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Abstract

We present a general method for making cross-comparable estimates of the bene-

fits of NASA-developed decision support technologies for air traffic management,

and apply a specific implementation of the method to estimate benefits of three

decision support tools (DSTs) under development in NASA's Advanced Air

Transportation Technologies Program: Active Final Approach Spacing Tool

(A-FAST), Expedite Departure Path (EDP), and Conflict Probe and Trial Planning

Tool (CPTP). We also review data on the present operation of the national air-

space system (NAS) to identify opportunities for DSTs to reduce delays and inef-
ficiencies.
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Chapter 1

Introduction

This report' s chief objective is to present a method for making cross-comparable

estimates of the benefits of decision support technologies (DSTs) for air traffic

management. As described in Chapter 3, the method uses an economic model to

integrate estimates of DSTs' effects on various aspects of the national airspace

system (NAS) into a single dollar benefit figure. The underlying estimates of the

DSTs' impacts come from a suite of models, including models of aircraft per-

formance, airports, Terminal Radar Approach Control (TRACON), and enroute

Air Traffic Management (ATM) sectors, future demands for ATM services, and

weather models.

The method itself is a general one. Many different models and data sets can be

used as its component parts. In this report, we instantiated the method with a spe-

cific set of components. As described in Chapter 3, these are the Base of Aircraft

Data/Flight Segment Cost Model (BADA/FSCM) of aircraft performance; the

LMINET queuing network model of the national airspace system, which includes

weather-responsive models of airport capacity for the network' s 64 airports, as

well as queuing models of TRACON and enroute sectors; the Federal Aeronautics

Administration's (FAA) forecasts for both ATM demands and capacity-increasing

projects; and weather data from the National Climatic Data Center. With the cho-

sen components, we modeled three DSTs--Active Final Approach Spacing Tool

(A-FAST), Expedite Departure Path (EDP), and Conflict Probe-Trial Planning

Tool--and we generated the cross-comparable benefits estimates of Chapter 4.

A secondary purpose of the report is to explore available data on present opera-

tions of the NAS to identify opportunities for NASA-developed DSTs. Given in

Chapter 2, that material includes surveys of data on airport groundside congestion,

on as-flown routes from the FAA's Enhanced Traffic Management System

(ETMS), on as-planned routes from the United Airlines' Air Operations Center,

and on terminal-area airside congestion for both arriving and departing flights

(from ETMS data). Chapter 2 also includes suggestions for DSTs made by a con-

troller at the FAA's Command Center.
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Chapter 2

Causes of Delay in the National Airspace
System

This chapter surveys data about the present operation of the national airspace

system to identify causes of inefficiency and delay that NASA-developed DSTs

might address.

After a review of airport groundside congestion, we consider the efficiencies of

as-flown routes and the routes planned by a major carrier's Air Operations Center.

Then, we identify costs of the effects of terminal area airside congestion on

departures and arrivals. Finally, we report a suggestion from an FAA controller

for a DST to improve sequencing flights into, and out of, holding patterns.

It is important to note that the delays and inefficiencies that we consider in this

chapter are those experienced by operating flights, between gate departure and

gate arrival. The very significant delays that are taken in ground holds do not

appear here. These are treated in the benefits estimates of Chapter 4.

AIRPORT GROUNDSIDE CONGESTION

To explore inefficiencies and delays from this cause, we examined taxi-out and

taxi-in delays as reported in the FAA's Performance Analysis Monitoring System

(PAMS), which is based on Airline Service and Quality Performance (ASQP)

data. Unfortunately, the "taxi-out delay" data confound delays in queues for de-

parture runway service with delays actually caused by inadequate taxiways, and

the "taxi-in delay" data confound real taxiway delay with delays for arrival gates.

Nevertheless, examining the data carefully does, we believe, give useful indica-

tions of effects of groundside congestion.

From the data for June 1995, we generated monthly averages of arrival and de-

parture rates for each of 96, 15-minute intervals covering a day, for several air-

ports. We considered airports widely known as busy ones, as well as one two not-

so-busy terminals for comparison. We also generated monthly averages of taxi-out

delays per flight, and of taxi-in delays per flight, for each of the 15-minute inter-

vals in which arrivals or departures occurred at a rate of at least one per day. (Per-

flight averages seem not likely to be meaningful when calculated for rare events.)

The results are shown in Figures 2-1 through 2-14. Peaks in mean taxi-out delays

are quite reliably associated with peak departure rates, suggesting that the reported

delays may be due to departure queues. The plots of taxi-in delays are quite often
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essentially flat. When peaks in taxi-in delays do occur, they are sometimes associ-

ated not with peaks in arrival rate, but with peaks in departure rate. This suggests

that departure queues may, in fact, impact taxi-in operations. For example, taxi-in

delay peaks are associated with departure peaks at The William B. Hartsfield At-

lanta International Airport (ATL l) near 16:00 and at Chicago O'Hare International

Airport (ORD) near 15:00, as well as with the morning taxi-in delay peak at Los

Angeles International Airport (LAX). A peak in taxi-in delay may, however, be

associated with a peak in arrival rate: the taxi-in peak at LAX near 21:00 gives an

example of this.

Our PAMS departure data for Newark International Airport (EWR) apparently are

corrupted. For completeness, we include a plot of departure delay that we derived

from an Airline Service and Quality Performance (ASQP) source for June 1993,

Figure 2-4.

Figure 2-1. Mean Departure Rate and Mean Delay in June 1995for

The William B. Hartsfield Atlanta International Airport
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1 Throughout the report, we refer to airports by their FAA identifiers. These are identified

fully in the Appendix A, Glossary A Airport Identifiers, p. A-I.
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Causes of Delay in the National Airspace System

Figure 2-2. Mean Departure Rate and Mean Delay in June 1995for

Baltimore-Washington International Airport
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Figure 2-3. Mean Departure Rate and Mean Delay in June 1995for

Dallas-Fort Worth International Airport
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Figure 2-4. Mean Departure Rate and Mean Delay in June 1993for

Newark International Airport
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Figure 2-5. Mean Departure Rate and Mean Delay in June 1995for

Indianapolis International Airport
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Causes of Delay in the National Airspace System

Figure 2-6. Mean Departure Rate and Mean Delay in June 1995for

Los Angeles International Airport
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Figure 2-7. Mean Departure Rate and Mean Delay in June 1995for

Chicago 0 'Hare International Airport
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Figure 2-8. Mean Arrival Rate and Mean Delay in June 1995for

The William B. Hartsfield Atlanta International Airport
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Figure 2-9. Mean Arrival Rate and Mean Delay in June 1995for

Baltimore-Washington International Airport
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Causes of Delay in the National Airspace System

Figure 2-10. Mean Arrival Rate and Mean Delay in June 1995for

Dallas-Fort Worth International Airport
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Figure 2-11. Mean Arrival Rate and Mean Delay in June 1993for

Newark International Airport
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Figure 2-12. Mean Arrival Rate and Mean Delay in June 1995for

Indianapolis International Airport

"E

t_

_r

Rate ] ; i

Delay J ! ! i
i:i i__:

!i

0 5 10 15 20

Local Time

Q

¢¢J

-6

Figure 2-13. Mean Arrival Rate and Mean Delay in June 1995for

Los Angeles International Airport
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Causes of Delay in the National Airspace System

Figure 2-14. Mean Arrival Rate and Mean Delay in June 1995for

Chicago 0 'Hare International Airport
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Taxi-out delays generally exceed taxi-in delays; overall, the seven airports we

considered, the mean taxi-out delay per operation is slightly less than 6 minutes,

and the mean taxi-in delay is just over two minutes. As one would expect, the

busiest terminals generally show the greatest delays.

Table 2-1 summarizes mean taxi-in and taxi-out delays for June 1995, as reported

in the FAA's Performance Monitoring Analysis Capability (PMAC) data system.

These results generally are consistent with the delays shown in Figures 2-1

through 2-14.

Table 2-1. Mean Taxi-in and Taxi-out Delays

Average taxi-in delay Average taxi-out delay
Airport per arrival (minutes) per departure (minutes)

ATL

BWl

DFW

EWR

IND

LAX

ORD

2.2

0.8

4.3

1.7

0.7

2.6

2.5

9.3

3.6

5.1

12.0

1.3

3.8

4.7

Mean 2.11 5.7

In interviews with both aircrew and controllers, we were told that most delays

between gate-out and wheels-off were due to queues for departure service. We

also were given anecdotes about queues for departure runways causing taxi-in

delays when the departure queues became long enough to interfere with taxi-in

runways.
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Controllersandaircrewalsomentionedtaxi delays, when taxiways crossed active

runways. Controllers also mentioned certain airports--ATL and DTW, for exam-

pie--at which specific features caused taxi delays. For example, at DTW opera-

tions at one set of gates can interfere with taxiways.

Because of the confusion of departure runway queues with taxi-out delays and of

gate delays with taxi-in delays, it is difficult, with the data available to us now, to

compare costs of taxi-in and taxi-out delays with the costs of delays from other

causes. Nevertheless, we wish to give some indication of the costs of taxi delays

at major airports, to provide an indication of the opportunity for DSTs that im-

prove ground movement.

We will do so this way: assuming that holds of taxi-in aircraft for lack of gate

space are much less common than delays of taxi-out aircraft in queues for depar-

ture runways, we take the taxi-in delays as likely to be associated with actual

taxiway congestion problems. Taking the mean taxi-in delays of less than 1 min-

ute seen at the less-busy airports as a measure of what might be achieved with

better surface movement management even at busy airports, we see potentially

manageable delays of about 1 minute per operation at ATL, EWR, LAX, and
ORD, and of about 3 minutes at DFW.

We take 1 minute per operation as a rough, and conservative, estimate of the taxi-

in delay that may be eliminated by better surface movement management at busy

airports. There seems to be no obvious reason to expect aircraft taxiing out to ex-

perience different effects of surface congestion than those seen by aircraft taxiing

in, (although they do experience different effects on runway congestion) we also

take this value as a rough estimate of the taxi-out delay that might be eliminated

by improved surface movement management.

According to Department of Transportation data for 1994, the 12 busiest Contigu-

ous United States (CONUS) terminals (in terms of operations per day) all had

more than 750 operations per day. It seems reasonable to assume that at least these

12 airports experience surface congestion. Pricing a minute's taxi delay at $33.00

(see Table 3-5) leads to roughly $9 million per year of potentially avoidable

taxi-delay costs at each such airport. Over just the top 12 airports, then, those
costs amount to more than $100 million. We believe this is a conservative esti-

mate of those costs; it appears ample to justify investing in the development of

DSTs to help controllers make surface movements more efficient at busy termi-
nals.

(As this report was in final editing, we received a report on observed benefits of

the Surface Movement Advisor at ATL 2. The report indicates taxi-time reductions

averaging about 1 minute per operation, and annual savings at ATL of $16 million

to $21 million.)

2Rada, Wilma, "Surface Movement Advisor (SMA) Benefit Analysis," MCA Research Cor-
poration, Arlington, Virginia, October 1997.
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Causes of Delay in the National Airspace System

INEFFICIENT ROUTES

This section reports results of our efforts to identify inefficiencies in the three-

dimensional routing of aircraft in the NAS, that NASA DSTs could address. We

primarily intended to identify opportunities rather than to evaluate them precisely;

so we made mostly qualitative surveys. We did, however, develop some prelimi-

nary quantitative indicators of the relative importance of the opportunities that we

found. We did not apply sophisticated survey methods, because there appeared to

be no need for them: the inefficiencies were quite readily apparent.

To see how DSTs affecting routes between terminal areas might save operating

costs, we examined two sources. Our principal source was ETMS data for two

days, April 8, 1996, and November 27, 1996. A second very helpful source was a

set of data from a major air carrier on the routes that they requested for certain

Boeing 727 flights on August 1 through August 10, 1997.

In analyzing each source, we compared fuel burns on the cruise portions of the as-

flown or as-requested routes, with fuel burns on optimal routes. We considered

departure, cruise, and arrival phases of flight separately. The following sections

give details of our methods and results.

Enhanced Traffic ManagementSystem (ETMS) Data

We examined ETMS data for Monday, April 8, 1996 and Wednesday, Novem-

ber 27, 1996. The April date was characterized by generally good weather over

most of the CONUS, with significant periods of Instrument Meteorological Con-

ditions (IMC) at certain terminals. A cold front running from Seattle to just north

of San Francisco brought showers and reduced visibility to the northwestern cor-

ner of the CONUS. Another cold front pushing southward across the Appalachi-

ans produced showers and snow flurries in the northeast, notably at Boston, and

into the mid-Atlantic states. A stationary front caused showers and some reduced

visibility over the Florida peninsula. While there were some locally significant

delays like at Boston, air traffic over the bulk of the CONUS seems not to have

been significantly disrupted and ETMS arrivals and departures at most of the

64 LMINET airports generally matched the OAG.

The November date was, of course, the day before Thanksgiving, typically one of

the busiest air travel days of the year, if not the busiest.

CRUISE ROUTES

This section reports results of our comparison of ETMS as-flown routes, with op-

timal routes. As an illustration, Figure 2-15 compares some ETMS routes flown

from LAX to BOS on April 8, 1996 with an optimal trajectory.
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Figure 2-15. Example Cruise Routes

I

• Optimum
--- AAL12

UAL 162
UAL 890

The routes of three flights are shown: AAL12, UAL162, and UAL890. The dots

indicate the wind route (optimal route) for April 8, 1996. Only one flight, AAL12,

departed significantly from the optimal route.

To examine the efficiency of the cruise portions of a selection of ETMS records,

we identified top-of-climb (TOC) and top-of-descent (TOD) points visually.

Automatic recognition of these points is probably possible, but, as Figure 2-16

shows, altitude holds during climb and descent, and step climbs en route, compli-

cate the task.
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Figure 2-16. Vertical Profile of Flight from JFK to LAX
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We determined the fuel burn on the as-flown route, between Top of Climb (TOC)

and Top of Descent (TOD), for winds aloft during the date of the flight. We then

found the fuel burn on the optimal trajectory between TOC and TOD. Table 2-2

shows the results.

