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APPLICABILITY OF MIXING LENGTH THEORY TO A TURBULENT VORTEX SYSTEM

By Robert G. Ragsdale

SUMMARY

The ability of mixing length theory to correlate vortex data is

evaluated. Expressions are derived for eddy diffusivity by applying the

techniques of yon K_rm_n and Prandtl which have been established for pipe

flow. Total and static pressures were measured from the outer radius to

the exhaust-nozzle radius of a vortex generator for a range of mass flows.

These data are combined with Navier-Stokes solutions for this region of

a compressible vortex to determine turbulent Reynolds numbers. The Reyn-
olds number is related to Prandtl and K_rm_n functions for various assumed

boundary conditions, and the experimental data are used to determine the

usefulness of these expressions. The following conclusions were reached:

(1) Mixing length functions developed by applying yon K/rm&n's

similarity hypothesis to vortex motion correlate the data better than do

Prandtl functions obtained with the assumption that mixing length is pro-

portional to radius.

(2) Some of the expressions developed do not adequately represent

the experimental data.

(3) The data are correlated with acceptable scatter by evaluating

the fluid radial inertia at the outer boundary and the shear stress at

the inner boundary. The Universal constant K was found to be 0.04 to

0.08, rather than the value of 0.4 which is accepted for rectilinear
flow.

(4) The data are best correlated by a modified K&rm_n expression

which includes an effect of radial inertia, as well as shear stress, on

eddy diffusivity.

INTRODUCTION

The hydrodynamics of vortex flow has been the subject of a number of

technical reports. The initial interest in vortex flow was associated

with the energy separation, or Ranque-Hilsch effect, which is still under
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investigation. Hartnett and Eckert (ref. i) hav,_reported measurements
of temperature and velocity profiles in a Ranque_Hilsch tube for a range
of conditions. Their data were taken at various axial distances from
the vortex inlet region. More recent data (ref. 2) suggest that the
energy separation is effected in the vortex generator itself and that the
axial discharge tubes are not a requirement for the Ranque-Hilsch phenom-
enon. In an extensive analysis of velocity, temperature, and pressure
distributions in a turbulent vortex with radial and axial flow, refer-
ence 5 concludes that the most important factor _ffecting the energy sep-
aration in a compressible vortex is the turbulen_ shear work done on or
by a fluid element.

By applying the results of an analysis of a viscous vortex to mete-
orological data of tornado dimensions, it was fo_nd _hat the assumption
of turbulence resulted in reasonable agreementwith observed sizes (ref.
4). It is pointed out that the turbulence should diminish as the fluid
accelerates toward the center, but that in the core the reverse effect
maywell exist. Reference _ suggests as a possi1_le generalization that
the eddy viscosity be taken as proportional to e::ponential powers of
tangential velocity and fluid kinematic viscosit_ r.

A numberof analyses of vortex systems have utilized the assumption
of laminar flow. The case of a compressible, vi_cous, heat-conducting
vortex flow generated by a rotating cylinder in _n infinite fluid field
has been treated in reference 5. From an analys:i.s of the heat transfer
in a system of a dissociating gas in vortex flow between two concentric
cylinders, reference 6 found that the amountof _nergy that can be trans-
ported is greatly dependent on the radial Reynolds number. Reference 7
has considered the case of magnetohydrodynamicalJl.ydriven vortices and
the reverse condition of an ionized gas in vorte:: flow generating elec-
trical power. The indicated performance of thes_ systems, of course, is
dependeI_ton the assumedcondition of laminar fl_w.

Vortex flow is also receiving current atten:,ion as a device to per-
mit the use of a gaseous nuclear reactor as a ro_ket motor. It is readily
shownthat the practical operation of such a reac_tor requires that the
holdup time of the fissionable gas be increased -,o i00 to i000 times that
of the propellant, and a vortex field suggests i-,self (ref. 8) as a pos-
sible meansof attaining such a flow condition. In this system, turbu-
lence plays a double role. It diminishes maximal tangential velocities,
and, more importantly, it seriously limits the r_e at which the propel-
lant gas can diffuse through the fuel region. T]_eresults of an analysis
of an air-bromine vortex system (ref. 9) show th_ degree to which turbu-
lence limits the maximumconcentration of the he_y gas in such a system.
Experimental data are also given which indicate 1.hat the vortex flow is
burbulent. _o recent studies of a vortex gaseo_.sreactor are reported
in references i0 and ii.
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In each of these instances of vortex flow_ the need for an under-

standing of turbulence is apparent. Analyses based on laminar flow are

indeed useful as a means of establishing ideal system performance. As

in pipe flow_ however, a knowledge of the turbulent regime becomes neces-

sary in order to predict performance characteristics encountered in most

practical situations. It has been suggested that Prandtl's mixing length

theory (ref. 12) or yon K_rm_nfs similarity hypothesis (ref. 3) could be

applied successfully to a turbulent vortex. Since these techniques have

been substantiated for rectilinear flow, this would seem to be a reason-

able approach.

