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ABSTRACT

An improved version of the Wall Signature Method was developed to compute wall

interference effects in three--dimensional subsonic wind tunnel testing of aircraft models in

real-time. The method may be applied to a fullspan or a semispan model.

A simplified singularity representation of the aircraft model is used. Fuselage, support

system, propulsion simulator, and separation wake volume blockage effects are represented

by point sources and sinks. Lifting effects are represented by semi-infinite line doublets.

The singularity representation of the test article is combined with the measurement of wind

tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment,

roiling moment, and precomputed solutions of the subsonic potential equation to determine

first order wall interference corrections.

Second order wall interference corrections for pitching and rolling moment coefficient

are also determined. A new procedure is presented that estimates a rolling moment coef-

ficient correction for wings with non-symmetric lift distribution.

Experimental data obtained during the calibration of the Ames Bipod model support

system and during tests of two semispan models mounted on an image plane in the NASA

Ames 12ft Pressure Wind Tunnel are used to demonstrate the application of the wall

interference correction method.
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CHAPTER1

INTRODUCTION

Wind tunnel tests have always played an important role in the development of mod-

ern aircraft. These tests are used to simulate atmospheric conditions experienced by an

aircraft or spacecraft in free-flight. Aerodynamic forces and moments are measured and

related to corresponding free flight values using Mach and Reynolds numbers. These mea-

surements provide valuable information about expected performance, stability, and control

characteristics of a new aircraft design.

Large wind tunnel models, i.e. wing span on the order of 80% of the wind tunnel

width, are often preferred in order to achieve a good simulation of viscous phenomena of

the flow field. In this case, however, the presence of the wind tunnel wall and model support

system change the free-air flow field experienced by the aircraft model. These flow field

interference effects have to be considered to allow a reasonable comparison between wind

tunnel test and free flight condition. Therefore, interference corrections to Mach number,

dynamic pressure, and angle of attack have to be determined to improve test data quality.

In the 1970s and 1980s, techniques were developed that use boundary measurements

during a wind tunnel test to predict wall interference corrections. The Wall Signature

Method introduced by Hackelt et al. [1],[2],[3] and the Two-Variable Method introduced

by Ashill [4],[5] were used extensively in 3-dimensional wind tunnel testing. Ashill [5] gives

a detailed discussion and comparison of these techniques.

The Wall Signature Method and Two-Variable Method are both based on potential

flow theory. Computed wall interference corrections agree if each method is applied cor-

rectly. However, a few differences exist between these two methods. Each method has its

advantages and disadvantages. Table 1 compares important features of the Wall Signature

Method and the Two-Variable Method.

The Two-Variable Method does not require a singularity representation of the wind

tunnel model to determine wall interference corrections. However, the wall interference

correction calculation depends on an integration of the measured and interpolated surface

pressure distribution on the wind tunnel wall.



The Wall Signature Method uses a singularity representation of test article, wall pres-

sure measurements, precomputed perturbation velocities, and the principle of superpo-

sition to compute wall interference correction. No integration and interpolation of the

surface pressure distribution is required. Therefore, the Wall Signature Method is more

flexible in the selection of wall pressure port measurements required for the wall interfer-

ence calculation. Computed corrections are relatively insensitive to the number and the

location of wall pressure ports used for the least squares fit.

Table 1 : Comparison Wall Signature Method / Two-Variable Method

Wall Signature Two-Variable

Method Method

(Ita,:kett et al.) (Ashill et at.)

Singularity Representation YES NO
of the Wind Tunnel Model

Measurement of the Flow Velocity YES YES
at the Wind Tunnel Wall

Number of Wall Pressure ___2 >_ 100

Port Measurements

YES NOWall Interference Correction

Calculation based on a Perturbation

Velocity Flow Field and the

Principle of Superposition

Wall Interference Correction

Calculation based on an Integration
of the Surface Pressure Distribution

at the Wind Tunnel Wall

Sensitivity of Computed Corrections

to the Number and the Location of

Wall Pressure Port Measurements

NO

LOW

YES

HIGH

The Wall Signature Method was selected for use in the real-time Wall Interference

Correction System (WICS) of the NASA Ames 12ft Pressure Wind Tunnel, because it is

fast and does not depend on an integration of a measured surface pressure distribution.

The Wall Signature method will still provide corrections even if a large number of wall

pressure ports do not provide a useful measurement.

In general, the Wall Signature Method computes wind tunnel wall interference cor-



rections by introducing a simplified representation of the test article expressedin terms

of singularities. Sourcesand sinks represent the fuselagevolume and viscous separation

wake blockageeffectsand horseshoevortices or line doublets representthe lifting effects.

In addition, power simulator blockageeffectscan be representedby a sink [6] . This sin-

gula_ity representation is combinedwith a least squaresfit of wall pressuremeasurements,

data from calibration tests, and solutions of the subsonicpotential equation, in the form of

normalized perturbation velocities, to predict Mach number, dynamic pressure,and angle

of attack corrections.

During the past decadesignificant advancesin the developmentof low-order panel

method codes and computer hardware have made a fast calculation of complex three-

dimensional internal flow field problems on workstation type computers possible. Panel

method codesallow application of the Laplace Equation to realistic three--dimensionalwind

tunnel geometrieswhich is important if the methodology of the Wall Signature Method is

applied to the quasi-octogonal cross-sectionof the 12ft PressureWind Tunnel (PWT) at

NASA Ames Research Center. It was shown by Ulbrich and S_einle [7],[8] that normalized

panel method code solutions of the wind tunnel flow field combined with the Wall Signature

Method can be used to predict subsonic wall interference corrections close to real-time.

The revised formulation of the Wall Signature Method developed for the 12ft PWT is

described in detail in this report. Figure 1 shows principle elements of the modified Wall

Signature Method. Improvements of the Wall Signature Method were introduced to allow

an application of the Wall Signature Method in real-time and to deal efficiently with a

wide range of model and support system geometries.

Originally, Hacke_t et al. [1] based their formulation of the Wall Signature Method on

a "local" least squares fit procedure. They introduced a piecewise approximation of the

wall signature using a parabola for its maximum and a tanh - function for its downstream

asymptote. The location of singularities was found by matching the location of the maxi-

mum of the parabola with the inflection point of the tanh - function. Unfortunately, this

feature of the original formulation of the Wall Signature Method is difficult to use in a

real-time correction system, as it requires the selection of wall pressure ports used for the

"local" least squares fit of the maximum of the real-time wall signature.

Ulbrich [9] introduced improvements to the Wall Signature Method to overcome the

3



limitations of a "local" least squares fit of the wall pressure signature. He suggested a

"global" least squares fit procedure which matches the wall signature on all wall pressure

ports using panel method code solutions of singularities placed inside the wind tunnel test

section. In his approach, a "best" singularity location is found by minimizing the standard

deviation of the least squares fit of the wall signature as a function of the singularity

location.

Support system wall interference corrections for fullspan model tests can also be found

by applying the Wall Signature Method. In this case the Wall Signature Method has to be

applied to the difference between the support system and the empty tunnel calibration at

the wall pressure ports. Support system wall interference effects can be computed off-line

and stored in a database.

In the first part of this report, basic relationships of the proposed Wall Signature

Method are derived for a fullspan and a semispan model.

The second part of this report discusses the integration of the method into a wind tun-

nel facility. Experimental data, obtained during tests of two different size semispan models

mounted on an image plane in the NASA Ames 12ft Pressure Wind Tunnel (PWT), are

applied to the modified Wall Signature Method to verify computed corrections. Exper-

imental data recorded during the calibration of the Ames Bipod are also applied to the

method.

4



CHAPTER 2

WALL INTERFERENCE CORRECTION PREDICTION

2.1 Definition of Interference Correction

Wind tunnel tests allow the prediction of aerodynamic forces and moments acting

on an aircraft model in atmospheric free-flight. Unfortunately, the wind tunnel wall and

the model support system change the flow field experienced by the aircraft. Many of

these changes can be ignored if the aircraft model is small compared to the wind tunnel

height and width. However, if the span of the test article is large or if substanial flow

separation occurs, wall and model support system interference effects cannot be neglected.

Then, reliable estimates of interference corrections to Mach number, dynamic pressure,

and angle of attack are necessary so that wind tunnel test data may be compared with

free-flight conditions.

In general, wall and support system interference corrections are defined as the dif-

ference between the wind tunnel flow field and the free-air flow field experienced by the

model (see Fig.2a) . Corrections are described in terms of a blockage factor e and an angle

of attack correction _i . Mach number and dynamic pressure corrections are related to the

blockage factor computed at some reference point in the wind tunnel. For more detail on

classical subsonic wall interference corrections, see AGARDograph 109, [10] . The block-

age correction relates the free--stream velocity Uoo to a calibrated empty tunnel velocity

Ue at a model reference point v (see Fig. 2b) . The calibrated empty tunnel velocity Ue

captures the effects of the wind tunnel wall boundary layer growth, wall divergence, and

orifice error. It is still necessary to correct for the wall interference effect of the test article,

its separation wake, and the influence of the support system.

The ratio between free-stream velocity Uoo and the calibrated empty tunnel velocity

U, is expressed as a function of the blockage factor e, [10] :

Uoo(u) = 1 + ui(u) = 1 + e(u) (1)

where ui is the axial velocity correction at the model reference point u caused by the model

and support system interference effects relative to the calibrated empty tunnel velocity Ue •



For small changes in velocity, second order approximations of Mach number and dy-

namic pressure correction can be expressed as a function of the blockage factor e(v) using

a Taylor series expansion. These second order approximations are used if a large blockage

factor is expected, e.g. during high angle of attack tests of aircraft models. We get (see

Appendix 1) :

Me(v) = 1 -{- 2 4 " e(v)2 (2a)

qoo - q_(v)=q,(v) [2- M2(v)].e(v)+ [1- -_-M_(v)+ 2-TM4(v)2 ] "e(v)2 (2b)

The calculation of wall interference corrections based on the ideas of the Wall Signature

Method requires the formulation of a blockage factor e and an angle of attack correction c_i

such that a direct connection between experiment and the panel method code computation

is possible [7],[8].

Studies by the author have shown that differences of the panel method code solu-

tions can be used in combination with the Wall Signature Method to predict interference

corrections. Figure 2b shows the relationship between the empty tunnel calibration, sup-

port system calibration, wind tunnel test, free-air flow field, and the corresponding panel

method code calculations using a simplified representation of the test article and support

system in terms of singularities. This representation is uniquely defined if type, location,

and strength of the singularities is known. The type and location of singularities must be

specified by a test engineer. The Wall Signature Method is used to compute the strength

of the singularities. The Principle of Superposition arid panel method code solutions of

the wall interference flow field are used to determine wall interference corrections.

It is assumed that singularities of the test article an,_ support system are located inside

a tunnel of constant cross-sectional area as effects of wall divergence and boundary layer

growth are already included in the calibrated empty tlmnel velocity Us . The calibrated

velocity U_ corresponds to a constant reference velocity U_ of a constant cross-section

wind tunnel.

Comparing the flow fields depicted in Fig. 2b we caz_ make the following approximation



of the velocity ratio U_(v)/U_(v) defined in Eq. (1):

u_(_) u; + [( u; + u;(.) ) - ( u; + u;,(.) )]
v_O,) u;

- u=(_) ]= 1 + r/i,;(,,,)
L u;'

(3a)

The total perturbation velocity u_ of the wind tunnel flow field caused by the test article

and support system is expressed as the sum of the perturbation velocity contribution u_, n

of the test article and the perturbation velocity contribution u_*, of the support system (see

Fig. 2c) . The perturbation velocity component u_s of the support system perturbation

velocity flow field can further be represented as the sum of the perturbation velocity

component u_s - u_ due to the wall interference of the support system and the perturbation

velocity component u_ due to the direct influence of the support system (see Fig. 2d).

Finally we can write :

u_(_)
u_(_)

r - ,-,*(,,)+,-,;.(,-,)-,,:,:,,.,,)+,-,:(,-,)1 + L u; J

= 1+ [';"'(')-07 _';'(') ]+ [ ,.,7,,(,,)57-,,i(,..')]+ ";(')U;
(3b)

It is difficult to predict the direct influence of the support system on the model flow

field in terms of a perturbation velocity component us* . The Wall Signature Method

cannot be used to determine the direct influence of the support system on the model as

this technique has been developed for wind tunnel wall interference studies. Experimental

or CFD studies have to be used to estimate the direct influence u* .

For the present study it is assumed that the direct interference between support system

and wind tunnel model is small, i.e. u; _ 0. Then, comparing Eqs. (1) and (3b), we get

for _(_) :

U; U2
= ern(_') + es(v) (4)

Interference velocity components in pitch and yaw axis direction can be expressed in

forms similar to Eq. (4) if direct influence of the support system is neglected, i.e., v_ _ 0

andw s _0. We get :

u.(_,) u: u;
(5a)



Wi(V) [ W _m (12 ) 1 r 1j + - j = +u,(.) L u: u;

The velocity ratios a,,_ and a, are angle of attack corrections due to the model and support

system wall interference effects.

The interference velocity component in the z-axis direction is related to the free-

stream angle of attack aoo experienced by the test article at the model reference point.

Therefore we get :

aoo(_) = a,(_) + _(.) (6)

where a_ is the geometric angle of attack measured relative to the wind tunnel centerline

and _i is the angle of attack correction due to lift interference of the test article and due to

the change of the flow field angle caused by the interference flow field of the model support

system. The total angle of attack correction of a fullspan model is then :

_(_) = w_(_) = v_(_) w_(_) -_- u_(_) [ ]+ (7)uoo( ,) L

whereU_(_)/U_(_)and_,(_)/U_(_)aregivenbyEqs.(3b),(Sb).Theangleofattack

correction for the semispan model is obtained by replacing w_(v) by v_(v) in Eq. (7).

The calculation of the Mach number, dynamic pressure, and angle of attack correction

using Eqs. (2a), (2b), (4), (7) is reduced to finding blockage corrections c,_ and e, and angle

of attack corrections am and a_ .

Model corrections c,_ and am, i.e. velocity differences Jut*m - u,.n]/Ve, [v_m - v,_]/Ve

or [wt*m - w_n]/U* , and support system corrections es and as, i.e. velocity differences

[u;, - u_]/U_, [v_, - v;]/U_ or [w;, - w_]/U*, can be computed by using the modified Wall

Signature Method. This is possible because the wall interference flow field caused by the

wind tunnel model and support system can be treated as a far field effect. This will be

explained in detail in the following sections.

2.2 Panel Method Code Solution

In the previous section, it was demonstrated that wall interference effects of a test arti-

cle and support system, i.e. e,_, e,, a,_, and as, can be found by calculating dimensionless

velocities [u_,_ - u*]/U*, [v_,_ - v_,]/U_, [w_ - w*]/U_, [u;_ - u*_]/U_, [v_s - v*]/U*,



and [w;, - w*]/U_ at a selected test article reference point v. These dimensionless veloc-

ities are computed by superimposing panel method code solutions and applying the Wall

Signature Method. In real-time operation, the Wall Signature Method uses a singularity

representation of the test article in combination with the measurement of wall pressure, lift

force, propulsion simulator thrust force, pitching moment, mad precalculated normalized

perturbation velocities to predict model wall interference corrections. The Wall Signature

Method may also be used to predict support system wall interference corrections by taking

the difference between the wall pressure port calibration of the support system and empty

tunnel. However, the application of the Wall Signature Method is only possible, if precal-

culated solutions of the subsonic potential equation in the form of normalized perturbation

velocities are linear with respect to singularity strength.

In general, the perturbation flow field of a singularity placed inside a wind tunnel

of constant cross-sectional area is a linear function of the singularity strength. Figure 3

depicts a singularity of strength _o located inside a selected wind tunnel configuration of

constant cross-sectional area A. The corresponding flow field solution is obtained by using

a modified panel method code as a boundary value problem solver (see Appendix 2 for a

detailed description of these modifications). Figure 3 also shows a singularity of the same

type and location but with different singularity strength _rl . The strength g0 and al of

these two singularities are related as follows :

or1 -- _.cr0 (8a)

We know for the corresponding panel method code solutions in terms of the perturbation

velocities :

* = _ * (8b)It 1 • U o

Equation (Sb) is valid as long as the cross-section of the selected panel geometry of the wind

tunnel test section is constant. This relationship allows the user to find all wind tunnel

flow field solutions of or1 # 1.0 [ft3/sec] by simply multiplying the flow field solution of

a0 = 1.0 [ft31sec] with the factor A = allao •

In the following section, details will be developed as to how the Wall Signature

Method can be combined with the linear property of panel method solutions defined by
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Eqs. (Sa),(Sb) to obtain test article and support systemwall interferencecorrectionsfor a

a fullspan or semispan model.

2.3 Fullspan Model

2.3.1 Test Article Wall Interference Correction

The Wall Signature Method can be applied to compute the blockage factor e_n and

angle of attack correction _,n caused by test article wall interference effects at a reference

point "v"

The Wall Signature Method uses a simplified representation of the test article in

terms of point sources, point sinks, and line doublets in combination with measurement of

wall pressure, lift force, propulsion simulator thrust, pitching moment, and precalculated

normalized perturbation velocities to obtain the blockage factor and angle of attack cor-

rection. The blockage factor, era, and angle of attack correction, am, are linear functions

of the singularity representation of the test article (see previous section). The principle of

superposition allows em and am to be expressed as the sum of contributions of "n" singu-

larities that represent the test article. Figure 4 shows, as an example, how the principle

of superposition can be applied to a simplified representation of a test article using three

singularities. Knowing that e,_ and a,_ are a linear function of the singularity strength _,

we get for "n" singularities :

?'4

= (ga)
k--1

= (gb)
k=l

where _¥(v, k) and _7(v, k) are normalized perturbation velocities of the wall interference

flow field. These normalized velocities are dimensionles_ perturbation velocities divided by

unit singularity strength per unit velocity. Perturbation velocity _-(v, k) is the normalized

axial perturbation velocity component of the wall inte_erence flow field and _'_(v, k) is the

normalized perturbation velocity component perpendicular to the wing plane of the test

article. Normalized perturbation velocities have the unit [1/rn 2] or [1/ft 2] . Singularity

strength _k has the unit [m 2] or [ft 2] and is compatible with these normalized perturbation
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velocities. Singularity strength 0-k is defined as singularity strength 0- in [rn3/sec] or

[fta/sec] (see also App. 3,4) divided by reference velocity U* or U_, I :

0- O"

0-k = = (10)
u;' u,- s

The strength of the singularities is computed similar to the procedures outlined by

Vlbrich and S_eiule [7],[8], and Kouing [6], using the measurement of lift force, thrust

force, pitching moment, and a least squares fit of wall pressure signature. Figure 5a

summarizes the basic steps in the application of the Wall Signature Method to a fullspan

model configuration. Rectangular boxes in Fig. 5a symbolize real-time measurements,

rounded boxes symbolize information stored in database files, and elliptical boxes symbolize

computational procedures.

Fuselage volume blockage effects are represented by point sources and point sinks. The

location of these sources and sinks has been selected by the user such that pairs of sources

and sinks are related to Rankine bodies describing the fuselage volume of the test article.

Strengths trl,..., 0-*?of point sources and strengths 0-*?+1, ..., 0-2*?of point sinks are reduced

to a single variable or. if weighting factors wl, ..., w2*? are introduced. These weighting

factors must be defined by the user. We then obtain :

_j
= wj ; 1 <j < 21/ (lla)

0-,

where

wj = -wj_*? ; 7/+1 _< j _< 27/ (llb)

Separation wake blockage effects are represented by a set of sources, o"2,?+1, ..., 0-_¢ .

Again, weighting factors are introduced to reduce the number of independent variables.

Assuming that the strength a** is a common reference strength of sources related to the

separation wake we get :

= wj ; 2r/+l <j < _ (12)
0-**

The weighting factors w2*?+l,..., w_ are, by definition, greater than zero since separation

wake blockage effects are modeled as sources. The calculation of the strength of a total
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number of "_" point sources and sinks representing fuselage volume and wake blockage

effects is then reduced to finding the values of a, and a** using the Wall Signature Method.