Table 2-2. Savings from Flying Optimal Cruise Routes Vice ETMS Cruise Routes

As flown Time Optimal Time Fuel saved Time saved
Origin Destination fuel, LB (hour) fuel, LB (hour) (percent) (min)

BOS

EWR

SEA

ORD

YVR

DFW

lAD

MIA

BOS

EWR

SEA

ORD

YVR

DFW

LAX

LAX

LAX

LAX

LAX

LAX

LAX

LGA

LAX

LAX

LAX

LAX

LAX

LAX

34,047

29,524

14,292

18,745

11,828

11,534

25,792

11,001

34,047

29,524

14,292

18,745

11,828

11,534

4.71

4.26

2.06

2.73

1.93

1.62

3.64

1.79

4.71

4.26

2.06

2.73

1.93

1.62

33,813

29,418

14,192

18,596

11,785

11,502

25,740

10,935

33,813

29,418

14,192

18,596

11,785

11,502

4.68

4.25

2.05

2.71

1 92

1.62

3.63

1.78

4.68

4.25

2.05

2.71

1.92

1.62

0.69

0.36

0.70

0.79

0.36

0.28

0.20

0.60

0.69

0.36

0.70

0.79

0.36

0.28

1.8

0.6

0.6

1.2

0.6

0

0.4

0.6

1.8

0.6

0.6

1.2

0.6

0

2-13



Table 2-2. Savings from Flying Optimal Cruise Routes Vice ETMS Cruise Routes

(Continued)

As flown Time Optimal Time Fuel saved Time saved
Origin Destination fuel, LB (hour) fuel,/B (hour) (percent) (min)

lAD

MIA

LAX

SEA

ATL

DCA

LAX

DEN

BNA

BOS

LAX

LGA

EWR

EWR

EWR

DFW

DFW

DFW

DFW

DFW

25,792

11,001

27,707

28,307

3295

11,708

13,848

3,588

4,648

17,134

3.64

1.79

3.96

3.60

0.52

1.77

1.92

0.60

0.72

2.56

25,740

10,935

27,640

28,284

3,281

11,673

13,816

3,583

4,648

16,570

3.63

1.78

3.95

3.60

0.52

1.77

1.92

0.60

0.72

2.48

0.20

0.60

0.24

0.08

0.42

0.30

0.23

0.14

0.00

3.29

0.4

0.6

0.6

0

0

0

0

0.1

0

4.8

In all but one case, fuel savings were less than 1 percent. That level of difference

might be accounted for by differences between our winds-aloft data and the wind

forecasts available to the airline operations centers.

The exceptional case turns out to be a revealing one. Figure 2-17 shows the route

of that flight, with some streamlines for winds aloft at its cruising altitude of

39,000 feet.

Figure 2-17. BOS-DFW Flight Path and Winds Aloft
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The streamlines show that much of the flight path passed along the edge of the

front that was advancing into the North Atlantic states. One would expect that to

be a region of rapidly varying winds, and it was. Figure 2-18 shows headwinds at

the flight's cruising altitude, at points on a line perpendicular to the ETMS path

located about one-third of the way from BOS to DFW. The points ranged from

100 miles southeast of the ETMS path through 100 miles northwest of the path.

For the conditions experienced by this flight, displacing its path by only a few tens

of statute miles makes a substantial difference in headwinds, and thus in fuel burn.

In view of the turbulence to be expected near a front, it is by no means clear that

the minimum-fuel cruise route would have been an acceptable one.

Overall, our survey of ETMS trajectories did not discover widespread examples of

inefficient cruise paths. In the one exceptional case that we found, it was not clear

that the optimal cruise path would have been practical.

Figure 2-18. Head Winds for BOS-DFW Flight Versus Distance from ETMS Path
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CRUISE ALTITUDES

Fuel burns certainly vary with altitude, and airlines do complain about not getting

desired cruise altitudes. In this subsection, we report on work to quantify the bene-

fits to be expected from this aspect of cruise. Figure 2-19 compares the as-flown

altitude profiles for three Boeing 757 flights from LAX to BOS, with an optimal
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profile. The flights took place on April 8, 1996, and the optimal profile is for the

winds of that date, for a Boeing 757-200.

Figure 2-19. Comparison of Altitude Profiles
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The optimal profile reached altitudes near the maximum for the aircraft. None of

the flights cruised as high as our optimal profile, although AAL12 flew close to it

for a relatively short part of the trip.

The differences between our optimal cruise altitude and those flown by the sample

flights are not necessarily due to ATM constraints. While aircraft type and winds

aloft are primary determinants of best-cruise altitude, these data alone do not

specify the desirable cruise altitude for a given flight. The optimal cruise altitude

for a given aircraft varies with takeoff weight. Dispatchers generally seek mini-

mum-fuel trajectories consistent with schedule integrity. This produces consider-

able situational variation in altitude and Mach number profiles.

Goals other than fuel economy often dictate the choice of cruise altitude. Avoid-

ing turbulence often determines the altitude flown. An experienced controller at

the FAA's Command Center told us, however, that 60 percent to 80 percent of

flights are not affected by turbulence.

The many factors affecting cruise altitude seem to make direct comparisons be-

tween ETMS cruise altitudes and optimal ones fruitless. Nevertheless, it seems

worthwhile to explore the scale of the inefficiencies that result from operating

flights away from their optimal altitudes. The variation of fuel burn with altitude
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for a Boeing 757 cruising for 1,000 nautical miles in calm winds is shown in

Figure 2-20. To obtain the results in Figure 2-20, we varied Mach number with

altitude to keep cruise time constant at 2.25 hours, and the fuel cost of climb from

29,000 feet to cruise altitude is included in the fuel bums shown.

Figure 2-20. Variation of Fuel Burn with Cruise Altitude
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The optimal cruise altitude for the case illustrated in Figure 2-20 is 37,000 feet.
That altitude is not available to westbound traffic in the FAA's IFR altitudes. If

the flight had been westbound, the closest available altitudes would have been

35,000 feet and 39,000 feet. Operating at either of those altitudes would have cost

relatively little in added fuel: 15 pounds at 35,000 feet and 69 pounds at 39,000

feet.

If the flight were eastbound, and were for some reason denied the optimal altitude

of 37,000 feet, the closest IFR altitudes would be 33,000 feet and 41,000 feet. Op-

erating at those altitudes instead of at the optimal altitude would cost 89 pounds of

fuel and 286 pounds of fuel, respectively. All the increments in cruise fuel are less

than 1 percent except for operating at 41,000 feet, where the increased fuel bum

amounts to 1.6 percent.
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A Major Airline's Requested Routes

United Airlines gave us data on their planned routes between several CONUS

cities, for August 1 through 10, 1997. Comparing fuel burns on these planned

routes with fuel bums on optimal routes shows that, in some cases, operating on

optimal routes can reduce block fuel by roughly 1 to 2 percent. Such savings are,

however not common. The data also show that constraining flights to follow

Standard Instrument Departures (SID) and Standard Terminal Amval Routes

(STARs) significantly reduces opportunities to reduce fuel bums by flying optimal
trajectories.

An example of a case in which there were significant savings. For Boeing 727

flights from DEN to ORD, on four occasions, the cartier planned the Plains One

SID from DEN, with the Hayes Center transition (HCT). The requested route

continued over OBH and FOD, and joined the Janesville Four standard arrival

route (STAR) to ORD at DBQ. As one can see, this route goes well to the north of

the great circle. On August 3, 1997, the wind route from DEN to ORD also lay

north of the great circle, but not so far north as the carrier's requested route.

Figure 2-21. Routes from DEN to ORD

Note: Dottedcurve is greatcircle, dashed curve is windroute for 4/3/96, andsolidcurve is car-
rier'srequestedroute.Solidcirclesindicateend of SID and beginningof STAR.
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Operating on the wind route would have saved 312 pounds of fuel, about 1.6 per-

cent of block fuel. Constraining the flight to follow the SID through HCT, and to

join the STAR at DBQ, reduced the optimal-route savings to 166 pounds, about

nine-tenths of 1 percent. Average block fuel savings over the 4 days were

320 pounds (1.65 percent) for unconstrained wind routes, and 167 pounds

(0.85 percent) for wind routes that could be adjusted only between HCT and DBQ.

TERMINAL-AREA AIRSIDE CONGESTION

We considered both departures from, and arrivals to, several terminal areas. As

detailed in the following subsections, we found many examples of inefficient arri-

vals at busy terminals. We found fewer examples of inefficient departures.

Departures

We examined both altitude profiles and routes for indications of inefficiencies for

departures from congested airports and others. As one would expect, departures

from the New York area during busy periods exhibit both inefficient routes and

altitude profiles. Figure 2-16 shows a flight departing JFK at 8:30 a.m. held at

17,000 feet for several minutes. Such holds are common at NYC during busy pe-

riods; Figures 2-22 and 2-23 show, respectively, examples of a departure from

EWR at 6:04 p.m., and a 8:30 a.m. departure from LGA, respectively.

Figure 2-22. Altitude Profile of an EWR Departure
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Figure 2-23. Altitude Path of LGA Departure
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The paths taken by these three sample flights, which were bound for Los Angeles,

Chicago, and Miami also obviously were constrained by traffic. Figure 2-24 illus-

trates this.

Figure 2-24. Departure Paths from NYC
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Arrivals

For a quantitative description of the efficiency of the departure process at NYC

airports, we compared times to reach 30,000 feet for flights of more than 400 nm

originating at IND and at the NYC terminals. The overall mean time for NYC de-

partures was 16.6 minutes. Mean times to 30,000 feet for IND departures on

flights of more than 400 nm was 13.1 minutes, which suggests that the less-

congested conditions at IND enable generally more efficient departures. A stan-

dard t-test gives 95 percent confidence that the mean time for departures from

NYC airports exceeds the mean time for departures from IND by 2.2 minutes.

The means for EWR and JFK departures do not vary significantly from the overall

mean; the standard t-test gives 95 percent confidence that the mean time for LGA

is 0.6 minutes less than the time for EWR and JFK. Table 2-3 shows times-to-

climb at several terminals. The 3-minute difference between busy and not busy

airports seems persistent.

Table 2-3. Mean times-to-climb

Terminal Mean time to FL 300, min.

JFK & EWR

LGA

NYC

IND

ATL

ORD

MDW

CHI

OMA

All busy

All not-busy

17.1

15.8

16.6

13.1

16.3

15.9

15.2

15.8

13.9

16.2

13.5

Turbojet transport aircraft burn, roughly, 100 pounds of fuel per minute at low

altitudes. Thus, the roughly 3-minute added time-to-climb for departures from

busy terminals adds about 300 pounds to typical fuel burns.

Figure 2-23 illustrates an inefficient descent profile for an arrival at ORD. Such

profiles are very common for arrivals at busy terminals. One quantitative measure

of the efficiency of the arrival process is the time arriving flights spend at altitudes

below those of efficient cruise-descent paths.

It seems likely that the initial descent shown in Figure 2-23, from cruise altitude to

an altitude below FL 250, while still more than 200 miles from the destination,

was forced by ATM and not desired by the crew. Such early descents are very
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commonfeaturesof operationsinto busyterminals.Assessingthissourceof inef-
ficiencyquantitativelyandfairly would,webelieve,requiresomemeansof
avoidingcountingearlydescentsthatwere requested by the crew, for example, in
search of a smoother ride.

Interviews with controllers and aircrew suggest that 60 to 80 percent of flights op-

erate without turbulence impact and that most turbulence is associated with obvi-

ous weather features such as fronts. Nevertheless, a significant fraction of flights

clearly are impacted by turbulence; not all turbulent regions can be identified from

gross features of synoptic weather.

In view of this, we decided that an adequate effort to identify turbulence effects

would not be a reasonable and balanced use of this study' s resources. Another

feature of the arrival in Figure 2-23, the significant time spent below FL 100, is

also quite commonly found for arrivals at busy terminals. This important source of

inefficiency can be analyzed with available data.

Examining ETMS tapes, we found what appear to be significant variations in the

amounts of time arriving flights spend at or below 11,000 feet. Table 2-4 displays

results for April 8, 1996. (Flights of less than 400 nm are excluded, because in

many cases, for example, flights from ORD to IND, the entire flight is at low al-

titudes.)

Table 2-4. Statistics of the Time Arriving Flights of

More Than 400 nm Spend at or Below 11,000 Feet

Airport <timelow> s.d. timelow

EWR

JFK

LGA

INYC

DFW

LAX

IND

CHI

ORD

MDW

19.2

8.2

10.8

14.3

20.0

17.0

11.4

16.6

16.1

19.4

3.2

10.4

11.7

9.7

7.1

1.6

5.8

7.5

5.8

14.3

A reasonable approach would require some 10 or 12 minutes of flight at or below

11,000 feet. This value represents the times actually spent at a non-congested air-

port like IND. Some busy terminals also achieve those times, but others do not.

The mean time below 11,000 feet for EWR, DFW, LAX, ORD, and MOW is

more than 7 minutes greater than 11 minutes.
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The differences among the three NYC airports may be explained by Visual Mete-

orological Conditions traffic patterns. As shown by Figure 2-25, arrivals to JFK

(seen as traces beginning near the bottom center and coalescing into two streams

ending to the right of the center of the frame) are given rather more straightfor-

ward approaches than are arrivals to the other airports. Arrivals to EWR (seen as

traces beginning near the figure's lower left-hand corner, arcing up to the upper

left-hand corner and then turning downward to the sharply-delineated final ap-

proach tracks above and to the left of the figure' s center) appear to have the most

circuitous paths of those for all the NYC airports, and this is consistent with the

longer times of flight at lower altitudes seen for EWR.

Figure 2-25. Traffic Flows in NYC Area

Large turbojet transports (B737 and MD80) burn roughly 500 pounds of fuel fly-

ing at low levels for 70 minutes. The Boeing 757 and the Boeing 727 each burn

roughly 800 pounds and the MD11 burns roughly 1,400 pounds during such a

flight. Our interviews with aircrew members showed that they were thoroughly
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aware of the losses on this scale caused by low-level operations during arrivals.

Evidently, inefficient arrivals at busy terminals afford opportunities for NASA

DSTs to effect significant savings.

A SUGGESTION FROM AN FAA CONTROLLER

During a review of this project at the FAA Command Center, a controller made a

suggestion for a DST that seems worth considering. He observed that not all

ARTCCs and TRACONS are equally efficient in bringing traffic into holding
patterns, and out of them. A DST that would advise controllers on efficient man-

agement of holding patterns would, he believed, have considerable potential.

SUMMARY

Our review of opportunities for NASA DSTs to relieve inefficiencies in present

NAS operations addressed departure, cruise, and arrival phases of flight, and air-

port groundside congestion. It identified inefficiencies in departures costing about

300 pounds of fuel per turbojet flight at busy terminals and inefficiencies in arri-

vals costing roughly 800 pounds of fuel per turbojet arrival at such terminals. Inef-

ficient routes between terminals (i.e., between the ends of SIDs and the

beginnings of STARs) appear to offer less clear-cut opportunities to save operat-

ing costs. Perhaps savings somewhat less than 1 percent of cruise fuel could be
realized.

