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Foreword

This document is a product of the NASA Software Program, an Agency-wide program to

promote continual improvement of software engineering within NASA. The goals and strategies

for this program are documented in the NASA Software Strategic Plan, July 13, 1995.

Additional information is available from the NASA Software IV&V facility on the World Wide

Web at site http://www.ivv.nasa.gov/.
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1.1 Background

ne of the most significant challenges faced by the software engineering community inrecent years has been to continually capitalize on software development and

maintenance experiences, whether good or bad. Capitalizing involves application of

new technologies and evolution of technologies already widely in use, as well as the definition

and adoption of standards. One goal of software engineering practitioners is to make sure that all

those activities, which generally can be classified as process and product improvements, are

based upon understanding the impact on the target application domain in an appropriate way.

There is an evident need to implement some means by which every software activity provides

new and improved insight into continually improving methods for developing and maintaining

software; every experience must be used to gain new knowledge. To do so, every software

organization should be embedded in an infrastructure aimed at capitalizing on previous

experience. This concept is derived from several specific programs within the National

Aeronautics and Space Administration (NASA) [e.g., the Software Engineering Laboratory

(SEL) of NASA/Goddard Space Flight Center (GSFC), the Software Engineering and Analysis

Laboratory (SEAL) at NASA/Langley Research Center (LaRC), and the Jet Propulsion

Laboratory's (JPL's) Software Resource Center (SORCE)] and is similar in functionality to

another concept called the software Experience Factory (Reference 1). Continual improvement

based on specific experiences is the underlying concept of the NASA software process

improvement program.

Although not specifically designated in the title, both software process and software product are

emphasized in this guidebook and the overall NASA program. Improvements in the software

process result in measurable improvements to the software product, hence "software process

improvement" implies "software process AND product improvement." The importance of both is

emphasized throughout this document.

The NASA software process improvement program supports continual software quality

improvement and the use and reuse of software experience by developing, updating, and making

available key software technologies, knowledge, and products originating from operational

software projects and specific experimentation.

This guidebook addresses the needs of the NASA software community by offering a framework

based on an evolutionary approach to quality management tailored for the software business.

This approach is supported by an organizational infrastructure for capturing and packaging

software experiences and supplying them to ongoing and future projects.

1.2 Purpose

The purpose of this document is to provide experience-based guidance in implementing a

software process improvement program in any NASA software development or maintenance

community.

This guidebook details how to define, operate, and implement a working software process

improvement program. It describes the concept of the software process improvement program

and its basic organizational components. It then describes the structure, organization, and
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operation of the software process improvement program, illustrating all these concepts with

specific NASA examples. The information presented in the document is derived from the

experiences of several NASA software organizations, including the SEL, the SEAL, and the

SORCE. Their experiences reflect many oft he elements of software process improvement within

NASA.

This guidebook presents lessons learned in a form usable by anyone considering establishing a

software process improvement program within his or her own environment. This guidebook

attempts to balance general and detailed information. It provides material general enough to be

usable by NASA organizations whose characteristics do not directly match those of the sources

of the information and models presented herein. It also keeps the ideas sufficiently close to the

sources of the practical experiences that have generated the models and information.

1.3 Organization

This "Introduction" is followed by four additional chapters.

Chapter 2 presents an overview of concepts pertaining to software process improvement,

including the organizational structure needed to support process improvement, the three-phase

software process improvement approach, the scope of an organization to which process

improvement is to be applied (domain), and the unique aspects of the software process

improvement framework presented in this document versus other software process improvement

approaches.

Chapter 3 presents the structure of a typical NASA software process improvement program and

describes the major components of the software process improvement organization. The chapter

gives an overview of each of the three organizational components and discusses the resources

each component requires. It also presents details regarding the operation of the software process

improvement program, describing the responsibilities, activities, and interaction of each of the

three organizational elements. The chapter details how each component performs the activities

associated with its process improvement responsibilities and how the three groups interact and

operate on a daily basis.

Chapter 4 presents the steps for implementing software process improvement in an organization.

Chapter 5 addresses key management issues associated with the implementation and operation of

a software process improvement program, including cost and potential benefits.

3 NASA-GB-001-95





Chapter 2. The Software Process Improvement
Framework

Chapter Highlights

APPROACH

Understanding
Assessing
Packaging

STRUCTURE

Developers
Analysts
Support Staff

DOMAINS

Scope of an organization to
which process improvement is
to be applied
Transfer of information across
domains
Improvement of software within
a domain

VARIOUS APPROACHES

NASA Approach
Capability Maturity Model
Emphasis on the need for continual,
sustained improvement of software

his chapter provides an overview of concepts pertaining to software process improvementwithin NASA. The first section discusses the key components of the software process

improvement framework, specifically, the organizational structure needed to facilitate

process improvement. The next sections cover the three-phase software process improvement

approach and related concepts including "domain." (A domain is a classification scheme as it

pertains to the application of the process improvement approach within a specific organization.)

The last section discusses the unique aspects of this process improvement framework with
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respect to other process improvement approaches. Some of the concepts introduced in this

chapter are discussed in further detail in later chapters.

2.1 The Software Process Improvement Organization

Historically, software organizations have exhibited significant shortcomings in their ability to

capitalize on the experiences gained from completed projects. Most of the insight has been

passively obtained instead of aggressively pursued through specific plans and organizational
infrastructures.

Software developers and managers, although well-meaning and interested, generally do not have

the time or resources to focus on building corporate knowledge or organizational process

improvements. (For this document, a "software developer" is defined to be any technical project

personnel, including designers, development and maintenance programmers, technical managers,

and any other technical contributors.) They have projects to run and software to deliver. Thus,

collective learning and experience must become a corporate concern and be treated as a company

asset. Reuse of experience and collective learning should be supported by an organizational

infrastructure dedicated to developing, updating, and supplying upon request synthesized

experiences and competencies. This infrastructure should emphasize achieving continual

sustained improvement.

Software process improvement organizations within NASA are structures devoted to using

lessons, data, and general experience from software projects to ensure that ongoing and ensuing

efforts use the experiences gained to continually improve the associated organization's software

products and processes.

Software process improvement organizations within NASA are dedicated to software process

improvement and the reuse of experience. Each NASA software process improvement

organization consists of

• Developers, who design, implement, and maintain software. They also provide project

documentation and data gathered during development and operations.

• Process Analysts (hereafter referred to as analysts), who transform the data and

information provided by the developers into reusable forms (e.g., standards, models,

training) and supply them back to the developers. They provide specific support to the

projects on the use of the analyzed and synthesized information, tailoring it to a format

that is usable by and useful to a current software effort. In some programs, this element

may be called the Software Engineering Process Group (SEPG).

• Support Staff who provide services to the developers by supporting data collection and

retrieval and to the analysts by managing the repository of information.

Although separate, these three components are intimately related to each other. Each component

has its own goals, process, and plans, but together all three components have the mission of

providing software that is continually improving in quality and cost effectiveness. Table 2-1

outlines the differences in focus among the three components comprising the software process

improvement organization.

Table 2-1. Focus of Software Process Improvement Organization Components
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Area

Focus and

Scope

Goals

Approach

Measure of
Success

Developers

Specific project

Produce, maintain
software

Satisfy user requirements

Use the most effective

software engineering
techniques

Delivery of quality
software products on time
and within budget

Analysts

Multiple projects (specific
domain)

Analyze and package

experience

Support developers

Assess the impact of
specific technologies

Package experience into
models, standards, etc.

Reuse of empirical
software experience by
developers

Improved products

Support Staff

Multiple projects (specific
domain)

Archive, maintain, and

distribute development
and maintenance

experience

Maintain a repository of
experiences, models,
standards, etc.

Efficient collection,

storage, and retrieval of
information (data,
models, reports, etc.)

The developers' goal is to deliver a software system. Their success is measured by delivering, on

time and within budget, a software product that meets the needs of the user.

The analysts' goal is to analyze and package experiences into a form useful to the developers.

They use information such as development environment profile, methods, characteristics,

resources breakdown and utilization, error classes, and statistics to produce models of products

and processes, evaluations, and refined development information. This set of products could

include cost models, reliability models, domain-specific architectures and components, process

models, policies, and tools. Every product of the analysts is derived from specific experiences of

the developers. The success of the analysts is measured by their ability to provide to the

developers, in a timely way, useful products, processes, and information. Ultimately, the success

of the analysts is measured by improved software products.

The success of the support staff is measured by the efficiency of the information collection,

storage, and retrieval system, and the degree to which it relieves the overall organization of

unnecessary activities and waiting periods.

Figure 2-1 provides a high-level picture of the software process improvement organization and

highlights activities and information flows among its three components.

The developers produce and maintain software but are not directly responsible for capturing the

reusable experience. They provide the analysts with project and environment characteristics,

development data, resource usage information, quality records, and process information. The
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Project Organization ""
Tailored processes

and models
Develop/maintain software

Developers Process feedback

Development data and

Analysis Organization

• Analyze software process and products

• Package process improvements

Analysts

software product characteristics

Packaged experience

Support Organization

Maintain repository of development information and packaged experiences

Figure 2-1. Software Process Improvement Organization

developers also provide feedback on the actual performance of the models produced by the

analysts and used by the project. Therefore, with respect to software process improvement, the

developers have the global responsibility for using, in the most effective way, the packaged

experiences to deliver high-quality software.

The analysts, by processing the information received from the developers, produce models of

products and processes and return direct feedback to each project. They also produce and provide

baselines, tools, lessons learned, and data, parameterized in some form in order to be adapted to

the characteristics of a project.

The support staff sustain and facilitate the interaction between developers and analysts by saving

and maintaining the information, making it efficiently retrievable, and controlling and monitoring

access to it. They use tools that assist in collecting, validating, and redistributing data and

reusable experience.

The roles of the developers and support staff in software process improvement are easily

understood. The role of the analysts is less clear; however, based on the information stated thus

far, Table 2-2 summarizes what the role of the analysis organization is and is not.

Table 2-2. Role of the Analysis Organization

The analysis organization IS The analysis organization IS NOT

An organization; it has people and structure

A domain-specific infrastructure

Separate from the developers but works closely
with them

Variable in size (driven by the size of the
development organization)

A quality assurance or independent verification
and validation (IV&V) organization

A research laboratory

A management infrastructure

An audit organization
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The ultimategoal of a softwareprocessimprovementorganizationis to understandand repeat
successesand to understandand avoid failures. Therefore,the softwareprocessimprovement
organization'sprocessesand operationsmust be basedon solid and objective development
experience.Thus,ameasurement-basedapproachis neededfor projectmanagement,evaluation,
and decision making. Software measuresare applied to process,product, and resources.
Measurementis one of the basic tools available to the software process improvement
organizationfor performing its tasks and to managementfor controlling and improving the
efficiencyof thewholeinfrastructure.

2.2 The Software Process Improvement Approach

The goal of any NASA software process improvement program is continual process and product

improvement. To attain this goal, the program uses a process approach consisting of three major

phases: Understanding, Assessing, and Packaging. These phases are continually executed in any

development environment within the organization. Figure 2-2 illustrates these three phases.

_ PACKAGING

Capture improved techniques as a part of modified process, e.g.,

ITERATE I • Incorporate inspections into development standard

/ _........IP_ASSESSING I • Develop inspections training program
Improvement

l lr_p goal I Determine the impact of a change, e.g.,
( • Does object-oriented design produce more reusable code?

UNDERSTANDING • Do nspect ons resu t n ower error rates?

Build a baseline of process and products, e.g.,

• What development techniques are used?
• What is the unit cost of software?
• What types of errors are most common?
• How much reuse occurs?

Continual improvement over time

Figure 2-2. Three-Phase Approach to Software Process Improvement

The remainder of this section describes these three phases in more detail.

2.2.1 Phase 1 Understanding

ITERATE _ [ PACKAGING In the Understanding Phase, the organization's process

and products are characterized and high-level goals for

UNDERSTANDING improvement are identified. The purpose of this phase
-- is to continually capture the characteristics of the

software process and products within the project organization and produce models, relationships,

and general descriptions of the process and products. Understanding is the required starting point

of the overall process improvement sequence, and it never ends, because changes must always be

understood and characterized. Without this baseline of the process, products, and environment,

no basis for change or improvement exists. A determination for change and improvement can be

made and quantitative goals set only when the characteristics of the ongoing process and

products are captured and understood.
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Understandingis thephasein whichthe softwarebaselineis establishedandis themostcritical
phaseof the improvementapproach;however,this phaseis often ignored.The developersand
analystscharacterizetheorganizationalenvironment,describingit in termsof relevantprocesses
and models. The environmentis characterizedby using available data, both objective and
subjective.The existingprocessesandproductsarecharacterizedandmodeledthroughmeasured
experience.Basedon the baselinefindings,a specificorganizationcan identify high-levelgoals
for improvement(e.g., cut cost, improve reliability). Eachorganizationmust determinewhat
typesof improvementgoals are most important in its local environment.Having a baseline
allowstheorganizationto setgoalsthatarebasedon theneedfor specificself-improvements.

The baselineof the softwareorganizationis capturedin the form of models(e.g.,costmodels,
error models), relationships(e.g., relationshipbetweentesting time and error density), and
characteristics(e.g.,what standardsareused,what techniquesareusedfor performingspecific
activities).Although the type of informationcollectedin the UnderstandingPhaseis relatively
genericandcommonacrosssoftwareorganizations,specificcharacteristicsthat arederivedfrom
theparticulargoalsandneedsof the softwareorganizationsshouldalwaysbeconsidered.These
specificsareproductcharacteristicssuchascost,size,anderrors,andprocesscharacteristicssuch
as effort distribution and resources usage. Understanding such environment-specific
characteristicsis necessarysothattheorganizationcanplanimprovementsin thecontextof local
goals. For instance,if the organization'shigh-level goal is to improve productivity, it must
understand(baseline)its currentproductivity rateandprocessandproductcharacteristics.Using
the baselineas the basisfor improvementallows the organizationto set specific, quantitative
goals.For example,rather than striving to simply reducethe error rate, an organizationcan
establishamorespecific,measurablegoalof reducingtheerrorrateby 50percent.