It is not so clear, however, how specifically to apply either of

these techniques to vortex flow. It becomes necessary, therefore, to

obtain experimental data for turbulent vortex flow and then to evaluate

the validity of a mixing length type of approach to such a system. This

has been done, and the results are presented herein.

An analytical expression for the radial variation of tangential ve-

locity is obtained by replacing the laminar viscosity in the Navier-Stokes

equations by an eddy viscosity which is assumed to be invariant with

radial position. Turbulent Reynolds numbers were determined for the flow

of air through a vortex generator by matching the analytical expression

for tangential velocity with measured values at two radial stations. By

using both Prandtl and K_rm_n techniques and various assumed boundary

conditions_ expressions are developed which give the turbulent Reynolds

number as a function of radial and tangential velocities. These expres-

sions were then investigated in terms of their ability to correlate the

experimental data.

Some of the functions did correlate the data with reasonable scat-

ter; some did not. By using a modification of von K_a_m_n's basic approach

that was indicated by a trend of the data, a new function was derived.

This new expression is related to basic vortex flow parameters and is

shown to best correlate the experimental data. While the numerical values

of the constants in this function may not be applicable to vortices of

different geometries_ it is felt that the correlation does properly sug-

gest a general functional relation of parameters affecting vortex flow.

a

C

Co,CI,C 2

Cp

SYMBOLS

numerical constant

constant in eq. (ll)

numerical constants

specific heat at constant pressure



- 4

D

g

J

k

L

M

P

p*

P

R

Re

r

T

t

u

v

w

Y

z

Y
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vortex outer diameter, 2ro

eddy viscosity

gravitational constant

mechanical equivalent of heat

thermal conductivity

vortex axial length

mixing length

molecular weight

total pressure

pressure parameter defined in eq. (42)

static pressure

gas constant

radial Reynolds number

radius

total temperature

static temperature

radial velocity

tangential velocity

weight flow

distance from wall

axial coordinate

ratio of specific heats

eddy diffusivity

angular coordinate
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Sub scripts :

Z

n

o

t

CO

Superscript :

universal constant in mixing length theory

viscosity

density

shear stress

dissipation term in energy equation

viscous correction factors

laminar

inner or nozzle

outer

turbulent

infinity

' normalized to value at r
n

ANALYSIS

The general nomenclature for the analysis is as indicated in the

following sketch:

our = const.

Vortex analytical model



Assumptions

The assumptions madethroughout the analysis are listed here, but
not necessarily in order of occurrence or importance:

(i) Thermal conductivity is zero

(2) _/_ = _/_z = 0 (only the annular region is considered)

(3) Steady state

(4) The perfect gas law is obeyed

(5) No external body forces

(6) u << v, du/dr << dv/dr

(7) _ and pc are constant

(8) Turbulent flow can be represented by laminar relations if
is replaced by pe

(9) Radial and tangential velocity fluctuations are equal.

!
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Fundamental Relations of Vortex Flow

Basic equations. The technique described herein to determine the

turbulent Reynolds number of vortex flow from experimental measurements

is reported in reference 9. To obtain closed-form solutions for vortex

flow, laminar equations are used and then, by virtze of assumption (8),

are applied to the turbulent regime. The equation_ which require that

the system conserve fluid momentum are the Navier-_,_tokes relations (ref.

13). For compressible viscous flow and _/_e = _/i_z = O, they may be

written:

Pu _r - p 7 = _r + _r _r 3r r k_

_v z= _[_(_v _)] 2_, _)pu_+DUr _ _" +T\_'- (2)

The conservation of system energy for zero thermal conductivity is:

_t _ [2(_ru)2 (rU--)2 (_r _)2 2_r rU_)2]oucp_rr - u _r : ¢ = _ + 2 + - - _ - (5)
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The continuity equation for steady-state flow in the annular region

(rn < r < ro) is:

o (4)

Finally, the equation of state is:

pRt (5)
P= M

Ideal fluid relations. - For an ideal fluid (# = O) and the assump-

tion that radial velocity functions are small compared with corresponding

tangential ones, the following familiar relations are obtained from equa-

tions (i) to (5):

P = P + Y _ _-_t7 = const. (6)

= const. (7)

Vor o
v = (s)

r

w

-put = 2_---L= const. (9)

Since the continuity relation expressed by equation (4) is for the

annular region of the vortex, where 8/_z = O, equation (9) is similarly

restricted. The negative sign in equation (9) arises because the flow

is radially inward. Equations (6) to (9), though useful as simple ap-

proximations, become less and less valid as higher vortex strengths are

considered and are useful only for comparing real conditions with ideal

ones.