Potential savings from inefficient cruise altitudes are difficult to quantify because

factors other than fuel economy often govern the choice of altitude. In the exam-

ple considered, the most significant inefficiency that might be addressed by

NASA DSTs was the fairly large interval between present Instrument Flight Rules
altitudes above 29,000 feet.

We lack sufficient information to estimate soundly the costs of avoidable ground-

side delays. However, a crude estimate, which we believe to be conservative, sug-

gests that these costs may exceed $100 million per year at busy at the 12 busiest
CONUS terminals, for 1996 traffic levels.

Our sense of the relative impacts of the inefficiencies that our review identified

may best be expressed by comparing costs of the potentially avoidable delays we

identified for ground operations, climbs and descents, at busy terminals. These
delay times are 1 minute for each taxi-out and taxi-in, 3 minutes for climb and

7 minutes for descent. Table 3-5 suggest pricing a 1-minute taxi delay at $33.00, a

1-minute delay in climb phase at $39.00 (the vector-out cost), and a 1-minute de-

scent delay at $36.00.

With these prices, the per operation avoidable delays that we have identified cost

$33.00 each for taxi-out and taxi-in, $117.00 for climb and $252.00 for descent.
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Chapter 3

A Method for Cross-Comparable Assessment of

Decision Support Technologies Benefits

OVERVIEW

The principal result of this project is the proffering of a method for making mutu-

ally consistent estimates of DST benefits, both singly and in various combina-

tions. Figure 3-1 shows the method schematically.

Figure 3-1. Schematic Diagram of the Method
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In Figure 3-1, the method's seven principal components (the capstone economic

model, an aircraft performance model, National Airspace System model, an Air

Traffic Management (ATM) model of operations, a set of DST models, and an
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underlying set of data are labeled in bold face type. Immediately following each of

these labels, we show the particular instantiation used in the examples in this re-

port. Following that, we list examples of other options that could be used to in-

stantiate the component.

Applying the method is straightforward, though developing all the information

required takes considerable effort. Applications go like this: for each DST to be

assessed, the user determines the set of component models that will be used to re-

flect the tool' s effects. For example, in our modeling of A-FAST, we noted that its

effects could be reflected in changes to several parameters of LMINET' s runway

and airport capacity models. We did this fairly quickly, over a few days, because

several of us had a good deal of current experience in modeling airport capacities.

In contrast to that rapid progress, when modeling CPTP, we found it necessary
first to use FAM simulations to characterize the tool's effects and then to use the

simulation results to determine changes in parameters of LMINET' sen route

sector models. Developing and operating the simulations took several weeks.

For modeling Expedite Departure Path (EDP), we considered FAM simulations,

ETMS data, and the results of interviews with a controller who had experience in

the NYC TRACON to arrive at an adjustment to certain of LMINET's departure
TRACON parameters. Much of this work dovetailed with the CPTP work and our

work to identify opportunities for NASA DSTs (see Chapter 2) Nevertheless, de-

veloping (with confidence !) the single parameter change for certain of LMINET's

departure TRACON models took many hours' work by several people. EDP also

furnishes an example of a DST whose benefits enter the economic models via two

component models. EDPs expected reduction in times-to-cruise affects the mean

time-in-sector of certain departure TRACON models in LMINET, and LMINET

captures the resulting reductions in delays. The BADA aircraft performance mod-

els capture the airlines' savings in fuel, which turns out to be EDP's more signifi-
cant effect.

Once models are determined for a set of DSTs, operating the NAS model gives

before-and-after delay data to the economic model, and, as required, operating the

aircraft performance model gives savings in block fuel and block time, while op-

erating the ATM model may give information about savings resulting from im-

proved controller productivity.

NATIONAL AIRSPACE MODELS

An essential feature of our assessment method is a model of the national airspace

system. The model may be either a queuing network model, as implemented here,

or a simulation model, as described briefly in Chapter 3. Whichever model is

chosen, it must have sufficient granularity to capture the effects of the DSTs under
review.
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LMINET

LMINET is a queuing network model of the NAS developed by LMI for NASA

[ 1]. In general terms, LMINET models flights among a set of airports by linking

queuing network models of airports with sequences of queuing models of

TRACON sectors and en route sectors. The user may specify the sequences of

sectors to represent various operating modes for the NAS. The sequences may, for

example, correspond to optimal routes for the winds aloft of a specific day, or they

may correspond to trajectories of flights as flown on a specific day, as determined

from ETMS data.

The network is driven by a schedule of departures from its airports and by a

schedule of arrivals from outside the network. The Official Airline Guide is one

source of such schedules of departures and arrivals. Both airport and sector ca-

pacifies may be affected by weather. Weather data are provided to LMINET as

epoch-by-epoch values of meteorological conditions at each of the airports and as

epoch-by-epoch values of a single weather parameter for each TRACON and en

route sector.

The following subsections describe more details on LMINET's components.

Airport Models

Each airport model is itself a queuing network, as shown in Figure 3-2.

Figure 3-2. Queues in the LMINET Airport Model

Traffic enters the arrival queue, qA, according to a Poisson arrival process with

parameter _,A(t). Upon service by the arrival server, which is Poisson service with

parameter l.tA(t), and after the turnaround delay x, arriving aircraft enter the ready-

to-depart reservoir R. Each day's operations begin with a certain number of air-

craft in this reservoir.
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Departuresrequiretwo services:anaircraftandadeparturerunway.Departures
enterthequeuefor aircraft,qe,accordingto aPoissonprocesswith rate_,D.De-
partureaircraftareassignedby aprocesswith servicerateI.tp(t).Whena departure
aircraftis assigned,R is reduced by one. Having secured a ready-to-depart air-

craft, the departure leaves qe and enters the queue for a departure runway, qD,

where it is served according to the departure process characterized by I.tD(t).

Service at the queue for departing aircraft depends on the state of the ready-to-

depart reservoir R. If R is not empty, then the service rate ktp(t) is very large com-

pared with one (service time is very short). If R is empty, then departing aircraft

are supplied by output of the arrival queue, delayed by the turnaround time "_.The

service processes to R and qp are given by

I _,D,R > 0
Service to R: L°A (t - x), else

and

M >> 1, R > 0
Service to qp: [o A (t- x),else

where OA is the output of the arrival queue.

Since aircraft are not interchangeable, this assumption on the supply of departing

aircraft is tenable only when delays in the arrival process do not significantly alter
the sequence of arrivals.

Service rates to the arrival and departure runways, _,A and _D, respectively, are

determined by individual airport capacity models that generate arrival and depar-

ture capacities as functions of meteorological conditions (e.g., ceiling, visibility,

wind speeds and direction) and arrival and departure demand. Several parameters

characterizing a specific airport affect the airport capacity models, as shown in
Table 3-1.

Table 3-1. Runway Capacity Parameters

Symbol Definition

c

5c

D

Do

Pi

RA_

5RAi

Mean communication time delay

Standard deviation of communication time delay

Length of common approach path

Distance-to-turn on departure

Fraction of operating aircraft that are type i

Mean arrival runway occupancy time of tth aircraft type

Standard deviation of arrival runway occupancy time of ffh aircraft type
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Table 3-1. Runway Capacity Parameters (Continued)

Symbol Definition

RDi

15RDi

Sij

V,

Mean departure runway occupancy time of t_haircraft type

Standard deviation of departure runway occupancy time of ffh aircraft type

Miles-in-trail separation minimum, aircraft of type i behind aircraft of type j

Approach speed of aircraft type i

Standard deviation in approach speed of aircraft type i (5

Wind variation experienced by aircraft of type i

Standard deviation of controller's information on position of aircraft i

In addition to the runway capacity parameters, LMINET's airport capacity models

respond to information on the configurations in which the airport is usually operated.

Presently, LMINET is implemented with 64 airports. _ Figure 3-3 shows their lo-

cations. They account for over 80 percent of the air carrier operations for 1997, as

reported in the current FAA Terminal Area Forecast. The LMINET airports are a

superset of the FAA's 57 pacing airports.

Figure 3-3. LMINET Airports

1The 64 airports are ABQ, ATL, AUS, BDL, BNA, BOS, BUR, B_VI, CLE, CLT, CMH,
CVG, DAL, DAY, DCA, DEN, DFW, DTW, ELP, EWR, FLL, GSO, HOU, HPN, lAD, IAH,
IND, ISP, JFK, LAS, LAX, LGA, LGB, MCI, MCO, MDW, MEM, MIA, MKE, MSP, MSY,
OAK, ONT, ORD, PBI, PDX, PHL, PHX, PIT, RDU, RNO, SAN, SAT, SDF, SEA, SFO, SJC,
SLC, SMF, SNA, STL, SYR, TEB, and TPA.
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Sector Models

Recent work at the Institute has produced new models of both ARTCC sectors

and TRACON sectors as multiserver queues, specifically as M/Ek/N/N+q queues.

That is, as queues with Poisson arrivals, service times with the Erlang distribution

with parameter k, and N servers. Not more than q clients will wait for service, so

that the maximum number in the system is N + q.

The models were developed in light of several interactions with FAA people, in-

cluding controllers at the Denver ARTCC and the Denver TRACON as well as

experienced supervisory controllers working at the FAA's National Command

Center in Herndon, Virginia. The development and calibration of the queuing

models of sectors is described in Reference [1]. The following subsection gives

some details of the model and our numerical treatment for operating LMINET.

THE IVI/E3]N]N+ Q SECTOR MODEL

In our queuing model for the ARTCC and TRACON sectors of the NAS, the

times between aircraft arrivals to each sector are assumed to have the Poisson

distribution. The time that an aircraft stays in a sector is assumed to be a random

variable distributed according to Erlang-3 distribution. A sector can simultane-

ously handle no more than N aircraft at a time, when the capacity N is determined

by the sector's characteristics and the weather. We also assume that, at most, q

aircraft will "wait," (i.e., be delayed by speed changes or vectoring, to be served in
a sector).

The arrival demand to a sector is determined by the network flight schedule. The

choice of the Erlang-3 distribution for the times-in-sector was made in view of

ETMS data and is explained in Reference [1]. We chose 18 as the maximum

number of aircraft that a sector' s controllers can handle at one time, to be consis-

tent with Reference [11]. We base our choice of the maximum number of

"waiting" aircraft on interviews with controllers at the Denver ARTCC.

Solving the model poses a great challenge to us, for there is no closed form solu-

tion, not even for the steady state for the M/Ek/N/N+q queue. We have to resort to

determining the probabilities of each state of the system numerically.

That is itself a respectable challenge, because the number of states is large. For a

M/E3/N/N+3 system, there are 1,950 states [2]. The number of states increases

rapidly with N. For example, if q = 3 the number of states is 27,000 if N is 50; the

number of states is 192,000 if N is 100; and the number of state is 620,000 ifN is

150. Thus, determining the state probabilities directly from the evolution equa-

tions means solving a very large system of ordinary differential equations.

The systems' plant matrices are sparse, and the systems seem reasonably well-

conditioned, so that brute-force numerical methods may succeed for some cases.
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We have, in fact, generated numerical solutions of the full equations for N=I 8 and

q = 3 in this way, to have means of checking the results of approximate solution

methods. This approach takes too much time, however, to be at all appealing for

routine use. Fast-executing approximate solutions are greatly desired. The trick

lies in reducing the number of states.

Our key idea to improve the computer execution involves a new concept called

mega state. The Erlang-3 distribution is equivalent mathematically to the distribu-

tion that results from service by three servers in tandem, each of which has the

same Poisson distribution of service times. Thus, the state of a M/E3/N/N+q sys-

tem is determined by four numbers i, j, k, and q, where i denotes the number of

aircraft that have not completed one service of the three required, j denotes the

number that have completed one but not two services, k is the number that have

completed two but not three and q is the number of aircraft waiting.

The mega state m is defined as m = i + j + k. If the sector capacity is N, then

me [0,N]. After checking the state transition matrix, we realized that a state inter-

acts only with states of neighboring mega states. This further implies that for

mega states ml, m2, ml< m2, if Pr(ml)=0 then Pr(m2)=0, which can be proved by

mathematical induction.

In practice, we can maintain a dynamic upper bound of mega state such that the

probability of any mega state less than this upper bound is nonzero and the prob-

ability of any mega state equal or larger than this upper bound is negligibly small.

Therefore, we do not need to solve all the state transition equations; we need to

solve only the ones whose mega state is equal to or less than the upper bound.

This technique alone reduces more than 90 percent of computer execution time.

Since the upper bound is dynamic, there is virtually no loss of accuracy of solu-

tion, which we have verified by comparison with exact solutions.

For solving those state evolution equations that must be solved, we have tried

forward Euler and second- and fourth-order Runge-Kutta integration schemes. Of

the three, the second-order Runge-Kutta gives us the best speed, contrary to the

conventional wisdom that the fourth-order Runge-Kutta would give the best

speed. The higher the order in the Runge-Kutta integration scheme, the more ac-

curacy we may get; hence, we may afford larger integration steps to speed up the

process. However, due to the shear large number of differential equations that we

have to deal with, some kind of stiffness must exist to prevent us from using large

steps. We finally settled in the second-order Runge-Kutta scheme with the adap-

tive step. The adaptive step control works as follows. In moving the time by one

step, we also move the time by two half steps. We then compare their results. If

their difference is smaller than a specified number, we will enlarge the step in the

next iteration; if their difference is larger than a specified number, we will reduce

the step and go back to redo this integration step. Their difference is also used to

get better precision. In working out several cases, we find that we gain a small
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fractionof thetotal time byusingasecondorderRunge-Kuttaschemewith adap-
tive stepsize.

Anotherimportantmethodfor keepingthequeuingcalculationstractableis to in-
troducesubsectors.This is particularlyhelpfulfor therectangular-areasectorsof
LMINET, whichcanhavelargepeakdemands.

In operatingtheNAS, theFAA doessubdividebusysectors,geographically
and/orby altitude.We modelthis in oursubdividingbusysectorsinto setsof in-
dependentsectors,eachof whichhastheN of asinglesector.Wehavebeencare-
ful not to carry thisprocessbeyondthepoint at whichthesubdivisionsareatleast
arguablyfeasiblefor actualoperations.