Figures2-3 through2-5showsomebaselineinformationrecentlygatheredfor NASA asa whole
(Reference2). During thebaselineperiod,NASA haddevelopedmorethan6million sourcelines
of code(MSLOC) andhadover 160MSLOCin operationalusage.Thebaselineestablishedthat
nearly80percentof NASA's softwarework is contractedto industryandeducationalinstitutions.

Figure2-3 showsthe distributionof NASA softwaredomainsfor operationalsoftware.Mission
groundsupportand generalsupportsoftwarewere found to be the largestand most prevalent
softwaredomains,accountingfor almost60percentof all NASA software.Administrative/IRM
softwarewasthenext largestdomain,accountingfor almost20percentof NASA software.The
scienceanalysis,research,andflight softwaredomainsweremuchsmallerin size.

Figure2-4 showsthe amountof resourcesNASA investedin software.As indicated,morethan
10percentof NASA's workforce spentthemajority of their time (i.e.,more thanhalf time) on
software-relatedactivities including softwaremanagement,development,maintenance,quality
assurance,and verification andvalidation. NASA investeda significantamountof manpower
budgetaryresourcesin software.
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Administrative/IRM
(30 MSLOC)

19%

Simulation, Research
(6 MSLOC)

4% Flight/Embedded
(10 MSLOC)

6%

Science Analysis Mission Ground Support
(20 MSLOC) (59 MSLOC)

13% 37%

General Su
(35 MSLOC)

22%

Figure 2-3. NASA Operational Software Domains

Software Versus Total Costs Software Versus Total Staffing

$1 Billion Software

,Software Personnel

Costs 8,400

Figure 2-4. NASA Software Resources

Figure 2-5 shows the distribution of languages used for software in operations and under

development. As shown, the use of FORTRAN, along with COBOL and other languages (e.g.,

Assembler, Pascal), has decreased significantly; presumably these languages are being replaced

by C/C ++. The use of both C/C ++ and Ada has increased dramatically, though Ada use is not as

widespread as C/C ++. Nevertheless, FORTRAN development is still substantial, indicating its

use will likely continue for some time.

For a global-level organization, such as NASA as a whole, the baseline is necessarily at a much

more general level than in organizations locally implementing the software process improvement

approach. Most models, for instance, would make sense only with respect to particular domains

(e.g., flight software or administrative software), not for the Agency as a whole. Local models

(e.g., cost and reliability models) can be developed for specific organizations to help engineer the

process on ongoing and future projects.
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0
FORTRAN
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Cobol

41
C/C++
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Ada Other

Operational software []

Software under development []

Figure 2-5. NASA Language Preferences and Trends

The following examples illustrate the Understanding Phase at a local organizational level. The

examples use data from a major software organization at NASA that has continually collected

and studied development data for general support systems. The data represent over 500 staff-

years of effort and are from over 25 systems completed in the mid- and late- 1980s. These data

were extracted and analyzed to build the basic understanding parameters including two of the

most basic, yet often overlooked, characteristics of software: effort distribution and error profiles.

By collecting data readily available during the development process, the organization gained

understanding of where the development effort for the software process was being expended--

among design, coding, testing, and other activities (such as training, meetings, etc.). Although

extremely easy to obtain, such basic information is often ignored.

Example 1: Understanding Effort Distribution

Figure 2-6 shows the distribution of effort by time. Typically, 26 percent of the total

effort is spent in the design phase, that is, the period from onset of requirements analysis

through critical design review (CDR); 37 percent in the code phase, that is, from CDR

through code completion and unit testing; and the remaining 37 percent in the test phase,

that is, integration, system, and acceptance testing.

Viewing effort distribution from a different perspective, Figure 2-7 breaks down specific

development activities, showing the amount of time attributed to each as reported by the

individual programmers rather than in a date-dependent manner. Throughout the project,

programmers report hours spent in these categories. The analysts examine the developer-

supplied information across many projects and then determine the typical effort

distribution for this particular organization. As this figure shows, 23 percent of the

developers' total effort is spent in design; 21 percent in code; 30 percent in test; and 26

percent in other activities including training, meetings, documentation (e.g., system

descriptions and user's guides), and management. Such basic information can then be

used to generate local models, such as a "cost by activity" model.
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Date Dependent Programmer Reporting

Ot,er Design

Figure 2-6. Effort Distribution by Time Figure 2-7. Effort Distribution by Activity

Example 2: Understanding Error Profiles

A second example of the characterization performed in the Understanding Phase is found

in error characteristics. Based on the same projects for NASA ground systems, error

profiles based on over 500 reported development errors are depicted in Figures 2-8 and

2-9. These data provide some initial insight into the error profiles, which in turn can lead

to a more structured approach to addressing certain error characteristics in future systems.

Figure 2-8 shows the breakdown of all errors by class. This figure shows what types of

errors exist and how they are distributed across classes, as classes are defined by the

specific organization.

Figure 2-9 depicts how the software errors found in an environment are distributed into

different classes based on their recognized origin. In this example, 50 percent of errors

originate from requirements, 20 percent from design, 20 percent from coding, and 10

percent from clerical sources. The overall error rate for this organization was six errors

per thousand source lines of code (KSLOC).

Computational

Data

Interface

Initialization

Logic/

Control

Require-
ments

Implementation

Design

Clerical

Figure 2-8. Error Distribution by Class Figure 2-9. Error Distribution by Origin

Basic information about errors can lead to the development of error-related models, such

as error detection rate. Figure 2-10 shows the error detection rate for five projects of

similar complexity in the same environment. This organization typically sees the error

rate cut in half each time the system progresses to the next life-cycle phase. This type of

information leads to the important step of producing models that can be used on ensuing

projects to better predict and manage the software quality within the different phases.
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Figure 2-10. Error Detection Rate

Example 3: Understanding Other Models and Relationships

Figure 2-11 provides examples of other models and relationships that have been

developed as useful profiles of a specific environment. Reference 3 discusses these and

other relationships and how they can be applied.

Effort (in staff-months)

Duration (in months)

Pages of Documentation

Annual Maintenance Cost

Average Staff Size

= 1.48 * (KSLOC) 0.98

= 4.6 * (KSLOC) 0.26

= 34.7 * (KSLOC) 0.93

= 0.12 * (Development Cost)

= 0.24 * (Effort) 0.73

Figure 2-11. Sample Process Relationships

These examples are typical products of the characterization activity performed in the

Understanding Phase. They are based on actual data collected in a production environment and

represent the situation before (or at a specific milestone of) an improvement initiative. The

examples are domain-specific and, although essential for understanding a specific environment

and controlling improvement, they are not universally applicable to other domains. The concept

of building the understanding (baseline) is applicable to all domains; however, the specific

models produced and organizational goals set may not be.

2.2.2 Phase 2 Assessing

ITERATE _ [ PACKAGING

UNDERSTANDING

In the Assessing Phasd, specific objectives for

improvement are set, one or more changes are

introduced into the current process, and the changes are

then analyzed to assess their impact on both product

and process. Change may include introducing a method, tool, or management approach. This

phase generally is thought of as the experimental step in which some defined change to the

1 Within the context of process improvement, the term "assessing" refers to an evaluation of the effect of introducing

a change. It should not be confused with the usage of the term assessment as regards CMM organizational process

capability evaluations.
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processis evaluatedagainstthe baseline.The changesarestudiedthroughspecificexperiments
conductedin selectedprojects.

Experimentation is defined as the steps taken to set objectives based on a project's software

improvement goals for the specific assessment; introduce some change to the baseline process;

collect detailed information as the changed process (i.e., the experiment) progresses; compare the

results of the experiment against the baseline values established in the Understanding Phase; and,

finally, determine if the change that was introduced met the objectives established for the

assessment/experiment.

The choices made in this phase are driven by the characteristics and high-level organizational

goals identified in the Understanding Phase. Experiment objectives are set and quantified

according to the data collected in the baseline. Reference 4 provides information on a mechanism

[the Goal/Question/Metric (GQM) paradigm] for defining and evaluating a set of operational

goals using measurement on a specific project. The questions addressed in the Assessing Phase

depend on both the overall goal and the chosen process change. For instance, if a cycle time of 2

years per system has been measured over the last 10 years, a possible goal might be to decrease

the cycle time to 18 months over the course of the next several years. Another organization may

wish to focus a specific experiment on improving reliability (i.e., reducing error rates) and might

introduce software inspections to attain that goal. The inspections' assessment would answer the

question "Does the use of software inspections result in the production of more reliable

software?"

To carry out the assessment process, several basic requirements must be fulfilled. First, some

kind of baseline or norm must exist against which the assessment data can be compared. This

baseline is provided by the Understanding Phase. In some cases, however, further information is

needed to provide a reasonable comparison base for the Assessing Phase, for example,

experience level of the developers or level of receptiveness to change. Second, the organization

must prioritize changes and select the ones on which it will focus. Although any organization

would certainly aspire to attain all improvement goals at once, the assessment of changes through

experimentation proceeds slowly. The effect of too many concurrent changes cannot be

controlled, and the whole assessment would be compromised. Additional complexities exist

within the Assessing Phase because essentially all measures of change are coupled to other

measures. For instance, to improve reliability (i.e., reduce error rates), cost might be added to the

development process. Third, the organization must state its goals (e.g., fewer errors, higher

productivity) in a measurable way (e.g., the number of errors per KSLOC should be less than 4.0;

the number of statements developed and tested per hour should be higher than 3.5). Although

achieving the measured goal is a good indicator of success, the subjective experience of the

developers must also be considered in the assessment.

Examples 4 and 5 illustrate specific assessments performed within NASA.

Example 4: Assessing Inspections

Formal inspections are technical reviews that focus on detecting and removing software

defects as early in the development life cycle as possible. The goal of introducing

inspections in one NASA organization, JPL, was to increase the quality of the following

products of software systems: software requirements, architectural design, detailed

design, source code, test plans, and test procedures. By doing so, the overall quality of the
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softwarewould be improved and cost would be reducedby detectingdefectsearly
(Reference5). In the UnderstandingPhase,the cost to detectand fix a defect found in
formal testingwasdeterminedto bebetween5 and 17hours(thedefecthasto be traced,
found,fixed, andretested).In theAssessingPhase,inspectionswereintroducedandtheir
impact measured.Becauseinspectionswere introducedearly in the developmentlife
cyclewhenmostproductsaretechnicaldocuments,the reportingmetric wasnumberof
pagesrather than estimatedlines of code.As Figure 2-12 shows,a higher densityof
defectswas detectedin earlier life-cycle productsthan in later ones.Not only was the
overall softwarequality improvedby reducingrework during testingandmaintenance,
butcostswerereducedby findingdefectsearlierin the life cycle.Onaverage,findingand
fixing defectsfound during inspectionstook 1.1 hours and 0.5 hours, respectively--a
significantsavingscomparedto thepreviousrangeof 5 to 17hoursfor both. Inspections
havesubsequentlybeenintroducedat otherNASA centers,andtheir assessmentshave
alsobeenfavorable.

Theimportanceof the Understanding Phase cannot be overemphasized. In this example, without

the established baseline, the assessment would have been purely subjective, relying solely on

opinions of people within the organization as to whether inspections helped, did nothing, or

perhaps even hindered the development process. Changes introduced by the software organiza-

tion to address some goal of improvement will always have multiple impacts that must be

considered, such as the added cost and overhead of making a change. In this example, several

measures, such as additional cost, development time, and final defect rates, must be analyzed to

ensure that the full impact of the change is understood.

Not all assessments will be positive. The assessment results might show positive impact, no

change, or even negative impact on the factors being examined.

ag
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1.5

0.5

--o-- All defects

_&\ ?Minor defects*

Majo r d efects*

Requirements** Architectural Detailed Code**
Design Design

INTERMEDIATE SOFTWARE PRODUCTS

* Major defects cause systems to fail during operations or prevent systems
from fulfilling a requirement.
Minor defects are all other defects that are nontrivial. Trivial defects

include grammar and spelling errors; these were noted and corrected but
not included in this analysis.

** Statistical tests showed a significant difference between the defect
densities found in requirements and code inspections. This analysis is
based upon a sample of 203 inspections performed on six JPL projects.

Figure 2-12. Assessing the Impact of Inspections
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Example 5: Assessing Cleanroom

Another sample assessment, the use of the Cleanroom process (Reference 6), is also

provided. Cleanroom is a software process developed by Harlan Mills (International

Business Machines) that focuses on producing error-free software and results in a product

with certifiable reliability. The Cleanroom process was selected to attain the goal of

improving the reliability of delivered software without penalty to the overall development

cost. Significant process changes included using formal code inspections, applying the

formal design concept of box structures, using rigorous testing approaches driven by

statistical methods, and providing extended training in software engineering disciplines

such as design by abstraction.

In 1987, the first Cleanroom project was selected, the team trained, the experiment plan

written, and the development process and product meticulously measured. Process

impacts were observed at several levels, including increased effort spent in design and a

different coding activity profile. Figure 2-13 illustrates these impacts.

This first experiment (Reference 7) resulted in impressive product gains in both reliability

(38 percent) and productivity (54 percent) when compared with existing baselines

(Figure 2-14). However, because this first project was small [40,000 developed lines of

code (DLOC)], two additional projects were selected using a refined set of Cleanroom

processes derived from the first project's experiences (Reference 8). These later projects

provided additional evidence that components of the Cleanroom process were effective in

reducing error rates while maintaining productivity for smaller projects, but the larger

project had a smaller reliability improvement (14 percent) with a 23 percent reduction in

productivity.

