
AIAA 80-0067R
Two-DimensionalInlet SimulationUsing a
DiagonalImplicit Algorithm
D. S. Chaussee and T. H. Pulliam

Reprintedfrom

AIAAJournalVolume19, Number2, February 1981, Page 153

Copyright AmericanInstitute of Aeronauticsand Astronautics,Inc., 1980. All rights
reserved

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS • 1290 AVENUE OF THE AMERICAS ,NEW YORK, NEW YORK, N.Y. 10104



VOL. 19, NO. 2, FEBRUARY 1981

AIAA 80-0067R

AIAA JOURNAL

/- _< , j, ,

Two-Dimensional Inlet Simulation Using a Diagonal
Implicit Algorithm

NASA/TM- - 208086

D. S. Chaussee*

Flow Simulations, Inc., Sunnyvale, Calif.

and

T. H. Pulliamt

NASA Ames Research Center, Moffett Field, Calif.

153

A modification of an implicit approximate-factorization finite-difference algorithm applied to the two-
dimensional Euler and Navier-Stokes equations in general curvilinear coordinates is presented for supersonic
freestream flow about and through inlets. The modification transforms the coupled system of equations into an

uncoupled diagonal form which requires less computation work. For steady-state applications the resulting
diagonal algorithm retains the stability and accuracy characteristics of the original algorithm. Solutions are
given for inviscid and laminar flow about a two-dimensional wedge inlet configuration. Comparisons are made
between computed results and exact theory.
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Xr,X_,X,_;

Yt,Y_,Y_ = geometric derivatives
= pl (x/_c)

= constants defined in Eq. (8a)

= matrices defined in Eq. (10b)

= Jacobian matrices defined in Eq. (10a)
= local speed of sound

= diagonal matrix defined in Eq. (12b)
= total energy per unit volume defined in

Eq. (2)

= vector arrays defined in Eq. (1)

= vector arrays defined in Eq. (5)

= defined in Eq. (8b)

= time step = At or At�2
= identity matrix
= Jacobian of transformation

= kx 2 2or k,/ (kx "t'ky )

=defined in Eqs. (13)

= defined in Eqs. (16b)

=viscous matrix defined in Eqs. (16a)
and (16b)

=T?IT_
= matrix defined in Eq. (13)

= dimensionless pressure, p/yp=
= Prandtl number

= vector arrays defined in Eq. (1)
= Reynolds number

= right-hand side matrix defined in Eq.
(11)

= viscous matrix defined in Eq. (15)

= dimensionless time in physical space

= matrices defined in Eq. (12c)

= Cartesian velocity component in x and

y directions, respectively

= contravariant velocities defined in Eq.
(4)

= physical coordinates
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= defined in Eqs. (16b)
= I/(v_cp)

= ratio of specific heat

= central difference operators

= time step = h

= backward difference operators

= implicit smoothing, usually 2"eE

= explicit smoothing, usually = h

= generalized coordinate normal to body
= metrics defined in Eq. (3)

= defined as k_u + kyv
= coefficient of heat transfer

= matrices defined in Eq. (12b)

= 1/x/2, or coefficient of viscosity

= generalized coordinate parallel to body

= metrics defined in Eq. (3)

= dimensionless density, b/p=
=dimensionless time in transformed

space
= defined as 0.5 (3' - I)(u 2 + v 2 )

= forward difference operators

Introduction

ROPER design of the air inlets is a crucial factor in
achieving the desired performance of supersonic

airbreathing missiles and aircraft. In the typical inlet design

case, mass flow adequate to the demands of the propulsion

system with maximum total pressure recovery and minimum
external drag is required for a range of freestream conditions

and vehicle altitudes. Meeting these requirements has

traditionally required extensive experimental development.
Recent trends indicate, however, that certain features of the

complicated inlet flowfield are amendable to computation,

even though existing methods have some shortcomings. Rizzi
and Schmidt _ have applied a finite-volume approach to low-

supersonic inlet flowfields with reasonable success. Arlinger 2
and Reyhner _ have developed numerical methods that are

based on the full-potential equation. Adoption of the full-

potential equation for supersonic flow above a Mach number

of 1.3 should be avoided, however, due to the difference in

shock jump conditions used from the exact shock jump
conditions; this procedure also disregards the total pressure

loss in the inlet which is very critical in supersonic inlet design.