Real fluid relations. - By using equation (9) and the boundary con-

dition v(ro) = Vo, equation (2) may be integrated to give the tangential

velocity profile :

Vgro
v'= (io)
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where

$1 - 1 - C) 2 + 2
C - C 2 + C2 ]

(r')Re-2 (r')2Re- fl (ii)

Here, a laminar Reynolds number is defired in terms of radial

velocity:

Re Z _ _ put (12)
P

In equations (i0), (ll), and all succeeding ones the prime superscript

refers to the quantity normalized to its value at the radius rn; this

is, analytically, the smallest radius at which equation (4) applies and,

numerically, is taken to be the exhaust-nozzle radius.

The constant C in the $i function r_aains to be evaluated from

sc_e additional boundary condition. Reference 5 gives an expression for

the tangential velocity profile in the core (0 < r < rn) region, obtained

by assuming v(O) = 0 and pur = (pur)o(r/rn !2. The constant C in

equation (ll) is obtained by equating dv'/dr from equation (lO) and

dv'/dr' from the reference 3 profile at r = rn. This gives:

C = 62 -IRe) IcRe/Re - i)
(13)

Equation (13) is used throughout this report, and if combined with equa-

tions (i0) and (Ii) gives the same tangential velocity profile as was

obtained in reference 3. As Re _ _ (invisci@ flow), @i _ i, and equa-

tion (i0) yields the ideal fluid relation of equation (8). This suggests

that the function %1 may be viewed as a "correction factor" which ac-

counts for viscous effects on the ideal velocity profile.

Equations (i), (5), (4), and (5) can be combined, and the boundary

condition t(r _ _) = T_ applied to give the _nergy relation:

l{Voroh2

t =T - 2\ r ]
cpgJ (14)

t_J
!
F-J

h_.
cn



where

%2 = _ i - c)2 +
oro

4 C - C2 i C2 ]
+ (15)

Re (r,)Re-2 Re -1 (r,)2Re-

uo

I

_5 = kvgrg] [Re (I- C)

+ 8 C - C2 Re C 2 ]--. + (16)
Re (r,)Re-2 Rg _ 1 (r,)2Re-

The function @ 2 represents the effect of viscosity on radial momentum,

and 45 the effect of the viscous dissipation term, the right side of

equation (5). As before, when Re _ _, 42 _ i, and 45 _ O, and equation

(14) gives the isentropic relation. Equation (14), then, gives the varia-

tion of static temperature with radius. The total-temperature variation

is given by:

2

T = t + v__y____ (17)
2CpgJ

where v is given as a function of radius by equation (i0).

By utilizing assumption (6), equations (i) and (5) can be combined

to give the static-pressure gradient as:

i d(p/Po)- m2 (i8)
dr' gRtr'

Equation (18) is nonlinear and was solved by the Runge-Kutta numerical

method on an IBM 704 computer. The boundary condition for equation (18)

is P/Po = 1 at r' = r'.o The total pressure is given by equation (6).

All the working equations necessary to define the fluid dynamics of

the system (eqs. (i0) to (18)) as written are for laminar flow. That is,

Re is given by Re z as defined by equation (12). These equations were

used for turbulent flow by virtue of assumption (8), that turbulent flow

can be represented by laminar relations if _ is replaced by pe:

_------_ Rez _--Ret = Rez _-+ pe -- p¢
(19)

All equations remain as given, and the Reynolds number is now:

Re = Re t m -_pur _ -ur (20)
p6 e
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Mixing-Length Functions for Vortex Flow

In rectilinear flow_ the viscous shear stress between two adjacent
fluid particles due to a velocity gradient between them is given by:

(21)
T = _ _yy

To account for the additional friction losses due to turbulent motion,

Prandtl proposed a model based on a mixing length, or the average trans-

verse distance a fluid particle travels before adjusting to local condi-

tions. The assumptions that the velocity fluctuations normal and parallel

to the flow are equal gave the total shear stress on the fluid as:

du

• -- + (22)

where the eddy viscosity is defined as:

pZ2 (23)
dy

A more detailed discussion of this development may be found in reference

14, pages 113 to 114, and reference 15.

Prandtl functions. - Reference 12 shows t[lat the "shear velocity"

(du/dy in pipe flow) in circular flow is given by I_ _) and suggests

the possible assumption that the turbulent she._r stress is proportional

.2/dv v\ 2

to pL _dTr - _) " For pipe flow, Prandtl assm_ed that the mixing length

was proportional to y, the distance from the "_all. A similar assumption

for vortex flow is that the mixing length is proportional to some char-

acteristic dimension, assumed to be the radius:

= (24)

The eddy diffusivity for vortex flow may be expressed as:

F__ _ z 2(___r v'c -=-_- = _)
(2s)

This assumes equal radial and tangential velocity fluctuations.

ing equations (24) and (25) gives:

Combin-

e = - g2r2( dvd_r v) (26)

bl
i

I-'
I--'