Distribution of All Activities:
Slight Impact on Design and Code

Baseline Cleanroom Projects

Code Activities Only:
Substantial Process Impact

Baseline Cleanroom Projects

Figure 2-13. Assessing the Impact of Cleanroom on Process

Figure 2-14 illustrates the impact of the Cleanroom process on the product. As a result,

key Cleanroom concepts, such as focused inspections and process training, have been

infused into the standard organizational process, but other aspects are undergoing further

analysis until the cost differences are more fully explained.
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Errors per KDLOC

[] Baseline (1982-1984)

• 1st Cleanroom (40 KDLOC, 1/88-9/90)

Productivity (DLOC per day)

4O

• 2nd Cleanroom (23 KDLOC, 4/90-12/91)

• 3rd Cleanroom (160 KDLOC, 2/90-6/92)

Figure 2-14. Assessing the Impact of Cleanroom on Product

Again, even though the change might result in the achievement of the original goal, other

parameters must be analyzed to ensure that the full impact of the change is understood. If the

assessment of Cleanroom showed that the goal of improved reliability was met but other factors

suffered significantly (e.g., productivity drastically decreased and cost increased), the overall

assessment might not have been favorable. It might be totally acceptable to one organization to

increase cost significantly to achieve improved reliability; for another, the same circumstances

might be unacceptable. It is important to understand the full impact of any change within the

constraints of the specific organization.

Many other assessments have been performed within NASA. References 9 through 12 detail

other sample assessments involving Ada, object-oriented technology (OOT), software

modularization, and testing techniques, respectively.

Assessing is the second step of the improvement paradigm. Whether results are favorable or

unfavorable, each assessment must be followed by the third step, some form of packaging. The

next section describes the Packaging Phase.

2.2.3 Phase 3 Packaging

ITERATE _

_/Goal _ _IASSESSING_

UNDERSTANDING

In the Packaging Phase, changes that have produced

satisfactory results and shown measurable improvement

are institutionalized and incorporated into the

mainstream of the organization. During this phase, the

analysts develop new models, standards, and training materials based on what has been learned

during the Assessing Phase. The products developed by the analysts are stored by the support

staff into a repository (i.e., an experience base) and are provided to the developers upon request.

Packaging typically includes standards, policies, and handbooks; training; and tools. For

methodologies or techniques that do not show any favorable impact during the Assessing Phase,

results must still be captured and archived (i.e., packaged) so the corporate memory is continually

enhanced. This packaging may include reports or papers that are maintained in the corporate

repository. The results of the packaging phase are fed back to those individuals involved with

baselining prior to the next related project or experiment. Thus a particular technology can be

assessed through multiple experiments, each one building on the packaged results of the previous

experiment(s).

Packaging requires a clear understanding of the impact of a specific technology on the software

process and products. The ultimate measure of success is, in general, an improved software
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product.Therefore,institutionalizationof changemust besubstantiatedby reliable dataon the
products resulting from the process.Standards,policies, process characteristics,and other
"packages"aremosteffectivewhentheyreflect empiricallyderivedevaluationsof technologies
andprocessesthataresuitableandbeneficialto thespecificorganization.

The major productof the packagingstepis the organization'sstandards,policies,andtraining
program.The softwareprocessmust be developedto respondto the general needsof the
organizationandis drivenprimarily by theexperiencesandneedsof thedevelopers.Thus,every
elementof the standardsneednot have beenassessed,but somerationalemust exist for their
inclusion.

Examples6 and7 illustratehow theexperiencesfrom thepreviousassessments(Examples4and
5)maybe(or havebeen)packaged.

Example 6: Packaging Experiences With Inspections

Consider the example of inspections. In the Understanding Phase, the organization

characterized the cost to detect and fix defects. In the Assessing Phase, inspections were

introduced to increase software quality and to reduce cost by detecting defects early in the

life cycle. The organization then assessed the impact of inspections and determined that

the goals of the experiment had been achieved. In the Packaging Phase, the organization

needs to determine how to package its favorable experience with inspections, perhaps by

modifying its standards (e.g., development manual) to include inspections or to train its

personnel to effectively use inspections. Figure 2-15 depicts the example of inspections

with respect to the three-phase process improvement approach. Process changes occur,

assessments are made, and improvements are identified. Organizational standards then

need to be upgraded to reflect the improved process as part of the standard way of doing

business within the organization.

ITERATE

_ morGeOdAe_ectsand

i7 them earlier)

UNDERSTANDING

PACKAGING

S • Refine training• Revise development manual
• Incorporate inspections into

ASSESSING standard development process

_1 • Introduce inspections, train personnel, use checklist forms,

Ietc.
• Assess impact

Hours to detect Baseline With Inspections
and fix defect: 5 to 17 1.1 (detect) + 0.5 (fix)

• Assessment favorable; goal met

Determine cost to detect and fix defects: 5 to 17 hours to detect and fix defect

TIME ram,

Figure 2-15. Packaging Experiences With Inspections

Example 7: Packaging Experiences With Cleanroom

Finally, consider the Cleanroom example. The goal of introducing Cleanroom was to

improve reliability without incurring a cost penalty. In the Understanding Phase, cost and

reliability rates were determined. In the Assessing Phase, the first Cleanroom experiment

was performed, and impressive gains were achieved in both reliability and productivity.

Experiences of this first experiment were packaged in the form of updated training
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materialsand a handbookdetailing refined Cleanroomprocesses(Reference13); these
productswerethenusedonsubsequentCleanroomexperiments.

The three stepsof the improvementapproachwere repeatedfor additionalCleanroom
experiments. In the UnderstandingPhase,error and productivity rates from the
organizational baseline and the early Cleanroom experiment were established for use in

later comparisons. In the Assessing Phase, the results of the later experiments were

evaluated against both the baseline and early Cleanroom experiences. Experiences from

these later experiments were also incorporated into the tailored Cleanroom process

handbook and training materials. Some key Cleanroom concepts, such as focused

inspections and process training, have been packaged and infused into the standard

organizational process. Other aspects of Cleanroom are undergoing further analysis until

the cost differences exhibited in the larger project can be more fully explained. Figure 2-

16 depicts the packaging of the experiences of the Cleanroom experiments with respect to

the process improvement approach.

prove reliability)

UNDERSTANDING

PACKAGING

,_ _ ] • Refine training

ASSESSING [ • Refine process handbook

• Introduce Cleanroom, train personnel
• Assess impact (exp. = experiment)

Baseline 1st _ 2nd Exp. 3rd Exp. Assessment

Reliability 7.0 4.3 3.3 6.0 Better

Productivity 26 40 2.6 20 Mixed

• Assessment favorable for smaller project, mixed for larger

I_ Determine reliability rates: Baseline = 7.0 errors per KDLOC First exp. = 4.3 errors per KDLOCDetermine productivity rates: Baseline = 26 DLOC per person per day First exp. = 40 DLOC per person per day

TIME

Figure 2-16. Packaging Experiences With Cleanroom

Even if later assessments of Cleanroom are favorable, the process change will not be

mandated immediately to every project. A significant change like Cleanroom would be

evolutionary, and additional projects would be identified as the experience base is

broadened. Experience has shown that significant process changes cannot be adopted or

mandated quickly; they must evolve. It is the task of the analysts and development

managers to jointly plan the evolutionary process change for changes as significant as
Cleanroom.

2.3 Domains for Software Process Improvement

This chapter has discussed the structure and three-phase approach needed for software process

improvement. The concept of software domain is also critical to process improvement. The

organization must know the scope to which process improvement is being applied. Is process

improvement being applied across the entire organization or to a specific subset such as a

division or department? Understanding domains is also important to facilitate sharing of

experiences within and across domains.

The software process improvement organization gathers, synthesizes, and packages experiences

from a particular domain for use within the same domain. Whatever the domain is, the
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organization first develops an understanding of its processes and products. It then treats the

domain as the "whole world" for applying process change and assessing the impact of this

change. The results and lessons are thenpaekaged, and the information is applied to ongoing and

subsequent efforts within that specific domain to improve the quality of the software being

produced. Transfer of information across domains may be achieved, especially when the domains

have similar characteristics. However, the primary goal is to improve software within the specific

domain.

Domain analysis, or domain definition, is usually described as the process of recognizing

standard concepts, functionalities, and architectural characteristics within a software devel-

opment application area. Domain definition is important to facilitate product reuse and improve

both the productivity and quality of the final products (Reference 14). Often domain analysis

pertains strictly to the reuse of code. For software process improvement, domain analysis is not

limited to any one type of artifact (i.e., code); it facilitates the reuse of all experience, including

that embodied in code. For software process improvement, the domain influences the breadth to

which analysis applies; it influences the scope of packaged results (e.g., standards, policies,

training, tools); and it strongly determines to what extent any information, experience, or data

can be shared and reused. Additionally, it dictates how large a software process improvement

organization can be.

No direct mechanism exists for defining domains or organizational characteristics. Historically,

the definition of a software domain has most often been associated with an organizational

structure: a single domain is either an entire organization (e.g., NASA) or a subset of an existing

organization (e.g., NASA field center, branch, division, project, department). Domains are not,

however, necessarily linked to organizational structures. They may be defined according to the

factors that characterize the development processes, technologies, products, constraints, goals,

and risks associated with the projects. Different classes of projects may exist within one

organization (e.g., real time versus non-real time, flight versus ground systems) that might be

treated as individual domains or together as a single domain. The development processes used

and the overall process improvement structure are most often defined by the management

structure that is in place.

Once domains are understood and identified, common processes, standards, and experience may

be shared with confidence by various software organizations (e.g., individual NASA projects or

field centers) within a broader organizational structure (e.g., the Agency as a whole). Because

organizations can share data, information, and lessons learned, they can improve faster and

further than they could in isolation.

Domains have no size or breadth limitations. For example, there is some commonality for "all of

NASA" to be considered one domain; there is more commonality for "all of Johnson Space

Center" to be considered one domain; and there are some differences between Johnson Space

Center and Langley Research Center potentially resulting in their being considered different

domains. The point is that any organization can be classified as one domain, but as the

organization becomes broken down into more specific and smaller elements, more parameters are

relevant to the more specific, smaller domains than the larger organizational domain. Figure 2-17

depicts some potential domains within NASA. Some domains might be tied to organizational

structures (e.g., individual field centers) while others might pertain to application domains (e.g.,

mission support software). Within any domain is the potential for subdomains to exist. For
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example, the mission support software domain might be broken down further into ground

support software, flight software, and scientific software.

Reference 14 describes activities to date in analyzing and defining NASA domains for the reuse

and sharing of experience.

The baseline has been established (Phase 1--Understanding), change has been introduced and

improvements identified (Phase 2--Assessing), and the experiences have been packaged in a

reusable manner (Phase 3--Packaging). Now the experiences have to be shared and incorporated

throughout the organization. These experiences can be shared not only within specific domains,

but occasionally even across domains. But with whom? Determining the domain-specific

characteristics is necessary to identify who can share the information and experiences. For

example, standards are one form of packaged experiences. If standards are to be adopted across

domains, it is important to understand the characteristics those domains have in common.

Domain-specific characteristics need to be identified to tailor standards for the needs of a

particular domain. Like any form of packaged experiences, standards should evolve over time.

To what domains do the standards apply? Answering this question extracts current information

from the domains so that standards can be updated to reflect recent experiences.

DOMAIN: NASA

DOMAIN: Mission Support

DOMAIN: Ground Support [e.g.,

Deep Space Network (DSN), SEL]

DOMAIN: Flight (e.g., Space Station

Shuttle flight software)

DOMAIN: Scientific [e.g., Earth

Observing System (EOS)]

DOMAIN: (etc.)

DOMAIN: Administrative

DOMAIN: Information

Resources Management
L(IRM)

DOMAIN: (etc.)

DOMAIN: Individual Field Center

DOMAIN: Goddard Space Flight Center ]

DOMAIN: Jet Propulsion Laboratory ]

DOMAIN: Johnson Space Center ]

DOMAIN: Langley Research Center ]

DOMAIN: Marshall Space Flight Center ]

DOMAIN: (etc.) ]

Figure 2-17. Examples of Potential Domains Within NASA

Understanding domains and domain-specific and domain-independent characteristics is

important for sharing information and experiences. Without defining domains and understanding

the characteristics that make them similar to and different from others, the full benefits of sharing

experiences cannot be achieved.

2.4 Comparison of Two Software Process Improvement Approaches

This section addresses the unique aspects of NASA's software process improvement approach by

comparing it with another particular approach, the Software Engineering Institute's (SEI's)

Capability Maturity Model (CMM) (Reference 15). Both approaches share the underlying

principle of continual, sustained software process improvement.

As discussed earlier, the NASA software process improvement framework consists of two
elements:
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An organizational structure (Section 2.1) consisting of developers, analysts, and a

support staff

A three-phase approach to process improvement (Section 2.2, Figure 2-2), that is, the

continual understanding, assessing, and packaging of organizational experiences

These two elements allow an organization to continually improve the quality of software

products and processes within a specific domain.

The key points of NASA's process improvement approach are that

• Process improvement is driven by internal goals and local experiences.

• Each domain is dealt with in a different way according to its specificity.

• The environment is characterized according to organization-dependent measures.

• No assumptions are made about best practices in the process area.

• The ultimate measure of success is the improvement of the product or service delivered

by the organization.

The CMM is a widely accepted benchmark for software process excellence. It provides a

framework for grouping key software practices into five levels of maturity. A maturity level is an

evolutionary plateau on the path toward becoming a mature software organization. The five-level

model provides a defined sequence of steps for gradual improvement and prioritizes the actions

for improving software practice.

Within the CMM, an organization strives to mature to a continually improving process. To do so,

the organization must advance through the following maturity levels defined by the SEI:

Level 1, Initial The software process is characterized as ad hoc and, occasionally, even

chaotic. Few processes are defined, and success depends on the efforts of individuals.

Level 2, Repeatable. Basic project management processes are established to track cost,

schedule, and functionality. The necessary process discipline is in place to repeat earlier

success in projects with similar applications.

Level 3, Defined. The software process for both management and engineering activities

is documented, standardized, and integrated into an organization-wide software process.