A least squares fit of velocities derived from wall pressure measurements is used to

calculate a, and or,, (see Fig. 5b) . It is assumed that a total number of "n" singularities

has been selected to represent the test article. Axial velocities are derived from pres-

sure measurements at "m" wall pressure orifices. The measured real-time wall signature,

U_(_) + ut(6) , is corrected for orifice error, wall divergence, and wall boundary layer

growth by subtracting the measured velocity, Ue(d_) -_- uts(_) , of the support system

calibration at each wall orifice location "_". The computational equivalent, U_, to the

calibrated velocity, U_ or Ur_f, at the wall pressure orifice "6" is constant everywhere

inside of the test section as it is computed using a constant cross-section wind tunnel.

Normalized perturbation velocities of the wind tunnel flow field at wall pressure orifice

locations, "_", have to be introduced to compute the strength of singularities representing

the test article. They relate the strength of point sources, sinks, and line doublets to the

perturbation velocity components at the wall pressure orifices. The strengths, _+1, ..., _r_,

of line doublets representing lifting effects of the test article are estimated by combining

lift force, pitching moment, and rolling moment measuxements with the Kutia/Joukowski

formula (see Appendix 5 and Appendix 19) . The strengths, _,+1, ..., _r,_, of point sinks

representing blockage effects of propulsion simulators axe estimated using thrust measure-

ments and Koning's formula (see Appendix 10) . The normal equation of the modified

linear least squares problem depicted in Fig. 5b is giver., as, [11] :

[AT2 xrn Amx2] X2xl = AT2×,_ B,_×I (13a)

X2xl -" O'**

al,1 al 2 )
Arnx2 "- " " (13c)

\ arn,1 am,2

2t7

a6,1 =

k=l

a6,2 :-

w,(6,k) (13 )

wk. _'7(,5, k) (13e)
k=2,_+l
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(b,). (13D

b_ = [U,(6) -+ u,(6)] - [Ue(6) + uts(6)] _ -h-7(6,k) (139)- z._.,o'k
U,- S

k=_+1

The vector X contains the strength of singularities modeling the fuselage volume and

wake blockage effects. The matrix A contains normalized perturbation velocities of the

wind tunnel flow field. The vector B contains residual perturbation velocity components

caused by the fuselage volume and separation wake. Line doublet and propulsion simulator

contributions, k = _ + 1, ..., n, are subtracted from the measured wall signature difference

between the wind tunnel flow field and the support system calibration at the wall pressure

ports "6" (see Fig. 5b).

Perturbation velocity, _(6, k), is the normalized perturbation velocity of the wind

tunnel flow field of singularity "k" at wall pressure orifice "6" It is defined as the

dimensionless perturbation velocity divided by unit singularity strength per unit velocity

at wall pressure orifice "£' due to a singularity "k" located inside the test section.

In general, it is required that the measured velocity, U_(6) + ut(6), at wall pressure

port "6" can be approximated by its component in the streamwise direction. In practical

applications, however, a least squares fit can tolerate a few wall pressure measurements

that do not fulfill this condition as the normal equation of the least squares fit, Eq. (13a),

assigns equal weight to all wall pressure port measurements.

The solution of the two variable linear least squares problem defined in Eq. (13a) can

be written in explicit form as :

= [A A]-'2×2 [AT " B]2×l

The solution vector X is computed by using the Singular Value Decomposition tech-

nique [12], which is the numerical method of choice for linear least squares problems.

It is now possible to compute the blockage correction, c,_(v), and the angle of attack

correction, c_,_(v), at reference point "v" as the strength and location of all singularities

representing the test article and wake are known:
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2.3.2 Support System Wall Interference Correction

The Wall Signature Method can also be used to find the blockage factor, es, and the

angle of attack correction, as, caused by support system wall interference effects. The

application of the Wall Signature Method to the support system wall interference problem

closely follows procedures discussed in the previous section. Figure 6a summarizes basic

elements in the application of the Wall Signature Method to the support system wall

interference problem.

Support system wall interference effects have been defined in Eqs. (4) and (5b) .

Similar to Eqs. (9a),(9b), e_ and as are a linear function of the singularity strength. It

is assumed that a total number of "_" sources and sinks of unknown strength are used to

represent blockage effects of the support system. We then get :

= (15a)
k=l

k=l

where _'7(v, k) and _'(_,, k) are normalized perturbation velocities of the wall interference

flow field.

Again, positions of sources and sinks modeling solid volume blockage effects are se-

lected such that pairs of sources and sinks are related to Rankine bodies describing the

volume of the support system (see Eq. (lla),(llb)). Sources related to wake blockage

effects of the support system are placed where a wake separation on the support system is

expected (see Eq. (12)). Introducing weighting factors it is possible to reduce the number

of unknown singularity strength values to two, i.e.a. _md a** .

Assuming that "m" wall pressure measurements a_e taken during the support system

calibration and that "_" singularities are used to represent the support system, we get the

following normal equation of the least squares problem, [11] :

[AT ×m Am×s] = (16 )

where
bl
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b6 = [U,(6) + u,,(_)] - U,(6) (16c)
U,._.f

The vector X contains the strength of singularities describing the support system volume

and wake blockage effects (see also Eq. 135). The matrix A is given by Eqs. (13c), (13d),

and (13e) using the perturbation velocities _-t(6, k) of the singularities 1 < k _ _ represent-

ing the support system. The vector B contains perturbation velocity components caused

by support system volume and separation wake. These perturbation velocity components

are the measured wall signature difference between the support system calibration and the

empty tunnel calibration at wall pressure ports "_" (see Fig. 6b).

2.4 Semispan Model

In general, blockage and angle of attack corrections are computed using Eqs. (4) and

(5b) if the modified Wall Signature Method is applied to a semispan model. Studies by

the author have shown that a semispan model mounted on a finite length image plane

may be treated similar to the fullspan model configuration. It is only necessary to select

the proper geometry of the wind tunnel, i.e. the cross-section of the wind tunnel channel

above the image plane surface plus its reflected image, for the calculation of normalized

perturbation velocities (see Fig. 7) . However, a new calibration of the empty tunnel

velocities, U,(_) and U,.,I, must be conducted because the installation of the image plane

changes the empty tunnel geometry.

Semispan models normally consist of half of the fuselage mounted on the image plane.

It is therefore necessary to place singularities representing the fuselage volume on the

surface of the image plane. This requires further modification of a panel method code to

compute normalized perturbation velocities (for more detail see Appendix 2) .

No support system is present in the test section, i.e. ut = utm, uts = 0.0, and us = 0.0

(see boundary value problems depicted in Fig. 8). Thus Eq. (4), (55), (7) are replaced by

the following expressions :

- = (17)

~ = (18 )
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Normalized perturbation velocities, ui, vi, and _-t, of the interference and wind tunnel

flow field are computed using a panel method code. These perturbation velocities are

required for the least squares fit of the wall signature and the calculation of wall interference

corrections. The user has to make sure that the orientation angle of the line doublets is

changed for semispan tests (see Appendix 4).

Figure 9a summarizes the basic elements of the Wall Signature Method for semispan

model tests. The least squares fit of the wall signature, defined in Eqs. (13a) to (13f), still

applies. Again, it is necessary to subtract the contribution of the wing line doublets and

the contribution of the propulsion simulator point sinks from the wall signature difference.

However, the image plane is calibrated as a part of the wind tunnel wall and no support

system is present in the tunnel. Therefore, the wall signature difference is defined as

the difference between the wind tunnel measurement, Lr(6) + u_(6), and the image plane

calibration, U_(6), (see Fig. 95). Equation (13g) is replaced by

urns - (19)
k=_+l

For a semispan model configuration the lift force measurement and the Kutta/Joukowski

formula are needed to determine the strength of the line doublets of the wing (see Ap-

pendix 5).

2.5 Compressibility Effects

Compressibility effects have to be taken into account if the modified formulation of

the Wall Signature Method is applied to a subsonic wind tunnel flow field.

In general, the Prandtl/Glauert transformation may be used to approximate the effects

of compressibility in a flow field. This transformation requires a coordinate stretching of

the wind tunnel geometry, singularity location, singulexity strength, and reference point

location when normalized perturbation velocities are being computed as outlined in the

previous sections (for more detail on the transformation see Ref. [13] and [14]).

The application of the Prandtl/Glauert rule to the flow field of a singularity located

inside of a wind tunnel requires several steps. First, coordinates (x,y,z) of the tunnel
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geometry and of the singulaz-ity position are transformed to corresponding incompressible

coordinates (_,_,_) using the Prandtl/Glauert transformation:

= • (20a)

= y.v/1 - M 2 - y-;3

5" = z.X/1 - M 2 = z.fl

It is necessary to stretch the strength of the singularity as well.

(20b)

(20c)

The strength of a

source is related to the cross-sectional area of a corresponding halfbody, [13], as

=  .R2.Uoo = + z2].Uoo (21)

where R equals the radius of a halfbody far downstream of the source location. Singularity

strength cr has the units [m3/sec] or [ft3/sec]. Comparing Eqs. (20b),(20c),(21) we see

that the singularity strength is proportional to f12 . The strength of a line doublet is

related to a corresponding wing span increment, i.e. Ay, and angle of attack, i.e. w/Uoo

or d z/d z. Considering Eqs.(20b) and (20c) we see that the line doublet strength has to

be proportional to f12 . Finally, we get for the incompressible singularity strength :

= a.[1 - M 21 = cr.t32 (22)

A Mach number, M, derived from the calibrated velocity, U_el , at a test section

reference point should be used for the coordinate and singularity strength stretching.

Next, the incompressible flow field is obtained by using the modified version of the

panel method code PMARC,[15] as a boundary value problem solver. Finally, perturbation

velocities calculated relative to the inlet velocity are transformed from the incompressible

flow field, (fi, _, _), to the compressible flow field, (u, v, w). We then get :

fi

u = _-_ (23a)

W "-"

fl (23b)

fl (23c)
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A quantitative checkof compressibility effects is possible if we place a point source

of unit strength inside the geometry of the 12ft PWT and use a modified panel method

code and the Prandtl/Glauert transformation described above to solve the flow field. Far

downstream of the point source the flow field is essentially one-dimensional and asymptotes

of perturbation velocities for different Mach numbers can be calculated. The results of the

panel method code calculations on Row 1 (see Fig. 17b for location of Row 1) for Mach

numbers M - 0.0, 0.3, 0.6 are plotted in Fig. 10 . Asymptotic values of perturbation

velocities can be found in Table 2 .

Independent of the panel method code calculation it is also possible to apply the

Area-Velocity-Relation of compressible flow, [16] . We can write :

du 1 -dA

Uoo = 1- M 2 A (24)

The 12ft PWT has a cross-sectional area A = 109.74 [ft 2] . A point source of strength

a/Uoo = 1.0 [ft 2] corresponds to a change of cross-sectional area of -dA = 1.0 [ft 2] (see

also Eq. (21)). Equation (24) is applied to Mach numbers M - 0.0, 0.3, 0.6. Results are

shown in the table below.

Table 2 : Calculated Asymptotes of Perturbation Velocity

Mach Number Panel Method Code Equation (24) ; du/Uoo

0.0 0.0091 0.0091

0.3 0.0100 0.0100

0.6 0.0140 0.0142

Comparing the results of the panel method code calculation and the Area-Velocity-

Relation, we get excellent agreement to verify application of the Prandtl/Glauert trans-

formation.

2.6 Normalized Perturbation Velocity Definition

In general, normalized perturbation velocities can be defined as dimensionless pertur-

bation velocities divided by unit singularity strength per unit velocity caused by some sin-

gularity. For example, the normalized perturbation velocity, _-/(_, k), at a point, (x_, y$, z6),
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in the free-air flow field of a unit strength source located at (zk, Yk, z_) can be defined

as (seealsoEq.(3.2a)in Appenaix3):

_(6, k) = u(6,k) Vro: = _(_,k___2).i
U,._: o" U,._I o'2
1 x_- zk (25)

4 _ [ [x, - _]2 + [_ _ _]2 + [z_- z_]_]3/2

Two different sets of normalized perturbation velocities for a given singularity type,

location, and specified model reference point location have to be computed if the Wall

Signature Method is applied. The first set is related to the wind tunnel flow field of a

singularity. The second set is related to the wall interference flow field of a singularity.

Normalized perturbation velocities, h-7(6, k), of the wind tunnel flow field of a singu-

larity are required for the least squares fitting of the wall signature on wall pressure orifices

"5" (see Eqs. (13d), (13e), (13g), (19)) . Each normalized perturbation velocity can be

interpreted as a dimensionless streamwise perturbation velocity divided by unit singularity

strength per unit velocity at wall pressure orifice "6" caused by the wind tunnel flow field

of a singularity located at position "k"

Normalized perturbation velocities, _-(v, k) and _'(v, k), of the wall interference flow

field are required to determine wall interference corrections at reference point "v" (see

Eqs. (9a), (95), (15a), (155)) . Each of these perturbation velocities can be interpreted

as a dimensionless perturbation velocity component divided by unit singularity strength

per unit velocity at flow field reference point "L," caused by the wall interference flow field

of a singularity located at position "k" . Normalized perturbation velocity _--_(v, k) is the

streamwise perturbation velocity component and normalized perturbation velocity _-(v, k)

is the perturbation velocity component perpendicular to the wing plane.

Explicit equations of these normalized perturbation velocities can be derived in the

case of a wind tunnel with rectangular cross-section using the Method of Images. However,

normalized perturbation velocities of a wind tunnel with non-rectangular cross-section

have to be computed using a panel method code as a boundary value problem solver (see

aef. [15],[17], mad Appendix 2 for more detail).

Exact Bessel Function solutions of the angle of attack correction of a line doublet

located in plane z = 0.0 inside of a wind tunnel with circular cross-section are available.
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NACA TN 2454, [18] lists these corrections in the form of upwash factor tables. Tables

can be compared with the normalized perturbation velocities of the wall interference flow

field that were computed using a modified panel method code [15],[17].

At first, an upwash factor table used for fullspan model tests (Table I on p.32 of NACA

TN 2454, [18]) is compared with the corresponding panel method code solution. Figs. lla

and 1 lb compare upwash factor F as a function of the dimensionless streamwise coordinate

and the dimensionless line doublet location (lateral coordinate !? = 0.7). The exact Bessel

Function solution and the numerical panel method code solution of the upwash factor F

show reasonable agreement verifying the normalized perturbation velocity definition of the

fullspan configuration.

Table 3 compares the input and accuracy characteristics of NACA TN 2454 and the

panel method code solution of the normalized perturbation velocities.

Table 3 : Comparison NACA TN 2454 / Panel Method Code

NACA TN 2454 Panel Method Code

Tunnel Circular Tunnel Any Tunnel Geometry

Geometry One Bipolar Tunnel

Solution

Type

Exact (Circular)

Approximation (Bipolar)

Singularity Line Doublet

Type

Singularity Z=0.0 (Circular)

Location Y=0.0 (Bipolar)

Reference Point Z=0.0 (Circular)

Location Y=0.0 (Bipolar)

Numerical

Solution

Point Source, Point Doublet,
Line Doublet

Minimum distance from wall

panels _ 0.2 × tunnel radius

Minimum distance from wall

panels .._ 0.2 × tunnel radius

Unfortunately, no rigorous solution of the upwash factor F, i.e. angle of attack cor-

rection, of a line doublet located inside of a bipolar wind tunnel (image plane / semispan

configuration) is available. However, NACA TN 2454 provides an approximation of the

upwash factor F for a bipolar wind tunnel that can be compared with the results obtained

by applying a panel method code. Fig. 11c compares tl:.is approximation of upwash factor

F (Fig. 5(c) on p.56 of NACA TN 2454, [18]) with the panel method code solution. Both

approximations show reasonable agreement verifying the normalized perturbation velocity
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definition of the semispanmodel configuration.

A panelmethod codeallows the userto computenormalizedperturbation velocities for

any type of constant cross-sectionwind tunnel geometrythat canbe paneled. Singularities

and referencepoints can alsobe placed anywhereinside of the wind tunnel as long asthe

minimum distanceof the singularity or referencepoint from the paneledwind tunnel wall

(60 panelsused to representtunnel cross-section)is greater than 0.2 x tunnel radius.
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CHAPTER3

APPLICATION OF THE METHOD TO WIND TUNNEL TESTS

3.1 Real-Time Wall Interference Calculation

The revised and improved version of the Wall Signature Method presented in this

report can be used to predict the Mach number, dynamic pressure, and angle of attack

correction at a test article reference point due to the subsonic wind tunnel wall interference

effects. Post-test analysis of subsonic wall interference effects is also possible as long as

the exact position of the test article in the wind tunnel is known for a specific angle of

attack setting. The location of singularities representing the test article is directly related

to this position. Perturbation velocities of the wind tunnel and interference flow field can

be computed as outlined in the previous chapters.

The real-time calculation of wall interference corrections is fast because the Wall

Signature Method only requires superposition of the perturbation velocities, application

of the Kutla/Jonkowski formula (Appendix 5), Koning's formula (Appendix 10), and the

solution of a 2 x 2 linear system of equations related to the least squares fit of the wall

signature.

The precalculation of normalized perturbation velocities used for the real-time least

squares fit of the wall signatures and for the calculation of corrections has to be done on a

mainfraxne computer or fast workstation since a realistic implementation of the proposed

Wall Signature Method requires the calculation of perturbation velocities for many different

singularity types, locations, and Math numbers. Figures 12a,12b depict geometries of the

NASA 12ft Pressure Wind Tunnel test section that are selected for the calculation of the

perturbation velocities of the wind tunnel and interference flow field using a panel method

code as a boundary value problem solver. Preeomputed normalized perturbation velocities

have to be stored in a database that is accessed during a wind tunnel test.

A singularity and reference point grid has to be used for the calculation of the per-

turbation velocity database. These two grids should be selected such that they allow for

a real-time interpolation of all conceivable singularity and reference point locations in the

wind tunnel test section. Perturbation velocities required for singularities representing the
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test article changeas a function of test article geomel;ry and position in the wind tun-

nel test section. Size, complexity, and accuracy requirements of the perturbation velocity

database have to be balanced to guarantee best real-time performance. Thus, perturbation

velocities of the wind tunnel and interference flow field for a given test article location are

found in real-time by applying a tri-linear interpolation (real-time singularity position;

Appendix 6) and parabolic interpolation (real-time Mach number; Appendix 7) to the

precomputed perturbation velocity database.

Blockage effects of the support system can be computed off-line by applying the Wall

Signature Method to the difference between the support system and the empty tunnel

calibration. Computed support system wall interference corrections on the reference point

grid have to be stored in a database as a function of the support system calibration

variables. The support system wall interference corrections are added in real-time to the

wall interference corrections caused by the test article.

Post-test analysis of the interference effects is based on minimizing the standard

deviation of the least squares fit of the wall signature as a function of the location of the

test article singularities (see Appendix 8). This procedure provides an optimal singularity

representation of the test article.

Studies of the author have shown that the real-t:ime speed of the wall interference

calculation is governed by the efficiency of the interpolation of the perturbation velocities

using the precomputed perturbation velocity database.

Figures 13a,13b depict basic elements of the real-time Wall Signature Method for

a fullspan and a semispan model configuration. The .empty tunnel calibration, support

system calibration, real-time wall pressures , lift force, propulsion simulator thrust, and

pitching moment measurements are the critical link between experiment and the panel

method code calculation. Matching conditions between the wind tunnel test and the panel

method code calculation will be discussed in detail in the following section.

3.2 Matching Conditions

The least squares fit proposed for a fullspan and semispan model configuration relates

experimental data, i.e. wall pressure measurements, to precomputed normalized perturba-
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tion velocities. Therefore suitable equationshave to be found to convert the wall pressure

measurementsto perturbation velocities.