£71
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If this expression is used, equation (20) becomes:

i ur

Re t - K2 r2/dv
_dr v)

(27)

If the inertia factor ur and the shear stress factor, in the

denominator, are evaluated at some radius, equation (27) can be used to

determine the turbulent Reynolds number. It is not clear, however, where

to evaluate either of these factors. Since the outer and inner radii r o

and rn bound all possible choices, they were used to give the following

forms of equation (27):

Re t -

l (%%)

/<2 ro'2 _d-_r;/dv' v_T)
0

Inertia at r o

Shear stress at
r o

27a)

Re t -

/ uO_/ I I

i _oo) Lv°r°)

n2 _v' vr)\dr' r n

Inertia at r
o

Shear stress at r
n

27b)

u n

1 Vn

k{d '  rv')Ret : K2 ro2-y 
O

Inertia at r
n

Shear stress at
r o

27c)

u n

-- Inertia at rn
1 Vn

Ret - K2 {dv' v'_
\dr' r_/ Shear stress at

n
r n

27d)

K_rmln functions. - Instead of taking the mixing length proportional

to a characteristic dimension as did Prandtl, yon K_rm_n proposed a

similarity hypothesis for turbulent motion (ref. 15, ch. 3). In a like

manner, it is assumed that turbulence in vortex flow is influenced only

by local conditions_ represented by the shear stress and its derivatives,

and that a similarity exists from point to point in the system such that

the turbulence functions vary only by a scale factor, assumed to be the
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mixing length. From this, the mixing length dn a vortex is given by:

dv v

dr r
(28)

This expression for mixing length gives the eddy diffusivity as:

c =- <2 \dr r!

r\dr - v)]

(29)

This expression can also be obtained by dimensional analysis (ref. 3).

Using this expression for eddy diffusivity in Reynolds number gives:

_r d {_ _ v_l _
1 L_ 7jj

Re t = K2

(_-v) _

(so)

As before, both the inertia factor and the shear stress factor can be

evaluated at either ro or rn:

/Uol, , ,,Fd /dv' vll
7J]

Re t = K2

_ rUo

2

O
(30a)

lUO_(v,r,)[ d _dv' v'_12
z \_oo}" o o-L_--_kh-_' V",- o

Ret = K-2 /dv' v',_ 3

_r' run

(30b )

I

P

O1

Ret = g-_ _dv' v;_ 3
k_V_ Z-.o

(sOc)
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_ i____ [dr' \dr ; r'_ n

Ret - K 2 /dr' v'13
_dr' r_ n

(30d)

Modified K_rm_n function. - As will be seen later, when experimental

data were used to evaluate the constant g from equation (30b), a dif-

ferent approach suggested itself. What follows was not apparent a pri-

ori, but was developed to give a physical interpretation of a mathematical

function.

In the development of the mixing length functions for circular flow,

one significant difference between vortex and pipe flow was not considered.

In pipe flow the mean flow vector is parallel to the wall. This is not

so in vortex flow; there is a velocity component away from the wall. It

is this radial velocity which gives the fluid its radial inertia.

If it is postulated that the radial inertia at the outer boundary

(the injection point) and the shear stress and its derivatives at the

inner radius are the determining factors of turbulence, then:

c = f ur)o,
n' drkdr r n

From dimensional analysis:

_. (_r - v3 "_l-a°vrln[
_= Cl(U°r°)al[d--_--VLL_<_

Equation (32) can be expressed in dimensionless form as:

uI(TV_I , , d dv'
<Voro) !d--_Y(d7;"

Ret = C2_'kv°// fdv' v'_ 3

L

v,}i 71-a

r'IJnI

(33)

Simplified forms. - It was suggested in reference 3 that near the

outer boundary the tangential velocity variation is closely represented

by equation (8); that is, the tangential velocity varies inversely with
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radius. By using this simplification, both the Prandtl (eq. (27)) and
the K_rm_n (eq. (50)) functions can be written in the form:

/ _-u o

Ret = c01V- J (34)
\ o!

If equation (27) is combined with equation (8), the expression for

CO is 1/2K2; if equation (30) is used, CO is given by 2/g 2. With the

assumption that the tangential velocity varies inversely with radius at

the inner radius, admittedly a less defensible simplification, the Prandtl

and K_rm_n functions may be written:

Re t = Cm_-Un_/\ (35)

V Vn/

Again, CO represents I/2K 2 from the Prandtl form and 2/K 2 from the

K_nn_n expression.

An interesting development is obtained by writing equation (34) in

the following form:

Ret = C #-Uo =
VVo /

(36)

Multiplying by (2p_vJ_u o) gives:

P---_) = 2C0 (_-_")
0

(37)

Equation (57) illustrates the point that vortex data can be correlated

equally well in terms of a laminar, tangential _ eynolds number evaluated

at the outer boundary. The data of reference l( are presented in this

manner and are included later in this report foz comparison.