All projects use a documented and approved version of the organization's process for

developing and maintaining software.

Level 4, Managed. Detailed measures of the software process and product quality are

collected. Both the process and products are quantitatively understood and controlled

using detailed measures.

Level 5, Optimizing. Continual process improvement is enabled by quantitative

feedback from the process and from testing innovative ideas and technologies.

Figure 2-18 depicts the CMM process improvement paradigm; the NASA software process

improvement approach is also repeated in that figure.

23 NASA-GB-001-95



DifferencesbetweentheCMM andthethree-phaseNASA improvementapproacharedescribed
in four areas:thegoals,initial baseline,initial analysis,andimprovementapproach.

1. Goals. Each organization must set goals for what is to be improved.

CMM: A generalized, domain-independent goal focuses on process. Every organization

strives to improve the software process and, ultimately, evolve to a continually

improving, optimizing process (Maturity Level 5). Organization A and Organization B

both try to improve their processes and become Level 5 organizations. In progressing to

higher levels, organizations expect to reduce risk and generate better products.

NASA: Organizations focus on improving products. Specific goals, however, vary from

organization to organization. Organization A may attempt to improve reliability by

decreasing error rates. Organization B may strive to decrease the development cycle

time. Goals are domain dependent. Within the framework of the CMM, organizations

using the NASA approach may progress to higher maturity levels and eventually

become a Level 5.

The CMM goal is domain independent and generalized The CMM focuses on

improving the software process. NASA goals vary from organization to organization,

that is, they are domain dependent. The underlying goal of the NASA approach,

however, is to improve the software product.

CMM Process Improvement Paradigm

_.._o /l_f 5_OPTIMIZIN G _'_
co_ .,@_ /{ Change management, I

\_ I _ defect prevention J

,\o_ /1_ 4-MANAGED

e"_ /L Detailed measurement J

_e_,_ _ P# 3-DEFINED _'_
o;_'_ I I Documentedsystems,l

I_" training ,J

_# Pf 2-REPEATABLE "_

_ /k_ Basic project management _)

_,o_ f I-INITIAL

_'_' L Individual efforts _,)

NASA Software Process Improvement
Paradigm

_ PACKAGING
ITERATE Capture improved

Sp techniques as a part of_"-'_ASSESSING the modified process
rovement
goal . .

V / Determine the impact of a change

UNDERSTANDING

I Build a baseline of and products
process

Continual improvement over time y

.

Figure 2-18. CMM and NASA Software Process Improvement Paradigms

Initial Baseline. Each organization must establish a basic understanding (baseline) of its

current software product and process.

CMM: Baselining is achieved by performing an assessment of the organization's

process. This assessment is made against well-established criteria, and the organization

is baselined at a certain maturity level. These criteria enable comparisons across

domains because each organization is assessed against the same criteria. The same

elements are examined for every organization: e.g., Does it have good standards? What
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is its training program like? How is its measurement program conducted? Based on the

examination of these criteria, the organization is baselined at some maturity level.

NASA: Baselining involves understanding the process and product of each individual

organization. This baseline is domain dependent. Unlike the CMM, no common

yardstick exists enabling comparison across domains. Some factors need to be

characterized (baselined) by all organizations, such as how much software exists, what

process is followed, what standards are used, what is the distribution of effort across

life-cycle phases. Other factors of interest depend on the goals of the organization.

Organization A, for example, would want to baseline its error rates, whereas

Organization B needs to determine its development cycle time.

The CMM baseline is process based and established against a common yardstick. The

NASA baseline is domain dependent and is both process and product based.

Initial Analysis. Changes are introduced to make some improvement. An analysis

(assessment) of the change must be made to determine if improvement has occurred.

CMM: Assessment of change is accomplished by reassessing the process. An

organization is baselined at one level, makes changes to try to attain a higher level, and

is then reassessed to determine if it has progressed to another level. Success is measured

by process change. The ultimate success is changing the process until it continually

improves. The organization then achieves the highest maturity level rating, a Level 5.

The measure of success is domain independent, because all organizations are measured

against the same criteria (i.e., "a common yardstick").

NASA: Assessment of change is domain dependent. An improvement goal is set, change

to the process made, change to the process and product examined and verified, and the

effect of change evaluated against the original goal. Success is measured by product

improvement and is determined based on the goals of the individual organization. The

organization attempting to improve its reliability would institute a change, such as the

Cleanroom process, to try to reduce its error rates. It would then assess the result of the

experiment based on its original goals.

CMM analyses and assessments are based on its common yardstick. NASA analyses and

assessments are domain dependent, and are based on goals defined by the individual

organization.

Improvement Approach. Approaches to improvement are defined and driven by
different factors.

CMM: Changes made to the organization's process are driven by the CMM common

yardstick. If an organization is baselined at some level, it will change elements

necessary to get to the next maturity level. If an improved measurement program is

needed to advance to another maturity level, the organization will focus on changing its

measurement program to meet the CMM's criteria. The improvement approach is solely

process based. The CMM's common yardstick enables a common roadmap toward

continual improvement.
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NASA: Organizational experiences and goals drive change. Changes to the process are

made in an attempt to improve the product. Each domain must identify the most

appropriate process changes to achieve its product goals.

The CMM s common yardstick drives change; its improvement approach is process

based. NASA s organizational experiences and goals drive change," its improvement

approach is product based.

Table 2-3 summarizes the differences between these two process improvement approaches.

Despite their differences, both approaches suggest that every software organization should deploy

a program for the continual, sustained improvement of the overall quality of its products and

processes. The main difference is that, whereas the typical process improvement programs are

based on the assumption that improvements to the software process maturity will eventually elicit

improvements to the product quality, NASA's software process improvement approach

ultimately focuses on improvement in the product and service quality, although achieved through

process improvements.

Table 2-3. The NASA Software Process Improvement Approach Versus the CMM

Area NASA Approach CMM Approach

Goals

Initial
Baseline

Initial
Analysis

Improvement
Approach

Focus on improving product

Goals vary across organizations

Domain dependent

Success = better product; specific
measures of success vary from
organization to organization

Understand process and product

Change process to improve product,
reassess process and product

Organization specific, no way to compare
across organizations

Product based

Organizational experience and goals drive
change

Focus on improving process

Generalized goal (improve process, get to
Level 5)

Domain independent

Success = better process and higher
level; common measure of success

Perform assessment of process

Common yardstick is basis for initial
baseline (what is the maturity level?)

Change process to advance to a higher
level, reassess process (what is the
maturity level now?)

Can compare across organizations

Process based

Common yardstick drives change

The NASA approach assumes that every development organization must first understand its

process, products, software characteristics, and goals before selecting the set of changes that are

meant to support software process improvement. The underlying principle is that "not all

software is the same." An organization must understand its software business before determining

that change must be made, and any change must be driven and guided by experience, not by a set

of generalized practices. There indeed may be generalized process concepts, but the essentials of

any process guiding development and process change must be driven by the knowledge of the

development organization.
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TheCMM canbeviewedasatop-downapproachwith ageneralizedsetof practices, whereas the

NASA approach is bottom-up with practices specific to individual organizations depending on

their product improvement goals. Neither approach can be effective if used in isolation. The

CMM approach requires awareness of the product changes, and the NASA approach requires use

of some model for selecting the process changes aimed at improving product characteristics.

Both the top-down and bottom-up approaches play an important role in the goal of improving the

software business. For NASA, the CMM defines an excellent model for assessing process and for

selecting potential process changes that can support the goal of sustained improvement.

The CMM approach is designed as a framework that organizations may use to better understand

their software process and to provide guidance toward lower risk in the way software is

developed. It provides an excellent procedure for identifying potentially beneficial additions to

the organization's software business practices. NASA capitalizes on this approach to guide

efforts at characterizing the way software is developed and in what areas NASA may look for

improvements in consistence and commonality. By complementing the CMM with specific

approaches to assessing goals, products, and product attributes, a complete and effective program
is defined.

Each of the approaches poses similar difficulties in defining exactly the scope or size of the local

organization, but some judgment must be applied to determine what this single entity can be. The

smaller the organization, the more detailed the process definition, as well as the process

improvement definition, can be.
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Chapter 3. Structure and Operation of the Software
Process Improvement Organization

Chapter Highlights

DEVELOPERS

Produce software
Provide data
Participate in studies
Use experience packages

SUPPORT STAFF

Process data
Maintain repository

COMPONENTS

Developers
Analysts
Support Staff

ANALYSTS

Design studies
Analyze project data
Package results
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his chapter takes a closer look at the structure of the software processimprovement organization, its individual components, the resources they require, and

their functions and presents details regarding the operation of the software process

improvement program. It assumes the structure is already in place.

The chapter then describes the responsibilities, activities, and interaction of the developers,

analysts, and support staff, detailing how each of these groups performs the activities associated

with its process improvement responsibilities and how each operates on a daily basis for each of

the following time periods associated with development projects: before or at project start, during

the project, at or after project completion.

Many of the process-improvement-related responsibilities of these three organizational elements
are associated with software measurement. Some details on measurement-related activities will

be presented in this chapter; additional guidance on establishing, using, and maintaining a

software measurement program can be found in Reference 16.

3.1 Components of the NASA Software Process Improvement Organization

Software Process improvement Organization is a designation that refers to the whole

organizational infrastructure whose components are the

• Developers, consisting of the developers and maintainers, whose primary objective is to

produce software on time and within budget. Additionally, they must provide

development information to the analysts. They receive experience packages from the

analysts (e.g., standards, models) and reuse these packages in their activities.

• Analysts, whose focus and priority are to support project development by analyzing

experience drawn from people, process, documents, and tools. They synthesize and

package this information in the form of policies, standards, training materials, and, in

general, models of the product and of the process (both formal and informal).

• Support staff who serve as the focal point for all the archived information produced and

used within the software process improvement organization. Additionally, this

component validates and qualifies the data and the other information, making sure that

the organization's information repository conforms to the needs of the analysts and

developers.

Figure 3-1 shows the three components of the software process improvement organization and

highlights some activities they perform.

The analysts and support staff exist solely because of the software process improvement

activities; therefore, all their activities are related to software process improvement. However,

process improvement activities are only a portion of the developers' responsibilities. Some of

these activities are already part of the operation of the developers in a traditional environment,

but some new activities have been added and some old ones changed. Table 3-1 presents a

synopsis of the development activities pertaining to software process improvement, highlighting

what has changed and what remains the same. The remainder of this chapter addresses only those

activities of the developers associated with software process improvement. It does not discuss
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any of the regular activities associated with developing software unless they are relevant to the

process improvement activities.

DEVELOPERS ANALYSTS

• Develop/maintain software I I " Design experiments
I I

Participate in studies I I "Analyze information

Provide information I I ° Package experience

(to analysts) I I (develop models,

Reuse models and proce__ocesses, baselines)

SUPPORT STAFF

I • Process dataManage repository

Figure 3-1. Activities of the Software Process Improvement Organization

Table 3-1. Activities of the Developers

Development

Organization
Component Unchanged A ctivities Changed A ctivities

Developers and Produce software on time and within Interact with analysts for training,
Maintainers budget (primary goal) goal setting, and feedback

Management

Software Process

Products Output

Plan and control activities

Use management tools (e.g., earned
value)

Act within management chain of
command

Adhere to process defined for
development and maintenance

Generate software and related
documentation

Document lessons learned

Set up interfaces with analysts and
support staff

Interact with analysts for training

Use tailored processes

Use analyst-developed standards

Provide data to analysts

Provide products, processes, and
lessons learned to analysts

Tables 3-2 through 3-4 present an overview of the process improvement activities and the

information exchanged between these groups during each time period. The remainder of this

chapter provides details relating to these activities.
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Table 3-2. Activities Before or at Project Start

From Developers To Analysts

• Understanding of project needs

From Developers To Support Staff

(none)

From Analysts To Support Staff

• Set of forms to be used

• Measures to be collected

• Modified or technology-specific forms,
as needed

• Report formats

• Reporting procedures

From Analysts To Developers

• Experiment goals

• Understanding of changes to the process

• Training, as needed

• Tailored processes

• Refined process models

• Experience-based policies and standards

• Pertinent tools

• Identification of project representative

From Support Staff To Developers

• Clear descriptions of data to be provided

• Clear and precise definition of terms

• Identification of who is responsible for providing which
data

• Understanding of when and to whom data are to be
provided

From Support Staff To Analysts

(none)
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Table 3-3. Activities During the Project

From Developers To Analysts

• Suggestions for process refinement

• Project status and feedback at periodic
meetings

From Analysts To Developers

• Processes and standards

• Models and relationships for use in estimation
and planning

• Help in applying modified process

• Training, as needed

• Periodic status on the experiment, usually
through the project representative

From Developers To Support Staff

• Updated information (e.g., personnel changes)

• Data (through data collection forms)

• Feedback on data collection procedures

• Documents and data for archival

From Analysts To Support Staff

• Modified report formats

• Modified reporting procedures

• Documents, technical reports and training
materials for archival

From Support Staff To Developers

• Reminders when forms are not submitted

• Incorrect or incomplete forms

• Periodic reports (usually to the manager)

• Archived documents and reports, as needed

From Support Staff To Analysts

• Raw data from the repository

• Periodic reports on the project

• Problem reports on data collection procedures

• Archived documents and reports, as needed

Table 3-4. Activities At or After Project Completion

From Developers To Analysts

• Final lessons learned at a project debriefing

• Subjective assessment of the experiment

From Developers To Support Staff

• Project data, specifically for close-out

• Documents and reports for archival

• Feedback on data collection process

From Analysts To Support Staff

• Documents and reports for archival

• Feedback on data collection process

From Analysts To Developers

• Feedback on experiment results

From Support Staff To Developers

• Final reports on the project

• Archived documents and reports, as needed

From Support Staff To Analysts

• Raw data from the repository

• Final reports on the project

• Archived documents and reports, as needed
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3.2 Developers

3.2.1 Overview

The developers comprise the largest element of the overall organization. They are dedicated to

the development or support of software and may be involved with one or more projects. Their

activities define the application domain for the software process improvement program, which is

the "whole world" as far as the software process improvement organization is concerned.

