expression to the first generalized Lam-Rott asymptotic eigensolution (3.18). This

procedure is discussed by Goldstein (1983) for the flat-plate case, and the extension

to non-zero S is discussed briefly in chapter 2. However, the asymptotic analysis is

quite laborious, especially for the determination of A(_). An alternative approach is

the numerical solution of the disturbance equations, using the Lam-Rott asymptotic

eigensolution as a starting condition and continuing downstream to branch I.

From a theoretical standpoint, the most attractive measure of receptivity is the coef-

ficient C1 of the first Lam-Rott asymptotic eigenfunction. This Lam-Rott eigenfunction

evolves into the unstable Tollmien-Schlichting wave farther downstream so that, when

appropriate scaling factors related to the asymptotic matching of the LUBLE and OSE

regions are introduced, C1 is also the coefficient of the Tollmien-Schlichting wave. An

extremely attractive feature of this receptivity measure is that C1 is independent of the

physical frequency and the (asymptotically large) Reynolds number, thus providing the

receptivity results in the simplest dimensionless form. The quantity C_ is determined by

the unsteady flow behavior upstream of the region of instability and therefore focuses

on the receptivity aspect of the unsteady flow development, with less influence from the

global stability properties of the flow. Also, for fixed values of the frequency and Reynolds

number, variations in the receptivity coefficient C1 with changes in the free-stream distur-

bance characteristics translate directly into variations in the Tollmien-Schlichting wave

amplitude.
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Chapter 4

Receptivity for a leading edge with

aerodynamic loading

4.1 Introduction

The transition of a boundary-layer flow from laminar to turbulent is strongly influenced

by free-stream disturbances. The process by which free-stream disturbances generate

instability waves in the boundary layer is known as receptivity (Morkovin 1969). Energy

is transferred from long-wavelength disturbances in the free stream to the much shorter

wavelength Tollmien-Schlichting waves in the boundary layer. This transfer requires a

wavelength conversion mechanism, which is usually produced by non-parallel mean flow

effects due to short-scale streamwise variations in the mean flow. These streamwise gradi-

ents may arise from slow, viscous boundary-layer growth associated with the leading-edge

region (Goldstein 1983, Hammerton & Kerschen 1996, 1997), or from localized regions

farther downstream in the boundary layer, such as regions with sudden changes in sur-

face geometry (Goldstein 1985, Choudhari and Kerschen 1990) or marginally separated

regions (Goldstein, Leib & Cowley 1987). Additional background information on recep-

tivity can be found in Goldstein & Hultgren (1989) and Kerschen (1990).

Leading-edge receptivity was first considered for the Blasius boundary layer on a flat

plate (Goldstein 1983). A high Reynolds number asymptotic analysis was formulated for

an incompressible, two-dimensional flow of free-stream speed Uoo, together with a small-

amplitude time-harmonic perturbation of frequency w, equivalent to the incompressible

limit of an acoustic wave propagating parallel to the mean flow. Two streamwise regions

enter the analysis, one region of O(U_/w), where the inviscid pressure field and slip ve-

locity induced by the free-stream disturbance drives the unsteady motion in the bound-

ary layer, and a second region farther downstream at distance O((uw/U_)-_ U_/w),

where the disturbance is governed by the triple-deck structure, corresponding to the high

Reynolds number asymptotic form of the Orr-Sommerfeld equation (OSE) in the vicinity
of the lower branch.

In the first region of Goldstein's analysis, assuming that the amplitude of the unsteady

disturbances in the free-stream is small compared with the mean flow, the unsteady

disturbance in the boundary layer is governed by the linearized unsteady boundary layer

equation (LUBLE). Far downstream in the LUBLE region, the solution consists of a

Stokes wave, and a set of asymptotic eigenfunctions that contain velocity but not pressure

fluctuations. These asymptotic eigenfunctions are equivalent to those obtained by Lam &

46



Rott (1960,1993)and Ackerberg& Phillips (1972). The asymptoticanalysisfor distances
far downstreamdeterminesthe form of the eigenfunctions,but not their coefficientsCi.

The waveleng-ths of the asymptotic eigenfunctions shorten progressively with distance

downstream. Eventually, the self-induced pressure field associated with the displacement

thickness of each asymptotic eigenfunction becomes significant, and the triple-deck struc-

ture replaces the LUBLE as the correct asymptotic approximation to the Navier-Stokes

equation. The first asymptotic eigenfunction of the LUBLE matches on to the Tollmien-

Schlichting wave solution of this triple-deck region. Thus, the form of the free-stream

disturbance and the geometry close to the nose influence the amplitude of the Tollmien-

Schlichting wave only through the coefficient C1 of the first asymptotic eigenfunction.

For this reason, C1 is known as the 'receptivity coefficient'. The numerical value of the

receptivity coefficient can not be determined by asymptotic methods. Instead it must be

extracted from numerical solutions of the LUBLE, by comparison with the asymptotic

form far downstream in the LUBLE. This was accomplished for the flat-plate case by

Goldstein, Sockol & Sanz (1983) and Heinrich & Kerschen (1989).

The analysis of Goldstein for a flat plate was the first theoretical description of the

fundamental mechanisms of leading-edge receptivity. However, aerodynamic bodies de-

signed for subsonic flow generally have finite thickness distributions with a parabolic lead-

ing edge. Hammerton & Kerschen (1996, 1997) considered a thin, symmetric airfoil at

zero angle of attack with a plane acoustic wave incident at arbitrary angle, and examined

the influence of the leading-edge geometry of the body on receptivity. The structure of

the development of the instability remains similar to that for a flat-plate; the asymptotic

eigenfunctions of the LUBLE are modifications of the Lam-Rott eigenfunctions which

take account of the effects of mean pressure gradient and surface curvature. Attention

was focused on the variation of the receptivity level with the nose radius of the body

and the incidence angle of the acoustic field. The radius of curvature of the leading-edge

of the airfoil, rn, enters the analysis as a Strouhal number, S = o3r,/Uoo. The results

revealed that, for disturbances parallel to the mean flow, a small increase in the recep-

tivity for very small S is followed by a rapid decrease in the level of receptivity so that,

when S = 0.3, the receptivity is reduced to approximately 15% of the flat-plate value. In

addition, for unsteady disturbances propagating at an angle to the mean flow, the over-

all level of receptivity is dominated by the response to the component of unsteady slip

velocity which is anti-symmetric about the leading-edge. Inclusion of thickness effects

goes some way towards modeling experimental investigations (Saric, Wei, Rasmussen &

Krutckoff 1995; Saric & White 1998) and allowing comparisons with related numerical

simulations (Reed & Lyttle 1998). In wind tunnel tests reflections of acoustic waves from

the side walls can lead to significant anti-symmetric flow about the leading edge (see

Kerschen 1990 and Saric & White 1998).

In this chapter the receptivity of a cambered airfoil at an angle of attack to a mean

flow is considered. The receptivity problem for this physical situation is considerably

more intricate than the examples analyzed up to this time. First, there is receptivity

associated with the mean stagnation point on the lower surface, as well as receptivity due

to the strongly non-parallel flow around the leading edge. Moreover, at non-zero angles

of attack a minimum appears in the steady wall shear on the upper surface. As the angle

of attack of the airfoil is increased, the value of the minimum wall shear decreases until

at some critical angle the minimum wall shear reaches zero, which for a two--dinlensional

flow corresponds to flow separation. Hence a regime exists where the angle of attack
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is closeto the critical angleand there is a region of marginal separationon the upper
surfaceof the airfoil. Herethe receptivity mechanismanalyzedby Goldstein et al (1987)
is relevant.

The structure of the chapter is as follows. In §4.2 a high Reynolds number asymptotic

analysis (c 6 = vw/U_; e << 1) is formulated for an incompressible, two-dimensional flow

about a thin, cambered airfoil. In §4.2.1, the steady slip velocity on the airfoil surface is

determined using thin-airfoil theory, followed in §4.2.2 by the derivation of the equation

governing the unsteady boundary-layer flow in terms of suitable coordinates. Assuming

that the unsteady perturbations in the free-stream are small, and letting e ---, 0, the

unsteady disturbances in the boundary layer are governed by the LUBLE.

The structure of the solution in the LUBLE region is analyzed in §4.3. When consid-

ering the subsequent development of instabilities in the boundary-layer flow, the asymp-

totic form of the unsteady solution far downstream in the LUBLE region is required.

The derivation of the asymptotic form of both the steady and unsteady components of

the solution is a necessary part of the presentation, but details are given in Appendices

D and E instead of the body of the chapter in order to avoid interrupting the description

of the evolution of the boundary-layer disturbance.

In §4.4, the inviscid pressure field and slip velocity produced by the interaction of a

free-stream acoustic wave with an airfoil are determined, in order to allow calculation

of the interaction between the free-stream and the boundary layer. The exact form

of the unsteady slip velocity in the vicinity of the leading edge is determined by the

global solution about the airfoil. This depends on the magnitude of the reduced acoustic

frequency k = wb/c, where b is the airfoil semi-chord and c is the speed of sound. Here we

present results for the limiting cases k << 1 and k >> 1, when relatively simple expressions

for the slip velocity can be obtained. The definition of the receptivity coefficient for

this particular geometry is also provided. Finally in §4.5, numerical solutions of the

steady boundary layer equation and the LUBLE are obtained, and compared with the

asymptotic eigenfunctions of §4.3. This allows determination of the receptivity coefficient

as a function of leading-edge geometry, airfoil shape and angle of attack, and of the
characteristics of the free-stream acoustic wave.

4.2 Formulation

We consider a thin, cambered airfoil of chord 2b at an angle of attack _ to a uniform

flow of speed U_. A plane acoustic wave of frequency w, propagating at an angle 0, is

assumed to be incident on the airfoil as illustrated in figure 4.1. Two-dimensional, low

Mach number flow is considered. Since the Mach number is small, the mean flow can

be analyzed using incompressible theory. For the unsteady component of the flow, most

features of interest can also be analyzed using incompressible theory. The influence of

compressibility on the unsteady component of the flow is discussed in §4.4. The Reynolds

number is assumed large, so the flow field is inviscid and irrotational everywhere except

in the vicinity of the airfoil surface. The behavior of the flow in the boundary layer

adjacent to the airfoil surface depends crucially on the pressure gradient imposed by the

outer inviscid flow. Therefore, relevant features of the inviscid mean flow are presented

in §4.2.1. The equations governing the boundary-layer flow are formulated in §4.2.2.
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Figure 4.1: An illustration of the physicalsituation of interest: a thin, camberedairfoil of
chord 2bis at angleG to a uniform flow of speedU_, with a plane acoustic wave incident

at an angle 8.

4.2.1 Inviscid Mean Flow

We introduce Cartesian coordinates (x, y) normalized by the airfoil semi-chord b, with

the origin located at the airfoil leading edge and the x- and y-coordinate axes parallel

and normal to the airfoil chord line at the leading edge, as illustrated in figure 4.1. This

particular choice of coordinate system proves convenient for the present analysis, in which

attention is focused on the leading-edge region. The camber and thickness of the airfoil

are assumed of 0(5) where 5 << 1. Explicitly factoring out the scaling parameter 5, the

airfoil surface is defined by

= 5(-n(x) ± s(x)), 0 < x < 2, (4.1)

where the ± sign applies on the upper and lower surface, respectively, and the camber

and thickness functions n(x) and s(x) are defined in figure 4.1. The angle of attack 2,

measured with respect to the axes defined above, is also assumed to be small (to avoid

separation) and to be comparable to the thickness and camber; hence we write _ = (fa.

The inviscid mean flow past the airfoil can then be calculated using thin-airfoil theory.

Specifically, the no-penetration boundary condition on the upper and lower surfaces of

the airfoil can be linearized and transferred to y = 0 +, respectively. The mean-flow

perturbation due to the presence of the airfoil is found to have the y-components

u_5(-_ + n'(x) ± s'(x)) on 0 < x < 2, y = 0_, (4.9.)

where n'(x) and s_(x) denote the derivatives of these functions with respect to x. The

mean slip velocity on the airfoil surface, Us, immnediately follows (Cheng & Rott 1954),

= 1 ..... dxl+
7"( X 1 --X X 1 --.T
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A circulatory componenthasbeen included in (4.3), its magnitude fixed by the Kutta
condition at the trailing edge.