Perturbation velocity differences [U, + ut] - [U, + ut,] , [U, + ut,] - U, , and [U, + ut] -

U, defined in Eqs. (13g), (16c), and (19) can be related to the wall pressure measurements

taken during calibration and real-time wind tunnel test by applying the energy equation

and the isentropic flow assumption. Assuming that the total temperature TT and total

pressure PT in the tunnel settling chamber, and the static pressure p at wall pressure orifice

are known, we get for the flow velocity (see Fig. 14a) :

Dimensionless perturbation velocities can then be written as :

[U_(6) + ut(6)]- [ U_(cS) + ut,(_5)] = V(pt,,,_(tS))- U(p_,_v(_5)) (27a)
U,._ I U_<f

[ + - u0(6) - u(v mp(6))
= (27b)

u_s u_f

[ uo(6) + - u (6) -
= (27c)

U,._ I U,._S

The flow velocity U(p(6)) in Eq. (26) is written as a function of the pressure difference

PT -- P(_) as it is easier to measure a pressure difference at a wall pressure port. Real-time

static pressure pt_,,-,, support system static pressure ps=p, and empty tunnel calibration

static pressure Pemp are recorded at each wall pressure port "_" . Measured velocity

Ue(_) = U(pe,-r,p($)) at a wall pressure port "_" is the first matching condition. It is

required to obtain the perturbation velocities defined in Eqs. (27b),(27c).

The velocity Ur_f in Eqs. (13g), (16c), and (19) is the second matching condition

between the wind tunnel flow field and the corresponding dimensionless panel method

code calculation. It is required to non-dimensionalize the perturbation velocities defined

in Eqs. (27a),(27b),(27c) . It can be considered as the constant flow velocity inside of

a hypothetical constant cross-sectional test section. This velocity should be measured

during the empty tunnel calibration at a specific model reference point 0 (see Fig. 14b;

this point has the coordinates X=120.71 [ft], Y=0.0 [ft], Z=0.0 [ft] in the 12ft PWT). The
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velocity Urel can be measured by using, e.g., a static pipe installed in the wind tunnel

during the calibration. We then get :

: [
The real-time lift force _nd pitching moment measurements are related to the strength

of the corresponding line doublets using the Kn_ta/Joukowski formula. Its application re-

quires knowledge of velocity U,-ef and density p,..! (0) at a model reference point 0 measured

during the calibration of the wind tunnel. This velocity and fluid density connect lift force

and pitching moment measured in [lbf],[ft • lbf] or [NI,[N • m] to the definition of the

line doublet strength in [ft 2] or [m 2] (see Appendix 5). The fluid density is also required

to relate the propulsion simulator thrust measurement to the sink strength if Koniug's

formula is applied (see Appendix 10). The density P,-e! (9) is the third matching condition.

It is found by applying the ideal gas and the isentropic flow relationship at a test section

reference station/9 . We get :

e  s(0) = R-- r " -- (29)

where p_mp(0) is the static pressure measured at the model reference point/9 .

It is interesting to note that the perturbation velocity differences [Ue(6) + ut(6)] -

[V_(6) + ut_(6)], [g_(6) + u,,(6)] - U_(d_), and [U_(6) + u,(6)] - U_(6) remove the influence

of the wall boundary layer growth, orifice error, image plane, and wall divergence from the

least squares fit. Therefore it is possible to use the geometry of an equivalent wind tunnel

with constant cross-sectional area for the calculation of normalized perturbation velocities

of the wind tunnel and interference flow field.

Three matching conditions, i.e. U_(6), U_S, and .o,-_I, establish a link between the

measurement of wall pressures, forces, moments and the panel code solutions of the wind

tunnel and interference flow field expressed as normali2ed perturbation velocities. Figure

14c summarizes the importance of these matching conditions.

3.3 Application of the Method to Semlspan Models

In the summer of 1996, two different sized semispem models were tested in the NASA

Ames 12ft Pressure Wind Tunnel (PWT). Both models, i.e. the 8 % and 14 % scale 7J7
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semispanmodels,were provided by the Boeing Corporation. Eachmodel wasmounted on

the image plane in the 12ft PWT. Figure 15showsa similar test configuration.

Both models were tested over a wide range of angle of attack, total pressure, and Mach

number settings. For the present study, two runs were selected. During Run No. 154 the

8 % scale model was tested from -20.280 to 19.820 uncorrected angle of attack at a total

pressure of 2.0 [atm] and a Mach number of 0.25 . During Run No. 219 the 14 % scale

model was tested from -4.030 to 9.980 uncorrected angle of attack at a total pressure of

2.0 [atm] and a Mach number of 0.30 .

The application of the present wall interference correction method was done in several

steps. At first, type and initial location of the singularities representing each model were

specified. Rules of thumb given in Appendix 9 were used to select type, location, and

weighting factors for these singularities. A total of 11 singularities were selected for each

model. A source and a sink were selected to represent fuselage blockage, two sources

were selected to model the separation wake blockage effects. Seven line doublets, located

along the 1/4 chord hne of the wing, were chosen to represent lifting effects. Weighting

factors for the line doublets were selected to model an elliptic lift distribution for the wing.

Figures 16a,16b give the singularity representation of each semispan model for 0 ° angle of

attack. The real-time coordinates of these singularities as a function of the pitch angle

were computed using the known kinematics of a semispan model mounted on the image

plane (for more detail see Eqs. (14.19a),(14.19b) in Appendix 14).

In the next step, measured lift force in combination with the Kulta-Joukowski formula

was used to determine the strength of line doublets for the wing for each data point.

The strength of the remaining singularities was computed using a least squares fit

of the wall pressure measurements on 180 wall pressure ports that were arranged in six

rows above the image plane. The least squares fit used wall pressure port rows 1,2,3,6,7,8

depicted in Fig. 17a,17b. For more detail on the least squares fit procedure see Section 2.4.

The standard deviation of the least squares fit of the wall signature was computed

for each data point of Runs 154 and 219 (see Figs. 18a,18b) . The standard deviation of

the 8 % scale model was on the order of 0.002 in units of the dimensionless perturbation

velocity. This agrees with the standard deviation of a wall signature obtained by Rueger et

al., [19] who reported a value of 0.005 in units of pressure coefficient, i.e. 0.0025 in units of
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the dimensionlessperturbation velocity. The standard deviation of the 14 _ scalemodel

wason the order of 0.003 to 0.006in units of the dimensionlessperturbation velocity.

Figures 19ato 19f showthe result of the least squaresfit of the wall signature for the

8 % semispanmodel at 19.82o uncorrected angle of attack. Figures 20a to 20f show the

result of the least squares fit of the wall signature for the 14 % semispan model at 9.98 o

uncorrected angle of attack. Figures 21a, 21b depict the wall signature for both models at

approximately 0.0 ° angle of attack at wall pressure port Row 6 . The large difference in

solid volume blockage of both models can clearly be detected in the wall signature. The

measured wall signature difference "u" depicted in Figs. (19a) to (21b), i.e. the velocity

difference [Ue + ut] - Ue in Fig. 9b, shows excellent agreement with its least squares fit.

The present method (WICS), the two--variable method, and the classical method were

used to compute wall interference corrections. Two-variable method results were provided

by Mat Rueger of Boeing St. Louis. Classical corrections were provided by Alan Boone

of NASA ARC who used NACA Rep. No. 995 (solid volume blockage), [20], R.A.E. Rep.

No. 3400, [21] (separation wake blockage), and NACA TN 2454, [18], to determine wall

interference corrections. Mean wall interference corrections for each model were computed

using flow field reference points located along the 3/4 chord line of the wing. Corresponding

results are compared below.

As expected, wall interference corrections computed by WICS and the two-variable

method show excellent agreement because both methods are based on potential flow theory

and boundary flow measurements. Angle of attack corrections agree well in all three cases

(see Figs. 22a,22b) . The solid volume blockage factor contribution depicted in Fig. 23a

agrees well for the 8 % scale model in all three cases. A comparison of the solid volume

blockage factor contribution of the 14 % scale model depicted in Fig. 23b shows larger

differences between classical corrections and WICS. This can be explained by the fact

that the calculation of the solid volume blockage using the classical method (NACA Rep.

No. 995) assumes that a wind tunnel of constant cro,;s-section extends to far upstream

and downstream of the semispan model. This assumption, however, cannot be justified

anymore in the case of the 14 % scale model as the fllselage length is 16.69 [ft] and the

length of the image plane is _ 20.0 [ft] . The classica] method will therefore overpredict

the solid volume blockage effect for the 14 % scale model. The separation wake blockage
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factorcontribution for the 8 % scalemodel determined based on the classicalmethod [21]

islargerthan the blockage factor computed using WICS or the two-variable method (see

Figs. 23a). This agrees with observations reported in the literature,[5],[19].

The 8 % and 14 % scale model have identicalgeometry. Therefore itis possible to

compare the minimum of the blockage factor of both models by using a scale factor law

(formore detailsee Appendix 20). Results discussed in Appendix 20 demonstrate that

blockage correctionscomputed with the present method (WICS) satisfythis scale factor

law. Thus, wall pressure measurement accuracy and the solidvolume descriptionused by

the present method are sufficientlyaccurate for computing blockage effects.

In general, the ratio between measurements and unknowns of a leastsquares fithas

to be large to take fulladvantage of its smoothing characteristics.In our application

the number of unknowns of the least squares fitis two (see Eqs. (13a),(16a)). Figures

23c, 23d compare the computed dynamic pressure correction for the 8 % scale model

with 180 or 30 wall pressure ports used for the least squares fit of the wall signature.

The differencesin the computed corrections depicted in Figs. 23c, 23d are small. This

demonstrates a key operational advantage of the Wall Signature Method : the calculation

of the correctionsisrelativelyinsensitiveto the number and location of the wall pressure

ports (see also Table 1 in Chapter 1) . Comparison of the data scatter in the computed

dynamic pressure correctiondepicted in Figs.23c,23d shows that an increase in the number

of wall pressure measurements used in the least squares fitreduces the data scatterof the

computed blockage corrections.

The local dynamic pressure correction for the 8 % model at 19.82° angle of attack

and for the 14 % model at 9.980 angle of attack are computed in the plane Y=0.0 [ft](cut

through test section parallelto side wall). The dynamic pressure correction for the 8 %

model at 19.82° increasesgradually as an observer moves from upstream to downstream

of the model (see Fig. 24a) . The separation wake blockage effectsdominate the dynamic

pressure correctiondownstream of the model at an angle of attack of 19.82° . The contour

linesare nearly parallelto the z-axis. We conclude that the dynamic pressure correction

for the 8 % model is almost exclusivelya function of the streamwise coordinate.

The dynamic pressure correctionfor the 14 % model at 9.98° has a saddle point at the

streamwise coordinate 120.0 [ft] (see Fig. 24b). The correction decreases as an observer
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movesdownstream of the model. Therefore, it can be concluded that the solid volume

blockage effects dominate the correction at an angle of attack of 9.98 ° .

In both contour plots, it can be seen that the minimum of the dynamic pressure

correction for a constant streamwise coordinate is about 4.0 [ft] above the image plane.

This is caused by the fact that the tunnel width increases as an observer moves from the

image plane surface to the tunnel centerline (see also Fig. 15).

The local angle of attack corrections for 19.82 o and 9.98 o for each model are computed

in the plane Y=0.0 [ft] (cut through test section parallel to side wall). The contour plots

of the results are depicted in Figs. 24c,24d. The angle of attack correction variation along

the 3/4 chord line of the 8 % model at 19.82 °, i.e. from wing root to tip, is on the order

of 0.050 . The aerodynamic twist is insignificant in this case. However, the angle of attack

correction variation along the 3/4 chord line of the 14 % model at 9.98 ° is on the order of

1.0 ° and cannot be ignored anymore.

3.4 Application of the Method to the Ames Bipod

In 1995 the Ames Bipod, a floor-mounted support system, was tested in the NASA

Ames 12ft Pressure Wind Tunnel (PWT). Blockage corrections due to support system wall

interference effects were computed using the Wall Signature Method (WICS) as outlined

in Section 2.3.2 .

The application of the Wall Signature Method to t:ae Ames Bipod was done in several

steps. At first, type, initial location, and weight of singularities representing the Ames

Bipod were specified. Figure 25a shows the Ames Bipod geometry and lists type, initial

location, and weight of these singularities. A total number of 27 singularities was selected

for the support system. Singularities No. 1 to No. 18, i.e. 9 source/sink pairs, were chosen

to represent solid volume blockage effects of the support system. Singularities No. 19 to

No. 27 were chosen to model separation wake blockage effects.

In a second step, strength values of these singularities were computed using a least

squares fit of the wall pressure measurements. Wall pressures on Row 1 to Row 8 (see

Figs. 17a,17b) were measured during the support system calibration as a function of the

total pressure in the settling chamber and the Mach aumber at a test section reference
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point. Wall pressure measurements obtained during an empty tunnel calibration were also

available. The least squares fit was applied to the difference between the wall signature

measured during the support system calibration and the wall signature measured during

the empty tunnel calibration. Figures 25b,25c show the result of the least squares fit on

Row 2 and Row 4. Measured wall signature difference and least squares fit show reasonable

agreement. Larger differences between the measured wall signature and the least squares

fit on Row 4 are caused by the fact that singularities cannot be placed too close to the floor

for numerical reasons (see also Chapter 2.6). Finally, the blockage factor was computed on

planes Y=0.0 [ft] (parallel to test section side wall), X=120.71 [ft] (parallel to test section

inlet), and Z=0.0 [ft] (parallel to test section floor).

Figure 25d shows the blockage factor on plane Y=0.0 [ft] that was computed using

the initial singularity location given in Fig. 25a . Figure 25e shows the blockage factor

on plane Y=0.0 [ft] that was computed after the standard deviation of the least squares

fit was minimized as a function of the singularity location (see Appendix 8). Comparing

both contour plots it can be recognized that differences in the computed blockage factor

are small, i.e. computed corrections are not very sensitive to the location of singularities

as long as they are placed at the location of the support system. Comparing singularity

locations before and after the minimization it can be noticed that sources No. 1 to No. 9

and sources No. 19 to No. 27 have moved closer together. The minimization procedure

has correctly deduced from the wall signature difference that the front post of the Ames

Bipod has a significantly larger diameter than the pitch strut, i.e. most of the separtion

wake of the Ames Bipod is caused by the front post.

Figure 25f shows the blockage factor on plane X=120.71 [ft] . In this contour plot it

can be seen that the blockage factor increases in any direction if an observer moves closer

to the test section wall. A minimum of the blockage factor is located _ 1.0 [ft] above the

tunnel centerline. The blockage factor increases significantly if an observer moves closer

to the test section floor.

Figure 25g shows the blockage factor on plane Z=0.0 [ft] . As expected, the blockage

factor increases if an observer moves from an upstream position to a downstream position.

This observation is caused by the fact that the separtion wake blockage dominates blockage

corrections downstream of the Ames Bipod.

31



32



CHAPTER 4

CONCLUSION AND REMARKS

A revised version of the Wall Signature Method was developed which allows the user to

predict Math number, dynamic pressure, and angle of attack correction due to wall inter-

ference effects in three-dimensional subsonic wind tunnel testing of aircraft models. This

improved formulation of the Wall Signature Method uses lift force, propulsion simulator

thrust force, pitching moment, wall pressure measurements, empty tunnel calibration, sup-

port system calibration, a simplified representation of the test article and support system

in terms of singularities, and precalculated normalized solutions of the subsonic poten-

tial equation expressed as normalized perturbation velocities to predict wall interference

corrections at a model reference point in real-time.

The method is applicable to complex wind tunnel and support system configurations.

Wall interference corrections are found by taking the difference between a simplified rep-

resentation of the wind tunnel flow field in terms of singularities and the corresponding

free-air solution. Computational procedures were developed to predict solid body blockage,

separation wake blockage, propulsion simulator blockage, and lift interference correction if

a fullspan model or a semispan model is tested.

The definition of normalized perturbation velocities used by the method has been

improved to allow the user to take full advantage of the geometry modeling capabilities of

a three-dimensional panel method code. A "global" least squares fit procedure of the wall

signature was also introduced to improve the application of the Wall Signature Method

in real-time. Optimal locations of singularites are defined by minimizing the standard

deviation of the least squares fit of the wall signature.

Experimental data obtained during tests of two semispan models mounted on an image

plane in the NASA 12ft Pressure Wind Tunnel were applied to the modified Wall Signa-

ture Method. Blockage and angle of attack corrections were computed for different angle

of attack settings. In all cases, computed angle of attack corrections show good agree-

ment with corresponding classical corrections. Computed blockage corrections are smaller

than corresponding classical corrections. This result agrees with observations reported in
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literature, [5],[19] .

Experimental data recorded during the calibration of the Ames Bipod was also suc-

cessfuUy applied to the method.

Further experimental studies have to be conducted in the future to gain confidence in

the method.
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APPENDIX 1

HIGHER ORDER CORRECTION FORMULAE

The testing of an aircraft model at a high angle of attack in a three-dimensional

subsonic wind tunnel can create large separation wake blockage effects. In this case, first

order approximations of the Mach number and dynamic pressure correction as a function

of the blockage factor e are no longer sufficient. Second order approximations have to be

derived.

A second order approximation of the Mach number correction can be found using a

Taylor series expansion. The Mach number is expressed as a function of a small change in

the fluid velocity. Assuming that this velocity change AU is related to the flow velocity U

and blockage factor e as :

Au = (1.1)

we get the following Taylor series expansion of the Mach number :

M(U + e U) = M(U) + d M(U) (e U) d2M(U) (e U) 2
d U 1! + d U 2 2l + --. (1.2)

It is necessary to express the Mach number as a function of the fluid velocity U. Applying

the energy equation we know :

V 2

% TT = % T + 2 (1.3)

Combining the energy equation with the definition of the Mach number, i.e.

U 2 U 2
M 2 = = (1.4)

a2 7 RT

and with the relationship between specific heat at constant pressure, isentropic exponent,

and Gas constant, i.e. %(7 - 1) = 7R , we get :

U[ U2 ]-I/2M(U) = v"-7- 1 " cv TT 2 (1.5)

After some algebra we get for the first and second derivative :
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d2M(U) 3 M3(U) [ 7-1

dU 2 = --_--'(7-1)" U2 • [1 + 2_. M2(U) ]

Combining Eqs. (1.2), (1.6a), (1.6b) and rearranging terms we get:

M(U -t- e U) - M(U)

M(U) = [1 + 7-1"M2(U)]"e2

[+ "(7-- 1).M2(U) • 1 +

"_ °'°

(1.6b)

7-2 I . M2(U )] .e2 (1.7)

Using the nomenclature introduced in Chapter 2.1 and assuming that M(U + e U) = Mm

and M(U) = Me, we get the second order approximation :

[ 1[Me _ 1 + 7_____2.M_ • e + -_.(7-1).M_.4

Similar to the Mach number correction it is necessary to derive a second order ap-

proximation of the dynamic pressure correction using a Taylor series expansion.

Assuming that the velocity change AU is related to the flow velocity U and blockage

factor e according to Eq. (1.1) we get the following Taylor series expansion for the dynamic

pressure :

q(u+ _u) = q(u)+ dq(u)(_U) a_q(u)(_u)_
dU 1! + dU 2 2! + ... (1.9)

The dynamic pressure has to be expressed as a function of the fluid velocity U. Applying

the energy equation (Eq. (1.3)), the Mach number defin:ition (Eq. (1.4)), the ideal gas law,

i.e° :

P
= R. T (1.10)

P

and assuming isentropic flow, i.e. :

we get :

Rp)q(U) = % PT

P PT
= (1.11)

II(_-i)

U 2 ] I/(-y-I) US- % TT 2 2 (1.12)
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After somealgebra the first and second derivative can be obtained as :

dq(U)du = q(U---'_)'[ 2-U M2(U)] (1.13a)

d_q(U) _ q(u) [
d U s -- U--T- • [ 2 - 5M2(U) + (2-7)-M4(U)]

Combining Eqs. (1.9), (1.13a), (1.13b) and rearranging terms, we get:

(1.13b)

q(u +_ u) - q(u)
q(u) = [2 - M2(U)].e

+ 1 5 M2(U ) + . M4(U )
2 2

,°.