I

EXPERIMENT

Vortex Generator

The vortex test apparatus is shown in figure l(a). It was designed

to provide (I) tangential velocities up to 500 feet per second and mass

flows up to 0.i pound per second and (2) measurements of total and static

pressure. Dry air at 70 ° F was regulated to maintain atmospheric pressure
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in the vortex header and was exited to an altitude exhaust system which

was capable of a minimum pressure of 26 inches of mercury below

atmospheric.

The test section was constructed from Lucite to permit visual obser-

vation. The radius of the vortex cavity was 6 inches; the axial length

was 6 inches; and the exhaust-nozzle radius was 1.75 inches. The vortex

flow was induced by 16 guide vanes which formed the cylindrical surface

bounding the test cavity. The air was introduced through the 16 slits

which ran the entire 6-inch axial length; the slit opening was 0.006 to

0.008 inch. The inner chord length of a guide vane was 2.4 inches. Fig-

ure l(b) is a schematic drawing of the vortex generator.

Instrumentation

Static-pressure taps and total-pressure probes were located on both

end faces of the vortex as shown in figure l(a). The total-pressure probes

were fabricated from lO-mil-outside-dismeter tubing with a 3-mil wall

thickness. During test runs the probe tips were alined to give maximum

readings. A probe position normal to the radius gave maximum velocity

readings in all cases.

Total-pressure readings were taken at two radial stations for each

run; these were located at radii of 4.75 and 2.5 inches. No total-pressure

readings were taken in the central core of the vortex (r < rn) because

of difficulties arising from the fact that the probe tip would be in its

own wake. Though not included in this report, measurements were taken

at various probe depths to study any possible axial variation of tangen-

tial velocity. No such a dependence was indicated; all total-pressure

data reported herein were obtained at a depth of 2.5 inches.

Data Reduction

Tangential velocities were calculated from the measured static and

total pressures at the two stations r_ = 4.75 inches and rlO= 2.5

inches. Equations (S) and (17) may be written in the form:

where

2gJcpTP_i/2

v =
(58)

y-;_
1

/,.n_

r_ _ _-_'_ - 1 (39)

\P/
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The total temperature T was taken as 330 ° R in all cases; an error of

10 ° F in T would cause a 1-percent error in velocity. An IBM 704 code

was used to iteratively select the v0 and F.et from equation (lO),

which gave v 4 and vlO within 1/2 percent c,f the values cc_puted from

data using equation (38). This Re t was then used with equation (18)

to compute the variation of P/Po with radius_ and this curve was com-

pared with the data.

Figures 2(a) to (c) show the static-pres_;ure and velocity variations

for low, medium, and high vortex strengths, respectively. The static-

pressure variation calculated from the analytical equations, using the

turbulent Reynolds number indicated by the tai_ential velocities, is in

good agreement with the experimental data. For comparison, the curves

for inviscid flow, computed from equations (6), (7), and (8), are also

shown.

The remaining parameters needed to evaluete the various mixing

length functions were computed from:

-w (4o)
u o - 2_LroP °

-w

u n = 2_LrnP n (41)

Vor o

Vn : _i (42)
r n _n

The derivatives dv/dr and d2v/dr 2 were evaluated from equation (i0).

!

P

(n

RESULTS AND DISCUSSI0_

In figures 5, 5, and 6 various data symbols are used to denote two

series of runs; in figures 4 and 7 the data of both series are noted by

the same symbol. Each series represents a range of mass-flow rates from

the lowest measurable to the highest possible. After the first set of

data, noted by round symbols, was completed, tr_e test section was com-

pletely dissembled. Then, with no particular _mphasis on duplicate blade

settings, the generator was reassembled, and ti_e data indicated by the

square symbols were obtained. All the experimental data of this inves-

tigation are listed in table I.

During both series of runs_ a phenomenon was observed which was

felt to warrant identification in figures 53 5, and 6. At low vortex
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strengths, the noise associated with the airflow was essentially silent.

As the vortex strength was increased, a point was reached - corresponding

to a tangential velocity of about 500 feet per second - at which a mono-

tone "whistle" was emitted from the test section. Subsequent measurements

proved this tone to be essentially a pure one, with a frequency of approx-

imately 1200 cycles per second. The whistle persisted with increasing

vortex strength up to a tangential velocity of 400 feet per second. At

this point the sound increased, essentially as a step function, to a much

louder, discordant sound more properly labeled "scream". This scream was

found to be camprised of many overtones and harmonics and of other 1200-

cycle sounds out of phase with each other.

It was felt that these high-frequency waves in the vortex cavity

might well affect the turbulence level of the flow. The plain symbols

represent silent operation; tailed symbols represent whistle runs; and

the symbols for the scream runs are solid. Sc_e of the data do show a

clearly ordered relation with respect to the three regimes of operation;

for this reason, such identification has been maintained although the

cause of the sounds is not fully understood.