The thin-airfoil expansion(4.3) is invalid in the vicinity of the leadingedge,and must
be supplementedby a local expansion. For an airfoil with a rounded leading edgeof
(dimensional)radius rn, the small argumentexpansionof the thicknessdistribution has
the form

s (x) = s,x '/2 + s2x + s3x 3/2 + O(x 2) (4.4)

where Sl = (2rn/62b) 1/2. The coefficient of the leading term in (4.4) must be O(1),

implying that rn = 0(62b). The airfoil nose radius rn is the natural length scale in the

leading-edge region. We therefore introduce a parabolic coordinate system (4, r/) based

on this length scale. The relationship between the (x, y) and (4, 0) coordinates is

lrn 1] (4.5)x+iy=_--[(_+i0) 2+ .

In terms of these new coordinates, the airfoil surface is given by f/= 1 +½6s2_3/(1 + _)+

0(62) . Thus, at leading order in the local coordinates, the airfoil surface is defined by the

parabola _ = 1. The inviscid flow in the vicinity of the parabolic nose can be obtained in

the form of a complex potential by means of conformal mappings, giving a slip velocity

U.(#) =U= (_ + i),/= +.($2 + 1)i/2 • (4.6)

The first term of (4.6) corresponds to symmetric flow past the nose, while the second

term is an antisymmetric flow around the nose, from the lower surface to the upper,

when the parameter # is positive. The parameters U_ and # in (4.6) are determined by

matching with the thin-airfoil expression (4.3).

In order to match (4.3) and (4.6), the small-x behavior of (4.3) and the large-_

behavior of (4.6) must be determined. For x << 1, (4.3) takes the form

Us(z) 6 ( sl
-- 1 + -re _,+rc_vf2x -l/_ - s_ lnx + -_ + s2 ln2

- d-xx, 2xll _ s2 _x, + O(x'/2) (4.7)

where me, the effective angle of attack for the leading-edge region taking into account the

camber of the entire airfoil, is given by

1 fo 2 n'(x)Ole _- O_ -- --
7r [x,(2- x,)]'/2dx'"

(4.8)

For _ >> 1, (4.6) takes the form Us(-_) = U, + U,#/-_ + O(1/72). The matching of the

symmetric components of these expressions is identical to that discussed in chapter 2.

For leading-edge shapes that contain a wedge component (s2 # 0), the approximation

(4.6) is valid only at O(1) in the thickness parameter _ and the matching then shows

that U_ = Uo_. For leading-edge shapes, such as that of a Joukowski airfoil, where the

even coefficients in (4.4) vanish, the leading-edge region is also parabolic at 0(6), and

the matching then gives

U,=Uo¢ 1+- - (4.9)-_z 2xll _ "
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The 0(5) term in (4.9) is essentially a correction to the 'free-stream speed' in the local

leading-edge region, due to the flow perturbation created by the thickness distribution

of the entire airfoil. Next, matching of the antisymmetric components of the local and

thin-airfoil expansions then gives the angle-of-attack parameter

# = 2a_J "_, (4.10)
V rn

which is O(1) since r, = O(52b). The stagnation point on the lower surface is given by

= -#, which corresponds to x = 2(&_) 2, a familiar result for thin bodies.

4.2.2 Boundary-layer flow

The boundary-layer flow in the vicinity of the leading edge is also analyzed most conve-

niently in parabolic coordinates. For the mean boundary layer, the nose radius r,, remains

the appropriate length scale in the streamwise direction. However, for the unsteady flow,

a second streamwise length scale, U_/w, is also relevant. Specifically, Goldstein's (1983)

analysis of leading-edge receptivity for the flat-plate boundary layer showed that the

receptivity process takes place in a region where the distance from the leading edge is

O(U,/w). To focus on this region, we introduce new coordinates,

(4.11)

where

S = o)rn
U, (4.12)

is a Strouhal number based on the airfoil nose radius.

Since the Reynolds number is assumed large, viscosity is important only in a thin

boundary layer adjacent to the body surface. To analyze the boundary-layer flow, we set

= _, ¢/- S½ = ear/, (4.13)

where the small parameter

_6 V0J

=_'2 <<1 (4.14)

is the reciprocal of the Reynolds number based on the disturbance length scale U_/w.

The analysis presented here considers the small-e limit but with S -- O(1). The non-

dimensional vorticity equation, expressed in terms of the streamfunction k_ (which has

been normalized by e3U_/w), then becomes

qJ_t + 0(_, 77) _ - e6 g2,ro O(rPee/ H 2, g2)\ g 2 0(_, r/)

[ H2 ]ee'
(4.15)

2 1

where H = (_ +S)_. The streamfunction _ contains both the mean and time-dependent

components of the flow. Equation (4.15) is exact, except for approximation of the metric

coefficient (_2 + 7)2) by H. The viscous flow satisfies the no-slip boundary conditions on

the body surface,

_I, = _I',_ = 0, on 77= 0. (4.16)
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At the outer edgeof the boundary layer, the viscousflow matchesto the inviscid slip
velocity (non-dimensionalizedby U,),

H-l_,7 _ U_(_,t), as 77--_ oo. (4.17)

For O(1) values of _, the terms on the right-hand side of (4.15) can be neglected,

leading to the unsteady boundary-layer equation. The unsteady component of the flow,

a small perturbation to the mean flow, then satisfies the linearized unsteady boundary-

layer equation (LUBLE). It is shown in §4.3 that the solution of the LUBLE contains

components whose wavelengths progressively shorten with distance downstream. Thus,

for the unsteady component of the flow, terms on the right-hand side of (4.15) become

significant when _ = O(e-l), and the correct asymptotic approximation to (4.15) then

takes on the triple-deck structure. The asymptotic matching of these two streamwise

regions is discussed briefly at the end of §4.3.

4.3 Analysis of receptivity region

In this section, we consider the region of the boundary layer where the receptivity takes

place. The streamwise length scale for this region is U_/w. Thus, the development of

the viscous flow in this region is governed by the form of (4.15) corresponding to the

limit e ---* 0, _ = O(1). Subsequently, the behavior of this solution at large values of

will be considered, in anticipation of matching with the Orr-Sommerfeld region that

exists farther downstream in the boundary layer. For _ = O(1) and e ---, 0, terms on the

right-hand side of (4.15) can be ignored. Integrating once with respect to 77then gives

the unsteady boundary-layer equation,

H2_,, + (_ - a2,,,_) - _H-2t_ 2 - q2_m = _H2p_, (4.18)

where the pressure gradient P_(_, t) is obtained by matching to the outer (inviscid) flow,

P_(_,t) = H O_l" - U O[]s
- (4.19)

Up to this point our analysis has paralleled that of chapter 2, utilizing nearly the

same notation. For the symmetric mean flow case considered by chapter 2, the unsteady

boundary-layer region was analyzed using the streamwise coordinate _ (which is based

on the length scale U,/w). This allowed easy comparison with the flat-plate analysis

of Goldstein (1983). However, for the non-zero angle-of-attack case considered here, no

corresponding flat-plate analysis is possible because the boundary layer would separate

at the leading edge. In addition, the presence of airfoil thickness, camber and angle-

of-attack significantly complicates the algebra. The analysis of the mean flow is most

naturally carried out in terms of a streamwise coordinate based on the nose radius rn.

Noting the parabolic nature of the governing equations, one can see that the mean-flow

stagnation point is the natural origin for the streamwise coordinate. Thus we introduce

the new streamwise coordinate,

-w=_+#=S- +_, (4.20)
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where # is the angle-of-attackparameter defined in (4.10). The mean-flowstagnation
point is now given by w = 0, the nose corresponds to w = # and w is scaled oil the nose

radius r,, rather than the disturbance length scale U,/ca.

Because the mean flow is expressed most simply in terms of the streamwise coordinate

w, it turns out that w is also the most convenient coordinate for analysis of the unsteady

flow. Our analysis assumes S = O(1), so that w = O(1) also corresponds to _ =

O(1). Later in this section we analyze the behavior of the solution for large _, in order

to examine the development of the Lam-Rott asymptotic eigenfunctions tbi, and the

eventual evolution of the first eigenfunction tbl into the Tollmien-Schlichting wave when

= O(1/e). This large-_ analysis will be presented in terms of large w for algebraic

simplicity, but we emphasize that it is the quantity S1/2w which is required to be large.

For typical values of the camber distribution and angle of attack, the mean aero-

dynamic loading parameter # is usually positive. We examine the influence of mean

aerodynamic loading on the receptivity for both surfaces of the airfoil. However, rather

than considering the cases w > 0 (upper surface) and w < 0 (lower surface) separately,

the analysis can be presented more concisely by considering w to be positive and taking

# > 0 to give upper surface results and # < 0 for lower surface results.

For a cambered airfoil at non-zero angle-of-attack, the slip velocity is given in terms

of the new coordinate w by

W

O,(w, t) = _- + A u,e -i', (4.21)

where h 2 -- 14-(w-#)2. Here the steady contribution U, = w/h follows from (4.6), while

the time-dependent component us(w) depends on the particular form of the free-stream

disturbance, as discussed in §4.4. Since we are concerned only with small-amplitude free-

stream disturbances, that is A << 1, the steady and unsteady components of the flow

field can be analyzed separately. Thus, the streamfunction within the boundary layer

can be written in the corresponding form

±
_I'(w, 7/) = S2w¢(w, 7?)+ A_(w, r/)e -it, (4.22)

!
where the factor $2 w has been extracted from the mean component of the stream.function

in order to simplify the matching condition as r/---, oo. The steady boundary-layer flow
then satisfies

¢,nm 4- ¢,m¢ + w(¢,mCw - ¢,7¢,7_,) -/_(¢2 _ i) : 0, (4.23)

where the pressure gradient parameter #(w; #) is given by

1 - #w + #2

# = h2 , (4.24)

together with boundary conditions

¢=¢,7=0 at 7"/=0 and ¢_1 as r/---,oo. (4.25)

The time-dependent component of the boundary-layer flow satisfies the linearized
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unsteadyboundary-layerequation (LUBLE),

_.(¢) = S½h2 dp
dw'

W 2 __ #2 __ 1_'(_b) _= ¢_ro + (¢ + w¢_)¢,r, + iSh2 + h2 ¢o - w¢,_,_

+w(¢,0¢_ - ¢,¢0_)

dp (ish_ l - p(w- p)) wdusdw - ha us h dw'

with boundary conditions

(4.26)

I

¢=¢,=0 at 77=0 and ¢,---*S_hus as 77_oo. (4.27)

These equations must be solved numerically for each value of S and #, and for each

different free-stream disturbance, although various simplifications arise as will be seen

later. The numerical solutions are described in §4.5. However, as discussed in §4.1, we

are primarily interested in the solution of these equations in the large-_ (or large-w) limit,

where a component of the solution to the LUBLE matches onto the Tollmien-Schlichting

wave solution of the Orr-Sommerfeld equation. In the next two sub-sections, we develop

large-w asymptotic expansions for ¢(w, 77) and ¢(w, 7/).

4.3.1 Large w expansion of the steady boundary-layer equation

In order to determine the form of the asymptotic eigensolution of the LUBLE that

matches onto the TS wave far downstream, it is found that the expansion of the mean

flow must be determined up to, and including, terms of O(w-a). The large-w expansion

of f_ is

(1 w _2) .(3_#2) (1)~ --_w+ + -- + 0 _ . (4.28)

For # > 0 an adverse pressure gradient arises on the upper surface (w > 0); this adverse

pressure gradient decays to zero much more slowly than the favorable pressure gradient

arising in the symmetric mean-flow case (# = 0). Guided by the p = 0 case (Van Dyke

1964), we find that the asymptotic expansion of the mean flow far downstream is given

by

#Pl(_) + P2(rl) logw 2 Pa07) + pp4(r/)logw 2 #P_O?) ( 1 )w w2 +_ w3 Jr wa +O _ ,¢(_, v) ~ F(V)+--

(4.29)

where the fractional power 72 = 3.774 arises as an eigensolution (Libby & Fox 1963).