(1.14)

Again, using the nomenclature introduced in Chapter 2.1 and assuming that q(U + e U) =

qoo, q(U) = q_, and M(U) = M_(U), we get the approximation:
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APPENDIX 2

PANEL METHOD CODE MODIFICATIONS

Introduction

In general, it is necessary to use a three-dimensional panel method code to calculate

normalized perturbation velocities caused by singularities if the Wall Signature Method is

applied to a wind tunnel with a non-rectangular but constant cross-section. Unfortunately,

commercially available panel method codes do not allow the calculation of the flow field

of a singularity placed inside of a wind tunnel. However, a few modifications to a panel

method code can be introduced which make it possible to solve this type of internal flow

field problem and to compute perturbation velocities.

A panel method code may be used to find the velocity potential of a given internal

flow problem if the corresponding internal flow geometry, e.g. the geometry of the wind

tunnel test section of constant cross-sectional area, is paneled. The specification of normal

velocities at the wind tunnel inlet is also required (see Ashby et al. [15] for more detail on

the application of a panel method code to internal flow problems; see Katz and Plotkin [22]

for a more detailed description of three-dimensional panel method codes) .

The boundary value problem of a singularity placed inside a wind tunnel flow field is

depicted in Fig. 26. The velocity potential has to fulfill the Laplace equation :

+ ,, ] = 0 (2.1)

where _c¢ is the free--stream potential and ¢_ is the wind tunnel potential due to the wind

Zero normal flow has to be satisfied across the wind

an + = 0 (2.2a)

tunnel walls and the singularity.

tunnel wall surface and so we get:

The normal velocity vector uo_ has to be specified by the user at the test section inlet:

a--n ¢oo + _, -- ucc (2.2b)
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Based on the principle of superposition (see Fig. 26) it is possible to express the wind

tunnel potential Ct as the sum of the singularity potential _ba and the wind tunnel wall

potential dw :

¢_ = _b_ + ¢_ (2.3)

Combining Eqs. (2.1),(2.3) and knowing that the singularity potential itself fullfills Laplace's

equation we get:

V2[¢oo + ¢,_ ] = 0 (2.4)

Combining Eqs. (2.2a), (2.3) and rearranging terms we get the boundary condition across

the wind tunnel wall surface:

]cg---n ¢°° + ¢,_ = On ¢ * (2.5a)

Combining Eqs. (2.2b),(2.3) and rearranging terms we get the boundary condition at the

test section inlet:

0[ ] 0[]cg----n ¢oo + ¢,_ = uoo - O"_ ¢_ (2.5b)

The velocity vector uoo and the singularity potential Ca are known and so the boundary

value problem given by Eqs. (2.4),(2.5a),(2.5b) can be solved. This requires the modi-

fication of the original panel method code such that 'the boundary conditions given by

Eqs. (2.2a),(2.2b) are replaced by the boundary conditions given by Eqs. (2.5a),(2.5b) .

Only the normal velocity component due to the singularity, i.e.

O

has to be added to prescribed normal velocities at panel centroids.

Finally, the flow field solution of a singularity placed inside a wind tunnel test section

can be found by superimposing the solution of the boundary value problem given by

Eqs. (2.4),(2.5a),(2.5b), i.e. ¢_ + _,o, computed using the modified panel method code

with the known analytic solution of the singularity potential ¢_, .

The modification of the boundary conditions ba._ed on Eqs.(2.5a),(2.5b) does not

cause numerical difficulties if a singularity like a point source, point sink, or point doublet

is selected. In these cases, the singularity potential ¢., vanishes if the distance between
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singularity and panel centroid is largeand therefore normalizedperturbation velocities can

be compute with no restrictions. However,the boundary conditions have to be modified

carefully if a horseshoevortex or a semi-infinite line doublet is selectedas a singularity.

Panel method code PMARC, [15] models the internal flow geometry as a closedbox and

a horseshoevortex or a semi-infinite line doublet will intersect panelsdefining the outflow

conditions. Therefore, the flow field of a line doublet has to be computed by solving the

flow field of a point doublet and this solution has to be made perfectly symmetric or anti-

symmetric relative to the streamwisecoordinate of the point doublet. Finally, a numerical

integration is applied in the streamwisedirection to obtain the flow field of a line doublet

(for more detail seeAppendix 4).

Modifications of a panel method codefor semispantest are similar to the procedures

described above. The user only has to make sure that normal velocities induced on the

image planesurfaceby a singularity located on the imageplane surface,i.e. point sources

and sinks representingthe semispanmodel fuselagevolume, are zero.

Numerical Verification

A slender Rankine body (l/2ro _ 10) is selected to verify the proposed panel method

code modification if a source or sink is selected as a singularity (see Fig. 27a for a detailed

desciption of the Rankine body geometry) . A point source of strength +1.0 [ft 2] is

located at X=116.0 [ft], Y=2.0 [ft], Z=-3.0 [ft] and a point sink of strength -1.0 [ft 2] is

located at X=126.0 [ftl, Y=2.0 [ft], Z=-3.0 [ft]. The shape and surface pressure coefi_cient

distribution of the corresponding Rankine body can be described in analytic form using

polar coordinates, [23] .

Assuming Zl - zo < z < zl + (z2 - zl)/2, we obtain :

sin _1/2
rl = r0" (2.6a)

sin_ol

=:1 --=:
cos T1 - (2.6b)

_'1

(2.6c)cp = 1 - 4sin 2 + 3sin 4-_-

Assuming zl + (=:2 - Zl)/2 < x < x2 + zo, we obtain :

sin T2/2

r2 = r0. sin_2
(2.7a)
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Z --Z2
cos _o2 = -- (2.7bI

r2

cp = 1 - 4 sin 2 _ + 3 sin 4 _o__22 (2.7c)2

where the stagnation point distance zo and the halfbody radius r0 for a point source

strength a of +1.0 are given as:

z0 -- (2.8a)

ro = V_ (2.8b)

In a first step it is necessary to panel the selected Rankine body using the known

description of its shape in polar coordinates (see Fig. 27b) . The free-air solution of the

surface pressure coefficient distribution of this geometry is calculated using panel method

code PMARC, [15] . The result of this panel method code calculation is compared with

the corresponding analytic solution given by Eqs. (2.6c),(2.7c). Figure 28 shows excellent

agreement between the panel method and corresponding analytic solution of the surface

pressure coefficient distribution of a Rankine body.

In the second step the Rankine body is placed inside a wind tunnel test section. The

chosen wind tunnel geometry is similar to a test section configuration of the NASA Ames

12ft Pressure Wind Tunnel which will be used for semispan model tests. Figure 29 shows

the corresponding wind tunnel wall, support system and Rankine body paneling. Velocities

are computed along eight rows on the wind tunnel wall using the original version of panel

method code PMARC, [15] .

Then, panel method code PMARC, [15] was modified to solve the boundary value

problem given by Eqs. (2.4),(2.5a),(2.5b) . The velocity field due to a point source and

point sink is used to represent the Rankine body (see also Appendix 3). The Rankine body

is replaced by corresponding point source and sink of strength +1.0 [ft 2] at X=116.0 [ft],

Y=2.0 [ft], Z=-3.0 [ft] and -1.0 [ft 2] located at X=126.0 [ft], Y=2.0 [ft], Z=-3.0 [ft] and

velocities are again computed on eight rows using the modified version of the panel method

code.

Figure 30 compares dimensionless velocities of both calculations on Row 4. Velocities

show excellent agreement to verify the proposed panel method code modifications if point

sources or point sinks are used to represent volume effects of a test article.
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A rectangular wing (s/c = 3.56) with a NACA 0012 airfoil section at an angle of attack

of 50 is selected to verify the proposed panel method code modification if a semi-infinite

line doublet is selected as a singularity (see Fig. 31 for a detailed desciption of the wing

geometry) .

The rectangular wing is placed inside a wind tunnel test section. Figure 32 shows

the corresponding wind tunnel wall, support system and wing paneling. Lift coefficient

of the wing and velocities Mong eight rows on the wind tunnel wall are computed using

the original version of panel method code PMARC, [15] . Panel method code PMARC

was also used to compute the wall signature at angle of attack 0 ° This wall signature

is due to the thickness of the wing and was therefore subtracted from the wall signature

calculated for 5 o to obtain the wall signature due to lift only.

Then, panel method code PMARC, [15] was modified to solve the boundary value

problem given by Eqs. (2.4),(2.5a),(2.5b). The velocity field of four line doublets is used

to represent lifting effects of the wing at 5 o angle of attack (see also Appendix 4) . The

location of these line doublets is depicted in Fig. 33 . The computed lift coefficient of

the wing placed inside the wind tunnel test section (see Fig. 32) has to be related to the

strength of the semi-infinite line doublets. Using the definition of the lift coefficient and

the Kutta/Joukowski formula we get for the lift force :

U 2

_.s.c = p.U.F-s (2.9)L = eL • fl •

So we get for the circulation F :

F =
U

cL • --. c (2.10)
2

The line doublet strength _ of each of the four line doublets is then given as (see Ap-

pendix 4) :
s U s

cr = C. --_ = CL" --_'c" T (2.11a)

or

6 r c s

= eL" --. -- (2.115)
U 2 4

Knowing that CL = 0.3556, c = 1.5 [ft], and s/4 = 1.3334 [ft] for the selected wing

we get for the singularity strength per unit velocity of each of the four line doublets

a /U = 0.3556 [ft 2] .
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The wing can now be replaced by four line doublets of strength 0.3556 [ft 2] and

velocities are again computed on eight rows using the modified version of the panel method

code.

Figure 34 compares dimensionless velocities on the wind tunnel wall of both calcula-

tions at Row 8. Velocities due to lift effects show excellent agreement to verify the proposed

panel method code modifications if semi-infinite line doublets are used to represent lift of

a wing.

Summary

A three-dimensional panel method code was modified to calculate the flow field of

a singularity placed inside a wind tunnel test section. The modification was verified by

replacing a Rankine body by a point source and point sink and by replacing a rectangular

wing at 50 angle of attack by four line doublets. Corresponding flow field solutions compare

favorably in both cases. The panel method code modification will work with no restrictions

if a point source or point sink is selected as a singularity. However, boundary conditions

have to be modified carefully if a horseshoe vortex or semi-infinite line doublet is selected as

this type of singularity intersects outflow panels of the internal flow geometry and therefore

requires a numerical integration of the corresponding point doublet solution.
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APPENDIX 3

POINT SOURCE VELOCITY VECTOR

The velocity vector of a three-dimensional point source is required if a panel method

code is modified to compute the flow field of a source or sink placed inside a wind tunnel.

The potential of a point source at location (zs,Vs,zs) is given as, [22] :

Cs(x, y, z) = - o"
4. _ [ [=- xs]2 + [y- ys]2 + [z- zs]2 ],/2 (3.1)

The velocity components of this point source are :

_S Or X -- XS

u(z,y,z) = 69x = 4 7r [ [z-- xS] 2 + [y -- ys] 2 + [z-- zs] 2 ]3/2 (3.2a)

a&s a y - ys
v(x_ y_z) (3.2b)

ay- 47r [[x-zs] 2 + [y-ys] 2 + [z-zs] 213/2

_¢S _ z -- zS

w(=,y,z) = az = 4_ [[=_x_]2 + [y_ys]2 + [z-z_]213/2 (3.2c)

The singularity strength cr has the unit [ft3/sec] or [mZ/sec] . The perturbation

velocity field given in Eqs. (3.2a),(3.2b),(3.2c) could be used to change a panel method

code as outlined in Appendix 2 .
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APPENDIX 4

LINE DOUBLET VELOCITY VECTOR

The velocity vector of a three-dimensional semi-infinite line doublet is required if a

panel method code is modified to compute the flow field of a line doublet placed inside a

wind tunnel.

In general, a semi-inflnite line doublet can be considered as an elementary horseshoe

vortex ([22], see also Fig. 35). The potential of a line doublet can be obtained by integrating

the solution for a point doublet in the x-direction, [24] . A point doublet does not have a

radial symmetry as in case of a point source and therefore the line doublet potential will

be a function of the orientation of the point doublet. For lift force acting in the positive z-

direction (see Fig. 35) it is necessary that point doublets point in the negative z-direction.

The potential of a finite length line doublet with starting point at (zl, Yl, zl ) and end point

at (ZN, Yl, zl) is then given as, [22] :

[z- zl]
¢(z, y, z) = 4-"7" Jz,

(4.1)

or

[ [X--_12 2y [y__yl]2 2V [Z-- Z II 2 ]3/2

--0" Z -- Z 1

_b(z,y,z) . = 4 _r [y- yl] 2 + [z- zl] 2 A (4.2a)

A

X -- XN

[ 2 + [y-  12 + [z-z112
X -- X 1

[ [X-- Xl] 2 "4- [y-- yl] 2 "4- [Z--Zl] 2 ]1/2

Taking the limit zN _ o0 we get the potential for the semi-infinite line doublet :

(4.2b)

¢L(z,y,z) = lim ¢(z,y,z) -- a z-- zl
_N--.oo 4----'_ " [y- yl] 2 + [z -- zl] 2 B (4.3a)

B = 1 + z- zl (4.3b)

[ [X-- Xl] 2 "3t- [y-- yl] 2 _t. [Z-- Zl] 2 ]1/2

This equation agrees with equation (5-35) in Ref. [24], if the starting point of the line

doublet is located at (zl = 0, yl = 0, zl = 0) . The velocity components can now be

obtained by taking derivatives of the velocity potential qgL .
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In the x-direction we get :

U(X y, Z) "-- _¢L -- dr Z -- Z 1

' az -- 4_" [[Z-Zl] 2 + [y-yl] 2 + [z-zl] 213/2 (4.4)

In the y-direction we get :

O_L _ -dr [y- yl]. [z- zl]
v(x,y,z) = oy - 4_ [y_y,]2 + [z-_,]2 c (4.5a)

2 • B z-z1

C = [y-yl] 2 + [z-zl] 2 + [[z-z1] 2 + [y-y1] 2 + [Z-Zl] 2]a/2 (4.5b)

In the z-direction we get :

aCL a 1

w(z,y,z) = Oz = 4 r [y-- yl] 2 + [z -- zl] 2 D (4.6a)

D = [Y- yl]2 - [z- Zl] 2 . B
[y- _,]_ + [z- Zl]2

[z- zl]" [z - Zl] 2 (4.6b)

[ [_- _,]_ + [_- y,]_ + [z- z,]_]_z_
The calculation of the flow field of a semi-infinite line doublet located inside a wind

tunnel of constant cross-sectional area is difficult if a modified version of panel method

code PMARC is used (see Appendix 2) . The line doublet intersects the exit plane of the

paneled wind tunnel geometry and can cause convergence and accuracy problems.

Fortunately, it is possible to calculate the flow fieht of a line doublet in a wind tunnel

of constant cross-sectional area by integrating the flow field of the panel method code

solution of a point doublet in the streamwise direction. The line doublet flow field solu-

tion is obtained by shifting and superimposing corresponding point doublet solutions (see

Fig. 36a).

In general, the potential of a semi-infinite line doublet (Eq. (4.1) ; ZN >> zl) can be

approximated using numerical integration. We get then :

N

CL(z,y,z) _ _ _pD(z,y,z; :rk )" /X_r (4.7a)
t;=1

CpD(;r,y,Z; T, k )
dr Z -- Zl

(4.7b)4 [ [_- _]_ + [_- y,]_ + [_- Zl]_]_/_11"
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zk = zl + (k - 1).Az ; zN >> zl

where Az is the step size of the integration. The perturbation velocities of the line doublet

can now be approximated as :

N 0

u(x,y,z) ,._ Az. E _ dZpD(x,y,z; xk ) (4.Sa)
k--1

g 0

k=l

iv c9

w(x,y,z) _, Ax. E "_z dppD(x,y,z; xk ) (4.8c)
k=l

where

0

a--_6pD(.,y,z; *_ )
rr (-3). [x -- xk]-[z-- Zl]

4_r [[z-rk] 2 + [y--y1] 2 + [z--zl] 215/2 (4.9a)

0 a (-3). [y- Yl]"[z- zl] (4.9b)
o_ 4".(,,_,z; _ ) = 4 _ [[_-_,]_ + b-y1] 2 + [z-zl]2 ]_/_

o ¢ [_- _]_ + [y- y_]_- 2. [z- z_]_
0---_C_pD(x,y,z; xk ) = 4---'_" [ [z- zk]2 + [y- yl]2 + [z-- zl]2 ]5/_ (4.9c)

For a wind tunnel of constant cross-sectional area a streamwise shift of the flow field

solution of a point doublet located at (zl, y_, z_) is possible (see Fig. 36b). Therefore

Eqs. (4.8a), (4.8b), (4.8c)only require the calculation of dppD(X,y,z; X 1 ) aS the following

relationships apply :

0 0

0--;Ce.(.,y,z; _k ) = 0--;¢Po(*-[k-1]a_,_,z; .] ) (4.10_)

0 0
_n dflPD(_,Y,Z; Xk ) "-" c,_ dPPD(T' -- []¢-- ].]Ax,y,z; Xl ) (4.10b)
yo yu

0 0

a---z ¢pD(x,y,z; xk ) = Cg-'-'zCpD(x--[k--1]Ax,y,z; a:l ) (4.10c)

The numerical integration defined by Eqs. (4.8a), (4.8b), (4.8c) has to be done care-

fully. Integration error due to the fact that the numerical solution of a point doublet flow

field is not perfectly antisymmetric (see Eq. (4.9a)) or symmetric (see Eqs. (4.9b),(4.9c))
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relative to its x-coordinate xk has to be avoided. This can be done by considering, e.g.,

the numerical solution upstream (x < xk) of the point doublet as exact and imposing the

following conditions on the downstream part (x > x_) of the perturbation velocities :

u(x,y,z) - - u(xk-Ix- xk],y,z) ; x > x_ (4.11a)

v(x,y,z) = ; • > (4.11b)

w(x,y,z) = w(zk -[x- zkl,y,z) ; z > xk (4.11c)

Unfortunately, the point doublet and therefore also the semi-infinite line doublet does

not have a radial symmetry. However, the velocity vector of a point or line doublet not

pointing in the negative z-axis direction can easily be found by applying a coordinate

system rotation. A rotation angle 7" related to the directional property of the line doublet

is introduced as depicted in Fig. 37.

The relationship of coordinates and velocities between the line doublet fixed coordinate

system (x,y,z) and reference coordinate system (x',y',z') is depicted in Fig. 37 . The

rotation angle direction is defined such that the lift force caused by the semi-infinite line

doublet points in the positive y'-axis if the line doublet is rotated by +900 . In this

case we get for the transformation of coordinates from r,he reference coordinate sytem, i.e.

(z',y',z'), to coordinates in the line doublet fixed coordinate system (x,y,z) :

x - x' (4.12a)

y = y'.cos_" - z'.sinr (4.12b)

z = y'.sin_" + z'.cosr (4.12c)

The velocities components (u,v,w) are computed i:_ the line doublet fixed coordinate

system. Finally it is necessary to back-transform thes_ velocity components to the refer-

ence coordinate system. We get then :

u I = u (4.13a)

v' - v- cos r + w. :_in r (4.13b)

54



w' = - v.sinr + w.cosv (4.13c)

The singularity strength _r has the unit [ft3/sec] or [m3/sec] . The perturbation

velocity field given in Eqs. (4.8a),(4.8b),(4.Sc) could be used to change a panel method

code as outlined in Appendix 2 .
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APPENDIX 5

CALCULATION OF THE LINE DOUBLET STRENGTH

In general, it is possible to compute the strength of line doublets representing lifting

effects of art aircraft by using lift and pitching moment measurements recorded during a

wind tunnel test (see Ulbrich and Steinle,[7] ).

Assuming that the lifting surfaces of the wing and tail of an aircraft model are dis-

cretized by using equally spaced line doublets along the 1/4-chord line of the wing and

tail we get for the total lift and pitching moment (see also Fig. 38) :

L - ELw(i) + y_L,(j) (5.1)

i=I j=l

P = -- + -- l (5.2)
"= ]=1

where L_(i) and L,(j) are the lift contributions of the line doublets of the wing and tail.