Bansod 4 and Hawkins et al. _ have applied explicit numerical

methods to transonic flow about inlets. These methods,
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however,evenif extendedtothesupersonicregime,wouldbe
limitedinconvergencerateduetothenecessaryclusteringof
pointsnearthecowllip whichreducestheintegrationstep
size.Morerecentlythefirstauthorhasdevelopedamethod6
whichis implicitin natureandfasterthantheprevious
methods.Otheravailablemethods7,aareforsupersonicin-
ternalflows.

Thispaperdescribesa newmethodof calculatingthe
flowfieldaroundandthroughtwo-dimensionalinletsthat
doesnothavethelimitedMachnumberrangeof potential
methods;that is considerably faster than the methods of Refs.

4-6; and that is valid for subcritical, critical, and supercritical
mass flow rates. In the present method, 9 a modification of an

implicit approximate- factorization finite-difference

algorithm _°,z_ applied to partial differential equations is

presented which substantially reduces the total computation
work. The modification takes the coupled system of equations

into an uncoupled diagonal form which is easier to solve. The

resulting diagonal algorithm retains the stability and many of

the accuracy characteristics of the original algorithm. Since

the governing equations written in generalized coordinates are

cast in conservation law form, the complex features of the

inlet flowfield are captured correctly. With the equations cast

in generalized coordinates, mesh-generating routines*Z.f3 are

used to create the computational mesh. Clustering of grid

points near solid surfaces is allowed. The implicit algorithm is

then used to advance the unsteady equations in time with the
ability of being able to take larger time steps than the previous

explicit techniques, thus allowing faster convergence.

Several different types of boundary conditions are

required. At solid boundaries, the tangency condition is in-

corporated as no flow through the boundary or a no-slip

condition for the viscous cases. The upstream and lateral

boundaries are specified so that freestream conditions may be
specified (and these may be nonuniform). At outflow, if the

flow is purely supersonic the variable are extrapolated. If the

outflow is subsonic, as in a critical or subcritical calculation,

the back pressure is specified and all other variables are

calculated from characteristic-like equations of Kentzer. _4

Governing Equations

The partial differential equations governing the two-

dimensional planar flow of an unsteady inviscid, nonheat-
conducting, ideal gas can be written in nondimensional strong
conservation law form Is under the generalized independent
variable transformation

r=t, _=_(t,x,y), rl=_l(t,x,y)

as follows:

Equation (1) was integrated forward in time to a steady-
state condition using an existing implicit Euler equation
solver, t

The metrics in Eq. (l), _t, /_x, etc., are easily formed from

the derivatives of x,, xt, etc., using the relations

_x=Jy,. L=-./x,. _,=-x,_,-y, L

_=-JY_, ny=Jx_, _t=-x,n_-y,% (3)

It is also convenient to define the velocities

U=_,+_u+_yv

V= 7b + r_xU+ % O (4)

which are the so-called contravariant velocities along the

and r/coordinates. Using these defined velocities, _Pand Fcan

be written in the compact form

_=j-t

oU

ouU + _,p

puU + _yp

(e +p) U- _,p

oV

pu V+ rlxp

p v V + flyp

(e+p) V-rl,p

(5)

Note that once Uand Vare formed, the flux vectors Eand fi

are not much more complex than E and F. To complete the

problem, boundary and initial conditions must be specified.

Boundary Conditions

Along the body surface _(x,y,t) =0 (the cowl, ramp, and
inlet surfaces of Fig. 1), the condition of tangency in unsteady
flow is enforced by

V=Owith (u)=j_j[ % -_y](U-_)
v -r/x _x -r/t

(6)

For viscous flow, U=0 is used in Eq. (6) to produce no-slip
conditions.

The pressure on the body surface can be obtained from the

normal momentum equation

P [_Oh + uO,n_ + vO,_y ] -pU(_t,u_ + % v, )

= (,7,Ax+ L,7, )p_+ (n_ +,1_)p, =./-_4_p. (7)

O, + [ (_tq+_,:E+_yF)/J]_ + [yl,q+rlxE +rlyF)/J]_ =0 (1)

where

_l=j -!

p

pu

pv

e

pv

pu 2 + p
E=

put)

(e+p)u

F _

po

puv

pv 2 +p

(e+p)v

and the Jacobian

J=_rty -_yq_

In Eq. (1), p represents the pressure, P the density, u and v
the velocity components in the x and y directions, respec-

tively, and e the total energy per unit volume. The following

equation relates the pressure, density, and velocity com-

ponents to the energy for an ideal gas

e=p/(_-l) +o(u2 +v:)/2 (2)

where n is the direction normal to the body surface.