Here F(r/) is the Blasius solution and the pi(r/) are determined by the set of equations

/:i(Pi) = di, given in Appendix D. The parameter # appears in the Pi. As for the

symmetric mean-flow case described in chapter 2, the large-w asymptotic form of the

mean flow is not fully determined by the local conditions far downstream. A coefficient

B1 (#) enters the O(w -2) and O(w -3) terms, the value of which is dependent on conditions

close to the leading edge. Hence B1 (#) must be determined by comparing the asymptotic

form (4.29) with the numerical solution obtained by integrating (4.23) from the stagnation
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point w = 0. The asymptotic form (4.29) for the mean flow is applicable to both the

surfaces of the airfoil; typically # > 0 corresponds to the upper surface and Fz < 0

corresponds to the lower surface.

In order to determine the large-w solution for the unsteady component of the flow,

the behavior of the mean flow close to the wall is required. From the results of Appendix

D, this is given by

¢ ~ 7_v_(w) 73ug(w) 7SF_'_ 7_ 75
2 + 6 - 5-----T-+O(w.n, w) (4.30)

where

U_ (w ) = F°' ( l + Z° + A l l°g w"-_2#2_Wl #(#2w2_ 3)+ _-_B1+ #Alh0 l°gw-------_2w3+ # B l [t° + J° + #2 _ )w3, }ug(w) = _-+ +
W W 2 W 3

(4.31)

The functions U[_(w) and U_t(w) are the asymptotic expansions of the shear stress and

the curvature of the mean boundary-layer profile at the wall, accurate to O(w-3). The

numerical values of the constants F_', A1, h0, _0, 30 and k0 are given in Appendix D.

Numerical results for BI(#), obtained by comparing the numerical solution of (4.23)

with the asymptotic form (4.29), are presented in §4.5.

4.3.2 Large S1/2w expansion of the linearized unsteady

boundary-layer equation

We next consider the evolution of the unsteady component of the flow, which is governed

by (4.26). As in the symmetric mean-flow case considered in chapter 2, far downstream

in the LUBLE region ($1/2w >> 1) the unsteady component of the flow consists of

a particular solution, Cp, determined entirely by the local conditions far downstream,

together with a set of asymptotic eigenfunctions,

¢(w,,7;s,#) = Cp(_,,7;s,#)+ _, c,(s, ,)¢,(_, 7;s,_).
i

(4.32)

The particular solution is a generalization of the classical Stokes layer solution, driven by

the local value of the unsteady pressure gradient (4.26). The asymptotic eigenfunctions

¢i are generalizations of the Lam-Rott eigenfunctions (Lam & Rott 1960), taking account

of the non-Blasius mean flow. A second set of asymptotic eigenfunctions for the LUBLE

were derived by Brown and Stewartson, but their relationship to Tollmien-Schlichting

wave development has not been established. The eigenfunctions are 'asymptotic' because

they exist only for Sl/2w >> 1, where the mean flow takes on a slowly varying character.

The ¢i depend on the mean-flow characteristics far downstream, but are independent of

the unsteady free-stream disturbance in the downstream region. The coefficients C_ of

the asymptotic eigenfunctions are determined by the characteristics of the unsteady free-

stream disturbance and the mean boundary-layer flow in the region nearer the leading

edge where $1/2w = O(1). One of the asymptotic eigenfunctions, which we label ¢1,

matches on to the growing Tollmien-Schlichting wave in the Orr-Sommerfeld region

farther downstream, where S1/2w = O(1/e). It is only through the receptivity coefficient
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C1 that the unsteady free-stream disturbance influences the amplitude of the Tolhnien-

Schlichting wave. In the remainder of this chapter, most attention is focused on this

particular eigenfunction and on its coefficient Cl.

The form of the general asymptotic eigenfunction $i is obtained in Appendix E. The

asymptotic eigenfunctions have a two-layer structure, with a new inner layer of width

r] = 0(S-1/2w-1). The leading-order expression for the general eigenfunction ¢_ is given

by

'" exp(Zl°)(w))f,(°)(n),
V}0)= Ai(z)d 

wS½ exp (Ti(°))F'(rl),

l

n = = O(1)

r/= 0(1)

(4.33)

where p, is the i-th root of Ai'(-p) -- 0, and ri, T/(°)(w) and fi(°)(n) are given by (E.20),

(E.21) and (E.30), respectively.

In the next section, numerical solutions for the LUBLE are compared to the asymp-

totic eigenfunction ¢1 in order to extract values of the receptivity coefficient C1. The

two most convenient points of comparison are the unsteady component of the wall shear,

¢,m(r/= 0), and the oscillating boundary-layer thickness which is related to the value of

the streamfunction far from the wall, ¢(7/---, co). For the first eigensolution, Pl = 1.01879

and (4.33) gives

%b_(v/ = 0)-_ 0.4356(1 + i) exp(T(°)(w)) [1 + O (w-W+a)] , (4.34)

with

1 (0) w [1 O , (4.35)

_-t = -0.6921 + 1.9878(1 - 6.182u2)iS (4.36)

The exponent for the first neglected term in (4.34) and (4.35) is -3'2 + 3 = -0.774.

This term is followed by a sequence of closely-spaced correction terms of O(w -x In 2 w),

O(w -1 lnw) and O(w-1), as can be seen from the analysis presented in Appendix E.

Before proceeding to numerical solutions of (4.26), we first consider the validity of

the LUBLE. While the eigenfunctions obtained here are uniformly valid solutions for the

LUBLE as _ ---, co, they are not uniformly valid large-_ solutions of the full equations gov-

erning the development of the viscous flow. Since T c( _3 at leading order, the wavelengths

of the eigenfunctions decrease with distance downstream, increasing the importance of

terms involving streamwise derivatives. When ( = O(1/e), terms on the right-hand side

of (4.15), which were neglected in forming the LUBLE, now become significant. An ir-

rotational layer outside the mean boundary layer, driven by the oscillating displacement

thickness of the eigenfunction, must then be considered, and the pressure gradient im-

posed by the motion in this outer layer appears in the leading-order equations governing

the wall layer. This coupled viscous-inviscid interaction has the triple-deck structure,

corresponding to the small-e asymptotic approximation to the Orr-Sommerfeld equation

in the vicinity of the lower branch. A complete treatment of the linear development of
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the instability wave would requirean asymptotic solution for the Tollmien-Schlichting
waveof the Orr-Sommerfeldequation, taking accountof the meanpressure-gradientdis-
tribution on the airfoil. However,for O(1) values of S, with e and 6 small quantities of

the same order, the Orr-Sommerfeld region is influenced by the full airfoil camber and

thickness distributions, necessitating a general development that does not seem justified

in the present context.

In this chapter we restrict ourselves to examining only the receptivity process, and

the remainder of the chapter is concerned with determining the receptivity coefficient C1

as a function of the nose radius parameter S, the aerodynamic loading parameter #, and

the characteristics of the free-stream disturbance. This is accomplished by comparing

numerical solutions with the asymptotic solutions obtained above.

4.4 Free-stream Disturbances

In order to calculate the unsteady flow in the boundary layer, the inviscid flow field which

drives the unsteady motion in the boundary layer must be determined. In this section we

consider the inviscid flow field produced by the interaction of a free-stream acoustic wave

with the airfoil. The acoustic wave is assumed to be incident on the airfoil at an angle 8

with respect to the airfoil chord, as illustrated in figure 1. The slip velocity and surface

pressure fields generated by this interaction drive the unsteady motion in the boundary

layer, leading to the generation of a Tollmien-Schlichting wave. Since the outer inviscid

flow is irrotational, the unsteady pressure field is easily related to the unsteady velocity

field. Thus, we present results for the unsteady slip velocity in the leading-edge region.

For a low Mach number flow, the acoustic wavelength 27rc/_ is long compared to the

hydrodynamic length scale U_/w. Thus, outside the boundary layer, the unsteady flow in

the vicinity of the leading edge is incompressible and irrotational. Potential flow theory
then shows that this local flow has the form

us(w) = _(8)-_ + _a(O)S-½ h (4.37)

where h 2 = 1 + (w - #)2. Noting that w - # = _, the parabolic coordinate with origin

at the leading edge, it is seen that (w - #)/h and 1/h correspond to purely symmetric

and anti-symmetric flow about the leading edge, respectively. The coefficients _ and _,

multiplying these eigenfunctions are independent of the nose geometry, but depend on

the free-stream disturbance, being determined by global features of the unsteady flow.

The S-½ factor is included in the anti-symmetric term in order to retain consistency of

notation with chapter 2. Expressions for the coefficients _ and _a can then be taken

directly from chapter 2.

The nature of the unsteady interaction of the acoustic wave with the airfoil depends

upon the magnitude of the acoustic reduced frequency k = wb/c, where c is the speed

of sound in the undisturbed medium. For extremely low Mach numbers, the acoustic

wavelength is long not only compared to the hydrodynamic length scale, U_/_, but also

compared to the airfoil chord, i.e. k << 1. The unsteady interaction of the acoustic

wave with the airfoil can then be analyzed using the classical unsteady airfoil theory for

incompressible flow, giving

1

_, = cos O, _ca = a5 sin 0 (4.38)
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wherea = wb/Ue is the aerodynamic reduced frequency. If we consider the other limiting

case, wb/c >> 1, the acoustic wavelength is then short compared to the airfoil chord, and

the interaction of the acoustic wave with the leading edge can be analyzed by taking

the airfoil chord to be semi-infinite. As in the first case, on the scale of the acoustic

wavelength, the airfoil appears at leading order as a zero-thickness plate and the problem

reduces to the classical Sommerfeld diffraction problem. Matching to the local solution

in the vicinity of the leading edge, then gives

2e-¼i _r

_.m'= cos0, _;a (rrMe)½ sin ½0, (4.39)

where Me = Ue/c is the Mach number of the mean flow, which has been assumed small.

As described in chapter 2, writing ¢ = n+¢s + _;,,¢a, and substituting into (4.26), it

follows that the receptivity coefficient for the upper surface is given by

c, =  s(o) c,(s,,) +  o(o) Ca(S,,), (4.40)

where C, and Ca are extracted from the solutions of

_'(¢_) = S½(iSh2(w-#)+#-2W+lZ(W-#)2)}l+n w2 -h-_
.T'(¢a) iSh 2 -- I _2--

(4.41)

respectively, with 9v defined in (4.26). Here C, is a measure of the receptivity due to that

component of the free-stream disturbance which leads to symmetric flow in the vicinity

of the leading edge, and Co is a measure of the receptivity arising from that component of

the free-stream disturbance which leads to anti-symmetric flow about the leading edge.

The separation into components of the free-stream disturbance which are symmetric

and anti-symmetric about the leading edge is a natural choice for consideration of airfoil

thickness effects in the absence of aerodynamic loading, since in this case the symmetric

and anti-symmetric components exhibit quite different dependence on the nose radius

parameter S = wr,/Ue. Specifically, when/z = 0, the symmetric component of the slip

velocity (4.37) varies monotonically from zero at _ = 0 to 1 as _ _ oo, for all values of

S. In contrast, for the anti-symmetric component of (4.37), the magnitude of the slip

velocity near the leading edge is proportional to S -1/2 and hence becomes large when

the nose radius is small, due to flow around the 'sharp' edge. The mean flow stagnation

point is at _ = 0 when # = 0, so that this difference in behavior is also reflected in the

initial conditions for the numerical solutions of (4.41) for ¢, and Ca. The behavior of the

corresponding receptivity coefficients, Cs(S, 0) and Ca(S, 0), was discussed in chapter 2.