Similar to Eqs. (2.9) and (2.11), the Kutta/Joukowstd formula may be used to connect

a lift force to a line doublet strength. The application of the Kutta/Joukowski formula in

a wind tunnel requires the calculation of the product poo • Uoo where poo is the free-stream

density and U_o is the free--stream velocity at the location of the aircraft model. A first

order approximation of the product p_- Uoo may be obtained by applying wall interference

corrections to the measured reference density prel and reference velocity Uref at a model

reference station (see Eqs. (5.78) and (5.82) in Ref. [10]). We then get:

poo'Uoo _ prel'Ure," [1 -t- ¢'(1 --M_2el )] (5.3a)

The Kutta/Joukowski formula may now be written as :

L,_(i) = poo " Uoo " cr_o(i) ,_ P, ef " Vr,l " [ 1 + _ . ( 1 - M_ l ) ].a_(i) (5.3b)

L,(j) = poo " Voo " _;(j) ,_ Pref " U, ef " [ I + e" ( 1 - M;2el ) ]. g;(j) (5.3c)

Introducing singularity weights w_ (i), w,(j), and discrete line doublet span As_, As,

on the wing and tail we get for the singularity strength :

_(i) = F_ . As,_ . w_(i) (5.4a)
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_;(j) = rt. As,. wt(j) (5.45)

The circulation F_ and F_ are the only unknowns in Eqs. (5.1) and (5.2) if line doublets

weights are specified by the user. The weights may represent, e.g., elliptic lift distribution

along the wing and tail of an aircraft model. Experimental or CFD solutions of the true

lift distribution may also be used to determine weights (see also NACA Report No. 921,

[25]). Combining Eqs. (5.1) to (5.45) we get:

L
- Fto • oq -t- Ft- or2 (5.5a)

where

P
= Fto • 171 -t- Ft- 132 (5.5b)

1"I w

_1 = Asto._wto(i) (5.6a)
i--1

"1%t

,_ = A,,t._ w,(j) (5.6b)
j=l

131 = Asto •

/32 = Ast •

Equations (5.5a) and (5.5b) are a 2

easily for Fto and Ft :

ww(i).[zm,. - zto(i)] (5.7a)
*_.

_,(j). [=_,. - =t(j) ] (5.7b)
j=l

x 2 linear system of equations which can be solved

Fto = 1 L-132 - P'a2 (5.8a)

Ft = 1 (-L)-131 q- P'_I (5.85)

Finally, the singularity strength is obtained by applying Eqs. (5.4a) and (5.4b).

The line doublet strength has to be compatible with non-dimensionalized perturba-

tion velocities used in the panel method code computation of the wind tunnel and wall

interference flow field (see Eq. (25) and Appendix 2). Correct units for velocity, density,
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force, and pitching momenthave to be selected if Eqs. (5.4a), (5.4b) are used. Table 4 lists

units :

Table 4: Units for Singularity Strength Calculation

Quantity SI unit non-SI unit

Velocity

Density

Force

Moment

N

Tt_ / $eC

- kg. m / sec2

N.m

lbf

fg / $CC

Slug / ft 3

-- Slug. ft / sec _

ft . lb f

The singularity strength as defined in Eqs. (5.3b),(5.3c) has the unit [rn3/sec] or

[ft3/sec] . Similar to Eq. (25), it is necessary to divide the strength by the reference

velocity Urey • Therefore we get for the normalized strength in units [rn 2] or [ft 2] :

a_(i) = a*(i) (5.9a)

at(j) = a;(j) (5.9b)
U_f

Semispan model tests are often conducted using only the wing and fuselage of an

aircraft model. In this case the circulation Ft is zero and only the lift force measurement

will be used to calculate the strength of line doublets representing rifting effects of the

wing. Using Eqs. (5.5a) we get for F_ :

L
r_ = (5.10)

p_1"Ur_f" [1 + e.(1 -M_ 1 )] "al

In general, the application of Eqs. (5.8a), (5.8b), (5.10) to the Wall Signature Method

requires at least a one step iteration as blockage factor e can only be estimated after

a successful least squares fit of the wall signature. Zero may be selected as an initial

approximation of blockage factor e in Eqs. (5.8a), (5.8b), and (5.10).
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APPENDIX 6

TRI-LINEAR INTERP OLATION

In general, tri-linear interpolation can be used to ffud the value of a scalar function

f ( xp , yp , zp ) using known values f (z¢ , yj , zk ) , f (zi + l , yj , z_ ) , ... , at corresponding eight

grid cell corner points (see Fig. 39) .

Tri-linear interpolation requires several steps. At first we have to find grid cell indices

(i,j,k) such that z_ < zp _< zi+l ; yj <_ yp <_ Yj+I ; zk <_ zp <_ zk+l • Fora constant grid

cell size Az, Ay, Az, indices (i,j, k) can be computed as :

i = INT zp - zl ]Ax + 1 (6.1a)

INT yp - y_ 1J + 1 (6.1b)

k = INT[ ZpAz- zl
]
] + 1 (6.1c)

where Xl, Yl, Zl are the starting coordinates of the entire grid.

In the next step, weighting factors of each grid cell corner point have to be found.

The line connecting a corner point with its opposite corner point is assumed to be a

spacial diagonal of the grid cell. Then, the weighting factor of a grid cell corner point is

computed by dividing the volume of the rectangular prism defined by point (xv, yp, zp) and

the opposite corner point by the total volume of the grid cell. For example, the weighting

factor of grid cell corner point (zi+l, yj, zk) is :

TVi'J+l'k +1 (6.2a)
Wi+ l,j,k = Ycell

where

V/,j+l,k+l = ABS[ [T,p -- Zi] " [yp -- Yj+I]" [Zp " Zk+l] ] (6.2b)

V_n = ABS[ [xi+l - xi] . [yj-t-1 - yj] " [Zk-t-1 -- Zk] ] : AT. • Ay " AZ (6.2C)

Finally, the functional value f(xp, yp, zp) can be interpolated as :

i+1 j+l k+l

f(z,,yp,zp) = _ _ _ f(xc,,y_,z._).w,_,_,._ (6.3)

a=i fl=j "y=k
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Table 5 lists grid cell comer points and corresponding opposite comer points.

Table 5: Grid Cell Indices

No. Corner Point Opposite Corner Point

1

2

3

4

5

6

7

8

i, j, k
i,j + l,k

i+ 1,j,k

i + l,j + l,k

i,j,k+l

i,j+l,k+l

i + l,j,k + l

i + l,j + l,k + l

i+l,j+l,k+l

i + l,j,k + l

i,j+l,k+l

i, j, k + 1

i+l,j+l,k

i+ 1,j,k

i,j+l,k

i, j, k

Tri-linear interpolation is applied to calculate normalized perturbation velocities of a

singularity located at a point (xp, yp, zp) assuming that perturbation velocities are known

for singularities located on eight comer points of a singularity grid cell.
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APPENDIX 7

PARABOLIC INTERPOLATION

A parabola isused to interpolatenormalized perturbation velocitiesy(M) as a function

of the real-time Mach number M . The parabola has the followingform :

y(M) = a.M 2 -{- b.M + c (7.1)

Three coefficients a, b, c of the parabola have to be calculated. Therefore it is necessary

to compute the perturbation velocity database for three discrete Mach numbers.

Three discrete Mach numbers M1 = 0.0, M2 = 0.3, M3 = 0.6 are selected and corre-

sponding normalized perturbation velocities y(M1), y(M2), y(M3) are known. Then we

get for the coefficients of the parabola :

a ---

M3- M2

y(M3) - y(M1) y(M2)- y(M1)

M3 - M1 M2 - M1
(7.2a)

b -" y(M2)- y(M1) - a.(M1 -b M2) (7.2b)
M2 - M1

c = y(M1) - a. M_ - b. M1 (7.2c)

Coefficients a, b, c have to be computed for nl • (n2 + n3) parabolas in real-time if,

e.g., a test article and support system are represented by nl singularities, wall signatures

are measured at a total number of n2 wall pressure ports, and a reference point grid of n3

points is selected.
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APPENDIX 8

OPTIMIZATION OF THE SINGULARITY LOCATION

The wall signature method calculates wall interference corrections based on a singu-

larity representation of the test article and the support system. The wind tunnel test

engineer has to specify the initial location of these singularities using simple rules. For

example, sources and sinks representing the fuselage volume should be located along the

fuselage axis such that they represent a Rankine body approximation of fuselage volume

effects, line doublets should be distributed along the 1/4-chord line of lifting surfaces, and

sources related to separation wake effects should be located at points where separation is

likely to occur during a test.

The initial singularity representation is not unique as the test engineer has to specify

the singularity location. However, it is possible to make the singularity location unique by

minimizing the standard deviation of the least squares fit as a function of the singularity

location.

An efficient optimization can only be achieved if the total number of independent

variables of the minimization, i.e. the coordinates of each singularity, is reduced to a

reasonable limit. It is also necessary to restrict the direction of change of the singularity

coordinates.

During the support system calibration three groups of singularities exist, i.e., sources of

the support system volume, sinks of the support system volume, and sources of the support

system wake. Therefore it is possible to reduce the number of independent variables

down to three, if the relative distances of the singularities of each group is kept constant

during the optimization. The direction of change of the optimization is defined by the

line connecting the first source and the first sink of singularities representing the support

system volume.

Similarly, during the wind tunnel test of a test article five groups of singularities

exist, i.e., sources of the fuselage volume, sinks of the fuselage volume_ and sources of the

wing separation wake, line doublets of the wing, and line doublets of the tail. Therefore

the number of independent variables can be reduced to five, if the relative distances of
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the singularities of each group is kept constant during the optimization. In this case the

direction of change of the optimization is defined by the line connecting the first source

and the first sink of singularities representing the fuselage vohune. Assuming that the

1/4-chord line of the wing and tail are ideal locations for line doublets of the wing and

tail it is even possible to reduce the ntunber of independent variables to three.

An optimization algorithm based on the Method of Steepest Decent has been included

in the real-time software package of WICS (see also Ref. [261).
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APPENDIX 9

SELECTION OF THE SINGULARITY / REFERENCE POINT LOCATION

The Wall Signature Method uses a singularity representation of the wind tunnel model

to predict wall interference corrections. The singularity representation of the model is

uniquely defined if TYPE, LOCATION, and STRENGTH of each singularity are known.

The STRENGTH of each singularity is derived from real-time measurements of wall

signature, lift force, and pitching moment. If a propulsion simulator is used during a test

it is also necessary to measure the propulsion simulator thrust and the propeller disk area.

The TYPE of each singularity is chosen by the wind tunnel test engineer. A singularity

TYPE should be selected such that it represents a blockage or lifting effect of the wind

tunnel model. Sources and sinks are used to represent volume and wake blockage effects

of the wind tunnel model. Line doublets are used to represent lifting effects of the wind

tunnel model. A sink is used to model blockage effects of a propulsion simulator in wind

tunnel testing.

The LOCATION of each singularity has to be specified by wind tunnel test engineer.

LOCATIONS should be selected based on geometry of wind tunnel model. All singularity

coordinates have to be provided in tunnel coordinates.

The following empirical rules will help the test engineer to make reasonable selections

of the singularity TYPE and LOCATION :

(1) FULLSPAN WIND TUNNEL MODEL :

(1.1) Fuselage Volume : A source of weighting factor "+1.0" has to be placed on

the fuselage axis approximately one mean fuselage radius downstream of the nose of the

fuselage. A source of weighting factor "-1.0" , i.e. a sink, has to be placed on the fuselage

axis approximately one mean fuselage radius upstream of the tail end of the fuselage.

(1.2) Wake Separation : Sources with positive weighting factors have to be placed on

the wind tunnel model at locations where flow separation occurs. If a wind tunnel model

is tested, e.g., in landing configuration sources of equal strength should be placed at the

location of the wing flaps.
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(1.3) Wing : The wing spanis divided into equal sizewing span increments. Oneline

doublet is assignedto each wing spanincrement. Line doublet starting points are placed

where the 1/4 chordline of the wing and the middle of eachwing span increment intersect.

(1.4) Tail : The tail span is divided into equal size tail span increments. One line

doublet is assignedto each tail span increment. Line doublet starting points are placed

where the 1/4 chord line of the tail and the middle of eachtail span increment intersect.

(1.5) Propulsion Simulator : A sourceof weighting factor "-1.0" , i.e. a sink, is placed

at the centerof the propeller if a turboprop engine is simulated; a sink is placed halfway

between the compressorand turbine if a turbojet or turbofan engine is simulated.

(2) SEMISPAN WIND TUNNEL MODEL :

(2.1) FuselageVolume : A sourceof weighting factor "+1.0" has to be placed on

the fuselageaxis approximately one mean fuselageradius downstream of the noseof the

fuselage. A sourceof weighting factor "-1.0" , i.e. a sink, has to be placedon the fuselage

axis approximately one mean fuselageradius upstream of the tail end of the fuselage.

The z-coordinate of the sourceand sink of the semispanmodel fuselagedoesnot have to

be specified. The Wall Interference Correction System (WICS) of the NASA Ames 12ft

PressureWind Tunnel (PWT) implicitly assumesthat their z-coordinate is identical with

the z-coordinate of the imageplane surface.

(2.2) Wake Separation : Sourceswith positive weighting factors have to be placedon

the wind tunnel model at locations whereflow separation occurs. If a wind tunnel model

is tested, e.g., in landing configuration sourcesof equal strength should be placedat the

location of the wing flaps.

(2.3) Wing : The wing semispanis divided into equaisizewing spanincrements. One

line doublet is assignedto each wing span increment. Line doublet starting points are

placed where the 1/4 chord line of the semispanwing and the middle of each wing span

increment intersect.

(2.4) Propulsion Simulator : A sourceof weighting factor "-1.0" _i.e. a sink, is placed

at the centerof the propeller if a turboprop engine is simulated; a sink is placed halfway

betweenthe compressorand turbine if a turbojet or turbofan engine is simulated.
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(3) REFERENCE POINTS :

WICS computesmean wall interferencecorrections for sets of referencepoints. The

test engineerhas to specify thesesets of referencepoints in the tunnel coordinate system.

WICS allows the test engineer to specify up to 10 independent sets of referencepoints.

Setsof referencepoints can be specifiedalong the fuselageaxis and along the 3/4 chord

line of the wing or tail.

A simple Expert Systemshouldbe designedin the future that assiststhe test engineer

in the selectionof the singulal"itylocation and weighting factors.
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APPENDIX 10

BLOCKAGE EFFECT OF A POWERED WIND TUNNEL MODEL

The correct simulation of flow interference effects between the aircraft fuselage, the

wing, and the engine cowling during a wind tunnel test requires the installation of a propul-

sion simulator in a wind tunnel model. The blockage correction caused by a propulsion

simulator has to be estimated if a significant amount of thrust is produced.

In general, a propulsion simulator is operated as a small propeller. A point doublet

pointing in the streamwise direction may be used to estimate propulsion simulator blockage

effects during a wind tunnel test, [22] . A more accurate modeling of blockage effects may

be obtained if a semi-infinite line doublet pointing in the streamwise direction is used, [27] .

The velocity potential of a semi-infinite line doublet with a starting point at (zl, yl, zl ) is

given as, [22]:

- a lim ....

CLD(Z,y,z) -- 47r ==--.oo , [[z__] 2 + [y_yl] 2 + [z_zl] 213/2 (10.1)

It can be shown that the velocity potential defined in Eq. (10.1) is identical with the

velocity potential of a sink located at (xl, yl, zl) (see Eq. 3.1) :

O"

CLD(X,y,z) = --¢S(X,y,z) = 4 _r

1

[[_-_1] 2 + [y-yl]2 + [z-zip]l/_ (10.2)

Location and strength of this sink have to be specified. It is reasonable to place the sink

at the center of the propeller or compressor disk of the propulsion simulator. The sink

strength a may be related to the propulsion simulator thrust Tp, propeller disk area S,

free-stream velocity Uoo, and free-stream density pco by applying an approximate solution

of the flow around the ideal propeller given by Koning, [6] . In wind tunnel testing, free--

stream velocity and density have to be estimated by applying blockage corrections to the

measured reference velocity U,e! and reference density p, ej', i.e. Uoo _ U-el (1 + e) and

poo _ pr_! (1 - c M]_I) (see Eqs. (5.78) and (5.82) in aef.[10]) . Then, we get for the

propulsion simulator sink strength :

F/ 2. Tp 1
/J -- _T_f _ ( 1-[- _)/ (10.3)

% = S. LvU  f'(1 +e) 2 + p,.e.f.(1-e M_._I).S J
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Equations (10.3), i.e. Koning's formula, may also be obtained by considering blockage

effects of a lifting rotor in subsonic wind tumad testing, [27] .

Effects of a propulsion simulator on wind tunnd blockage effects can easily be in-

eluded in the least squares fit of the wall signature required for the application of the

Wall Signature Method. The strength of the propulsion simulator sink is known from the

thrust measurement. It is only necessary to subtract the corresponding wall signature

contribution from the total wall signature (see also Eqs. (13g) in Chapter 2).

The sink strength _,; as defined in Eq. (10.3) has the unit [m3/sec] or [ft3/sec]. It

has to be divided by U,._I if normalized perturbation velocities as defined in Chapter 2 are

used for the least squares fit of the wall signature. Finally we get :

[_ 2.Tp -(1+ _)] (10.4)_, = S. (1+,) 2 + p,,_._Lj.s.(I_,MLj )

The application of Eq. (10.4) to the Wall Signature Method requires at least a one

step iteration as blockage factor e can only be estimated after a successful least squares fit

of the wall signature (see also Appendix 5).
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APPENDIX 11

QUALITY CHECK OF THE LEAST SQUARES FIT

The Wall Signature Method uses a linear least squares fit of the difference between

wall signature and corresponding wall pressure port calibration to predict blockage effects

of a test article. In practical applications the facility hardware cannot guarantee that good

pressure measurements are recorded on all wall pressure ports at all times. However, not

all pressure measurements are required to compute a blockage correction of the test article.

Therefore an efficient implementation of a wall interference correction system based on the

Wall Signature Method has to check measurements on each wall pressure port.

Studies using experimental data have shown that a four-step quality check of the

least squares fit is sufficient to identify unacceptable wall signature measurements without

rejecting too many data points. Wall signatures obtained during the empty tunnel or

support system calibration have to be inspected separately. They are used to remove

orifice error, wall divergence, and wall boundary layer displacement effects.

The proposed quality check of the difference between the real-time and calibrated

wall signature is done as follows (see also Fig. 40) :

CHECK 1 : WALL SIGNATURE DIFFERENCE MAGNITUDE

The absolute value of the wall signature difference is computed for each wall pressure

port. A port is rejected, i.e. its port flag is set to zero, if the wall signature difference is

larger than a specified upper bound. This bound is a function of the wind tunnel facility

configuration and data aquisition hardware. An upper bound of 0.1 has been selected for

the NASA Ames 12ft Pressure Wind Tunnel.

CHECK 2 : OUTLIER IDENTIFICATION

The absolute value of the difference between the wall signature difference and its least

squares fit is computed for each wall pressure port. A port is rejected, i.e. its port flag is

set to zero, if this difference is larger than three times the standard deviation of the least

squares fit.

CHECK 3 : STANDARD DEVIATION OF EACH ROW

The standard deviation of each wall pressure port row is computed. A wall pressure
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port row is rejected, i.e. its wall pressure port flags are set to zero, if the standard deviation

is larger than a specified upper bound. This bound is a function of the wind tunnel

facility configuration and data aquisition hardware. An upper bound of 0.01 (perturbation

velocity) has been selected for the NASA Ames 12ft Pressure Wind Tunnel.

CHECK 4 : WALL PRESSURE PORT NUMBER

The total number of wall pressure ports used for the least squares fit of the wall

signature difference is computed after CHECKS 1 TO 3 are applied. No wall interference

corrections are computed if the total number of wall pressure ports is smaller than a

specified lower limit. The lower limit of wall pressure ports is a function of the wind

tunnel facility. A number of 60 wall pressure ports has been selected as the lower limit of

the NASA Ames 12ft Pressure Wind Tunnel.