At the internal outflow plane there are two possible flow

conditions. If the flow is supersonic, the conservative
variables are zero-order extrapolated; whereas if the flow is

subsonic, the back pressure is specified and Kentzer's _4

OUTER BOUNDARY

,,-,==

WEDGERAMP

Fig. l

EXTERNAL
OUTFLOW

F,s
............................o

LOWER INLET SURFACE

Surface geometry of inlet.
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approachis taken. In this approach, the characteristic
compatibility relation, the projection of the momentum
equations, and the energy equation are used to calculate the

remaining independent variables. The boundary conditions
for the subsonic outflow are

Unew =//old +Alfl, unew :/.)old +All2, pnew =pold +A/f 3

(8a)

where
P=Pb = _ + 6y = const

.I"1= - (u + c) (_xu_ + _xu, ) - v ( _yu_ + _,u, )

U+¢)
-c( E,vi + Tlyv.)- \--_-/ (li_pi+ rl_p_) - bu

f3 = --//(_xPI + rlxP_ ) -- V ( _ yp_ + Tlyp_ ) + bt) (Sb)

and _ and 6 are constants allowing for a linear distribution of

back pressure across the outflow plane.
At the external outflow boundary, the flow is supersonic

and the conservative variables are extrapolated, as is usually

the case. The inflow and outer boundaries are placed such that

freestream conditions are specified. This completes the
specification of the boundaries.

Grid Generation

The transformed equations are somewhat more com-

plicated than the original Cartesian form, but offer several

significant advantages. The main advantage is that boundary
surfaces in the physical plane can be mapped onto rectangular

surfaces in the transformed plane. Another significant aspect

of the transformation is that grid points can be concentrated

in regions that experience rapid change in the flowfield

gradients. This is especially important in the present problem

with numerous expansion and compression corners internal
and external to the inlet.

To take advantage of the generality of the transformed

equations, one needs a fairly automatic method of generating

a smoothly varying grid that conforms to arbitrary bodies and
allows grid point clustering. The scheme that is chosen for the

present application is the Thompson, Thames, and Mastin 12

method which has been altered by Sorenson and Steger j3 and

further altered by the present authors. In this method the grid

in the physical plane is defined by the solution of a Laplace or

a Poisson equation. Grid points are arbitrarily specified on

the body boundaries so that even if the Laplace equation is

used, the generated grid is not orthogonal. The capability to
select the location of boundary node points is one of the

desirable features of the scheme and Eqs. (1) and (2) do not

assume orthogonality.

Numerical Algorithm

An implicit numerical algorithm is used to solve the

equations since in many flowfield problems it is desirable to

take a larger time step than that permitted by a conventional

explicit scheme. Such a situation may occur if the dependent

variables experience a more rapid variation with space than

with time. In addition, the unsteady form of the Euler

equations [Eq. (1)1 were solved to allow for regions of sub-
sonic flow in the inlet to develop if a subcritical or critical
flow condition existed.

Conventional Form

The basic numerical algorithm used was developed by Beam

and Warming m and by Steger.. It is second-order accurate

in space and time, is noniterative, and is in a spatially factored
form referred to as the "delta-form." A fourth-order dis-

sipation term is appended to the right-hand side and in that
location helps to control possible numerical instabilities. For

either trapezoidal or Euler temporal implicit differencing, the
delta form algorithm is given by

(I + h6u4" -J-I _I V _A_J) (I + hb_B n -J-I _t V _A_J )

x (_,,+l_ t_")= - AI((5_E" + (5_P" ) --¢EJ -/[(VEA _)2

+ (V.A. )2]JO" =k" (9)

where for the convection terms 6 f and (5, are second-order
central difference operators, h=At or At�2 for first- or

second-order two-level time differencing, and for convenience

the spatial indices are deleted throughout.
The Jacobian matrices .4 an/} are defined as

.,_ =_,l+_;xA +_yB, B=n,I+_xA +_lyB (10a)

where

Z _

0

___ u2 + (7-1) v2--5--

--//V

-- "y//( ; ) + (_'-- l)ll(//2 + U2 )

1 0 0

-(7-3)u -('y-1)v (7-I)

u u 0

(y-l)
(3u2 +u 2) -(7-1)uu "¢u

2

n _

0

--UU

(7-3) v2 + (7-1) ue
2 2

-yv(;)+(y-1)v(u_ +v _)

0

13

-(y-l)u

- ('t-1)uv

1 0

u 0

-(y-3)v (y-l)
(lOb)
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Numerical dissipation terms are added to the implicit operators, with coefficient et, and the explicit side, with coefficient _e, to

control nonlinear instabilities. Typically, eE = 0(h) and _t = 2_E.