Simplified Functions

Turbulent Reynolds numbers and radial-to-tangential velocity ratios

were camputed from the experimental data. Figure 5(a) shows the results

of evaluating the velocity ratio at the outer boundary of the vortex.

Each data point represents an experimental run, for which a turbulent

Reynolds number and v o were determined from equation (lO) and measured

values of v 4 and vlO. The value of u o was computed from equation

(40) and a measured weight flow rate. The line through the data was drawn

so as to go through the origin et = O, - _o , since no intercept is

permitted by the form of equation (34). Though considerable scatter is

present, the data are reasonably well represented by the line.

The value of the universal constant K was ccmputed from the slope

to be 0.038, using CO = I/2K 2. This is not in agreement with the value

of 0.4 that has been well established for pipe flow. A possible explana-

tion is that the universal constant is perhaps more constant than univer-

sal; that is, it has one constant value for vortex flow, and another con-

stant value for rectilinear flow. Such a conclusion is only suggested

by the few data of figure 5(a), however, and further evaluation would re-

quire additional independent studies.

Figure 5(b) was obtained by evaluating the velocity ratio at the

inner boundary rn. The extreme scatter of the data reflects the inade-

quacy of the assumption that the tangential velocity varies inversely with

the radius in the vicinity of rn. Again, the "best" line intersects the

origin and gives a value of K of 0.063 for CO = i/2g 2. The dashed line

represents a K of 0.038, shown for comparison.
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The indication of figure 3 is that the assumption of an ideal flow
variation of tangential velocity with radius st the outer boundary of a
vortex is a reasonable one. If a value g = 0.038 is used, the turbulent
Reynolds numbercan be obtained from equation (34) with CO = I/2K 2.

As a part of a study of vortex flow in a gaseous reactor, turbulence
data were obtained in reference i0 using vorte_ tubes that were 0.6, 1.0,
and 2 inches in diameter with nitrogen and helium as fluids. By cc_puting
tangential velocities from measuredstatic-pressure gradients and using
essentially the sametechnique as described herein to obtain turbulent
Reynolds numbers, the eddy-to-laminar viscosity ratio pe/_ was corre-
lated with a laminar, tangential Reynolds numberevaluated at the periph-
ery (pvD/_)o. These data and the data of this investigation are shownin
figure 4.

The slope of the line through the data of this report was taken to
be 1.0, as suggested by the form of equation (57). The degree of corre-
lation in figure 4 is exactly the sameas that shownin figure 3(a),
since equation (37) is simply an algebraic ressatement of equation (34).
The line with a slope of 0.86 is a least-mean-squares fit obtained in
reference i0. The line with a slope of 1.0 was drawn to permit a com-
parison and gave a value of g from the data _f reference I0 of 0.02,
as comparedwith the 0.038 obtained from the d_ta of this report.

This again suggests the possibility that ]he coefficient g is a
function of the flow pattern and, since all th_ data of figure 4 are from
vortices, fluid or geometry parameters as well. Any such conclusion,
however, is predicated on the validity of the ;wo assumptions of constant
(pc) with radius and of equal radial and tangez1tial velocity fluctuations.
The former assumption is estimated to be the m_re doubtful.

b_
!

P

O]

Prandtl Functions

Figures 5(a) to (d) show the data evaluat,_d in the form of Prandtl

functions given by equations (27a) to (27d), r,_spectively. In both

figures 5 and 6, all lines with a positive slope intersect the origin.

Figure 5(a) shows the data plotted in the form of equation (27a).

Both the inertia factor and the shear stress f_ctor are evaluated at the

outer boundary ro. Figure 5(a) shows essentially no cause-effect rela-

tion between ordinate and abscissa. The "best' line is shown only to

permit a comparison of K, or slope, from this plot with the other K
values.

Figure 5(b) shows a plot of equation (27bi, with the inertia factor

evaluated at r o and the shear stress at rn. Although the data can be
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represented by a straight line, a real value for K cannot be obtained

because the negative slope is not compatible with the form of equation

(27b). No effect of noise level is apparent in figure 5(b).

Figure 5(c) shows the data plotted in the form of equation (27c),

with the inertia factor evaluated at rn and the shear stress at ro.

Although a trend with respect to noise level can be seen, any interpreta-

tion of figure 5(c) is questionable because of the excessive scatter.

The line shown goes through the origin and gives K = 0.05.

The data shown in figure 5(d) are plotted in the form of equation

(27d), with both the inertia and shear stress factors evaluated at rn.