74



APPENDIX 12

LINEAR INTERPOLATION OF WALL PRESSURE PORT CALIBRATION

The Wall Signature Method uses a linear least squares fit of the difference between

real-time wall signature and corresponding wall pressure port calibration to determine

blockage effects of a test article. A value of the wall pressure port calibration has to be

found that matches real-time test conditions.

The wall pressure port calibration is usually a function of several independent calibra-

tion variables. It can be a function of the total pressure PT and Mach number M at some

wind tunnel reference station. The wall pressure port calibration can also be a function of

the support system kinematics. In this case calibration variables describing the position

of the support system during the calibration have to be introduced.

An interpolation algorithm has been developed for the WICS software package that

uses linear interpolation to determine the wall pressure port calibration as a function of

real-time test conditions. This algorithm fulfills reliability, performance, and accuracy

requirements of WICS.

The interpolation algorithm is applicable to up to four independent calibration vari-

ables. As an example, a detailed description of this interpolation algorithm for two indepen-

dent calibration variables will be presented below. A detailed description of the algorithm

for three and four independent variables is beyond the scope of the WICS Theory Guide.

In general, a value of the wall pressure port calibration C(X*, Y*) has to be found for

real-time test conditions defined by, e.g., two independent variables X*, Y* . It is assumed

that wall pressure ports are calibrated for discrete combinations of these variables. A

total of "n" discrete values of the first calibration variable Xi were selected. The second

calibration variable ]_,j was changed by keeping the first calibration variable Xi constant.

A total of "re(i)" discrete values of the second calibration variable Y_,j were selected.

Therefore we get the following set of discrete wall pressure port calibrations : C(Xi, Y_,.i)

forl<i<nandl<j<rn(i).

The interpolation of the calibration is done in two steps. At first, calibrations are

interpolated for the second calibration variable Y* . The first calibration variable Xi
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is kept constant. Comparing Y* and Y_j only one of three possible cases applies (see

Fig. 41a) :

Case i: Y* < _,I

U(X_) = C(X_,_=I) (12.1)

Case 2 : }_,j _< Y* _< _,j+l

c(x_,Y_,j+_) - c(x_,_,_)

Case 3 : Y* > Y_,m(i)

U(x,) = c(x_,Y_,._(_)) (12.3)

Finally, calibrations axe interpolated for the calibration variable X* by using the first

calibration variable X_ and interpolated calibrations C(Xi) . Again, comparing X* and

Xi , only one of three cases applies (see Fig. 41b) :

Case I: X* < X1

C(X*,Y*) = C(X1) (12.4)

Case 2 : Xi <_ X* <_ Xi+l

- v(x,) [x" - x, ] (12.5)
C(X',Y') = "C(Xi) + Xi+l - Xi

C(X*,Y*) - C(X,_) (12.6)

Case 3: X* > Xn

Basic ideas and elements of the interpolation algorithm can easily be extended to three

and four independent calibration variables.

Support system wall interference corrections at a reference point grid axe required if

the Wall Interference Correction System of the 12ft PWT is applied to a fullspan model

test configuration (see Fig. 13a) . These corrections are known as a function of calibra-

tion variables. A similar linear interpolation algorithm may be used to interpolate the

corrections for real-time test conditions.
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APPENDIX 13

SINGULAR VALUE DECOMPOSITION

The numerical method of choice for solving linear least-squares problems, i.e. Eq. (13a)

or Eq. (16a), is the Singular Value Decomposition (SVD) technique, [12]. This robust

numerical technique was selected for the WICS software. The application of the SVD

technique to Eqs. (13a), (16a) can be summarized in three steps :

Step 1 : Rewrite Eq. (13a) or Eq. (16a) as an overdetermined linear system :

A_x2 X2×I = B,_xl (13.1)

Step 2 : Write matrix A as the product of a column-orthogonal matrix U, a diagonal

matrix W with positive or zero elements, and the transpose of an orthogonal matrix V .

Matrices U, W, and V are found using the SVD algorithm. We get :

A,-nx2 = U,-nx2 W2x2 v'r2x2 (13.2)

Step 3 : Determine the solution of the least squares problem by computing the fol-

lowing matrix product :

X2xl = V2x2 W-12x2 u'r2×,, B,_xl (13.3)

It is important to identify elements of the diagonal matrix W, i.e. singular values of

W, that are small. These singular values and their reciprocal will be set to zero if the

least squares problem is iU-conditioned.
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APPENDIX 14

SUPPORT SYSTEM KINEMATICS

In general, it is recommended to compute real-time coordinates of singularities that

represent the support system or the test article if WICS is used to predict wall interference

corrections in the 12ft PWT. This reduces the standard deviation of the least squares fit of

the wall pressure signature and improves the accuracy of computed blockage corrections.

The real-time coordinates of singularities are a function of the kinematics, i.e. the

movement, of the support system or the test article. Three different types of support

systems are presently available for testing in the 12ft PWT, i.e. the Ames Bipod, the High

Angle of Attack Sting, and the Image Plane. Equations describing the movement of these

support systems and of the test article in the tunnel coordinate system (see Figs. 17a,17b)

have to be derived.

Ames Bipod / High Angle of Attack Sting

The kinematics of the Ames Bipod and of the High Angle of Attack Sting in the

tunnel coordinate system are essentially identical, if the roll angle of the High Angle of

Attack Sting is kept at to = 0.0 ° (the more complex case of a non-zero roll angle is

discussed in Appendix 15) . The kinematics may be described by one rotation about the

axis x, = 120.71 [ft], z = 0.0 [ft] and one rotation about the axis x. = 120.71 [ft] ,

y = 0.0 [ft] Angles o_ and f? depicted in Fig. 42a are independent variables that

describe the motion. For a roll angle _ = 0.0 °, angle a may be approximated by the pitch

angle of the wind tunnel model and angle fl may be approximated by the sideslip angle

of the wind tunnel model. Figures 42b and 42c show the connection between angle a,

angle fl, and singularity coordinates. It is assumed that point PI(zl, yl, zl) describes the

initial location of a singularity. After a first rotation about the axis x. = 120.71 [ft] ,

z = 0.0 [ft] the singularity moves to point P2(z2, y2, z2). After a second rotation about

the axis x. = 120.71 [ft] , y = 0.0 [ft] the singularity moves to point P3(z3,y3,z3).

The final position of the singularity at point P3 is known if coordinates x3, Y3, z3 are given

as a function of initial coordinates xl, Yt, zl, the pitch angle a, and the sideslip angle/? .

79



Coordinatesof point P3 can be derived by considering triangles depicted in Fig. 42b :

Xl -- X,

cos 7 = (14.1)
R1

Zl

8i. 7 = n---_- (14.2)

co8(7- _) = 2:2- 2:, (14.3)
R1

sin (7 - c0 = z2 = z__3_3 (14.4)
R1 R1

The following trigonometric fomulas are known :

cos (7 - a) = cos 7"cos ot + sin 7" sin ot (14.5)

sin (7-a) = sin 7" cosa - cos 7" sina

Combining Eqs. (14.1),(14.2),(14.3),(14.5)we get:

(14.6)

2:2 = 2:. + (2:1 - 2:.).cos a + zl.sin a (14.7a)

Combining Eqs. (14.1),(14.2),(14.4),(14.6) we get:

z2 = z3 = zl.cos o_ - (zl - 2:.)'sin ot (14.7b)

Considering triangles depicted in Fig. 42c we get :

2:2 -- 2:*
cos 7 = (14.8)

R2

sin 7
Yl

R2
y2 (14.9)
R2

co_(7 + 8)

_i. (7 + 8)

2:3 -- 2:,

R_ (14.10)

Y3 (14.11)
R2

The following trigonometric formulas are known :

cos (7+fl) = cos 7" cos fl - sin 7" sin fl (14.12)

sin (7+8) = sin 7" cos fl + cos 7" sin fl (14.13)
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Combining Eqs. (14.8),(14.9),(14.10),(14.12) we get:

x3 = x. + (x2 - x,).cos 13 - Yl" sin ]3 (14.14a)

Combining Eqs. (14.8),(14.9),(14.11),(14.13) we get:

Y3 = Yl .cos 13 + (x2 -- x.).sin 13 (14.14b)

The calculation of coordinates z3, y3, z3 can be summarized as follows : Calculate z3

using Eqs. (14.7a) and (14.14a). Calculate Y3 using Eqs. (14.7a) and (14.14b). Calculate

z3 using Eq. (14.7b) .

Image Plane

The movement of a semispan model mounted on the Image Plane can be described by

a single rotation about the semispan model pitch axis (x. = 120.71 [ft], y = 0.0 [ft] ).

The pitch angle a is the independent variable that describes the motion (see Fig. 42d).

Figures 42e and 42f show the connection between pitch angle and singularity coordinates

for a left and right wing semispan model. It is assumed that point Pl(xl, yl, zl) describes

the initial location of a singularity. After a rotation about the pitch axis the singularity

moves to the final position at point P2(x2, y2, z2). The coordinate zl of the singularity

does not change in this case, i.e. z2 = zl . The final position of the singularity at point P2

is known if coordinates x2, y2 are given as a function of initial coordinates xl, yl and the

pitch angle c_.

Coordinates of point P2 can be derived for a left wing semispan model by considering

triangles depicted in Fig. 42e :

xl - z. (14.15)
cos 7 = R

Y' (14.16)
sin 7 = R

cos ('7 -c_) = z2 - x, (14.17)
R

sin (7 - a) = Y_ (14.18)
R
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Combining Eqs. (14.5),(14.15),(14.16),(14.17)we get:

x2 = x, + (xl - z,).cos a + yl"sin a (14.19a)

Combining Eqs. (14.6),(14.15),(14.16),(14.18) we get:

Figure 42f shows initial and final coordinates for a right wing semispan model. In this

case coordinates of point P2 can be derived by simply replacing pitch angle a by -a in

Eqs.(14.19a),(14.19b) and noting that cos(-a) = cos(a) and sin(-a) = -sin(a) . We

then get :

x, Jr (Xl -- x,).cos a -- yl'sin a (14.20a)

= yl. cos a + (_ -- _,). sin a (14.20b)
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APPENDIX 15

HIGH ANGLE OF ATTACK STING KINEMATICS

The kinematics of the High Angle of Attack Sting (HAA) for a roll angle of to = 0.0 °

is described in detail in Appendix 14. In Appendix 14 the reasonable assumption is made

that the pitch angle a, of the HAA may be approximated by the angle of attack c_ of the

test article and that the yaw angle fl, of the HAA may be approximated by the sideslip

angle fl of the test article. The line doublet orientation angle _, of the test article, defined

as the angle between the positive z-direction of the test section fixed coordinate system

(see Fig. 42a) and the lift force vector, is also equal to 0.0 ° for a roll angle _ = 0.0 ° . These

assumptions, however, are invalid if the roll angle _ of the HAA is not equal to 0.0 ° .

Equations are derived in this Appendix that use the angle of attack c_, sideslip angle/_,

and roll angle _ of the test article to (i) compute the pitch angle a, and the yaw angle fl,

of the HAA, to (ii) compute the location of test article singularities and reference points,

and to (iii) compute the orientation angle of test article line doublets.

(i) PITCH ANGLE c_, AND YAW ANGLE fl, OF THE HAA : The pitch and yaw

angle of the HAA may be computed in several steps assuming that angle of attack a,

sideslip angle fl, and roll angle _ of the test article are known. In a first step, the unit

-----4 -:+
wind vector Woo is expressed in the model coordinate system defined by unit vectors z ,

j , and k . Using Fig. 43a it can easily be seen that

cos ol o cos ,_)_t= | - (15.1)
\ sin _. cos

In the second step, it is necessary to reverse the roll angle rotation. Assuming that

the roll axis of the test article is identical with unit vector z (see Fig. 43b), we get for

the rotated unit vectors I , J, and K :

I = z = 0 (15.2a)

0

(0)J = cos (15.2b)

\ sin

83



(0)= - sin _ (15.2c)

cos

Now it is possible to compute the yaw angle fl, of the HAA by using a scalar product

and a right-angled triangle depicted in Fig. 43c. The yaw angle fi, is defined as the angle

between unit wind vector Woo and the plane spanned by unit vectors -_ and _ . Using

the projection [ Woo o J ] J of the unit wind vector Woo in the direction of unit vector

J and the sign convention that fi, is positive if the unit wind vector is coming from the

right wing, we get :

-----} --4

sin fl, = - Woo o ,1 (15.3a)

or

] < /3. < (15.3b)fl, = arcsin -- Woo o-'f ; 2 - - "_

where the scalarproduct _ o 7 iscomputed by using Eqs. (15.1) and (15.2b) :

-----4 --.4

Woo o J = - sin fl. cos _ + sin a . cos fi. sin _ (15.3c)

Similarly, the pitch angle a, of the HAA may be computed by using a scalar product

and a right-angled triangle depicted in Fig. 43c. The pitch angle a. is defined as the angle
......+ _.___+

between unit vector I and the projection of the wind vector Woo on the plane spanned

by unit vectors I and K . Using the projection of vector Woo - [ Woo o J ] J in the

direction of unit vector _ we get :

(woo - [Wooo j I-Y) oY
sin c_, = (15.4a)

1 - Woo o J

-'_ "* ----* _ "* = Woo o K , we finally getKnowing that J 2_ K,i.e. (Woo - [Wooo J ]"#*) o]_ _ ---+

_. = arcsin
7r 7?

; 2 < a_ < -_ (15.4b)

Scalar products in Eq. (15.4b) are computed by using Eqs. (15.1), (15.2b), and (15.2c) .
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(ii) SINGULARITY AND REFERENCE POINT COORDINATES : It is now possible

to computethe location of singularities and referencepoints of a test article that is mounted

on the HAA by using Eqs.(15.35), (15.45) and Eqs. (14.7a), (14.75), (14.14a),and (14.145)

of Appendix 14 . This is done asfollows :

(1.) Apply roll angle_ to the initial singularity or referencepoint location given by point

P0 (xo, yo, z0) • Using Fig. 43d it is possible to compute the new location of the singularity

or reference point at point Pl(xl, yl, zl) as :

xl = z0 (15.5a)

vl = Ro . cOS [ l_ - _ ]

zl = Ro . sin [ _ - _ ]

Combining Eqs. (15.55), (15.5c), (14.5), (14.6) and knowning that cos I_

sin !_ = zo/ Ro we finally get :

(15.55)

(15.5c)

= yo/Ro and

yl = yo " cos _ + zo . sin (15.5d)

Zl = zo'cos _ - yo'sin _ (15.5e)

(2.) Rewrite Eqs. (14.7a), (14.75), (14.14a), (14.145) by replacing a, fl with c_,, fl, :

x2 = x, + (xl -  ,).cos + zl.sin (15.6a)

x3 = z, + (z2 - x,).cos fl, - yl"sin fl, (15.6b)

ya = yl . cos _. + (a:2 - z.).sin _. (15.6c)

z3 = zl.cos _, - (_,_ - z,).sina, (15.6d)

The calculation of coordinates z3, y3, za may be summarized as follows : Calculate z3

using Eqs. (15.6a) and (15.6b) . Calculate y3 using Eqs. (15.6a) and (15.6c) . Calculate

z3 using Eq. (15.6d) .

(iii)LINE DOUBLET ORIENTATION ANGLE _, : In general, the line doublet

orientationangle _, of the testarticle(identicalwith angle r in Appendix 4) isdefined as

the angle between the positivez-directionof the testsection fixed coordinate system (see
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Fig. 42a) and the lift force vector. Angle _0, can easily be computed using a unit vector

that is parallel to the positive z-direction of the test section coordinate system and a unit

vector that is parallel to the lift force vector.

A unit vector Z that is parallel to the positive z-direction of the test section co-
•----4 --_

ordinate system may be obtained by rotating unit vector K in the I - K plane (see

Figs. 43c, 43e) . The selected rotation angle is equal to the pitch angle c_, of the HAA

given in Eq. (15.4b) . Using Fig. 43e we then get :

where

K - tan _, • I

K - tan _, . I
(15.7a)

K - tana, • I = - sin_o (15.7b)

cos _o

- tan _, I = V/ 1 + tan 2 _, (15.7c)

A unit vector W that is parallel to the lift force vector may be obtained by computing

the cross-product Woo × 3 using Eqs. (15.1) and knowing that -*" = (0; 1;0) (see
also Fig. 43a) . We then get :

_---* Woox 3
W = = (15.8)

Woo x 3 \ cos a

Finally, the line doublet orientation angle _, may be obtained by computing the scalar
----4 ---4

product of unit vectors W and Z We get :

o -_ = cos _, (15.9)

Combining Eqs. (15.7a), (15.7b), (15.7c), (15.8), and (1.5.9) we obtain:

where

_o, -- arccos W o Z ; _o < _" (15.10a)

_, = 2 _ - arccos o Z ; _o > r (15.10b)

---4

WoZ =
sin _ • tan _, + cos _ • costa

_/1 + tan 2 _,
(15.10c)
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APPENDIX 16

PITCHING MOMENT LEVER ARM

In Appendix 5 equations are derived that compute the singularity strength of a line

doublet of a wind tunnel model by using the measured lift force and pitching moment.

The pitching moment lever arm is approximated in Eq. (.5.2) as the difference between

the x-coordinate of the pitching moment reference axis and the x-coordinate of the line

doublet starting point (see Fig.38). This approximation, however, is not valid anymore if

a wind tunnel model is tested at a high angle of attack. More general equations are derived

in this Appendix that use the pitching moment axis and the lift force axis to compute the

pitching moment lever arm of a line doublet.

In general, the pitching moment lever arm of a line doublet is defined as the distance

between the pitching moment axis and the lift force axis of a line doublet (see Fig. 44) .

Therefore a mathematical description of each axis has to be found in order to compute the

pitching moment lever arm.

(i) PITCHING MOMENT AXIS EQUATION : The pitching moment axis equation

may be found by using the initial coordinates of the balance center in the tunnel coordinate

system (see Fig. 17a, 17b). Assuming that X,nr, Yrn,', Zm,- are the initial coordinates of the

bMance center (i.e. angle of attack, sideslip angle, and roll angle of the test article are

equal to zero), it is possible to introduce an initial unit pitching moment axis vector -_ as

follows :

"_ = _22- _ (16.1a)

where

A1 = / 06.1b)
\ z._r /

For a fullspan model point vector A2 is defined as :

2 = y,,_ + 1.0

Z vn r
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.....4

For a left wing semispan model point vector A2 is defined as :

f Xrrlr /
A2- |

\ z,_,. - 1.0

(16.1d)

For a right wing semispan model point vector A9 is defined as :

= l (16.1e)
\ z_,- + 1.0

In the next step, equations describing the kinematics, i.e. the movement of the model

support system, have to be applied to the points described by vector _ and _ (see

Appendix 14 and 15). Point vector A1 moves to point vector -_ and point vector X22

moves to point vector C, . After points A1, _ are moved to their new location, it is

possible to describe the unit pitching moment axis vector D as :

.=.=4

D = C, - _ (16.2)

...=@

A point P on the pitching moment axis may now be described by using vectors

and an independent variable A :

----4 -----4 ---=4

P(_) = C + A. D (16.3)

(ii) LIFT FORCE AXIS EQUATION : The lift force axis equation of a line doublet

may be found by using the tunnel coordinates of the line doublet starting point in com-

bination with the line doublet orientation angle _, (see also Appendix 4 and 15) . After

the application of equations describing the support system kinematics, the line doublet

starting point has moved to a location described by point vector E . The line doublet

orientation is given by a unit lift vector F in the tunnel coordinate system :

F = sin _o, (16.4)

\ cos 9,

For a left wing semispan model 9, = rr/2, for a fight wing semispan model _, = -r/2 .