When aerodynamic loading and airfoil thickness effects are combined, the situation

is more complex. The mean flow stagnation point is then at _ = -# (or w = 0), so that

both components of (4.37) have a finite unsteady slip velocity across the stagnation point

where the solutions of (4.41) are started. In this case, an alternative separation of the

unsteady slip velocity into components that are locally symmetric and anti-symmetric

about the mean flow stagnation point can be considered. This takes the form

w l 1

u, = e;+_- + (_, - (4.42)S_h
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wherethe first componentvanishesat the meanflow stagnationpoint while the second
componentis finite. The correspondingdecompositionof the receptivity coefficient is

1

Ct = _,C, sp + (_ - #S_,)Cosp, (4.43)

where Cssp and Casp are extracted from the numerical solutions of

9v(tbssp) = S½w(iSh2-2(l+#(#-w))) }h2_-(¢asP) = iSh2 _ l + #2 - w 2
h 2

(4.44)

Of course, the symmetry and anti-symmetry about the mean flow stagnation point of

the two components of the slip velocity (4.42) is only a local property, since h is not a

symmetric function of w. However, for large values of S, the region of receptivity should

be concentrated near the stagnation point, so that one might expect the differences in the

local characteristics of these two components of slip velocity to be reflected in differences

in the behavior of the corresponding receptivity coefficients, Cssp and Casp. This is

explored in the next section.

The two sets of Receptivity Coefficients are related by

Cs = C, se -#S½Casp, Ca = Case. (4.45)

In the numerical computations, it proves convenient to solve (4.44)for _-)sSP and Cas,,

thereby obtaining Cssp and Casp,and to calculate C, and Ca from (4.45). In the next

section, the variation of the receptivity coefficients with the angle-of-attack parameter #

and the nose-radius parameter S is investigated numerically.

4.5 Numerical Results

In §4.3, generalizations of the Lam-Rott asymptotic eigenfunctions were obtained, taking

account of the pressure gradient due to leading-edge thickness and mean aerodynamic

loading. The asymptotic analysis determines the form of these eigenfunctions, but not

their coefficients Ci. The coefficients are determined by the characteristics of the free-

stream disturbance in the LUBLE region, _ = O(1). The first of these eigenfunctions

is the precursor of the Tollmien-Schlichting wave. Thus, the free-stream disturbances

influence the amplitude of the Tollmien-Schlichting wave only through the coefficient

C1. It appears that the receptivity coefficient C1 for a particular free-stream disturbance

can be determined only by numerically solving the LUBLE over the full range of _ and

examining the behavior for large _.

Numerical solutions are required for both the mean flow, governed by the nonlin-

ear partial differential equation (4.23), and the linearized disturbance, governed by the

LUBLE (4.26). For convenience, the numerical solutions are computed in terms of the

variable w rather than _ (see (4.20)). Since the governing equations are parabolic, the

solutions were computed by marching away from the mean flow stagnation point (w = 0)

using a Keller Box scheme (Keller & Cebeci 1970). The initial conditions at w = 0 cor-

respond to the steady Hiemenz flow and its quasi-steady linear perturbation. As noted

earlier, in order to consider receptivity on the upper and lower surfaces of an airfoil at a
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positive angleof attack wherethe stagnationpoint lies on the lowersurface, it is more
convenientto considerw > 0 throughout and take # > 0 for the upper surface and # < 0

for the lower surface.

4.5.1 Mean flow

The development of the mean flow is controlled by the mean pressure gradient parameter,

1 - #w + #2

/3 = 1 + (w- #)2" (4.46)

The pressure gradient parameter is plotted as a function of w for three values of tt in

figure 4.2. For # = 0, the pressure gradient is everywhere favorable, falling off mono-

tonically away from its stagnation point value (/3 = 1) and approaching zero as w -2 far

downstream. The behavior for negative w (the lower surface) is identical to that for

positive w. When aerodynamic loading is introduced, the magnitude of the favorable

pressure gradient along the upper surface is increased in the region from the stagnation

point (w = 0) to the nose (w = #). The pressure gradient parameter then falls rapidly

to zero at w = # + #-1, and the pressure gradient is adverse for all locations farther

downstream. The adverse pressure gradient decays to zero more slowly with downstream

distance, becoming proportional to w -1 far downstream. In contrast to the complicated

behavior of the pressure gradient on the upper surface in the presence of aerodynamic

loading, the pressure gradient on the lower surface (w < 0) remains everywhere favorable.

However, when # is non-zero the pressure gradient on the lower surface decays only as

Iw1-1 for large distances, and the magnitude of the pressure gradient increases with #.

As the aerodynamic loading parameter is increased, the position of the minimum wall

shear moves towards the nose (figure 4.3a), at the same time as the magnitude of the

minimum wall shear decreases (figure 4.3b). For steady two-dimensional flows, zero wall

shear corresponds to boundary-layer separation. From Ruban (1982) and Stewartson,

Smith &: Kaups (1982), the minimum wall shear close to the critical angle of attack is

given by

¢,,(wm, = 0) oc -

Fitting this behavior to the curve in figure 4.3(b) suggests that separation occurs at

#c _ 1.15. More accurate determination of separation criteria would require an improved

numerical scheme, since the current method breaks down near the onset of flow reversal.

The coefficient Bx(#), which appears in the functions p3(r/) and ps(rl) arising in the

large-w asymptotic form of the mean flow (4.29), is undetermined by the asymptotic

analysis. To determine Bl(#),the wall shear ¢,m(w,0) predicted by the asymptotic ex-

pansion (4.29) is compared with the wall shear obtained by numerical solution of (4.23),

for each value of # considered. In fact it proves necessary to modify (4.23) and solve

for ¢(w, 77) - F(r/) in order to obtain the required accuracy when extrapolating for BI

in the large-w limit. In figure 4.4, it is seen that Bl(0) _ 2.08 and that BI(#) increases

approximately linearly with #, for -0.8 < # < 0.8, before decreasing for # > 0.9. The

value of B1 is related to the 'virtual origin' of the boundary layer, as can be seen by

noting that the function r/F I- F which B_ multiplies in P3 corresponds to the first eigen-

solution of Libby & Fox (1963). Their first eigensolution is the streamwise derivative of

the streamfunction for the Blasius boundary layer. The value Ba (0) relates to a shift of

virtual origin due to the favorable pressure gradient on the nose of the parabola in the
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Figure 4.2: Streamwisevariation of the mean pressuregradient parameter, B(w), for

# = 0.0, 0.5, 1.0.
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Figure 4.3: Effect of aerodynamic loading parameter on the wall shear: (a) Position of

minimum wall shear, win; (b) Magnitude of minimum wall shear, ¢,m(wm, r/= 0).
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Figure 4.4: Computedvaluesof Bl(#), the coefficient appearing in the expansion of the

base flow far downstream (4.29).

absence of aerodynamic loading; the dependence on # relates to an additional shift of

the virtual origin in the presence of aerodynamic loading.

4.5.2 Unsteady flow

The value of the Receptivity Coefficient C1 (S, #), for a particular free-stream disturbance,

is obtained by comparing numerical solutions of the LUBLE to the asymptotic forms

(4.34) and (4.35).

The method used to obtain numerical values for Cs and Ca is described in chapter 2.

For real w, the real part of Ti (°) (w) is negative. Thus, the asymptotic eigenfunctions (4.33)

decay exponentially with downstream distance, while the particular solution Cv remains

O(1). In addition, the eigenfunctions are inverse ordered, so that the function ¢lwhose

coefficient is desired decays exponentially faster than all the other eigenfunctions. To

circumvent these difficulties, the streamwise integration is extended into the complex

plane in order to make the first asymptotic eigenfunction dominant. Choosing -5rc/12 <

arg w < --TO�12, the first eigenfunction becomes exponentially large compared to the other

components of the unsteady boundary layer solution. However, the pressure gradient

parameter/3, defined by (4.24), has first-order poles at w = # + i. Thus for larger values

of #, arg w must be chosen with care in order to avoid an integration path which passes

close to the singularity at w = # - i. For all the values of # considered, integration
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wasperformed for arg w = -0.1rr and arg w = -0.15rr, while for smaller values of/,,

results for arg w = -0.2rr and arg w = -0.25rr were also obtained. For these choices

of arg w, the solution _b grows exponentially with Iw]. To avoid difficulties associated

with the rapid growth of ¢ as a function of Iw[, in our numerical scheme we solve for

f = !bexp(-T(°)) rather than !b. This allows the numerical solution to be continued

much farther downstream while retaining accuracy (Heinrich & Kerschen, 1989).

Using the wall shear (4.34) as the basis for comparison, we define

II

c(#,s,w) = f u=('7= °)
f_, , (4.47)

where f_' = 0.4356(1 + i) (Sw2/2) "1+_. Since the argument of w was chosen so that the

first asymptotic ei)_enfunction dominates other components of the solution when w >> 1,
f "_ C1¢1 exp(-T_ v)) and hence

In 2 w In w 1 ]"_ C1 1 + Clwv.,,_ + c2_ + c3_ + c4-- +... as w _ cx_. (4.48)C
W W W

The value of CI(#, S) is then obtained by extrapolation. However, for the larger values

of # and S considered, a small error in the computed value of BI leads to a large error in

C(#, S, w) for w >> 1, and hence limits the accuracy of the extrapolated value of C1. In

the analysis of chapter 2 for a symmetric airfoil in the absence of aerodynamic loading

(# = 0), arg w = -0.25rr was used throughout. With this particular choice, any error in

the extrapolated value of ICI[ due to inaccuracy in the numerically determined value of

B1 is eliminated. Clearly this advantage is lost in the present study. However, C1 should

be independent of the value of arg w used in the numerical integration. By using two

different values of arg w in the present analysis, any significant error due to inaccurate

determination of Bl should be readily identifiable. Unfortunately, for the larger values

of # and S considered, there is still uncertainty in the numerical value of C1 obtained by

extrapolation. For # > 0.9, the relative error may be as large as 25%.

In figure 4.5, the moduli of the receptivity coefficients, IC,] and [Ca], for free-stream

disturbances symmetric and anti-symmetric about the nose of the body, respectively, are

plotted as a function of the aerodynamic loading parameter #. Results are presented

for two Strouhal numbers, S = 0.1 and S = 0.3. The overall patterns of the variation

with the aerodynamic loading parameter # are qualitatively similar for IC_I and ICa[.

However, the receptivity levels for anti-symmetric forcing are somewhat larger than those

for symmetric forcing. As the aerodynamic loading parameter is increased from zero, the

receptivity level on the upper surface (# > 0) decreases until # _ 0.7. The receptivity

then increases to a local maximum in the vicinity of # _ 0.9, with a subsequent decrease

in receptivity level as # is increased further. The quantitative accuracy of the receptivity

coefficient for values of # beyond 0.9 is uncertain, however. As explained earlier, results

close to the critical condition for boundary layer separation are prone to inaccuracies,

due to difficulties in the extrapolation to large values of w, especially at higher values S.

A further difficulty is the long downstream distance required for the boundary layer to

recover from the region of low wall shear induced by the strong adverse pressure gradient

just downstream of the nose.

The variations in both [C_[ and ]C_[ as a function of# are much larger at S = 0.3 than

at S = 0.1. For S = 0.3, the receptivity levels on the upper surface drop significantly
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Figure 4.5: Variation of the magnitude of the receptivity coefficient as a function of

the aerodynamic loading parameter #, for two Strouhal numbers, S = 0.1 and 0.3.

(a) Receptivity due to the free-stream disturbance component symmetric about the

nose, ICsl; (b) receptivity due to the free-stream disturbance component anti-symmetric

about the nose, ICal.
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for modest valuesof aerodynamicloading. Both ICsl and [Ca] are lessthan 0.02 in the
region0.2 < # < 0.6. (It is not possibleto provideprecisevalues ill this region, because
the errors that arise in extrapolation areabsolute rather than relative.) The subsequent
rise in receptivity levelnear # _ 0.9 is particularly striking for the caseof anti-symmetric
forcing with S = 0.3, where ]Ca] exceeds 4.

On the lower surface of the airfoil ( # < 0), the receptivity coefficients increase as

aerodynamic loading is introduced, to a global maximum in the vicinity of # _ -0.4.

The receptivity coefficients then decrease toward zero as # approaches -1. For negative

#, the value of the receptivity coefficient can be extracted from the computational results

with a good degree of accuracy, since the pressure gradient is everywhere favorable and

decays monotonically to zero, with no region of low wall shear.

The presence of aerodynamic loading adds significant complexity to the development

of the unsteady flow, especially on the upper surface where the boundary layer first

experiences a rapid acceleration, followed by a rapid deceleration and then a slow recovery.