The traditional role of the developers is not substantially changed by the fact that it is embedded

in the software process improvement organization. The developers are the most critical part of

the organization and absorb the majority of its resources. The developers are given a problem and

have to solve it in the best possible way, within given time and budget constraints. As far as

development and management activities are concerned, the major difference between a

traditional environment and a software process improvement environment is the continual and

consistent use of both the data collected in previous projects and models derived from those data

by the analysts. In other words, data collection and analysis are emphasized more than in
traditional environments.

The developers' management structure is not changed or affected by the software process

improvement program. The analysts have no management responsibility or authority over the

developers. However, to support the concept, the development management structure may need

to take on some additional responsibilities. These could include interfacing with the other

elements or utilizing specific training and policies provided by the analysts.

3.2.2 Resources

When the developers become part of a process improvement organization, their staffing is

generally left unchanged. Some activities that may previously have been the developers'

responsibility (e.g., the development of standards and training courses) are transferred to the

analysts. Therefore, some project resources may be allocated to the analysts, possibly on a part-
time basis.

The management of the development organization is not affected by the software process

improvement program, but higher levels of management probably will be shared with the

analysts and support staff. Developers are not subordinated to the analysts. The amount of

management functions should not increase for the developers.

The developers' budget is not affected by the software process improvement program. The

additional functions, which include interfacing with the analysts, providing project development

data, and using models and processes developed by the analysts, should be carried out with no

significant impact to the overall project cost. As an upper limit on cost impact, some

organizations may assume that there is a 1 or 2 percent overhead determined by the additional

training, meetings, and data gathering activities, but experience has shown that the additional

overhead can be absorbed by the development budget. The developers' resources should not be

appreciably impacted. Ideally, it would be beneficial to allocate an additional 1 to 2 percent to the

developers to compensate for expenses related to activities such as meetings, data gathering, and

training.
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3.2.3 Activities

The primary responsibility of the developers is to develop or maintain software. They must not

be burdened with software process improvement activities; therefore, their responsibilities for

software process improvement are minimal. The development manager, however, is involved

with some analysis activities as detailed in the remainder of this subsection.

The interface between developers and their customers is unchanged, although the use of data,

defined models, and other products made available by the analysts will ease some aspects of this

relationship. Those data and models should make the whole development process more

controlled and predictable, even from the customer's point of view.

The developers perform the following functions to support software process improvement:

• Provide data

• Participate in studies

• Use experience packages

They also may be asked occasionally to meet with the analysts for feedback sessions to verify

preliminary data analysis, for interviews to gather additional project characteristics data or

subjective information, or for training sessions to reinforce the proper use of specific processes

being applied by the developers.

Project personnel (developers) are responsible for providing project data. To do so, they

complete data forms and submit them on a regular basis as agreed to by the managers and

analysts. The forms are delivered to a specified, convenient location or handed to a designated

individual. The developers simply provide the data; they assume no responsibility for analyzing
them.

The developers may be asked to participate in a study of an experimental use of some process,

technique, tool, or model that is not part of the organization's standard process. For projects

undergoing significant process changes, the developers will need to attend briefings or training

sessions on using the new process. At various stages in the experiment, the developers need to

provide their insight regarding the value and relevance of interim results, the degree of success

derived from the innovation, and the difficulties experienced in applying the new process. For the

majority of projects, the only training needed is on data reporting agreements and the use of data

collection forms.

Though the organizational experience is drawn directly from the developers, it is packaged by the

analysts. The developers must then use these experience packages as part of their standard

development process. Developers continually use analyst-provided packages, such as models,

standards, handbooks, and training. Developers participating in experiments also use process

models and processes refined by the analysts.

In support of these functions, the developers perform distinct activities corresponding to each

phase of the project.

Before or at the start of a project, the developers and the development manager perform several

activities to support process improvement. Together with the analysts, the development manager
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Definestheexperimentassociatedwith theproject.

Identifiesmeasuresto becollected.

• Identifiestrainingneededfor developers.

• Determinestheexperimentgoals.

• Determinesformsto beusedto collectappropriatedata.

• Decideswhat is to bealteredfor theproject.

• Determinesprocessandstandardsto beapplied.

The managerprovidesproject start-upinformationsuchasproject name,preliminary start and
phasedates,andestimates,to thesupportstaff.Theyalsoprovidethenamesof projectpersonnel
who will be supplyingdata.At this stage,the developers(technicalstaff) receivetraining, as
needed,andinstructionsondatacollectionprocedures.

Foreachproject,ananalystis designatedasaprojectrepresentativeto act asliaison betweenthat
developmenteffort and the analysisorganization.It is during this time framethat the analysis
organizationidentifies the project representative.Most interactionbetweenthe developersand
analyststakesplacethroughthis projectrepresentative.

During the project, the developers perform several activities to support process improvement.

The developers (both management and technical staff) continually provide project data by

completing data collection forms and submitting them (manually or electronically) to designated

locations. The lead developer collects the forms from the development team and quality assures

them to ensure that the numbers add up, the dates are correct, and the forms are filled in properly.

The forms are then submitted to the support staff for processing. Project managers are

responsible for periodically re-estimating size, schedule, and related information through

appropriate data collection forms.

Throughout the project, developers and analysts interact to clarify process changes and provide

feedback on the experiment. Most interaction between the developers and analysts takes place

through the assigned project representative.

At or after project completion, the developers perform several activities to support process

improvement. They provide project close-out data, including final system statistics (size, phase

dates, etc.) and subjective information that might help characterize the problem, process,

environment, resources, and product. The developers and analysts jointly generate a lessons-

learned document. The majority of this document comes from the developers and focuses on the

development effort as a whole, not specifically on the process improvement activities (the

analysts capture project-specific lessons learned focusing on the process improvement activities

and experiment(s) performed). The lessons-learned document is generated within 1 month of

project completion.
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3.3 Analysts

3.3.1 Overview

Because the analysis organization exists solely to support software process improvement, all the

analysts' activities directly pertain to the organization's software process improvement program.

The analysts are responsible for extracting information from the developers and then analyzing,

synthesizing, and packaging the experience into reusable products for ongoing and future

development and maintenance efforts. Their goal is the synthesis and packaging of reusable

experience in the form of models, standards and policies, training materials, and lessons learned.

The development of this information is based completely on lessons and data from past projects.

The information is made available for use in the current projects of the same application domain.

The analysis organization may be logical rather than physical, meaning that

• Personnel may be allocated to the analysts on a part-time basis.

The analysts have their own levels of management but, as part of a larger parent

organization, typically share the next higher level management with the developers.

• The analysts may include external consultants and researchers.

Most of the analysts' activities consist of defining and analyzing the information provided by the

developers and feeding back the analyzed information to the developers. Because the information

is contained in the experience base, or repository, the analysts must also regularly interact with

the support staff to make sure that the information is appropriately collected, validated, and
stored.

When compared with a traditional environment, the analysts' activities are new ones. Some

activities, such as the development of standards, the development of training, and the production

of models, may have existed but were previously carried out by the developers. Under a process

improvement program, these activities would become the responsibility of the analysts.

3.3.2 Resources

Ideally, the staff of the analysis organization should include some experienced developers who

have good field experience on processes and technologies used in the development organization,

and researchers who are experienced in applying and assessing new concepts of software

engineering technology. Given the particular role of the analysts, basic training in software

engineering principles and techniques is desirable. The staff could also include experienced

developers allocated to the analysis organization on a part-time or temporary basis.

The analysts have their own management, but higher levels of management are shared with the

developers and support staff.

The analysts' budget and staffing levels are proportional to the budget and the size of the

development organizations supported. On the basis of NASA experiences in typical

organizations (where the development organization ranges in size from 100 to 500 people), the

analysis element is typically between 5 and 10 percent of the overall size of the development

organization (see the example in Figure 3-2).
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DEVELOPERS

STAFF: 200-250 people

FUNCTION: Develop or maintain software

ACTIVE PROJECTS: 6-10 (concurrent)

Project 1 I

Project 2 I

oject 3

Project !

AVERAGE PROJECT SIZE:

150-200 KLOC

PROJECT STAFF SIZE:
15-25 people

SUPPORT STAFF

STAFF: 2-5 people

FUNCTION: • Process/QA data

• Maintain database

• Operate library

ANALYSTS

STAFF:

FUNCTION:

10-20 people

• Analyze data
• Build models

• Develop standards

• Develop training

• Design experiments

Figure 3-2. Sample Process Improvement Organization

3.3.3 Activities

The heaviest burden of software process improvement activity falls on the analysts. They are

entirely responsible for cultivating continual software process improvement within the

organization. The primary operational responsibilities of the analysts are to

• Design studies

• Analyze project data

• Package results

The activities of the analysts can be associated with several development organizations or with

several segments of the same development organization. All activities of the analysts are

associated with software process improvement.

The analysts must first design studies supporting the organization's process improvement goals.

They identify candidate process changes that address the organization's needs and that appear

likely to improve the resultant product by reviewing literature and consulting developers who

have insight into the problem area. Each development project is considered an experiment (i.e., a

study of software engineering processes), and an experiment plan is written for each. These

experiments can range in scope from validation of the current organizational models to

controlled investigations of the impact of introducing a new methodology and involve developers

as well as analysts. In addition to these individual experiment plans, the analysts (usually a lead

analyst) work closely with the organization's managers to prepare higher level organizational

plans coordinating the process improvement activities across all projects to ensure that all high-

priority organizational goals are being addressed. They identify data to be collected and organize

this collection based on the characteristics of the organization that is experimenting with the

selected technologies.
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The analystsareresponsiblefor analyzingproject data to developand maintainorganizational
models (e.g., cost estimationmodels, resourcemodels, error profiles) and to determinethe
impactof new technologies,suchas object-orienteddesign,on the organization.Theydevelop
and update standardsthat incorporate into the normal organizationalproceduresthe new
technologies,theprocessesthat areassociatedwith them,andthe modelsthat supporttheir use.
They developtailoring guidelinesfor the standards.They also developtraining materialsand
programsto institutionalizethelearninganduseof newtechnologies.

Finally, the analystsmust packagethe results and provide the derived information to the
developersin usefulforms,suchasguidebooks,tools,andtrainingcourses.Theyareresponsible
for developing standardsfor the organization's processbasedon the experiencesof that
organization'sdevelopers.The analyststrain the developersin activities suchas usingmodels
andrelationshipsthat supportthenew technologies,planningandestimatingusingthosemodels,
controlling the executionof the new and updatedprocesses,and tailoring mechanismsfor
standards.They fine-tunemodelsand relationshipsto project-specificcharacteristics,possibly
usingparametersalreadyprovidedwith themodels.Theyalsoprovidefeedbackto thedevelopers
basedon informationobtainedfrom them. This elementof the analysts'responsibilitiesis a
critical one.Information,results,andprogressmust be continually fed backto the developers.
Ultimately,all itemspackagedbytheanalystsarefor thedevelopers'use.

In supportof thesefunctions,theanalystsperformdistinctactivitiescorrespondingto eachphase
of theproject.

Before or at the start of a project, the analysts perform several process improvement activities.

For each project, an analyst must be designated as a project representative to act as liaison

between that development effort and the analysis organization. The project representative

produces an experiment plan that defines the goals and approach of the experiment, provides a

brief overview of the development effort, and describes the data to be collected. The analysts

work with the development manager to define the experiment and to determine what is needed

from and by the developers. They provide models and relationships for use in estimation and

planning to the development manager. Process-specific training is given to the developers.

During the project, the analysts perform several process improvement activities. Throughout the

project, they continually extract and analyze project information stored in the database, refine

processes as needed based on feedback from the developers, and support the developers in

applying the experience packages and refined processes. They continually interact with the

support staff to ensure that data collection, processing, and reporting run smoothly.

At or after project completion, the analysts perform several process improvement activities.

For individual experiments, the analysts

• Extract and analyze project information stored in the database.

• Assess the experiment results.

• Package results (e.g., technical report, updated process guidebook).

• Jointly with the developers, generate a lessons-learned document. The developers

provide most of this document, focusing on the development effort as a whole rather

than specifically on the process improvement activities. The analysts (usually the
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project representative)captureproject-specificlessonslearnedfocusingon the process

improvement activities and experiment(s) performed. This document is generated

within 1 month of project completion.

Based on results of multiple experiments across many projects, the analysts

• Tailor standards and guidebooks.

• Assess models.

• Update models, as necessary.

3.4 Support Staff

3.4.1 Overview

All support staff activities are directly related to the organization's software process

improvement program. They are primarily responsible for processing data, including collecting,

quality assuring, managing, and archiving all project data and for maintaining the information

repository, which involves maintaining the organization's experience base. The actual experience

base, or repository of information, consists of two basic components:

Projects database. This component is usually a relational database, with associated data

entry and data reporting functions. It contains the historical data from the projects, such

as cost, schedule, and errors. A sample structure of such a database can be seen in

Reference 17.

Library. This second component is a document management and production

infrastructure, possibly but not necessarily automated, that supports storage, retrieval,

and distribution of project-related items (data collection forms, project-related

documentation) and analyst-produced experience packages such as models (usually

documented in reports and guidebooks), standards, policies, handbooks and

guidebooks, and reports.

3.4.2 Resources

The support staff require a different set of skills. They are not necessarily experienced in software

engineering, but they have practical experience with the tools used in the experience base (e.g.,

database and document management systems).

The support staff have their own management but, like the analysts, share the next level of

management with the developers.