LMINET's rectangularenroutesectorsareroughly 120milesonaside.Theyrep-
resentairspaceaboveFlightLevel230.With presentaltitude-directionconven-
tions, thisaffordsabout14levelsat whichmodernturbojettransportsmaycruise:
eastboundtraffic atflight levels230,250,270,290,330,370,and410;westbound
traffic atflight levels240,260,280,310,350,390,and430.

Thus,division into two subsectorscanbeaccomplishedfeasiblyeitherby altitude
or geographicsectioning:twogeographicsubsectorswouldbe60x 120nautical
miles,andtwo altitudesubsectorswouldeachhavesevenavailableflight levels.

Subsectoringwith two geographicsubsectorsandtwo altitudesubsectorsis also
feasible,sodivisionswith four subsectorsis feasible.

Subsectoringinto threegeographicregionscouldcertainlybeaccomplishedfeasi-
bly, giving sectors40 x 120miles.Division of arectangularsectorinto threesub-
sectorsby altitudedivisionprobablyis feasible,aswell: eachsubsectorwould
haveat leasttwoaltitudes.But theresultingcombination,givingninesubsectors,
maybeaboutasfar asoneshouldgo.

Internally,LMINET assumesthataircraftarrivingat asubsectoredsectorare
roughlyevenlydividedamongthesubsectors.Queuestatisticsaregeneratedfor
just oneof these,so,to getoverall delaystatistics,onescalesup thesingle-sector
resultby thenumberof subsectors.Theadvantagefor thequeuingcalculationsis,
thatweneverconsiderasectorcapacityN largerthanthevalue,typically 18,that
is characteristicof asinglecontrollerteam.

With megastatesandsubsectoring,andcompilingtheCcodein whichLMINET
iswritten to optimizeexecutionspeed,wecangeneratestatisticsfor one,20-hour
"day" of CONUSoperationsin roughly15minutesonLMI's HPD370with
RISC2.0.
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TRACON MODELS

Each airport's TRACON is modeled with two arrival sectors and one departure

sector. The sectors are modeled as M/Ek/N/N+q queues.

LMINET allocates arrivals to an airport so that each arrival TRACON sector sees

roughly half of the arrivals in each epoch of operation. For the work reported here,

an epoch is 1 hour long.

EN ROUTE SECTOR MODELS

Like the TRACON sectors, en route sectors are modeled as M/Ek/N/N+q queues.

Automatic Traffic Flow Controller

This element of LMINET models the FAA's practice of delaying scheduled air-

craft departures to congested airports. The function of this module is, essentially,

to limit the arrivals to each airport by the airport's arrival capacity for each time

epoch of the day, so that large arrival queues never form.

To perform this function, we construct a planning window, which is composed of

the rest of day, to facilitate the planning of ground-hold decisions. At each epoch

of the day, the module checks each airport' s arrivals for the rest of the day. If the

scheduled arrivals exceed the arrival capacity, the module will move some arrivals

to the next epoch so that arrival demand meets capacity.

This process continues successively to the end of the day for each airport. Once

this is done, the departure schedule is permanently changed based on the delays

calculated during the process. The arrival queue and departure queue at the end of

the last epoch are counted as additional demands to arrival and departure at the

current epoch in the planning window, and the queue for planes from last epoch is

counted as demand to both arrival and departure at the current epoch.

Even with the traffic flow controller, we cannot totally eliminate the arrival

queues due to the facts that (1) we cannot delay an aircraft that is already in de-

parture; (2) we will not delay the arrivals from the out-of-network airport; and (3)

airport capacities are dynamic and dependent upon both arrivals and departures,

which means that arrivals may exceed the arrival capacity even if arrivals equal

capacity in the planning due to the large departure demand.

We implement the automatic flow controller by taking the following guidelines:

Only departures to the congested airport will be delayed. The amount of

delay is equally distributed among all the flights that are eligible to be de-

layed. We will not delay the departures from the congested airport to re-

duce congestion.
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t Only theflights in thenetworkairportsmaybedelayed.Thedepartures
from airportsoutof the64airportnetworkwill notbedelayed.

Weassumeeachairportis independentin its traffic flow controlplanning,
andthedecisionto delayflights to thecongestedairportis solelybasedon
thecurrentschedule,currentdelaysandqueuesandforecastedairportca-
pacities.Sincetheair traffic flow controlplanningis doneateachepoch
for therestof thedayfor eachairport,thenetworkeffectof thetraffic flow
controlis donethroughthemodifiedschedulefor therestof theday.
TRACONcongestionisnot adecisioncriterion.

• Localweatherinformation,for therestof theday, is assumedto beknown
to theair traffic controllerat anytimeof theday.

• A flight canbedelayedrepeatedlyaslongasit hasnotyet departed.

Thetypicalcauseof airportandTRACONcongestionis inclementweather,
whichwill reducebothcapacities.However,aswe foundout,wedo notneedto
specificallycountTRACONcongestionasdecisioncriterion, sinceoncethearri-
val anddeparturesarecurtailed,thedemandto theassociatedTRACONswill also
bereduced.

Adjusting LMINET to Model the NAS in 1996 and 2005

Users may adjust several LMINET inputs: demand profiles, airport capacity mod-
els, sector capacity models, surface weather and weather aloft, routes between air-

ports, and so on. This subsection explains our choices for the present instantiation
of our DST assessment method.

DEMAND MODELS

We used the operations forecasts given in the electronic reference, "1996 Aviation

Capacity Enhancement Plan and Airport Database," distributed as digital data on a

compact disc by the FAA's Office of System Capacity [3] to model future demand

for the airports of the 64-node LMINET model. The FAA' s percent age growth in

operations value is for the 15-year period of 1995 to 2010. Those forecasts, and

the annualized growth rates, are shown in Table 3-2.

We developed demand inputs to LMINET for 2005, by scaling up departures at

each network airport by the annual rate shown in Table 3-2, compounded for

9 years. We also increased the out-of-network arrivals at each airport by the same

factor as the one used to scale up departures. We scaled up out-of-network arrivals

to the sectors by 24 percent, as representative of the overall traffic growth ex-

pected from 1996 to 2005.
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Table 3-2. Demand Growth Rates

Airport

ABQ 24

ATL 41.3

AUS 29.6

BDL 15.7

BNA 27.3

BOS 12.5

BUR 49.2

BWl 27.3

CLE 47

CLT 29.9

CMH 12.2

CVG 47.7

DAL 5.9

DAY 19.7

DCA 1.5

DEN 22.7

DFW 39.8

DTW 35.3

ELP 18.5

EWR 22.5

FLL 20.1

GSO 28.7

HOU 20.1

HPN N/A

lAD 34.3

AH 53.8

IND 35.6

ISP -4.9

JFK 17

LAS 34.2

LAX 37.8

LGA 7.8

FAA forecast 15-year
growth in operations

(percent)

Annualized

growth rate
(percent) Airport

1.4 LGB N/A

2.3 MCI 42.6

1.7 MCO 54.8

1 MDW 22.5

1.6 MEM 49

0.8 MIA 61.3

2.7 MKE 31.5

1.6 MSP 33.2

2.6 MSY 8.2

1.8 OAK 13.9

0.8 ONT 26.3

2.6 ORD 30.9

0.4 PBI 10.7

1.2 PDX 34.2

0.1 PHL 13.4

1.4 PHX 40.8

2.3 PIT 18.8

2 RDU 26.2

1.1 RNO 61.6

1.4 SAN 34.2

1.2 SAT 26.7

1.7 SDF 25.4

1.2 SEA 38.2

0 SFO 31.8

2 SJC 13.5

2.9 SLC 42.7

2.1 SMF 59.3

-0.3 SNA 23.8

1.1 STL 25

2 SYR 8.4

2.2 TEB N/A

0.5 TPA 46.8

FAA forecast 15-year
growth in operations

(percent)

Annualized

growth rate
(percent)

0

2.4

3

1.4

2.7

3.2

1.8

1.9

0.5

0.9

1.6

1.8

0.7

2

0.8

2.3

1.2

1.6

3.3

2

1.6

1.5

2.2

1.9

0.8

2.4

3.2

1.4

1.5

0.5

0

2.6

SOME IMPORTANT CAVEATS

To develop 2005 demands in this way is to assume that departures from a given

airport will increase in the same ratio for all destinations. This is not likely to

happen, but we have no satisfactory way to predict how the distributions of de-

partures will change. To develop such predictions is beyond the resources of this

task.
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Also--and, we believe, quite significantly--air carders are not likely to retain

present schedules if doing so would result in serious delays. Faced with substan-

tial delays, carders probably would exercise such options as opening new hubs,

operating more city-to-city services and fewer hub-and-spoke routes, and/or

changing schedules to smooth out peaks in scheduled departure rates. Here again,

adequately modeling carriers' responses to significant changes in the NAS seems

to us to require a substantial effort that could not be accommodated in the present
task.

Our method for DST assessment can readily account for actual changes in depar-

ture distributions and carriers' policies, when they are available. For now, the

reader should bear in mind the limitations of our present demand model.

CAPACITY MODELS

We developed capacity models for the 64 LMINET airports for two periods: 1996

and 2005. The 1996 model serves as a basic reference and for comparisons with

data on present-day NAS operations. The 2005 model is the reference for assess-

ing DST effects. It includes planned FAA upgrades. We reviewed the FAA's 1996

Aviation Capacity Enhancement Plan and Airport Database and National Air-

space System Architecture Version 2.0, (FAA Office of System Architecture and

Program Evaluation [ASD], October 1996) to determine these.

The following subsections describe our capacity models for 1996 and 2005.

Airport Models

We made a set of 32 airport capacity models to characterize the capacities of the

64 LMINET airports. There are specific models for several airports, including

CLT, MDW, IND, JFK, EWR, DTW, SFO, ORD, DFW, and LAX. Other air-

ports' capacities could be described by one of a group of standard capacity mod-

els. For example, many smaller airports can be characterized as providing two

independent runways in VMC and one runway in IMC, whatever the wind.

Development of all the models was guided by the same considerations that govern

LMI's capacity modeling (described in Estimating the Effects of the Terminal

Area Productivity Program, NASA Contractor Report 201682, April 1997) neces-

sarily simplified by the time and manpower limitations of the present study.

For the 2005 baseline, we included only those few airport construction projects

described in the ACE database that would (1) be finished after 1996 but before

2005 (2) clearly increase capacity and (3) had approved environmental impact

statements. These projects are as follows:

_I, DEN: Runway 16R/34L

DTW: Fourth north-south parallel runway, Runway 4/22
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# LAS: Upgrade of Runway 1L/19R to accommodate air carrier traffic

• MEM: New north-south paralleled Runway 18L/36R

• PHL: Commuter runway, Runway 8/26

• SDF: Replace Runway 1/19 with two new parallel runways separated by

4,950 feet, Runways 17R/35L and 17L/35R

• LAX: Remove 84/hour arrival-rate maximum imposed by groundside ca-

pacity limits.

Runway Capacities

Our airport capacity models require as inputs four parameters characterizing run-

way capacities as Pareto frontiers, for each of five meteorological conditions

(VMC1, in which IFR flights may be concluded by VFR approaches; minimal

VMC, the standard 1,000-foot ceiling and 3-mile visibility; ILS Category I; ILS

Category II; and ILS Category III). We built these using the LMI Runway Capac-

ity Model (described in Estimating the Effects of the Terminal Area Productivity

Program, NASA Contractor Report 201682, April 1997).

We developed Pareto frontiers for two mixes of aircraft types. We refer to the two

mixes as "domestic" and "international." They characterize airports with mostly

domestic traffic and airports with significant international traffic, respectively.

The domestic mix is 10 percent small, 80 percent large, and 5 percent each for

B757 and large; the international mix is 10 percent small, 60 percent large, 10

percent B757, and 20 percent heavy.

Our review of National Airspace System Architecture Version 2.0 led us to con-

clude that the chief capacity-enhancing improvements planned by the FAA that

will be in effect by 2005 are CTAS build 1 and build 2. These two CTAS builds,

which will include P-FAST, are to equip only eight airports, which are not spe-

cifically identified.

Lacking information about the specific airports that the FAA will equip, we de-

cided to include CTAS at 10 key airports: BOS, EWR, JFK, LGA, ATL, DFW,

LAX, SFO, ORD, and DTW, for our 2005 baseline. Because the specific effects

of P-FAST are so closely related to those of A-FAST, they are described below in

the section, "DST Models," page 3-22.

We also adjusted the runway capacity models in LMINET to account for current

departure visibility rules negotiated between the FAA and most major airlines, for

many of the LMINET airports. As given in the several volumes of U. S. Terminal

Procedures, (U. S. Department of Commerce, National Oceanic and Atmospheric

Administration, National Ocean Service, various dates), the standard IFR takeoff
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minimumsareonestatutemile for aircraftwith two or fewerengines,andone-
half statutemile for aircraftwith morethantwo engines.However,accordingto
informationthattheFAA makesavailableat http:/Iwww.faa.gov/avr/afs/afs410/
Cat3_ac.txt,mostmajorU. S.airlineshavenegotiatedoperatingrulesfor many
airports,thatenablethemto takeoff with runwayvisiblerangesof 700feetor
evenless.In view of this information,weadjustedtheLMINET capacitymodels
to permitdepartureswhenvisibility was700feetor more,atATL, BDL, BNA,
BOS,BWI, CLE, CLT, CMH, CVG, DAY, DCA, DEN, DFW, DTW, EWR,

IAD, IAH, IND, JFK, LAX, LGA, MCI, MCO, MEM, MKE, MSP, MSY, OAK,

ONT, ORD, PDX, PHL, PIT, SEA, SFO, SLC, SMF, and STL.

WEATHER MODELS

This subsection describes the way we modeled weather effects on operations of

the NAS.

Data Sources

We obtained weather data from two principal sources. These are described in the

following subsections.

Surface Weather

We obtained hourly reports of surface weather for 538 stations in the contiguous

United States, from the National Climatic Data Center's On-Line Access and

Service Information System, OASIS, for April 8, 1996, and June 12, 1996. We

purchased data for November 29, 1996 from the National Climatic Data Center.

With few exceptions, this provided hourly reports at each LMINET airport for all

the days we considered.

The exceptions were of two kinds: a few missing reports in otherwise complete

records, and the complete absence of records from some network airports. When

only a few reports were missing in a record, we filled the gaps by interpolation.

When our OASIS searches gave no records for an LMINET airport, or when in

our judgment gaps were too great to fill by interpolation, we used reports from the

closest station with similar climate for which data were available. For example,

for April 8, 1996, we used reports from EWR at TEB, and reports from APA

(Denver Centennial Airport) at DEN.