Thus it is difficult to provide a simple explanation for the dependence of the receptivity

coefficient on the aerodynamic loading parameter. For the symmetric mean flow case

(# -- 0) considered in chapter 2, the mean pressure gradient is everywhere favorable,

monotonically decreasing from its maximum value at the stagnation point to zero far

downstream as seen in figure 4.2. An increase of the leading-edge nose radius (or Strouhal

number) was found to decrease the receptivity coefficient. As a speculative explanation

of this behavior, it was suggested that a favorable pressure gradient in the region where

the receptivity occurs tends to reduce the receptivity level. At larger values of S, the

region _ = O(1) where the receptivity occurs is concentrated closer to the airfoil nose, in

the region of higher favorable pressure gradient. Hence, the decrease in receptivity for

increasing S found in chapter 2 is consistent with this explanation.

However, certain features of the results presented in figure 4.5 are inconsistent with

this simple explanation. One feature which cannot be explained in this way is the large

positive peak in receptivity level which occurs on the lower surface at # _ -0.4. It can

be seen from figure 4.2 that the pressure gradient is negative everywhere on the lower

surface, and that except for a small region very near the stagnation point, the magnitude

of the pressure gradient increases monotonically with I#t • Thus, if the speculative

explanation discussed above were valid, one would expect the receptivity coefficient to

decrease monotonically with I#l in the region # < 0. A second feature which requires

further explanation is the rise in receptivity level in the vicinity of # _ 0.9, followed by

a subsequent decrease for larger values of #. We address this latter feature first.

As discussed in §4.1, receptivity comes about through the interaction of free-stream

disturbances with short-scale streamwise gradients in the boundary layer. In the leading-

edge mechanism, the receptivity is concentrated in a region of length O(U_/w) extending

downstream from the mean flow stagnation point. However, for values of # approaching

the critical value for the onset of separation, #c _ 1.15, additional short-scale streamwise

variations develop in the mean flow in the vicinity of the location of minimum wall shear,

w = win. From figure 4.3, it is seen that wm --_ 5 for values of # _> 0.8. The corresponding

distance from the mean flow stagnation point is sm _ 15rn, so that _s,,/U_ _ 15S. Thus,

for low values of S, the minimum wall shear point lies within the leading-edge receptivity

region, and the receptivity which occurs in the vicinity of wm can be calculated by the

present method, while at higher values of S the minimum wall shear point lies downstream

of the leading-edge receptivity region.
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The marginalseparationreceptivity analysisof Goldstein et al (1987) assumes #c-# =

O(c_) and S = O(e-l). The scaling with respect to _ leads to an interactive viscous-

inviscid structure for the mean flow in the vicinity of win, but with a local streamwise scale

of O(c 2) as compared to the O(e 3) scale of standard triple-deck theory. The fact that the

length scale of the low wall shear region is larger than that for standard triple-deck theory

leads to additional complexity relative to the localized receptivity analysis of Goldstein

(1985), in which the variations in surface geometry and the Tollmien-Schlichting wave-

length both have the triple-deck scale. Specifically, in Goldstein's marginal separation

analysis, the instability waves in the marginal separation region are interactive but their

wavelength is shorter than the local scale for the mean flow. This leads to an exponen-

tially small initial amplitude for the instability wave, but the wave undergoes exponential

amplification in the marginal separation region and somewhat downstream, so that the

marginal separation receptivity mechanism may well be important in applications.

Our analysis assumes a high Reynolds number _ << 1 with #c-# = O(1), so that the

mean flow remains non-interactive in the low wall shear region. Thus, we cannot make

direct comparisons with the analysis of Goldstein et al (1987). However, as discussed

above, at sufficiently low Strouhal numbers the region of low wall shear is contained

within the leading-edge receptivity region, which is treated by our theory. It is then

natural to investigate the relative importance of the receptivity in the region of low wall

shear relative to the receptivity near the mean flow stagnation point.

We investigate the relative importance of receptivity near the mean flow stagnation

point and receptivity in the region of low wall shear by artificially switching off the

unsteady slip velocity at various downstream positions, using a smooth transition func-

tion. Here we are focusing on the relative receptivity for different free-stream disturbance

functions, and this can be calculated very accurately even when # is large. Essentially,

the development of the unsteady disturbance along a ray in the complex w plane con-

tains two phases. First, over a relatively short distance the asymptotic eigenfunction ¢_

grows exponentially relative to the other components of the solution and becomes the

dominant component. Second, over a much larger distance the asymptotic eigenfunction

evolves algebraically toward its large-w form (4.33). Both phases of the development of

the unsteady field must be calculated accurately to determine values of the receptivity

coefficient. In contrast, a calculation of only the first phase is adequate to determine

relative receptivity levels, since the same asymptotic behavior of the eigenfunction arises

in the second phase independent of the form of the free-stream disturbance.

Thus consider a modified slip velocity

= w0) (4.49)

where the smooth transition function _(w, w0) is defined by

1 - tanh(z) w - w0 w0

• (w, w0) = 1 - tanh(z0)' z- di_ ' z0 = _w" (4.50)

The modified slip velocity is the same as the physical slip velocity at the steady stagnation

point (w = 0), then decreases smoothly and monotonically to zero in the vicinity of

w = w0. The transition occurs over a w-scale of _. The corresponding unsteady pressure

gradient is then given by

d_ cb dp _ wu_
d---w= _ww -ap,--_-- (4.51)
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and we extract the modified Receptivity Coefficients C,(p, S, w0, 6,;) and Ca(#, S, w0, _w)
from the solutions of

.T'(¢,) = S½ {42(iSh2(w-#)+ p-2w+#(w-#)2) -_ww(w-#)} }h2
9r(¢a) = ¢( iSh2- 1+#2-w2)_-i -¢ww, (4.52)

respectively. By varying w0, it is hoped that the relative contribution of different stream-

wise regions to the total receptivity can be determined. However, the introduction of a

new artificial stream-wise scale (i.e. _w) clearly provides another possible source of recep-

tivity. Thus care must be taken in choosing _w, small enough that the different regions of

receptivity can be differentiated, but not so small that the receptivity associated with the

rapid change in unsteady slip velocity dominates other contributions to the receptivity.
1

Moreover, q_ is singular when w = w0 - _rc_L Hence our choice of _ is restricted by

the condition _w > 2wotan(argw)/zr, which ensures that the integration contour does

not pass through any such singularity.

To examine the contributions to the receptivity on the upper surface when the body

is close to the critical angle-of-attack, in figure 4.6 we plot the magnitude of

=
c,(#,s)

(4.53)

for # = 1.0 and 8_ = 3.0. The results are plotted as a function of the filter switch-off

point w0, for two Strouhal numbers S -- 0.1 and 0.3. The value of IFI is seen to approach

one as w0 increases, indicating that the receptivity process is complete. The receptivity

region would be expected to be concentrated closer to the mean flow stagnation point at

the higher frequency S = 0.3, and this behavior is indeed seen in the plot of IFsl. Upon

closer inspection, a similar trend can be seen in the plot for ]F_ I. The minimum wall

shear point w = 4.54 is marked with a vertical dashed line on the plots. For S = 0.3, the

receptivity process appears to have been completed by the time the region of low wall

shear is reached. In contrast, for S = 0.1, IF, I does not approach the value of one until

w0 is approximately 7. Thus, in this case the region of low wall shear appears to make

some contribution to the total receptivity. This is not unexpected, since the region of

receptivity aJs/U_ = O(1) extends farther downstream by a factor of three for the case

S = 0.1 as compared to the case S -- 0.3. However, although the receptivity extends out

through the region of low wall shear for the case S = 0.1, there is no indication in figure

4.6(a) of a concentration of receptivity in the region of low wall shear. It is interesting

to note that ]P,] is not a monotonically increasing function of w0. This feature indicates

that, at least for IF, I, large receptivity close to the leading edge is partially cancelled

out by receptivity processes farther downstream. We should note that some caution is

necessary in evaluating the results for S = 0.1, since in that case the wavelength of the

unsteady motion is longer and the results could have been influenced more by the finite

value of the filter width _.

The results presented in figure 4.6 show that the receptivity region extends farther
downstream at lower values of the Strouhal number. In order to examine the extent

to which it is possible to scale this feature out of the results, in figure 4.7 we plot IF, I
1

as a function of S_Wo, for a constant filter width in terms of the receptivity variable_
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Figure 4.6: Plot of IFI for # = 1.0, _w = 3.0, and S = 0.1 (solid line) and S = 0.3 (dashed

line), illustrating the relative receptivity as a function of the streamwise location of the

filter, w0, for (a) component of the disturbance symmetric about the nose; (b) component

of the disturbance anti-symmetric about the nose. The dotted line marks the position of

minimum wall shear, w --- 4.54.

_ = $½6,, = 0.96. Results for presented for two values of the Strouhal number, S = 0.1

and 0.3. The case # = 0 is shown in figure 4.7(a). Here, plotting the results in terms of

a variable scaled by the receptivity length scale has produced an excellent collapse of the

results for the two values of S. In figure 4.7(b) for the case # = 0.5, the collapse is not as
±

good, with the curve for S = 0.3 extending out to a somewhat larger value of S2wo before

approaching the value of one. This trend which appeared in figure 4.7(b) is magnified

further in figure 4.7(c) where results for # = 1.0 are presented. However, in all cases

the leading-edge receptivity process is completed by the time a downstream distance of1
S2wo -- 3 is reached. A number of factors may contribute to the lack of collapse in figures

4.7(b,c). First, the flow along the upper surface of the airfoil becomes successively more

complex as the aerodynamic loading parameter is raised, so that there is not even an

approximate similarity behavior for the mean boundary layer whose streamwise gradients

are responsible for the receptivity process. Second, the strong acceleration of the flow

between the stagnation point and the nose of the airfoil may introduce a significant shift in

the 'virtual origin' of the boundary layer which could affect the streamwise development

of the receptivity process. Thus, it seems unlikely that a collapse of the results for

different frequencies could be achieved for cases with significant aerodynamic loading.

Similar calculations were performed for # = -0.4 and -0.8. The results for IFI
1

indicate that the receptivity on the lower surface is also concentrated in the region S'_wo <

3. The calculations did not produce any features which provide an explanation for the

high receptivity levels in the vicinity of # = -0.4.

Despite the fact that not all aspects of the results are well understood, a number of

general conclusions can be drawn. It is clear that modest levels of aerodynamic loading in
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the leading-edgeregioncausea decreasein the receptivity levelfor the boundary layeron
the upper surfaceof the airfoil, and an increasein receptivity for the lowersurface.The
effectsare more pronouncedat higher valuesof the Strouhal number, where the region
of receptivity is concentratednearerthe stagnation point. Thus, it seemsreasonableto
supposethat the effectsare related to the behaviorof the mean flow pressuregradient
nearthe stagnationpoint. Forthe uppersurface,the introduction of aerodynamicloading
leadsto a movementof the stagnationpoint toward the lowersurface,and an increased
favorablepressuregradient in the regionbetweenthe stagnationpoint (w = 0) and the

leading edge (w = #). The decrease in receptivity level associated with these effects is

consistent with the results obtained in chapter 2 for the case # = 0. The decrease in

receptivity level on the upper surface in the presence of modest aerodynamic loading

is of significance for applications such as laminar flow design. The subsequent rise in

receptivity for values of # nearer the critical value for separation also has important

practical implications. For the lower surface, an argument that the increase in receptivity

with modest aerodynamic loading is related to the pressure gradient near the stagnation

point appears much more tenuous, since the changes in the pressure gradient near the

stagnation point are not pronounced. However, from a practical standpoint, receptivity

levels for the lower surface are usually of less interest, since the pressure gradient on the

lower surface is typically favorable and the instability waves have much smaller growth
rates.

It must also be kept in mind that, for leading-edge receptivity, quantities such as the

instability wave amplitude at the neutral stability point depend crucially on a combi-

nation of receptivity and stability properties. There can be a subtle interplay between

these, since a small change in growth/decay rate can counteract a significant change in

receptivity level, for example. In fact, for the leading-edge receptivity mechanism, even

the issue of the most appropriate definition of receptivity level is not straightforward.