The support staff size and budget are smaller than those of the analysts. Based on experience, a

reasonable ratio for a staff supporting environments of 200 to 500 developers is half of the

overall budget of the analysis organization. These figures reflect a structure similar to the one

presented in Figure 3-2. A reasonable estimate for the cost of this function is 5 percent of the

development cost. For much larger organizations, experience has shown that the percentage

decreases such that a support staff of 20 can carry out this function for an organization of several
thousand.
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3.4.3 Activities

The support staff exist solely for software process improvement; therefore, all their

responsibilities are directly related to software process improvement within an organization. The

primary operational responsibilities of the support staff are independent of specific projects. They
are to

• Process data

• Maintain the information repository

The activities of the support staff are to

The support staff process, i.e., collect, store, quality assure, summarize, and export, the

organization's project data. They manage the information provided by the developers to ensure

that it is complete, consistent, and of adequate quality so the analysts can use it to develop the

models and gain a general understanding of the software process. The support staff typically use

a commercially available relational database management system (RDBMS) to store the project

data. The support staff assign a database administrator (DBA) for the organization. The DBA

coordinates data collection activities, gets appropriate information from the analysts (e.g., what is

being monitored for specific projects), and serves as the interface to the developers. To ensure

quality, the support staff monitor the regularity and completeness of the data collection process.

They apply the data collection procedures provided by the analysts and report any problems

encountered in their execution. They also manage the data collection forms, making sure that

they are available in the current format to whoever needs them. As data become available, the

support staff enter them into the projects database. They make sure that the data are formally con-

sistent with the data collection standards. They also archive documents, technical reports, and

other project-related information, making sure that the current versions are available and that the

outdated versions are appropriately handled. The support staff are responsible for getting data
from two sources:

Directly from project personnel. Most project data are gathered directly from the

developers through data collection forms. The support staff must make the data

collection process as painless as possible for the developers. They must ensure that an

interface is clearly established between themselves and the developers so that the

developers can easily provide the project data. Developers must understand who is

responsible for collecting and furnishing project data, how frequently the data will be

collected, which portions of the software life cycle will be reflected, and what type of

personnel (management, technical, or administrative) will be included. The support

staff are responsible for managing the data collection forms; they must ensure that the

forms are available to those who need them, clearly indicate where they are to be

deposited, and promptly collect and process them. They must ensure that there is a

consistent understanding of the software measurement terms and concepts and must

supply concise, clear definitions to the developers. The analysts are responsible for

writing definitions that are consistent with organizational goals and locally understood

ideas; however, the support staff are responsible for furnishing the definitions to the

data providers (the developers).
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• Automatically from the project. Some information, such as source code growth rate or

computer resources usage, is monitored and gathered electronically, without direct input

from the developers. The support staff develop, run, and maintain procedures for this
automatic data collection.

The support staff are responsible for maintaining the information repository, which includes

maintaining, archiving, and distributing all output from the analysts such as archived reports,

standards, training materials, and experimental studies. They are responsible for maintaining both

components of the repository: the projects database and the library.

THE PROJECTS DATABASE. After collecting the data, the support staff store them in an on-

line database, preferably a commercially available RDBMS. The quality of the stored data must

then be considered. The support staff should quality assure the data using a two-step process:

1. Verify the source data. Support staff track discrepancies to the source and correct them.

This step includes checking that the data forms have been submitted and are complete

(i.e., all required values are provided); values are of the specified type (e.g., numeric

fields do not contain non-number values); values are within specified ranges (e.g.,

number of hours of effort per day per person is never greater than 24); and values are

reported on the prescribed schedule.

2. Verify the data in the database. After the data are entered into the database, support staff

perform a second check to verify that the entries match the source value.

The support staff maintain and operate the database. They develop, execute, and maintain

procedures for the operation of the database including start-up, shut-down, backups, restorations,

reorganizations, and reconfigurations. Occasionally, changes to the data collection process will

be introduced. The support staff are responsible for evaluating the effect of such changes on the

database design, supporting application software, data collection procedures, and documentation.

They must implement the changes and ensure that earlier data are not rendered obsolete or

comparisons invalidated.

The support staff produce and distribute reports and data summaries to users in all of the

software process improvement program's organizational components. Many reports are

generated on a regular schedule. These include single project summaries that focus on a

particular data type and multiple project roll-ups that provide high-level statistics facilitating

project-to-project comparisons. These reports may be distributed to developers to provide

feedback on project measures. Analysts also use these reports to identify projects and data to be

used in studies and model generation. The support staff may also generate reports, such as low-

level data dumps from the data verification process, on an ad hoc, as requested basis.

Occasionally the support staff are also responsible for preparing and exporting raw data to

external organizations. Before sending the actual data, they need to sanitize them to preserve the

confidentiality of data providers (e.g., removing names of individuals and substituting generic

project names for actual ones).

THE LIBRARY. The support staff maintain the organization's library of products supplied by

both developers (e.g., lessons learned) and analysts (e.g., experiment plans, technical reports,

standards, policies, and handbooks). They organize and maintain a catalog of the library's

contents, archive documents and technical reports, ensure that current versions of archived
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documentsandreportsareavailable,removeoutdatedversionsfrom the library, andprepareand
executedocumentreproductionprocedures.

In supportof these functions, the support staff perform distinct activities corresponding to each

phase of the project.

Before or at project start, the support staff perform several activities to support process im-

provement in addition to the project-independent activities (i.e., processing the data and

maintaining the information repository). From the analysts, the support staff get the appropriate

forms to be used, measures to be collected, and any information or instructions specific to that

project. The support staff must ensure that communications have been established with the

developers and that the data collection procedures are clearly understood. The DBA typically

meets with the project leader to ensure that the developers understand what is expected of them

and that the support staff understand the particular project and any unique changes being applied.

The support staff obtain basic project information from the development manager including

names of project personnel and initial estimates.

During the project, the support staff perform several activities to support process improvement in

addition to the project-independent activities (i.e., processing the data and maintaining the

information repository). Throughout the project, they interact with both developers and analysts

and provide information (data, documents, reports, etc.) on a regular basis, including responding

to special requests for information. They must also ensure the smooth operation of the

organization's information repository.

At or after project completion, the support staff perform several activities to support process

improvement in addition to the project-independent activities (i.e., processing the data and

maintaining the information repository). They collect and process project close-out data and

generate final reports. They process documents and reports for archival and respond to requests

for information.

3.5 Summary

The success of the software process improvement program depends on the smooth operation of

its components. The program, as a whole, is only as effective as the individual components.

Aided by the support staff, the analysts are responsible for facilitating software process

improvement within the organization. The developers are the source of experience and the

cornerstone of the entire software process improvement program. Every effort should be taken to

extract their experience in an unobtrusive manner. When the program is operating effectively, its

activities are viewed by developers as the standard way of doing business, not as some

"necessary evil." All members of the organization reap the benefits and become willing to

support and advocate the process improvement program.
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Chapter 4. Implementation of the Software Process
Improvement Program

Chapter Highlights

OBTAIN COMMITMENT

Gain support of key individuals
Designate resources
Focus on first products
Produce software process
improvement plan

ESTABLISH STRUCTURE

Determine affected elements of

development organization
Establish analysis organization
Establish support staff

I

!111111

PRODUCE BASELINE

Capture snapshot of
organization s environment,
process, and product
characteristics

ESTABLISH PROCESS

Define data to be collected

Define terminology to be used
Define data collection, quality
assurance, and archival procedures
Define how to capture development
lessons learned

START OPERATION

Initiate normal day-to-day operations
of the software process improvement
organization
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his chapter describes the five steps necessary to establish and implement a softwareprocess improvement program:

1. Obtain commitment from the organization.

2. Establish the basic structure of the software process improvement organization.

3. Establish the process and operational concepts for the organizational elements.

4. Produce the organizational baseline.

5. Start operation of the software process improvement program.

The ideas behind all the steps of the implementation process pertain to the scope and focus of the

software process improvement program. The scope is delimited by a specific domain. The

implementors, that is, those responsible for establishing the software process improvement

program, should start with a small, but very reactive, initiative that represents limited overhead

and provides visible benefits. The opportunity for widening the scope to other domains and

organizations will exist if the original effort was mostly successful. The focus is the improvement

of software in a specific domain using lessons learned from experimentation with technologies in

real projects. The implementors should resist the temptation to introduce changes to the process

that, although making sense, are not in tune with the overall goals of the organization that were

set in the Understanding Phase after the baseline was established. The improvement must target

the areas where it is most needed.

Starting small is also important. Limiting the number of projects affected, restricting the portions

of the software life cycle to those with already-defined processes within the organization, and

limiting staff involvement to essential personnel will all help to minimize resistance from, and

impact on, managers and developers. The scope of the program will evolve, but the time to

increase the size of the program is after it has become successful.

4.1 Obtain Commitment

Obtaining commitment is crucial to the success of the software process improvement program.

At this point, the implementors need to

Inform all levels in the organization about the organizational goals and the changes

implied by the software process improvement program.

• Obtain support from some key individuals.

• Prepare the ground for execution of the next steps.

The software process improvement program must be sold to the organization by showing its

practical benefits for everybody. In particular, the concept must be sold to the key decision-

making levels of the organization to obtain, and retain, their support during both implementation

and operation of the program.
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Themajoractionitemsincludedin this stepareto

Enlist an advocate. The ideal advocate is an experienced senior software engineer who

can dedicate at least half of his or her time to the software process improvement

activities. This person must have significant insight into all of the organization's

development efforts and general activities because he or she will be responsible for

coordinating all the process improvement activities, making the final determination for

experiments to be performed and the projects to which they will be assigned.

Increase awareness. Awareness must be raised with two key groups: the developers and

other support elements. The role and responsibilities of the developers must be clarified

because they are the drivers of the improvement process. Support groups, such as

Quality Assurance and Project Control, also must be made aware of the process

improvement activities because they will be heavily affected by the changes in the

organization and its standards.

Secure management support. Management does not have to be a direct advocate of the

initiative but must be aware of it, understand its goals, and support it explicitly and

implicitly.

Designate resources. The most important resource in the implementation of the

software process improvement program is staff time. Management must be aware that

the improvement program does not come free and must allocate enough resources to the

effort. Some experienced members of the development teams must be allocated, at least

part time, to software process improvement, because they are the current owners of the

experience that will be packaged. Resources and time must also be allocated for the

support staff.

Focus on the first products. The goals of the process improvement program must be

clearly defined in terms of the

Concept they implement

Needs they are going to satisfy

Expected baseline changes

Impact on existing software policy

Produce a software process improvement plan. This plan will define in an operational

way the role of the process improvement program by dealing with the following topics:

Discussion of the concept (Why does the organization want to do this?)

Outline of the program (Describe what it will and will not do.)

Definition of the scope of the overall program (Who will it affect? Which types of

projects will participate?)

Identification of measurable goals and drivers (What will be the measure of

success? How can adjustments be made?)
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Processdescription(How will changesbe introduced?How will improvementbe
managed?How will newtechnologybe introduced?)

Resourcesassignedto thetasks(Who?How muchtime?Whatwill it cost?)

4.2 Establish Structure

The structure established in this step was outlined in Chapter 3. It consists of three components:

developers, analysts, and support staff. Based on the description of the components' roles given

in Chapter 3, the major action items included in this step are to

Define the scope of the development organization. Determine organizational units

involved (which projects? departments? functions?). Determine the software to be

included (what life-cycle phases will be addressed? what types/classes of software?).

Specify roles and responsibilities (and points of contact, when appropriate) for

interfacing with the analysts and support staff.

Establish the analysis organization. Assign staff to the analysis organization, according

to the established criteria. Set the focus on some early products.

Establish the support staff Assign staff and other resources (e.g., space for physical

location) to the support organization according to the established criteria. Establish the

data collection, quality assurance, and other procedures necessary for the organization

to run efficiently. Determine tools to be used (e.g., RDBMS).

Figure 3-2 showed a sample process improvement organization. Figure 4-1 represents the same

organization but shows some additional details pertaining to the structure of that particular

organization.

DEVELOPERS ANALYSTS

STAFF: ~200 people (contractor and NASA)

FUNCTION: Develop and maintain flight

dynamics software

• All operational support software

(no prototypes, no R&D)

• From design through operations

• Each project manager responsible for

supporting process improvement activities

STAFF: ~10-20 people from NASA/GSFC,

University of Maryland, and CSC

PRODUCTS:

- Forms - Standards

- Models - Training
- Processes

• From experiment plan through project closeout

• Funding primarily from NASA

SUPPORT STAFF

STAFF: 4 people (2 data technicians, 2 developers)

• Staff and repository occupy ~500 sq. ft.,

located in developers' space

• Use commerca RDBMS (Orace)

Figure 4-1. Sample Process Improvement Organizational Structure
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A critical issuethroughoutthe executionof this step is the clear specification of what is being

done. At this stage, the tendency to broaden the scope is strong. The implementors must

remember that a clear definition of scope and products and a rigorous specification of and

compliance with the roles established at the beginning are the key to success. If adjustments need

to be made, they must be explicitly planned and motivated.

4.3 Establish Process

The purpose of this step is the definition of the operational concept and the development of the

necessary instruments for each component of the software process improvement organization.

The basic operation of the software process improvement program has been presented in

Chapter 3.

Based on that description of the operation, the major action items performed in this step are to

• Define what data will be collected and archived. What forms will be used?

• Define terminology to be used. Prepare a glossary defining terms commonly used and

describing how they are used (e.g., What is a line of code? What is an error?).

• Define how data will be collected, quality assured, and archived. Established detailed

data collection procedures. Define step-by-step timelines. What is the database

organization?

• Define how the development lessons will be captured. Define report formats.

The organization must find the best way of operating the process improvement program in its

specific context. It is not necessary to overplan and provide detailed specifications for the

operation of the program. The process will evolve as the organization learns from its own

experiences. Defining and documenting detailed data collection procedures is necessary,

however, to guarantee the integrity and completeness of the data.

4.4 Produce a Baseline

Producing a baseline is, perhaps, the most critical element in the software process improvement

approach. In this step, the organization captures a picture of itself as it exists at that time. The

baseline is a characterization of the organization's software process and product. The baseline

should include insight into the following areas:

• How much software exists within the organization?

• What are the characteristics of the organization's product?