Diagonal Form

A diagonal form of the implicit algorithm has been developed in Ref. 9. This algorithm retains many of the stability and ac-

curacy characteristics of the original scheme, but requires less computational work. A detailed derivation and analysis of the

method can be found in Ref. 9. Here, we shall outline the basic development of the diagonal algorithm.

The standard algorithm is rewritten in inviscid form for convenience as

(l+h6_A") (l+h6_B")Aq= -At(6tE" +6,P" ) =R"

The similarity transformations which diagonalize A and B (see Warming et al. t6) are

(11)

where

.4= T_A_T_ I, B= T_A,T_ I (12a)

_t_ =D[U.U.U+c(tizx +_) '/_. U-c(_ +_2y) '/'1

i 0 0 0

0 U 0 0
=

o U+c(_2_+_) _' o

o o U-c(_+_2.) _

(12b)

Tk _

A,=otv, viv+c(,l_+,/.)', _ _ "V-c(_+%) 1

1 0 c_

v -_,p _(v+_,c)

*' p(_..-_.v) o,[ *_ +c' +d]
('r-/) (-y-l)

m_l=

_(_,2 -c#) _ [/_,c- (v- l)u]

_(62 +d) -_[£_c+ ('r- l)u]

Ot

_,(u-L,c)

_,(v-_c)

_[ r_2 +c2(-y- I) d]

(2:-l)c-Zv - (7-1)c -e

-/_p -_ 0

_[f_,c-(_-l)v] _(_-1)

-_[E_c+(v-l)v] a(_-l)

(12c)

ando_=p/(v_c),f3=l/(x/-2pc),f=Exu+ k_v, ¢2=[(7_

1)/2] (u 2 + v2), and, for example, k'_ = kx/(k_ + k2y ) _

Relations exist between T, and T_ of the form

._= T;_r,, .'_-' = T;'T_ 03)

where

Ii 0 0 0

mz -jl, m 2 j#m 2

jlzm 2 #2(l+m_) #2(l-mt)

-j#m 2 #2(l-mt) #2(l+ml)

withmt = (_=%+_y¢/z), me= (_#e-_C/x), and /_=lq2,
where j= 1 for the matrix Nandj= - ! for the inverse matrix
]Q-/.

Applying the similarity transformations [Eqs. (12) and (13)]

to Eq. (!1) and factoring T_ and T, out of the spatial
operators, we have the diagonal algorithm t0

T_(I+h6_A'_)N(I+h6,A_)(T_Z)"AgI=k" (14)

The new implicit operators, (l+hf_At) and (l+hf_A_),

are still block tridiagonal operators but now the blocks are
diagonal in form such that the equations can be reordered into
four separate scalar tridiagonal operators. This has a large
positive impact on the solution process discussed below.

The solution process for the implicit part of Eq. (14)

consists of: 1) ,.q_= (T( t )"/_, a matrix-vector multiply at

each grid point, since T( t is known analytically; 2) four
scalar tridiagonal inversions for the operator

$2= [l+h6_A_] -_q_; 3),.q_ =N-_,_2, . a matrix-vector

multiply at each point; 4) g,= [I+hf, A_]_-_Sj, four more

scalar tridiagonal inversions; 5) A,_=T"S,, another set of

matrix-vector multiples; and finally 6) ¢"+t=¢"+A_ to

update the solution, This contrasts with the two block
tridiagonal inversions required in Eq. (11).

An operation count for the diagonal form of the implicit

algorithm yields 233 multiplies, 125 adds, and 26 divides,

totaling 384 operations. For the standard algorithm in the

transformed coordinates, the operation counts are 410

multiplies, 326 adds, and 10 divides for a total of 746
operations. The use of the diagonal algorithm produces a

33°70 savings in computer time on a CDC 7600 for a realistic
calculation.
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Viscous Form

The viscous form of the equations and algorithm has been

described in detail by Steger H along with a discussion and

justification of the "thin-layer" model. In the thin-layer

approximation, viscous terms along the body,/_ direction, are

neglected and those in the _, or near normal direction, are
retained.