As in figure 5(b), the slope is negative, and there is no real value of

g in equation (27d). While considerable scatter is present, the appar-

ent trend in the data with respect to noise seemed to warrant identifica-

tion. Three lines are shown in figure 5(d) denoting silent, whistle, or

scream as the characteristic sound of operation. An investigation of the

cause and nature of these sounds was beyond the scope of this study, but

figure 5(d) indicates that they are related to turbulence effects in the

vortex.

To sum up, the only Prandtl function which correlated the experimen-

tal data was the one obtained by evaluating the inertia factor at the

outer boundary and the shear stress at the inner boundary. However, the

slope of the straight line through the data was negative; this is not in

accord with the form of the equation which was used to relate the depend-

ent and independent variables.

K_rm_n Functions

Figures 6(a) to (d) show the data evaluated in the form of K_rm_u

functions given by equations (30a) to (30d), respectively. Again, all

lines with a positive slope intersect the origin.

Figure 6(a) shows the result of evaluating both the inertia factor

and the shear stress at the outer boundary. This corresponds to the

Prandtl function of figure 5(a). The K{_nn_n function represents the data

reasonably well and gives a value of K = 0.063. The parameters plotted

are those given by equation (30a).

The Karman function given in equation (30b), with the inertia factor

evaluated at ro and the shear stress at rn, is shown in figure 6(b).

Here the data are seen to exhibit very little scatter. These boundary

conditions also gave the best correlation with the Prandtl function (fig.

5(b)). A straight line through the data (shown dashed) has a negative

slope, which does not admit of a real root for the g2 in equation (30b).
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The line from figure 5(b) is shownfor ccmparison. The "best" line
through the data (shown solid) has a slight curvature. It was this that
first suggested a log-log plot, and the possibility of an exponential de-
pendency of the variables.

Figure 6(c) showsthe result of evaluating the inertia factor at
r n and the shear stress at r o. The scatte_ of the data is excessive_
as was the case with the corresponding Prandtl function in figure 5(c).
The parameters plotted are given by equation (30c).

Figure 6(d) was obtained from equation (30d), with both the inertia
factor and the shear stress evaluated at r n. The use of these boundary
conditions results in a separation of the da_a with respect to the sound
characteristic of operation. This trend was also exhibited by the
Prandtl function with these boundary conditions (fig. 5(d)).

• p

The Karman functions correlate the experimental data better than do

corresponding Prandtl functions for the same boundary conditions. The

best agreement is obtained by evaluating the inertia factor at the outer

boundary and the shear stress at the inner one. For these boundary con-

ditions, the experimental data exhibit a negative slope; this is incom-
patible with the form of both the Prandtl an,l Karman relations. This in-

dicates that the ordinate and abscissa variables do have a functional

relation, but that the model which resulted fin equation (28) is

incomplete.

Modified Karman Function

The trend of the data shown in figure 6 ib) suggested an exponential

variation. Figure 7 is a replot of figure 61b) on log-log coordinates.

A log-log plot of the corresponding Prandtl :_unction (fig. 5(b)) would

have a similar appearance, but was not used 1}ecause less scatter was ex-

hibited in figure 6(b). All the data are sh,)wn; no identification is

made of either the noise characteristic or tile run sequence. The data

are represented by a straight line with very little scatter. The con-

stants in equation (33) were determined from figure 7 to be:

a=l.2

C 2 = 0.815
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The experimental data are best correlated_ then, by the modified
Karmanfunction :

UD

!

I_oo_ "-)]ll-a

, , _d fdv' v
u° (Voro)[d-_rr _ r

Ret = C2 fdv' v' 3 (33)

_dr' 7)n

While it is probable that the constants C2 and a are functions of the

system geometry and perhaps fluid properties, it is felt that equation

(33) does indicate the functional relation of shear stress, inertia, and

eddy diffusivity in a turbulent vortex. Subject to the validity of the

two primary assumptions - that Oc is constant with radius and that

radial and tangential velocity fluctuations are equal - the data indicate

that eddy diffusivity in a turbulent vortex is a function of both radial

inertia and shear stress derivatives.

SUMMARY OF RESULTS

A series of runs were made with a vortex generator, using air as the

fluid. Static pressures were measured at various radial stations; two

total pressures were measured. A turbulent Reynolds number was determined

for each run by matching the experimental velocities to a closed-form so-

lution of the Navier-Stokes equations of motion for compressible flow in

the annular region of a vortex; the eddy viscosity is assumed to be con-

stant with radius. An expression for eddy diffusivity is developed for

vortex flow in terms of a Prandtl mixing length and a shear velocity.

Prandtl mixing length functions are obtained for vortex flow with

the assumption that mixing length is proportional to radius. Karman

functions are developed by applying a similarity hypothesis to vortex

flow; the scale factor is taken to be the mixing length. The Prandtl and
• p

Karman functions contain an inertia factor and a shear stress factor. The

experimental data and the Navier-Stokes solutions are used to evaluate

these factors at inner and outer boundaries of the vortex. The following
results were obtained:

i. Some combinations of the assumed boundary conditions gave functions

which either did not correlate the experimental data or _ave imaginary
values of the universal constant K.