• What are the characteristics of the organization's process?

What are the perceived strengths and weaknesses from selected relevant perspectives

(e.g., developers, customers and users, management)?

The instruments used in building a baseline include the usual data collection instruments:

surveys, roundtables, interviews, and historical data. The questions that can be asked in the

survey or during the interviews and roundtables are aimed at collecting information such as
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Resources(i.e., people,money,time)dedicatedto softwareactivities(i.e.,development,
management,maintenance)

Amount of software being developed or maintained, as well as the domain and lifetime
associated with the software

• Hardware and software environment (tools, languages, etc.)

• Methods and technologies used in the different phases of the software life cycle

• Major problem areas and sources of errors

During the development of the baseline, measures can be associated, where possible, with the

information that is collected. Key measures will characterize the software process and products,

emphasizing characteristics closely related to the overall goals of the organization. To identify

these key measures, goals are identified that say why data are being collected. The goals can be

refined into questions based on the phase they address and the viewpoint and characteristic they

take into account. Measures are then associated with these questions to answer them in a

quantitative way. Reference 4 provides additional information on establishing goals, refining

them into questions, and identifying appropriate measures for data collection.

Other measures can be collected during the baselining effort that may have relevance to the

improvement goals being set within the organization. Examples of such measures include

• Error density (e.g., errors per KSLOC)

• Staffing (e.g., number of people) and effort (e.g., staff months) per project

• Software measures (e.g., SLOC, complexity)

• People characteristics (e.g., education, experience)

The major action items performed in the baselining are to

• Identify the major application domains in which the organization operates. This

activity can be accomplished by looking at the functionality of the software developed,

general characteristics of the problem, organizational constraints, standards in use,

platforms, and development environments.

• Develop and adapt data-gathering mechanisms suitable for the specific domain.

Suggested mechanisms include administered surveys, informal roundtable discussions,

data and documentation review, and one-on-one interviews.

Gather information and insight by interviewing key individuals and groups. Use

directed sampling. Start with senior managers to get an overview of the organization, to

make them aware of the baseline efforts, and to identify software "pockets" within the

organization. Sample these pockets. Be sure to get perspectives from throughout the

organization (senior management, technical management, quality assurance, engineers,

programmers, testers, etc.).

Analyze the data. Cross-verify data collected.
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Establ&h a baseline that outlines the major distributions of relevant characteristics

(effort per phase, errors per product, etc.) quantified by measurement.

Present results of baselining activities. Present preliminary versions of the baseline to

different organizational levels and incorporate feedback into the baseline.

Table 4-1 provides some guidance for the data collection involved with baselining. This guidance

reflects lessons learned from the baselining of NASA software (References 2, 18, and 19).

Table 4-1. Key Lessons in Data Collection for Baselining

Do Don t

Gather data in person.

Prototype and test survey vehicles.

Use quantities or checkmarks.

Use one person (or a small group) for data
gathering.

Use someone familiar with the organization for
baselining activities.

Look for trends and relative comparisons.

Allocate time and resources for baselining.

Mail surveys.

Use descriptive entries.

Use more than three people to collect data.

Rely on someone outside the organization for
baselining.

Get wrapped up in details and statistics.

Expect quick results (baselining takes time).

The baseline is meant to establish where an organization stands today. It is not a basis for

judgment and should not be used to label the organization as good or bad. The baseline provides

the organization with the basic understanding of its products and processes and enables the

organization to measure and control change and progress. To support process improvement, the

baseline must not remain static but must be maintained to reflect current data. See References 2,

18, and 19 for examples of completed reports of baselining activities within NASA.

4.5 Start Operation

The purpose of this step is to initiate the normal daily operation of the software process

improvement organization. Based on the defined goals, a set of processes is initiated as described

in the normal operational phases in Chapter 3.

The recommendations for the implementors in this phase are to

• Ensure that change is driven by the information contained in the baseline and by the

perceptions of the developers.

• Pay attention to the day-by-day comments provided by the developers.

The normal operation of the software process improvement program begins according to the

process described in Chapter 4. The operation follows the three-phase improvement process:

understanding, assessing, and packaging, described in Chapter 2.
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Chapter 5. Management of the Software Process
Improvement Program

Chapter Highlights

COST

DEVELOPERS:NO more than 2 percent
overhead
ANALYSTS:Ranges from 5 to 15 percent
SUPPORTSTAFF: Ranges from 3 to 7
percent

BENEFITS

Established improvement process
Repository of experience-based software
processes and models
A process improvement infrastructure
Structured mechanism for introducing new
technologies
A reuse-based software development
process
Quantifiable benefits in specific
organization

KEY MANAGEMENT GUIDELINES

Limit scope
Clearly describe and assign roles
Keep analysts separate from developers
Ensure that developers drive change
Proceed slowly
Produce specific products
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his chapter addresses key management issues associated with the implementation andoperation of a software process improvement program. It discusses issues such as cost

and staffing, as well as determining the payoff of having a process improvement program.

The information is based on lessons learned and insight gained from having instituted such

programs at GSFC's SEL, JPL's SORCE, LaRC's SEAL, and other places where a similar

concept is in place and operating.

5.1 Cost Issues

The cost of process improvement is one of the most critical success factors for a software

improvement initiative based on the approach presented in this guidebook. Besides the cost of

the specific experimentation, whose goal is assessment and tailoring of software engineering

technologies, an ongoing cost exists due to the presence of a measurement system supported by

staff and tools. This section presents information available on the cost of software process

improvement.

Process improvement is not free, but it can be tailored in size and cost to fit the goals and budgets

of any software organization. A software process improvement program must be undertaken with

the expectation that the return will be worth the investment. There will be a cost, however, and it

must be estimated in the organization's budget; otherwise, there will be frustrations, attempts at

shortcuts, and a failed program. Planning must take into account all the hidden elements of the

proposed program--elements that often are more costly during start-up than they will be after the

program becomes operational. The higher start-up cost is another reason to start small.

Planners often incorrectly assume that the highest cost of process improvement will be assigned

to the developers. That part of the overhead expense, which includes completing forms,

identifying project characteristics, and meeting with analysts, is actually the smallest portion of

the three elements of the software process improvement program's cost:

• Cost to the software projects (overhead to the developers)

• Cost of quality assuring, storing, and archiving data and packaged experience (cost of

support staff)

• Cost of analyzing and packaging data and experience (cost of analysts)

The cost of process improvement also depends on the following three scope considerations:

• The size of the organization

• The number of projects included in the program and supported by the software process

improvement organization

• The extent of the software process improvement initiative (parts of the life cycle

targeted by the initiative, number of pilot projects, breadth of the measurement

program, etc.)

NASA experience shows that there will be a minimum cost associated with establishing and

operating any effective process improvement program and its associated organization. The total

cost will increase depending on the extent to which the organization wants, or can afford, to
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expandthe programto addressadditionalprojects,more comprehensivestudies,and broader
improvementactivities.

The cost information available is basedprimarily on over 18 years of experiencefrom
organizationsranging in size from approximately 100 to 500 persons. Some additional
informationhasbeenderivedfrom processimprovementprogramsin largerorganizationsof up
to 5,000persons.The numberof projectsactive at any time has rangedfrom a low of 5 or 6
projectsto ahighof over20activeprojects,with theprojectsrangingin sizefrom approximately
5 KSLOC to over 1million SLOC. Becausecostsdependon a largenumberof parameters,a
single definitive value cannot be cited that representsthe cost of any organization'sprocess
improvementprogram.Basedon experience,however,generalsuggestionscanbeprovidedthat
anorganizationcaninterpretin thecontextof its own goalsandenvironment.

As ageneralrule, the overallcostof theprogramcanberepresentedin termsof thecostto each
of thethreeorganizationalelements:

• Overheadto the developers will not exceed 2 percent of the total project development

cost and is more likely to be less than 1 percent (which implies that it is not actually

measurable and is absorbed in the overhead).

• The support staff may reach a constant staff level of from one to five full-time

personnel for data processing support. In addition, the cost of the database software will

also be allocated to the support component.

• Several full time analysts will be required and may cost up to 10 or 15 percent of the

total development budget. As an example, the SEL spends an average of about 7

percent of each project's total development budget on analysis and packaging.

Figure 5-1 illustrates the costs of the elements of a software process improvement program as

percentages of the total organizational cost. The individual costs are discussed in more detail in

the following subsections.

5.1.1 Overhead to Developers

The cost of softwareprocess i vement should n_er add more

than 2 percentto the software development or _aintenance effort.

The smallest element of the cost of software process improvement is the overhead to the

developers. This overhead includes the cost of completing forms, participating in interviews,

attending training sessions describing measurement or technology experiments, and helping to

characterize project development.

Although start-up costs may be as high as 5 percent of the development budget, the actual cost of

operating an effective program will normally not exceed 1 or 2 percent regardless of the number

of projects under way within the organization.

Some legitimate costs are associated with introducing the providers of data to a new program;

however, part of the higher initial cost is attributable to the inefficiencies inherent in an

inexperienced organization's program. Such new programs typically ask the developers to
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completeunnecessaryformsor require excruciating detail that is of little value or is not a part of

the stated goal. A well-planned program will never impose a significant cost impact on the

development or maintenance project.
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Figure 5-1. Cost of Software Process Improvement

Cost of Support Staff

The cost of the support staff may range from 3 to Tpercent of the

total development budget.

This element includes collecting, validating, and archiving data. It also includes database

management, library maintenance, execution of support tools, and high-level reporting of

summary measurement data. These essential activities must be planned, supported, and carefully

executed. In addition to the cost of personnel supporting this activity, there will be the added cost

of acquiring and maintaining database software, support tools, and other automated processing

aids (e.g., code analyzers).

Within an organization of over 50 management, technical, and clerical personnel, any process

improvement program will require three to five full-time staff members to handle the necessary

support tasks. A smaller organization, with perhaps only one project and a pilot program, may

wish to combine this data processing effort with the configuration management (CM) or

independent quality assurance (QA) activities; implementation of a separate support element may

not be cost effective. A large organization may benefit by creating separate, structural

components to perform the three distinct roles. A small organization with a small project may

simply assign the roles to individual personnel. In some cases, a single individual may perform

multiple roles, as long as the amount of effort allocated to separate roles is clearly identified.

Experience within NASA has shown that the cost of the support staff supporting organizations of

100 to 200 software developers is approximately 7 percent of the total effort. That cost includes

approximately five full-time support staff personnel (data technicians and database support

personnel) plus the costs of the DBMS and associated software tools and equipment. For larger

programs (250 to 600 software personnel), experience indicates that only one additional full-time

support person is required. Thus, for organizations with 50 to 600 developers, the overhead cost
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is approximately6 percentof the project cost. For organizations with approximately 500 to 1,000

software personnel, the overhead cost approaches 3 percent of the project cost or about seven

full-time personnel added to the cost of the tools and equipment.

The cost estimates are based on the assumption that an organization is actively working on 5 to

15 development or maintenance projects at any one time. The overall cost of the support staff

will vary significantly depending on the number of projects participating in the program. An

organization of 200 or 300 people actively working on a single large project will require much

less support than the same organization with 20 active smaller projects. Limited experience with

larger organizations of over 5,000 persons indicates that the support staff cost is essentially the

same as that for an organization of 500. As its size increases, an organization tends to collect data
at a less detailed level.

5.1.3 Cost of Analysts

The cost of analysis and packaging ranges fro m 6 to 15percent of

the totalproject budget.

The analysis organization is the most critical part of the process improvement program and

incurs the most cost of the three organizational elements. Without sufficient allocation of effort

to the analysis and packaging function, the process improvement program will fail.

NASA experience shows that the cost of this element far exceeds the combined costs of the other

two. A successful program demands that this cost be recognized and budgeted. For programs

involving 50 to 250 software developers or maintainers, the cost of this activity has consistently

run from approximately 7 to 12 percent of the organization's total budget. Costs include

designing studies and developing new concepts; developing and writing standards; and

analyzing, providing feedback, and developing improvement guidelines. The cost of this element

depends on the number of active projects within the organization. The figures provided here

assume at least 10 active projects and an archive of data from at least 15 projects available for

analysis. The analysis cost would be smaller than indicated if there were fewer active projects.

NASA's historical data indicate that organizations spending between $20 million and $30

million for development and maintenance projects have spent between $1 million and $3 million

for extensive and mature analysis efforts (in fiscal year 1993 dollars). For efforts on a much

larger scale, the analysis must necessarily be conducted on a comparably higher level;

consequently, the overhead percentage decreases significantly. An expenditure of an equivalent

amount of analysis resources plus a modest increase due to the size of the organization need not

exceed the lower range of cost for analysis activities. That is, for larger organizations, the cost of

analysis and packaging activities need not exceed 3 percent.

Regardless of the size of an organization, adequate resources must be allocated for this critical

program element.
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5.2 Benefits Obtained

By implementing a process improvement program and establishing an organizational structure

devoted to software process improvement, an organization can reap many benefits:

• An established improvement process for software, substantiated and controlled by

quantitative data

• A repository of software processes and models that are empirically based on the

everyday practice of the organization

• An infrastructure that requires a limited overhead and provides substantial cost and

quality performance benefits

• A structured mechanism for identifying, assessing, and incorporating into the process

new technologies that have proven to be valuable in similar contexts

• A reuse-based software development process including code, designs, processes,

resources, models, lessons learned, and quality functions

The software process improvement program provides a corporate memory of software

experiences that can be used in ongoing and future ventures. The organization gains the ability to

learn from every project, constantly increase the maturity of the organization, and incorporate

new technologies into the life cycle. In the long term, the process improvement program supports

the overall evolution of the organization from a project-based one, where all activities are aimed

at the successful execution of single projects, to a capability-based one, which utilizes the

experience base across all projects.

Are there economic benefits in establishing and supporting a process improvement program?

Identifying conclusive evidence of the economic benefits derived from process improvement

programs is extremely difficult. The major reason for this difficulty is the relative immaturity of

process improvement programs within the software industry whereby quantitative evidence could
be derived.