We used data from LAX for ONT, even though other airports were slightly closer,

because the FAA's reports of VFR days-per-year at those two airports were more

alike than were those reports for the geographically closer stations.
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The Days Considered

We used 3 days in 1996 as representative of typical weather patterns over the

CONUS: April 8, June 12, and November 29. June 12 is our model of a "generally

good" weather day. Except for brief periods of ILS Category I conditions, all 64

LMINET airports were VMC all day, with the exception of JFK, ISP (Islip, New

York), and HPN (White Plains, New York.) Those three airports experienced

mostly IMC. The busiest one, JFK, was in ILS Category I during its busy period,

early afternoon through early evening.

April 8, 1996 is our model of a "somewhat degraded" weather day. It was charac-

terized by generally good weather over most of the CONUS, with periods of IMC

at certain terminals. A cold front running from Seattle to just north of San Fran-

cisco brought showers and reduced visibility to the northwestern corner of the

CONUS. Another cold front pushing southward across the Appalachians produced

showers and snow flurries in the northeast, notably at Boston, and into the mid-

Atlantic states. A stationary front caused showers and some reduced visibility over

the Florida peninsula. While there were some locally significant delays as at Bos-

ton, air traffic over the bulk of the CONUS seems not to have been significantly

disrupted.

We used November 29, 1996 as an example of a bad weather day. There was rain

in the far northwest and far northeast corners of the CONUS, and a storm spread

snow over Colorado, western Iowa, New Mexico, northern Texas, and the Okla-

homa panhandle causing periods of IMC at terminals in those areas. Chicago had

IMC from the late afternoon through the end of the day. Dallas' weather was IMC

throughout the evening. Minneapolis-Saint Paul and Milwaukee were in IMC for

much of the day. Kansas City experienced IMC all day.

Winds Aloft

We obtained values for eastward and northward components of winds aloft from

NOAA's National Center for Environmental Prediction (NCEP.) The data were

created in the Atmospheric Chemistry and Dynamics Branch of NASA/GSFC.

These were given on the same grid as the one described in Reference [ 1], and we

used the same interpolating scheme as the one described there to generate

smoothed wind fields.

Modeling Annual Variations with Representative Days

To make an estimate of yearly delay costs, we made weighted averages of delay

costs for the three representative days: April 8, June 12, and November 29. A

study of 30 years' weather data at 10 busy airports that the Institute made for

NASA in 1995 showed that the airports experienced VMC more than 80 percent

of the time. They had ILS Category I conditions roughly 10 percent of the time.
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Guidedbythis andby estimatesof thecostsof arrival delaysat BOSmadein Ref-
erence[14],wechoseweightsof 0.8for theJuneday,0.13for theApril day,and
0.07 for theNovemberday.

OtherOptionsfor theWeatherModel

Thepresentinstantiationgeneratesstatisticsfor DSTs' benefitsby introducing
actualCONUS-wideweatherdatainto modelsthatrespondto them.An alterna-
tive wouldbe to developmodelsof key weatherparametersthatappropriatelyre-
flectedcorrelationsamongweatherparametersatvarioussites.Suchmodelscould
bedevelopedfrom availableweatherdataandthenusedwith networkor simula-
tion modelsof thenationalairspacesystem.

Consistency of LMINET Results with OAG and ETMS Data

LMINET generates a good deal of information.

statistics on traffic, on queues for arrival and departure service, and for de-

parting aircraft, hour-by-hour at 64 airports; hourly statistics on traffic and

delays at 64 departure TRACONS and 128 arrival TRACONs; and,

with the sectorization that we used, hourly statistics on traffic and delays at
126 geographic-area en route sectors.

We found it helpful and encouraging to compare arrival and departure demands

from LMINET, with demands from the OAG, and from ETMS data. Figure 3-4

shows results for DFW as an example.
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Figure 3-4. Arrival and departure demands at DFW, from OAG, ETMS, and

LMINET, for April 8, 1996
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SinceLMINET departuresarederivedfrom OAG data,thosetwo tracesagree
quiteclosely.LMINET andOAG arrival demanddataalsoagreereasonablywell,
andthis factprovidesaconsistencycheckonLMINET's results.ETMSdatado
notagreeparticularlywell with theOAG departuredata,exceptfor theoverall
scale.Interestingly,LMINET arrival dataagreeratherbetterwith OAG datathan
doarrivaldata.

As shownin Figure3-5,a similarsituationobtainsatORD.

Figure 3-5. Arrival and departure demands at ORD, from OAG, ETMS, and

LMINET, for April 8, 1996.
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Other Options for the NAS Model

Several NAS models would be viable options for the NAS model, each bringing

its own set of strong points and not-so-strong points. The MIT/MITRE Approxi-

mate Network Delays (AND) model is another queuing network model of the

NAS. AND offers an itinerary builder which constructs feasible aircraft itineraries

from OAG data, so that cumulative delay effects may be studied. Presently AND
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is being extended to include the same queuing model of en route and TRACON
sectors that is in LMINET.

Detailed Policy Analysis Tool (DPAT) is a simulation model of the NAS, derived

from the FAA's NASPAC simulation model. Until recently, conventional wisdom

held that simulation models, while offering excellent opportunities for detailed

models, took too long to set up and operate to be useful in situations where quick

results were desirable. With Detailed Policy Analysis Tool (DPAT), however,

MITRE staff have developed means of executing a simulation model sufficiently

rapidly that it may well be useful for evaluating DSTs.

A simulation model like SIMMOD, which may not execute quickly enough when

modeling substantial parts of the NAS to be useful in our method for assessing

DSTs, may nevertheless be quite helpful if it is used to model only a small part of

the NAS, such as a single important airport or small set of airports. In that case, it

may be possible to exchange data between SIMMOD and a queuing network

model like LMINET or AND to get whole-NAS results corresponding to quite

detailed DST effects at specific airports.

ATM OPERATIONS MODELS

A model capable of representing effects of DSTs on operations of ARTCC sectors

and TRACONs is a key part of our evaluation method. This section describes the

model that we used, the Aircraft/Air Traffic Management Functional Analysis

Model (FAM), in some detail and mentions some other options.

Functional Analysis Model

The Logistics Management Institute developed the prototype Aircraft/Air Traffic

Management Functional Analysis Model (FAM) under contract with the NASA

Ames Research Center [5]. FAM is a discrete event simulation model that runs on

either the IBM/Windows'95 or Macintosh personal computers. This new model

addresses the shortcomings of earlier simulation models by discretely modeling all

of the active participants in the airspace system, airline air crews, as well as airline

operations centers (AOCs) and FAA controllers.

To measure impacts of technologies on the ATM system, FAM accumulates sta-

tistics of interest on task loading and usage time for humans and equipment in air-

craft, FAA ATC facilities, and AOCs. As a discrete event simulation, FAM

carries out each single event in a series that occurs over time.

Figure 3-6 shows FAM's basic architecture. FAM generates events representing

an interaction among components of the model. The events are passed between

the affected objects in the model using the appropriate communications channels.

For example, FAM currently models both sides of a conversation with a sequence

of individual events. Each event represents one party speaking once. The initial, or

3-19



"trigger" eventin eachsequenceis releasedby theExternalEventGeneratorand
sentto themodelobjectthatoriginatesthat event.Forexample,theopening
transmissionin aradioconversationwouldbesentto themodelobjectthatmakes
thetransmission.Fromthere,FAM routestheeventthroughtheappropriatechan-
nelin theCommunicationsmoduleto thedestinationobject,therecipientof the
transmission.

Figure 3-6. FAM Architecture
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Module

Trigger Events Trigger Events

Each event carries with it a set of attributes, such as the event' s origin and desti-

nation objects or the type of event. The model objects "take" appropriate action on

the events, in many cases generating a reply event, on the basis of these attributes.

Each model object accumulates workloads and equipment usage times associated

with each event. These, together with time series of the simulation-sample means
of such features as the number of aircraft in the models, are available to users.

Other Options for ATM Operations Models

The Total Airspace and Airport Modeller (TAAM) provides detailed simulations

of ground and terminal area operations, and is capable of modeling en-route traffic

as well. TAAM is a commercial product. The Reorganized ATC Mathematical

Simulator (RAMS) is a simulation tool developed by Eurocontrol. Information

about RAMS is available on the Internet, at www.eurocontrol.fr/projects/rams.
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The National Airspace System Simulation (NASSIM) model is an FAA model,

developed to simulate effects of new procedures and equipment on the NAS, for
current and forecast air traffic levels 2.

AIRCRAFT PERFORMANCE MODELS

Aircraft performance models give fuel burns and flight times, and, with informa-

tion on winds aloft, determine optimal trajectories. This section briefly describes

the model used in our instantiation, and it mentions some other options.

The Base of Aircraft Data/Flight Segment Cost Model

The performance model that we used is the same one used in Reference [1]. The

model has been developed into a part of a tool for predicting costs of operating a

specified set of flights, suitable for general use and available on the World-Wide

Web [6]. This latter use, in the Flight Segment Cost Model, generated the acro-

nym FSCM.

As used here, the model generates fuel bums and flight times for aircraft to fly

through a specified set of three-dimensional position points, at a prescribed set of

Mach numbers, for given winds aloft. That is, given

{ latitude i ' lon gi tude i ' altitude i _ N+l NJ0 and {M i }0 ' and also a function return-

ing the vector-valued wind at a given latitude, altitude, and longitude, the model

computes the fuel burn and flight time for a specified aircraft to fly the prescribed

trajectory.

The model uses the flight mechanics equations and parameters of the Base of Air-

craft Data models developed by the European Organization for the Safety of Air

Navigation [7]. Available data cover more than 125 aircraft types. As detailed in

Reference [1 ], fuel burns are computed from an exact solution of the BADA

equations for flight at constant altitude and Mach number, corrected for climbs,

descents, and speed changes by the total energy method.

Our input winds aloft are gridded data for eastward and northward winds aloft,

provided generously and promptly by NOAA's National Center for Environmental

Prediction (NCEP.) The data were created in the Atmospheric Chemistry and Dy-

namics Branch of NASAJGSFC. We produce smooth values of winds aloft by the

interpolation scheme described in Reference [1 ].

The model's outputs agree well with others. Figure 3-7 shows the agreement be-

tween its predictions of fuel bums, and those of United Airlines' air operations

center, for several Boeing 727 flights in early August 1997. compares predicted

2 Salanski, M., "NASSIM Simulation Development Overview," Federal Aviation Administra-

tion, AOR-200, Operations Research Service, June, 1994.
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block times.The smallervaluesof time and fuel are for trips from DEN to ORD,

the larger for flights from ORD to PHX.

Figure 3-7. Comparison of BADA/FSCM and

UAL AOC Predictions for Block Fuel
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Other Aircraft Performance Models

Several other aircraft performance models could be used. If characteristics of new

aircraft, or aircraft not in the BADA database, were important, then such NASA

preliminary design models as ACSYNT [8] or FLOPS [9] could be used. The pre-

liminary design models can be used directly to produce fuel burns and flight

times, and they may be used with optimization routines to generate optimal routes.

Alternatively, outputs from the preliminary design models may be used to infer

appropriate BADA parameters for new aircraft; with these, the BADA/FSCM

models can be applied.

DST MODELS

This section describes ways to model NASA DSTs with the instantiations of the

component models used in the present study. The component models required are

a NAS model, an aircraft performance model, an ATM operations model, and ap-

propriate data. For this study, the instantiation of the NAS model is LMINET, the

aircraft performance model is BADA/FSCM, and the ATM operations model is
FAM.

The discussions in this section are inclusive, describing how specific DSTs can be

brought into the present evaluation framework even when to do so requires more

resources than the present study affords. In Chapter 4, we use available resources

to model three DSTs in sufficient detail to generate preliminary benefits estimates.

The following subsections discuss general considerations for modeling DSTs and

give some specifics for modeling a set of DSTs.

General Considerations for Modeling DSTs

LMINET may be adjusted at several levels, using any of the parameters of its con-

stituent models, to reflect DST performance. At the highest level, airport capaci-

ties may be adjusted simply by multiplicative factors applied to arrival and/or

departure capacities. At the most detailed level, DST effects may be reflected in

changes to the runway capacity model parameters shown in Table 3-1.

The effects of DSTs on airspace outside airports may enter LMINET by adjust-

ments to the parameters of the queues that model TRACON and en route sectors.

A DST that reduced a controller's workload might, for example, be reflected in an

increase to the maximum number N of aircraft that could be accommodated at one

time. A DST that, like EDP, reduced the amount of time aircraft spend in a sector

as well as the controller's workload, could be modeled by an increase in N and a

decrease in the mean of the Erlang distribution of service times.

To develop values for the variations in LMINET parameters that model DSTs'

effects on sectors, we used the FAM simulation model.
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Conflict Prediction and Trial Planning Tool

The Conflict Prediction and Trial Planning Tool (CPTP) will help en route sector

controllers identify and resolve potential conflicts. Intended as a precursor of the

Airspace Tool/Sector Tool DSTs described in Chapter 3, CPTP will serve as a

research tool for developing those DSTs while assisting controllers.

CPTP will receive radar track and flight plan information from the host system

and winds aloft data from the National Weather Service's Rapid Update Cycle

predictions. These data, with extensions of CTAS' trajectory synthesis algorithms,

will provide predictions of potential conflicts considerably in advance of those

developed now by individual controllers.

CPTP will send warnings of identified potential conflicts to the display(s) of the

controller(s) whose sectors are affected. Controllers may then use the "trial plan-

ning" feature of CPTP to test resolution strategies, before issuing clearances to the

aircraft involved. For controllers directing aircraft in transitions between en route

and terminal airspace, CPTP's trial planning functions have the ability to respect

any imposed miles-in-trail restrictions.

Models of CPTP must capture the tool's effects on individual sector operations

and on the NAS as a whole. The latter task can be done by a queuing network

model such as LMINET. Such models characterize sector performance by only a

few parameters: LMINET uses just three, namely, the maximum number of air-

craft that a controller team can handle at one time in a given sector, the index k of

the Ek distribution of times-in-sector that characterizes the degree to which times-

in-sector are concentrated about their mean, and the mean time-in-sector.

Detailed analyses of sector operations are required to generate numerical values

that characterize the changes CPTP may be expected to make in the sector

model's parameters. In the present work, we used the NASA Functional Analysis
Model. Developed for NASA by LMI, FAM is a discrete-event simulation model

capable of modeling sector operations in considerable detail.