2. Karmanmixing length functions correlate the data better than

Prandtl ones for similar boundary conditions.
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3. The universal constant K was found to he 0.04 to 0.08 for vor-
tex flow, rather than the O.A established for pipe flow.

4. The K_unnanexpression evaluated by defining both the inertia and
he shear stress at the outer boundary correlates the data without ex-
essive scatter for g = 0.063.

5. The data are best correlated by a modified K_man expression
which is developed by dimensional analysis. It is assumedthat, in addi-
tion to the shear stress and its derivatives, the eddy diffusivity is a
function of the radial fluid momentumat the outer vortex boundary.

!

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, June 12, 1961
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ro = 6.0"_

Run Airflow,

number w,

ib/sec

118 0.099

119 1065!
120 120

121 1185

122 128

125 1595

124 1485

125 .1555

126 .1545

127 163

128 1675

129 1675

150 172

151 180

152 165

155 155

148 0.125

150 .121

151 .131

152 .159

155 144

154 143

155 1555

156 1555

157 166

158 170

158-2 178

159 186

160 185

161 184

162 .1895

165 1945

164 2065

165 259

166 2615

167 294

168 114

169 102

170 0865

P0

26.02

21.65

24.01

22.82

21.02

19.35

19.65

21.42

18.57

18.70

18.15

15.60

15.10

15.55

14.65

14.60

25.67
18.48 _

19.87

21.59

25.75

21.69

21.00

19.20

19.67

19.75

20.15

20.07

19.52

18.50

18.55

18.47

19.15

20.45

21.10

22.62

25.55

25.76

24.75

TABLE I. - EXPERIMENTAL DATA

r 4 = 4.75", rio = 2.5", rn = 1.75", TO = 530 ° R]

Static pressure, in. Hg abs

rA _]0 I Pn
i i

25.97 i 25.54 i24.77

21.42 ! 20.56 i 19.72

25.92 22.87 i 21.92

22.62 21.80 i 21.12

20.72 19.49 i18.12

19.07 17.59 i 15.87

19.52 17.53 i 15.82

21.12 19.85 i 18.52

18.12 16.06 I 14.07

18.52 16.10115.92

17.67 _= _ ' 12.97

15.17 12.59 i i0.42

14.72 ii.77 i 9.82

14.77 ii.89 i 9.72

14.22 ii.51 i 9.57

14.27 11.77 9.97

25.52 24.24 25.17

18.52 17. ii 15.92

19.72 18.29 17.07

21.17 19.65 18.52

25.47 21.88 20.27

21.42 19.65 17.97

20.72 18.72 16.82

18.92 16.80 14.82

19.27 16.90 14.82

19.52 16.87 14.62

19.67 16.90 14.57

19.57 16.60 15.87

18.82 15.28 12.82

17.82 14.27 11.82

17.67 14.05 11.57

17.87 14.17 11.67

18.52 14.68 12.12

19.72 15.62 12.82

20.32 15.98 15.22

21.82 17.25 14.12

25.27 24.57 25.57
25.67 24.91 24.27

24.62 25.98 25.42

Pr--O

25.52

17.92

19.82

19.82

15.57

12.42

12.02

15.87

9.87

9.52

7.87

6.52

5.57

5.52

5.52

6.17

20.67

15.27

14.22

15.17

16.72

14.17

12.47

10.32

8.72

9.22

8.27

7.42

7.32

6.52

6.12

6.17

6.52

7.42

6.67

7.12

21.62

22.72

22.12

Total pressure,

in. Hg abs

P4

2i3.42

22.07

23.62

25.22

21.62

20.17

29.57

2_.02

19.52

19.77

19.52 I
17.17

I_.92

17.07

15.52

]3.17

23.22

19.02

20.47

22.07

24.47

22.47

21.85

23.12

2). 67
2). 82

21.52

21.57

21.02

23.02

23.12

23.27

21.02

22.42

25.12

2_.82

25.77

25.17

24.92

PIO

26.02

21.52

25.92

22.62

20.82

19.22

19.52

21.52

18.27

18.42

17.92

15.52

14.87

14.92

14.57

14.57

25.62

18.57

19.82

21.27

25.67

21.62

20.92

19.02

19.47

19.62

19.97

19.97

19.12

17.97

17.82

17.97

18.72

19.92

20.52

22.02

25.52

25.72

24.62

Noise level

Silent

Whistle

Whistle

Silent

Scream

1
Silent

Whistle

Scream

Silent

Silent

!
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(a) Photograph.

iC-51583

Figure i. - Vortex test section.
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(b) Schematic diagram.

Figure i. - Concluded. Vortex test section.
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Figure 2. Vortex static-pressure and tangential velocity data.
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