Experimental and computational researchers often favor a definition based on the lower

branch amplitude. This is certainly of practical utility and has advantages with respect

to measurements, but it does not distinguish between the receptivity and stability as-

pects of the disturbance development. The definition we have adopted has the advantage

of separating the receptivity aspects from stability considerations, but of course the re-

sults must be combined with a stability calculation in order to predict amplitudes in the

Orr-Sommerfeld region farther downstream.
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Chapter 5

Conclusions

In this report, we have examined the influences of airfoil thickness and mean aerodynamic

loading on leading-edge receptivity to acoustic free-stream disturbances. A high Reynolds

number asymptotic analysis (e = (wv/U2)-_ << 1) has been developed for the case of a

two-dimensional airfoil with a parabolic leading edge. The airfoil is assumed thin (5 << 1)

and the mean flow Mach number M = U/c is assumed small. The receptivity process

takes place in the region of the boundary layer where the distance from the stagnation

point is O(U/w). Previous analyses of leading-edge receptivity considered the case of the

Blasius boundary layer on a semi-infinite flat plate. In the present analysis, we assume

that the radius of curvature r,, of the airfoil nose is O(U/w). Thus, the leading-edge

receptivity process takes place in the vicinity of the airfoil nose, and the receptivity

coefficient depends on the thickness distribution of the airfoil only through the Strouhal

number, S = wrn/U, which has O(1) values.

For a symmetric airfoil at zero angle of attack, the mean flow is symmetric about

the leading edge and the receptivity characteristics on the two sides of the airfoil are

the same. In contrast, for an airfoil with camber or non-zero angle of attack, there is

generally a mean flow component around the leading edge and the boundary layers on

the two surfaces of the airfoil have quite different characteristics. For S = O(1), the

leading-edge receptivity process depends on the mean aerodynamic loading only through

a parameter related to the local flow in the vicinity of the airfoil nose. The aerodynamic

loading parameter which enters the leading-edge receptivity analysis is

2 1

# = 2a_(5 b/rn)_, (5.1)

where b is the airfoil semi-chord and a, is an effective angle of attack parameter for

the leading-edge region, discussed below. An aerodynamically loaded body typically has

a mean flow component around the leading edge, from the lower surface to the upper,

corresponding to positive values of a, and #. The parameter # is a measure of the

asymmetry of the mean flow in the leading-edge region. Separation of the boundary

layer, on the upper surface just downstream of the leading edge, occurs when # reaches

the critical value #c _ 1.15. When discussing results below, positive values of tt are

taken to correspond to receptivity on the upper surface for a typical aerodynamically

loaded body, while negative values of # correspond to receptivity on the lower surface for

a typical aerodynamically loaded body.

The parameter # is seen to depend on the airfoil thickness ratio 5, semi-chord b and

nose radius rn, in addition to the effective angle of attack parameter ae. A brief discussion
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of thesedependenciesseemsworthwhile. The stren_h of the mean flow component
around the leadingedgedependson both the geometricangleof attack and the camber
distribution of the airfoil; thesedependenciesarecontainedin the parametera_, defined
by (4.8). For a thin airfoil, the camber and angleof attack must be small in order to
avoid flow separation; hence,in defining c_,the small parameter_ hasbeen extracted
from the physical angleof attack and from the camberfunction, so that _ = O(1). For

a thin airfoil with a parabolic nose, the nose radius of curvature rn is O((i2b), so that the

quantity under the radical is also O(1). Physically, when the airfoil thickness is decreased

the nose radius also decreases, leading to higher flow velocities around the sharper edge,

so that the camber and/or angle of attack must be decreased correspondingly in order

to avoid flow separation.

The asymptotic structure for high Reynolds number (e << 1) involves two stream-

wise regions. In the first region, corresponding to downstream distances of O(U/w),

the unsteady component of the motion in the boundary layer is governed by the lin-

earized unsteady boundary layer equation (LUBLE). Here the inviscid pressure field and

slip velocity induced by the free-stream disturbances drives the unsteady motion in the

boundary layer. The leading-edge receptivity process takes place in the LUBLE region.

The second region is farther downstream, at distances of O(e-_U/w). In this region the

unsteady disturbance is governed by the triple-deck structure, corresponding to the high

Reynolds number asymptotic form of the Orr-Sommerfeld equation (OSE) in the vicin-

ity of the lower branch. The free-stream disturbance that is present in the OSE region

generates only a Stokes wave in the boundary layer, which is unrelated to the TS wave

eigensolution. Thus, the amplitude of the TS wave cannot be determined by analysis of

the OSE region alone. Rather, the amplitude of the instability wave is determined by

the asymptotic matching of the LUBLE and OSE regions.

The asymptotic matching of the LUBLE and OSE regions is carried out in the over-

lap region, 1 << wx*/U << _-2, where x* is the dimensional distance from the stagnation

point. (The analysis was carried out in a parabolic coordinate system, but the physi-

cal variable x* is utilized in this discussion for convenience.) Thus, the overlap region

corresponds to distances 'far downstream' in the LUBLE region, but 'far upstream' in

the OSE region. Far downstream in the LUBLE region, the unsteady flow consists of

a generalized Stokes wave driven by the local unsteady pressure gradient in the free

stream, plus an infinite set of asymptotic eigensolutions, _Pi. These asymptotic eigen-

solutions were first found by Lam & Rott (1960) for the case of the Blasius boundary

layer. The asymptotic eigensolutions of the LUBLE obtained in the present work are

generalizations of the Lam-Rott expression, taking account of the influences of airfoil

thickness and aerodynamic loading. The Lam-Rott eigensolutions are 'asymptotic' in

the sense that they exist only for wx*/U >> 1, where the mean flow varies slowly in the

streamwise direction relative to the scale U/w. The Lam-Rott eigensolutions contain ve-

locity but not pressure fluctuations, and are uniformly valid solutions of the LUBLE for

wx*/U >> 1. (However, they are not uniformly valid solutions to the full Navier-Stokes

equations, as discussed below.) The asymptotic analysis for wx*/U >> 1 determines the

form of the Lam-Rott eigensolutions, but not their coefficients Ci. These coefficients can

be obtained only through a full solution of the LUBLE, which must be determined by

numerical methods.

The wavelengths of the Lam-Rott eigensolutions shorten progressively with distance

downstream. When the OSE region is reached (wx*/U = O(e-2)), the self-induced

73



pressurefield associatedwith the displacementthicknessof eachasymptoticeigensolution
becomessignificant, and the triple-deck structure replacesthe LUBLE as the correct
asymptotic approximation to the Navier-Stokesequation. The asymptotic matching of
the LUBLE and OSEregions in the overlapdomain 1 << aJx*/U << e -2 shows that the

first Lam-Rott eigensolution ¢1 of the LUBLE matches onto the TS wave eigensolution

of the OSE. Thus, the form of the free-stream disturbance and the geometry close to

the nose influence the amplitude of the TS wave only through the coefficient CI of the

first asymptotic eigensolution. Therefore, we call Cl the 'receptivity coefficient'. The

primary objective of this work is to determine the receptivity coefficient as a function

of the leading-edge nose radius parameter S, aerodynamic loading parameter #, and
free-stream disturbance characteristics.

In order to determine the receptivity coefficient, a numerical solution of the LUBLE is

obtained for specified values of the nose radius parameter S and the aerodynamic loading

parameter #. The free-stream disturbance must also be specified; it can be represented

as a superposition of components symmetric and anti-symmetric about the nose, as dis-

cussed below. The value of the receptivity coefficient C1 is then found by comparing

the numerical solution for large downstream distances (wx*/U >> 1) with the analytical

expression for the first asymptotic eigensolution, ¢1. However, this procedure cannot be

carried out for real values of x*, because the first asymptotic eigensolution becomes ex-

ponentially small far downstream. Moreover, the asymptotic eigensolutions are inversely

ordered, so that the higher-order eigensolutions ¢i, i = 2,3,... are exponentially large

compared to ¢1. Thus, it is extremely difficult to extract the coefficient C1 from the

numerical solution for real x*. This difficulty is circumvented by taking advantage of

the fact that the LUBLE is analytic in x*, and extending the computation into a region

of the complex x*-plane where the asymptotic eigensolutions grow exponentially with

downstream distance. The inverse ordering of the eigensolutions is also rectified by this

process, so that ¢1 is exponentially dominant far downstream, allowing its coefficient to

be extracted from the numerical results. A number of analytical features are exploited

in implementing the numerical computations, in order to increase the precision of the

results for CI. However, calculations for conditions very near boundary layer separation

are difficult, so that despite these efforts there is still uncertainty in the numerical value

of C1 for values of # near #c _ 1.15.

For sufficiently small amplitudes of the unsteady motion, the receptivity and the

initial growth of the instability wave are linear processes. Our theory addresses this linear

regime. Thus, it is natural to define the receptivity level as a ratio of the amplitude of

the instability wave in the boundary layer, or its upstream precursor, to the unsteady

motion in the free stream. For localized receptivity which occurs in the OSE region,

an instability wave is generated directly at the receptivity site (e.g. a short-scale wall

hump), so that the receptivity level can be expressed in terms of the instability wave

amplitude at that point. In contrast, for leading-edge receptivity, the receptivity process

occurs upstream in the LUBLE region. In this case the 'best' definition of receptivity

level is not so obvious. Various measures of receptivity can be considered. We have

chosen to define C1, the coefficient of the first Lam-Rott asymptotic eigensolution, as

the 'receptivity coefficient'.

Alternative definitions of receptivity level that have been considered in computations

and experiments are values based on the TS wave amplitude at the lower neutral-stability

point (branch I), or an extrapolation of the TS wave amplitude back to the leading edge.
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A receptivity leveldefinedin termsof theTS waveamplitude at the lowerbranchneutral-
stability point doesalloweasycomparisonwith experimentsor computations,but hasthe
disadvantagethat the resultsdependon both frequencyand Reynoldsnumber, making
presentationof the results much lesscompact. Extrapolation of the TS waveamplitude
back to the leadingedgeis not advisable, sincethe TS wave is not a valid solution of
the disturbance equations near the leading edge. In fact, in extrapolating back to the
leadingedge,the slowly varying amplitude A(x*) multiplying the mode-shape function

of the TS wave should be considered, and A(x*) is singular as x* ---, 0, becoming infinite

at the leading edge.

From a theoretical standpoint, the coefficient C1 of the first Lam-Rott asymptotic

eigensolution of the LUBLE is the most attractive measure of receptivity. This Lam-

Rott eigensolution evolves into the unstable TS wave farther downstream so that, when

appropriate scaling factors related to the asymptotic matching of the LUBLE and OSE

regions are introduced, C1 is also the coefficient of the TS wave. An extremely attrac-

tive feature of this receptivity measure is that C1 is independent of the frequency and

the (asymptotically large) Reynolds number, thus providing the receptivity results in

the simplest dimensionless form. The quantity C1 is determined by the unsteady flow

behavior upstream of the region of instability and therefore focuses on the receptivity

aspect of the unsteady flow development, with much less influence from the global stabil-

ity properties of the flow. Also, for fixed values of the frequency and Reynolds number,

variations in the receptivity coefficient Cl with changes in the free-stream disturbance

characteristics translate directly into variations in the TS wave amplitude.

The instability wave amplitude which is found for a given free-stream disturbance in

a specific situation depends on a number of processes. First, the free-stream disturbance

interacts with the body (and other surrounding surfaces, if present) to produce an inviscid

unsteady pressure gradient and slip velocity which drives the unsteady motion in the

boundary layer. Next, through the receptivity process, some of the energy contained in

the unsteady motion just outside the boundary layer is transferred to the first Lam-Rott

asymptotic eigensolution, which eventually evolves into the TS wave of the OSE region.

Obviously, both the inviscid processing and the subsequent receptivity process influence

the amplitude of the TS wave.

The present work has addressed receptivity to free-stream acoustic waves. The dis-

turbance velocity of the acoustic wave far from the airfoil has been utilized in normalizing

the receptivity coefficient C1. The acoustic wave is assumed to propagate in a direction

perpendicular to the airfoil span, so that the unsteady interaction is two-dimensional.