The "thin-layer" Navier-Stokes equations in general
curvilinear coordinates are

el. + Et + _ =Re-iS, (15)

where

0

(n2 +n2y)u. + (u/3),. (nxu. +nyv.)

p.( Tl2x+ TI2y) V, + (p./3)'qy ('qxU_ 4""qyV_)

[kPr-' (7-1) -I (,2 +_2)0,c2

+u(o2_ +.7_) (us +v 2).12

+ (U13) (nxu+TlyV) (nxu. +%V,) ]

The viscous form of the conventional implicit algorithm is

(I + h6_.4" -¢tJ-t xT_AtJ) (l + hf, B" -etJ-I V_A_J

-hRe-_6,2(/l" )AO" = - At(6t E" +6.P" -Re-S6,._" )

_ tE J -1 [(v_At ) 2 + ( W ,A, 1) 2]JO" (16a)

where

0 0 0
m21 ot10.7 (p -! ) ot2O._ (p -I )

m3t %0_(p -1) %O,(p -I )

Lm,t m42 m43

0
J

0

m 4,1

m21 = --otla _ (u/p) -otaa" (rip}

mss = -c_28_ (u/p ) -cr38 . ( v/p )

m,s =ct, O, [ - (e/p 2 ) + (u s + v 2 ) Ip]

-alO, (uS�p) -2%a, (uv/o) -c_3o, ( v2 /p)

m_: = - ct,O, (u/o) - m21

m, =e_40 . (p -1 )

eLl=u[(4/3)n2x+n_], or2 = (U/3) r/xrty

cx_=#[_12+(4/3)n:], o_,=.7_pr-_(r/2+n 2) (16b)

Here Re is the Reynolds number. Pr the Prandtl number. #

the dynamic viscosity, and _ is the coefficient of thermal

conductivity.

The inclusion of the viscous term in the second implicit

operator of Eq. (16a) makes it difficult to apply the

diagonafization to the viscous scheme. This is because the
matrix M does not have the same eigenvector matrices as B
and therefore cannot be simultaneously diagonalized.

Tannehill et al. t_ suggest a procedure which will allow us to

use the diagonal form. They suggest that the viscous terms in
the implicit operators can be neglected for steady-state

problems without affecting the stability or accuracy of

moderate to high Reynolds number flows. It has been our

experience that this can be done as long as a nonzero value of

implict dissipation coefficient et is used. The elimination of
the viscous terms in the implicit operators along with the

diagonal algorithm produces a significant reduction in

computational cost for steady-state problems.

Results

The results presented here demonstrate that the present

numerical technique can calculate complicated two-
dimensional inlet flowfields for varying conditions. Also

discussed are the advantages of using the diagonal algorithm

and of neglecting the implicit viscous term over the use of the
standard algorithm. In all cases, the grid is initially calculated

by a separate program and is kept nontime varying

throughout the calculation.
A two-dimensional cowl-ramp inlet system with a 10 deg

ramp and 20 deg wedge-cowl is used as the test case at a
freestream Mach number, M==2.0. Different internal

outflow conditions are used to produce supercritical and

subcritical flows for inviscid conditions.

A laminar viscous supercritical case is also presented. Since

there were no experimental data available, the solution ob-

tained was not optimal with respect to the grid point
distribution. The intention here is to demonstrate the ability

of the present algorithm to solve viscous as well as inviscid

flows. A typical grid system is presented in Fig. 2, where grid
lines can be clustered next to the body surfaces either to

11,

i
Y

!
_3 _

1 3

Fig. 2

I T I I

l I I I I
5 7 9 11 13

X
Grid created by meshgeneration program.

15

15
x

Fig. 3 Densit} contours for supercritical inviscid flow at M= = 2.0.
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M_ = 2.0 _THEORY = 0.814

CDcow L = 0.179864 I_INUMERICA L = 0.81233

NUMERICAL RESULT

3 ------ 2-DSHOCKTHEORY

i

_1 '

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SURFACE OF RAMP - DIFFUSOR - CHANNEL

0
1

Fig. 4

i _ i _ = a J J _ i J _ = J
2 3 4 5 6 7 8 9 10 11 12 13 14 15

INTERNAL SURFACE OF COWL

Comparison between inviscid numerical results and Iv'o-
dimensional wedge theo_'.