Quantitative results can be obtained when measurement programs are mature enough to support

the process improvement program. The goal of the process improvement approach detailed in

this guidebook is to improve the products of an organization. Quantifiable benefits and

improvements must be measured against the goals set by the specific organization to improve its

products. Have error rates decreased and reliability improved? Has total system cost been

reduced? Has productivity been improved? The results of process improvement should be

quantifiable and should demonstrate positive return on investment depending on the goals of the

organization.

Organizations that have been using the concepts of process and product improvement described

in this guidebook can determine costs, benefits, and general impacts of such a program.

Figures 5-2 through 5-6 show some tangible benefits obtained by one such NASA organization at

GSFC. The data presented indicate the types of benefits that can be achieved by establishing a

process improvement program, but the quantified results are specific to the one organization. The

most important benefit demonstrated here is that an organization can quantify and qualify the

impacts of change. Even if the impact is negative, the organization has gained experience and
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benefitedfrom the additionalknowledge.Figures5-2 through 5-5 focuson impact to product;
theydemonstratechangeto theproductover timeasaresultof processimprovementactivities.

Figure5-2showstheresultsof theorganization'sprocessimprovementprogramon its productin
theareaof softwarereliability. As this figureillustrates,reliability hasimprovedby 75percentas
the averageerror rate during softwaredevelopmenthas decreasedfrom 4.5 to 1 error per
KSLOC.
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Figure 5-2. Improvements in Product Reliabifity

Figure 5-3 shows the results of the organization's process improvement program on its product in

the area of reuse. This figure shows that the reuse rate has increased by 300 percent from about

20 percent to nearly 80 percent.
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Figure 5-3. Improvements in Product Reuse

Figure 5-4 shows the results of the organization's process improvement program on its product in

the area of software development cost. This figure shows that the typical mission cost (to deliver
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several similar systems) has decreased by 55 percent from an average of about 490 staff-months
to about 210 staff-months.
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Figure 5-4. Improvements in Product Cost

Figure 5-5 shows the results of the organization's process improvement program on its product in

the area of development cycle time (i.e., the amount of time required for development). As this

figure illustrates, the average development cycle time has been reduced by 38 percent for both

Ada and FORTRAN projects.
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Figure 5-5. Improvements in Product Development Cycle Time

Table 5-1 focuses on the impact of the process improvement program on a specific

organization's process. Within the past decade, many facets of the organization's process have

evolved and matured as a direct result of process improvement activities. Software-related

activities have been integrated. Training, standards and policies, measurement, and the adoption

of new technologies are no longer performed in an ad hoc fashion; they fit into the three-phase

improvement approach (understand, assess, package) and work together to meet the

organization's needs. Developers become an integral part of the improvement process as they see

their experience drawn upon and packaged for subsequent use. Software becomes process driven

and less people driven. The three-phase approach also focuses the role of software engineering
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research. This research becomes driven by the problems and goals of the organization, and a

mechanism is in place for the experimentation, assessment, and adoption of new technologies.

Table 5-1. Impacts to Software Process

Early to Mid 1980s Mid to Late 1980s Early 1990s

Process Good Better Even Better

Standards Top-down Reflect environment Experience driven; bottom-
up

Training By organization For specific techniques Full program based on local
experience

Measurement Overhead to process, Integrated, analysis Organization's "way of doing
data driven driven business"

Life Cycle Waterfall Waterfall Tailorable

Inspections Code/design reading Code/design reading Focused inspections, design
plus peer reviews inspections

Research Ad hoc Sometimes product Product driven, based on
driven improvement goals

Improvement Technology Process Improvement process part
Focus of standards; integrated

experimentation and

development

As these illustrations show, this organization has derived quantifiable benefits from its process

improvement program in the areas of reliability, reuse, cost, and cycle time. Its process has also

matured in many ways. Another factor considered by the organization is that the software being

produced today is much more complex than in previous years. Despite the increased complexity,

the organization has been able to produce the functionality needed for these more complex

systems while improving reliability and reducing cost.

The use of a process improvement program to guide, manage, and improve processes will

provide an action-feedback mechanism for recording the current performance of the organization

and observing the actual impact of process changes. Control over change is a way to invest

resources in changes that proved to be effective in achieving the overall goals of the organization.

In general, a process improvement program should allow more control over what is happening in

the organization. The models used by management to predict the behavior of the software

processes, their cost, use of resources, compliance with schedule, and effectiveness, are based on

internal data and experience. Thus, management should be better able to trust those models.

Based on experience and information gained on previous projects, managers should also be better

able to handle the cases in which things do not go according to the predictions. Figure 5-6

demonstrates some of these ideas. This figure shows the long-term effect of process

improvement on reliability and demonstrates that the organization has gained a level of

manageability and control. Over the years, not only has the average error rate decreased, but the

band between the high and low values has narrowed. As a result, planning and controlling the

quality of the software being produced have become much easier for managers within this

organization.
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Figure 5-6. Long-Term Reliability Trends

Finally, especially in industry, there is a strong economic motivation for the organization to have

process improvement programs and prove the maturity of its process. Within the CMM

framework, for instance, continually improving (Maturity Level 5) organizations are much more

competitive and likely to win Government contracts than those that operate in an ad hoc fashion

(Maturity Level 1). In increasingly competitive markets, organizations without process

improvement programs will be at a disadvantage to those with process improvement programs in

place.

5.3 Key Management Guidelines

NASA's experience in implementing software process improvement programs has resulted in a

list of recommendations for any organization that wants to create a software process

improvement program. Some of those recommendations and lessons learned have already been

introduced in Chapter 4. A short summary is provided in Table 5-2.

The issue of limiting the scope is based on two considerations. First, because process

improvement represents, as shown in this chapter, a limited but significant overhead, quickly

achieving the expected benefits is necessary to obtain the support needed to continue the

program. Achieving success by applying corrections that can be effective very quickly proves

easier in a smaller environment. For instance, suppose too many measures have been selected for
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Table 5-2. Key Lessons in Starting a Process Improvement Program

Do Don t

Limit scope (start small).

Specify who will analyze and package (separate
from developers).

Produce specific products the first year (concepts,
baseline, perceived changes, software process
handbook).

Assure developers that they drive change
(analysts are helpers).

Proceed slowly.

Assume bigger is better.

Assume developers can also do packaging.

Focus on collecting data.

Ignore experience or perception of developers.

Promise more than you can deliver.

implementation, and the data collection costs turn out to be larger than expected. Changing the

standards and reorganizing the data collection process according to the original intentions are

easier in a smaller environment. Second, delimiting is easier in a well-defined application and

organizational domain. Because the predictive value of models and experiments is directly

related to the appropriateness of the chosen domain, success is easier to achieve if this choice can

be well delimited and characterized. Adhering to this principle will help keep the cost of the first

phase (Understanding) low.

Developers cannot be expected to perform the analysis and packaging for the software process

improvement organization. The packaging of experience is based on tenets and techniques that

are different from the problem-solving approach used in software development. Developers

design systems and solve problems by decomposing complex issues into simpler ones, based on a

divide and conquer approach. Their goal is to deliver a system that satisfies the needs for which it

has been designed within the time and budget constraints established at the beginning and

corrected during the project lifetime. Experience packaging, on the other hand, is performed by

unifying different solutions according to domain specificity and observed similarity. The goal is

to extract from a project enough information to be able to effectively reuse the development

experience in a different context within the same domain.

Therefore, the process improvement organization itself is composed (primarily) of two different

suborganizations, each one with specific goals, products, and measures of success. The goal of

the development organization is to deliver a software system, whereas the goal of the analysis

organization is to analyze and package experiences into a form useful to the development group.

The success of the development organization is measured by delivering on time and within

budget a software product that meets the needs for which it has been designed. The success of the

analysis organization is measured by its ability to provide and use in a timely way products,

processes, and information that can be used by the developers. Every product from one side (the

analysts) is derived from the specific experiences of the other side (the developers).

The separation between analysts and developers should not mean that the experience and

perception of the developers are not taken into account. Their experience feeds process

improvement, and their cooperation makes it useful and worth the investment. Although the

analysts perform the major part of the work in collecting and packaging data and information, the

developers are the driving force of change. They need to recognize the value of the support they

receive from the analysts. If the perception exists that the activities of the analysts absorb
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resourceswithout providing real value, the whole initiative will likely fail. Therefore,it is
important to get the developers'acceptanceand support by aiming at their real problems,
minimizing the effort on their side,and still giving them decisionalpower over change.The
developersmay considermeasurementan annoyance,but this is not a big problem. The
importantthing is that measurementis not perceivedasa threat.As long asa managerensures
thatmeasurementwill neverbeusedto rateprogrammers,thedeveloperswill treatmeasurement
responsibilitiesasjust onemoretaskthatis partof theirjob.

Thelast issueassociatedwith thesuccessfuldevelopmentof aprocessimprovementprogramis
theneed,on onehand,to proceedslowly and,on the otherhand,to producespecificproducts
(concepts,baseline,perceivedchanges,softwareprocesshandbook)assoonaspossible,perhaps
evenin the first yearof the initiative. Thepersonnelin chargeof the initiative shouldbeableto
definea setof capabilitiesandproductsthat will be readyandavailablefor the organizationat
specific milestonesin the program. Thesecapabilities and products, such as providing a
characterizationof the organization'stechnicalbaselineor repeatingthecharacterizationprocess
carriedout in a specificdomainin othercontexts,shouldpresentin the mostpracticalway the
valuethattheprocessimprovementprogramprovidesfor thewholeorganization.
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Appendix A. Glossary of Terms

his appendix contains definitions of terms used throughout this document and providessynonyms commonly used for these terms.

Analysis Organization: The organization whose focus and priority is to support process

improvement by analyzing experience drawn from the development organization. The analysis

organization synthesizes the information in the form of policies, standards, training materials

and, in general, models of the product and of the process (both formal and informal).

Synonyms: Analysts, analysis and packaging element, analysis element.

Assessing Phase: The second of the three phases in the software process improvement paradigm

where some change is introduced and the impact of that change on both software process and

product is then determined. This phase is generally thought of as the experimental step in which

some defined change to the process (e.g., the use of a new set of standards, the introduction of a

new design technique) is evaluated against the baseline.

Synonym: Experimentation.

Development Organization: The organization, including all the developers and maintainers,

whose primary objective is to produce software that meets the customer's needs on time and

within budget. Additionally, this organization must provide development information to the

analysts. It receives process and product information from the analysts and reuses this
information in its activities.

Synonyms: Developers, maintainers, project element, project organization, experience source,

source of data.

Packaging Phase: The last of the three phases in the software process improvement paradigm

where changes that have produced satisfactory results are incorporated into the mainstream of the

organization. The analysts develop new models, documents, standards, and training materials

based on what has been learned during the Assessing Phase. The products developed by the

analysts are stored by the support staff into the experience base and are provided to the

developers upon request.

Repository: The "corporate knowledge" of an organization consisting of a projects database and

a library. The projects database (usually a RDBMS) contains the historical project data (e.g., cost,

schedule, and error data). The library consists of the data collection forms, project-related

documentation from the developers, and the products of the analysts such as models, reports,

standards, policies, and handbooks.

Synonym: Experience base.
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Software Process Improvement: The continual and iterative improvement of both the software

process and products through the use of project experiences.

Synonyms: Software product improvement, software process and product improvement.

Software Process Improvement Organization: An organizational structure devoted to

continually using lessons, data, and general experience from software projects to ensure that

ongoing and ensuing efforts use the experience to improve their software products and processes.

Synonyms: Experience factory, experience factory organization.

Support Organization: The focal point for all the archived information produced and used

within the software process improvement program. This group is responsible for collecting,

quality assuring, storing, retrieving, and archiving the data drawn from the developers. This

organization maintains the repository of development information and packaged experiences.

Synonyms: Support staff, support element, technical support, repository component.

Understanding Phase: The first of the three phases in the software process improvement

paradigm where characteristics of the software process and products are continually captured

within the project organization. Models, relationships, and general descriptions of the process

and products are generated. Understanding is the required starting point of the overall process

improvement sequence, and it is unending because changes must be also understood and

characterized.

Synonyms: Baselining, characterizing.
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Abbreviations and Acronyms

AGSS

CDR

CM

CMM

COBE

DBA

DBMS

DLOC

DSN

EOS

EUVE

FAST

GOES

GQM

GRO

GSFC

IRM

IV&V

JPL

KDLOC

KLOC

KSLOC

LaRC

MSLOC

NASA

OOT

attitude ground support system

critical design review

configuration management

Capability Maturity Model

Cosmic Background Explorer

database administrator

database management system

developed lines of code

Deep Space Network

Earth Observing System

Extreme Ultraviolet Explorer

Fast Auroral Snapshot Explorer

Geostationary Operational Environmental Satellite

Goal/Question/Metric

Compton Gamma Ray Observatory

Goddard Space Flight Center

Information Resources Management

independent verification and validation

Jet Propulsion Laboratory

one thousand developed lines of code

one thousand lines of code

one thousand source lines of code

Langley Research Center

million source lines of code

National Aeronautics and Space Administration

object-oriented technology
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Polar

QA

R&D

RDBMS

RTOP

SAMPEX

SEAL

SEI

SEL

SEPG

SLOC

SORCE

TOMS

TS

UARS

WIND

GlobalGeospaceSciencePolarSpacecraft

qualityassurance

researchanddevelopment

relationaldatabasemanagementsystem

ResearchTopicOperatingPlan

Solar,Anomalous,andMagnetosphericParticleExplorer

SoftwareEngineeringandAnalysisLaboratory

SoftwareEngineeringInstitute

SoftwareEngineeringLaboratory

SoftwareEngineeringProcessGroup

sourcelinesof code

SoftwareResourceCenter

TotalOzoneMappingSpectrometer

telemetrysimulator

UpperAtmosphereResearchSatellite

GlobalGeospaceScienceWind Spacecraft
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