The angle between the direction of propagation and the airfoil chordline is denoted by

8. The Mach number has been assumed small, so that the acoustic wavelength is long

compared to the hydrodynamic length scale U/w for the unsteady motion. Thus, in

analyzing the LUBLE region, the flow can be considered incompressible.

Since S has been assumed O(1), only the characteristics of the free-stream disturbance

on the scale of the nose radius, r,_, are required. The incompressible irrotational flow in

the vicinity of the airfoil nose can be represented by a superposition of two components:

(a) a symmetric flow past the parabolic nose, and (b) an anti-symmetric flow around

the parabolic nose. The disturbance slip velocity which drives the unsteady motion

in the boundary layer can similarly be separated into symmetric and anti-symmetric

components, with coefficients _s(0) and _(0), respectively (2.50). Since the equations

governing the unsteady motion in the LUBLE region are linear, the response to the

75



symmetricandanti-symmetric componentsof the disturbanceslip velocity nearthe airfoil
nosecan be superposed,so that the receptivity coefficientcan be expressedin the form
(2.52)

c1 = + (5.2)

This expression effectively separates the effects of the inviscid processing (contained in

_, and _a) from the intrinsic receptivity of the boundary layer. The quantities C, and

Ca are the receptivity coefficients to the symmetric and anti-symmetric components of

the disturbance slip velocity, respectively. The receptivity coefficients C, and Ca are

universal functions which do not depend on the propagation angle of the acoustic wave

or the mean flow Mach number. Results for C_ and Ca are discussed below.

In a given physical situation, the behavior observed for the receptivity as a function

of various parameters may be influenced strongly by the inviscid processing of the dis-

turbance as represented by the coefficients _ and _a- In addition to the incidence angle

of the acoustic wave, _ and _a depend on the acoustic reduced frequency k = wb/c.

Relatively simple expressions for _ and _, can be obtained for the two limiting cases of

k << 1 and k >> 1, as discussed in section 2.4. The acoustic reduced frequency can be ex-

pressed as the product k = aM, where a = wb/U is the aerodynamic reduced frequency.

For extremely low Mach numbers, the acoustic wavelength is long not only compared to

the hydrodynamic length scale U/a_, but also compared to the airfoil chord. Then k << 1

and we obtain (2.58),

_ = cos 0, aa = a[ sin 0. (5.3)

Note that a = Sb/r,, which is a large quantity for a thin airfoil with S = O(1). The

second limit is that of M small but a very large. Then k >> 1 and the acoustic wavelength

is short compared to the airfoil chord (but still long compared to the airfoil nose radius).

For k >> 1, we obtain (2.62)

2 !o. (5.4)e 4 .

/_s = COSO, K;a = _ sin 2

In both limits, the coefficient for the anti-symmetric component of the disturbance is

large compared to the coefficient for the symmetric component. Basically, the unsteady

disturbance level near the airfoil nose is much larger for an oblique acoustic wave than

for a wave propagating parallel to the airfoil chord (0 = 0), due to the induced flow

around the relatively sharp leading edge of the thin airfoil. For k << 1, the size of

_a is determined by finite chord effects, while for k >> 1 the size of _a is determined

by compressibility effects. It should be noted that the dependence of _a on 0 is quite

different for the two limits k << 1 and k >> 1. These results are for the case of an

obliquely propagating acoustic wave in free space. When the acoustic field is contained

in an enclosed region, such as within a wind tunnel, more complicated behavior is found

(see Heinrich & Kerschen 1989).

In chapter 2, results for C,(S) and Ca(S) are presented for the case of a symmetric

mean flow past a parabolic leading edge (# = 0). The magnitude of Cs is plotted as a

function of S in figure 2.4. The magnitude of C_ at first rises slightly for very small S

(0 < S < 0.02), then decays monotonically with further increases in S. For S = 0.3,

the value of IC, I is only about 15% of its value for S = 0. The decay of IC, I appears

to be exponential in S, although this has not been verified analytically. The phase,
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arg(C_), also plotted in figure 2.4, increasesmonotonically with S. The increase in

arg(C,) corresponds to a lag in phase of the TS wave.

The magnitude and argument of the ratio of receptivity coefficients, A = C,,/C,, is

plotted in figure 2.5. The magnitude ]A I is approximately 6 in the flat-plate limit S _ 0,

where the anti-symmetric component of the slip velocity has a square-root singularity at

the leading edge. The value of IA] decreases rapidly as a finite nose radius is introduced,

relieving the singularity at the leading edge. Thus, the behavior of Ca for very small S is

quite different from that for C,, where a small rise in magnitude was seen. The behavior

of Ca for S << 1 is in fact singular, as discussed below. Beyond S = 0.05 the decline in

]A I becomes more gradual, the value of IAI remaining above 2.5 right out to S = 0.3. For

all values of S examined, the anti-symmetric component of the slip velocity was found

to be more effective than the symmetric component in generating a TS wave.

The important role of the inviscid processing of the free-stream disturbance is illus-

trated in figures 2.6 and 2.7. In figure 2.6, the receptivity coefficient Ct is plotted as a

function of the incidence angle _ of the acoustic wave, for the case k << 1 and a -- 10.

The overall pattern is similar to the function Isin8], indicating that the dominant con-

tribution comes from the receptivity to the anti-symmetric part of the disturbance. This

behavior is explained by noting that the ratios ]_a/n_l and IA] = ]C,,/C_I are both sig-

nificantly greater than one. In figure 2.7, the corresponding results are plotted for the

case k >> 1 and M = 0.1. The overall pattern in this case is similar to the function

i sin 15_1, indicating that the dominant contribution again comes from the receptivity to

the anti-symmetric part of the disturbance, since ]_,,/_1 is significantly greater than one
in this limit as well.

The results presented in figure 2.5 suggest that Ca is singular in the limit S ---* 0. In

chapter 3, a small-S asymptotic theory is developed for the case of a symmetric mean

flow past a parabolic leading edge (/_ = 0). For small values of S, the nose radius

rn of the airfoil is small compared to the streamwise length scale U/w for the LUBLE

region where the receptivity occurs. Thus, in this case three streamwise regions must

be considered: the nose region (which scales on r,,), the LUBLE region (which scales on

U/w) and the OSE region (which scales on e-2U/w). The solution in the nose region is

a quasi-steady perturbation at leading order. In contrast, the solution in the LUBLE

region is fully unsteady, and viscous-inviscid interactions appear in the OSE region.

The matching of the LUBLE and OSE regions follows that discussed above. From the

forms of the expansions in the nose and LUBLE regions, the receptivity coefficient to

the symmetric component of the free-stream disturbance, C,(S), has an expansion in

terms of S °, S log S, S, S IssT, ...; the corresponding expansion for Ca(S) contains S °,

S½, SlogS, S, S 1387, .... However, asymptotic matching of the (numerical) solutions

for the nose and LUBLE regions leads to the surprising result that the coefficients of the

S log S terms in C, and Ca are approximately zero (i.e. to within the accuracy of the

computations). The following asymptotic expansions are obtained:

C,(S) ,.., (-0.441 + 0.841 i) + (0.62 + 3.67 i)S + O(sLSST),

Ca(S) "" (--5.33 + 1.66 i) + (12.08 + 6.34 i)S½ + (-10.7 + 24.2 i)S + 0(S_'387).

These small-S asymptotic results are compared to numerical results in chapter 3. The

small-S expansions are found to have only a small range of validity near S = 0. However,

the singular structure of Ca(S) has been elucidated, and the asymptotic formula provides
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accurate quantitative results in the region near S = 0 where the receptivity coefficient

varies most rapidly with respect to this parameter.

The influence of aerodynamic loading on the leading-edge receptivity process was

investigated in chapter 4. The analysis of the Lam-Rott asymptotic eigensolution is

much more complicated in this case, due to the presence of two parameters (S and #)

and the need to retain many more terms in the asymptotic expansions. The numerical

computations are also more demanding. For # = 0, a single computation is adequate to

fully describe the mean flow in the vicinity of the parabolic leading edge. In contrast, in

the presence of aerodynamic loading, a separate computation for the mean flow is required

for each value of #. For conditions in the vicinity of boundary layer separation (#c _ 1.15),

the mean flow calculation becomes much more difficult since the behavior of the boundary

layer becomes very sensitive to small changes in parameter values, and a large downstream

distance is required for the boundary layer to recover from the region of low wall shear.

The numerical extraction of the receptivity coefficient becomes correspondingly more

difficult. Thus, for conditions near boundary layer separation, values of the receptivity

coefficient cannot be obtained to the same accuracy as elsewhere.

In figure 4.5, results for IC, I and ICa] are presented as a function of the aerodynamic

loading parameter #, for two values of the Strouhal number, S = 0.1 and 0.3. The overall

patterns of the variation with # are qualitatively similar for IC_I and ICal. However, the

receptivity levels for anti-symmetric forcing are somewhat larger than those for symmetric

forcing, as found previously in the absence of aerodynamic loading (see figure 2.5). As

the aerodynamic loading parameter is increased from zero, the receptivity level on the

upper surface (# > 0) decreases until # _ 0.7. The receptivity level then increases to a

local maximum in the vicinity of # _ 0.9, with a subsequent decrease in receptivity level

as # is increased further. On the lower surface (# < 0), the receptivity level increases

as aerodynamic loading is introduced, to a global maximum in the vicinity of # _ -0.4.

The receptivity level then decreases as # approaches -1. The variations in both IC, I and

ICa] as a function of # are much larger for S = 0.3 than for S = 0.1.

As discussed earlier, receptivity can occur in the leading-edge region, or in a localized

region farther downstream in the boundary layer where some external feature forces the

boundary layer to adjust on a short streamwise length scale. For conditions near bound-

ary layer separation where #c - # = O(e 5 ), the mean boundary layer develops a short

local streamwise length scale of O(e2). Goldstein, Leib & Cowley (1987) developed a local

receptivity analysis for this 'marginal separation' case, also assuming that S = O(e-1).

The streamwise length scale of O(e 2) for marginal separation is longer than the standard

triple-deck length scale of O(e 3) associated with localized receptivity, leading to addi-

tional complexity in the analysis. We cannot make direct comparisons with the results

of Goldstein et al., since our analysis assumes #c - # = O(1) and S = O(1). However,

at sufficiently low Strouhal numbers, the region of low wall shear is contained within

the leading-edge receptivity region and hence is treated by our theory. We investigated

the relative importance of receptivity in the region of low wall shear for these cases by

artificially switching off the unsteady slip velocity at various downstream positions, using

a smooth transition function. For small values of S and larger values of #, within the pa-

rameter range examined, the region of low wall shear appears to make some contribution

to the receptivity, but it is not dominant over the receptivity from the region nearer the

leading edge. It should be noted that this observation does not contradict the conclusions

of Goldstein et al., since they addressed a different region of parameter space.
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In summary, the leading-edgereceptivity theory has beenextended to addressthe
influencesof leading-edgethicknessand mean aerodynamic loading. Receptivity coef-
ficients havebeen calculated for the caseof acoustic free-streamdisturbancesin a low
Ivlachnumberflow. A number of generalconclusionscan bedrawn. The introduction of
leading-edgethicknesscausesa decreasein receptivity levelsrelative to the caseof a flat
plate. It is also clear that modest levelsof aerodynamicloading decreasethe receptivity
on the upper surface,but increasethe receptivity on the lowersurface. The effectsare
morepronouncedat higher valuesof the Strouhal number,wherethe regionof receptiv-
ity is concentratednearer the stagnationpoint. A rise in receptivity levelon the upper
surfaceoccurs for larger valuesof aerodynamicloading. The decreasein receptivity level
on the uppersurfacein the presenceof modestaerodynamicloading is of significancefor
applicationssuchaslaminar flow design.The subsequentrise in receptivity for valuesof
# nearerthe critical value for separationalso hasimportant practical implications.