We set up FAM to model one sector in the Denver Air Route Traffic Control

Center (ZDV), together with the Denver TRACON and the Denver and Colorado

Springs airports. For each of the parts modeled, FAM monitors the utilization of

the controllers and operators. We took the basic demand event file that FAM uses

for this task directly from actual ETMS data, for flights that flew through the sec-

tor that we considered. To increase demand in the sector, we modified the original

event file. The model simulates a 4-hour period of operations.

We derived the initial conflict resolution time of 50 seconds used in the model

from an average of the 40 and 60 seconds that Grossberg, Richards, and Robert-

son report it takes to resolve "crossing conflicts and overtaking conflicts, respec-

tively." [10] This is a fixed conflict resolution time, for the purposes of this
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model. In our simulation, conflicts are generated by a random event generator that

produces events based on the number of aircraft in the sector.

When we modified the original event file to create a change in the maximum and

total number of aircraft in the sector, we maintained the same distribution of de-

mand. The following figures (3-9 to 3-16) show the demand distributions for the

event files used in the analysis. Notice how the distributions for the demand stay

fairly consistent.

Figure 3-9. Demand Distribution for Utilization 65.3 percent
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Figure 3-10. Demand Distribution for Utilization 63. 74 percent
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Figure 3-11. Demand Distribution for Utilization 61.79 percent
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Figure 3-12. Demand Distribution for Utilization 59.46 percent
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Figure 3-13. Demand Distribution for Utilization 57. 90 percent
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Figure 3-14. Demand Distribution for Utilization 55.94 percent
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Figure 3-15. Demand Distribution for Utilization 52.82 percent
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Figure 3-16. Demand Distribution for Utilization 51.65 percent
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We ran the simulations for a set of event files covering a range of values of the

maximum number of aircraft in the sector. This established the variation of con-

troller utilization's with maximum number of aircraft. We repeated the simula-

tions, using varying conflict resolution times of 5 seconds, 25 seconds, and

50 seconds per conflict. We adjusted the conflict generator so that the number of
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conflictsgeneratedin a4-hourperiodagreedwith observationsreportedby
Grossberg,Richards,andRobertson.[10] Figure3-17showstheresultsfrom the
runsof thesimulations.We smoothedthecurvesby fitting aquadraticfunctionto
them:

max= co + c 1(util) + c2(util) 2 [Eq. 3-1]

Figure 3-17. Variation of Controller Utilization with Maximum Number

of a/c in Sector

29

27

_ 21

17
!

15_ _ _ i

52 57 62 67 72 77 82

Controller Utilizati_r_

We believe a decrease in conflict resolution time from 50 seconds to 25 seconds is

plausible for CPTP. When we reduced the time to resolve conflicts using a maxi-

mum number of aircraft of 17, the maximum number of aircraft able to be handled

increased to 18. As the controller utilization increased, the difference between the

50-second and 25-second conflict resolution times caused a larger increase in
maximum number of aircraft able to be controlled.

To conform with FAA standards [11], we use 18 as the standard maximum num-

ber of aircraft in an ARTCC or TRACON sector. While the results of Figure 3-17

might be used to justify a larger increase, to be conservative, we chose to reflect

CPTP's effect as increasing the maximum number by 1 to 19.

Airspace Tool and Sector Tool

The Airspace Tool (AT) will help controllers manage traffic that passes through

sectors without making transitions to or from terminal airspace. It is intended to

support a new controller position, the "airspace coordinator." The airspace coor-

dinator will have cognizance over the airspace of more than one sector, perhaps

over all the sectors in a center. Using accurate forecasts of aircraft' s future
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position, current flight plan information, and, possibly, trial planning features of

the AT, the airspace coordinator will develop proposals for clearances that make

efficient resolutions of conflicts, and conform closely to users' wishes. The air-

space coordinator will then interact with sector controllers to implement and de-

liver these clearances.

The AT may be modeled with an extension of the CP/TPT model. The AT's bene-

fits for airspace users will be principally in more efficient conflict resolutions and

in clearances that are closer to the users' desired routes, in comparison with

CP/TPT results.

AT's benefits to the sector controllers should exceed those of the CP/TPT because

the airspace coordinator will develop even more efficient conflict resolutions than

the CP/TPT, and will deliver them even more efficiently to controllers. Simulation

modeling, like that of the FAM modeling reported here, may be used to develop

quantitative measures of AT's benefits to sector controllers.

The Sector Tool (ST) will assist controllers managing transition airspace by de-

veloping proposals for efficient clearances. This tool will attack directly the inef-

ficiencies noted in Chapter 2 and illustrated by the descent profile of Figure 2-23.

As noted in Chapter 2, these are rife at busy terminals; eliminating them may have

a substantial payoff in fuel, time, and schedule integrity.

ST's benefits to airspace users may be modeled by comparing the fuel bums and

times of actual descent profiles with those of optimal descent profiles, using such

a tool as the BADA/FSCM aircraft performance model. ST's benefits to air traffic

managers may be modeled by simulations, for example, with FAM.

Advanced En-Route Ground Automation

This tool is intended to extend the efficiency and flexibility of ATM in en route

and transitional airspace even beyond the levels provided by AT/ST. It will pro-

vide such advanced features as automatic conflict resolution, coordination among

adjacent ARTCCs, and automated negotiation among ATM functions, airline

AOCs, and aircrew.

Modeling Advanced En route Ground Automation (AERGA) will require ex-

tending the FAM models of ARTCC and TRACON sectors to include AOCs.

FAM models aircrew workloads and functions, although we did not require this

feature for the tools analyzed in this report.

Active Final Approach Spacing Tool

Describing our Active Final Approach Spacing Tool (A-FAST) model necessarily

involves describing our P-FAST model. P-FAST provides controllers with adviso-

ries for landing sequence and for landing runway. As described by Davis et al. [12],
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the test installation of P-FAST at DFW raised the average peak arrival rate by

roughly 10 percent for both IFR and VFR operations. In the baseline for that com-

parison, however, about three to five arrivals/hour were diverted to runways other

than those in the normal set of arrival runways. Correcting for this difference in the

capacity of the runways used leads to the conclusion that P-FAST caused an in-

crease of about 13 percent in the capacity of the set of normally-used arrival run-

ways. Reference [12] also indicates that a significant part of P-FAST's benefits

were due to better balancing of the loads on separate runways.

This "thought experiment" shows that runway balancing is likely to be important

at any airport with multiple runways. Suppose two independent runways are ac-

commodating arrivals, each with a capacity of 35 arrivals/hour. Also suppose that

arrival demand is 50/hour. For simplicity, let us consider steady-state operations.

If the arrival stream is evenly balanced between the two runways, each will re-

ceive 25 aircraft per hour, and, thus, will operate at a utilization ratio of 5/7. In

steady state, that would cause a mean queue of 2.5 aircraft, which implies a mean

delay of approximately 4.3 minutes for each arrival. Thus, with balanced runway

use, the airport handles the arrival demand with delays that are significant but

probably tolerable.

Now suppose there is a moderate imbalance, with the arrivals reaching the two

runways in a 20-30 split. There is little delay-about 2 minutes---on the less-loaded

runway but arrivals to the more heavily loaded runway will see a mean delay of

more than 10 minutes. Delays of that magnitude threaten airlines' schedule integ-
rity.

Even a slightly more serious imbalance, say, an 18-32 split, would create an intol-

erable 18-minute delay on the more heavily loaded runway. It is likely that flights

would divert from that runway to bring delays down at least to the 10-minute

level. That would imply about two diversions per hour, or a reduction in the run-

ways' effective capacity of 4 percent.

To gain an indication of the potential effects of efficient sequencing, we consid-

ered operations for both "domestic" and "international" mixes of aircraft types.

(These mixes are defined earlier in this chapter in the subsection Runway Capaci-

ties.) For the domestic mix, allowing aircraft to arrive at random gave a runway

arrival rate of 32.9 per hour. Restricting the runway to just one type of aircraft

gave a spread of arrival rates, ranging from 24.65 (all small) to 36.38 (all large.)

Weighting each of these "one-type" arrival rates by the fraction of that type in the

mix gave a weighted average arrival rate of 34.57. We take this weighted average

as a crude indicator of the improvement in arrival rate that could be achieved by

efficient sequencing. By this measure, efficient sequencing could increase arrival

rates at domestic airports by 5 percent. Repeating the process for international air-

ports gave an arrival rate improvement of 7 percent.
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The above analyses of the effects of optimal sequencing and runway balancing

suggest that sequencing and balancing together might result in about a 10 percent

improvement in arrival capacity. This appears consistent with the benefits ob-

served at DFW. Also, the analyses suggest that benefits of about that size might

be expected at any airport with multiple runways, at which balancing was imper-

fect with present ATM methods.

Now, our airport capacity models do not include any adjustment for less-than-

perfect runway balancing. In effect, they assume perfect balancing. In view of this,

we model only the sequencing effect of P-FAST.

We did this by changing the Pareto parameters from those of the assigned mix to

the weighted average of the one-type parameters. This led to increases of about

4 percent in departure capacity, in addition to the arrival capacity increases.

Since P-FAST is an aid to arriving traffic, that might appear to give P-FAST an

unmerited effect on departures. However, DFW tests reported significant in-

creases in departure capacity during P-FAST operations. [12] So, we are content

to have our model assign some departure capacity improvements to P-FAST. In

work to model effects of tools that, like A-SMA, should directly affect departure

capacity, this point should be revisited so that appropriate benefits can be associ-
ated with each tool.

Now, let us consider A-FAST. A-FAST will augment the capabilities of Passive

FAST with an interface that provides speed and heading advisories to the

TRACON final approach controller. According to Reference 13, it also will have

improved conflict-detection and resolution capabilities. Reference 13 also says

that A-FAST should result in "tighter means and smaller standard deviations of

in-trail separations on final approach, and shorter common approach path

lengths."

In the context of our models, we see A-FAST as giving controllers much more

accurate position information for arrivals, reducing variations in approach speeds,

reducing variations in approach profiles, and reducing the common approach path

length.

Specifically, we model A-FAST by

• Reducing position uncertainty from 0.25 nm to 100';

• Reducing standard deviations of approach speeds from 5 kt to 2.5 kt;

• Reducing standard deviation of wind variation from 7 kt to 5 kt (this re-

flects A-FAST's reduction of variations in approach profiles); and

• Reducing common path length from 6 nm to 5 nm.
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The steps in capacity from the current reference through P-FAST to A-FAST are

shown in Figure 3-18, which compares the Pareto frontiers describing runway ca-

pacifies in ILS Category I conditions for the three cases.

Figure 3-18. Capacity Comparisons
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Expedite Departure Path

The performance of Expedite Departure Path (EDP) has been characterized as

"decrease time-to-cruise-altitude by 15 percent." The material of Chapter 2 sug-

gests that bringing times-to-climb for departures from busy airports to values

characteristic of less-busy airports could reduce this time (specifically, the time-

to-climb averaged over a day) by 3 minutes from a base of 16 minutes. That

would be a decrease of 19 percent. In view of this, the 15 percent goal seems rea-

sonable, if it is interpreted as applying only to busy airports.

EDP is to achieve its results by giving controllers suggested clearances that bal-

ance flows to departure fixes, and allow efficient climb-out paths whenever they

are possible with the existing mix of arrivals and departures. Presenting control-

lers with suggested clearances changes their cognitive processes from doing all

the work of analyzing the traffic picture and determining appropriate clearances,

to reviewing the suggested clearances. This change could reduce the thinking time
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required for each flight. If that happened, then EDP also could increase the maxi-

mum number of aircraft that a controller can handle at one time. If so, and if also

the controller's utilization is the binding constraint on the maximum number of

aircraft in a particular departure TRACON, then EDP would increase the maxi-

mum number of aircraft in the departure TRACON.

Standard instrument departures from busy airports often do not have a fixed route,

but, rather, instruct crews to expect vectors to one of several fixes or navigation

aids. (There is just one SID for ORD, for instance, and it is of this kind.) Conse-

quently, it seems likely that for many busy airports the controllers' utilization,

rather than airspace limitations, will in fact govern the maximum number of air-

craft that can be accommodated in the departure TRACON at one time.

An interview with a controller who had experience in the NYC TRACON raised a

note of caution, however, about the chances for EDP to increase the number of

aircraft handled at one time. The controller told us that controller teams generally

developed standard operating procedures that they carried out largely mechani-

cally, particularly during busy periods. The controller believed that this often re-

sulted in conservative clearances. EDP operations might require controllers to do

more complex tasks to issue less-conservative clearances for departures. In that

case, it is not clear that the maximum number of aircraft handled could increase,

even with the help provided by EDP.

A solid assessment of EDP's effects on the maximum number of aircraft simulta-

neously in a departure TRACON must, we believe, wait until the tool is more

fully defined. Therefore, we model EDP by reducing the mean time in departure

TRACONs by 3 minutes, leaving the maximum number in the sector unchanged.

Enhanced Surface Movement Advisor

Enhanced Surface Movement Advisor (E-SMA) will provide information from

many sources (e.g., ARTS data, airline schedule and gate data, flight plans,

ACARS data on flight status, and runway status data) to optimize the use of sur-

face movement resources, probably by means of collaborative decision-making

among surface traffic managers and airlines. Specific benefits are to include run-

way load balancing and managed competition for a taxiway resource.

Modeling E-SMA's benefits from runway load balancing would begin with de-

termining how runways are assigned now. Presumably, presently each runway's

load and mix are dictated by airlines' specific gates, OAG departure schedules,

and a choice of taxiways made by ground controllers. With E-SMA, the runways'

loads and mixes would be determined by well-informed, collaborative decisions

minimizing total time from gate to wheels up in general, and giving due consid-

eration to promoting certain flights when that is to a carrier's overall advantage.
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Simulationmodelingprobablywill benecessaryto determinechangesin runway
loadingandmixesthatE-SMA wouldbelikely to realize.With this information,
LMI's runwaymodelwouldcapturetheeffectsof bettermixesoncapacity.LMI's
airportmodelswould thendeterminetheeffectsoncapacity,andLMINET would
capturetheconsequenteffectsondelaysthroughouttheNAS.Another,very inter-
estingoptionwouldbeto integrateasimulationmodelof aspecificairportor set
of airportsdirectlyintoLMINET.

Thismodelingis quitelikely to beairport-specific.It shouldbevalidatedby re-
viewswith FAA controllersat eachairporttreatedandby reviewswith airline
groundoperationsmanagers.