Similar to Eq. (16.3), a point _ on the lift force axis may be descibed by using vectors

E, F, and an independent variable/_ :

_( --'* .._,#) = E + ju. F (16.5)
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(iii) PITCHING MOMENT LEVER ARM : The pitching moment lever arm of the

selectedline doublet is found by minimizing the squareof the distanceof points located on

eachaxis (seeFig. 44). The squareof the distanceof two selectedpoints may be computed

using a scalar product :

D2(A,/_) -- ['_(A) - _(/_)] o ['_(_) - _(/_)] (16.6)

Using Eqs. (16.3), (16.5) and applying the product rule to Eq. (16.6) we get :

a_
= 2-[ "_(A) - -Q(/_) ] o _ (16.7a)

c9 D2(A,/_)
= 2.[ _'(_) - _(,)] o [- _'] (16.7b)

The variables A,_i, and #,hi,, of the two closest points are found by setting Eqs. (16.7a),

(16.7b) to zero. We get :

(16.8a)

(16.8b)

Using Eqs. (16.3), (16.5), it is possible to write Eqs. (16.Sa), (16.Sb) as a 2 × 2 system of

linear equations :

In general, D _L F or D o F

closest points :

= 0 . Therefore, we get for A,'ni,_ and #mi,, of the two

Ami, ___ [ E - -_] o D (16.10a)
-----4

DoD

[E - C]o r
(16.10b)

-FoP

Finally, using Eq. (16.6), we get for the pitching moment lever arm :

D(A,_,/_,_,_) = _/[-_(A,_,,,) - _(/_,_,,_)] o [-P(A,n,,_) - -_(/_,n,,,)] (16.11)
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The following two conditions may be used to determine the correct sign of the pitching

moment caused by a line doublet :

[_ × V]o[_(_..,.)-_(_,_,_)] > o _ "+"

[ D x _] o ['_(_,,_i,,) - Q(p_I,_)] < 0 ===_ "-"

These conditions ensure that the pitching moment is positive if the lift force axis of a

line doublet is upstream of the pitching moment axis (see also Eq.(5.2) and Fig. 38).
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APPENDIX 17

INCLINATION OF FORCE AND MOMENT VECTORS

Corrections to the lift, drag, rolling moment, and yawing moment coefficient are caused

by the wall interference induced inclination of corresponding force and moment vectors.

These four corrections may be estimated by describing the inclination of the force and

moment vectors using the induced mean angle of attack correction &] at the 1/4-chord

line of the wing (see also Ref. [181, p.17).

LIFT AND DRAG COEFFICIENT CORRECTION

The lift and drag coefficient correction caused by the inclination of the lift and drag

force may be estimated by using the resultant of the uncorrected lift and drag force vectors.

Using Fig. 45a we get for the resultant vector in the x-z coordinate system :

= D' + - L'

where Dr is the magnitude of the uncorrected drag force and L I is the magnitude of the

uncorrected lift force experienced by the wind tunnel model.

Unit vectors i , 3 in the free-stream direction and perpendicular to the free-stream

direction of the wind tunnel flow field have to be specified as they are used to define the

lift and drag force. These unit vectors are a function of the mean angle of attack correction

_ at the 1/4-chord of the wing. They may be written in the x-z coordinate system as :

-.-.':*._ ( cos _ ) (17.2a)z -- ksin a%

_ (17.2b)
3 - \ cos at }

The mean angle of attack correction a"i may be computed by calculating the local

angle of attack correction at equally spaced reference points along the 1/4-chord line of

the wing. We then get :

N

1/4-chord line ==_ _i = .N (17.2c)
Ej=I w(j)

91



where N is the number of reference points, w is the weighting factor of a reference point (a

function of the lift distribution of the wing), and cq is the local angle of attack correction

at a reference point. Now it is possible to compute the lift and drag force vectors as :

[ ]-- "- 3 (17.3a)

where

D - D , _o-_ --+"
- = , (17.3b)

""* "-*" D' sin _ + L' cos o_L - Ro 3 = - • • (17.4a)

-*" D' L'D = -'_o , = "cosffi + .sinffi (17.4b)

The lift and drag coefficient correction may now be written as :

L - L'

ACL "-- CL -- C'L = qoo"-S (17.5a)

D - D'

ACD = CD -- c_9 = qoo" S (17.5b)

where qoo is the free-stream dynamic pressure and S is the reference area of the wind

tunnel model. A first order approximation of the free-stream dynamic pressure may be

obtained by using Eq. (1.15) in Appendix 1. Using the test section reference density,

velocity, and Mach number we get :

qoo = qrey [ 1 +

-- Prey 2

-- 2 U¢'eY

(2- MLy).

[1 + (2 - Me%y).
(17.6a)

The mean blockage factor _ has to be computed as a weighted average of local blockage

factors e that are computed at a set of user selected reference points. We get :

= F_,_=I w(j). e(j)!,, (17.6b)
Ej:  o(j)

where N is the number of reference points, w is the weighting factor of a reference point,

and e is the local blockage factor at a reference point.
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Important remark: The reference points used to compute the mean blockage factor

in Eq. (17.6b) axe not necessarily identical with the reference points used to compute the

mean angle of attack correction in Eq. (17.2c) I

Combining Eqs. (17.4a), (17.4b), (17.5a), and (17.5b) we get for the lift and drag

coefficient correction :

- D'.sina_ + L'.[cos_ - 1]
ACL = -- (17.7a)

qo_ • S

D' . [ cos _ - 1] + L'. sin
ACD -- -- (17.7b)

qoo " S

Finally, corrections have to be added to the uncorrected lift and drag coefficients.

Then we get :

CL,c "- eL,uric "_- ACL (17.8a)

CD,c = CD,ur, c _L ACD (17.8b)

ROLLING AND YAWING MOMENT COEFFICIENT CORRECTION

The rolling and yawing moment coefficient correction caused by the inclination of

the rolling and yawing moment vector may be computed by using the resultant of the

uncorrected rolling and yawing moment vectors. Using Fig. 45b we get for the resultant

vector in the x-z coordinate system :

- r' = (:v.9)-- + _y,

where R' is the magnitude of the uncorrected rolling moment and Y' is the magnitude of

the uncorrected yawing moment experienced by the wind tunnel model.

Similar to Eqs. (17.3a) and (17.3b), it is possible to combine Eqs. (17.2a),(17.2b) with

Eq. (17.9) . Then, we get for the rolling and yawing moment vectors :

R -R "-_" "* -_"= , = o i , (17.10a)

where

R

[Y = -y = (17.10b)

-_ -_" R' ^ Y' ^ (17.11a)- o _ = ° cos oq -t- ° sin oq
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--> - R' • Y'.Y = --_o 3 = sin _ + cos_i (17.11b)

The rolling moment and yawing moment coefficient correction may now be written as :

R-R'

A_ = ct - c_ = qoo.'S.b/2 (17.12a)

y _ yt
' -- (17.12b)

A'O"j, = c,_ - c,, q_ • S. b/2

where qoo is the free-stream dynamic pressure, S is the reference area of the wind tunnel

model, and b is the wing span.

Combining Eqs. (17.11a), (17.lib), (17.12a), and (17.12b) we get for the rolling and

yawing moment coefficient correction :

R' . [ cos a'_ - 1] + Y' . sin _
AW = _ (17.13a)

qoo" S. b/2

- R'.sin_ + Y'.[cos&_ - 1]
A_-_ = _ (17.13b)

q_o. S. b/2

Finally, corrections have to be added to the uncorrected rolling and yawing moment

coefficients. Then we get :

ct,¢ = ct._nc + A'_ (17.14a)

c,_,_ = c,_,_,,¢ + A_--_ (17.14b)
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APPENDIX 18

PITCHING MOMENT COEFFICIENT CORRECTION

Wall interferenceinduced angle of attack corrections are not constant in the test

section of a wind tunnel (see Fig. 24c). Therefore, it isnecessary to compute a pitching

moment coefficientcorrection that will account for the differencebetween the mean and

localangle of attack correctionin the spanwise and chordwise directionof the wing of the

testarticle.

In general,the corrected pitching moment coefficientCM, c of the complete testarticle

configuration may be written as :

CM,c --" CM,unc "Jr- ACM1 -Jr- ACM2 (18.1)

where CM,,_,_, is the uncorrected pitching moment coefficient, ACM: is the pitching moment

coefficient correction due to the difference between the mean and local angle of attack cor-

rection in the spanwise direction of the wing, and ACM2 is the pitching moment coefficient

correction due to wall interference induced streamline curvature in the chordwise direction

of the wing.

PITCHING MOMENT CORRECTION Acm: :

A pitching moment coefficient correction ACM: is due to the difference between the

mean mad local angle of attack correction in the spanwise direction of the wing. It may

Mso be interpreted as a correction resulting from the lateral shift of the spanwise center of

lift caused by wall interference effects.

The pitching moment coefficient correction ACM1 may be computed by using Eq. (3.58)

given in Ref. [10], which is essentially identical with Eq. (34) in Ref. [18] . Using the no-

tation introduced in the WICS Theory Guide we get :

ACM: = F . 180

2r 3 Y
/ _d0.75,y) - W / '_,,,(Y) •

bI. J

F = (_r/2). A 2. (OcL/ao O. tan _o.2_ (18.2b)
r.h + 2.(C%L/OO 0

where A is the aspect ratio of the wing, COCL/Cgo_is the lift curve slope in [1/rad], _o0.2s is

the sweep angle of the 1/4-chord line of the wing, ai(0.75, y) is the local angle of attack
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correctionin [deg]along the 3/4-chord lineof the wing, _'_isthe angle of attack correction

in [deg]of the wing, w_ is a weighting factor derived from the liftdistribution(see also

Eq. (19.2c)in Appendix 19), y isthe spanwise coordinate, and b is the span of the wing.

In general,Simpson's Rule may be applied to Eq. (18.2a)ifACMI has to be determined

for a given wing. However, itisalsopossibleto simply discretizeEq. (18.2a) as long as the

localangle of attack correctionai(0.75,y) iscomputed at a largenumber of equally spaced

points along the 3/4-chord lineof the wing. Assuming that a totalnumber of N equally

spaced referencepoints were selected along the semispan of the wing (i.e.b/2 = N. Ay),

we get the approximation :

d _ T "Ay =: N

Using the abbreviation ww(y(j)) =- w_(j), Eq. (18.2a):may be discretized as:

N

180 b N
j=l

After rearranging terms we get :

F. r 1 N

b. 9o W- - • w.(j) y(j) (18.3 1
j=.l

Sometimes it is necessary to distribute a total nualber of M equally spaced reference

points along the complete span of the wing (i.e. b = 1J • Ay). Then, using the absolute

value of y(j), Eq. (18.3c) becomes:

F • rr 1 M

ACM1 _ b 90 " _ _ [_,(0.75,j)--<] w,(j), lY(J)I (18.4)
j--1

WICS uses Eq. (18.4) to determine the pitching moment coefficient correction ACM1

that is caused by the wall interference induced shift of the center of pressure of the wing.

PITCHING MOMENT CORRECTION ACM2 :

A pitching moment coefficient correction ACM_ due to the streamline curvature along

the chord of the wing has to be computed. Classical theory has shown that the magnitude

of this correction may be approximated by the camber of a two--dimensional circularly

cambered airfoil (see Ref. [18], p.17/18 and Ref. [28], p.91).
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In general, the angle of attack correction _ is not constant along the chord of a wing.

This phenomena may be described as a wall interference induced streamline curvature that

is experienced by the wing. A constant streamline curvature may be found if we assume

a linear change of the angle of attack correction along the chord (see Fig. 46a) . Then, a

linear function 6cq may be defined as (see Fig. 46b) :

7r

_(_) = [ _(_) - _(0.50)] • _ [raa] (18.5)

The linear function 6(_i may be related to a two-dimensional circularly cambered

airfoil,[28], because its derivative with respect to _ is the streamline curvature. The pitching

moment coefficient about the 1/4-chord point of a circularly cambered airfoil is given in

Ref. [28] as:

c.(0.25) = _ _. _L (18.6)
C

where f/c is the camber of the airfoil (see Fig. 47). The camber is related to the slope of

the circular arc at the 1/4 and 3/4-chord point. The slope is related to the upwash along

the chord. Then, using Fig. 47, we get :

1
tan _ _ fl = -- •

2

1
-- °

2

[ ( )o75]
[ _o,(o.25) - ,_,_(o.75)]

(18.7a)

Using triangle ABC in Fig. 47 we also know that

2 f
tan_ _ Z = (18.7b)

C

Combining Eqs. (18.7a), (18.7b) we get for the camber as a function of the streamline

curvature :

f 1
-_- = -_- • [ 6ai(0.25) - ecq(0.75)] (18.8)

Using Eq. (18.5) we also know :

7V

6ai(0.25) -- [cq(0.25) -- ai(0.50)] 180 [rad] (18.9a)

7V

6oL/(0.75) = [o_i(0.75) - cq(0.50) l 180 [rad] (18.9b)
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Combining Eqs. (18.6), (18.8), (18.9a), (18.9b) we finally get for the pitching moment

coefficient of the two-dimensional circularly cambered airfoil as a function of the difference

between the angle of attack correction on the 1/4 and 3/4-chord point :

cu(0.25) = _ _ (18.10)-7- ' [_(0.75) - _,(0.25)] • 18--6

In the next step, it is necessary to integrate the pitching moment coefficient in the

spanwise direction of the wing. Assuming that the sweep angle to of the wing is 0.0 ° (see

Fig. 48), the local pitching moment coefficient of a wing segment of width dy about the

1/4-chord line may be written as

d P(y) (lS.11)
cM(0.25,y) = qo¢ • c(y) d _(y)

where d P(y) is the infinitesimal pitching moment acting on the wing segment, qoo is the

free-stream dynamic pressure seen by the wing segment, c(y) is the local chord, and d S(y)

is the infinitesimal area of the wing segment. The infinitesimal area d S(y) of the wing

segment is a trapezoid and may therefore be expressed as :

d S(y) = c(y) d y (18.12)

Introducing the mean geometric chord as a function of the wing reference area S and the

wing span b we know :

S

= T (18.13)

In the next step we combine Eqs. (18.11), (18.12), divide both sides of the resulting equation

by the mean geometric chord -5 and the mean aerodynamic chord c', introduce Eq: (18.13)

on the right hand side of the equation, and rearrange terms. Then, we get :

cM(O.25, y) c2(Y) 1 d P(y)
d._ -_- • dy = - (18.14)

qoo .d.S

The pitching moment coefficient correction ACM_ for 0.0 ° sweep angle may be obtained

by integrating both sides of Eq. (18.14) over the whole wing span :

[b/2 c2(y) d fo PACM_ = cM(O.25, y) y := d P(y) (18.15)
J-b/2 d • "5 b q oo d • "S
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The pitching moment coefficient of a swept wing may be approximated (see Ref. [29])

by using the product of the pitching moment coefficient of the unswept wing and the

cosine of an average sweep angle _. For a circular cambered airfoil the sweep angle at the

1/2-chord is selected. We get :

hcM,(_ # 0.0°) = cos Vo.50 Ac_(_ = 0.0°) (18.16)

Finally, combining Eqs. (18.10), (18.15), (18.16) we get for the pitching moment coefficient

correction ACM2 due to streamline curvature :

ACM2 ----" 7r. cos to0s0 ./b/2 7r c2(y) d y (18.17)
4 J-bi_ [ _(0.75, v) - _(0.25, y) ]- 1--g6 e. _ b

The variable transformation # = 2y/b is introduced in an effort to compare Eq. (18.17)

with an equation reported in the literature. Assuming that the lift distribution is symmet-

ric, Eq. (18.17) may then be written as :

z . cos _o so [1 _ c2(_) d
ACM2

4 "Jo [a_(0.75,/_) - cq(0.25,#)]- 1-_ " d.e
(18.18)

Equation (18.18) agrees with Eq. (35) in Ref. [18].

Assuming that local angle of attack corrections are computed on a total of N equally

spaced reference points along the 1/4-chord line of the wing and N equally spaced reference

points along the 3/4-chord line of the wing (i.e. b/2 = N. Ay), we get the approximation :

d_ _ A/_ = 2Ay = 1 (18.19)
b N

Combining Eqs. (18.18), (18.19) we get an approximation of the pitching moment coeffi-

cient correction due to streamline curvature :

N [ ] c2(j) 1 (18.20a)
_r. cos _0.50 _"

ACM2 _ 4 ._-_ ai(0.75,j)--a,(0.25,j) "1--8-0" c'- _ g
j=l

Sometimes it is required to distribute a total number of M equally spaced reference

points along the 1/4- and 3/4-chord line of the complete span of the wing (i.e. b = M. Ay).

Then Eq. (18.20a) becomes :

_CM2

M

.cos 0 0 Z 1 c2(j) 1 (1820b)4 "1--8-6" d • _ M
j=l
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Finally, introducing compressibility effects in Eq. (18.20b) (see Ref. [10], Eq. (3.59)),

we get :

where

M
1

ACM2 _ G • M Z [c_/(0.75,j)- a/(0.25,j)] c2(j) (18.21a)
j--1

G = 7r. cos _oo.so . _r 1 (18.21b)
4. V/1 - M 2 • cos2_oo.5o 180 d

Equation (18.21a) and (18.21b) are used by WICS to determine a pitching moment

correction due to streamline curvature.

CALCULATION OF PITCHING MOMENT COEFFICIENT CORRECTIONS :

WICS uses Eq. (18.4) and Eqs. (18.21a,b) to compute pitching moment coeitlcient

corrections due to the difference between the mean and local wall interference corrections

in the spanwise and chordwise direction of the wing of a wind tunnel model. Input variables

required for the application of these equations axe classified as follows : (1) variables that

depend on the geometry of the test article (A, c, c', 5, too.25, to0.50), (2) variables that

depend on the lift of the wing (w,,(j), OCL/Oa ), m_d (3) variables that are a result

of the calculation of mean and local wall interference corrections (_'_, cq(j); ai(0.25,j),

c_(0.75, j)). For best results it is recommended to determine the lift curve slope OCL/(9o_

by using the experimental cL -- o_ curve.
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APPENDIX 19

ROLLING MOMENT COEFFICIENT CORRECTION

An additional rollingmoment coefficientcorrection Act has to be found whenever

wall interferenceeffectsare the resultof a non-synunetric liftdistributionon the wing. A

non-symmetric liftdistributionmay be caused by deflectedailerons or non-zero sideslip

angle of the wind tunnel model.

In general, the corrected rollingmoment coefficientct,cof the complete test article

configuration may be written as :

ct,¢ = cz,,.,,-,¢ + Act (19.1)

where ct,,.,,.,_ is the uncorrected rolling moment coefficient and Act is the rolling moment

coefficient correction due to wall interference effects.

The calculation of the rolling moment coefficient correction is done in three steps. At

first, it is necessary to find a reasonable non-symmetric lift distribution and line doublet

representation of the wing that satisfies the measured lift force, pitching moment, and

rolling moment of the test article. Then, angle of attack corrections along the 3/4-chord

of the wing are computed using the non-symmetric line doublet representation of the wing

and the wall signature method. Finally, the rolling moment coefficient correction Act is

determined by integrating the angle of attack correction distribution.

LIFT DISTRIBUTION AND LINE DOUBLET REPRESENTATION :

The calculation of a rolling moment coefficient correction is only possible if a non-

symmetric lift distribution of the wing is found that matches the measured lift force,

pitching moment, and rolling moment of the test article. This lift distribution may be

obtained in two steps by using results presented in Appendix 5.

At first, a symmetric lift distribution of the wing is assumed. The corresponding

circulation F* of the wing is written as (see Appendix 5 for more detail) :

r*(y) = r_ w_(y) (19.2a)

where rw is only a function of the lift force and pitching moment measurement on the test

article and w_ (y) is the weighting factor of the selected symmetric lift distribution. The
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weighting factor w,_ (y) has to fulfill the condition :

jff/2 w,_(y) d y = b (19.2b)
b/2

The weighting factor ww (y) of an elliptic lift distribution (b - wing span) is given as :

The total lift caused by the symmetric lift distribution may be computed by integrating

the circulation along the wing span. Using Eqs. (19.2a), (19.2b) we get :

bl_L(r') = poo .uoo. r*(y) d y = poo -uoo. F,_. b (19.3a)
J-b�2

Similarly, we get for the total pitching moment caused by the symmetric lift distribu-

tion :

b12P(r*) = pop-up. A_(y) r'(y) d
J -b/2

b/2= poo .uoo.r_. A_.(y) • w,_(y) d y
,_-b12

where Ax(y) is the pitching moment arm.