M x = 2.0

CDcow L = 0.179433

Re = 104/ft

I_THEORY = 0.814

MNUMERICAL = 0.808

NUMERICAL LAMINAR

------ 2-D SHOCK THEORY

82
O,.

I I I I I I i

01 2 3 4 5 6 7 8 9 10 11 12 13 14
SURFACE OF RAMP - DIFFUSOR - CHANNEL

......
0 _ i A 1 "1 J I I lJ0 111 ' = ' '1 2 3 4 5 6 7 8 9 12 13 14 15

INTERNAL SURFACE OF COWL

Fig. 6 Comparison between numerical laminar results and two-
dimensional wedge theorT.

M_ = 2.0 PBACK = 5.2 I_THEORY = 0,814

CDcow L = 0.178221 MNUMERICA L = 0,820

SYMBOL

L _ --

o_-, , i , , _"7-;_'-;-7_--,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AXIAL DISTANCE

Fig. 5 Pressure varialions of subcrilical inviscid results showing
normal shock wave at Ihe throat.

improve the accuracy of boundary conditions or for viscous
resolution.

The numerically generated flowfield as viewed by density

contours for a supercritical case is presented in Fig. 3. In the

supercritical flow situation, there is supersonic flow

throughout the flowfield, causing numerous shock waves and

expansion waves which form a complex interaction system
within the inlet channel. Figure 4 shows a comparison be-

tween the numerical results and the theory for the pressure

along the solid surfaces. Since the two-dimensional shock
theory does not account for interactions of the waves there are

slight differences in the shock locations between the
theoretical and numerical solutions.

A subcritical case is presented in Fig. 5 where, based on

theoretical calculations, a back pressure of p/p=, =5.2 is

imposed. Shown are the pressures along the upper and lower
surfaces and also along the middle coordinate line of the inlet.

A strong shock wave located at the throat is considered to be a

product of a critical to subcritical case in near-design con-
ditions. This shock wave developed from a compression wave
which formed at the internal outflow plane and then moved

upstream. The normal shock wave sits just outside the dif-

fuser throat causing a slight spillage of flow onto the external
cowl surface. This increases the cowl drag.

1.0 8
X

Fig. 7 Pressure contours for supercritical viscous laminar flow,
M= = 2.0.

A viscous laminar calculation for the supercriticai flow
conditions at a Re/ft of 104 is shown in Figs. 6 and 7. In Fig.

6 the pressure along the inlet surfaces are compared with

theory. Even though viscosity dissipates the effects of the
shock wave, the overall solution is comparable to the inviscid

case. A small reverse flow bubble occurs on the expansion side

of the internal wall of the ramp. Pressure contours in the cowl

tip region (Fig. 7) show the shock wave that was formed.
The supercritical case shown in Figs. 3, 4, 6, and 7 is used to

investigate the effect of the diagonal algorithm, the dropping

of the implicit viscous term on the convergence history, and

the accuracy and efficiency of the numerical calculations. The

conventional algorithm is used as the reference case. All

comparisons are for 900 iterations (which assures con-

vergence) and were performed on a CDC 7600 computer for a

66 × 36 grid point mesh system.
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M_ _ 2

SUPERCRITICAL SOLUTION

DIAGONAL ALGORITHM

-----'O'----" STANDARD ALGORITHM

Fig. 8 Convergence history of diagonal

algorithm as compared to standard algorithm.

C
0 I00

I i

200 300 400 50(] 600 700 800 900

NUMBER ITERATIONS

The inviscid calculation using the conventional algorithm

requires 794 s of CPU time, whereas the diagonal algorithm

requires 522 s, a 34°70 savings. The convergence history for the

two calculations are shown in Fig. 8. The residual is the root

mean square of the right-hand side of Eq. (9) and can be

considered as the L 2 norm of R". Both cases converge at the

same rate and reach identical steady-state solutions. •

The viscous calculation requires 975 s of CPU time for the

conventional algorithm. By eliminating the viscous term in the

implicit operator, the time is reduced to 834 s, a 14.5°70

reduction. The converged solution is identical to the first

solution. Furthermore, combining the viscous approximation

with the diagonal algorithm brings the run time down to 567 s,

or a 42°7o reduction over the conventional scheme. In all three

cases the convergence history and converged solutions are

almost identical.
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