Modelingmanagementof a scarcetaxiwayresourcewouldalsobeginby deter-
mininghowtraffic reachestheresourcein presentoperations.Presumably,now
eachconcourse'spushbackscheduleis dictatedbyindividual airlines' gatesand
schedules,togetherwith decisionsby thegroundcontroller.With E-SMA,push-
backschedulescouldbedeterminedcollaboratively,to minimizeeffectsof con-
gestionat thescarceresource.

Theseeffectscouldbecapturedin LMI's airportmodelby introducingaqueuefor
thescarceresource.Taxidelayscanthenbeevaluated"before"and"after" E-
SMA duringoperationsmodeledwith LMINET. TheLMINET calculationsalso
will determineNAS-wideeffectsof installingE-SMA at specificairports.

Here,too,thesituationsmodeledarelikely to beairport-specific.The models also

should be reviewed by FAA and airlines ground traffic managers.

ECONOMIC MODELS

Economic models play the key role in evaluating the relative merits of each deci-

sion support tool. They serve to translate measures of the technical effectiveness

of the DSTs into monetary equivalents. We use a delta approach, comparing a

baseline case (which has no DST) to a case that incorporates a particular DST.

The benefits of the DSTs are assumed to be the monetary difference between the

two cases. This monetary difference is also significant because it represents the

marginal value of any single DST as well as relative value and importance when

implementing multiple DSTs. This analysis also forms a lower estimate of an up-
per bound of the allowable cost of the DST. It is a lower estimate because neither

qualitative economic benefits are considered nor are the second-order quantitative
economic benefits.

Benefits and costs will be defined at two levels: those occurring at the air car-

tier/aircraft level and those occurring at the air traffic controller level. Two types

of savings accrue at the air carrier/aircraft level. The f'trst is the combined savings

in flight time and fuel costs resulting from less delay. The second is the savings
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gained from removing part of the controller-induced ATM constraints and allow-

ing aircraft to fly at or near optimal 4-D flight paths. At the air traffic control

level, the costs and benefits are measured by the change in the number of opera-

tions handled by the sectors and the TRACONs. We made no attempt to convert

these measures into equivalent staffing numbers or monetary costs; that is beyond

the scope of this project.

The major output of the queuing model of the NAS is delay in aircraft-minutes.

The first step in the economic analysis is to determine the cost of this delay. The

approach used in this analysis was first developed by Earl Wingrove of LMI for

the analysis of the Terminal Area Productivity Program. [14] Upper and lower

bounds of the system-wide delay costs per block-minute of time are defined by a

pessimistic and an optimistic scenario, respectively. The pessimistic estimate is

based on the equipment-level direct operating cost (DOC 3) plus an allocated share

of cabin crew costs, all divided by block minutes of time. This estimate of delay

costs includes fuel costs plus aircraft depreciation/amortization and rental costs. It

implicitly assumes that all arrival delay occurs in the air and that some incre-

mental capital costs are incurred during the delay period. It is the higher of the two
estimates.

The optimistic scenario is based on the variable operating cost (VOC4), which

does not include aircraft depreciation/amortization and rental costs, plus an allo-

cated share of cabin crew costs, minus fuel costs, then all divided by block min-

utes of time. This estimate implicitly assumes that all arrival delay is taken on the

ground and that aircraft depreciation/amortization and rental costs are not charged

against the delay. It is the lower of the two estimates. Neither of these measures

includes the costs to either the airlines or the flying public resulting from canceled

flights. In 1995, the system-wide delay costs based on the weighted average of

turboprop, short-haul jets and long-haul jets were $43.18 for the pessimistic case
5

and $24.08 for the optimistic case.

The ground hold cost is set to $42/minute. This is an approximation, based on in-

terviews of the figures that major airlines use to price gate delays. This price con-

sists of three major cost categories:

• Lost revenue (passengers leaving because the flight is delayed or not trav-

eling in the future because of the delay)

• Crew and fuel costs

3Direct Operating Costs (DOC) are charges directly related to owning and operating the air-
craft. They include flight crew costs (e.g., salaries, benefits/pensions, payroll taxes, and person-
nel/training expenses); fuel and oil costs (including taxes); maintenance costs (including
maintenance overhead); insurance and injuries/loss/damage charges; aircraft rentals; and aircraft
depreciation/amortization charges.

4 Variable Operating Costs (VOC) are direct charges that vary as the aircraft utilization varies.
They are essentially the DOC minus aircraft rentals and aircraft depreciation/amortization charges.

5A more complete discussion of these points is given in Chapter 6 of Reference [14].
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Downstreamdisruptions.

Thepresentanalysisusestheoptimistic scenarioasthebasisfor costingthesystem-
widedelaycost.We chosethelesserestimatefor avarietyof reasons,butchiefly
becausethepredictedgrowth in air traffic representsjust onerealizationof many
differentpossibilities.Thisparticularrealizationdoesnot includethecompetitive
responseof thecarriersto rising delaysandtheir associatedcosts.Forinstance,as
thedelaysto CarrierA increaseat Airport A, it is likely thatCarderA will shift
someof its operationsto Airport B, especiallythosecardersthatusehubandspoke
typeoperations.Therefore,thedelaysderivedin this studyrepresentatypeof
worstcase.By usingthelowerestimate,wewill partially compensatefor that.

Muchof this analysisexaminesdelayasit occursin variousphasesandmodesof
flight. Thatinformationis easilytranslatedinto fuel burnedduringthatphaseor
modeof flight.

For operationson airportsandin terminalareas,wedevelopedrepresentativefuel
burnratesfrom theBADA dataset.[7] Thereasonsfor thevariationsin these
burnrates,shownin Table3-3,seemobvious:theburnratefor climb isof course
thelargestone;fuel burnfor vectoringduringdepartures("vectorout") is larger
thanthatfor vectoringduringarrivals("vectorin") becausetheairplanesare
lighterduringarrivalsthanduringdepartures,andsoon.

Table 3-3 Fuel Burns per Flight Mode�Phase

Model Mode/phase Fuel burn rate (kilogram per minute)

Airport

Sector

Ground idle

Taxi out

Climb

Vector out

Cruise

Vector in

Descent

Taxi in

Arrival TRACON

Departure TRACON

Cruise

11.01

17.05

103.64

50.38

49.46

33,68

11.12

15.35

41.57

11.01

49.46

There are three burn rates for operations in the arrival TRACON, the departure

TRACON and the en route sectors. The fuel burn in the arrival TRACON is set

equal to the average of fuel burn occurring in the vector in and cruise flight

modes. The departure sector fuel burn is set equal to the ground idle fuel burn

because we assume that delays for the departure TRACON will be taken on the

ground. The en route fuel burn is set equal to the cruise fuel burn.
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This economic analysis examines results that are expected to occur in 2005. As

such, the benefits and costs associated with this study need to be presented in a

consistent manner. Therefore, all benefits and costs need to be translated into the

same dollars. We chose 1995 dollars for this reference. There are four key pa-

rameters. The initial system-wide delay costs are assumed to have a yearly in-

crease of 1 percent per year, which represents the increase in real aircraft

operating costs as the fleet ages. The real cost of fuel is assumed to increase at

0.10 percent per year and the nominal rate of inflation is set to 2 percent per year.

The key parameters are inflated to the year 2005 baseline then deflated back to the

equivalent 1995 dollars. The values are shown in Table 3-4.

Table 3-4. System-wide Delay Costs

Year 2005 cost Year 2005 cost

Parameter in year 2005 dollars in 1995 dollars

Gallon of fuel

Upper bound system wide delay cost per block minute

Lower bound system wide delay cost per block minute

Ground hold delay cost per block minute

0.666

52.632

29.356

0.563

53.685

29.943

45.935

The cost of the fuel is found by multiplying the cost of the fuel in dollars per gal-

lon times burn rate in kg per minute times the conversion factor of kilograms to

gallons. This is done for each flight mode and phase. When added to the lower

bound system-wide delay cost per block minute, the value used to cost block of

minute of delay for this study is found. This number is shown in the last column

of Table 3-5.

Table 3-5 Delay Costs

Delay cost in 2005 Fuel cost in 2005 Total delay cost
Model Mode/phase in 1995 dollars in 1995 dollars per block minute

Airport

Sector

Ground idle

Taxi out

Climb

29.943

29.943

29.943

2.052

3.178

19.311

Vector out

Cruise

Vector in

Descent

Taxi in

29.943

29.943

29.943

29.943

29.943

9.387

9.215

6.278

2.071

2.860

Ground hold

Arrival TRACON

Departure TRACON

Cruise

45.935

29.943

29.943

29.943

0.00

7.745

2.052

9.215

31.995

33.121

49.254

39.330

39.158

36.221

32.014

32.803

45.935

37.688

31.995

39.158
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Chapter 4

Some Cross-Comparable Benefits Estimates

In this chapter, we report the results of applying the instantiation of our method

described in Chapter 3, to make cross-comparable estimates of the benefits of a

set of three DSTs: A-FAST, CPTP, and EDP.

DECISION SUPPORT TOOLS CONSIDERED, AND THEIR

ASSUMED IMPLEMENTATIONS

In this section, we describe the specific ways in which the models of A-FAST,

CPTP, and EDP were used in making the benefits estimates.

Active Final Approach Spacing Tool

We applied the A-FAST model of Chapter 3 in two "builds." In the first build, we

applied A-FAST only at the 10 airports at which, following a review of FAA

plans, we had decided to include P-FAST (that decision, and those airports, are

described in the subsection "Airport Models," in Chapter 3 page 3-3. In the sec-

ond build, we applied A-FAST at all 64 LMINET airports.

Expedite Departure Path

We chose the set of TRACONs that should have EDP installations in two steps.

First, we extended the analysis of ETMS data reported in Chapter 2 to determine

which of the 64 network airports would benefit from the tool. As we explain in

Chapter 2, ETMS data for times-to-climb show fairly sharp differences. Aircraft

departing from busier airports generally require about 3 minutes' more time-to-

climb than do departures from less busy airports.

The extended analysis of times-to-climb identified 20 airports in the "long-time-

to-climb" category. These are ATL, CLT, CVG, DCA, DFW, EWR, IAH, JFK,

LAX, LGA, MCO, MDW, MIA, MSP, ORD, PHL, PHX, SEA, SFO, and STL.

Evidently, these airports are the ones most likely to benefit from EDP. The full list

includes, however, several airports, such as CVG, that have significantly less traf-

fic than the others. Eliminating these brought us to a final list of 16 airports at

which EDP seems most likely to generate significant benefits: ATL, CLT, DFW,

EWR, IAH, JFK, LAX, LGA, MCO, MIA, MSP, ORD, PHL, PHX, SFO, and

STL. Accordingly, we implemented EDP at these airports to assess the likely

benefits of that tool.
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Conflict Probe/Trial Planning Tool

Demand varies greatly from sector to sector not every en route sector is likely to

benefit from CPTP. As an illustration, Figure 4-1 shows peak demand from

LMINET for traffic flying over the United States on the wind routes for April 8,

1996 as a function of geographic sector.

Figure 4-1. Peak ATM Demand as a Function of Geographic Sector

We chose the set of sectors in which to apply this tool by identifying the ones in

which, for representative LMINET calculations, peak traffic density exceeded the

FAA's standard one-controller maximum of 18. That produced the 50 sectors

shown in Figure 4-2. In our assessment, we implemented CPTP at these sectors.
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Figure 4-2. CPTP Sectors
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THE CROSS-COMPARABLE BENEFITS ESTIMATES

To assess the three tools, we made LMINET calculations for 30 cases. Table 4-1

lists these.

In each case, the weather inputs to the airport capacity functions were actual

weather for a specific day, and the winds aloft were actual winds for that day. We

considered three days: April 8,1996, June 12, 1996, and November 29, 1996.

There are six reference or baseline cases and 24 DST cases. The reference cases

for 1996 were made to validate the model by comparisons with available data for

that year. The reference cases for 2005 are the basis for the comparisons showing
the DST's benefits.

We assigned delay costs to three causes: lack of airport arrival capacity, lack of

airport departure capacity, and lack of sector capacity. Inadequate airport arrival

capacity generates delays that LMINET represents in three reports. The first of

these, the arrival queue, is an obvious immediate consequence of inadequate arri-

val capacity. Also, LMINET's model of the FAA's EDICT process generates

ground holds in response to lengthy arrival queues, so LMINET's ground holds

are caused by arrival delays.
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Winds

Case Good Fair

1 •

2 •

3

4 •

5 =

6 •

7 •

8

9

10 •

11 •

12

13 •

14 •

15

16 •

17 •

18

19 •

20 =

21

22 •

23 •

24

25

26 •

27

Table 4-1. LMINET Cases

DST

10 A-FAST 64 A-FAST CPTPBad EDP

Finally, if arrivals are sufficiently impeded, eventually there will not be enough

airplanes for departing flights, which will cause queues for airplanes. In some cir-

cumstances, problems other than lack of arrival capacity may cause queues for

planes. For example, an airport may receive a large part of its arrivals from just

one other airport or small group of airports. Boston relates to the NYC airports in

this way. Then, restricting departures from the "major supplier" eventually pro-

duces queues for airplanes even if the receiver' s arrival capacity is adequate.

These appear to be somewhat special cases, however, and we chose to associate

queues for airplanes with lack of arrival capacity.
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We priced delays in arrival queues at the "arrival TRACON" rate of $37.688 per

minute (this rate, like all the others in this section, is developed in Chapter 3.) We

costed delays in queues for planes and ground holds at the ground-hold rate,

$45.935 per minute. We took delays in en route sectors to cost $39.158 per min-

ute. Assuming that aircraft in departure queues consumed fuel at the ground idle

rate, we priced these queues at $31.995 per minute.

When EDP was present, we reduced the total cost of departure capacity delays by

3 minutes at the vector-out rate of $39.330 per minute for each departure at an

EDP airport.

Combining delay costs for the 3 days considered by the weights described in the

Chapter 3 subsection, Modeling Annual Variations with Representative Days,

these cost models generated the top-level cost results shown in Table 4-2.