(19.3b)

In a second step, a weighting factor Aw is applied to the symmetric lift distribution

such that the total rolling moment caused by the resulting non-symmetric lift distribution

equals the measured rolling moment R. The weighting factor Aw must be introduced such

that the total lift force and pitching moment of the nort-symmetric lift distribution equals

the lift force and pitching moment of the symmetric lift distribution. This weighting factor

Aw may be defined as follows (see Figure 49) :

r"(_) = r'(_) [1 + Aw ] ; y < 0 (19.4a)

r**(y) = r*(y) ; y = 0

r*'(y) = r'(_) [1 - _w] ; _ > 0

where F** is the circulation of the non-symmetric lift distribution of the wing.

(19.4b)

(19.4c)
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Combining Eqs. (19.2a), (19.4a), (19.4b), and (19.4c) it is possible to express the

non-symmetric lift distribution asa function of the symmetric lift distribution. Similar to

Eq. (19.2a), we get for the circulation of the non-symmetric lift distribution :

r'*(y) = r_ • D"g'_(y) (19.5a)

where

W'j(y) = w_,(y) ; y = 0 (19.5c)

W-_(y) = w,,,(y) [1 - Aw ] ; y > 0 (19.5d)

In the next step it is necessary to show that the lift and pitching moment caused by the

non-symmetric lift distribution F** is identical with values obtained from the symmetric

lift distribution F*. Integrating the circulation F** of the non-symmetric lift distribution

along the wing span and introducing Eqs. (19.5a) we get :

bl2L(r*') = poo-uoo. F'*(y) d y
J-_/2 (19.6a)

bl2= poo • uoo. r_ • _'7_(y) d y
J-hi2

Using Eqs. (19.2b),(19.5b),(19.5c),(19.5d) and knowing that w_(y) is symmetric to y = 0

w_(_) • [ 1 - A_ ] d (19.6b)

b/2 ]_(y) d y - w_(y) d y
J0

we get :

b/2 _--J(y) d y
b/2

lj ¢"- _-_(y) d y q- W-_(y) d y
b/2 Jo

fj= _,,,(_) o [ i + Aw ] d _, +
_/2 .,o

= w,,,(y) d y + Aw •
J-b�2 b/2

= b

Thus, combining Eqs. (19.6a), (19.6b) and comparing the result with Eq. (19.3a) we con-

clude that :

L(F**) = poo .uoo.r_. b = L(F*) (19.6c)
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Similarly, we get for the pitching moment of the non-symmetric lift distribution :

b/2e(r") = poo-_oo- _(_) • r"(y) d y
J-b/2

hi2= poo "uoo" r=. _z(y)._-;_(y) d y
J-b/2

(19.7a)

Using Eqs. (19.5b),(19.5c),(19.5d) and knowing that Az(y). w,_(y) is symmetric to y -- 0

we get :

A_:(y) . _--¢_(y)d y +

[1 - Aw] dy

b/2w,_(y)d _,- /',x(y)
JO

(19.7b)

Thus, combining Eqs. (19.7a), (19.7b) and comparing the result with Eq. (19.3b) we con-

clude that :

b/2P(r**) = poo.uoo-r=. Az(y) • w=(y) dy = P(r*) (19.7c)
,_-b/2

In Eqs. (19.6c) and (19.7c) it was shown that the introduction of the weighting factor

Aw does not change the lift force and pitching moment. It remains to determine Aw as a

function of the rolling moment measurement. This may be done as follows :

The calculation of the angle of attack correction based on the wall signature method

requires that the non-symmetric lift distribution of the wing has to be translated to a

corresponding non-symmetric line doublet representation of the wing. We assume that a
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total number of nw equally spaced line doublets are selected along the 1/4-chord line of

the wing. Then, the strength o'U(y(i)) of a line doublet at the spanwise location y(i) is

defined as (see also Eq. (5.4a) in Appendix 5) :

_,(y(i)) = A_ r_ • _-_(u(i)) (19.8_)

where W"_(y(i)) is given by Eqs. (19.5b), (19.5c), (19.5d) and

b
As_ = (19.Sb)

nw

b [ 1]  1o8c,y(i) = 2 + As_o i-- -_-

The total rolling moment caused by the non-symmetric line doublet representation of

the wing may now be written as :

-R = E L,_(i) . y(i) (19.9a)
i=1

where L,_(i) is the lift force caused by a single line doublet at the spanwise station y(i).

Equation (19.9a) may also be written as the sum of the contributions from the left and

right wing. For an even number nt0 of line doublets we then get :

-R = E L,_(i) y(i) + E L,,,(i) . y(i) (19.9b)

i=1 i--n_/2+l

Applying the Kutta/Joukowski formula to the wing span increment As,_, introducing

Eq. (19.5a), and using the abbreviations F*'(y(i)) -- F'*(i) and _-'_(y(i)) - W'_(i) we get:

L_,(i) = p_ .u_. Asw. r**(i) = p_ .u_. As_.F,_._g_(i) (19.10)

Combining Eqs. (19.5b), (19.5c), (19.5d), (19.9b) and (19.10) we get :

-R

poo • uoo • Asw • Fw
= [I+A_].

n.12

Z w_(i). _(0
i=1

+[l-Awl.
_"b tl;

E
i=n,_/2+l

ww(i) . y(i)

(19.11)
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The weighting factor w,_(i) of the symmetric lift distribution is symmetric to the root of

the wing (y = 0). Therefore, we know :

v(i) = - (19.12)
i=rtw[2+l i=it

Combining Eqs. (19.11) and (19.12) we get:

-R

poo • uoo • Asw • I'w
= 2 • Aw •

n./2

E Ww(i). y(i) (19.13)
i=1

After rearranging terms in Eq. (19.13) we get for the weighting factor Aw :

(19.14a)V'n,,/2
2 • poo "uoo" Asw. r_o z-..,i=l ww(i) y(i)

where the number nw of line doublets of the wing is even. Assuming that the number nw

of line doublets of the wing is odd, we get :

Aw = -R (19.14b)

2 • j0oo "t too" Asw, I'_w £-_i=1 ww(i ) y(i)

Finally, non-symmetric line doublet strength values trw*(y(i)) that satisfy the mea-

sured lift, pitching moment, and rolling moment may be determined by using Eqs. (19.5b),

(19.5c), (19.5d), (19.8a), (19.14a) and (19.14b).

The angle of attack correction tr_ along the 3/4-chord line of the wing may now be

computed by applying the wall signature method as the line doublet representation of the

wing is known (for more detail see Chapter 2) .

ROLLING MOMENT COEFFICIENT CORRECTION :

It is now possible to compute a rolling moment coefficient correction due to wind

tunnel wall interference effects as the angle of attack correction along the 3/4-chord line of

the wing is known. Figure 50 shows the angle of attack correction distribution ai(0.75, y)

as a function of the spanwise coordinate y of the wirg. Using Fig. 50, we get for the

infinitesimal rolling moment of a wing span increment d y :

dcL(y) . _(0.75, y) • q:_ d S (19.15)dR = (-1) Y " dcr
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The infinitesimal area d S of the wing span element may be written as :

d S = c(y) •d Y (19.16)

where c(y) is the local chord of the wing. Combining Eqs. (19.15) and (19.16) and integrat-

ing the corresponding equation in the spanwise direction, we get for the rolling moment

due to wall interference effects :

[_,/2 d cL(y) . 0_i(0.75,y) • c(y) •d y (19.17)
A R = qoo a-b�2 (-y) dot

The rolling moment coefficient correction Act has to be added to the uncorrected

rolling moment coefficient (see Eq. (19.1)). Therefore we get:

AR

Ac, -- (-1) • qo_ "S. b/2 (19.18)

Finally, combining Eqs. (19.17), (19.18), the rolling moment coefficient correction is ob-

tained as :

2 [b/2 d cL(y) . ai(0.75, y) c(y) . d y (19.19a)
Act = "S • b a-b/2 y " d o_

In general, Simpson's Rule may be applied to Eq. (19.19a) if Act has to be determined

for a given wing. However, it is also possible to simply discretize Eq. (19.19a) as long as

the local angle of attack correction cq is computed at a large number of equally spaced

points along the 3/4-chord line of the wing. Assuming that a total number of M equally

spaced reference points were selected along the complete span of the wing (i.e. b = M. Ay

and dy ,_ Ay = b/M), we get the approximation :

Ac, _ -_ "M2 1 EM Y(J) d d o_cL(j) . ai(0.75,j) c(j) (19.19b)
j=l

where

-b b [ 1

Y(J) = 2 + -M" [ j 2 (19.19c)

The application of Eq. (19.19b) requires an estimate of the local lift curve slope

dcL(j)/do_ at the spanwise station of a reference point. This estimate may be obtained by
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using the Kutta/Joukowski formula. For an infinitesimal wing span increment dy we get

for the lift dL using the non-symmetric lift distribution :

d L = poo uoo r"(y) • d y (19.20a)

The local lift coefficient is defined as :

dL

cz(y) = poo/2" u L c(y) . d y (19.20b)

Combining Eqs. (19.20a), (19.20b) we then get :

eL(y) = 2 r'*(y) (19.21)
uoo c(_)

Combining Eq. (19.5a) with Eq. (19.21) and differentiating both sides of the resulting

equation with respect to angle of attack c_ we get :

d CL(y) 2 • _ww(Y) d r w

d a uoo e(y) d a (19.22)

Introducing the abbreviation y(j) - j, we get at the di,'_crete spanwise position j :

d eL(j) 2 _-'_(j) d Fw

d _ _ • _(j) d (19.23)

Assuming that the-total lift of the model is charged to the wing, we get from Eq. (19.6c) :

L poo u,_ F_ b cL poo 2. -- . Uoo2 (19.24)

Differentiating both sides of Eq. (19.21) with respect to the angle of attack a and

rearranging terms we get :

d F,_ _ uoo • S d cL
-- (19.25)dot 2 • b da

Thus, combining Eqs. (19.23), (19.25) we get the following approximation of the local

lift curve slope :

d _L(j) _-_(j) _ d _L
"_ (1926)

d a c(j) b d oL
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Finally, combining Eqs. (19.19b), (19.26) we get for the rolling moment coefficient

correction due to wall interference effects :

2 dcL 1 M

Act ,_, b do_ U E Y(J) " "w-'_(J) _i(0.75,j) (19.27)
j=l

where dcL/da is the lift curve slope of the wing in [1/deg], b is the wing span, M is the

number of reference points in the spanwise direction of the wing, y(j) is the spanwise

coordinate of reference point "j", _'_-_(j) is the weighting factor of the non-symmetric

lift distribution of the wing at reference point "j", and ai(0.75,j) is the angle of attack

correction at reference point "j" in [deg]. An interesting interpretation of Eq. (19.27)

is possible if we introduce the absolute value of y(j) and assume that y(j) # O. Then

Eq. (19.27) becomes :

Acl "" M E Y(J) ly(J)l _j(9). dcL . _d0.75,j) (19.28)"" lY(J)[ b / 2 do_
j--1

Equation (19.28) may be interpreted as the arithmetic mean value of weighted rolling

moment coefficient contributions along the 3/4-chord of the wing where

y(J)
I (J)l

---- sign of the local rolling moment correction

ly(J)l

b� 2
-- dimensionless rolling moment arm

dcL

_-_-w(j)" dc_ .ai(O.75,j) = local lift coefficient

Equation (19.27) is used by WICS to determine a rolling moment coefficient correction

due to wind tunnel wall interference effects.
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APPENDIX 20

SCALE FACTOR LAW

The minimum of the blockage factor of a wind tunnel model tested in a clean configu-

ration (i.e. flaps, slats not extended and no landing gear) is more or less identical with the

solid volume blockage contribution. This approximation is valid if such a model is tested

in the vicinity of 0.0 ° angle of attack where solid volume blockage effects are significantly

larger that corresponding separation wake blockage effects.

Solid volume blockage effects are a function of the volume displacement of the wind

tunnel model. The solid volume blockage factor is proportional to the volume of the test

article. Therefore, it is possible to develop a scale factor law, that relates the length scale

of two models of different size but identical geometry to the observed minimum of the solid

volume blockage. The scale factor law may be written as :

¢2 (20.1)

where e,n_ is the minimum of the blockage factor as a function of the length scale of the

model, ¢1 is the length scale of the first model, and ¢2 is the length scale of the second

model.

The following example shows how this scale factor law may be applied to a test of

two different sized Boeing 7J7 semispan models (see Chapter 3.3 for more detail). Both

semispan models had identical geometry. The first model was a 8 % scale model, the second

model was a 14 % scale model. Both models were tested in a cruise configuration. From

Fig. 23a we estimate that the minimum of the blockage factor computed by WICS (wall

signature method) and the two-variable method for the 8 % scale model is approximately

0.0030 . Now it is possible to predict the solid volume blockage factor of the 14 _ model

by applying the scale factor law. Using the blockage factor minimum of the 8 % model

and the cube of the scale factor ratio we get the prediction :

! 8% ] = 0.0030- 5.36 -- 0.0160 (20.9-)

Comparing the predicted solid volume blockage factor, i.e. 0.0160, with the estimate

of the solid volume blockage from Fig. 23b, i.e. 0.0155, we see that both values agree
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fairly well. Therefore, it can be concluded that the wall pressure measurements used by

WICS to determine blockage corrections and the corresponding description of the solid

volume blockage effect by a source/sink pair is sufficiently accurate. The scale factor

law also provides an additional absolute magnitude check of blockage corrections that are

computed by using wall pressure measurements.
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Fig. 11b Comparison Bessel Function Solution ! Panel Code Solution (WlCS).
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Fig. 12a Panel Model of Wind Tunnel Geometry/Fullspan Model Configuration.

Fig. 12b Panel Modal of Wind Tunnel Geometry / Semispan Model Configuration.
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ROW 1

ROW 4

ROW 8

ROW S

ROW 7

ROW 6

LOOKING UPSTREAM

Fig. 15 Testsection, Semispan Model, and Image Plane Geometry.

137



7J7 8% SEMI-SPAN SINGULARITY
AND REFERENCE LOCATIONS

• SINGU.AFgTYLOCATION

O RB=B_ENCEL(T_ON

TESTSECTIONCB,ffEFU_

I

IMAGEPLANE IMAGEPLANE

No.

I
2

3
4

5
6
7
8
9
10
11

Type z [ft] y [f_,] z _t] Weight
SOURCE 116.45 0.000 -3.920 1.000

SINK 124.73 0.000 -3.920 -1.000

SOURCE 121.47 0.000 -2.930 1.000
SOURCE 121.69 O.CO0 -1.430 1.000

LINE DOUBLET
LINE DOUBLET
LINE DOUBLET
LINE DOUBLET
LINE DOUBLET
LINE DOUBLET
LINE DOUBLET

119.89
120.25
120.60
120.96
121.32
121.68
122.03

0.000
0.000
0.000
0.000
0200
0.000
0.000

-3.587
-2.901

-2.216
-1.530
-0.844
-0.159

0.527

0.997
0.977
0.934
0.866
0.766
0.619
0.371

Fig. 16a Singularity Representation of Boeing 7J7 8% Scale Semispan Model.
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7J7 14% SEMI-SPAN SINGULARITY
AND REFERENCE LOCATIONS

• SINGULARITY LOCATION

O REFERENCE LOCATION

... TEST SECTIONCENTERLINE

IMAGE PLANE

No.

1

2

3

4

5
6

7

8

9

10
11

Type z [ft] y [ft] z [ft] Weight

SOURCE 113.26 0.000 -3.920 1.000

SINK 127.75 0.000 -3.920 -I.000

SOURCE 122.04 0.000 -1.930 1.000

SOURCE 122.31 0.000 0.070 1.000

LINE DOUBLET

LINE DOUBLET

LINE DOUBLET

LINE DOUBLET

LINE DOUBLET

LINE DOUBLET

LINE DOUBLET

119.28

119.90

120.53
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121.78

122.41

123.03

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-3.330

-2.130

-0.930

0.270

1.470

2.670

3.870

0.997

0.977

0.934

0.866

0.766

0.619

0.371

Fig. 16b Singularity Representation of Boeing 7J7 14% Scale Semispan Model.

139



,lira

ROWS I & $ ....

ROWS 2 & 7 ....

Z X

v,- 04 04

i' F i [iriiiirtitTiTiit[iiii [ i i t"F _:=1..... ]-:-.....
, i ! i iiii!i!Ji!ili!iiiiiiiii i i-E _2._i.... j._
-J_.l.-. J-.M.L.L-L.IM. LL-LJM, LL _-L-I.L._-J..J-I.I-._. M.--_ .................

I I t II111111111 IIIIIIIIIII I I I

ig i 'iiiii=iiigiiiii,ii _ i i),/1, ,!il!l,n,,li,,Iilili i!II
_--rTT__-_-_÷r,÷__-_+_-_E_-I----I.......
Ill i _Hi i i_liti i i Bll i i Bilili i i_ll i _.lil

,_ ! ill!!i':il_l_'!iiiI,!iii!Iilii!!H i _lil,
t I I IIIII11111111111111111 I I I

RO_ _ _ 6 .... [ ]-- I [ T i ]" [l i I TF[TiTITiTIqTiTiqTTq-_ _,-r 1-
- i i i i iiiiiiiiiiiiiiiiiiiiii i i'v_J_L i_.... , , , ., . ° , , ° , o , , o , i , . '-.-. °_° .

ROWS4& 5 .... I---I--- F--I---;-t-t--I- 4-t-I-I-4--I-4. H 4--t-I-&F-I- 4-,l-.l--.-l.--.-l---._-4---

tapl._,' ! i i i!iiiiiiiiiiiiiiiiiiii i i i b_-TaP30

I /
Tunnel Stations of Wall Pressure Ports in [ft]

Fig. 17a Wall Pressure Port Location in 12ft Pressure Wind Tunnel.
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Fig. 17b Wall Pressure Port Row Definition in l!:2ft Pressure Wind Tunnel•
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Fig. 19a Wall Signature at Row I /8% Scale Model at 19.82[deg] Angle of Attack.
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Fig. 27b Panel Representation of Rankine Body Geometry.
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Fig. 28 Comparison of Surface Pressure Distribution of Rankine Body.
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Fig. 29 Panel Model of Rankine Body inside Test Section.
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Fig. 30 Comparison of Wall Signature of Rankine Body with equivalent
Source-Sink Representation.
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Fig. 31 Geometry of Rectangular Wing.

Fig. 32 Panel Model of Wing inside Test Section.
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Fig. 37 Line Doublet Flow Field as a Function of Orientation Angle.
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Fig. 38 Calculation of Line Doublet Strength using Lift Force and Pitching Moment.
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Fig. 40 Quality Check of Least Squares Fit of Wall Signature.
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Fig. 4Zb Rotation No.1 (x=120.71 [ft]; z=O.OO[ft]).
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Fig. 42c Rotation No.Z (x=120.71 [ft]; y=O.OO[ft]).
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Fig. 42e Left Wing Semispan Model.
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Fig. 42t: Right Wing Semispan Model.
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Fig. 43a Unit Wind Vector in Model Coordinate System.
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Fig. 43b Reversal of Roll Axis Rotation.
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Fig. 43d Singularity or Reference Point Location as
a Function of Test Article Roll Angle.
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Fig. 43e Pitch Rotation of Unit Vector K .
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Fig. 44 Pitching Moment Lever Arm Calculation.
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Fig. 46a Angle of Attack Correction at Wing Chord.

LOCAL CHORD
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Fig. 46b Change of Angle of Attack Correction at Wing Chord.
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Fig. 48 Geometry of Wing with 0.0 [deg] Sweep Angle.
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