It must be kept in mind that, for leading-edgereceptivity, quantities such as the
instability wave amplitude at the lowerbranch neutral-stability point depend crucially
on a combinationof receptivity and stability properties. There canbe a subtle interplay
betweenthese,since a small changein growth/decay rate can counteract a significant
changein receptivity level, for example.There isa needto relatereceptivity-levelsdefined
in terms of C1 to levels expressed in terms of branch I amplitudes. In the asymptotic

theory, this is achieved by developing the asymptotic expression for the TS wave in

the OSE region and matching this expression to the generalized Lam-Rott asymptotic

eigensolution. An alternative approach is the numerical solution of the disturbances

equations, using the Lam-Rott asymptotic eigensolution as a starting condition and

continuing downstream of branch I.

Important questions for further study include the receptivity to vortical free-stream

disturbances, and compressibility effects for high subsonic and supersonic Mach numbers.

Corroboration of the present theory with experimental and computational results is also

an important objective. In comparing results of the asymptotic theory with computations

or experiments, it is essential to take proper account of differences in the definitions of

receptivity levels.
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Appendix A

Evaluation of integrals involving

Airy functions

Here we obtain alternative expressions for the integrals Ji, defined by

/7Or/= [z - Zo]iAi2(z) dz, (A.1)
0

where Ai'(zo) = 0. Setting w = Ai2(z), this satisfies

w" - 4zw' - 2w = 0 (A.2)

(Abramowitz & Stegun (1965); equation 10.4.57), and hence

fz 4zw). (A.3)w(z') dz' = -_tw" " -

Thus Jo(zo) follows, noting that w"(Zo) = 2zoAi2(zo). The other integrals Ji are then

obtained by successive integration by parts,

/7i (z- Zo)i-t(w"-4zw)dzJ_= -2 o
i

f°°(z- Zo)i-'w " dz. (A.4)
= -2iJi - 2izoJi_l + -2 yzo

Hence,

Jo = -zoAi2(zo),

J1 2
--_ - -_Zo Jo ,

J2 = _(-4ZoJl + Ai2(zo)),

i(i- 1)(i-2i ZoJi-i + 2)j_-3,
Y' - 1+ 2i 27/7_7_ i>3.

(A.5)
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Appendix B

Matching of asymptotic

eigenfunctions to

Tollmien-Schlichting modes

As the wavelength of the asymptotic eigenfunctions of the Linearized Unsteady Boundary

Layer Equations progressively shortens with distance downstream, an outer inviscid layer

begins to interact with the wall viscous layer. This occurs when _ = O(e-1). Writing

= e_, we anticipate the rapid variation of ¢' by writing

¢'= G(r], _)exp(i f k d_/c _) (B.1)

where the scaling is dictated by the need to match back to (3.17) as _ ---, 0. As in the

LUBLE regime, the exponential streamwise variation k(_) is determined as an eigenvalue

from the matching between the different layers. In the Orr-Sommerfeld region, the main

deck (r/= O(1)) is matched to an outer irrotational layer (rl = O(e-_)) and to the inner

viscous layer (r1 -- O(e)). When _ = O(e-1), the classic triple deck scalings arise and

the effect of the outer layer enters the expression for k at leading order. In the present

investigation, k(_) was determined using direct matching of the stream function between

the decks, rather than by trying to modify standard Orr-Sommerfeld results to include

wall curvature and mean pressure gradients effects.

Details of the matching are not included here, but an implicit expression for k(_, c)

is eventually obtained,

Q(zo) = 7 -3 (1 - _se2_ h(zo,c,_), (B.2)

where

e½i'_z2Ai'(z0) ( -ill6 _ ½

f_ Ai(5)d5 ' z0 = \U_23,2_2k 2] ,
7 = 1 + Aln_2/S 1+B_

_2/s _2/s

and

(2 2j2_aizo3 J3(6) e2z°6 + o(Ea lne),
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Here_ = _/U_ and o_ are numerical constants involving integrals of the mean flow through

theboundary layer, given by Goldstein (1983: equations 4.44-4.45). Solving (B.2) for

z0(_, e) gives

1+ )

where 2.o _ zoo + eZol + e2Zo2 + O(e 3 In e) is the flat-plate result, and

ln'_2/S (38 + 1 = O(e21ne)" (B.4)
F = -3A _/S 2)_2/S

Here we have written 7 and F in terms of _ rather than _ for conciseness. Thus we finally

obtain

k k(1 ln_'2/S (1 3_3F _= - A _T]-S + (_ - B)_-_/S) 2Z,oQ'(5o) ]

where k = e3iTr/4_2203/2/U[_ is the flat plate result.

The leading order term in the small-e expansion of 50 is given implicitly by

(B.5)

Q(z00) = _3, (B.6)

which has a set of roots z(_ (_). As _ _ O, z_ ) ---+ -Pi, where Pi is defined in §3, namely

the i-th root of Ai'(-p) = 0. The set of roots k(i)(_) then follows from (8.5). As _ ---, 0,

k(') "_ e2 e¼i'_2 ( ln_2/S _2-_)I-A +(B-B)
_0Fi

(B.7)

and hence

i f0_k(0d _ .-_ e-¼i'_3 (1_ - A1sln(_-_-_2/S)+(2AI+3/2 - BI)-_) ,
U6p 

(B.8)

which matches to the exponential variation of the eigenfunctions of the LUBLE region

(3.17). Numerical solution of Q(z00) --43 shows that as _ increases, the imaginary part

of the leading order term in k (0 stays positive for i = 2, 3,..., corresponding to damped

modes, but that Im(k0)) < 0 for _ > 3.03, which corresponds to a growing wave. Thus

we have demonstrated that the first LUBLE eigenfunction does indeed match on to the

unstable Tollmien-Schlichting mode. Moreover, (B.5) can be used to calculate the change

in the position of the neutral stability point compared to the flat plate case.
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Appendix C

Definition of the

and 7__!_ (w)

operators A:(i)(w)

(i)
In §§3.3 and 3.4 a set of partial differential operators Af_,v(w ) are used. These are defined

as

(o).V_.,(w)

(a).V_,,(w)
(4)N:,._(w)

= ,_,,,,,+ Fw,,, + [i__+ (_ + ,X_)F']_, + (.y- _)V"w
+_( F"w¢ - F'w,7_),

! 7¢(3)(w),
-- _2 fJ,'_

In (_c2):_.(a)
"1

= _ ' _,_ , +

(C.1)

where

(3) (W -- I_'L,. ) = -G,w,_- (/3+ _&)-Giw, - ('7- _)-G':_, - _(-G';_ - Giw,_),
(4) IJ_'_,,(w) (2G1 - V2)w_ + ((/3 + A_a)v_ 7, 2(F' _ -G',))w,

+(_ - _a)U_w + _(_:w_ - G2w,_)
(c.2)

In addition, the set of differential operators Te.._!._(f) are used, defined by

_(a) },1-)(4) -- --,_,_(/) = (_G_-G:)/,, + (_i - 2(F' + GI))A + 7G_f
(C.3)

so that

(c.4)

for i = 3,4.
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Appendix D

Asymptotic form of base flow far

downstream

In order to determine the form of the unsteady perturbation to the steady boundary-

layer flow, the steady flow must be calculated accurately. In particular, to obtain the

large-_ asymptotic eigensolutions of the LUBLE, the base flow far downstream must be

calculated correct to O(w-3). Far downstream, the asymptotic expansion of the base

flow is given by

¢ .-_ F + #P____Lw+ P2 lOgw2 w2 q____wP3 #P4 W3lOgW 2 + .__..5_+ottPs (lw__), (D.1)

where the fractional power ")'2 _ 3.774 arises from the second eigensolution of Libby &

Fox (1963). Here F(r]) is the Blasius solution and the p_(r]) are determined by

£.,(p,) = d_, (D.2)

where

and

p" Fp" }
£.1(P) -- t l" + + F'p',£2(P) - f-.3(P) - + Ft/' + 2F'p _ - F"p,

£4(p) - £.s(P) - t1" + Ftt' + 3F'tt- 2F"p,

(D.3)

dl -- 1 - F 12'

d2 = 0,

d3 = [F '2 - 1 - 2(p2F" - p_F')] - #2[F'2 - 1 + 2F'p_ + t1,2],

d4 H= Pl_ - 3I:/lP_ - 2F'p'2,

ds = P'[P3 - 3p_lP_ - 2F'p_ + 2(F'p_4 - F"p4) + 2(p_p_2 - P_P2) + 2F'_-

3(1 - F n) - #2(F'2 - 1 + 2F'p_ + p_2).

(D.4)

These equations must be solved subject to the boundary conditions pi(0) = p_i(0) = 0,

and the matching condition p_ _ 0 exponentially as 77 ---. co. The latter condition is

necessary to ensure that vorticity decays exponentially at the outer edge of the boundary

layer.

The function pl(r]) is the response of the mean boundary-layer profile to the O(w -1)

term of the mean pressure gradient (4.28). An exact solution for PL (7/) can be obtained in

terms of the Blasius function F(r]); since the expression is cumbersome and only the wall
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shearstressp_'(0) appears in our final results, pl(r/) is not presented here. The second term

in the mean pressure gradient is proportional to w -2. However, if the series (D.1) for ¢

were assumed to proceed only in inverse powers of w, the solution that would be obtained

for the O(w -2) term would not exhibit exponential decay of vorticity at the outer edge

of the boundary layer. Exponential decay of the vorticity is restored by including a term

of O(w -2 logw 2) in (D.1), as discussed by Van Dyke (1964) for the symmetric flow case

(# = 0). The equations governing p2(r/) are homogeneous but admit an eigensolution,

IO2= AI(r/F' - F). The coefficient AI is then determined by a secularity condition on the

differential equation/23(p3) = d3 governing the O(w -2) term. Multiplying both sides of

this equation by F and integrating, after some manipulation we obtain

(1 - #2) log -F_ - + AI - F(2F'p' 1 + p'12)d_7 = O,
(D.5)

where F_' - F"(0) = 0.4696 and 3' = 0.33054, a constant appearing in the large-r/

asymptotic form of F(r/). Thus, setting A1 = A1 + #2-A1, the numerical values of these

constants are found to be

A1 = 0.60115, .,41 = -2.1656. (D.6)

Next consider the solution for p3(r/). The operator /23 is identical to /22, so that

P3(r/) also contains an eigensolution B_(r/F' - F). However, in this case the function

w-2(r/F t - F) is an eigensolution of the partial-differential perturbation equation (in

fact, it is the first eigensolution of Libby & Fox (1963)). Therefore, the coefficient B_(#)

remains undetermined in the large-w analysis. In §5, B1 (#) is determined by comparing

the large-w asymptotic expression for the wall shear with results obtained by numerical

integration of the mean flow equations starting from the stagnation point w -- 0.

The ordinary differential equation governing P3 is inhomogeneous, so that a particular

solution is also required. The need for numerical solution for each value of # can be

avoided by noting the form of the dependence on # of the inhomogeneous term d3.

Similar remarks apply for p4 and ps. Thus we set

P3 = Bz(r/F' - F) + P3 + #2p3,

P4 -= ALP4,

P5 = B1/54 + P5 + #2/55,

(D.7)

where the functions P3, P3, P4, P5 and t55 satisfy third-order ordinary differential equations

which are independent of #. Since/23 admits an eigensolution, we ensure uniqueness of

/53 and/53 by enforcing the additional conditions iff_(0) = 16_(0) = 0. The solutions for i03,

/53, P4, P5 and t55 are obtained by numerical integration. The values of i0_(0),/5"(0) and

i0_(0) are determined by a shooting technique.

Finally, the wall shear, U_(w) - ¢,,(r/= 0), which appears in (4.29) has the asymp-

totic expansion

- logw..___ 2 B1 -: log w 2U_(w) = iz_' I + #_ + A1 w2 +-_ + #A13o--_-+ (D.8)

# w a + ,
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wherethe numericalconstantsare calculatedto be

_o - pT(O)/FD '= -3.591, 30 =- _'(O)/F_)' = 0.814, } (D.9)to p_(O)/F_' 8.230, [o [_(O)/FD' -3.235.

The expression (4.31) for the curvature of the boundary-layer profile at the wall, U_'(w) -

¢,m(r] = 0), which also appears in (4.29), immediately follows from (D.1) and (D.4), since

_"(0) = d,(0).
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