Table 4-2. Estimated Annual Delay Costs in Billions of 1996 Dollars

Case Arrival

1996 Reference 1.517

2005 Baseline 4.194

2005 10 A-FAST 3.663

2005 64 A-FAST 2.723

2005 64 A-FAST 2.723
EDP

2005 64 A-FAST 2.723
EDP CP

2005 EDP 4.194

2005 EDP CP 4.194

2005 CP 4.194

2005 EDP CP 4.194

2005 10 A-FAST 3.663

2005 64 A-FAST 2.723

2005 64 A-FAST CP 2.723

Departure Sector

0.278 0.118

0.658 0.328

0.636 0.337

0.535 0.341

0.326 0.318

0.326 0.230

0.449 0.305

0.449 0.220

0.658 0.243

0.326 0.230

0.636 0.337

0.535 0.341

0.535 0.253

Total

1.913

Change Change from Change in
from previous absolute

baseline case Absolute savings from
(percent) (percent) savings previous case

5.180

4.636 11 0.544

3.599 31 22 1.581 1.037

3.367 35 6 1.813 0.232

3.279 37 3 1.901 0.088

4.948 4 0.232

4.863 6 2 0.317

5.095 2 0.085

4.750 8 7 0.430

0.085

0.345

4.636 11 0.544

3.599 31 22 1.581 1.037

3.511 32 2 1.669 0.088
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Figure 4-3 summarizes the results.

Figure 4-3. Cross-Comparable Benefit Estimates of DSTs and Groups of DSTs

1996 2005 2005 10 2005 64 2005 64 2005

Reference Baseline AFAST AFAST AFAST 64AFAST

EDP EDP CP

[] s,,_o_ i
i • Departure i

! [] Arriva

DISCUSSION

Evidently, the present instantiation of our method for assessing DSTs indicates
that A-FAST is the most effective tool. This is consistent with our observations in

Chapter 2, that problems associated with arrival capacity at busy airports appear to

be the most prominent causes of delays and inefficiencies in the present operation
of the NAS.

While the present instantiation indicates that EDP would have a smaller impact

than A-FAST, the predicted annual savings of $232 million are certainly substan-
tial. CPTP, which the present instantiation indicates would have the least effect of

the three DSTs considered, nevertheless generates significant predicted savings of
nearly $100 million per year.

The present results show only small interactive effects in the tools' benefits. For

example, CPTP is predicted to be about 3 percent more effective when imple-

mented with full A-FAST implementation. This is because the three tools studied
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affect distinct parts of the NAS. We would expect tools such as the Sector Tool,

which will affect the efficiencies of both arriving and departing traffic, to show

more pronounced interactions with, say, A-FAST and EDP.

It is well to remember here the warnings of Chapter 3's subsection, Some impor-

tant caveats. The present instantiation predicts that delay costs would increase by

a factor approaching 3, between 1996 and 2005. This might well imply delays that

the airlines would find intolerable, causing them to change their operations away

from the demand model of Chapter 3.

To the degree that this would happen, the total delay costs, and, perhaps, the ab-

solute benefits of the DSTs, are overstated. Applying all three DSTs reduces the

predicted increase in delay costs to "only" about 80 percent. If airlines would tol-

erate that kind of increase, and maintain schedules consistent with the demand

model of Chapter 3, then the results of Table 4-2 are more reliable indicators of

the DSTs' effects in keeping delay costs acceptable in the face of very large in-
creases in traffic.
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Chapter 5

Summary and Conclusions
i - il ¸¸

To fulfill the project's chief purpose, we developed the method of Chapter 3 for

generating cross-comparable estimates of the benefits of NASA-developed deci-

sion support tools. The method's key idea is to use an economic model to generate

dollar-valued estimates of the reductions in delay costs and of the benefits from

flying more nearly optimal flight paths, that accrue from implementing DSTs or

groups of DSTs. (Dollar benefits from the tools' improvements in FAA controller

productivity also could be included, although we have not done so in the present

task.)

The economic model' s inputs are outputs from models of the national airspace

system, of air traffic management operations in ARTCCs and TRACONs, and

models of aircraft performance. DST's effects are represented with adjustable
features of these subordinate models.

The method for assessing DST benefits is a general one; as discussed in Chapter

3, many different models can be used for its components. We implemented the

method with the particular components described in Chapter 3. With this instan-

tiation of the method, we generated the results of Chapter 4.

From this work, we reach these conclusions:

. The benefits of DSTs, and groups of DSTs, can be estimated consistently

in dollars, with a flexible method that uses a capstone economic model to

integrate outputs from subordinate models characterizing operations of the
NAS.

2. System-wide delay costs are likely to increase almost threefold by 2005.

This would profoundly affect airlines' operations.

o Implementing A-FAST widely, and implementing EDP and CPTP at those

terminals and ARTCC sectors where these tools have the greatest likeli-

hood of significant payoff, would change the threefold increase to an in-

crease of about 70 seventy percent.

, A-FAST is the most effective tool of those we considered. Nevertheless,

EDP and CPTP bring significant benefits that may well justify their im-

plementation.

5. Implementing A-FAST at just 10 key airports would generate substantial

savings.
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The project's second purpose was to identify the causes of delay and inefficiency

in present operations of the NAS, that NASA-developed DSTs might address.

From that work, which is detailed in Chapter 2, we reach these conclusions:

° Inadequate arrival capacity at busy terminals is the most costly present

cause of delay. This is consistent with the analysis result that A-FAST,

which improves arrival capacity, is the most effective of the three DSTs

considered in this study.

2. Inefficient departures are a significant cause of delay.

3. Cruise routes outside terminal airspace generally are efficient.

4. Groundside congestion at certain busy airports appears to offer an oppor-

tunity for DSTs.

5. A DST that could assist controllers in making efficient insertions and ex-

tractions of aircraft into and out of holding patterns may be helpful.
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Chapter 6

Recommendations for Future Work

It would seem well worthwhile to exercise the method that we have developed to

assess DST benefits, to treat other tools than the three just considered. The suite

of models used in the present instantiation appears adequate to treat AT/ST, so

that this extension could be done fairly rapidly. Also, the present version of the

method could be used to suggest optimal mixes and installation patterns for DSTs.

Treating E-SMA would require extending the models, to provide more detailed

coverage of the airport groundside. To make that extension may be quite desir-

able, however, in view of the potential impacts of increasing groundside conges-

tion at key terminals.

Analyzing the benefits of AERGA would also require extending the models, to

cover the intended interactions among ATM, AOC, and aircrew functions.

Another profitable direction for future work would be to extend the present in-

stantiation. One interesting and potentially quite useful direction for extensions

would be to explore integrating simulation models covering parts of the NAS in

considerable detail, with a queuing network. SIMMOD simulations of key airports

of particular interest might provide particularly useful means of exploring the

mutually interacting effects of airside and groundside tools, for example.

Another direction in which it might prove quite useful to extend the present in-

stantiation would be to increase the number of weather-days covered, in order to

generate meaningful measures of dispersion, as well as of central tendencies, of

the effects of DSTs and groups of DSTs.

Finally, the method could be extended to include costs of the technologies, so that

an extended economic model could be used to suggest efficient investments in

DSTs.
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Appendix A

Glossary of Airport Identifiers

ABQ

APA

ATL

AUS

BDL

BNA

BOS

BUR

BWI

CHI

CLE

CLT

CMH

CVG

DAL

DAY

DBQ

DCA

DEN

Albuquerque International Airport, Albuquerque, New Mexico

Arapahoe Airport, Denver, Colorado

The William B. Hartsfield Atlanta International Airport, Atlanta,

Georgia

Robert Mueller Airport, Austin, Texas

Bradley International Airport, Hartford, Connecticut/Springfield,
Massachusetts

Nashville, Tennessee Airport

General Edward Lawrence Logan International Airport, Boston,

Massachusetts

Burbank, California Airport

Baltimore-Washington International Airport

Chicago. Used to represent the two Chicago terminals,

considered together

Hopkins International Airport, Cleveland, Ohio

Douglas Airport, Charlotte, North Carolina

Columbus International Airport, Columbus, Ohio

Cincinnati-Northern Kentucky Airport, Cincinnati, Ohio

Love Field, Dallas/Fort Worth, Texas

Dayton International Airport, Dayton, Ohio

Dubuque Municipal Airport, Dubuque, Iowa

Washington National Airport, Washington, D. C.

Denver International Airport, Denver, Colorado
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DFW

DTW

EWR

HOU

HPN

IAD

IAH

IND

ISP

JFK

LAS

LAX

LGA

LGB

MCI

MCO

MDW

MEM

MIA

MKE

MSP

MSY

NYC

OAK

Dallas-FortWorth InternationalAirport, Dallas/FortWorth,Texas

DetroitMetropolitanWayneCountyAirport, Detroit,Michigan

NewarkInternationalAirport, Newark,Ohio

William P.HobbyAirport, Houston,Texas

WestchesterCountyAirport, New York

Dulles InternationalAirport, Washington,D. C.

HoustonIntercontinentalAirport, Houston,Texas

IndianapolisInternationalAirport, Indianapolis,Indiana

MacArthurField,Long Island,New York

JohnF. KennedyInternationalAirport

McCarranInternationalAirport, LasVegas,Nevada

LosAngelesInternationalAirport, LosAngeles,California

La GuardiaAirport, NewYork, NewYork

DaughertyField,Long Beach,California

KansasCity InternationalAirport, KansasCity, Missouri

OrlandoInternationalAirport, Orlando,Florida

Midway Airport, Chicago,Illinois

MemphisInternationalAirport, Memphis,Tennessee

Miami InternationalAirport, Miami, Florida

GeneralMitchell Field,Milwaukee,Wisconsin

Minneapolis-SaintPaulInternationalAirport, Minneapolis-SaintPaul,
Minnesota

NewOrleansInternationalAirport, New Orleans,Louisiana

New York City (usedto representthethreeNew York terminals
consideredasagroup.)

OaklandInternationalAirport, Oakland,California
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OMA

ONT

ORD

PBI

PDX

RDU

RNO

SAN

SAT

SDF

SEA

SFO

SJC

SLC

SMF

SNA

STL

SYR

TEB

TPA

YVR

Glossary of Airport Identifiers

Eppley Airport, Omaha, Nebraska

Ontario International Airport, Ontario, California

Chicago O Hare International Airport

Palm Beach International Airport, Palm Beach, Florida

Portland International Airport, Portland, Oregon

Raleigh/Durham International Airport, Raleigh-Durham,

North Carolina

Reno-Tahoe Airport, Reno, Nevada

Lindbergh Field, San Diego, California

San Antonio International Airport, San Antonio, Texas

Standiford Field, Louisville, Kentucky

Seattle-Tacoma International Airport, Seattle, Washington

San Francisco International Airport, San Francisco, California

San Jose Airport, San Jose, California

Salt Lake City International Airport, Salt Lake City, Utah

Sacramento Metropolitan Airport, Sacramento, California

John Wayne International Airport, Orange County, California

Lambert Field, Saint Louis, Missouri

Hancock Field, Syracuse, New York

Teterboro Airport, Teterboro, New Jersey

Tampa International Airport, Tampa-St. Petersburg, Florida

Vancouver International Airport, Vancouver,

British Columbia, Canada
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Appendix B

Glossary of Acronyms

AATT

ACARS

ACE

ACSYNT

AERGA

AFAST

AND

AOC

ARINC

ARTCC

ARTS

ASAC

ASD

ASMA

ASQP

AT

AT/ST

ATC

ATM

BADA

CONUS

Advanced Air Transportation Technologies

ARINC Communications Addressing and Reporting System

Aviation Capacity Enhancement

Aircraft Synthesis Model

Advanced Enroute Ground Automation

Active Final Approach Spacing Tool

Approximate Network Delays

Air Operations Center

Aeronautical Radio, Incorporated

Air Route Traffic Control Center

Automated Radar Terminal System

Aviation Systems Analysis Capability

Aircraft Situation Display

Advanced Surface Movement Advisor

Airline Service and Quality Performance

Airspace Tool

Airspace Tool/Sector Tool

Air Traffic Control

Air Traffic Management

Base of Aircraft Data

Contiguous United States

B-1



CP

CP/TP

CPTPT

CTAS

DOC

DPAT

DST

EDCT

EDP

EEC

ELP

ESMA

ETMS

EURO-
CONTROL

FAA

FAM

FAST

FSCM

FL

FLL

FLOPS

FOD

FSCM

GSO

Conflict Probe

Conflict Probe/TrialPlanningTool

Conflict Probe/TrialPlanningTool

Center-TRACONAutomationSystem

DirectOperatingCost

DetailedPolicyAnalysisTool

DaylightSavingTime

EstimatedDepartureClearanceTime

ExpediteDeparturePath

EuropeanEconomicCommunity

E1 PasoInternationalAirport, E1Paso,Texas

EnhancedSurfaceMovementAdvisor

EnhancedTraffic ManagementSystem

EuropeanOrganizationfor _e Safetyof Air Navigation

FederalAeronauticsAdministration

FunctionalAnalysisModel

Final ApproachSpacingTool

Flight SegmentCostModel

Flight Level

Fort LauderdaleInternationalAirport, Fort Lauderdale,Florida

Flight OptimizationSystem

FortDodgeAirport, FortDodge,Iowa

Flight SegmentCostModel

Greensboro/HighPoint/Winston-SalemAirport, NorthCarolina
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Glossary of Acronyms

HCT

IBM

IFAC

IFR

ILS

IMC

LMINET

MIT

NAS

NASPAC

NASSIM

NCEP

tAG

OASIS

PAMS

PFAST

PMAC

RAMS

RISC

SID

SIMMOD

STAR

TAAM

TAP

Hayes Center VORTAC

International Business Machines

International Federation of Automatic Control

Instrument Flight Rules

Instrument Landing System

Instrument Meteorological Conditions

A queuing network model of the U. S. national airspace system

Miles-in-Trail; also Massachusetts Institute of Technology

National Airspace System

National Airspace System Performance Analysis Capability

National Airspace Simulation

National Center for Environmental Prediction

Official Airline Guide

National Climatic Data Center's On-Line Access and Service

Information System

Performance Analysis Monitoring System

Passive Final Approach Spacing Tool

Performance Monitoring Analysis Capability

Reorganized ATC Mathematical Simulator

Reduced Instruction Set Computer

Standard Instrument Departure

FAA-developed Airport and Airspace Simulation Model

Standard Terminal Arrival Route

Total Airport and Airspace Modeler

Terminal Area Productivity
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TOC

TOD

TRACON

UAL

VFR

VHF

VMC

VOC

VOR

VORTAC

ZDV

Top of Climb

Top of Descent

Terminal Radar Approach Control

United Air Lines

Visual Flight Rules

Very High Frequency

Visual Meteorological Conditions

Variable Operating Cost

VHF Omni Range

VOR/Tactical Air Navigation

Symbol for the Denver Air Route Traffic Control Center
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